7,198 research outputs found

    A Linear Classifier Based on Entity Recognition Tools and a Statistical Approach to Method Extraction in the Protein-Protein Interaction Literature

    Get PDF
    We participated, in the Article Classification and the Interaction Method subtasks (ACT and IMT, respectively) of the Protein-Protein Interaction task of the BioCreative III Challenge. For the ACT, we pursued an extensive testing of available Named Entity Recognition and dictionary tools, and used the most promising ones to extend our Variable Trigonometric Threshold linear classifier. For the IMT, we experimented with a primarily statistical approach, as opposed to employing a deeper natural language processing strategy. Finally, we also studied the benefits of integrating the method extraction approach that we have used for the IMT into the ACT pipeline. For the ACT, our linear article classifier leads to a ranking and classification performance significantly higher than all the reported submissions. For the IMT, our results are comparable to those of other systems, which took very different approaches. For the ACT, we show that the use of named entity recognition tools leads to a substantial improvement in the ranking and classification of articles relevant to protein-protein interaction. Thus, we show that our substantially expanded linear classifier is a very competitive classifier in this domain. Moreover, this classifier produces interpretable surfaces that can be understood as "rules" for human understanding of the classification. In terms of the IMT task, in contrast to other participants, our approach focused on identifying sentences that are likely to bear evidence for the application of a PPI detection method, rather than on classifying a document as relevant to a method. As BioCreative III did not perform an evaluation of the evidence provided by the system, we have conducted a separate assessment; the evaluators agree that our tool is indeed effective in detecting relevant evidence for PPI detection methods.Comment: BMC Bioinformatics. In Pres

    The Protein-Protein Interaction tasks of BioCreative III: classification/ranking of articles and linking bio-ontology concepts to full text

    Get PDF
    BACKGROUND: Determining usefulness of biomedical text mining systems requires realistic task definition and data selection criteria without artificial constraints, measuring performance aspects that go beyond traditional metrics. The BioCreative III Protein-Protein Interaction (PPI) tasks were motivated by such considerations, trying to address aspects including how the end user would oversee the generated output, for instance by providing ranked results, textual evidence for human interpretation or measuring time savings by using automated systems. Detecting articles describing complex biological events like PPIs was addressed in the Article Classification Task (ACT), where participants were asked to implement tools for detecting PPI-describing abstracts. Therefore the BCIII-ACT corpus was provided, which includes a training, development and test set of over 12,000 PPI relevant and non-relevant PubMed abstracts labeled manually by domain experts and recording also the human classification times. The Interaction Method Task (IMT) went beyond abstracts and required mining for associations between more than 3,500 full text articles and interaction detection method ontology concepts that had been applied to detect the PPIs reported in them.RESULTS:A total of 11 teams participated in at least one of the two PPI tasks (10 in ACT and 8 in the IMT) and a total of 62 persons were involved either as participants or in preparing data sets/evaluating these tasks. Per task, each team was allowed to submit five runs offline and another five online via the BioCreative Meta-Server. From the 52 runs submitted for the ACT, the highest Matthew's Correlation Coefficient (MCC) score measured was 0.55 at an accuracy of 89 and the best AUC iP/R was 68. Most ACT teams explored machine learning methods, some of them also used lexical resources like MeSH terms, PSI-MI concepts or particular lists of verbs and nouns, some integrated NER approaches. For the IMT, a total of 42 runs were evaluated by comparing systems against manually generated annotations done by curators from the BioGRID and MINT databases. The highest AUC iP/R achieved by any run was 53, the best MCC score 0.55. In case of competitive systems with an acceptable recall (above 35) the macro-averaged precision ranged between 50 and 80, with a maximum F-Score of 55. CONCLUSIONS: The results of the ACT task of BioCreative III indicate that classification of large unbalanced article collections reflecting the real class imbalance is still challenging. Nevertheless, text-mining tools that report ranked lists of relevant articles for manual selection can potentially reduce the time needed to identify half of the relevant articles to less than 1/4 of the time when compared to unranked results. Detecting associations between full text articles and interaction detection method PSI-MI terms (IMT) is more difficult than might be anticipated. This is due to the variability of method term mentions, errors resulting from pre-processing of articles provided as PDF files, and the heterogeneity and different granularity of method term concepts encountered in the ontology. However, combining the sophisticated techniques developed by the participants with supporting evidence strings derived from the articles for human interpretation could result in practical modules for biological annotation workflows

    Mining Host-Pathogen Interactions

    Get PDF

    Unsupervised Biomedical Named Entity Recognition

    Get PDF
    Named entity recognition (NER) from text is an important task for several applications, including in the biomedical domain. Supervised machine learning based systems have been the most successful on NER task, however, they require correct annotations in large quantities for training. Annotating text manually is very labor intensive and also needs domain expertise. The purpose of this research is to reduce human annotation effort and to decrease cost of annotation for building NER systems in the biomedical domain. The method developed in this work is based on leveraging the availability of resources like UMLS (Unified Medical Language System), that contain a list of biomedical entities and a large unannotated corpus to build an unsupervised NER system that does not require any manual annotations. The method that we developed in this research has two phases. In the first phase, a biomedical corpus is automatically annotated with some named entities using UMLS through unambiguous exact matching which we call weakly-labeled data. In this data, positive examples are the entities in the text that exactly match in UMLS and have only one semantic type which belongs to the desired entity class to be extracted (for example, diseases and disorders). Negative examples are the entities in the text that exactly match in UMLS but are of semantic types other than those that belong to the desired entity class. These examples are then used to train a machine learning classifier using features that represent the contexts in which they appeared in the text. The trained classifier is applied back to the text to gather more examples iteratively through the process of self-training. The trained classifier is then capable of classifying mentions in an unseen text as of the desired entity class or not from the contexts in which they appear. Although the trained named entity detector is good at detecting the presence of entities of the desired class in text, it cannot determine their correct boundaries. In the second phase of our method, called “Boundary Expansion”, the correct boundaries of the entities are determined. This method is based on a novel idea that utilizes machine learning and UMLS. Training examples for boundary expansion are gathered directly from UMLS and do not require any manual annotations. We also developed a new WordNet based approach for boundary expansion. Our developed method was evaluated on three datasets - SemEval 2014 Task 7 dataset that has diseases and disorders as the desired entity class, GENIA dataset that has proteins, DNAs, RNAs, cell types, and cell lines as the desired entity classes, and i2b2 dataset that has problems, tests, and treatments as the desired entity classes. Our method performed well and obtained performance close to supervised methods on the SemEval dataset. On the other datasets, it outperformed an existing unsupervised method on most entity classes. Availability of a list of entity names with their semantic types and a large unannotated corpus are the only requirements of our method to work well. Given these, our method generalizes across different types of entities and different types of biomedical text. Being unsupervised, the method can be easily applied to new NER tasks without needing costly annotations

    Uncovering protein interaction in abstracts and text using a novel linear model and word proximity networks

    Get PDF
    We participated in three of the protein-protein interaction subtasks of the Second BioCreative Challenge: classification of abstracts relevant for protein-protein interaction (IAS), discovery of protein pairs (IPS) and text passages characterizing protein interaction (ISS) in full text documents. We approached the abstract classification task with a novel, lightweight linear model inspired by spam-detection techniques, as well as an uncertainty-based integration scheme. We also used a Support Vector Machine and the Singular Value Decomposition on the same features for comparison purposes. Our approach to the full text subtasks (protein pair and passage identification) includes a feature expansion method based on word-proximity networks. Our approach to the abstract classification task (IAS) was among the top submissions for this task in terms of the measures of performance used in the challenge evaluation (accuracy, F-score and AUC). We also report on a web-tool we produced using our approach: the Protein Interaction Abstract Relevance Evaluator (PIARE). Our approach to the full text tasks resulted in one of the highest recall rates as well as mean reciprocal rank of correct passages. Our approach to abstract classification shows that a simple linear model, using relatively few features, is capable of generalizing and uncovering the conceptual nature of protein-protein interaction from the bibliome. Since the novel approach is based on a very lightweight linear model, it can be easily ported and applied to similar problems. In full text problems, the expansion of word features with word-proximity networks is shown to be useful, though the need for some improvements is discussed

    A comparison of machine learning techniques for detection of drug target articles

    Get PDF
    Important progress in treating diseases has been possible thanks to the identification of drug targets. Drug targets are the molecular structures whose abnormal activity, associated to a disease, can be modified by drugs, improving the health of patients. Pharmaceutical industry needs to give priority to their identification and validation in order to reduce the long and costly drug development times. In the last two decades, our knowledge about drugs, their mechanisms of action and drug targets has rapidly increased. Nevertheless, most of this knowledge is hidden in millions of medical articles and textbooks. Extracting knowledge from this large amount of unstructured information is a laborious job, even for human experts. Drug target articles identification, a crucial first step toward the automatic extraction of information from texts, constitutes the aim of this paper. A comparison of several machine learning techniques has been performed in order to obtain a satisfactory classifier for detecting drug target articles using semantic information from biomedical resources such as the Unified Medical Language System. The best result has been achieved by a Fuzzy Lattice Reasoning classifier, which reaches 98% of ROC area measure.This research paper is supported by Projects TIN2007-67407- C03-01, S-0505/TIC-0267 and MICINN project TEXT-ENTERPRISE 2.0 TIN2009-13391-C04-03 (Plan I + D + i), as well as for the Juan de la Cierva program of the MICINN of SpainPublicad

    Overview of the protein-protein interaction annotation extraction task of BioCreative II

    Get PDF
    © 2008 Krallinger et al; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution Licens

    Using Learning to Rank Approach to Promoting Diversity for Biomedical Information Retrieval with Wikipedia

    Get PDF
    In most of the traditional information retrieval (IR) models, the independent relevance assumption is taken, which assumes the relevance of a document is independent of other documents. However, the pitfall of this is the high redundancy and low diversity of retrieval result. This has been seen in many scenarios, especially in biomedical IR, where the information need of one query may refer to different aspects. Promoting diversity in IR takes the relationship between documents into account. Unlike previous studies, we tackle this problem in the learning to rank perspective. The main challenges are how to find salient features for biomedical data and how to integrate dynamic features into the ranking model. To address these challenges, Wikipedia is used to detect topics of documents for generating diversity biased features. A combined model is proposed and studied to learn a diversified ranking result. Experiment results show the proposed method outperforms baseline models
    corecore