26 research outputs found

    A Bayesian Joint Decorrelation and Despeckling approach for speckle reduction of SAR Images

    Get PDF
    In this paper, we present a novel approach for joint decorrelationand despeckling of synthetic aperture radar (SAR) imagery. An iterativemaximum a posterior estimation is performed to obtain thecorrelation and speckle-free SAR data, which incorporates a correlationmodel which realistically explores the physical correlatedprocess of speckle noise on signal in SAR imaging. The correlationmodel is determined automatically via Bayesian estimation in thelog-Fourier domain and patch-wise computation is used to accountfor spatial nonstationarities existing in SAR data. The proposedapproach is compared to a state-of-the-art despeckling techniqueusing both simulated and real SAR data. Experimental results illustrateits improvement in preserving the structural detail, especiallythe sharpness of the edges, when suppressing speckle noise

    On Solving SAR Imaging Inverse Problems Using Non-Convex Regularization with a Cauchy-based Penalty

    Full text link
    Synthetic aperture radar (SAR) imagery can provide useful information in a multitude of applications, including climate change, environmental monitoring, meteorology, high dimensional mapping, ship monitoring, or planetary exploration. In this paper, we investigate solutions to a number of inverse problems encountered in SAR imaging. We propose a convex proximal splitting method for the optimization of a cost function that includes a non-convex Cauchy-based penalty. The convergence of the overall cost function optimization is ensured through careful selection of model parameters within a forward-backward (FB) algorithm. The performance of the proposed penalty function is evaluated by solving three standard SAR imaging inverse problems, including super-resolution, image formation, and despeckling, as well as ship wake detection for maritime applications. The proposed method is compared to several methods employing classical penalty functions such as total variation (TVTV) and L1L_1 norms, and to the generalized minimax-concave (GMC) penalty. We show that the proposed Cauchy-based penalty function leads to better image reconstruction results when compared to the reference penalty functions for all SAR imaging inverse problems in this paper.Comment: 18 pages, 7 figure

    Accurate Despeckling and Estimation of Polarimetric Features by Means of a Spatial Decorrelation of the Noise in Complex PolSAR Data

    Get PDF
    In this work, we extended a procedure for the spatial decorrelation of fully-developed speckle, originally developed for single-polarization SAR data, to fully-polarimetric SAR data. The spatial correlation of the noise depends on the tapering window in the Fourier domain used by the SAR processor to avoid defocusing of targets caused by Gibbs effects. Since each polarimetric channel is focused independently of the others, the noise-whitening procedure can be performed applying the decorrelation stage to each channel separately. Equivalently, the noise-whitening stage is applied to each element of the scattering matrix before any multilooking operation, either coherent or not, is performed. In order to evaluate the impact of a spatial decorrelation of the noise on the performance of polarimetric despeckling filters, we make use of simulated PolSAR data, having user-defined polarimetric features. We optionally introduce a spatial correlation of the noise in the simulated complex data by means of a 2D separable Hamming window in the Fourier domain. Then, we remove such a correlation by using the whitening procedure and compare the accuracy of both despeckling and polarimetric features estimation for the three following cases: uncorrelated, correlated, and decorrelated images. Simulation results showed a steady improvement of performance scores, most notably the equivalent number of looks (ENL), which increased after decorrelation and closely attained the value of the uncorrelated case. Besides ENL, the benefits of the noise decorrelation hold also for polarimetric features, whose estimation accuracy is diminished by the correlation. Also, the trends of simulations were confirmed by qualitative results of experiments carried out on a true Radarsat-2 image

    Sea-Ice Detection from RADARSAT Images by Gamma-based Bilateral Filtering

    Get PDF
    Spaceborne Synthetic Aperture Radar (SAR) is commonly considered a powerful sensor to detect sea ice. Unfortunately, the sea-ice types in SAR images are difficult to be interpreted due to speckle noise. SAR image denoising therefore becomes a critical step of SAR sea-ice image processing and analysis. In this study, a two-phase approach is designed and implemented for SAR sea-ice image segmentation. In the first phase, a Gamma-based bilateral filter is introduced and applied for SAR image denoising in the local domain. It not only perfectly inherits the conventional bilateral filter with the capacity of smoothing SAR sea-ice imagery while preserving edges, but also enhances it based on the homogeneity in local areas and Gamma distribution of speckle noise. The Gamma-based bilateral filter outperforms other widely used filters, such as Frost filter and the conventional bilateral filter. In the second phase, the K-means clustering algorithm, whose initial centroids are optimized, is adopted in order to obtain better segmentation results. The proposed approach is tested using both simulated and real SAR images, compared with several existing algorithms including K-means, K-means based on the Frost filtered images, and K-means based on the conventional bilateral filtered images. The F1 scores of the simulated results demonstrate the effectiveness and robustness of the proposed approach whose overall accuracies maintain higher than 90% as variances of noise range from 0.1 to 0.5. For the real SAR images, the proposed approach outperforms others with average overall accuracy of 95%

    Contourlet Domain Image Modeling and its Applications in Watermarking and Denoising

    Get PDF
    Statistical image modeling in sparse domain has recently attracted a great deal of research interest. Contourlet transform as a two-dimensional transform with multiscale and multi-directional properties is known to effectively capture the smooth contours and geometrical structures in images. The objective of this thesis is to study the statistical properties of the contourlet coefficients of images and develop statistically-based image denoising and watermarking schemes. Through an experimental investigation, it is first established that the distributions of the contourlet subband coefficients of natural images are significantly non-Gaussian with heavy-tails and they can be best described by the heavy-tailed statistical distributions, such as the alpha-stable family of distributions. It is shown that the univariate members of this family are capable of accurately fitting the marginal distributions of the empirical data and that the bivariate members can accurately characterize the inter-scale dependencies of the contourlet coefficients of an image. Based on the modeling results, a new method in image denoising in the contourlet domain is proposed. The Bayesian maximum a posteriori and minimum mean absolute error estimators are developed to determine the noise-free contourlet coefficients of grayscale and color images. Extensive experiments are conducted using a wide variety of images from a number of databases to evaluate the performance of the proposed image denoising scheme and to compare it with that of other existing schemes. It is shown that the proposed denoising scheme based on the alpha-stable distributions outperforms these other methods in terms of the peak signal-to-noise ratio and mean structural similarity index, as well as in terms of visual quality of the denoised images. The alpha-stable model is also used in developing new multiplicative watermark schemes for grayscale and color images. Closed-form expressions are derived for the log-likelihood-based multiplicative watermark detection algorithm for grayscale images using the univariate and bivariate Cauchy members of the alpha-stable family. A multiplicative multichannel watermark detector is also designed for color images using the multivariate Cauchy distribution. Simulation results demonstrate not only the effectiveness of the proposed image watermarking schemes in terms of the invisibility of the watermark, but also the superiority of the watermark detectors in providing detection rates higher than that of the state-of-the-art schemes even for the watermarked images undergone various kinds of attacks

    Bayesian super-resolution with application to radar target recognition

    Get PDF
    This thesis is concerned with methods to facilitate automatic target recognition using images generated from a group of associated radar systems. Target recognition algorithms require access to a database of previously recorded or synthesized radar images for the targets of interest, or a database of features based on those images. However, the resolution of a new image acquired under non-ideal conditions may not be as good as that of the images used to generate the database. Therefore it is proposed to use super-resolution techniques to match the resolution of new images with the resolution of database images. A comprehensive review of the literature is given for super-resolution when used either on its own, or in conjunction with target recognition. A new superresolution algorithm is developed that is based on numerical Markov chain Monte Carlo Bayesian statistics. This algorithm allows uncertainty in the superresolved image to be taken into account in the target recognition process. It is shown that the Bayesian approach improves the probability of correct target classification over standard super-resolution techniques. The new super-resolution algorithm is demonstrated using a simple synthetically generated data set and is compared to other similar algorithms. A variety of effects that degrade super-resolution performance, such as defocus, are analyzed and techniques to compensate for these are presented. Performance of the super-resolution algorithm is then tested as part of a Bayesian target recognition framework using measured radar data

    Remote Sensing for Non‐Technical Survey

    Get PDF
    This chapter describes the research activities of the Royal Military Academy on remote sensing applied to mine action. Remote sensing can be used to detect specific features that could lead to the suspicion of the presence, or absence, of mines. Work on the automatic detection of trenches and craters is presented here. Land cover can be extracted and is quite useful to help mine action. We present here a classification method based on Gabor filters. The relief of a region helps analysts to understand where mines could have been laid. Methods to be a digital terrain model from a digital surface model are explained. The special case of multi‐spectral classification is also addressed in this chapter. Discussion about data fusion is also given. Hyper‐spectral data are also addressed with a change detection method. Synthetic aperture radar data and its fusion with optical data have been studied. Radar interferometry and polarimetry are also addressed

    Compaction of C-band synthetic aperture radar based sea ice information for navigation in the Baltic Sea

    Get PDF
    In this work operational sea ice synthetic aperture radar (SAR) data products were improved and developed. A SAR instrument is transmitting electromagnetic radiation at certain wavelengths and measures the radiation which is scattered back towards the instrument from the target, in our case sea and sea ice. The measured backscattering is converted to an image describing the target area through complex signal processing. The images, however, differ from optical images, i.e. photographs, and their visual interpretation is not straightforward. The main idea in this work has been to deliver the essential SAR-based sea ice information to end-users (typically on ships) in a compact and user-friendly format. The operational systems at Finnish Institute of Marine Research (FIMR) are currently based on the data received from a Canadian SAR-satellite, Radarsat-1. The operational sea ice classification, developed by the author with colleagues, has been further developed. One problem with the SAR data is typically that the backscattering varies depending on the incidence angle. The incidence angle is the angle in which the transmitted electromagnetic wave meets the target surface and it varies within each SAR image and between different SAR images depending on the measuring geometry. To improve this situation, an incidence angle correction algorithm to normalize the backscattering over the SAR incidence angle range for Baltic Sea ice has been developed as part of this work. The algorithm is based on SAR backscattering statistics over the Baltic Sea. To locate different sea ice areas in SAR images, a SAR segmentation algorithm based on pulse-coupled neural networks has been developed and tested. The parameters have been tuned suitable for the operational data in use at FIMR. The sea ice classification is based on this segmentation and the classification is segment-wise rather than pixel-wise. To improve SAR-based distinguishing between sea ice and open water an open water detection algorithm based on segmentation and local autocorrelation has been developed. Also ice type classification based on higher-order statistics and independent component analysis have been studied to get an improved SAR-based ice type classification. A compression algorithm for compressing sea ice SAR data for visual use has been developed. This algorithm is based on the wavelet decomposition, zero-tree structure and arithmetic coding. Also some properties of the human visual system were utilized. This algorithm was developed to produce smaller compressed SAR images, with a reasonable visual quality. The transmission of the compressed images to ships with low-speed data connections in reasonable time is then possible. One of the navigationally most important sea ice parameters is the ice thickness. SAR-based ice thickness estimation has been developed and evaluated as part of this work. This ice thickness estimation method uses the ice thickness history derived from digitized ice charts, made daily at the Finnish Ice Service, as its input, and updates this chart based on the novel SAR data. The result is an ice thickness chart representing the ice situation at the SAR acquisition time in higher resolution than in the manually made ice thickness charts. For the evaluation of the results a helicopter-borne ice thickness measuring instrument, based on electromagnetic induction and laser altimeter, was used.reviewe
    corecore