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Abstract

This thesis is concerned with methods to facilitate automatic target recogni-

tion using images generated from a group of associated radar systems. Target

recognition algorithms require access to a database of previously recorded or

synthesized radar images for the targets of interest, or a database of features

based on those images. However, the resolution of a new image acquired under

non-ideal conditions may not be as good as that of the images used to generate

the database. Therefore it is proposed to use super-resolution techniques to

match the resolution of new images with the resolution of database images.

A comprehensive review of the literature is given for super-resolution when

used either on its own, or in conjunction with target recognition. A new super-

resolution algorithm is developed that is based on numerical Markov chain

Monte Carlo Bayesian statistics. This algorithm allows uncertainty in the super-

resolved image to be taken into account in the target recognition process. It

is shown that the Bayesian approach improves the probability of correct target

classification over standard super-resolution techniques.

The new super-resolution algorithm is demonstrated using a simple synthet-

ically generated data set and is compared to other similar algorithms. A variety

of effects that degrade super-resolution performance, such as defocus, are ana-

lyzed and techniques to compensate for these are presented. Performance of the

super-resolution algorithm is then tested as part of a Bayesian target recognition

framework using measured radar data.

Key Phrases : — Automatic target recognition (ATR), Bayesian methods,

classification, deconvolution, image restoration, Markov chain Monte Carlo

(MCMC), point spread function (PSF), radar, statistics, superresolution.
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Novel aspects of the work

The major original contributions from this thesis are:

• A Markov chain Monte Carlo (MCMC) Bayesian super-resolution algo-

rithm that estimates the full probability distribution of the complex scat-

tered field of a target has been developed and tested in Section 3.2. A

similar algorithm for estimating the underlying radar cross-section of a

target has been developed and tested in Section 3.3. Although a full-

distribution Bayesian algorithm that effectively uses a parametric scatter-

ing centre model has previously been proposed in [2], the present author

is not aware of any such algorithm applicable to a non-parametric radar

model having been published. In [147] it is stated that to their knowledge,

“no works have been done on applying MCMC on the super-resolution

problem”. However, the work from which this thesis is derived does, in

fact, pre-date that work, as evidenced by the conference paper [80].

• The minimum mean-square error (MMSE) super-resolution algorithm has

been used to estimate the full Bayesian distribution of the super-resolved

complex scattered field. It is well known that the MMSE solution to the
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super-resolution problem is equal to the mean of the Bayesian solution

under assumptions of Gaussian statistics. However, an approximation

to the complete Bayesian solution has been developed in Section 3.5 of
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of the noise covariance matrix but does not require the specification of a

prior covariance for the complex field, as is usual.

• A joint autofocus and super-resolution algorithm using the full probability

distribution under Bayesian statistics has been developed and tested in

Chapter 4.
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eral other authors have proposed the combination of super-resolution and

target recognition to improve system performance. However, the choice

of algorithms has thus far been rather ad hoc. The development of a

full-distribution Bayesian super-resolution algorithm in this thesis allows

information about uncertainty introduced during the super-resolution pro-

cess to be taken into account in the target recognition process.

• An approximate analytic description of the radar point spread function

has been derived in Appendix C for situations where the signal is defocused

by cross-track acceleration.
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Chapter 1

Introduction

1.1 Historical Context

Radar is a sensor technology that has been in existence in one form or another

for over one hundred years. In 1904 Christian Hülsmeyer filed a patent that

described how the detection of reflected radio waves could be used as an early

warning detection system for ships [63]. Hülsmeyer built a working prototype

but there was little interest in his system as it had a short range of only one

mile [136]. Systems with improved ranges were made by workers at the US Naval

Research Laboratory: first in the 1920s to measure the height of the ionosphere

with a pulsed radar, and then in the early 1930s to detect the presence of

aircraft using continuous-wave radar. From 1935 there was rapid development

in the run-up to the second world war, with Watson-Watt’s team in the UK

demonstrating a pulsed technique to measure the range of aircraft. By the end

of the war, radar systems with the ability to show range and angle information

on the same display had been developed by several countries [136]. In the

1950s synthetic-aperture radar (SAR) was invented: a system for obtaining high

resolution in both the range and cross-range directions [44]. The first spaceborne

SAR, SeaSat, was launched in 1978 and provided images of the Earth’s surface.

Although many radar systems in use today still have resolutions in the order of

tens of metres, an increasing number of systems have resolutions of one metre

or down to even ten centimetres [44].

With high-resolution radar it becomes possible not only to detect a target’s

location but also to recognize the general class of target or type within a class.
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CHAPTER 1. INTRODUCTION 1.1. HISTORICAL CONTEXT

The recognition process can be carried out by a human operator who looks at

a signal or image and uses a combination of his skill, knowledge and reference

manuals to perform the task. However, the operator is prone to fatigue if

working over extended periods of time and has a limit to the number of signals

or images that can be recognized per hour. If computers could reliably perform

this task automatically then potentially thousands of images per hour could

be processed. The subject of automatic target recognition (ATR) has been

developing significantly since the 1960s [27]. Research programmes have been

accelerated with the advent of high-speed low-cost computers and an increasing

military need for reliable ATR. ATR systems generally rely on techniques such as

statistical pattern recognition [155] or artificial neural networks [6]. Tait [142]

provides a thorough review of the radar ATR process and divides it into a

number of steps: radar measurements, generating a target database, target

signature models, recognition algorithms and data processing functions.

When ATR systems employ multiple sensors, consideration must be given

to how data from different sources is exploited. Either several radar sensors or

a combination of radar and other types of sensor, such as infra-red, could be

in use. The data from each sensor might provide information such as target

position, target features, or an estimate of the target type. If possible, it would

be advantageous to directly compare images from the various sensors as images

provide more information than higher level features alone. However, because

the images from different sensors have different attributes this could prove to be

difficult. If the sensors are limited to different types of radar then a direct com-

parison is more likely to be possible. One of the main ways in which the images

from different radars differ is that of resolution – the minimum separation re-

quired for closely spaced scattering centres on a target to be distinguished. This

is a fundamental limit based on the bandwidth of the transmitted waveform and

the physical size of the radar system compared to the transmitted radio wave-

length. One way of making the images comparable is to use super-resolution

for the sensors with a poor resolution. Super-resolution is the use of signal

processing techniques to increase the resolution beyond physical limits by us-

ing knowledge of a system’s point-target response, and by making assumptions

about the scene of interest. Once images from all the sensors have been pro-

cessed to the same resolution using super-resolution, standard ATR techniques
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can be applied and the data from the various sensors compared directly.

A good way of combining data from different sources is through the use

of Bayesian statistics [82]. The main motivation behind a Bayesian approach

lies in the unique ability of Bayesian statistics to handle limited and possibly

conflicting pieces of information in a fully consistent manner. In particular,

Bayesian theory provides a consistent mechanism for manipulating probabilities

assigned to data. Further advantages in the use of Bayesian techniques include

the ability to cope with additional prior information and the production of

confidence intervals and other statistics of interest for the parameters estimated.

Jaynes gives arguments in favour of Bayesian methods in [68] and a history of

the subject in [70].

1.2 Literature Survey

1.2.1 Introduction to Super-resolution

Super-resolution may be defined as the use of signal processing techniques to

improve a system’s resolution beyond the classical Rayleigh resolution limit.

An image with Rayleigh resolution is the result of a convolution between a

point spread function and a high-resolution representation of the scene of inter-

est. Deconvolution removes the effect of the point spread function and reveals

the high-resolution scene. Therefore all deconvolution algorithms are super-

resolution algorithms. In radar or communications systems using an array of

antennas, weights can be applied to signals received at each antenna to pre-

cisely steer nulls in the direction of a nearby strong signal. This allows the

direction and power of a second signal to be determined without power leak-

ing from the nulled signal. Since the two targets can be closer together than

the Rayleigh limit, this form of processing – sometimes referred to as direction

finding – can also be considered to be super-resolution. Radar data is often

obtained in the frequency domain and an inverse Fourier transform is applied

to obtain data in the spatial domain, which is more useful than frequency data

for detection, recognition and interpretation purposes. The Fourier transform

of an ideal point target is a complex sinusoid with a real-part frequency that

depends on the position of the target. Therefore any technique that is able

to estimate the parameters of multiple sinusoids closely spaced in frequency
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is equivalent to a super-resolution technique. Accordingly this literature sur-

vey covers the areas of super-resolution, deconvolution, direction finding, and

estimation of sinusoids, considering them to be equivalent problems. In the

following discussion of techniques, the terms point source, scattering centre,

target, and sinusoid will be used interchangeably depending on the terminology

used originally to describe an algorithm and the context in which it is being

discussed. Whole target objects, such as a military vehicles discussed in later

chapters, are considered to be composed of a number of these scattering centres.

There are two major classes of super-resolution model. The first class de-

scribes the scene as a finite number of point scatterers that can take any position

in the scene, and the received continuous radar signal is sampled for digital pro-

cessing. This is sometimes known as a high-level model [140], the scattering

centre model [90], or the parametric model [96]. The advantage of this model

is that major isolated scatterers in the scene, which can often account for the

majority of received energy at the radar, are well modelled because of their

positional accuracy. The disadvantage of this model is that the number of scat-

terers in the scene must be estimated as well as their position and amplitude.

Without a regularization procedure, algorithms based on this model create a

large number of scatterers with small amplitude, which are generally related

to noise rather than true structure in the scene. Another disadvantage of this

model is that a linear superposition of perfect point scatters may not completely

describe a complex target.

The second class of model assumes the scene is a continuously varying high-

resolution function and during digital processing we consider samples of this

function on a regular grid. It is sometimes known as a low-level model [140],

the continuum scattering model [90], or the non-parametric model [96]. This

model has the advantage that extended targets are better modelled and the

number of “scatterers” is fixed according to the sample spacing and size of

the scene, which means this parameter does not have to be estimated. The

disadvantage is that isolated strong scatterers are less well modelled if they are

not positioned at a scene sample point. In a similar manner to the first class of

model, when noise is present, algorithms will tend to give non-zero amplitude

to areas of the scene with no valid target, unless a regularization procedure is

used.
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A review of the super-resolution literature is now given. A large number of

super-resolution algorithms have been proposed so it is not possible to mention

every single one. However, this review discusses most of the more commonly

used super-resolution algorithms and at the end of Section 1.2.3 references to

other super-resolution reviews are made available.

1.2.2 Point Source Super-resolution

Perhaps the most studied point-source super-resolution algorithm, for data

measured from an array of receivers, is the MUSIC algorithm, introduced by

Schmidt [129]. The MUSIC algorithm models the observed data as the com-

bination of a signal subspace and an orthogonal noise subspace. The number

of point sources in a scene is determined by analyzing the eigenvalue spectrum

of the measured covariance matrix. The direction of the sources is determined

by the position of the strongest peaks in a power function. Parameters of the

point sources can then be calculated.

The ESPRIT algorithm has lower computation and storage requirements

than MUSIC and results in a solution that is more robust to errors in the po-

sitioning of array elements [124]. This is achieved by putting a translational

geometric constraint on the array element positions. However, the constraint is

a mild one, which admits the commonly used uniform linear array, for exam-

ple, and it has been shown that the least squares (LS) version of ESPRIT is

statistically equivalent to the Toeplitz approximation method (TAM) for uni-

form linear arrays [119]. Asymptotically for large signal-to-noise ratios (SNRs)

total least squares (TLS) ESPRIT has the same mean-square error as LS ES-

PRIT [119]. Other advantages of ESPRIT are that knowledge of the array

manifold and source correlation is not required, and the bias of target position

estimates generated by MUSIC in low SNR conditions along with the omission

of some targets is not present when ESPRIT processing is used [124].

An image processing algorithm that has gained widespread popularity in

the astronomical community [32, 59] but has also been used in the processing

of microwave measurements appropriate to radar is CLEAN [149]. In this al-

gorithm the peak of the image is selected and this is assumed to relate to the

strongest point source in the scene. The system response to a source of this

strength at that position is subtracted from the image to leave a residual. The
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process is then repeated using the the residual from the previous iteration as

the input image to the peak-picking step until either the residual is reduced

to an acceptable level relating the assumed noise power or the desired number

of sources have been detected. In the original algorithm, point sources within

a beam-width become combined into a single source when convolved with a

“CLEAN beam”, which is usually the central portion of the point spread func-

tion without sidelobes. This last step means the algorithm can no longer be

said to have super-resolution properties as it is impossible to resolve two or

more targets in the main beam. However, by omitting the last step or using

a beam narrower than the original main beam, CLEAN may be considered a

crude super-resolution algorithm [132].

One disadvantage of CLEAN is that once the position and strength of the

strongest target has been estimated this is fixed for the rest of the algorithm. In

practice, knowledge that other targets are present in the scene means that the

estimate should be modified. Without modification all the CLEAN algorithm

can do is create spurious low-power targets near the main target to compen-

sate for errors. This was probably the motivation behind the CLEAN beam as

described above. The RELAX algorithm [83] was proposed specifically as an

improvement to CLEAN, whereby at each iteration when a new target is discov-

ered the parameters of all the previously discovered targets are re-estimated in

an iterative loop until the change in a cost function is below a specified thresh-

old. Thus target parameters are more accurately estimated. In addition, the

algorithm makes use of a generalized Akaike information criterion (AIC) [1] to

determine the number of targets automatically, rather than using an arbitrary

fixed number. An improvement that reduces computation time of the the algo-

rithm avoids the zero-padding of the fast Fourier transform (FFT) by using a

zoom-FFT approach [86].

The incremental multi-parameter (IMP) algorithm [94] is another algorithm

that seeks to estimate target parameters one at a time, while refining previous

estimates as new targets are discovered. This algorithm was developed more

than five years before RELAX but to date there appears to have been no attempt

in the literature to link the two algorithms, with IMP attracting much less

attention than RELAX. In IMP, rather than subtracting the effect of a dominant

scatterer from the measured data, at each iteration the data is projected onto a
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subspace orthogonal to that spanned by the calibration vectors corresponding

to current estimates of the dominant scatterer positions. In a similar manner to

RELAX, previous estimates of scatterer parameters are refined at each major

iteration until the parameters change by less than a specified amount before a

new scatterer is scanned for. The algorithm is terminated when the residual

power is equal to that expected for noise and clutter, or noise alone. The

subspace formulation of IMP is reminiscent of MUSIC but IMP is able to operate

at SNRs more than 10 dB lower than those required by MUSIC and correlated

signals are automatically accommodated without the need for pre-whitening

[94].

An efficient algorithm that uses several matrix algebra techniques is the

matrix pencil method [127]. This method has the advantage that, in addition

to ideal point sources, damped and undamped frequency-dependent behaviour

is modelled, which allows a better parameter estimation for point sources that

follow this model. In the matrix pencil method, a Hankel data matrix contain-

ing shifted versions of the noisy measured data is formed. The Hankel matrix is

decomposed using singular value decomposition (SVD) and the number of scat-

terers in the scene is determined by analyzing the singular values. Two filtered

matrices are formed using the singular vectors for overlapping partitions of the

data, and are then combined. An eigenvalue decomposition of the combined

matrix is performed with the eigenvalues giving the position and frequency-

dependent properties of scatterers. The complex amplitudes of the scatterers

can then be determined using a standard least-squares pseudoinverse approach.

Certain versions of the ESPRIT algorithm are classed as matrix pencil meth-

ods [61].

According to the theory of analytic continuation, if the spectrum of an

image is known within a limited bandwidth then, for an object of finite size,

the image spectrum may be found throughout the whole frequency domain

[57]. In practice, finite sampling and noise prevent an exact application of the

theory. However, a technique known as bandwidth extrapolation is based on

the analytic continuation principle. Bandwidth extrapolation models the data

in the frequency domain as an auto-regressive (AR) process [71], also known as

a linear prediction model [99] or an all-pole model [150]. Several techniques,

such as those due to Pisarenko and Prony are available to estimate the AR
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coefficients but Burg’s technique [15] appears to offer advantages over the others

in terms of stability using measured data [99]. The position of scatterers can

be determined from solutions to a characteristic equation involving the AR

coefficients. Alternatively, the bandwidth can reliably be extrapolated by up to

a factor of four using the coefficients, and then using a standard windowed FFT

to estimate the scene. It has been shown that, for Gaussian random processes

with known autocorrelation lags, the spectral estimate using an AR model is

identical in analytical form with that produced using the maximum entropy

(ME) principle [15]. An alternative ME method is covered in more detail in the

distributed-source super-resolution literature survey.

A recent important advance in high-resolution target modeling has been

the use of attributed scattering centres [115]. This theory uses a parametric

scattering model for point targets based on the geometric theory of diffraction

(GTD). The advantage of this model over others is that the frequency and an-

gle dependence of scatterers is taken into account, which allows the accurate

modeling of a wider variety of scatterers than the ideal point scatterer. The ad-

ditional types of scatterer specifically modelled are flat plates, dihedrals, single-

and double-curved surfaces, straight edges, curved-edge diffraction and corner

diffraction. The fact that scatterers are more accurately modelled means that

a higher accuracy in resolution is achievable for scatterer locations. Although

the parameters may be estimated using a maximum likelihood method, this is a

computationally intensive task. It has been shown that parameters of reduced

complexity models, such as the damped or undamped exponentials previously

mentioned, can be related directly to GTD parameters. Use of the simpler

exponential models may be appropriate in many circumstances as the bias in-

troduced by them is often small compared to GTD-based parameter variances

for realistic radar specifications [115]. The number of scatterers under any of

these models may be determined using an order-selecting maximum likelihood

technique.

The number of scatterers in a scene may also be determined using Bayesian

analysis to compare the probability of various hypotheses that certain num-

bers of scatterers exist [64]. However, the examples given in [64] have quite

restrictive assumptions on prior knowledge, such as requiring the scatterer am-

plitudes to be known. Using less restrictive assumptions, it is possible to es-
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timate both the amplitude and position of a known number of sources using

a Markov chain Monte Carlo (MCMC) method based on Gibbs sampling [19]

and the Metropolis-Hastings algorithm [24]. This approach has been used for

cases when the noise variance is both known [4] and unknown [46]. The basic

method has also been extended to exhaustively test models with different num-

bers and types of source such as chirp, decay, and periodic signals in correlated

noise [47]. However, if there are a large number of possible models this proce-

dure can become computationally intensive. A more efficient way to estimate

the model order is the reversible jump Markov chain Monte Carlo (RJMCMC)

method [39, 52]. RJMCMC has been used to estimate the number and param-

eters of: sinusoids in additive noise [2], point sources in both multiplicative

Gaussian noise [54] and Poisson noise [140], and general frequency modulated

signals [28]. It has also been applied to the related problem of polynomial-phase

signal parameter estimation [144–146]. However, while the polynomial-phase

model could be extended to include multiple targets, the particular case stud-

ied appears to be limited to a single manoeuvering target and the power of the

reversible jump technique is used to estimate the polynomial order rather than

the number of targets.

Further analysis of point source models is not included here as the unknown

number of scatterers results in a variable number of dimensions in the Bayesian

framework and algorithm introduced in later chapters. Explanation of variable-

dimension parameter space would require a more detailed RJMCMC Bayesian

analysis, which is beyond the scope of this thesis. The interested reader is

referred to [39,52].

1.2.3 Distributed Source Super-resolution

Classical analysis of spectral information is through the use of the Fourier

transform. A non-coherent super-resolution technique based on Fourier-domain

transformations is constrained iterative deconvolution (CID) [122]. The algo-

rithm proceeds by taking the inverse of the point spread function in the Fourier

domain and decomposing it into the sum of a geometric series. At each iteration

an inverse fast Fourier transform (IFFT) is applied to the current estimate of

the scene in the frequency domain. A positivity constraint is then applied to the

image and it is converted back to the frequency domain using an FFT. The next
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term in the geometric series is then added before the next iteration. While the

algorithm does achieve super-resolution, it is applicable to non-coherent images

only, which limits its application.

Another super-resolution technique based on alternating FFTs, but with

application to complex data, is super-SVA [139]. Spatially-variant apodization

(SVA) is a powerful technique used to eliminate finite-aperture induced sidelobes

[138]. The elimination of sidelobes increases the bandwidth of the signal and

the super-SVA algorithm uses this property to improve the system resolution.

In the first step of the algorithm, an FFT is applied to the data, SVA is used

to remove the sidelobes and the data is transformed back to its original form

using an IFFT. An inverse weighting corresponding to the IFFT of the SVA-

preserved main lobe is applied to the data, which is then truncated such that

the bandwidth has been extended by 50%. The central portion of the spectrum

is replaced by the original data and the whole process is repeated until the

bandwidth is extrapolated to the desired amount – usually a factor of two. Both

CID and super-SVA are able to increase the bandwidth of the original signal

because they apply a non-linear function (positivity for CID and SVA for super-

SVA), which results in spectral growth. However, the theoretical performance

of these algorithms is not well understood as neither is defined in terms of an

optimality criterion.

Capon’s maximum-likelihood (ML) method was an early attempt at high-

resolution spectrum estimation based on an optimality criterion [17]. It is

also known as the minimum-variance distortionless response (MVDR) and the

reduced-variance distortionless response (RVDR). With this technique the res-

olution is improved by minimizing the energy contributed by interferers while

keeping unit gain on the location of interest. Several variations on the basic

technique are possible that mitigate the reduced rank of the covariance matrix

used in the method. They are usually based on quadratic constraints or sub-

space constraints [5]. Other methods for estimating the covariance matrix are

given in [16].

The amplitude and phase estimation of a sinusoid (APES) algorithm, like

Capon’s method, is an adaptive finite impulse response (FIR) filtering algorithm

[84]. However, unlike Capon, APES is a matched filter because it estimates both

noise and interference in the covariance matrix. Although it is an approximate
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ML algorithm, APES tends to produce more accurate spectral estimates than

Capon because it reduces the amount of noise that leaks through the filter.

One of the most basic approaches to deconvolution that has a theoretical

justification is the least squares (LS) method. This minimizes the squared

difference between the measured image data and the image generated from an

estimate of the scene. When using a matrix formulation of the problem the solu-

tion is given by the Moore-Penrose pseudoinverse, which has been used in [126].

However, the least squares approach is unstable with respect to perturbations

in the data: the method effectively over-fits noise, and a small change in the

measured data results in a very large change in the solution.

The most popular approach to stabilize the problem is Tikhonov regulariza-

tion. In comparison to LS, this uses an additional quadratic term that penalizes

solutions with large amplitudes and mitigates the effect of noise amplification.

The approach is sometimes also known as diagonal loading [5]. Alternatively,

the penalty function could penalize roughness to achieve a smooth solution.

Tikhonov regularization leads to a solution that is linear in the measured data,

which has advantages for ease of computation. Comparisons of Tikhonov regu-

larization with other techniques are given in [25,26,53].

A more general approach than Tikhonov regularization uses a generalized

penalization term that results in non-linear solutions. Special cases of this

approach are the LS and Tikhonov regularization solutions mentioned above and

also the maximum entropy solution mentioned below. Other penalty functions,

such as those used in feature-enhanced imaging [20, 21], have been devised to

emphasize specific attributes of a SAR image.

A similar approach to least squares uses the minimum mean-square error

(MMSE) criterion. The solution is equal to the mean super-resolved scene

under a Bayesian formulation and Gaussian statistics. The MMSE approach is

popular (see [7, 10, 11, 22, 41, 53, 87, 90, 121, 133] for example), but there are a

variety of implementations that often use an arbitrary threshold and generally

use an iterative process to converge to a solution because the prior covariance

matrix for the scene is often estimated as part of the procedure. Having said

that, the fundamental approach is theoretically well-founded and performs well

with simulated noisy data. The basic form of MMSE super-resolution where

the scene and noise prior covariance matrices are known in advance is known
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as Wiener deconvolution.

In singular value decomposition (SVD) the point spread function (PSF)

matrix is decomposed into three matrices: two orthogonal matrices and a di-

agonal matrix with singular values on the diagonal [116]. Any singular value

below a certain threshold is set to zero and the effective inverse of the PSF

matrix is calculated using special properties of the SVD matrices while setting

the inverse of zeroed singular values to zero. If all the singular values retain

their original values then this is equivalent to the Moore-Penrose pseudoinverse.

However, removal of small singular values, which are responsible for the amplifi-

cation of noise, results in a better performance than the pseudoinverse [7]. The

SVD method is equivalent to the MMSE method for high SNRs [87,90,121].

High-definition vector imaging (HDVI) introduces a new concept for SAR

imaging [5]. HDVI uses standard techniques, such as Capon’s maximum likeli-

hood method or MUSIC, to generate a set of super-resolution images, with each

image matched to a different model of target properties, such as an ideal point

source or a broadside flash associated with target-ground interaction. In the

final “image” each pixel is actually a vector of values describing the degree of

agreement between the data and each model. The extra information provided

is useful for image analysis and can help target recognition systems.

Prior knowledge about the problem or scene is best incorporated via the use

of the maximum entropy principle, which allows the maximally non-committal

inclusion of prior knowledge [69]. This means no additional spurious informa-

tion is introduced to the model, such as leading zeros used to pad a Fourier

transform. The only information used is that for which there is material evi-

dence. There are different ways of using the maximum entropy principle, which

are not necessarily equivalent [102]. “Classical” or “historic” maximum en-

tropy [55, 56] considers the unknown scene as a probability distribution and

selects the scene with the maximum Shannon entropy subject to constraints us-

ing Lagrange multiplier methods. This method is popular – it was first used for

optical image reconstruction problems [49] and has later been extended for use

in astronomy [14, 135], ultrasound [137], mass spectrometry [98], multispectral

imagery [95] and radar [37]. “Maximum entropy in mean” is a second form of

the ME principle. This considers the scene as mean values of a probability den-

sity function (PDF) and the data as linear constraints. The algorithm proceeds
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by selecting the PDF with the maximum entropy subject to the constraints and

finding the mean of the PDF [102]. This form of maximum entropy has been

applied to ISAR data in [12], for example. A disadvantage of the maximum

entropy method in these forms is that it fails to take measurement noise into

account. According to Jaynes [69] only a Bayesian solution is adequate to deal

with this problem.

Distributed-source super-resolution has been considered from a Bayesian

viewpoint by several authors. One approach by Luttrell [88] is to find the max-

imum of the target cross-section posterior probability density function using an

expectation maximization algorithm. In the particular problem studied there,

the possibility that the image under consideration is defocused is also taken into

account. This provides some level of robustness with respect to the fact that

the point spread function is known only to a certain accuracy. A parametric

defocusing model is used and the focus parameter is estimated simultaneously

with the target cross-section under a Bayesian framework. In [102] maximum

entropy is used to choose the prior probability distributions in a Bayesian model

and the conjugate gradient method is used to maximize the posterior proba-

bility. In [66] it is stated that standard image restoration using a Tikhonov

prior produces overly-smooth solutions, therefore an edge-preserving function

and hyper-parameters are introduced in the form of prior information. Under

this formulation, a maximum likelihood algorithm based on Gibbs sampling

simultaneously estimates the hyper-parameters and the restored image. With

the use of auxiliary variables, pixels are simultaneously processed in frequency

space, which allows long-distance interactions and makes the algorithm faster

than simple Gibbs sampling. This approach is found to be better that Wiener

filtering. In [58] a numerical MCMC image restoration algorithm is applied

to emission computed tomography data. The model follows poisson statistics

and uses a neighbourhood function, which takes into account correlations be-

tween adjoining pixels. As with [66], the algorithm simultaneously estimates

the hyper-parameters and the restored image. The advantage of this approach

over other Bayesian methods is that it includes uncertainty in estimates of the

hyper-parameter values. In [143] the Metropolis-Hastings algorithm is applied

to a non-linear problem in remote sensing of the atmosphere. An adaptive

proposal distribution is used to speed up convergence to the posterior distribu-
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tion and the results are compared to a linearized least-squares solution. The

Bayesian approach results in a lower error than that of the least-squares solu-

tion. In [161] variational methods are used to approximate the true Bayesian

posterior distribution in medical and industrial deconvolution problems. This

procedure converts an intractable analytic solution to a tractable one. MCMC

methods are also studied in [161], but these are used for separating a mixture

of Gaussian components rather than determining the pixel values themselves.

Recently, there has been a surge of interest in multi-frame image super-

resolution in which a group of low-resolution images of a scene are combined to

produce a high-resolution image of that scene [109]. Many multi-frame super-

resolution algorithms are based on Bayesian statistics. In [147], for example, a

Gaussian Markov random field is used as a prior density for the high-resolution

image to incorporate knowledge that adjacent pixels in the image are correlated.

The maximum a posteriori (MAP) solution is then found using an MCMC

approach based on the Gibbs sampler. The approach is extended in [148],

where outlier-sensitive bilateral filtering is used as a post-processing method to

suppress image artefacts introduced during super-resolution. In [114] the low-

resolution image registration parameters are considered as nuisance parameters

and are marginalized to leave a function that can be optimized with respect

to the high-resolution image. This procedure outperforms methods where the

registration parameters are estimated via a MAP method are are fixed be-

fore the high-resolution scene is estimated. Although multi-frame image super-

resolution algorithms are powerful, the radar target recognition application con-

sidered in this thesis has available only a single image, with a high dynamic

range, with which to perform super-resolution. Therefore the advantages of

these algorithms, such as the use of multiple frames and a limited dynamic

range, are not applicable to this work.

The above super-resolution algorithms include most of the popular app-

roaches in the literature. However, there are many other algorithms, most

of which are based on similar principles to at least one of these. Kay and

Marple [71] give an excellent tutorial on resolution and super-resolution con-

cepts in the guise of spectrum analysis. A history of the most popular tech-

niques including the FFT, autoregressive, moving average, Burg, Pisarenko,

Prony, and Capon methods using common notation allows an easy compari-
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son of the advantages and disadvantages between these various techniques. An

extensive discussion of super-resolution imaging techniques, including some not

mentioned here, is also given by DeGraaf [40] and Mehra et al. [96] with compar-

isons of performance using both simulated and measured SAR imagery. Pastina

et al. [110] give a short review of various algorithms with several useful refer-

ences. A discussion of the general super-resolution problem from the point view

of degrees of freedom and the space-bandwidth product is given by Dickey et

al. [43].

1.2.4 Target Recognition Using Super-resolution

Automatic target recognition has been studied in detail over the last fifty years

but the idea of using super-resolution to aid radar target recognition has re-

ceived serious attention for only about ten years. Super-resolution-aided target

recognition has been proposed as a concept several times but both aspects of the

problem are often not simultaneously tested either on real or simulated data:

see [16, 42,90,110,125,134], for example.

Botha et al. [13] use a 2D version of the MUSIC algorithm to generate ISAR

images of scale model aircraft. They compare image templates and high-level

features, based on target shape and geometrical moments, using both a neural

network and nearest-neighbour classification. The neural network and high-

level feature combination is found to have the best generalization properties.

However, a comparison between the MUSIC images and those produced by

standard FFT processing is not made.

Zhang et al. [162] use the damped exponential Prony model and SVD to

estimate scatterer positions. Features based on a wavelet transform of the

super-resolved range profiles are extracted and used in a neural network for

target recognition. The approach is compared to FFT processing and found to

improve recognition performance.

Another approach using super-resolution range profiles where the target is

modelled as a set of discrete scatterers is that of Liao and Bao [85]. The ampli-

tude and position of the scatterers are determined using the RELAX method

for both database range profiles and test profiles, and a graph-matching tech-

nique is used to determine the similarity between images. A beneficial side

effect of this type of super-resolution is that the variation of target signature
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with respect to aspect angle is lower in the super-resolved data than standard

range profiles. This eases the task of database generation and storage. High

classification rates are reported for measured data of three scale-model targets

but the performance is not compared to that of any other technique so it is not

clear from this paper alone whether or not there is an advantage in using the

technique.

The HDVI super-resolution technique has been applied to both one dimen-

sional range profile data [101] and two-dimensional SAR data [105] of ground ve-

hicles in the moving and stationary target acquisition and recognition (MSTAR)

measurement data set. Using standard FFT processing it was shown that tar-

get recognition performance increases with higher resolutions. When HDVI

processing was used the target recognition performance was better than stan-

dard processing and was equivalent to a resolution improvement factor of two.

The signature matching was based on the mean-square error metric for target

images.

A point-enhanced SAR super-resolution technique based on generalized Tik-

honov regularization has also been applied to the MSTAR data set [20]. The

target recognition algorithm was based on selecting the strongest peaks of the

super-resolved images for both test and training data and selecting the image

that minimizes the total distance between matched peaks. Conventional FFT

processing was also used with the peak picking process. It was shown that

point enhancement provided a large performance improvement compared to

FFT processing for a high signal-to-noise ratio. The same point-enhancement

technique is used in [33] to process range profiles of ships. The Euclidean

distance metric and a position-specific matrix matching algorithm based on

quantized range profile amplitudes are compared using both standard FFT

processing and the point-enhancement technique. Three sets of features were

individually used with the Euclidean distance: range profile amplitudes, radar

cross section, and ship length. In all cases apart from using the ship length

feature, the point-enhancement technique improved classification performance.

The position-specific matrix matching algorithm gave better results than the

Euclidean distance. The point-enhancement technique has also been compared

directly to Capon’s ML method and MUSIC in an ATR framework using ISAR

turntable data of tanks [62]. The features are range-profile magnitudes derived
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from the ISAR images and the classifier is Bayesian with an assumed multivari-

ate Gaussian feature distribution. The point-enhancement technique improved

classification performance over standard processing and the ML and MUSIC

algorithms were worse than standard processing.

In other tests performed on a different data set and using different algo-

rithms, classification performance is shown by Mehra et al. to be improved

when using super-resolution for both training and test data [96,97]. This is even

the case for targets hiding in a forest when using a fully polarimetric foliage-

penetrating radar sensor. The recognition algorithm was based on Fisher linear

discriminant analysis for feature reduction and a Euclidean distance for sig-

nature matching. However, it was not stated which super-resolution method

was used. In related work on foliage penetration it is shown that using either

fully polarimetric data or super-resolution on their own improves target recog-

nition performance over a single standard-resolution polarization channel [120].

However, the combination of polarimetric data and super-resolution offers no

advantage over using either technique on its own.

A study by Kim et al. used the MUSIC algorithm to produce super-resolved

range profiles of scale-model aircraft [73]. Feature vectors were based on nor-

malized moments of range profiles followed by feature reduction using principal

components analysis. A Bayesian classifier based on Gaussian statistics was

used to recognize the targets. The MUSIC approach had a better recognition

performance than using standard FFT processing and, for both types of pro-

cessing, performance improved with resolution. This study was extended in [72]

by the same authors to compare the AR bandwidth extrapolation method with

MUSIC and FFT processing, within the same target recognition framework.

For moderate signal-to-noise ratios the AR method outperformed both MUSIC

and FFT processing. It was also shown that there was no additional improve-

ment in performance if the bandwidth was extrapolated by more than a factor

of three.

Other approaches to super-resolution and target recognition have been pro-

posed and tested on their own but not compared directly to other techniques.

Zhang et al. [163] use the matrix pencil method to estimate scatterer locations.

Features are based on scatterer polarimetric properties and a neural net is used

to perform the classification. Zwart et al. [165] use maximum likelihood and
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expectation maximization both to obtain scatterer locations of simulated air-

craft and to match the test data with the database data, while considering the

matching of point locations as an assignment problem. Radoi et al. [117, 118]

use the 2D MUSIC algorithm to process ISAR data of scale-model aircraft and

a neural network for target recognition. Cui et al. [34] use 2D MUSIC and AR

bandwidth extrapolation to obtain a high-resolution image of ground targets

and their shadows as recorded in the MSTAR data set. However, the features

used for the target recognition stage consist only of low-frequency components

of the high-resolution images and do not make full use of the super-resolution

process.

1.3 Motivation for Proposed Algorithms

The work outlined in the literature survey shows that super-resolution can in-

deed improve target recognition performance over standard FFT processing.

However, in all the work cited above, algorithms have been selected in a rather

ad hoc manner with each research group using their favourite combination

of super-resolution technique, feature set, and pattern recognition algorithm.

There is no sense of optimality or theoretical justification for the overall target

recognition process or even certain individual steps. Also, none of the combina-

tions of super-resolution and target recognition take into account uncertainty in

the super-resolved images. This could be critical for target recognition systems

because any spurious information potentially introduced by a super-resolution

algorithm might result in an incorrect association between two unrelated tar-

gets.

The main objective of the work presented in this thesis is to improve the

overall target recognition performance of radar systems where different images

have differing resolutions. It is proposed to use the full probability distribu-

tion of super-resolved images as an input to the target recognition process.

The distribution will allow, for example, the determination of whether a spike

in an image is stable in amplitude and likely to be related to a specific scat-

tering event on a target, or whether it is more likely to be part of a wider

distribution of noise values introduced by the super-resolution algorithm. This

process will be carried out using a numerical Markov-chain Monte-Carlo Bayes-
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ian super-resolution algorithm, and an automatic target recognition model that

incorporates super-resolution uncertainty. A measure of the approach’s success

is the achievable gain in the average probability of correct target classification

for a given scenario over a basic super-resolution and target recognition pro-

cessing. In addition to this, the Bayesian approach is theoretically justified and

explicitly states all assumptions made in the data model.

A variety of effects that degrade super-resolution performance are analyzed

in more detail than has currently been done in the literature, and techniques to

compensate for these are presented. The usefulness of these techniques is based

on whether the loss in performance can be recovered to any extent.

1.4 Thesis Layout

Chapter 2 gives a brief introduction to the radar, super-resolution and target

recognition theory useful for understanding this thesis. Chapter 3 introduces

the concept of Bayesian super-resolution. A new Markov chain Monte Carlo

Bayesian super-resolution algorithm is presented with results of the algorithm

using a simulated data set. Algorithm complexity is analyzed and an approxi-

mate Bayesian solution is proposed. Chapter 4 suggests a variety of factors that

could degrade the baseline super-resolution performance seen in Chapter 3. A

short review of techniques that attempt to restore baseline performance is given,

followed by a new technique integrated with the Bayesian super-resolution al-

gorithm. Chapter 5 further integrates the work of the previous chapters into

a single Bayesian ATR framework and considers performance of the framework

using both simulated and measured data. Finally, conclusions and recommen-

dations for further work are given in Chapter 6.
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Chapter 2

Background Theory

2.1 Radar

2.1.1 Introduction

This section gives a brief overview of radar theory useful to the reading of this

thesis. A comprehensive description of radar systems is available in textbooks

such as [136,142].

Radar is a system for the detection and location of objects using the radio

portion of the electromagnetic spectrum. A pulse of radio waves is sent from

the transmitter into a region of interest. Energy reflected in the direction of

the receiver by targets in the illuminated scene is detected in the receiver and

indicates the presence of targets. The distance to a target may be calculated

from the round trip delay of the pulse and the speed of radio wave propagation.

Each pulse generates a range profile, which is a measure of the received energy

as a function of distance from the radar.

2.1.2 Signal-to-Noise Ratio

In the simplest instance, the ability to detect a target is governed by the signal-

to-noise ratio (SNR) of a radar receiver system. During the detection process a

threshold is set and if the voltage in the receiver exceeds this threshold then a

detection is declared. However, in all electronic circuits there is a certain level

of thermal noise caused by electrons moving in random directions. Due to the

random nature of thermal noise it is possible that the detection threshold may
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be exceeded even though no target is present. This is known as a false alarm.

If the average noise power is known then the threshold may be set to give a

certain acceptably low probability of false alarm. Target detection is covered in

more detail in Section 2.4.2. The issue of system noise will be seen to be critical

for the successful operation of super-resolution algorithms.

One form of the radar range equation gives the signal-to-noise ratio as:

S

N
=

PG2λ2σ

(4π)3kTBnFnR4
(2.1)

where:

S is the signal power received by the radar;

N is the power of the thermal noise generated in the receiver;

P is the power of the transmitter;

G is the gain of the antenna;

λ is the wavelength of radiation;

σ is the radar cross section of the target;

k is Boltzmann’s constant;

T is the receiver temperature;

Bn is the receiver’s noise-equivalent bandwidth;

Fn is the noise factor; and

R is the range from the radar to the target [136].

2.1.3 Resolution

It is required that radar systems are able to detect more than one target at a

time. If two targets are at the same bearing from a radar but different distances

then they may be detected individually as long as their separation ∆r is greater

than the range resolution of the system. This is illustrated in Figure 2.1 for a

rectangular pulse. The spatial length of a radar pulse is c∆τ , where c is the

speed of radio wave propagation and ∆τ is the length of the pulse in time. To
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Transmitted pulse

← →c∆τ

Targets

←→∆r

(a) Transmitted pulse

Reflected pulses

← →c∆τ ← →c∆τ

← →2∆r

Targets

←→∆r

(b) Reflected pulses

Figure 2.1: Resolution for a rectangular pulse. (a) Single pulse transmitted

towards two targets. (b) Pulse reflected from two targets.

resolve two targets they must be separated by at least half the length of the

pulse, so ∆r = c∆τ/2. The Fourier transform of a rectangular pulse with unit

amplitude and width ∆t is the scaled sinc function shown in Figure 2.2 [60].

The bandwidth, B, of the pulse is equal to 1/∆τ , which gives the down-range

resolution of a radar in terms of the bandwidth as ∆r = c/(2B) [106]. Therefore,

the higher the bandwidth the better the resolving power of the radar.

High bandwidth can be achieved with a very short pulse. This requires a

high peak power for a given amount of energy in a pulse. Pulse compression is

a technique used in radar systems to achieve both a high transmit energy and

good range resolution by frequency or phase modulation of a long pulse, thus

reducing the peak power requirement. When pulse compression is used it is the

bandwidth of the system that gives rise to a resolution of c/(2B), regardless of

the length of the uncompressed pulse. The optimal receiver filter, in terms of

the peak-signal-to-mean-noise power ratio, is the matched filter with an impulse

response that is a time-reversed copy of the transmitted waveform [136]. A con-

sequence of the filtering process is the production of range sidelobes, which mask

weak targets in the presence of stronger ones. Although amplitude weighting

may be used in the receive filter to reduce sidelobes, the weighting process in-

creases the width of the main lobe and hence resolution is degraded. Therefore

further techniques are required to achieve an improved detection performance

while maintaining resolution.

An example showing the effect of resolution under ideal noiseless conditions
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Figure 2.2: A scaled sinc function – the Fourier transform of a unit amplitude

rectangular pulse of width ∆t.

for two closely spaced targets is shown in Figures 2.3 and 2.4. In Figure 2.3

the targets, whose positions are marked by the vertical lines, are separated by

a distance equal to the system resolution. The system response, indicated by

the solid line, clearly shows the presence of two targets. However, note that

interference between the sidelobes of one target and the main lobe of the other

means the main peaks in the response are slightly shifted from the true target

positions. In Figure 2.4 the targets are separated by a distance equal to half the

system resolution. It is not possible to determine whether there are two targets

or a single stronger target in the middle, without advanced processing.

The cross-range resolution of a non-coherent radar is approximately Rλ/D,

where R is the distance from the radar to the target, λ is the radio wavelength,

and D is the antenna aperture dimension [106]. Thus, the cross-range resolution

of a non-coherent radar is limited by the physical size of the antenna: the larger

the antenna, the better the resolving power. A similar process to the matched

filtering used in obtaining high down-range resolution can improve the cross-

range resolution of the system. This is covered in the coherent imaging section

below.
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Figure 2.3: Example of two resolved targets
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Figure 2.4: Example of two unresolved targets
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2.1.4 Ambiguity Function

The radar system response to a single ideal point target as a function of distance

or time is known as the point spread function (PSF). It will later be seen that

deconvolution-based super-resolution techniques require knowledge of the PSF.

For a matched filter, the PSF of a stationary target is obtained as the auto-

correlation of the transmitted waveform. Due to the Doppler effect, moving

targets alter the received signal and the correlation equation must be modified

to include this. The function describing the PSF for various Doppler shifts is

χ(TR, fd) =

∫ ∞

−∞
u(t)u∗(t + TR)ej2πfdt dt (2.2)

where TR is the time delay to target relative to a reference delay, fd is the target

Doppler shift and is positive for an incoming target, u(t) is the complex trans-

mitted signal, and u∗(t) represents its complex conjugate [136]. The squared

magnitude |χ(TR, fd)|2 is called the ambiguity function and was first introduced

by Woodward [158]. The ambiguity function is an important description of

radar performance – it determines the range resolution and sidelobe levels of a

pulse as well as the Doppler resolution and range-Doppler coupling.

Figure 2.5 shows the ambiguity function of an unweighted, linear frequency

modulated (FM) pulse. Several features are apparent in this diagram. The

PSF for a stationary target is formed by taking a horizontal cut of the diagram

at zero Doppler. From this it is possible to determine the range resolution of

the system. By taking a vertical cut at zero range, the Doppler response is

formed, from which the Doppler resolution can be determined. The Doppler

resolution is the ability to detect two targets at the same range but traveling

with different speeds. The ambiguity function shows a coupling between range

and Doppler for linear FM pulses – if a target is moving then it will appear at

a different range to its true position with the offset proportional to its velocity.

In practice, this offset is small but a moving target does alter the point spread

function enough to affect super-resolution techniques [79].

In reality the radar system has a two-dimensional PSF relating to both range

and cross-range. The cross-range variation is not usually considered in terms of

the ambiguity function and is normally displayed or described in conjunction

with the down-range resolution at zero Doppler in a 2D plot or equation. Ex-

ample 2D PSFs are shown in 2.6 to demonstrate the concept. Figure 2.6a shows
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Figure 2.5: Ambiguity function of a linear FM pulse. Pulse length 20 µs,

bandwidth 1 MHz. Detail below a -22 dB threshold is not shown.

the PSF of a non-coherent radar. The curved shape of the PSF is due to the fact

that the response is a function of range and angle. The down-range resolution

of the radar is constant over the whole image but, because the angular resolu-

tion is constant, the cross-range resolution is worse at longer distances from the

radar. Figure 2.6b shows the PSF of a coherent radar. Here the down-range

and cross-range resolutions are both constant for the whole image, to a first

approximation. The 2D PSF is required to be known for the super-resolution

of 2D images.

2.1.5 Coherent Imaging

In airborne synthetic-aperture radar (SAR) the radar antenna is mounted on

a platform, flown along a specified path, and successive pulses are coherently

combined. For strip-map SAR, the radar beam points at a constant angle

relative to the motion of the aircraft. The imaging geometry of this is shown

in Figure 2.7. Strip-map SAR systems with a synthetic-aperture length LSA

have a cross-range resolution of R0λ/(2LSA), which is an improvement over

non-coherent radar.
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Figure 2.6: Example 2D point spread functions. (a) Non-coherent PSF with a

range resolution of 1m and an angular resolution of 35o. (b) Coherent PSF with

a range resolution of 1 m and a cross-range resolution of 1 m. Detail below a

-22 dB threshold is not shown.
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Figure 2.7: Imaging geometry for strip-map SAR
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Figure 2.8: Imaging geometry for spotlight SAR

In spotlight SAR the radar beam points to a constant position on the ground;

therefore relative to the moving radar platform the beam sweeps in a backward

direction. The imaging geometry for spotlight SAR is shown in Figure 2.8. The

cross-range resolution of this SAR mode is approximately λ/(4 sin(φ
2
)), where

φ is the angle swept by the beam [18]. When φ is small and is measured in

radians this reduces to λ/(2φ). Spotlight SAR achieves a better resolution than

that of both strip-map SAR and non-coherent radar.

Another form of coherent imaging is inverse synthetic-aperture radar (ISAR).

In ISAR imaging, the radar remains in a static position and the beam tracks a

moving or rotating object. The principles are the same as spotlight SAR and the

resolution of an ISAR system is also λ/(4 sin(φ
2
)), where φ is the angle through

which the target rotates relative to the radar. A commonly used technique for

gathering radar data representative of spotlight SAR is to place a target on a

rotating turntable and record ISAR data using a fixed radar. This is usually a

less expensive means of obtaining data than flying an aircraft.

All forms of coherent imaging require the phase of a signal as well as its

magnitude. This makes coherent imaging systems more susceptible to degrada-

tion in a variety of non-ideal situations, when compared to non-coherent radar.
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The major sources of degradation for airborne SAR are non-linear motion of

the radar platform and moving targets. The manifestation of the degradation

is defocusing or blurring of the radar image. Oliver [106] gives a good review of

defocus effects.

Most airborne systems carry an inertial measurement unit (IMU) that mea-

sures vibrations and deviations of the aircraft from a straight-line trajectory.

These measurements are used to make phase corrections to the data before

standard processing. However, even with the use of an IMU residual errors may

remain, which result in an image with a non-ideal point spread function. The

change in PSF affects the performance of super-resolution techniques, which is

one of the motivations behind the Bayesian super-resolution algorithm intro-

duced in this thesis: it can take into account uncertainty in the PSF.

Moving targets are more difficult to deal with than non-linear motion of

the radar platform. It is possible to adjust standard processing to take a sin-

gle target’s motion into account. However, this has the effect of blurring the

surrounding image and if multiple targets are moving at different speeds they

cannot all be focused at the same time. Vibrations in moving or stationary

targets also defocus the image and it is difficult to compensate for these effects.

These problems are not dealt with in the Bayesian algorithm introduced in

this thesis as they are difficult to parameterize. Advanced autofocus techniques

must therefore be used to restore image quality – see [48, 74, 91, 112, 156] for

example.

2.2 Super-resolution

2.2.1 Introduction

It was seen in the previous section that there is a fundamental physical limit

to both the cross-range and down-range resolution of a radar system. The non-

ideality of the radar system is represented by the point spread function (PSF).

Algorithms that attempt to remove the effect of the system PSF are known

as deconvolution or super-resolution algorithms. Application of the algorithms

allows the separation into multiple peaks of two or more closely-spaced targets

that form a single peak at the nominal system resolution. Generally the algo-

rithms work by using knowledge of the PSF and making assumptions about the
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scene being imaged. In the literature survey we saw there were two types of

scene model: the parametric scattering centre model and the non-parametric

continuum scattering model. Here we concentrate on the second type of model.

Each target is assumed to have a high-resolution two-dimensional plan-view

back-scattering coefficient or distributed radar cross section (RCS), which is a

function of imaging geometry. When imaged by a coherent radar the RCS gives

rise to a complex scattered field value. The RCS-to-field scattering model is

described in Section 3.1.2. The image formation process is equivalent to the

convolution of a 2D PSF and the high-resolution 2D complex representation of

the target. This effectively places an amplitude-scaled copy of the PSF at each

location on a sampled grid. A bulk phase is present in the complex image, which

is due to the distance between the radar and the target. In addition to this,

the various scattering mechanisms on the target have a phase relative to each

other dependent on their precise position and construction, and thus coherently

sum to produce a single complex number at each sampling point. The imaging

process is described mathematically by

g = Tf + n, (2.3)

where f is a complex vector denoting the raster-scanned high-resolution 2D

target representation, T is an appropriately formatted Toeplitz convolution

matrix that applies the effect of the PSF (see Appendix A), and g is a complex

vector representing the resultant low-resolution image. Surrounding clutter is

implicitly included in the target representation through the use of non-zero

complex values at positions in the vector f corresponding to spatial positions

near a target but not actually within the target boundary. Thermal noise in

the radar receiver is modelled by n, which is a zero-mean circularly complex

Gaussian with a diagonal covariance matrix N.

It should be noted the above model assumes that target images are a linear

superposition of functions of the target representation f . In reality there are

a number of effects that this model does not encapsulate. Multiple reflections

between different parts of the target will create spurious detail in an image at

ranges greater than the position of the initial reflection back towards the radar.

Effects such as edge diffraction, point diffraction and obscuration are also not

taken into account. The radar hardware may have some non-linear compo-

nents, which would distort the image produced during processing. Distortions
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could also be introduced by features on a target with a frequency-dependent

response. Naturally, since these effects are not included in the model, any

super-resolution technique based on this model cannot take them into account.

However, although these effects are present, it is assumed that they do not have

a substantial impact on the quality of the processed image or overall system

performance.

The input information-theoretic signal-to-noise ratio (SNR) of the image is

defined as

SNRin =
||Tf ||2∑
diag(N)

, (2.4)

where diag(N) is a vector containing the main-diagonal elements of N.

Estimation of the scene f , given the measurements g, is the super-resolution

problem we are concerned with. If the estimated scene for a particular algorithm

is f̂ then the output SNR is defined as

SNRout =
||f ||2

||f̂ − f ||2 . (2.5)

It is only possible to calculate this metric when the true scene is known.

Note that the information-theoretic definition of SNR used for input and

output SNRs is different from that used for target detection [88]. The SNR for

target detection is defined as the peak-signal-to-mean-noise power ratio. This

SNR definition is appropriate for target detection because it is only required to

measure the strongest return from a target to enable it to be detected. However,

in target recognition, information about other parts of the target is required

and it is important to measure the power of the whole target in relation to the

noise. The information-theoretic SNR is effectively the mean-signal-to-mean-

noise power ratio. This measure of SNR also allows a direct comparison between

input and output SNRs that would not be possible with the peak-only version.

If the point spread function is a sharp peak with no sidelobes then for an ideal

point target the information-theoretic SNR is smaller than the detection SNR

by a factor equal to the number of samples in the calculation. For example a

point target in a 1000-element range profile with an information-theoretic SNR

of 15 dB would have a detection SNR of 45 dB. However, an extended target,

of the same average power per range cell as the previous example, that fills

the entire range profile would have both an information-theoretic and detection
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SNR of 45 dB. In practice a finite-length target and non-point-like PSF result

in a situation somewhere between these two extremes.

It is in fact difficult to define a single metric with which to measure super-

resolution performance. In addition to the two metrics just mentioned several

others have been proposed. Blacknell [7] proposes a heuristic performance met-

ric based on the position and amplitude of recovered scatterers. Dickey et

al. [43] prefer to use super-resolution gain – a metric that determines the degree

to which a super-resolved image is similar to the true high-resolution scene as

opposed to the low-resolution image. One problem with super-resolution perfor-

mance metrics in general is that they each assume a different model. In the case

where the metric is based on determining the locations of discrete scatterers,

for example, it would be impossible to assess the performance of an algorithm

that uses the continuum scattering model. A more fundamental problem with

most metrics is that they require knowledge of the true scene. In simulated

data the true scene is known because it is required to construct the simulation.

However, when using measured data the true scene cannot perfectly be known.

Nevertheless it is possible to use measured data to test super-resolution algo-

rithms by starting with a high-resolution measurement and assuming this is the

true scene. The data can have its resolution artificially degraded followed by

the addition of noise. The result of super-resolution algorithms applied to the

degraded image can then be compared with the original high-resolution image.

Both the simulated-data and measured-data approaches are used in this thesis.

An overview of the theory behind several algorithms for solving the super-

resolution problem under the above model is now given. At the end of this

section a comparison of these algorithms is made using a simulation of a simple

scene containing point targets.

2.2.2 Matrix Inverse

The benchmark solution against which other super-resolution algorithms should

be compared is the Moore-Penrose matrix pseudoinverse. This is a well-known

least-squares procedure for solving systems of linear equations and is the basis

for super-resolution algorithms such as [126]. The approach minimizes, with

respect to the recovered scene f , a cost function

J = ||g −Tf ||2, (2.6)
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which is the sum of squared differences between the measured image g and the

image Tf that would be produced given the solution f . Differentiation of the

cost function with respect to f and setting the result equal to zero gives the

estimate for f as

f̂inv = (THT)−1THg. (2.7)

The H superscript denotes the Hermitian (complex conjugate) transpose of a

matrix. The least-squares solution gives good results for general well-conditioned

algebraic problems of the form g = Tf , where small changes due to noise in the

measured data g result in small changes in the solution f . This occurs in

situations where the generalized condition number of the matrix T, k(T) =

||(THT)−1TH ||.||T||, is close to unity. The condition number is effectively a

noise multiplier. However, the specific super-resolution problem we are inter-

ested in is ill-posed as stated due to the Toeplitz structure of the PSF convo-

lution matrix. The condition number of T in this scenario is high, and small

changes in g result in large changes in f . Super-resolution performance using

the pseudo-inverse algorithm is therefore usually poor due to the ill-conditioned

nature of the problem – a large number of spurious scatterers are often placed

at positions where there is no valid target. A general discussion of ill-posed and

inverse problems is given in [128].

2.2.3 Minimum Mean-Square Error

A similar approach to least squares is the minimum mean-square error (MMSE)

technique. The object of the MMSE approach is to choose the linear operator

R, such that the super-resolution solution given by f̂mmse = Rg minimizes the

expected norm J of the reconstruction error:

J = < ||f̂mmse − f ||2 > . (2.8)

If the covariance matrix of the a priori statistical distribution of f is W then

the solution is given by [87] as

f̂mmse = WTH(TWTH + N)−1g. (2.9)

In this basic form when W is fixed in advance, the MMSE solution is also known

as a Wiener filter. However, in practice W is not known in advance because
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prior knowledge of the scene is not well defined. Therefore an iterative scheme

that estimates the W matrix from measured data must be used [41,90]. In one

scheme, W is set to the identity matrix for the first iteration and in subsequent

iterations it is estimated from the f̂ of the previous iteration. Any element of

f̂ whose power is below a threshold is assumed to be homogeneous clutter and

the combined variance of all these elements is calculated and entered into the

appropriate diagonal elements of W. Any element i above the threshold has

its variance set to |f̂i|2 and entered into the appropriate diagonal element of

W. Therefore W is always diagonal and has a high variance where there is

a valid target or a large scatterer. The procedure is repeated by alternately

estimating W and f until a termination criterion is met when f changes by less

than a specified amount between iterations. An alternative algorithm is also

possible where all diagonal elements of W are set to |f̂i|2 between iterations. The

two algorithms are referred to here as thresholded minimum mean-square error

(MMSE-T) and all-pixel minimum mean-square error (MMSE-A), respectively.

Another algorithm that works in a similar manner to MMSE-T, by partitioning

the data into target and clutter pixels, is semi-sparse MMSE [133]. However,

that algorithm requires prior knowledge of target and clutter statistics. The

dual-model super-resolution technique of [16] also divides the data into target

and clutter regions.

If W is fixed to be the identity matrix and the noise level is set to zero then

a single iteration of the MMSE algorithm is identical to the matrix inverse. This

demonstrates a failing of the matrix inverse algorithm – it effectively assumes

no noise is present in the measured data, over-fits the data, and results in a

very noisy output. In the MMSE algorithm, the noise covariance matrix N

acts as a regularization parameter, allowing there to be a difference between

the measured data and modelled data, commensurate with the noise level. A

disadvantage of the basic MMSE algorithm is the requirement to know the noise

power in advance but there are a number of ways to estimate it. One of these

is to make a measurement of an area in the scene where there are known to be

no targets or clutter present. This could be done by selecting a shadowed area

of an image and calculating the variance of the pixels in that area. However,

it may be difficult to automatically segment the image into shadow and non-

shadow areas. A different way of obtaining noise-only data would be to have
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the radar point at an area of the sky where there are no targets. Alternatively,

rather than measuring it, the noise power could be calculated directly from the

formula kTBnFn, where k is Boltzmann’s constant, T is the temperature of

the radar receiver, Bn is the noise-equivalent bandwidth and Fn is the noise

factor. It would be advantageous if the noise power could be estimated without

image segmentation or the need to make independent measurements because

these operations introduce extra complexity into the system. One procedure

for automatic noise power estimation integrated with the MMSE technique is

given in [79].

2.2.4 Singular Value Decomposition

In singular value decomposition (SVD) super-resolution the PSF matrix T is

decomposed into three matrices, T = USVH , where U and V are orthogonal

matrices and S is a diagonal matrix whose diagonal elements comprise the

singular values si. Any singular value below a certain threshold is set to zero

and the inverse of the new matrix is calculated as T−1
svd = VS−1UH with the

inverse of the zero values also set to zero [116]. Thus the SVD solution is given

by

f̂svd = T−1
svdg. (2.10)

If all singular values are retained then this is equivalent to the matrix inverse

algorithm. Removal of several small singular values, which are responsible for

the amplification of noise, results in estimated scenes with a higher SNR than

the standard matrix inverse. In fact, the condition number of a matrix is equal to

the ratio of the largest and smallest singular values so it would be expected that

the algorithm should show an improvement over the matrix inverse. However,

care must be taken not to remove too many singular values as each column of

U or V corresponds to a specific structure in T. When a singular value is set

to zero the output matrix Tsvd misses that structure from the scene estimate

and this results in a biased estimate. The threshold level for singular values

is not defined in the basic algorithm as it depends on the specific application.

However, during testing of the algorithm using measured radar data it was

found that removing singular values whose square s2
i was below a threshold of

s2
max/SNR provided a good compromise between too much noise and too much

bias – see Appendix B.
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2.2.5 MUSIC

The standard MUSIC algorithm consists of calculating the eigenvalues of the re-

ceived data matrix, using the eigenvalue spectrum to decide the number of scat-

terers D, calculating signal power as a function of position, and setting scatterer

positions according to the D peaks of this function [129]. A modified version of

the algorithm is used here where, in common with the other algorithms in this

section, the scene is effectively assumed to contain a pre-determined number of

scatterers that exist on a discrete grid of sampling points. This modified version

thus only uses the power-as-a-function-of-position step of the full MUSIC algo-

rithm and does not perform as well as the original algorithm using the model for

which it was designed. The modified version is included here to allow a simple

comparison with other super-resolution techniques. The estimated intensity of

f is given by

|f̂ |2music = (THT)−1TH(ggH −N)T(THT)−1. (2.11)

In the MUSIC algorithm N is usually estimated from the eigenvalues of ggH .

For zero-mean identically and independently distributed noise N = λminI,

where λmin is the minimum eigenvalue of ggH and I is the identity matrix.

If λmin = 0 then the estimated scene is identical to that produced by the matrix

inverse. This is another result that shows the standard matrix inverse algorithm

assumes no noise is present in the image.

2.2.6 Comparison of Standard Algorithms

An example of how the above super-resolution algorithms perform is now pre-

sented. We consider a one-dimensional simulated scene f containing four point

targets embedded in clutter. The scene is illustrated in Figure 2.9a. The first

two targets are equal in amplitude and separated by approximately one quar-

ter of the system resolution. The third and fourth targets are separated by

approximately half the system resolution with the amplitude of the fourth tar-

get half that of the third. The targets are in-phase with each other; i.e. they

are separated by integer multiples of λ/2. The clutter is uncorrelated with a

random-phase and has a peak-to-mean signal-to-clutter ratio of 20 dB for the

strongest targets. The point spread function of a signal with a bandwidth of

B and no weighting is sin(πBt)/(πt), which can be written in terms of the sinc
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function as Bsinc(Bt) [60]. The magnitude of this is shown in Figure 2.9b. The

one-dimensional noiseless “image” of the scene Tf , which is the spatial-domain

convolution of the true scene f with the PSF, is shown in Figure 2.9c along with

a noisy version of the image (g in equation 2.3), where noise has been added

at an SNR of 50 dB. This SNR has been chosen to illustrate operation of the

algorithms in a relatively benign situation. At this high SNR the noiseless and

noisy images are almost indistinguishable. It can be seen from the diagram that

the pairs of closely-separated targets have each coalesced into a single peak and

it is impossible to tell from the image alone how many targets are present. A

number of significant sidelobes are also present in the image. It should be noted

here that both the scene and image are complex-valued but the figures display

only the magnitude of these quantities. The sinc function is real-valued but has

alternating positive and negative sidelobes as shown in Figure 2.2.

Results of the matrix inverse, SVD, MUSIC, MMSE-A and MMSE-T super-

resolution algorithms as applied to the noisy image are shown in Figures 2.9d

to 2.9h, respectively. All algorithms apart from SVD have successfully resolved

the four targets – SVD has resolved the second pair but not the more closely

spaced first pair of targets. The matrix inverse and MUSIC algorithms have

very similar results. This is because the input level of noise is small and the two

algorithms behave similarly under these conditions. It is interesting to note the

behaviour of the SVD algorithm as compared to the matrix inverse. The output

noise level of the SVD algorithm is much lower than that of the matrix inverse,

as expected. However, SVD seems to have spread the energy of the targets over

a wider area, which has resulted in the unresolved first pair of targets. This

suggests that too many singular values have been set to zero – if more were

retained, then the scene estimate would be closer to that of the matrix inverse

but with lower noise levels. The final two algorithms, MMSE-A and MMSE-T,

give very similar results and are better estimators of the scene than the other

algorithms – all four targets have been resolved and the output signal-to-noise

ratio is much higher. Both algorithms have made reasonable estimates of the

clutter but at a lower magnitude than in the true scene. MMSE-A has a few

more clutter spikes unrelated to the true clutter than MMSE-T, which suggest

that overall the MMSE-T algorithm has performed the best for this example.

A second example is now given of the same scene but at a lower input
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Figure 2.9: Simulation of a scene containing four targets and the results of five

super-resolution algorithms applied to a low-resolution image of the scene. The

signal-to-noise ratio of the low-resolution image is 50 dB.
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Figure 2.10: Simulation of a scene containing four targets and the results of five

super-resolution algorithms applied to a low-resolution image of the scene. The

signal-to-noise ratio of the low-resolution image is 20 dB.
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signal-to-noise ratio of 20 dB. The scene, point spread function, and image are

shown in Figures 2.10a to 2.10c. The difference between the noiseless and noisy

images is now much more apparent than in the 50 dB SNR example. Results

of the matrix inverse, SVD, MUSIC, MMSE-A and MMSE-T super-resolution

algorithms as applied to the noisy image are shown in Figures 2.10d to 2.10h,

respectively. The results at this lower SNR are much more variable than at 50

dB. Both the matrix inverse and MUSIC algorithms have completely failed to

estimate the scene properly. The magnitude of the scene is generally wrong by

a factor of about ten, none of the targets are visible, and the scene appears to

consist solely of noise. This has happened because there is simply too much

noise in the input image and the algorithms have over-fit the data. Note that

the level of input noise would be easily low enough to allow target detection

in the low-resolution image if each of the targets were separated by a distance

more than the system resolution. Super-resolution is inherently a more difficult

task than target detection and requires a much higher SNR for useful operation.

Performance of the SVD algorithm has degraded less severely than either

the MUSIC or matrix inverse algorithms. For SVD, each pair of targets has

merged into a single peak and overall the recovered scene is essentially a scaled

version of the image so it could be considered to be a reasonable estimate for

the scene given the high levels of noise. Therefore, although the SVD algorithm

produces biased results, it is more robust with respect to noise than the matrix

inverse algorithm. The MMSE-A and MMSE-T algorithms performed much

better than the other algorithms – they have both resolved all four targets and

there is very little noise in the output. Because the clutter level is the same

as the noise level in this example, the algorithms have suppressed clutter as it

is assumed to be noise. However, the MMSE-A algorithm has retained three

low-amplitude spikes, which should be considered as output noise. There is not

much difference between the MMSE-A and MMSE-T algorithm estimates but

overall, considering more extensive simulations not reported here, the MMSE-T

algorithm appears to have a slightly better performance than MMSE-A.

A final example is now given for an input SNR of 10 dB – a noise level

where most algorithms would be expected to fail. The scene and point spread

function are the same as in Figures 2.10a and 2.10b. The noisy image is shown

in Figure 2.11a, where it can be seen that noise dominates the sidelobes and
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Figure 2.11: Results of the MMSE-T algorithm applied to a low-resolution

image of the scene. The signal-to-noise ratio of the low-resolution image is 10

dB.

even the two main peaks each contain several small noise spikes. This situation

poses a formidable challenge to any super-resolution algorithm. The results for

the matrix inverse, SVD and MUSIC algorithms are similar to those obtained

for an SNR of 20 dB – either two small humps, in the case of SVD, or large

noisy values, in the case of MUSIC and the matrix inverse. These results are

not shown here to save space. The MMSE-A algorithm gives results similar

to those for MMSE-T, which are shown in Figure 2.11b. Here we see MMSE-

T has successfully resolved the pair of targets on the left but not the pair

on the right. The algorithm has also overestimated the amplitude of the first

target and the second target is approximately half the amplitude of the first,

when it should be the same. These differences in amplitude could be critical

when passed on to target recognition algorithms, especially ones such as the

correlation classifier where the amplitude of a target at each pixel is the feature

set used to discriminate between target classes. If it is known that the low SNR

has caused imprecise amplitude estimates then this information could be used

by the target recognition process to mitigate any variation. However, none of

the algorithms presented thus far have a mechanism to do this.

The solution proposed by this thesis is to use a Bayesian super-resolution

algorithm in conjunction with a Bayesian target recognition framework. In that

manner uncertainty in the estimated scene and other relevant variables of the

model can fully be taken into account [82]. It should be noted, however, that

the Bayesian approach assumes the system model is an exact representation. If
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the model is incorrect, there is additional uncertainty associated with this error.

An overview of Bayesian statistics is now presented.

2.3 Bayesian Statistics

2.3.1 Introduction

This section sets out the essential statistical theory required to understand both

the target recognition process introduced in the next section and the Bayesian

super-resolution algorithm presented in the subsequent chapter. An emphasis is

placed on Bayesian statistics – a particular interpretation of general statistical

theory. For more detail on Bayesian data analysis see the textbooks [50] or [82].

Bayesian statistics is a way of representing the degree of belief in a statement

or hypothesis in terms of probabilities, which may be manipulated using Bayes’

theorem. As an example, consider the statement by a particular observer that

“there is a 90% chance a tank is hiding behind those trees”. Clearly either the

tank is or is not hiding behind the trees. However, the observer has limited

information on the situation and has had to make a statement based on what

information is available to him. This could be knowledge of how often tanks

hide in trees, whether or not it is known that tanks are in the surrounding

area, or other information such as a recently-gathered radar image of the scene.

The calculated probability depends on a mathematical model of the situation,

assumptions about tanks and any measured data. Bayes’ theorem provides a

way to update the state of knowledge when new information is made available

and is written as

P (H1|D) =
P (D|H1)P (H1)

P (D)
, (2.12)

where P (H1|D) is the posterior probability of the hypothesis H1 “a tank is

hiding behind those trees” after the data D is made available, P (H1) is the prior

probability of the hypothesis before the data arrived, P (D|H1) is the likelihood

of the data given hypothesis H1, and P (D) is the model evidence. If there are a

number of mutually exclusive hypotheses Hi, then P (D) =
∑

i P (D|Hi)P (Hi).

The mathematical model is encompassed in the function P (D|Hi), which can

be constructed to any desired level of complexity. Assumptions about tanks

would affect the values of P (Hi).
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This approach to probability differs from the classical frequentist view that

probabilities represent limiting ratios of frequencies of occurrences of events [95].

The frequentist viewpoint only allows the assignment of probabilities to truly

random variables – variables occurring in experiments that can be repeated,

such as the rolling of a six-sided die. This is a severe limitation, as we require

a system for determining our state of knowledge about a given situation and

we are not able to repeat the experiment. For that reason the Bayesian view of

probability is preferred.

Often our state of knowledge is not in the form of discrete hypotheses. We

may for example want to know the value of a continuous variable such as the

distance x of a target from a radar. In this case our state of knowledge is

encapsulated in the form of a probability density function p(x). The probability

that the distance is in the range (x, x + ∆x) is p(x)∆x in the limit as ∆x → 0.

An example probability density function (PDF) is shown in Figure 2.12, where

there are two regions of high probability.

We may also be interested in the probability that the distance is less than

a certain value. This is known as the cumulative distribution function (CDF)

and is calculated from the integral

F (x) = P (X ≤ x) =

∫ x

−∞
p(X) dX. (2.13)

The CDF of the distribution introduced in Figure 2.12 is shown in Figure 2.13.

Note that all CDFs are monotonic increasing functions and

lim
x→−∞

F (x) = 0, lim
x→∞

F (x) = 1. (2.14)

2.3.2 Mean, Median, Mode, and Confidence Intervals

It is usually inconvenient when conveying information about a variable in human-

to-human interaction to use the complete probability density function. The an-

alytic PDF may be mathematically complex or, when using a numerical PDF,

many numbers are required to describe the distribution. If that is the case

it is common to quote a single statistic to represent the location of the entire

distribution. If the statistic is to be representative of the distribution then it

should have some sort of central tendency. The three statistics most commonly
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Figure 2.12: An example probability density function.
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Figure 2.13: The cumulative distribution function of the PDF in Figure 2.12.
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used to represent a distribution location are the mean, median and mode. The

mean is defined as

x̄ =

∫ ∞

−∞
xp(x) dx. (2.15)

The median is the value that divides the PDF into two halves of equal proba-

bility – it is the 50th percentile. Thus the median is given by the solution for x̃

in the equation ∫ x̃

−∞
p(x) dx = 0.5. (2.16)

Alternatively the median is more simply described as the value at which the

CDF is equal to one half:

F (x̃) = 0.5. (2.17)

The mode of a distribution x̌ is the value of x that maximizes value of the PDF.

Thus

x̌ = arg max
x

p(x). (2.18)

Note that this equation defines a global mode. If a distribution has local peaks

in the density function then it is often described at multimodal even if the local

peaks are lower than the global peak. If the distribution has been calculated

after application of Bayes’ theorem then the global mode is also known as the

maximum a posteriori (MAP) value.

For a symmetric unimodal distribution the mean, median and mode coin-

cide, when they are all defined. The mean, median and mode values of an

example multimodal asymmetric distribution are shown in Figures 2.12 and

2.13 in relation to the PDF and CDF respectively. The figures demonstrate

the advantages and disadvantages of the three statistics. The mode describes

the region of high probability density well, as seen in Figure 2.12. However, a

random variable drawn from the distribution has approximately twice the prob-

ability of being above the mode than below. Thus the mode is not necessarily

a good indicator of the centre of the distribution. The mean is near the centre

of the distribution, and the median is defined as the centre. However, these

two statistics are in or near the dip of the density function – a region of lower

probability than that surrounding the global mode. Therefore no single statistic

captures all the useful information in describing the location of an asymmetric

distribution.
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In addition to the location of a distribution it is desirable to known its spread

of values. The most common descriptor of this spread is the standard deviation

σx defined as

σ2
x =

∫ ∞

−∞
(x− x̄)2p(x) dx. (2.19)

The Gaussian distribution is completely defined by its mean and standard de-

viation and these two statistics are often the only ones quoted regardless of

the underlying distribution. However, these two statistics on their own give no

indication as to the asymmetry of a distribution. Therefore another often-used

set of statistics are the mean and a confidence interval. A confidence interval

is the set values that contain β = 100% − 2α of the distribution. The choice

of α is arbitrary but values of 5% or 2.5% are commonly used. If each end of

the interval is a different distance from the mean this indicates an asymmetri-

cal distribution. The β = 90% confidence interval for the distribution shown

in Figure 2.13 is approximately (2.61,8.15). The fact that the top end of this

interval is further from the mean than the bottom indicates the distribution

is positively skewed. However, even this set of statistics does not reveal the

multimodal nature of the distribution or its detailed shape. We could go on

quoting higher order central moments, defined as

µn =

∫ ∞

−∞
(x− x̄)np(x) dx (2.20)

for integer values of n > 2, but this rapidly becomes difficult for humans to in-

terpret. Computers are better placed to process these types of statistic but high

order moments are sensitive to a few extreme values when analyzing measured

data so moments are not necessarily the best representation of a distribution.

The precise shape of the distribution function could be important when mak-

ing decisions based on that shape. This is especially so in the target recognition

application when a decision could result in the launch of a weapon. Ideally,

the analytic form of the distribution should be used but in practice this is not

always available. When a set of simple statistics such as the mean, median,

mode and confidence intervals is an insufficient representation of a distribution,

samples can be used to represent the PDF. The sampling representation of a

PDF is explained in Section 2.3.7.
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2.3.3 Multiple Variables

In our super-resolution and target recognition application we are interested in

making inference on more than one variable simultaneously. That requires us

to make use of joint probability distributions of the form

p(x1, x2, ..., xn) = p(x), (2.21)

where the vector x contains all the variables of interest. Similarly to the one-

dimensional case, the multivariate CDF is defined as

P (X1 ≤ x1, X2 ≤ x2, ..., Xn ≤ xn) =

∫ x1

−∞

∫ x2

−∞
...

∫ xn

−∞
p(X1, X2, ..., Xn) dX1 dX2 ... dXn. (2.22)

The multivariate mean is defined by

x̄ =

∫ ∞

−∞
xp(x) dx, (2.23)

and the covariance matrix is

Σx =

∫ ∞

−∞
(x− x̄)(x− x̄)Hp(x) dx. (2.24)

The covariance matrix is positive semi-definite (xHΣxx ≥ 0 for all x) and

Hermitian symmetric (Σx = ΣH
x ). For real random variables this means the

entire matrix is real-valued and the diagonal elements are non-negative. Off-

diagonal elements are positive or negative depending on the relation between

variables. If the random variables are complex then the diagonal elements are

still real and non-negative but the off-diagonal elements are complex in general.

In the very general case, second-order properties of complex random vectors

are not completely described by the covariance matrix alone. If there is a

correlation between real and imaginary parts of the vector elements then the

complementary covariance defined by

Σ̃x =

∫ ∞

−∞
(x− x̄)(x− x̄)T p(x) dx (2.25)

must be used in addition to the covariance [130]. In the literature this matrix

is also referred to as the relation matrix [113] or the pseudo-covariance [100]. A

complex random variable whose complementary covariance is zero is said to be
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proper [100] or to have second-order circularity [113]. Proper complex random

variables are used in the vast majority of complex statistical analysis and are

implicitly assumed in the widely-used standard form of the Normal distribution.

Analysis of improper complex random variables is beyond the scope of this thesis

and it is assumed throughout that all complex random variables are proper.

The interested reader is referred to [100, 113, 130] for further information on

complementary covariance matrices.

2.3.4 Marginalization

An important advantage of the Bayesian framework for statistics is the use of

marginalization. Marginalization allows us to deal with “nuisance” parameters

– parameters that we have no interest in but are required to be present in our

model of the system. For example, when estimating a scene x from radar data

blurred by a point spread function with an unknown parameter θ we are usually

interested in x but not θ. Non-Bayesian methods might first estimate θ then

x, or even attempt to estimate them simultaneously. However, there may be

an interaction between the two variables that is not taken into account. The

function that contains all information about the variables is the joint density

p(x, θ) = p(x|θ)p(θ). (2.26)

Marginalization is the process of integrating over the nuisance parameters to

leave only variables of interest. This gives

p(x) =

∫ ∞

−∞
p(x|θ)p(θ) dθ. (2.27)

The left hand of equation (2.27) now contains only the data of interest, x, and

has removed the nuisance parameter θ.

Marginalization is thus able to reduce the dimensionality of a problem. If it

is possible to do this analytically there is a large saving on computation time.

If an analytic solution is unavailable then marginalization can be carried out

numerically as long as it is possible to derive an expression for the marginal-

ization integral. In that case an intractable problem has been converted into a

tractable one, possibly at the expense of more computation depending on how

the numerical integration is carried out.
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2.3.5 Choosing the Prior Density

One problem associated with Bayesian statistics is how to choose the prior

density for a variable. If prior knowledge can be represented by an analytic

form, then this poses no problems as the appropriate expression can be inserted

into Bayes theorem. However, knowledge about a variable could be encoded in

other ways, such as minimum and maximum limits, or known moments of the

prior density. In many cases there is no specific information available and we

would like to use some sort of reference prior or noninformative prior, several

of which have been proposed.

It is desirable to seek a reference parameterization of a variable with a uni-

form prior from which the prior of any other parameterization can be produced

by variable transformation. One solution is to choose the reference parameter-

ization such that the likelihood is in data translated form. This means that

different values of data give rise to the same functional form for the likelihood

except for a shift in location. One problem with this method is that it is not

always possible to express the likelihood function in this form [82].

Jeffreys’ rule states that the prior should be chosen as

p(θ) ∝
√

I(θ|x), (2.28)

where I(θ|x) is the Fisher information for θ defined as

I(θ|x) = −E

[
∂2 log p(x|θ)

∂θ2

]
, (2.29)

and E[ · ] denotes taking the expectation with respect to the distribution p(x|θ)
while holding θ constant. This rule has the property that the prior is invariant

regardless of any transformation that may be performed on θ. Although this

invariance property is desirable, there are certain situations where Jeffreys’ prior

cannot be applied [82].

The above rules in general give different prior distributions apart from cases

where the variable is either a location or scale parameter. If the variable is a

location parameter then the uniform prior p(θ) ∝ 1 can be used. If the variable is

a scale parameter then p(θ) ∝ 1/θ is appropriate. Note that these are improper

priors because they do not integrate to unity. This is not a problem as long

as the posterior distribution is proper, although all models with an improper

prior do not necessarily result in a proper posterior. The noninformative scale

66



CHAPTER 2. BACKGROUND THEORY 2.3. BAYESIAN STATISTICS

prior p(θ) ∝ 1/θ should not be used in hierarchical models because the posterior

distribution in that case is improper [50].

It is often the case that certain constraints are put on the prior distribution.

The maximum entropy principle [69] states that if these constraints are all that

is known about a distribution then we should maximize the Shannon entropy

H = −
∫

p(θ) log[p(θ)] dθ (2.30)

with respect to p(θ) to obtain the prior distribution. The distribution p(θ)

is then said to be “maximally noncommittal” with respect to all information

except the specific data given [67]. If the constraints are of the form

Fk =

∫
p(θ)fk(θ) dθ, k = 1, 2, ...,m, (2.31)

then the prior distribution is given by

p(θ) = Z−1 exp

[
−

m∑

k=1

λkfk(θ)

]
, (2.32)

where Z is a normalizing constant and λk are Lagrange multipliers determined

by the constraints [69]. This principle leads to a uniform distribution when

all that is known about a distribution is the maximum and minimum value

of a variable. If the distribution is zero mean with a known variance then

this results in the Gaussian distribution [158]. The disadvantage of maximum

entropy priors is that suitable constraints may not be available and the priors

are not necessarily invariant to variable transformations [67].

When attempting to perform analytical calculations it is convenient if the

posterior density has the same functional form as the prior density but with

different parameters. If this is the case then the prior distribution is known

as a conjugate prior. A conjugate prior may not exactly match the true prior

distribution but could be close enough not to make a significant difference in

the ensuing analysis. In fact, many conjugate priors contain the distribution

derived using Jeffreys’ rule, in which case there is a strong argument for using

that particular prior [82]. The disadvantage of conjugate priors is that there are

cases where they do not reasonably approximate true prior knowledge. However,

with numerical methods it is unnecessary to restrict ourselves to conjugate priors

and that is one of the advantages of the numerical MCMC super-resolution

algorithm proposed in Chapter 3.
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2.3.6 The Curse of Dimensionality

The curse of dimensionality is a phrase used to represent problems that occur

when analyzing high-dimensional data [45]. This is especially relevant to radar

data analysis, where images of scenes often contain in excess of one million

pixels. In the super-resolution problem we are interested in estimating the joint

probability density function of pixels values of a target. When representing a

probability distribution for one or two dimensions it is possible to define values

of the PDF on a discrete grid of points. For the purposes of illustration let

us assume it is sufficient to use 100 points in the PDF representation for a

single dimension. Thus a two-dimensional PDF would require 10,000 points,

which is a small enough number to allow processing with reasonable computer

resources. However, as the number of dimensions d increases, the number of

points required to represent the PDF grows exponentially as 102d and rapidly

it becomes impossible to store or process this PDF representation. If each

dimension is independent then only 100d points are required and the problem

becomes tractable. However, pixels in a radar image are correlated through

action of both the main lobe of the system point spread function and sidelobes,

which means the full dependance between pixels must be analyzed.

Another observation is that data is very sparse in high dimensions – it is

unlikely that any particular data point is close to another in terms of the Eu-

clidean distance. That is because with more dimensions there is a higher chance

that in at least one dimension the two data points will be widely separated, re-

sulting in a large overall distance. This sparseness manifests itself in slightly

counter-intuitive ways. For example, a uniform probability distribution in high

dimensions has almost all is probability concentrated in a thin shell at the

boundaries of the distribution [35]. Also, the ratio of the volume of a unit

hyper-sphere to a unit hyper-cube is very small for high dimensions [38]. Nei-

ther of these phenomena are apparent in the one-, two- or three-dimensional

cases we are used to visualizing.

One way of mitigating the curse of dimensionality is through the use of

samples to represent a distribution. This is more efficient than the grid-based

method because a single sample represents information in all the dimensions.

Therefore, fewer samples than grid points are required. However, care should be

taken in viewing samples as a complete solution to the curse of dimensionality
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because many samples are still required to represent high-dimensional data and

in certain situations other problems still remain [38].

2.3.7 Sampling Representation of a Distribution

In the preceding sections we saw that it would be advantageous to represent

a distribution using samples rather than an analytic or grid-based form. Here

we examine a two-dimensional Gaussian mixture distribution to highlight dif-

ferences between the three types of representation.

The analytic form of our example Gaussian mixture PDF is

p(x) =
1

3
p1(x) +

1

3
p2(x) +

1

3
p3(x), (2.33)

where

pj(x) =
exp

[−1
2
(xj − x̄j)

TΣj
−1(x− x̄j)

]

[det(2πΣj)]
1/2

, (2.34)

and

x̄1 = [3, 2]T , Σ1 =

[
0.32 0

0 0.22

]
, (2.35)

x̄2 = [4, 3]T , Σ2 =

[
0.62 0

0 0.32

]
, (2.36)

x̄3 = [6, 2.5]T , Σ3 =

[
0.42 0

0 0.12

]
. (2.37)

Thus the mixture has three components and is completely described by 21

numbers – six for the mixture means, twelve for the mixture covariances and

three for the mixture weights. A graphical representation of the grid-based form

for this distribution is shown in Figure 2.14. The darker regions represent areas

of high density, and contours of constant density are indicated on the diagram.

Figure 2.15 shows the distribution using a sampling representation.

Clearly the analytic form of the distribution is the most accurate as it de-

fines the distribution. However, in practical data analysis it is often impossible

to derive a distribution in terms of simple functions like the exponential used

in equation (2.34). Visually the two numeric representations provide similar

information about the distribution. However, the low-density areas are better

69



CHAPTER 2. BACKGROUND THEORY 2.3. BAYESIAN STATISTICS

0 2 4 6 8
0

1

2

3

4

5

0.
01

0.
01

0.
01

0.01

0.01

0.06

0.0
6

0.
06 0.06

0.11

0.
11

0.11

0.16

0.16

x1

x2

Figure 2.14: An example 2D probability density function.
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Figure 2.15: Sampling representation of the 2D PDF shown in Figure 2.14.

70



CHAPTER 2. BACKGROUND THEORY 2.3. BAYESIAN STATISTICS

represented in the grid-based form of Figure 2.14 because the density is cal-

culated over the whole region of interest whereas the sample representation in

Figure 2.15 has no samples in areas of low density.

In terms of calculating statistics of interest the sample representation re-

quires less processing power than the grid representation. For example, an

estimate of the mean calculated from N sample values is

ˆ̄xs =
1

N

N∑
n=1

xn, (2.38)

and an estimate of the mean calculated from the grid values is

ˆ̄xg =

M1∑
m1=1

M2∑
m2=1

xm1,m2p(xm1,m2)∆x1∆x2, (2.39)

where M1, M2 are the number of grid points used in each dimension and ∆x1,

∆x2 are the spacing between grid points. Equation (2.38) is a sum over N terms

and equation (2.39) is a sum over M1M2 terms. Since N < M1M2 and the grid

form requires multiplications it is quicker to calculate ˆ̄xs than ˆ̄xg. In higher

dimensions, although the number of samples required is higher, the number of

grid points scales exponentially and the calculation saving is greater. In general,

the Monte Carlo integration error is inversely proportional to the square root

of the number of samples used [93]. Similar expressions can be derived for

estimates of the covariance matrix or other statistics of interest.

Another advantage of the sample representation of a probability distribution

is the ease of marginalization calculations. To remove a nuisance parameter,

that dimension of the variable vector is simply ignored. In the two dimensional

example above suppose the nuisance parameter is x2 and we would like to know

the unconditional PDF of x1. This is represented by the x1 values of the samples

without any further processing. Contrast this to the grid-based representation

where the calculation is

p(xm1) =

M2∑
m2=1

p(xm1,m2)∆x2, (2.40)

which clearly requires more processing. In higher dimensions a sum over an

extra dimension is introduced for each nuisance parameter that is required to

be marginalized, which adds a significant processing burden.
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Given the advantages of a sampling representation for probability distri-

butions in terms of avoiding intractable analytic calculations and mitigating

against the curse of dimensionality we will use samples when formulating the

Bayesian super-resolution algorithm introduced in Section 3.

2.4 Automatic Target Recognition

2.4.1 Introduction

Automatic target recognition (ATR) is the process of obtaining measured data

of a scene potentially containing targets of interest, and determining by some

method whether targets are present and, if so, what are the types of target.

We are concerned here specifically with radar ATR – see [142] for an in-depth

treatment of the subject. An overview of the ATR process is shown in Figure

2.16 and is summarized here. Details of the individual steps are described in

sections 2.4.2 to 2.4.4.

The first step is to detect whether or not a target is actually present in the

data. At this stage it may be determined that no targets of interest are present

and it is unnecessary to carry out further processing. If a target is present then

its signature must be extracted from the background. This could be in the

form of range profiles or images centred on the target, or higher-level features

such as target length and width. Once the important target features have been

extracted they must be compared with a database of target signatures using a

pattern recognition algorithm. Ideally, the algorithm calculates a probability

that the target under test belongs to each of the target classes in the database.

An “unknown” class may also be included. Non-probabilistic methods are also

possible but are not discussed here – see [155] for further information on some of

these techniques. If a recognition algorithm is used on its own, the test target

is considered to be the database target with the highest probability. If used

in combination with other algorithms the vector of probabilities is passed on

to a higher-level algorithm that takes probabilities from a variety of sources to

make a final decision. A more detailed explanation of these steps is now given

individually.
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Figure 2.16: Overview of the target recognition process.

2.4.2 Target Detection

Target detection is the best understood element of the whole radar target recog-

nition process as this was the original purpose of radar systems. In radar data

the presence of a target is indicated by a response that is stronger than that

of the background. If the target is a long way from the radar or exists in

a non-cluttered environment, such as that of air targets, then the detection

process is limited by thermal noise in the radar receiver. The issue of noise

was introduced in Section 2.1.2. The probability density function of the noise

magnitude is a Rayleigh function p(x) = 2x
σ2 exp(−x2

σ2 ), where σ2 is the average

noise power [136]. Target detection proceeds by first selecting an acceptably

low probability of false alarm (PFA). This is the probability a target is declared

when none is present, and is usually in the range 10−6 to 10−9. Combination

of the PDF and the PFA gives an amplitude threshold of
√
−2σ2 log(PFA). If

the signal exceeds that threshold at a particular position in the the signal or

image then a target is declared present at that point.

An illustration of noise-limited target detection using simulated range profile

data is shown in Figure 2.17, where a single target is present at range index

120. The resolution of the system is such that the target length is smaller

than a resolution cell, so the target appears as a single spike. The rest of the

scene contains thermal noise based on Gaussian statistics. The threshold has

been set such that the PFA is 10−6. The target exceeds this threshold and is
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therefore successfully detected. However, a noise spike at range index 45 has

also exceeded the threshold and would be declared as a target – this is a false

alarm. In practice, the average of several range profiles is used before target

detection, which reduces the probability of false alarm for a given detection

threshold.

When measuring certain types of target, the signal or image is said to be

cluttered if there is detail in the signal that is related to neither the signal of

interest nor thermal noise. With ground targets, for example, returns from the

surrounding ground, bushes, trees, buildings or other features of the landscape

appear in the signal. When this is the case the probability of a false alarm from

one of these features is much higher than that due to thermal noise alone. In

this situation the detection threshold should be increased to take into account

the distribution of clutter power. A variety of models have been proposed for

this with the K distribution being popular.

The K distribution arises from a compound model for fine and coarse scale

clutter variations. Under this model, the clutter c is written as c = x
√

τ , where

x is a Gaussian circular complex random variable known as the speckle, and

τ is a positive real random variable known as the texture. If τ follows the

gamma distribution then |c| follows the K distribution. The speckle is assumed

to be spatially uncorrelated but the texture takes correlations between nearby

locations into account. In measured data, especially high-resolution data, the

distribution of clutter tends to be spikier than that due to Gaussian noise alone,

and the K distribution provides a good fit to this data [152].

Constant false alarm rate (CFAR) detectors vary the detection threshold

for different parts of the scene to allow locally bright clutter to be rejected

while maintaining sensitivity in regions where the clutter power is low [136].

Alternatively, detections due to clutter could be allowed to pass on to the next

stage of processing, where more advanced features can be used to reject these

initial false alarms [75].

2.4.3 Feature Extraction

Feature extraction is the process of obtaining a useful subset of information

about a target from an entire measured signal or image of a scene. This usually

first proceeds by determining which part of the signal or image relates to the
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Figure 2.17: Target detection and false alarms.

target and what is part of the background. A variety of algorithms for this pur-

pose are possible. These could place a certain size of window over the detected

target position. A more adaptive approach would alter the size and shape of the

window according to statistics of the target and background present in the par-

ticular scene being processed [23,111]. An example of this adaptive approach is

shown in Figure 2.18 for measured millimetre-wave data. Pixels relevant to the

target are contained within the black contour, everything outside the contour

is related to background only. Windowed target data on its own is sometimes

referred to as a target “chip”. Once it has been determined which part of the

signal relates to the target of interest, features are measured based the target

chip.

There are two major classes of features – templates and high-level features.

Templates consist of the measured data values for each pixel of the target chip.

These could be either the power of each pixel, or for coherent radar, the complex

value. Templates are a simple target representation and are easy to interpret for

humans because when displayed on a screen they look the same as the measured

data. An example template for the target introduced in Figure 2.18 is shown

in Figure 2.19a, where the background pixels have been set to zero.
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Figure 2.18: Extracting a target from the background.

High-level features provide for a further level of abstraction over templates,

but potentially better represent more intrinsic target properties. High-level

features measure certain properties of the target image. The image properties

could relate to physical characteristics of the target such as length or width,

statistical features such as mean or standard deviation of the image pixel values,

or more abstract features such as FFT coefficients of the image or other complex

combinations of pixel values [92]. An example of high-level features extracted

for three classes of target is shown in Figure 2.19b. The two features used in

this example are target length and width as measured from simulated radar

images. For each class of target, 50 images were used to generate the length

and width feature values. With this high-level feature representation it is easier

visually to see how well the different classes of targets are separated than having

to compare 50 templates per class. However, in terms of computer processing

the speed of computation is related to the number of features and it does not

matter whether these are derived from templates or higher-level features.

In addition to feature extraction, it may be necessary to perform feature

selection. The feature selection process determines which features best allow

targets to be differentiated from each other. This step is usually performed in
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Figure 2.19: Two target representations. (a) Target template for a single target.

(b) Two target features for three classes of target.

conjunction with the pattern recognition stage of the target recognition process.

2.4.4 Pattern Recognition

A large number of pattern recognition algorithms have been proposed. Popular

algorithms include the Euclidean distance metric, correlation classifiers, linear

discriminant analysis, artificial neural networks, support vector machines, and

decision trees [155]. Here we outline only the Bayesian classifier and k-nearest-

neighbour algorithm as those will be used later in this thesis when comparing

super-resolution algorithms in a Bayesian framework. For a recent review of

other target recognition algorithms see [27].

The Bayesian classifier is based on the statistics of target features. The

probability density function of features is estimated from a database of target

images. Mathematically the density function is written as p(f |Ti), where f is a

vector of features, Ti (i = 1, ..., n) is the target type, and n is the number of

targets. There are two main methods of density estimation - parametric and

non-parametric. In the parametric method a certain model of target feature

variation is assumed, such as a multivariate Gaussian distribution, and density

estimation proceeds by estimating parameters of the model. Different parame-

ters are stored for each target in the database. When a new target feature set f0
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is required to be classified, the probability density of the new feature vector is

calculated for each target in the database. The probability that the new target

T0 corresponds to a given target in the database is

P (T0 = Ti) =
p(f0|Ti)∑n

j=1 p(f0|Tj)
. (2.41)

An example of parametric density estimation for the three target classes

first introduced in Figure 2.19b is shown in Figure 2.20. Two features are used

here: length and width, measured in metres, and are assumed to be drawn

from a two-dimensional Gaussian distribution. For each target class the mean

feature vector is plotted as a single point in feature space. The covariance for

an individual class is represented in the diagram by an ellipse that includes

90% of the assumed data distribution. Figure 2.21 shows how the parametric

Bayesian classifier makes a decision between classes when presented with a new

feature vector, assuming equal prior probabilities for all three classes. Any

target whose length and width combination falls in the black area is classified

as belonging to class one, the grey area represents class two, and the white area

class three. The original data are also plotted on the graph for comparison.

Note that some original data points from class two are misclassified as class

one or class three. This misclassification of original data is inevitable for a

parametric representation of closely spaced data. However, it is hoped that the

classifier maintains good generalization properties i.e. when presented with new

data the misclassification rate does not significantly increase.

In non-parametric density estimation no particular distribution is assumed

and an algorithm such as the k-nearest-neighbour (NN) method is used. In

this algorithm the k feature vector samples in the database nearest to the test

feature vector are examined as to which target class they belong. If the total

number of nearby feature vectors corresponding to target Ti is mi, the estimated

probability that the new target corresponds to a target in the database is given

by

P (T0 = Ti) =
mi

k
. (2.42)

Figure 2.22 demonstrates operation of the k-nearest-neighbour classifier for

k = 1 and can be compared directly with the parametric Bayesian classifier

shown in Figure 2.21. The decision boundaries of the two classifiers are similar in

areas near the original data points but are markedly different further away. Note
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Figure 2.20: PDF of three target classes.
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Figure 2.21: Decision areas for a Bayesian classifier based on Gaussian PDFs.

Black area: class 1, grey area: class 2, white area: class 3.
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Figure 2.22: Decision areas for a nearest-neighbour classifier. Black area: class

1, grey area: class 2, white area: class 3.

that the nearest-neighbour classifier makes no misclassifications when k = 1.

Although this may initially seem better than the parametric Bayesian classifier,

it does not necessarily have good generalization properties. Generalization could

potentially be improved by increasing the value of k although it is suggested

in [92] that this is unnecessary. In the simple example given here the three

classes are able to be separated into three contiguous areas of the parameter

space. However, in the general case where there is overlap between the classes,

the decision boundary for the k = 1 nearest-neighbour classifier is much more

complicated than the Bayesian one. The issue of generalization is covered in

detail in [27] and [92].

2.4.5 Results Using Measured Data

In this section the performance of three target recognition algorithms is demon-

strated using measured radar data. The data used is the publicly available

Moving and Stationary Target Acquisition and Recognition (MSTAR) data

set [123]. Images of a variety of vehicles were recorded from angles covering

a full 360o azimuth sweep and at a variety of elevation angles. Here we use a
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Target name Target description

T-72 Main battle tank

2S1 Self-propelled howitzer

D7 Military bulldozer

T-62 Main battle tank

ZIL-131 General-purpose army truck

Table 2.1: Vehicles from the MSTAR data set used in these experiments.

subset of the data consisting of the five vehicles shown in Table 2.1.

In each image from the data set, the target was segmented from the back-

ground using a set of morphological operations as demonstrated in Figure 2.23.

Figure 2.23a shows an example image of the T-72. The statistics of this image

were calculated and a detection threshold was set to detect the 5% brightest

pixels. The output of the detection process is shown in Figure 2.23b. Mor-

phological closing was then performed using a 3x3 structuring element followed

by morphological opening using a 2x2 structuring element. This removes small

isolated groups of pixels and fills holes in the large groups of pixels as shown in

Figure 2.23c. The binary group with the brightest pixel in the original image is

selected as a binary template for the target, Figure 2.23d. This binary template

is then multiplied by the original image to give the segmented target, Figure

2.23e. This target segmentation process is somewhat ad hoc but it appears to

work well on the target images tested here. It is expected that a more general

algorithm would have to be used when testing other data sets.

Five features were measured for each target image template. These were

RCS, target length, target width, fractal dimension, and weighted rank fill ratio.

The RCS is defined by the sum of the squared pixel magnitudes of the target

template, which is then converted to dB. The target length and width were

based on the second moment of the the binary target template about its minor

and major axes, respectively. The fractal dimension and weighted rank fill ratio

features were calculated as described by Novak et al. [104] but here used the

10% brightest pixels in the target template. The fractal dimension is a measure

of the spatial distribution of the brightest pixels and the weighted rank fill ratio

is a measure of the proportion of power contained in the brightest pixels.
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(a) Input image
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(b) Detection map
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(c) Morphological processing output
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(d) Group with brightest pixel
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(e) Target template

Figure 2.23: The process of segmenting the image into target and background.
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(a) High-resolution image
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(b) Low-resolution image

Figure 2.24: High and low-resolution images of a T-72 tank.

The ability to discriminate between the targets was tested using three classi-

fiers. The first classifier was a Bayesian classifier that assumed the features were

independent and distributed normally. This was a reasonable assumption based

on analysis of the data. The mean and standard deviation of target features was

measured for 10o azimuthal windows of each target and stored in a database.

A new target image was classified by selecting the database target that had the

highest classification probability for the correct azimuth window. The second

classifier was a feature-based nearest-neighbour classifier. The test target was

simply classified as the target in the correct azimuth window with the smallest

Euclidean distance between test and training feature vectors. The final classi-

fier was a template-based correlation classifier. This measured the peak value

of the cross-correlation between the test target and database targets. The test

target was classified as the database target in the correct azimuth window with

the largest correlation value.

For all classifiers the training database was based on the set of images

recorded at an elevation of 17o. To provide some degree of data independence

the test images were selected from the imagery recorded at 15o. However, as

a measure of the maximum possible performance of the classifiers, the 17o-

elevation data used for training was also used during testing.

The nominal resolution of the MSTAR data is 0.3 m and in experiments here

this is referred to as high-resolution data. The effect of using low-resolution data
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was also tested by creating a new data set from the original data. This was done

by convolving the original data with an RCS-preserving point spread function

based on the FFT of a Hamming window such that the degraded imagery had

a resolution of 1.0 m. The resolution reduction process was applied only to

the test imagery. Example high and low-resolution target images are shown in

Figure 2.24. The resolution reduction process allows us to assess the impact of

having only low-resolution imagery available to test when high-resolution data

was used during training. This is the scenario considered in the introduction

where different radar sensors are used for the train and test phases.

The average probability of correct classification for each of the classifiers is

shown in Table 2.2. The first row corresponds to the case where high-resolution

training data was used both to train and test the classifiers. It can be seen that

the Bayesian classifier performs best and the template classifier performs worst.

The second row corresponds to the more realistic case where the training and

test data were independent sets acquired at different elevation angles. It can be

seen that there has been a degradation in performance for all classifiers but their

performance relative to each other has been maintained. The performance of the

Bayesian and nearest-neighbour classifiers is better than that of the template

classifier because, in this particular data set, high-level features are a better

description of the target than templates. The distribution of target features

is very close to Gaussian, which is the distribution assumed by the Bayesian

classifier. This results in the Bayesian classifier having a better representation

of the feature distribution than the nearest-neighbour classifier, especially in

sparse regions of feature space. The third row of Table 2.2 corresponds to the

case where the the training and test data resolutions are different. It can be

seen that there has been a dramatic reduction in performance for the Bayesian

classifier. The nearest-neighbour and template classifiers have also suffered a

reduction in performance and the template classifier is now the best under these

circumstances.

The large reduction in performance for both the Bayesian and nearest-

neighbour classifiers when the resolution is changed can be explained by an

analysis of the features used for those classifiers. The RCS feature value would

be preserved after resolution change for a single point target because the PSF

is RCS-preserving. However, the RCS can only be preserved for a single scat-
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Test Data Classifier

Resolution Elevation Features Bayesian NN Template

High (0.3 m) 17o 1,2,3,4,5 80.1% 66.2% 41.5%

High (0.3 m) 15o 1,2,3,4,5 59.3% 49.1% 38.0%

Low (1.0 m) 15o 1,2,3,4,5 28.0% 32.7% 34.9%

High (0.3 m) 15o 2,3 57.4% 47.0% 38.0%

Low (1.0 m) 15o 2,3 49.0% 37.6% 34.9%

Table 2.2: Probability of correct classification using the MSTAR data set. Per-

centages based on 1677 test images of targets. Features 1–5 refer to RCS,

target length, target width, fractal dimension, and weighted rank fill ratio, re-

spectively. The feature database was generated using high-resolution training

data gathered at an elevation of 17o.

terer. When more than one scatterer is present, the coherent combination of

the PSF and scatterers results in constructive interference in some positions

and destructive interference in others. The RCS would only be preserved over

the whole image if constructive interference were present throughout. However,

this is unlikely to happen in practice. Thus the practical effect of resolution

degradation is a reduction in the measured RCS. Notwithstanding this reduc-

tion, the values of target RCS in low- and high-resolution imagery are fairly

well correlated. The degree of correlation is shown in Figure 2.25a, which is a

scatter plot of RCS feature values for low- and high-resolution images of all five

targets. This implies a scheme to compensate for RCS reduction could be used

to recover performance by analyzing the relation between RCS and resolution

and taking this into account. This has not been done here because it is a further

complication that distracts from the main argument of this thesis.

The second problem with resolution degradation is that it causes closely-

spaced small bright regions to coalesce into a reduced number of larger ones.

This change in distribution of bright regions has an adverse effect on the fractal

dimension feature. Fractal dimension feature values in high- and low-resolution

imagery are almost completely uncorrelated – see Figure 2.25d. The weighted

rank fill ratio feature suffered from similar problems to the RCS feature in that

interference between nearby scatterers altered the distribution of power and
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Figure 2.25: Comparison of feature values for high and low-resolution images

of a T-72 tank.
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caused a reduction in value as shown in Figure 2.25e. However, unlike the

RCS, the weighted rank fill ratio feature values have a much lower correlation

between low- and high-resolution imagery. The lack of strong correlation for

both the fractal dimension and weighted rank fill ratio features means there

is no processing available to mitigate the effects of resolution change for those

features.

Given the problems associated with the RCS, fractal dimension and weighted

rank fill ratio features it was decided to re-run the experiment using only the

length and width features to see the effect this has on performance. These

features were fairly consistent between low- and high-resolution imagery – see

Figures 2.25b and 2.25c. The fourth row of Table 2.2 shows classifier perfor-

mance for the case where high-resolution data was used in both testing and

training, and only the length and width features were used. It can be seen

that although the performance using two features is lower than that using all

five features, for both the Bayesian and nearest-neighbour classifiers, the reduc-

tion is only about 2%. Indeed, this result shows that even for same-resolution

data, the RCS, fractal dimension and weighted rank fill ratio features do not

contribute significantly to overall classification performance. It also should be

noted that the template classifier is not affected by the number of features as

it does not use them during classification. The results using two features and

low-resolution data during the test phase are shown in the fifth row of Table 2.2.

Although there is a reduction in performance compared to using high-resolution

test data, this is much less for the Bayesian and nearest-neighbour classifiers

than when using all five features. This shows that the length and width features

are indeed robust to changes in resolution.

When robust features are used, the relative performance of the three classi-

fiers is restored to that in the ideal case – the Bayesian classifier is best followed

by the nearest-neighbour and template classifiers. However, in all cases the

change in resolution has caused a reduction in classification performance. This

motivates the the use of super-resolution techniques to improve the resolution

of low-resolution test imagery to match that of high-resolution imagery in the

training database.
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Chapter 3

Bayesian Super-resolution

3.1 Introduction

3.1.1 Chapter Outline

In this chapter a new Bayesian super-resolution algorithm is described. The

algorithm is based on the Metropolis-Hastings (M-H) algorithm, which obtains

samples of a distribution using a Markov chain Monte Carlo (MCMC) method.

Section 3.1.2 establishes a Bayesian model of the physical processes involved

when radio waves are scattered by an illuminated target, based on a radar cross-

section model. In Section 3.1.3 a Bayesian model of the receiver physics and

signal processing is described. Section 3.1.4 outlines the difference between the

inverse cross-section and complex-field problems, which are two target parame-

ter estimation problems. The Bayesian solution to the complex-field problem in

analytic and numerical terms is given in sections 3.2.1 and 3.2.2, with simulation

results in sections 3.2.3 and 3.2.4. A discussion of the two approaches is given

in Section 3.2.5. The inverse cross-section problem is addressed in Section 3.3.1

with results shown in sections 3.3.2 and 3.3.3. A discussion of the algorithm

and model is given in Section 3.4 and an approximate Bayesian solution based

on the MMSE super-resolution algorithm is presented in Section 3.5.

3.1.2 Scattering Model

The complex scattered field f of a scene is generated according to a scattering

model p(f |σ), where σ is a multi-valued variable representing the underlying

88



CHAPTER 3. BAYESIAN SUPER-RESOLUTION 3.1. INTRODUCTION

radar cross section (RCS) of the scene. It is assumed here that within each

RCS element σk there are many scattering surfaces which each give rise to a

reflected radio wave. These waves combine coherently to produce a single wave

represented by an element of complex scattered field fk. If there are a sufficient

number of waves in an element then the central limit theorem applies and we

may assume Gaussian statistics. This is an alternative formulation of the well-

known case 1 Swerling fluctuation models [136]. Other more general models,

such as the gamma distribution are possible but these are not discussed here.

Following Luttrell [88], for K cross-section elements

p(f |σ) =
K∏

k=1

exp(−|fk|2/σk)

πσk

=
exp(−fHΣ−1f)

det(πΣ)
, (3.1)

where Σ is a diagonal matrix with real, positive elements σk. The vector con-

taining these diagonal elements is denoted by σ. Note that f is a complex

vector, which results in the unusual normalization in equation (3.1). This is

explained in detail in [113].

The variable σk is a measure of target cross-section per unit area and is there-

fore dimensionless. In the literature this is referred to as sigma zero, or σ0 and is

more usually associated with radar clutter [136]. The electric field correspond-

ing to position k in the scene is the time varying quantity Re{fk exp(2πifct)},
where fc is the centre frequency of the scattered waveform, t denotes time, and

Re{z} denotes taking the real part of a complex number z. Therefore the com-

plex quantity fk is a phasor representation of the signal. The SI unit of the

complex electric field fk is V m−1. However, in simulations the complex field

has been treated as a dimensionless quantity as the specific units are irrelevant

to the results. Other variables related to the complex field, such as the point

spread function, complex image, and noise, are also treated as dimensionless

quantities in simulations for the same reason.

The above Gaussian model for scattering allows a wide variety of complex-

field values at each element position for a given value of RCS. Under this model,

each time a target is imaged by a radar, a different realization of complex-field

values arises. Thus this model allows for fluctuations in the target signature

from image to image. This is sometimes known as multiplicative speckle noise.
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In this scenario it can be seen that σ is a more fundamental descriptor of a

target than f .

3.1.3 Imaging Model

The imaging model used here is the same as that introduced in Section 2.2,

whereby the image is considered as the convolution of a point spread function

with a high-resolution target representation and the addition of Gaussian noise.

However, under a Bayesian model all information must be represented by a

probability density function. In this case, the PDF of the image g is dependent

on the target representation f and is written as p(g|f). The imaging model is

then defined as

p(g|f) =
exp

[−(g −Tf)HN−1(g −Tf)
]

det(πN)
, (3.2)

where the terms are defined in Section 2.2. It is important to note here that the

numerical Bayesian technique described in the following sections is able to cope

with non-linear and non-Gaussian systems by replacing equation (3.2) with the

appropriate form.

3.1.4 Inverse Scattered Field Problems and

Inverse Cross-Section Problems

In the preceding sections we saw there are two variables that describe the target

– the complex scattered field f and the underlying cross section σ. The exis-

tence of the two variables suggests there are two problems we could attempt

to solve, known as the inverse scattered field and inverse cross-section prob-

lems [89]. The inverse scattered field problem consists of attempting to recover

f from g. In the Bayesian context this is done by obtaining an estimate of

p(f |g). In super-resolution theory the inverse scattered field problem is almost

universally favoured over the inverse cross-section problem, which instead con-

sists of attempting to recover σ from g [89]. In the Bayesian context this done

by obtaining an estimate of p(σ|g). In this case σ could be considered to be

a hyper-parameter of a hierarchical model [50]. It has been argued in [89] that

since σ is a more fundamental descriptor of a target than f it should be the
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inverse cross-section problem that is studied. In this thesis we examine both

problems from a Bayesian viewpoint.

3.2 Complex-Field Recovery

3.2.1 Analytic Bayesian Solution

With respect to the inverse scattered field problem, the Bayesian approach

to super-resolution is a probabilistic way of modeling uncertainty in the high-

resolution target representation f . It is possible that different combinations

of f and noise could give rise to the same image due to the interaction of

several elements of f in a resolution width. This uncertainty is described by

the probability density p(f |g) of the target representation, conditional on the

image under consideration. Bayes’ theorem gives the density as

p(f |g) =
p(g|f)p(f)

p(g)
. (3.3)

If p(f) is a zero-mean multivariate Gaussian defined by

p(f) =
exp(−fHW−1f)

det(πW)
, (3.4)

then under this model it is possible to calculate the density p(f |g) analytically.

The solution is also a multivariate Gaussian distribution and is given by [88] as

p(f |g) =
exp

[−(f − f̄)HC−1(f − f̄)
]

det(πC)
, (3.5)

where

f̄ = CTHN−1g (3.6)

is the mean of the posterior distribution and

C−1 = W−1 + THN−1T (3.7)

is the inverse covariance matrix. With algebraic manipulation the mean can

be re-written as f̄ = WTH(TWTH + N)−1g, which is in fact the same as the

MMSE solution given in Section 2.2. However, the Bayesian solution provides

more information than MMSE in the form of the covariance matrix, which

determines uncertainty in the recovered scene.
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3.2.2 Monte Carlo Algorithm

In general, for a non-Gaussian prior distribution or more complicated models, it

will not be possible to derive a simple analytic solution similar to that of the pre-

vious section. Calculation of the normalization constant p(g) for the posterior

distribution in equation (3.3) is usually not tractable. For most physical and

processing models, statistics of interest such as the mean and covariance will

not be available analytically either. In such cases, rather than making simplifi-

cations to allow analytic inference on the posterior distribution, a full Bayesian

approach to the problem is maintained by drawing samples from the posterior

distribution p(f |g). All inferences can then be made through consideration of

these samples. In most circumstances it is not possible to sample directly from

the posterior distribution, therefore a Markov chain Monte Carlo (MCMC) al-

gorithm is used. The particular algorithm used here is the Metropolis-Hastings

(M-H) algorithm [24]. Note that for the Gaussian imaging model it is unnec-

essary to use this sampling approach as the analytic solution has already been

found – see equation (3.5). However, the analytic solution allows a comparison

with the MCMC solution and aids understanding of the M-H algorithm output.

In subsequent sections a more advanced scattering and imaging model will be

used where an analytic solution is not available.

The Metropolis-Hastings algorithm is an iterative method for generating

samples of a probability distribution. For the case considered here the samples

represent the probability density p(f |g). One advantage of the M-H algorithm

is that it is necessary only to know the shape of the distribution p(f |g) – there

is no need to calculate the normalizing factor p(g). The likelihood of the image

p(g|f) was given by equation (3.2). With choice of a suitable priors for p(f) the

quantity of interest is then

π(f |g) = p(g|f)p(f). (3.8)

Each element of the vector f is considered to be a separate variable, although

element values may be correlated. At each iteration of the algorithm it is

possible to update one variable at a time or all variables in one go. Here we

update each element of f in turn. During the update at the ith iteration, a

proposed new sample for a single element of f is generated from a proposal

distribution q(f i+1|f i). The proposal distribution may take a wide variety of

92



CHAPTER 3. BAYESIAN SUPER-RESOLUTION 3.2. COMPLEX-FIELD RECOVERY

forms, each having their advantages and disadvantages as discussed in [24].

The proposed sample is accepted with a probability α(f i, f i+1), where

α(f i, f i+1) = min

[
π(f i+1|g)q(f i|f i+1)

π(f i|g)q(f i+1|f i)
, 1

]
. (3.9)

For ease of notation in this equation we have omitted the dependence on

field element number so that while updating the jth element of f we have in

fact

f i =
[
f i+1

1 , f i+1
2 , ..., f i+1

j−1, f
i
j , f

i
j+1, ..., f

i
m

]T
(3.10)

and

f i+1 =
[
f i+1

1 , f i+1
2 , ..., f i+1

j−1, f
i+1
j , f i

j+1, ..., f
i
m

]T
. (3.11)

In other words, at each step a new sample is generated; if it is more likely

(including the effect of the proposal distribution) than the current sample it is

always accepted but less likely samples are also accepted with a certain proba-

bility. This avoids the problem of getting trapped in local maxima – the purpose

of the algorithm is to explore the entire distribution rather than find a single

optimal value. If the proposed sample is rejected then the current sample is

used in the next iteration step.

Initial samples generated depend on the starting position and must be dis-

carded if they are not reasonable values of the distribution. These samples form

what is known as the burn-in period. The remaining samples are distributed

from p(f |g) as required.

The M-H algorithm tends to produce time-correlated samples. This happens

because of two reasons. The first is that only a certain percentage of new samples

are accepted at each iteration stage. If a new sample is not accepted then the

old one is retained, meaning that it is possible to have several samples in a

row of exactly the same value. The second reason is that often a random walk

proposal distribution is used – new samples are proposed as a step from the

current sample according to a distribution such as the uniform or Gaussian

distributions. If these steps are small then successive samples will have similar

values. Note that it is not possible to increase the step size indefinitely to

decorrelate the samples because proposed samples far from the current one

often have a low probability of acceptance. Thus the random walk step size

must be chosen as a compromise between a low acceptance rate and a high

correlation between successive incrementally different sample values.
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The existence of correlated samples in the M-H algorithm output need not

necessarily be a problem. Indeed, correlation is irrelevant when calculating

statistics such as the sample mean and variance. However, if samples are highly

correlated then a large number of samples are required to be collected to ensure

the samples accurately represent the whole distribution space. A large number

of samples increases storage requirements and places an extra burden on post-

processing of the M-H algorithm output. Therefore a commonly used technique

is to save only a subset of the samples. With this technique the first sample

is saved and a certain number of subsequent samples are calculated but not

saved before saving another sample. The number of samples between those

saved is known as the “de-correlation gap”. The process is repeated throughout

the algorithm run-time, alternately saving one sample and calculating several

others without being saved. The result is a set of samples that have a lower

correlation than those produced by the basic algorithm. The de-correlation gap

is set as a compromise between longer run-times required to generate a given

number of samples and the need to adequately explore the distribution space

with a given number of samples.

Note that it has been assumed here the variance of the thermal noise is

known. If desired, it is possible to include the noise variance as an additional

unknown parameter to be estimated [27].

3.2.3 Results for a High Signal-to-Noise Ratio

A demonstration of the Metropolis-Hastings algorithm for field recovery is now

given. A simulated scene of two point targets embedded in weak uncorrelated

clutter at a signal-to-clutter ratio of 20dB is shown in Figure 3.1a. The two

targets are in phase with a phase of 45o with respect to an arbitrary reference.

The clutter has random phase. A point spread function was applied to the scene

and thermal noise added at an SNR of 50 dB. The resulting image is shown in

Figure 3.1b. The point spread function used was the modified sinc function,

previously used in [88], with a θ value of 0.1. This function will be discussed in

more detail in Chapter 4 and is also analyzed in Appendix C.

The noisy image, point spread function, and SNR were used as inputs to the

M-H algorithm. The detailed processing parameters used in the algorithm are

shown in Table 3.1. The burn-in period has been set to zero for this example
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Figure 3.1: Field recovery set-up with arbitrary position units. (a) Power of

the true-scene complex field. (b) Low-resolution noisy image with an SNR of

50 dB. Note that at this high SNR the noiseless and noisy images are visually

almost indistinguishable.

to show the effect of starting position on the output samples. The random

walk step size was chosen to given a sample acceptance rate of approximately

25%, which is recommended in [24] for high-dimensional problems. The prior

standard deviation was set at a large value to simulate a lack of detailed prior

knowledge about the scene.

The output of the M-H algorithm is a series of samples that represent the

probability distribution of the complex recovered field. There are 17 range

index positions in this example and each position holds a complex number.

Therefore there are a total of 34 variables that describe the distribution. Since

it is impossible to display all information about all 34 variables simultaneously

we examine either one variable at a time or small groups of variables.

Figure 3.2a shows the sample time series of the real part of range index

7 as generated by the M-H algorithm. This position relates to the left hand

scatterer in Figure 3.1a. Under ideal conditions the value we would expect for

this variable is
√

1000/2 ≈ 22.4 field units. We see from the figure that the

samples rapidly increase from zero to the expected value and thereafter settle

into a random time-correlated pattern with the mean approximately equal to
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Number of saved samples 10000

Burn-in period 0

De-correlation gap 10

Proposal distribution Uniform random walk

Random walk step size 0.5

Prior distribution p(f) Independent Gaussian

Prior mean 0

Prior standard deviation
√

1000

Sample start value 0

Table 3.1: Table of parameters used by the M-H algorithm for field recovery.

22.4. A zoomed-in graph of the first 500 samples is shown in Figure 3.2b. It

can be seen from this graph that the required burn-in time is approximately

100 de-correlated samples. In those first 100 samples the values are all below 20

field units and are due to the algorithm having been initialized with values of

zero. The remaining samples after the first 100 could reasonably be considered

to be part of the final distribution.

The times series graph for the imaginary part of range index 7 is similar

to that of the real part. A 2D plot displaying the sample-to-sample trajectory

of the real and imaginary parts of the samples for range index 7 is shown in

Figure 3.3a, an Argand diagram. In this plot the burn-in samples are apparent

in the random walk trajectory from zero to the area of high probability density

around 22.4 + 22.4i. The majority of samples are in the area of high density

as expected by design of the algorithm. The area of high density is circular in

shape due to the assumption of second-order circularity as explained in Section

2.3.

An Argand diagram for range indices 10 and 11 is shown in Figure 3.3b.

In this diagram the sample values are plotted instead of the sample-to-sample

trajectory. Range index 11 corresponds to the right hand scatterer in Figure

3.1a. The sample values of this scatterer roughly follow the same distribution

as those of the scatterer at position 7. This is because in the true scene the

two scatterers have exactly the same magnitude and phase. Any difference

in the sample distribution is due to noise added during the generation of the
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Figure 3.2: Time series of samples generated by the M-H algorithm using a

decorrelation gap of 10 samples and an SNR of 50 dB. (a) Real part time series

for range index 7 of the true scene. (b) Real part time series of range index 7,

zoomed-in to start of series.

image. Range index 10 corresponds to a low-magnitude clutter sample. This

is apparent in Figure 3.3b where the samples are clustered near to zero. Note

that no burn-in period was required for range index 10 as all samples could

be considered to be part of the final distribution. However, when discarding

burn-in samples it is usual for all variables to have the same number of samples

discarded. As a result, the burn-in period is determined by the variables that

take longest to reach high density areas – range indices 7 and 11 in this case.

The final Argand diagrams for this example are shown in Figures 3.3c and

3.3d and relate to range indices 8 and 9 respectively. The sample distribution

for position 8 is similar to that of position 10 in terms of both the mean and

variance. The distribution for position 9 has a larger variance than all other

positions. – the algorithm has determined that large changes to the complex-

field value at this position have a small effect on the final image.

It would be possible to generate either time series graphs or Argand diagrams

relating to the other positions in the scene. However, since those all relate to

clutter, and their distributions are similar to those for positions 8 and 10, no

further insight is gained by examining those graphs. However, it is of interest to
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Figure 3.3: Argand diagram of sample values for various range indices as output

by the M-H algorithm with an input SNR of 50 dB.
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Figure 3.4: Recovered field power range profile, input SNR 50 dB. The variance

at each position is low enough that it is indistinguishable from zero in the graph.

look at a range profile representative of the samples. Figure 3.4 shows the mean

power range profile and the variance profile. The mean power profile is formed

by calculating the mean of the complex sample values for each range index and

using the squared magnitude of this value. The variance is the average squared

distance of the samples from the mean. Ideally the mean power range profile

should be similar to the true scene as shown in Figure 3.1a. For the high SNR

of 50 dB used in this example the profile is indeed almost identical to the true

scene. The variance has a maximum of about 10 units at position 9 and is

visually hard to distinguish from zero in Figure 3.4.

3.2.4 Results for a Low Signal-to-Noise Ratio

We now analyze performance of the M-H algorithm with the same scene but with

a lower SNR of 20 dB to see the effect of additional noise. All the parameters

used in this example are the same as those used in the 50 dB example except

for the noise level and the proposal distribution step length, which was set to 3

field units in order to achieve a 25% acceptance rate at this SNR. The simulated

scene is shown in Figure 3.5a and the low-resolution noisy image in Figure 3.5b.

Figure 3.6a shows the sample time series of the real part of range index

7 as generated by the M-H algorithm. This position relates to the left hand

scatterer in Figure 3.5a. As before, the value we would expect for this variable
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Figure 3.5: Field recovery set-up with arbitrary position units. (a) Power of

the true-scene complex field. (b) Low-resolution noisy image with an SNR of

20 dB.

is
√

1000/2 ≈ 22.4 field units. Again, we see from the figure that the samples

rapidly move away from zero and thereafter settle into a random time-correlated

pattern. A zoomed-in graph of the first 500 samples is shown in Figure 3.6b. It

is apparent from both these figures that although the mean is similar to that in

the high SNR example, the variance is much larger. This should be expected

because a larger amount of noise results in a greater uncertainty in parameter

values. The Argand diagram of the sample trajectories for range index 7 is

shown in Figure 3.7a, where the increased variance is apparent for both the real

and imaginary parts.

An Argand diagram for range indices 10 and 11 is shown in Figure 3.7b.

Range index 11 corresponds to the right hand scatterer in Figure 3.5a. The

imaginary sample values of this scatterer roughly follow the same distribution

as those of the scatterer at position 7. However, the real parts of the samples

at position 11 are concentrated around a lower value of approximately 5 field

units instead of 22.4. The fact that the mean of the samples is not very close to

the true value is due to the high levels of noise in the image. The true value is

at the edge of the region of high density represented by the samples. A closer

examination of the range index 7 distribution in Figure 3.7a also shows that
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Figure 3.6: Time series of samples generated by the M-H algorithm using a

decorrelation gap of 10 samples and an SNR of 20 dB. (a) Real part time series

for range index 7 of the true scene. (b) Real part time series of range index 7,

zoomed-in to start of series.

both the real and imaginary parts are slightly over-estimated. Range index 10

corresponds to a low-magnitude clutter sample. This is apparent in Figure 3.7b

where the samples are clustered near to zero. However, as with indices 7 and

11 there is a certain amount of bias in the location of the sample mean.

The final Argand diagrams for this example are shown in Figures 3.7c and

3.7d and relate to range indices 8 and 9 respectively. The sample distribution

for position 8 is similar to that of position 10 but the bias is in a different

direction. As in the high SNR case, the distribution for position 9 has a large

variance, which is even larger here due to the additional noise. Also note that

coverage of the high-density complex area for position 9 is somewhat patchy.

This indicates an insufficient number of samples have been collected to represent

the probability distribution. In practice, this could be detected and corrected

for by collecting samples until a more even coverage is available.

Figure 3.8 shows the mean power profile and variance. It can be seen that,

as opposed to the high SNR case, the profile is somewhat different from the

true scene shown in Figure 3.5a. The existence of the two targets at positions 7

and 11 have been correctly identified and their power is in the correct order of
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Figure 3.7: Argand diagram for various range indices of sample values as output

by the M-H algorithm with an input SNR of 20 dB.
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Figure 3.8: Recovered field power range profile, input SNR 20 dB.

magnitude. However, the mean profile demonstrates the bias in complex-field

estimates introduced by the addition of noise in the image. The sample values

at positions 4, 5 and 6 all have high mean powers, when ideally they should be

close to zero. Not much can be done to alleviate this problem – the extra noise

places a limit on super-resolution performance. The variance profile shows the

additional uncertainty associated with the central positions when compared to

the edge positions.

3.2.5 Comparison of Analytic and Monte Carlo Results

In the previous two sections we saw results of the Monte Carlo-based M-H

algorithm for high and low SNRs. Here we present the analytic solution of the

low-SNR scenario and compare it to the Monte Carlo result. The noisy image

shown in Figure 3.5b was used as the input to the analytic solution given in

equations (3.5)-(3.7). The prior covariance matrix used was the same as that

used for the M-H algorithm – a diagonal matrix with all elements set to 1000.

The power range profile calculated from the mean of the analytic solution

is shown in Figure 3.9a. This can be compared directly with the mean power

range profile determined from the Monte Carlo samples, shown in Figure 3.8. It

can be seen that the analytic solution closely matches the Monte Carlo solution.

Also shown in Figure 3.9a is the analytically-derived variance as a function of
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Figure 3.9: Analytic Bayesian solution. (a) Mean range profile. (b) Real part

of the covariance matrix.
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Figure 3.10: Comparison of sample values output by the M-H algorithm, and

covariance ellipses from the analytic Bayesian solution.

position. Most positions have a low-to-medium variance but the variance of the

centre position is very high. This was seen earlier in the spread of samples for

position 9 as output by the Monte Carlo algorithm.

To analyze all information about uncertainty in the recovered scene the full

covariance must be examined. A graphical representation of the real part of this

matrix is shown in Figure 3.9b. The variance graph in Figure 3.9a is a plot of

the diagonal values of this matrix. Most values of the matrix are near to zero,

which implies a low correlation between the scene values at widely separated

parts of the image. However, there is a strong negative correlation between

adjacent positions, evident from the dark squares on the diagonal situated one

position away from the main diagonal. This is to be expected because the effect

of two adjacent scene values on the image tends to get blurred out by the point

spread function. Thus when either the first scene value is high and the second

is low or vice versa a similar image will result. However, if both scene values

are high or low the image would look different. The negative correlation is

especially strong between the central position and its two adjacent positions.

This provides another explanation of why the variance of the central position

is so high: whether the central value is high or low, its effect is minimized

by changes in the value of adjacent positions that result in a modelled image
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consistent with the measured input image, within an error defined by the SNR.

The above analysis is highly detailed given that the scene considered simply

contains two ideal scatterers embedded in uncorrelated clutter. This has only

been possible through the use of Bayesian statistics. Other super-resolution

algorithms give a single solution to the problem and do not allow uncertainty

in the recovered scene to be taken into account. The discovery of correlation

between adjacent positions is a particularly useful result because this explains

why there are many possible solutions to the super-resolution problem con-

sistent with noisy data. While the existence of correlations could have been

conjectured from a qualitative analysis, the Bayesian approach has given pre-

cise information as to which values are correlated and by how much. When

super-resolution is used without a further specific application, this information

is useful in determining why the results are good or bad for a certain scene

and SNR. However, the full value of the Bayesian approach is achieved when

a further stage of processing, such as automatic target recognition, is used af-

ter super-resolution. In this situation uncertainty in the scene can be used as a

numerical input to the next processing stage. This could be crucial in a decision-

making process, where existence of uncertainty changes the decision boundary.

The process of combining super-resolution and automatic target recognition is

covered in Chapter 5.

A graphical comparison of the distribution given by the analytic and Monte

Carlo Bayesian solutions for three positional values is shown in Figure 3.10. In

each diagram the analytic result is represented by a square symbol plotted at

the mean of the distribution and an ellipse representing the covariance between

the two variables displayed. The size of the ellipse is selected such that its semi-

major and semi-minor axes are equal to one standard deviation in a direction

along each axis. The major axis of the ellipse is oriented along the line of

highest correlation. The Monte Carlo result is represented as before by the

sample values output by the M-H algorithm. In Figure 3.10a the diagram

shows the real and imaginary parts of the recovered scene at positions 10 and

11. For both positions there is a good agreement between the location and

spread as determined by the two methods. Figure 3.10b shows the correlation

between the real part of the recovered scene at positions 9 and 10. Agreement

between the Monte Carlo and analytic results in both the direction and degree
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of correlation is also very good. The main difference between the two methods

is that the samples do not fully cover the extreme tails of the distribution so the

variance calculated from samples is slightly lower than the analytically derived

result.

The analytic solution is relatively easy to implement because it consists

simply of calculating a vector and a matrix from other quantities using addition,

multiplication and the matrix inverse. The Metropolis-Hastings algorithm is

somewhat more difficult to implement due to its additional complexity. The

fact that the super-resolution results generated by the two methods match so

well is an indication that the M-H algorithm has been implemented correctly.

The two scenarios discussed thus far have demonstrated basic operation of

the Monte Carlo-based M-H algorithm where an analytic solution was available

for comparison. In fact for those situations it is unnecessary to use the more

computationally intensive M-H algorithm. The next section describes a scene

model where an analytic solution is not available and there is no choice other

than to use a Monte Carlo algorithm.

3.3 Cross-Section Recovery

3.3.1 Monte Carlo Algorithm

In Section 3.2.1 it was possible to derive an analytic expression for p(f |g).

Given that σ is a more fundamental descriptor of a target than f , it would be

desirable to calculate p(σ|g) analytically. However, the additional complication

of the scattering model makes this problem intractable even with basic forms

for the prior p(σ), such as the multivariate uniform or Gaussian distributions.

Indeed, a Gaussian prior distribution for p(σ) would be inappropriate because

the elements of σ can take only positive values. Since an analytic solution for

p(σ|g) is unavailable an algorithm such as the Metropolis-Hastings algorithm

introduced in Section 3.2.2 must be used to obtain a numerical result. The M-H

algorithm for cross-section recovery is now presented. This is a modified version

of the algorithm for field recovery that takes into account the scattering model.

The Bayesian model describes uncertainty in the cross section σ by the
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conditional probability density p(σ|g). Bayes’ theorem gives the density as

p(σ|g) =
p(g|σ)p(σ)

p(g)
. (3.12)

The likelihood of the image is given by

p(g|σ) =

∫
p(g|f ,σ)p(f |σ) df

=

∫
p(g|f)p(f |σ) df , (3.13)

where we have noted that g does not depend directly on σ. Using the scattering

model p(f |σ) from equation (3.1) and the imaging model p(g|f) from equation

(3.2) this can be shown to be [88]

p(g|σ) =
exp(−gHM−1g)

det(πM)
, (3.14)

where

M ≡ TΣTH + N, (3.15)

and Σ = diag(σ). With choice of a suitable prior p(σ) for the cross section the

quantity of interest is then

π(σ|g) = p(g|σ)p(σ). (3.16)

As with the field recovery algorithm, at each iteration we update each ele-

ment of σ in turn. During the update at the ith iteration, a proposed new sam-

ple for a single cross-section element is generated from a proposal distribution

q(σi+1|σi). The proposed sample is accepted with a probability α(σi,σi+1),

where

α(σi, σi+1) = min

[
π(σi+1|g)q(σi|σi+1)

π(σi|g)q(σi+1|σi)
, 1

]
. (3.17)

For ease of notation in this equation we have again omitted the dependence

on cross-section element number so that while updating the jth element of σ

we have in fact

σi =
[
σi+1

1 , σi+1
2 , ..., σi+1

j−1, σ
i
j, σ

i
j+1, ..., σ

i
m

]T
(3.18)

and

σi+1 =
[
σi+1

1 , σi+1
2 , ..., σi+1

j−1, σ
i+1
j , σi

j+1, ..., σ
i
m

]T
. (3.19)

Once the burn-in samples have been removed, remaining samples are dis-

tributed from p(σ|g) as required.
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3.3.2 Results for a High Signal-to-Noise Ratio

A demonstration of the Metropolis-Hastings algorithm for RCS recovery is now

given. The simulated scene and image used in this demonstration are identical

to those introduced in Section 3.2.3. Figure 3.1a shows the scene and Figure

3.1b the noisy low-resolution image, which has an SNR of 50 dB. The detailed

processing parameters used in the M-H algorithm are shown in Table 3.2. The

choice of prior in this example was difficult. If a uniform prior p(σk) ∝ 1 is used,

it is not possible to normalize the posterior distribution. This is also the case for

the scale-parameter-type prior p(σk) ∝ 1/σk because σ is part of a hierarchical

model [50]. A compromise between these two was to use an exponential prior.

Figure 3.11 shows the sample time series for range index 7, which corre-

sponds to the left hand scatterer of Figure 3.1a. The immediately noticeable

difference between this graph and the equivalent one for field recovery (Fig-

ure 3.2a) is that there is a lot more variation in the RCS graph than the field

graph. Although many samples are near the true RCS value of 1000, there are

a significant number of major variations from this value.

It is more instructive to examine the histogram of the sample series, which

is shown in Figure 3.12a. Here we more clearly see the distribution of samples is

indeed concentrated near a value of 1000 and also that the distribution is skewed

to the right. According to the distribution, there is a very low probability the

RCS for this range index takes a value near zero. This is to be expected since a

scatterer exists at this position. Ideally, the peak of the distribution would be

very near to the true value of 1000, especially for this high signal-to-noise ratio.

However, the position of the peak has been biased to the left due to use of the

exponential function as the prior probability density function. Nevertheless, the

bias is not huge and a large proportion of the distribution is near the true value.

The histogram also reveals a significant tail is present in the RCS distribu-

tion. This exists because of the nature of the Gaussian scattering model in-

troduced in Section 3.1.2. According to the model, the scattered complex field

of a target at a particular position on the target could have a low value when

imaged even if the underlying RCS is high, because of multiplicative Gaussian

speckle. Conversely, if it is determined by the M-H super-resolution algorithm

that the target has a low-magnitude scattered field at a certain position, it is

not known whether this is because the underlying RCS is low or the underlying
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Number of saved samples 10000

Burn-in period 0

De-correlation gap 10

Proposal distribution Uniform random walk

Random walk step size 0.5

Prior distribution p(σ) Independent negative exponential

Prior mean 1000

Sample start value 0

Table 3.2: Table of parameters used by the M-H algorithm for RCS recovery.

RCS is high and speckle caused destructive interference in this particular in-

stance. Thus high values of RCS have a significant probability even if the field

magnitude is relatively low.

The histogram of the RCS for range index 8, which corresponds to a low-

magnitude clutter sample, is shown in Figure 3.12b. The shape of this histogram

is markedly different to that of range index 7. The peak is at an RCS value

of zero and the tail rapidly drops off to give a low probability for high RCS

values. This is a good result – the algorithm has determined it is unlikely a

high-magnitude scatterer exists at this position. The histogram of the RCS for

range index 9, which corresponds to another low-magnitude clutter sample, is

shown in Figure 3.12c. This is similar in shape to that of range index 8 as are

the histograms of all the other clutter samples, not shown here to save space.

The final histogram for this example is shown in Figure 3.12d and corre-

sponds to the second scatterer situated at range index 11. This histogram is

similar to that of the first scatterer at range index 7 since they both have a true

RCS value of 1000 units. Thus all comments about the histogram for the first

scatterer apply to the second.

The mean and MAP estimated range profiles calculated from the M-H sam-

ples are shown in Figure 3.13a. The mean profile is greater in magnitude than

the true profile at every position of the profile. This is because the distribution

of the RCS is skewed to the right. In fact, for a skewed distribution such as

this it could be considered inappropriate to use the mean profile as an estimate

of the scene. The MAP profile more closely matches the shape of the true
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Figure 3.11: Time series of samples for range index 7 as generated by the M-H

algorithm using a decorrelation gap of 10 and an input SNR of 50 dB.

scene but the bias in the estimate of the RCS of the two scatterers introduced

by the exponential prior distribution results in a slightly low estimate for the

magnitude for those scatterers. However, overall the MAP estimate is a good

representation of the scene.

For comparison, the standard deviation of the range profile is shown with

the mean profile in Figure 3.13b. In this context the standard deviation of

RCS is equivalent to the variance of the recovered field, because units of RCS

are proportional to the square of the field magnitude. However, the standard

deviation of RCS follows a different pattern to the equivalent field variance. We

recall that the field variance did not depend on the true scene and the variance of

the middle position was higher than all other positions. In contrast, due to the

skewed distribution of RCS, the standard deviation of RCS does depend on the

true scene, being higher at positions where there are high-magnitude scatterers1.

1One exception is at range index 5, where there is a large standard deviation even though

the RCS at this position should be small. An explanation is that in skewed distributions the

standard deviation estimate can be greatly affected by a few high-magnitude samples whose

large distance from the mean is squared in the calculation, giving them an undue high weight.
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(a) Range Index 7
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(b) Range Index 8
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(c) Range Index 9

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x 10

−3

σ
11

p
( 

σ
1

1
 )

(d) Range Index 11

Figure 3.12: Histogram of samples for various range indices, generated by the

M-H algorithm with an input SNR of 50 dB.
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(a) Mean and MAP
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(b) Mean and standard deviation

Figure 3.13: Range profile representations calculated from samples, with an

input SNR of 50 dB.
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Figure 3.14: Sample covariance matrix.
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Figure 3.15: Distribution of samples for range indices 9 and 10.
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The fact that the shape of the standard deviation of RCS is different to that of

the field variance shows that the uncertainty in RCS dominates uncertainty in

the field distribution.

The sample covariance matrix is shown in Figure 3.14. The standard de-

viation of RCS discussed in the previous paragraph is the square root of the

main-diagonal values of this matrix. In contrast to the field covariance matrix,

the RCS covariance matrix has little correlation between range indices, even

those at adjacent positions. Again, this is because the large uncertainty in the

RCS dominates uncertainty in the field distribution and has removed correla-

tions. A graphical demonstration of this is shown in Figure 3.15, where the

sample values of range indices 9 and 10 are plotted against each other. We

clearly see the distribution is concentrated at a value of zero for both indices

and there is no correlation between the indices.

3.3.3 Results for a Low Signal-to-Noise Ratio

A demonstration of the Metropolis-Hastings algorithm for RCS recovery at a

lower SNR of 20 dB is now given. The simulated scene and image used in this

demonstration are identical to those introduced in Section 3.2.4. Figure 3.5a

shows the scene and Figure 3.5b the noisy low-resolution image. The detailed

processing parameters used in the M-H algorithm are the same as those used in

the high SNR case and are shown in Table 3.2.

Figure 3.16 shows the sample time series for range index 7, the position

of the first scatterer. The corresponding histogram is shown in Figure 3.17a.

Compared to the high SNR example, this distribution is slightly more skewed

to the right, with a larger variation in RCS values. This is a result of the extra

uncertainty introduced by the additional noise.

Figure 3.17b shows the histogram for range index 8, a position correspond-

ing to low-magnitude clutter. The difference between this histogram and the

equivalent high-SNR histogram in Figure 3.12b is more marked than the differ-

ence between the scatterer histograms of range index 7. In the low-SNR case

the extra noise has caused significant additional uncertainty in the RCS. This

is because the SNR of 20 dB is the same as the signal-to-clutter ratio and the

algorithm has difficulty in determining whether high magnitude values are due

to noise or clutter. Indeed at very low SNRs, the image gives very little new
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Figure 3.16: Time series of samples for range index 7 as generated by the M-H

algorithm using a decorrelation gap of 10 and an input SNR of 20 dB.

information and the posterior distribution tends towards the prior distribution,

which in this case has been set to the negative exponential function. Figure

3.17c shows the histogram for range index 9, another clutter sample. Here

the distribution is wider than that for range index 8 and is closer to the prior

distribution.

The final histogram for this example, corresponding to the second scatterer

at range index 11, is shown in Figure 3.17d. This histogram is shifted to the

left a little compared to that of the first scatterer at range index 7. This

result is in line with that of the 20 dB SNR field-recovery example where the

second scatterer was determined to have a lower magnitude than the first for

this particular noise realization. Thus bias in the scene estimate introduced by

noise is present when recovering the RCS as well as the complex field.

The mean and MAP estimated range profiles are shown in Figure 3.18a. The

effect of a skewed RCS distribution combined with higher noise levels causing

bias and an increase in uncertainty, are apparent in the distorted mean profile.

Although the two scatterers at positions 7 and 11 have the highest magnitude,
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(a) Range Index 7
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(b) Range Index 8
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(c) Range Index 9
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(d) Range Index 11

Figure 3.17: Histogram of samples for various range indices, generated by the

M-H algorithm with an input SNR of 20 dB.
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the mean estimated RCS at the clutter positions is relatively high. Looking

at the more appropriate MAP profile the clutter levels are not as high as in

the mean case both in absolute terms and relative to the magnitude of the

scatterers. A detection algorithm using the MAP profile should be able to

detect the scatterers without too high a false alarm rate.

The standard deviation of the range profile is shown in Figure 3.18b along

with the mean. The skewed distribution generally results in high standard

deviations where the mean is high. The covariance matrix is shown in Figure

3.19. As with the high-SNR case there is little correlation between any of the

range indices – even adjacent ones. This is graphically demonstrated in Figure

3.20, where the sample RCS values at range indices 9 and 10 are plotted against

each other. There is no discernable correlation.

3.4 Discussion

3.4.1 Algorithm Complexity

The MCMC super-resolution algorithm provides a useful representation of the

probability distribution of the RCS σ. However, this comes at a computational

cost. At the heart of the algorithm is the calculation of the matrix inverse

M−1 in equation 3.14. This matrix must be recalculated at every iteration

of the algorithm. It is well known that calculation of the inverse of a matrix

with m×m elements is an operation of order m3 [116]. Furthermore, with the

version of the algorithm that updates a single element of RCS per iteration this

operation is carried out for each of the m elements of RCS resulting in a total

computation time of order m4. The computation time is also proportional to

the number of samples generated, which has to be a large number when dealing

with high-dimensional data such as radar data. While it would be possible to

reduce the order of the algorithm to m3 by updating all RCS elements in one go,

a smaller update step in the proposal distribution would be required to avoid

rejecting too many samples. This results in highly correlated RCS values from

sample to sample and a greater number of samples would have to be collected

to completely explore the distribution space. The increase in computation time

collecting extra samples more than offsets the reduction due to the all-in-one

update. Thus it appears that no fundamental speed increase is possible for
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Figure 3.18: Range profile representations calculated from samples, with an

input SNR of 20 dB.
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Figure 3.19: Sample covariance matrix.
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Figure 3.20: Distribution of samples for range indices 9 and 10.
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the basic algorithm. The slowness of the MCMC algorithm means that at

best it could be used for small range profiles. It would be impractical to use

the algorithm on two-dimensional images as the larger number of pixels would

result in very long computation times limiting the usefulness of the procedure.

The algorithm for field recovery also requires the calculation of two inverse

matrices: N−1 and W−1 in equations 3.2 and 3.4 respectively. However, since

these matrices do not depend on the current value of the complex field they

only need to be calculated once at the beginning of the algorithm. Moreover,

both matrices are usually diagonal in a practical implementation, hence the

inverse calculation is of order m and does not make a significant contribution

to the overall run-time of the algorithm. The largest contribution arises from

the matrix-vector multiplications in equation 3.2, which are of order m2. Since

the algorithm updates each element of the complex field in turn, the total

computation time is of order m3. This makes operation of the algorithm feasible

for realistic-sized range profiles and small 2D target image chips.

Two-dimensional super-resolution requires a high amount of processing power

– if an image is NxN pixels large then the computation time is of order N6

for complex filed recovery. If the point spread function of a system is separable

into two dimensions, it may seem tempting to perform two-dimensional super-

resolution in two one-dimensional steps. This would reduce the computation

time to 2N4. However, the super-resolution process effectively adds noise in

proportion to the current amount of noise in the data. If two super-resolution

processes were applied to the data in turn, the constant of proportionality would

be squared. In practice, the resulting super-resolution output would be too noisy

to be useful.

3.4.2 Model Appropriateness

Results presented in the preceding sections demonstrated basic operation of the

MCMC Bayesian super-resolution algorithm for RCS recovery. The scattering

model was mentioned as the cause of the wide and skewed distribution of the

recovered RCS. We now discuss further ramifications of the scattering model.

In the examples given thus far the complex scattered field consisted of two

large magnitude peaks in a background of weak clutter. However, even when two

scatterers are present as defined by the RCS range profile, it is perfectly possible
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under the Gaussian scattering model that the scattered field could have a low

magnitude at all positions. If this were to be the case, both the scattered field

magnitude and RCS power profiles estimated from a low-resolution image would

have low magnitudes throughout. The skewed distribution of RCS values allows

consideration of the potential presence of scatterers but no indication would be

given as to their position. The difficulty is that estimating the RCS from a

single realization of the complex scattered field is an ill-posed inverse problem,

which exists in addition to the already-present inverse problem of determining

the high-resolution field from a low-resolution noisy image.

Although problems associated with estimating the underlying RCS have

been considered in the general radar literature [8], they appear not to have been

addressed in the super-resolution literature. For example, in a paper by Luttrell

[88], which uses the same scattering model as that used here, the example given

has two scatterers that happen to have a high-magnitude complex field at the

appropriate points. Thus when RCS recovery is performed, reasonable estimates

of the RCS are given even though in general this may not be possible.

Although it is difficult to estimate the underlying RCS from a single realiza-

tion of the complex field, if there are multiple realizations available from several

images or range profiles the estimation becomes easier. Every extra sample im-

proves RCS estimation, which may alternatively be considered to be a speckle

reduction problem. Two very simple speckle reduction techniques are avail-

able for SAR images – the polarimetric whitening filter (PWF) and multi-look

averaging. The PWF is applicable only to polarimetric SAR and uses three po-

larization channels to obtain an optimal estimate of the underlying RCS [103].

Multi-look averaging uses non-overlapping sections of range-Doppler space to

form several images of the same scene area. The average intensity of these in-

dependent images gives a speckle-reduced image because the probability distri-

bution of the intensity changes from an exponential distribution for single-look

images to a gamma distribution for multi-look images with the shape parameter

dependent on the number of looks. This process, however, results in a loss of

resolution due to the fact that smaller sections of range-Doppler space are used

to form each image [9].

It may often be the case that a fully polarimetric radar is not available or

the loss in resolution caused by multi-look averaging is unacceptable. In either
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case more advanced speckle reduction algorithms can be used. One algorithm

by Stewart et al. [141], which is cast as an image segmentation algorithm, at-

tempts to estimate the average RCS of homogeneous areas of clutter. Each

pixel in a region of clutter contributes independent information to the RCS

estimate. While this algorithm is good at segmenting clutter regions, it is not

an appropriate tool for target RCS estimation. This is because a target’s RCS

fluctuates much more rapidly in a spatial sense than clutter RCS. Thus there

seem to be no suitable candidate techniques to obtain a significant number of

independent realizations of the target’s high-resolution spatial distribution at a

particular aspect angle.

A second problem with target RCS estimation is the validity of the scat-

tering model itself. The Gaussian speckle model arises from the central limit

theorem – if a large number of scatterers are present in a single resolution cell

then these sum coherently via a random walk process to form a zero-mean cir-

cularly complex Gaussian random variable. The limit is applicable as long as

no individual scatterers dominate the sum. This model is entirely appropriate

for clutter scenes such as those containing grass, trees, or sea because there

are a large number of blades of grass, leaves, or variations in the sea surface

to produce many scatterers of similar strength in a resolution cell. However,

in man-made targets, surfaces often form dihedral or trihedral reflectors, which

have a large RCS compared to other parts of the target in a resolution cell. This

effect becomes more apparent as the resolving power of the radar increases and

the size of a resolution cell drops. In this situation the Gaussian speckle model

is no longer appropriate.

There are several candidates for a more accurate target RCS fluctuation

model. One theoretically-based model is the Rice distribution. This arises

when there is one dominant scatterer and many weak scatterers in a resolution

cell [136]. The complex distribution is a circularly complex Gaussian random

variable shifted from the origin. The magnitude of this variable follows the

Rice distribution, which has two parameters - one relating to the power of

the dominant scatterer and another relating to the average power of the weak

scatterers. Two other models for target RCS fluctuation use the two-parameter

Weibull or gamma distributions. These are empirical models that have been

found to fit well to various radar data sets [3,136,154]. The advantage of these
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models is that in general the variation in RCS is lower than that in the Gaussian

speckle model. This means that, for a given number of looks at the target, the

average RCS at each point on the target is known to a greater accuracy. The

disadvantage of the two-parameter models is the need to estimate an additional

parameter over the simpler one-parameter Gaussian speckle model. Indeed, it

is not possible to obtain estimates for both parameters of the two-parameter

models with a single realization of the target. Given that we would like to

perform super-resolution with RCS estimation using a single image, neither of

the two-parameter models seem appropriate.

3.4.3 Conclusions

We have seen that the computational cost of the super-resolution RCS recov-

ery algorithm is much higher than that of field recovery. In addition, due to

the scattering model the estimated probability distribution of the recovered

high-resolution RCS is so wide and skewed it does not provide much useful

information. Even if a more appropriate two-parameter model were used it

would not be possible to estimate the parameters using a single image. In ideal

circumstances we would like to be able to estimate the underlying RCS as it

is a more fundamental target characteristic than the scattered field. However,

given all these problems with RCS recovery a recommendation of this thesis is

to concentrate future effort on field recovery when attempting to estimate the

full probability distribution of target parameters.

3.5 MMSE Super-resolution Re-visited

3.5.1 Introduction

Since the inverse cross-section problem appears to be intractable both in terms

of computation time and its double inverse nature we concentrate on recovering

the scattered field. Previously it was shown that using a Gaussian distribution

for the complex-field prior allowed an analytic solution to the problem. Since

the MMSE algorithm generates the mean of the posterior distribution and it is

a much faster algorithm than the MCMC algorithm we now re-visit the MMSE

algorithm to see if it can be used as part of a Bayesian solution.
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3.5.2 MMSE as an Approximate Bayesian Solution

One problem in using the true Bayesian solution to complex-field recovery is

that prior knowledge of the scene is usually not well defined. This fact is the

motivation behind the iterative nature of the MMSE super-resolution algorithm,

which effectively estimates and refines the prior knowledge at each iteration.

The MMSE algorithm on its own converges towards the mean of the posterior

scene distribution. However, once the mean has been calculated via an iterative

approach the covariance can be calculated in one step. Recall that the inverse

covariance of the analytic solution for complex-field recovery is C−1 = W−1 +

THN−1T. Previously, W was a quantity that had to be defined before the

analytic solution was possible. However, since an estimate of W is available

from the last iteration of the MMSE algorithm this can be substituted into the

covariance matrix equation. The mean and covariance of the posterior scene

distribution calculated in this way are all that is needed to define the complete

Bayesian solution for complex-field super-resolution.

3.5.3 Two-dimensional Super-resolution with MMSE

All the super-resolution results presented thus far have been based on simula-

tions of one-dimensional data. We now demonstrate operation of the MMSE-T

super-resolution algorithm on example two-dimensional measured radar imagery

from the MSTAR data set. The high-resolution scene f was taken to be a 41x41

pixel image of a T-72 tank. The point spread function is based on the FFT

of a Hamming window as described in Section 2.4.5. The high-resolution and

low-resolution images relating to this setup are shown in Figure 3.21.

The low-resolution image had noise added to it with SNRs ranging from

0 dB to 50 dB. At each SNR ten noisy images were generated, the MMSE-T

algorithm was applied, and the output SNR was measured. The results of this

experiment are shown in Figure 3.22, where both the peak and mean output

SNRs are plotted against input SNR. As the input SNR increases, so does the

output SNR for both metrics. It should be noted, however, that the peak output

SNR is not directly comparable with the input SNR as they are calculated in

different ways. The information-theoretic-based mean output SNR allows a

better comparison because in general it is not possible for it to exceed the input
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(a) High-resolution image
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(b) Low-resolution image

Figure 3.21: Test imagery for the MMSE-T super-resolution algorithm.

SNR, a fact that provides an upper bound on performance.

The original and super-resolved images for the MMSE-T algorithm at an

input SNR of 50 dB are shown in Figure 3.23. It can be seen that the algorithm

has done a reasonable job of restoring the image from the low-resolution one

shown in Figure 3.21b.

In addition to the mean field estimated by the MMSE-T algorithm, the

covariance matrix was calculated as outlined in the previous section. It was

found that the diagonal elements of the matrix dominated the calculation and

the variance was approximately equal to the square magnitude of the mean field.

The off-diagonal elements relating to adjacent pixels were slightly negative, as

with the one-dimensional case. The advantages of calculating the covariance

matrix are not immediately apparent here, as the matrix has no effect on the

output SNR metric. Chapter 5 details how the covariance can be used to aid

target recognition.
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Figure 3.22: Performance of the MMSE-T super-resolution algorithm.
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(a) Original high-resolution scene
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(b) Super-resolved high-resolution scene

Figure 3.23: Comparison of the original high-resolution scene with the MMSE

super-resolved scene.
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Chapter 4

Bayesian Autofocus and

Super-resolution

4.1 Introduction

4.1.1 Introduction to Autofocus

The performance of super-resolution algorithms depends critically on the level

of noise in the system and the accuracy with which the PSF is known. In the

previous chapter all the examples given assumed a perfect knowledge of the

PSF. In practical systems a variety of effects can alter the shape of the PSF.

The the altered PSF usually has a reduced peak power, a broadened main lobe

and increased side-lobe power.

If a target is moving then the Doppler shift induced in the signal received by

the system changes the PSF - an effect characterized by the waveform ambiguity

diagram as described in Chapter 2. Although Doppler processing or target

tracking can provide corrections for target velocity, residual errors will remain

resulting in a non-ideal PSF. If the target is vibrating due to motion of the

engine this will also result in a blurred PSF even after application of autofocus

techniques referred to in Chapter 2. These effects also apply if the radar imaging

platform is moving instead of or in addition to the target. A detailed analysis

of how the PSF is affected by platform motion is given by Blacknell [7].

Pulse eclipsing occurs due to the receiver being switched off while the system

is transmitting a pulse; therefore the entire waveform will not be received for
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targets that are very close to the transmitting system [164] or near the end of

the range-unambiguous extent. This results in a degradation of the PSF similar

to the Doppler effect [79]. Eclipsing is a particular problem in high-resolution

systems with a high duty ratio, where the length of the pulse is large compared

to the pulse repetition interval, because a large proportion of the range profile

will be eclipsed.

Other effects that could alter the PSF are non-linearities in the radar hard-

ware or atmospheric phase disturbances. Non-linearities are likely to be de-

terministic and could potentially be mitigated by measuring the form of non-

linearity and compensating for this in software. However, noise or finite band-

width would limit the degree to which this is possible. Atmospheric phase

disturbance cannot be determined in advance, therefore some form of autofocus

that can cope with this effect may be required.

4.1.2 Review of Autofocus Techniques

We now review a few of the more popular autofocus algorithms and those rele-

vant to this thesis. This review is not comprehensive: it is merely intended as

an introduction to the problem of autofocus. For an up-to-date review see [160].

Contrast optimization is one of the simplest autofocus algorithms. It as-

sumes there is a residual quadratic phase error in the data and forms images

with a range of values for the quadratic slope parameter. The parameter value

that gives the image with the highest contrast, defined by the ratio of the

standard deviation to mean, is used to phase-correct the data [106]. Contrast

optimization can fail if certain contrived groups of targets are present in the

scene [7]. However, it is unlikely in practice that such groups would be found

in a typical scenario.

Multi-look registration, also known as map-drift autofocus, assumes that

when two images of the same scene, obtained from different regions of range-

doppler space, are aligned there is no phase error across the doppler bandwidth.

If the images are not aligned then the alignment difference indicates what value

of autofocus parameter should be used to phase correct the data. Multi-look

registration and contrast optimization have similar performance and computa-

tion time [106].

One of the most popular autofocus algorithms in use today is phase gradient
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autofocus (PGA) [151]. This algorithm consists of four main steps. The first

step, known as centre shifting, aligns the strongest scatterers in each range bin.

The second step windows the scatterer response to use only data in regions of

high signal-to-noise ratio. The third step estimates the phase gradient using

a minimum variance technique. The final step applies phase correction to the

defocused image and repeats the first three steps until convergence. The ad-

vantage of PGA over the other techniques is that it can focus images subject

to a wider variety of defocus effects such as wide-band phase error.

A recently proposed autofocus algorithm that is relevant to this thesis is a

motion-compensated version of the CLEAN algorithm, known as MCCLEAN

[159]. In an iterative process, this algorithm alternately uses the CLEAN algo-

rithm to estimate the positions and amplitudes of scatterers in the scene, and

determines the phase correction required to focus the image using a least squares

approach. As an alternative, RELAX could be used in place of CLEAN to give

the MCRELAX algorithm. This algorithm has a super-resolution capability in

addition to its autofocus ability.

According to Blacknell [7], when algorithms such as contrast optimization

and multi-look registration are operating at the depth-of-focus limit the residual

error in the estimated PSF is sufficient to cause problems for super-resolution

techniques such as MMSE. This is the case with or without the presence of

noise. Performance cannot be improved even if uncertainty in the PSF is taken

into account via the use of second order statistics [10]. However, Oliver [108]

states that the information limit for the autofocus techniques is often consid-

erably better than the depth-of-focus criterion suggests. As long as extended

objects in the scene do not cause bias in the autofocus parameter estimate

and only quadratic phase error is present, the information-limited error in the

PSF does not upset super-resolution algorithms. If the radar platform does not

have an inertial motion unit to compensate for high-frequency motions then the

quadratic phase error assumption no longer holds and errors in the PSF again

cause a degradation in super-resolution performance [107].

Luttrell [88] has proposed a joint autofocus and super-resolution algorithm,

which maximizes the posterior distribution of the scene RCS and focus pa-

rameter under an information-based Bayesian framework. In simulations the

algorithm is able to estimate the focus parameter to an accuracy beyond the
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Figure 4.1: Autofocus/super-resolution model

depth-of-focus limit. However, the algorithm has not been tested on measured

data and the model used may not match the true physics involved in the radar

imaging process – see Appendix C and [78]. Even so, the Bayesian formulation

of the algorithm has motivated the work of this thesis and the PSF is available

in analytic form. Therefore Luttrell’s model will be used here as a basic test of

algorithms.

4.1.3 General Autofocus and Super-resolution Model

Here we present a joint autofocus and super-resolution Bayesian model based on

the scattering and imaging models introduced in sections 3.1.2 and 3.1.3. This

model was first used in [88] for a specific algorithm. However it is a fairly general

model and could be adapted simply by using different individual scattering or

imaging models.

A diagram of the overall scattering and imaging model is shown in Figure

4.1, using the notation

σ = scattering cross section

f = complex scattered field

θ = focus parameters

g = complex image.

In the diagram each parameter is considered to have probability distribution
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and the dependency of the parameters on each other is indicated by the arrows.

The transition from σ to f is the scattering model and and the transition from

f and θ to g is the imaging model. The overall model is identical to that

used in the previous chapter with the exception of the focus parameters. These

parameters define the PSF that generates the image g from the scattered field

f . Therefore the PSF matrix T of equation 3.2 is a function of θ. Note that

in general θ could be a vector of parameters but in this thesis a dimensionless

single-parameter model is used to analyze algorithms.

4.1.4 Specific Point Spread Function Model

The joint autofocus and super-resolution algorithm presented in the next sec-

tion can be applied to any form of PSF model as long as it is specified prob-

abilistically. However, for the numerical simulations in this thesis a specific

single-parameter PSF model is used. Luttrell [88] states that a SAR system

undergoing anomalous motion can in first order be modelled as the defocusing

of a simple linear imaging system and can be considered as being “a microwave

version of an optical bench experiment using coherent illumination with the

lens misplaced from its correct focus”. This model may not strictly be accurate

for SAR systems as the physics involved is slightly different – see Appendix

C. Detailed models of the PSF for defocused SAR systems are given by Black-

nell [7]. However, for the purposes of demonstration of the Bayesian technique,

Luttrell’s simple model is used here.

The PSF as a continuous function of cross-range position x and dimension-

less focus parameter θ is given in [88] as

T (x, θ) =
1

2c

∫ +c

−c

exp(ikx + iθk2x2) dk

≈ 1

2c

∫ +c

−c

exp(ikx)(1 + iθk2x2) dk

= T0(x) + θT1(x), (4.1)

where

T0(x) ≡ sin(cx)

cx

T1(x) ≡ i

[
cx sin(cx) + 2 cos(cx)− 2 sin(cx)

cx

]
. (4.2)
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For use in the imaging model this function is sampled at regular positions

along the x axis to give the PSF in vector form. This vector is then converted to

an appropriately formatted Toeplitz convolution matrix that applies the effect

of the PSF – see Appendix A. The total convolution matrix T(θ) can be written

as the linear combination of the nominal convolution matrix T0 and the error

convolution matrix T1:

T(θ) = T0 + θT1. (4.3)

4.2 Joint Autofocus and Super-resolution

4.2.1 Monte Carlo Algorithm for Cross-section Recovery

The Bayesian approach to autofocus and super-resolution models uncertainty

in both the cross section σ and focus parameters θ. This is described by the

joint probability density p(σ, θ|g) of the cross section and focus parameters,

conditional on the image under consideration. Bayes’ theorem gives the joint

density as

p(σ, θ|g) =
p(g|σ, θ)p(σ)p(θ)

p(g)
. (4.4)

As before, we use the Metropolis-Hastings algorithm to generate samples of

a probability distribution. For the case considered here the samples represent

the joint probability density p(σ, θ|g). The likelihood of the image is given by

p(g|σ, θ) =

∫
p(g|f ,σ, θ)p(f |σ, θ) df

=

∫
p(g|f , θ)p(f |σ) df , (4.5)

where we have noted from Figure 4.1 that g does not depend directly on σ, and

f does not depend on θ. As with the perfectly focused case, using the scattering

and imaging model in equations (3.1) and (3.2) this can be shown to be [88]

p(g|σ, θ) =
exp(−gHM−1g)

det(πM)
, (4.6)

where

M ≡ TΣTH + N, (4.7)

and Σ = diag(σ). However, in this case the matrix T depends on θ. As it is

necessary only to know the shape of the distribution p(σ, θ|g), there is no need
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to calculate the normalizing factor p(g). With choice of suitable priors p(σ)

and p(θ) for the cross section and focus parameters the quantity of interest is

then

π(σ, θ|g) = p(g|σ, θ)p(σ)p(θ). (4.8)

At each iteration we update each element of σ in turn and then perform a θ

update. During the σ update at the ith iteration, a proposed new sample for a

single cross-section element is generated from a proposal distribution q(σi+1|σi).

The proposed sample is accepted with a probability α(σi,σi+1), where

α(σi,σi+1) = min

[
π(σi+1, θi|g)q(σi|σi+1)

π(σi, θi|g)q(σi+1|σi)
, 1

]
. (4.9)

The same process is then repeated for θ with

α(θi, θi+1) = min

[
π(σi+1, θi+1|g)q′(θi|θi+1)

π(σi+1, θi|g)q′(θi+1|θi)
, 1

]
. (4.10)

Initial samples generated during the burn-in period are discarded and the

remaining samples are distributed from p(σ, θ|g) as required.

4.2.2 Results for a Low Signal-to-Noise Ratio

A demonstration of the Metropolis-Hastings algorithm for simultaneous RCS

and focus parameter recovery is now given. The simulated scene used in this

demonstration is identical to that introduced in Section 3.2.4 and shown in

Figure 3.5a. The true focus parameter value was set to θ = 0.1 and an SNR of

20 dB was used. The noisy, low-resolution image is shown in Figure 3.5b. The

detailed processing parameters used in the M-H algorithm are shown in Table

4.1.

Figure 4.2 shows the sample time series for range index 7, which is the posi-

tion of the first scatterer. The corresponding histogram is shown in Figure 4.3a.

Compared to the low-SNR super-resolution-only histogram in Figure 3.17a, this

distribution is very similar.

Figures 4.3b, 4.3c and 4.3d show the histograms for range indices 8, 9 and

11, respectively. These are also very similar to the equivalent low-SNR super-

resolution-only histograms in Figures 3.17b, 3.17c and 3.17d. However, it is

noticeable that in the histograms where autofocus is being used the distribution
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Number of saved samples 10000

Burn-in period 0

De-correlation gap 10

Proposal distribution, σ Uniform random walk

Random walk step size, σ 0.5

Prior distribution p(σ) Independent negative exponential

Prior mean for p(σ) 1000

Sample start value for σ 0

Proposal distribution, θ Gaussian random walk

Random walk step size, θ 0.02

Prior distribution p(θ) Gaussian

Prior mean for p(θ) 0

Prior s.d. for p(θ) 0.2

Sample start value for θ 0

Table 4.1: Table of parameters used by the M-H algorithm for simultaneous

RCS and focus parameter recovery.
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Figure 4.2: Time series of samples for range index 7 as generated by the M-H

algorithm using a decorrelation gap of 10.

is slightly wider than those where the system is assumed to be completely

focused. This is due to the additional uncertainty in the focus parameter θ.

The mean and MAP estimated range profiles are shown in Figure 4.4a. The

MAP profile is very similar to the one obtained under perfect focus conditions,

shown in Figure 3.18a. A detection algorithm using the MAP profile should

be able to detect the scatterers without too high a false alarm rate. The mean

profile is distorted by the effect of a skewed RCS distribution combined with

high noise levels, as with the perfectly focused case. Although the two scatterers

at positions 7 and 11 have large magnitudes, an addition phantom scatterer has

appeared at position 5 in the autofocus case.

The standard deviation of the range profile is shown in Figure 4.4b along

with the mean. The skewed distribution generally results in high standard de-

viations where the mean is high. This is particularly the case for the phantom

scatterer at position 5, which has a very large uncertainty associated with it.

This demonstrates one of the key advantages of analyzing the full RCS distri-

bution under a Bayesian framework. If an algorithm estimated only the mean,
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Figure 4.3: Histogram of samples generated by the M-H algorithm for various

range indices.
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Figure 4.4: Range profile representations calculated from samples.

then the phantom scatterer would have to be interpreted as a true scatterer.

However, with the full distribution it can be seen that the mean of the dis-

tribution is far from its most likely value and this increases the likelihood of

determining the phantom scatterer is false.

The RCS sample covariance matrix is shown in Figure 4.5. As with the

perfectly focused case there is little correlation between any of the range indices.

This is graphically demonstrated in Figure 4.6, where the sample RCS values at

range indices 9 and 10 are plotted against each other. There is no discernable

correlation.
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Figure 4.5: RCS sample covariance matrix.
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Figure 4.6: Distribution of samples for range indices 9 and 10.
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Figure 4.7: Distribution of dimensionless focus parameter θ.

So far, we have only discussed the distribution of the recovered underly-

ing target RCS. That is what is of highest interest as the recovered RCS is a

fundamental property of the target and is what is used in target recognition

systems. However, it is also of interest to examine the distribution of the focus

parameter θ to see how accurately it has been determined. The histogram for θ

is shown in Figure 4.7. The distribution is approximately Gaussian shaped with

a mean of 0.09 units and standard deviation 0.02. Recall that the true value

for θ used in simulation was 0.1, which falls within the region of high probabil-

ity. The small amount of bias in the distribution is due to noise. It has been

stated by Luttrell [88] that a θ value of 0.1 is at the limit of the depth-of-focus

criterion. Considering that the standard deviation of θ as determined by the

Metropolis-Hastings algorithm is much less than this, it can be seen that it is

indeed possible to determine the focus parameter to a greater accuracy than

the depth-of-focus limit as suggested by Oliver [108].
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4.3 Discussion

4.3.1 Complex-Field Recovery and Autofocus

In the previous chapter we saw that super-resolution RCS recovery was a more

difficult problem than complex-field recovery both in terms of computational

cost and the skewness of the posterior distribution. It might therefore seem

desirable to examine the autofocus model using the complex-field representa-

tion of targets. However, the number of parameters in this model exceeds the

number of data points available to estimate them. This is because for every

complex pixel in the image there is a complex pixel in the underlying scene that

needs to be estimated. The focus parameter adds another degree of freedom

to the system, which potentially makes the problem intractable. It is possible

that if there were a high degree of prior knowledge of either the scene or focus

parameter the posterior distribution could be determined. However, a joint aut-

ofocus and field-recovery algorithm based on the Metropolis-Hastings algorithm

failed to converge to a stable distribution when using the same prior knowledge

as the other experiments reported in this thesis. The only way to improve the

situation would be to obtain multiple images of the same scene from exactly

the same aspect angle. While this could be possible from repeat passes of a

SAR platform, the goal of this work is to perform super-resolution with a single

image. It is therefore concluded that this type of algorithm is not useful in this

context.

At first it might seem odd that complex-field recovery works better than

cross-section recovery in the fully focused case, but when defocus is introduced

complex-field recovery breaks down completely and cross-section recovery suf-

fers only a small degradation in performance. This can be explained by the

fact that there are fewer parameters to estimate in the cross-section recovery

process because they are real valued rather than complex. Addition of the focus

parameter does not therefore have a large influence on overall performance.

4.3.2 Further Work

The autofocus model used in this chapter was introduced by Luttrell [88], where

it was stated that the problem of designing an algorithm that makes rapid

progress towards the global maximum of p(σ, θ|g) would be an extensive re-
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search topic in it own right, requiring the topography of p(σ, θ|g) to be inves-

tigated in detail. This investigation is essentially what has been done here and

we have determined that the distribution is wide, skewed, and uncorrelated be-

tween the parameters. This analysis is a major extension of Luttrell’s work and

has made possible a potential link with MMSE super-resolution, via Bayesian

arguments.

The model used by Luttrell may not entirely be accurate for SAR imag-

ing. Appendix C demonstrates how a more accurate single-parameter radar-

based PSF model differs from the model used by Luttrell. It would be in-

teresting to test the Bayesian algorithm under the radar-based model to de-

termine whether the standard deviation of the focus parameter matches that

derived by Oliver [107,108]. Even the radar-based single-parameter model may

not be accurate enough to describe the radar PSF. It is likely that a realistic

model would require a large number of parameters [10]. The Bayesian algo-

rithm should be tested under such a model to determine the effect of additional

parameters. However, if too many parameters are introduced then problems

of under-determined systems such as those associated with joint autofocus and

complex-field recovery might arise.

Overall, the problem of joint autofocus and super-resolution is difficult to

solve. The problem is made less severe if the radar platform has a high-quality

IMU and other electronic components such that the system’s inherent point

spread function is stable. Further alleviation of the problem should be possible

through the use of a general purpose autofocus algorithm such as PGA, to pro-

duce the highest possible quality of images before super-resolution is attempted.
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Chapter 5

A Bayesian Super-resolution

Target-Recognition Framework

5.1 Introduction

When automatic target recognition systems employ multiple sensors, consider-

ation must be given to how data from different sources is exploited. An ATR

system usually requires access to a database of previously recorded or synthe-

sized radar images for the targets of interest, or a database of features based on

those images. Images used during the training phase of an ATR system might

have a different resolution to those that are used during operation of the system.

This could be the case, for example, where the training data consist of ISAR

images formed from targets placed on a rotating turntable, and the images ac-

quired in an operational environment are collected using an airborne platform.

The need for an airborne platform to manoeuvre in operational scenarios limits

the resolution that can be achieved. Higher resolutions are possible with the

turntable measurements, which are recorded under more benign conditions.

As we saw in Section 2.4.5, when there is a difference in resolution between

the test and training images the probability of correct classification is lower than

when the resolutions are the same. It has also been shown elsewhere [105] that,

in general, the higher the resolution of the data the higher the probability of

correct classification. It is therefore desirable to test whether super-resolution

can be used to match the resolution of the data gathered under operational con-

ditions with that gathered during training, and improve the overall classification
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performance.

A classification system that uses super-resolution will necessarily be required

to pass data between various modules of the system. An amount of uncertainty

is present in this data due to noise or other random effects. This uncertainty

can either be ignored at each stage or information about it can be propagated

between modules. Bayesian theory provides a consistent mechanism for ma-

nipulating probabilities assigned to data. This thesis therefore proposes to

perform both super-resolution and classification within a Bayesian framework.

The framework presented here was developed in conjunction with Copsey [27],

who considers the issue of relocatable targets in addition to super-resolution

and classification.

5.2 The Bayesian Framework

5.2.1 Classification Model

At the heart of the Bayesian framework is the relationship between variables

for the different sensors. The autofocus and super-resolution model introduced

in Section 4.1.3 gave the relationship between the radar cross section, complex

scattered field, focus parameter and complex image for a single sensor. This

model can be extended to include more than one sensor. The two-sensor case is

shown in Figure 5.1. Extensions to a greater number of sensors are possible and

repeat the same pattern as the two-sensor case. The underlying cross section of

the target σ is constant but each time the target is imaged a different complex

field f is scattered back towards the radar according to the scattering model in

equation (3.1). The focus parameter θ for each sensor is different each time the

target is imaged and depends on the relative motion between the radar and the

target. The image g produced from a particular sensor depends on the scattered

field and the point spread function for that sensor, which is determined by the

focus parameter. In Figure 5.1, g1 represents a low-resolution test image that

is required to be classified and g2 represents a high-resolution image of the sort

used during training to form a database of target information.

A complete Bayesian solution to the classification problem would take the

low-resolution test image g1 and perform simultaneous autofocus and super-

resolution to obtain the distribution p(σ, θ1|g1). The dependency of this func-
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Figure 5.1: Scattering and imaging model for two sensors

tion on θ1 can be eliminated by integrating the distribution over θ1. The dis-

tribution p(σ|g1) would then be passed through the scattering and imaging

models using an assumed distribution for θ2 to produce a new image distribu-

tion p(g2|g1), which represents images of the same resolution as those in the

training database. The focus parameter θ2 for training images should be fairly

accurately known since training data is usually gathered in controlled circum-

stances. If θ2 were required to be known more accurately then autofocus could

be performed on the images in the training database to determine its distri-

bution. In either case, the transformed image distribution p(g2|g1) would be

classified against the training database. The output of a Bayesian classifier

trained using the high-resolution data is a vector of class probabilities p(c|g2).

However, we require p(c|g1). Formally, this is calculated as

p(c|g1) =

∫
p(c|g2)p(g2|g1) dg2. (5.1)

The above classification procedure is theoretically ideal because σ is a fun-

damental target property under this model. If its distribution can accurately be

estimated then the totality of our knowledge about the target is encapsulated in

that distribution. However, as we saw in Section 3.4, the double inverse nature

of determining σ makes this solution impractical. We therefore present a sim-

plified model that requires no knowledge of target cross-section distributions. In

this model, shown in Figure 5.2, the scattered field is assumed to be the same

when all sensors image the target. This simplification ignores the scattering

model and will underestimate uncertainty in target properties. This model is
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Figure 5.2: Simple imaging model for two sensors

equivalent to the Ricean model when a cross-section element has one dominant

scatterer and no other weak scatterers. The classification procedure under this

model would be to perform super-resolution and autofocus on the test image

g1 to obtain the distribution p(f , θ1|g1). After integrating over θ1, the distribu-

tion p(f |g1) would be passed through the imaging model for training sensors to

construct an image distribution p(g2|g1). This would then be classified against

the training database.

Even with the simplified model, problems arise due to defocusing of the

system. As we saw in Section 4.3 the presence of unknown focus parameters in

addition to the complex field makes the system under-determined. Therefore, in

order for this classification procedure to be used, the issue of autofocus must be

neglected for the models used here and it must be assumed that all images have

had a focusing algorithm applied such that the data is already well-focused. The

issue of whether it is possible to include other scattering and defocus models in a

joint super-resolution and target recognition framework is addressed in Section

6.2.

5.2.2 Classification Procedure

The above classification model is theoretical in nature and a number of steps

must be taken to ensure it can be implemented in a practical situation. The first

step of determining p(f |g1) is a super-resolution problem and has already been

addressed in Chapters 3 and 4, where the distribution p(f |g1) is represented by
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a set of samples. In the case where an analytic solution is available, the mean

and covariance matrix can be used to generate samples from the distribution.

This is carried out using Cholesky decomposition of the covariance matrix [50].

To convert from p(f |g1) to p(g2|g1), the imaging model for the second sensor

is applied to each sample in p(f |g1). In practice, this is the convolution of

each super-resolved image f with an appropriate point spread function. Thus

p(g2|g1) is represented by a set of images with a lower resolution than f but

higher than g1.

The final step in the overall classification procedure is to calculate p(c|g1).

This is done by taking each sample image in p(g2|g1) and determining p(c|g2)

using a standard Bayesian classifier. The mean value of p(c|g2) calculated over

all the images in p(g2|g1) gives the required vector of class probabilities p(c|g1).

The classifier selects the class with the highest probability. This determines

which target is thought to be present in the low-resolution image g1.

5.3 Simulated 1D data

5.3.1 Experimental Setup

A simple two-class problem with one-dimensional data is used here to illustrate

operation of the Bayesian super-resolution target-recognition framework. The

two target classes are defined on a 17-element RCS range profile as displayed

in Figure 5.3. The first class corresponds to a single point scatterer, while the

second class corresponds to two scatterers.

The two underlying RCS profiles are used to generate complex-field profiles,

in accordance with the scattering model introduced in Section 3.1.2. Simulated

images are obtained by applying an appropriate sensor imaging model to each

complex-field profile. The ratio of the operational sensor resolution to that

of the training sensor is set to be 1.6. For both the training and operational

sensors, independent Gaussian noise is added to the images at an SNR of 20

dB. Examples of the one-dimensional images for both classes and sensor types

are shown in Figure 5.4. Note that for class 2 it is not immediately apparent

from the images that two scatterers are present due to the wide PSF of both

sensors relative to the separation between the two scatterers. This provides an

opportunity to test the super-resolution algorithm within a target-recognition
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Figure 5.3: Underlying radar cross sections
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Figure 5.4: Magnitude of sensor images
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framework. However, it should be noted that the scatterer separation and PSF

widths in this simulation have been chosen to demonstrate the potential of the

Bayesian approach rather than to accurately reflect real targets or training or

operational conditions.

For each sensor the images from the two classes appear quite distinct, as

can be seen in Figure 5.4. Thus a classifier trained using data from the training

sensor should be able to successfully classify training sensor data from the two

classes. Similarly, a classifier trained using data from the operational sensor

should be able to separate operating sensor data into the two classes. However,

for each class there is a considerable difference in the images between the two

sensors. Visually, the operational sensor image from class 1 is more similar to

the training sensor image from class 2, than it is to the training sensor image

from class 1. This indicates that using the training sensor classifier directly on

the operational sensor data will lead to poor classification performance for class

1. Therefore the Bayesian super-resolution approach is required.

A Bayesian classifier was trained using 100 high-resolution training sensor

images from each class. The features consisted of the complex values of the

image at each position. Preprocessing of the images prior to their use in the

classifier was performed by taking the amplitudes of the complex images, and

normalizing each complex input vector such that the average amplitude was

unity. This is a commonly performed processing step used in target recognition

systems. Note that for the operational sensor such preprocessing would remove

some of the separability between the classes – see Figure 5.4.

The test data consisted of 100 low-resolution operational sensor images from

each class. The Bayesian joint autofocus and super-resolution algorithm for

complex-field recovery, based on the Metropolis-Hastings algorithm, was applied

to each of these images. Parameters of the M-H algorithm are shown in Table

5.1. It is possible to perform autofocus and super-resolution for complex-field

recovery in this case because the prior distribution for the focus parameter θ has

been defined tightly around the true value of 0.1. Each super-resolved image

had a PSF applied such that the resulting image had the same resolution as

the training data. Each of those images was then classified using the Bayesian

classifier.

In addition to the Bayesian super-resolution procedure, two baseline results
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Number of saved samples 1000

Burn-in period 5000

De-correlation gap 10

Proposal distribution, f Gaussian random walk

Random walk step size, f 0.5

Prior distribution p(f) Independent Gaussian

Prior mean for p(f) 0

Prior s.d. for p(f) 10

Sample start value for f 0

Proposal distribution, θ Gaussian random walk

Random walk step size, θ 0.02

Prior distribution p(θ) Gaussian

Prior mean for p(θ) 0.1

Prior s.d. for p(θ) 0.03

Sample start value for θ 0.1

Table 5.1: Table of parameters used by the M-H algorithm for 1D super-

resolution target-recognition experiments.

were obtained for comparison. The first baseline case used high-resolution data

for both training and testing. This corresponds to a scenario where the op-

erational sensor has the same resolution as the training sensor. The second

baseline case trained the classifier using high-resolution data from the training

sensor, and applied the classifier directly to the lower-resolution operational

sensor data, without super-resolution.

5.3.2 Results

The set of results for baseline classification and super-resolution classification

performance are shown in Table 5.2. The first baseline procedure shows that if

it were possible to measure both training and test data with the same resolution,

then the two classes can be classified correctly all the time. The second baseline

results show that, when the resolution of the two sensors is different, ignoring

the change in sensor resolution is undesirable. In particular, the observation
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Method Operational/Test Data Class 1 Class 2 Average

Baseline 1: direct High resolution 100% 100% 100%

high/high comparison

Baseline 2: direct Low resolution 3% 100% 51.5%

low/high comparison

Bayesian Low-res. → super-res. 97% 100% 98.5%

super-resolution → high-res.

Table 5.2: Probability of correct classification for idealized targets. Percentages

based on 100 test images. Training data was based on the high-resolution sensor.

that the operational sensor images from class 1 are more similar to the training

sensor images from class 2 than those from class 1, is evidenced by the fact

that only 3% of the class 1 images are correctly identified. In contrast, the

proposed Bayesian super-resolution target-recognition procedure recovers much

of the class separability that is present when using high-resolution data for both

sensors. Thus, with appropriate sensor imaging models for this example, we

have successfully demonstrated procedures that enable a classifier to be used

in situations where the operating sensor resolution differs from the training

data resolution. It should be emphasized, however, that the above classification

performance is for idealized targets only, and in practical situations a much

lower classification performance would be expected for both the baseline and

Bayesian methods.

5.4 Measured 2D data

5.4.1 Experimental Setup

The previous section demonstrated the advantage of the Bayesian superresolu-

tion target-recognition procedure over standard target recognition under ide-

alized conditions. However, in practice, targets are more complicated and we

would like to classify two-dimensional images rather than one-dimensional range

profiles. To test the Bayesian procedure under more realistic conditions the sub-

set of the MSTAR data set analyzed in Section 2.4.5 has been used here as a

basis for target images.
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Four classification procedures have been used to test the various parts of the

Bayesian framework. The first of these is a baseline procedure that defines an

upper limit on performance. This procedure follows that described in Section

2.4.5, where targets are segmented from the background, features are extracted

from the segmented target and a classifier is trained and tested using those

features. In the experiments reported in this section noise was also added to

each test image at a certain SNR prior to features being extracted. This is

referred to as high-resolution test data and has a resolution of 0.3 m. The

performance of the Bayesian and nearest-neighbour classifiers was recorded to

allow a comparison between different classifier types.

The second classification procedure was the same as the first with the ex-

ception that the resolution of the test imagery was degraded from 0.3 m to 1.0

m before noise was added. This set of data is referred to as low-resolution data.

The third classification procedure tests the utility of the MMSE-T super-

resolution algorithm. Ideally, the algorithm would be applied to each entire

low-resolution image. The super-resolved image would then be classified as

normal. This, however, is not possible due to the size of the images, which are

typically 128x128 pixels. The algorithm runs too slowly on images of this size

to be of practical use. Even if the algorithm were able to run more quickly, it is

thought that as the image size increases, super-resolution performance decreases

[43]. The solution to this was to extract a 41x41 pixel image centered on the

brightest pixel in the original MSTAR image and perform super-resolution on

this reduced-size image. For the vast majority of images examined, this window

size was sufficient to contain all the target detail of interest. The procedure of

performing super-resolution on sub-images of a larger MSTAR image has also

been used in [42].

An additional problem with the MMSE-T algorithm was that it tended to

over-super-resolve targets so that they were estimated to be constructed from

several isolated scatterers. This effect was mitigated by applying a Hamming

window to the data in the frequency domain to limit the resolution to 0.3 m,

which is the original resolution of the MSTAR data. Once the super-resolved

41x41 pixel image with a 0.3 m resolution was formed, it was inserted back into

the low-resolution image. This step is clearly sub-optimal since the rest of the

image is not super-resolved. However, during initial testing, it was found that
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the feature extraction algorithm was able to extract features from the inserted

super-resolved image to a reasonable degree of accuracy. Figure 5.5 illustrates

the super-resolution target chip insertion process. Visually, the inserted super-

resolved target chip in Figure 5.5d matches well with the original high-resolution

image in Figure 5.5a. The feature extraction algorithm is not severely affected

by the super-resolution insertion process because the target pixels are segmented

from the surrounding image before the features are calculated, as was shown in

Figure 2.23. Therefore it is unnecessary to perform super-resolution on other

parts of the image. The features extracted from the modified super-resolution

image were used as an input to the Bayesian and nearest-neighbour classifiers.

This data is referred to as super-resolution data.

The final classification procedure tests whether it is better to use a Bayesian

super-resolution algorithm than a non-Bayesian one. The same steps as the

previous procedure were followed up to the production of a 41x41 pixel super-

resolved image with its resolution adjusted to 0.3 m. At this point the covariance

of the super-resolved image was calculated using the approximation in Section

3.5.2. The mean and covariance were used to generate 100 super-resolved images

and were inserted back into the low-resolution image as before. Each of these

images was classified as normal by the Bayesian and nearest-neighbour classifiers

and the target with the highest probability of correct classification over all 100

realizations was selected as the target thought to be in the image. This data is

referred to as Bayesian super-resolution data.

In all classification procedures the system was assumed to be perfectly fo-

cused such that the correct point spread function for both the training and

operational sensors was used in all processing.

5.4.2 Results

The experiments described in the previous section were run with SNRs ranging

from 10 dB to 50 dB, using the length and width features only. The results are

shown numerically in Table 5.3 and graphically in Figures 5.6 and 5.7. A de-

tailed analysis of the results for a 50 dB SNR is now given, followed by a general

analysis for the whole set of results. Throughout the discussion it should be

noted that with five targets present in the database a classifier picking randomly

between targets would achieve a 20% probability of correct classification.
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(a) High-resolution image.
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(b) Low-resolution image.
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(c) Super-resolution image.
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(d) Super-resolution image with a

Hamming window applied to target chip.

Figure 5.5: The process of inserting a super-resolved target chip into the back-

ground. (a) The original high-resolution image with a resolution of 0.3 m. (b)

The low-resolution image with a resolution of 1.0 m. (c) The super-resolved

target chip with a resolution better than 0.3 m has been inserted into the low-

resolution image. (d) A Hamming window has been applied to the central target

chip such that its resolution is 0.3 m.

154



CHAPTER 5. RECOGNITION FRAMEWORK 5.4. MEASURED 2D DATA

The first line of Table 5.3 is directly comparable with line four of Table 2.2,

which shows results for the case where no noise was added, but had all other

parameters set to the same values. It can be seen that the addition of noise

at 50 dB has led to a drop in classification performance of 5.1% points for the

Bayesian classifier and 7.1% points for the nearest-neighbour classifier when

using high-resolution imagery. The second line of Table 5.3 can be compared to

the fifth of Table 2.2. Here, it is seen that the addition of noise has decreased

performance by 5.6% points for the Bayesian classifier and 0.6% points for the

nearest-neighbour classifier when using low-resolution imagery.

The third line of Table 5.3 shows a large reduction in performance when

super-resolution is used compared to either the ideal case where high-resolution

data is used or the operational scenario considered here where only low-resolution

test data is available. This is seen as a disappointing result because the idea

behind using super-resolution was that performance of super-resolved imagery

is supposed to be better than that of low-resolution imagery.

There are a number of explanations as to why using super-resolved imagery

results in a low performance. The first of these is that the process of chipping

out a small target image from a larger image before performing super-resolution

is sub-optimal. Although the majority of the energy in the large image is

contained in the target chip there is a significant amount of energy in the rest

of the image. It is possible that some of this energy could leak back into the

target chip via sidelobes. This energy is not taken into account in the imaging

model and could upset the super-resolution algorithm. This potential problem

has previously been pointed out by Dickey et al. [43].

The second potential reason for low super-resolution performance is that

although super-resolution improves the resolution of an image by design, a side

effect is the addition of noise – the output SNR is always worse than the input

SNR. It may be the case that any gain in performance due to resolution enhance-

ment is more than offset by a reduction in performance due to the additional

noise.

A third explanation is that the features used for classification are not robust

with respect to super-resolution processing. In fact, during initial processing

it was found that the output of the MMSE-T algorithm tended to produce

images with a few isolated scatterers. Given that the true target images were
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Classifier

Test Data SNR Features Bayes NN

High-resolution test data 50 dB 2,3 52.3% 39.9%

Low-resolution test data 50 dB 2,3 43.4% 37.0%

Super-resolution test data 50 dB 2,3 23.8% 29.7%

Bayesian super-resolution data 50 dB 2,3 30.6% 31.9%

High-resolution test data 40 dB 2,3 45.8% 41.6%

Low-resolution test data 40 dB 2,3 43.4% 35.9%

Super-resolution test data 40 dB 2,3 23.8% 25.0%

Bayesian super-resolution data 40 dB 2,3 32.3% 33.0%

High-resolution test data 30 dB 2,3 41.1% 42.8%

Low-resolution test data 30 dB 2,3 43.9% 39.1%

Super-resolution test data 30 dB 2,3 26.2% 29.8%

Bayesian super-resolution data 30 dB 2,3 32.3% 32.9%

High-resolution test data 20 dB 2,3 35.1% 35.7%

Low-resolution test data 20 dB 2,3 42.8% 35.9%

Super-resolution test data 20 dB 2,3 24.4% 27.4%

Bayesian super-resolution data 20 dB 2,3 30.7% 32.2%

High-resolution test data 10 dB 2,3 14.3% 16.7%

Low-resolution test data 10 dB 2,3 15.6% 24.1%

Super-resolution test data 10 dB 2,3 26.1% 26.8%

Bayesian super-resolution data 10 dB 2,3 30.7% 30.1%

Table 5.3: Probability of correct classification using the MSTAR data set, with

extra noise added at various SNRs. Percentages based on 167 test images of

targets. Features 2 and 3 refer to target length and target width, respectively.

The feature database was generated using high-resolution training data gathered

at an elevation of 17o. All test features are based on data gathered at an

elevation of 15o.
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generally smoother than the MMSE-T output it may seem that the algorithm

was missing important detail. However, when the super-resolved images were

passed through the imaging model and compared to the original “measured”

low-resolution images it was found that the difference between the two was

commensurate with the noise level. The isolated scatterer representation was

therefore a reasonable description of the target. However, the effect of having

isolated scatterers had a catastrophic effect on the feature extraction algorithm.

When attempting to segment the target from the background the algorithm

would select the brightest scatterer and its close neighbourhood only, missing

out all the other major scatterers. This fundamentally altered all the feature

values enough to make them useless. This was the motivation of applying

the Hamming window to the data to restore the resolution to 0.3 m. The

Hamming-processed images tended to connect the scatterers enough for the

segmentation algorithm to appear to work correctly. However, it is possible

that feature values were still altered enough to result in the degradation of

classification performance. This effect could potentially be mitigated either

by finding features robust to super-resolution processing or by providing an

alternative to Hamming-window processing that does not severely alter feature

values.

The fourth line of Table 5.3 shows the performance of the Bayesian super-

resolution classification process. It is seen that, in comparison to standard

super-resolution, Bayesian super-resolution has increased performance by 6.8%

points for the Bayesian classifier and 2.2% points for the nearest neighbour

classifier. This result justifies use of Bayesian super-resolution – by taking into

account uncertainty in the super-resolved image classification performance is

improved. This happens because whenever a large spike is present in the super-

resolved image, there is a large uncertainty associated with it. This means that if

the spike is related to noise, any detrimental effect on classification performance

is mitigated. If the spike corresponds to a true target property then the fact that

it is present helps classification performance. It should be noted, however, that

even though classification performance using Bayesian super-resolution is better

than standard super-resolution it is worse than simply using a low-resolution

image. The comments as to why standard super-resolution performance is low

also apply to Bayesian super-resolution.
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Figure 5.6: Probability of correct classification for the Bayesian classifier.
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Figure 5.7: Probability of correct classification for the nearest-neighbour clas-

sifier.
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The effect of SNR on the Bayesian classifier is shown graphically in Figure

5.6. It can be seen that, when using high-resolution data, performance drops

smoothly as the SNR is reduced, with a significant drop at an SNR of 10 dB.

The classifier has slightly different behaviour whilst using low-resolution data.

The probability of correct classification is fairly constant until an SNR of 10

dB is reached, where a sharp drop in performance is also present. Classification

performance using both standard and Bayesian super-resolution data is fairly

constant over the range of SNRs tested, with Bayesian super-resolution always

having the better performance of the two.

Performance as a function of SNR is shown for the nearest-neighbour clas-

sifier in Figure 5.7. The probability of correct classification is relatively stable

over an SNR range of 20 dB to 50 dB for all resolutions but, as with the Bayes-

ian classifier, classification performance significantly drops at an SNR of 10 dB

when using high-resolution or low-resolution data.

It may initially seem surprising that classification performance does not vary

more dramatically with SNR than it does. However, at high SNRs the addition

of more noise does not have a large effect because the noise power is such a small

fraction of the target power. At an SNR of 10 dB, the noise changes target

images enough to significantly affect feature extraction and hence classification

performance. The probability of correct classification for both standard and

Bayesian super-resolution is fairly constant because the noise introduced by

super-resolution processing is much greater than the thermal noise modelled in

the system.
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Chapter 6

Conclusions

6.1 Conclusions

The goal of this thesis has been to formulate methods that facilitate automatic

target recognition using images generated from different radar sensors. The

specific problem studied is the situation where the resolutions of the two sensors

are different. It is found that a difference in resolution between the two systems

causes a reduction in target recognition performance. It has been proposed,

firstly, to use super-resolution to match the resolution from the two sensors in

order to recover recognition performance, and, secondly, to combine information

from the two sensors in a Bayesian framework.

Chapter 2 showed that standard super-resolution algorithms are able to

improve the resolution of images. However, performance of the algorithms is

limited by noise and the extent to which the point spread function is known. As

noise levels increase, the algorithms fail in different ways. The matrix inverse

technique tends to produce large spikes in the output because it over-fits the

noisy data. The SVD algorithm is more stable with respect to noise and the

resolution improvement gracefully degrades as fewer singular values are used

in the algorithm. The MMSE-T algorithm appears to be the technique most

robust with respect to noise, retaining a good performance at low SNRs by not

generating a large number of spurious spikes or degrading resolution.

One problem with standard super-resolution techniques is the generation of

spurious artefacts in the data, especially at low SNRs. When viewing the super-

resolution output it is not possible to tell whether spikes in the data relate to
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noise or are genuine scatterers from targets of interest. Chapter 3 presented a

new Bayesian algorithm that calculates the full probability distribution of values

each pixel can take. If a spike is due to noise then the Bayesian algorithm will

determine that there is a large uncertainty associated with this spike and this

additional information can be used when interpreting the image.

The Bayesian algorithm has been developed for both the inverse complex-

field problem and the inverse cross-section problem. It was found that an an-

alytic solution was possible in the inverse complex-field problem when noise

follows a Gaussian model. The solution is itself Gaussian and can thus be rep-

resented by a mean vector and a covariance matrix. The Bayesian solution to

the inverse cross-section problem was not able to be solved analytically so a

numerical Monte Carlo algorithm based on the Metropolis-Hastings algorithm

was used. It was found that the posterior distribution of target RCS had a large

variance, was skewed and was uncorrelated between target pixels. This led to

a re-examination of the Gaussian scattering model and it was conjectured that

this model is inappropriate for high-resolution representations of targets as the

central limiting theorem does not apply in the way it does for low-resolution

data.

The computational cost of the Bayesian algorithm was analyzed and it was

found to be proportional to the fourth power of the number of pixels being pro-

cessed. Although the algorithm is able to be applied to small one-dimensional

profiles it was too slow to be used with two-dimensional images of practical size.

To alleviate the computational burden it was proposed to use the MMSE-T algo-

rithm as a basis for an approximate analytic solution to complex-field recovery.

In this approximation the mean of the posterior distribution was given by the

MMSE-T output and the covariance matrix was a function of the mean and

other image parameters.

In coherent radar processing there are a number of effects that can alter the

shape of the point spread function. These are collectively known as defocus

effects. The primary cause of defocus is relative motion between the radar

platform and targets that has not been taken into account during processing.

For an airborne radar platform this arises from deviations of the aircraft from a

straight-line trajectory. The change in point spread function has a detrimental

effect on standard super-resolution algorithms because they rely on knowledge
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of the PSF.

In Chapter 4, a new Bayesian algorithm was developed that simultaneously

estimates the high-resolution RCS representation of targets, and the focus pa-

rameter in a single-parameter focus model. This algorithm takes into account

uncertainty in the focus parameter when estimating the high-resolution scene

and thus offers an advantage over the situation in standard super-resolution

where changes in the PSF are usually ignored. The posterior RCS distribution

had a similar shape to that generated in the perfectly focused case but had a

slightly larger variance and was a little more skewed.

It was found that a version of the Bayesian algorithm that attempts to

estimate the complex field as well as the focus parameter failed to converge

when prior knowledge about the focus parameter was diffuse. This is because

the system is under-determined. The joint autofocus and complex-field super-

resolution algorithm only worked when the prior distribution of the focus pa-

rameter was defined in a tight region about the true value – a situation unlikely

to be possible in practice.

Although the Bayesian autofocus and super-resolution algorithm was shown

to work in principle for RCS recovery, in realistic situations it is likely that the

detailed nature of defocus is determined by more than one parameter, possible

a large number of parameters. The Bayesian algorithm could be extended to

deal with multiple parameters but the algorithm would take longer to run and

care must be taken otherwise the system could become under-determined for

RCS recovery as well as complex-field recovery.

Chapter 5 outlined a complete Bayesian super-resolution target-recognition

framework for the case where the resolution of imagery measured in operational

situations differed from that used in the training phase of the system. A number

of approximations were required to be made for the system to be practically

implementable. It was shown that use of a Bayesian super-resolution algorithm

gave a higher probability of correct classification than using standard super-

resolution. However, classification performance using super-resolution data was

worse than using low-resolution data, for both types of super-resolution algo-

rithm. Three reasons why this might be the case are that the approximations

required to make operation of the Bayesian framework implementable were too

severe, the advantages of resolution improvement were outweighed by the noise
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introduced during super-resolution processing, or that the features used for tar-

get recognition were not robust to super-resolution processing.

There are three reasons why the Bayesian super-resolution target-recognition

framework as presented here would not be worth implementing in a real radar

system, without further modification. The first of these has just been mentioned

– namely that super-resolution has degraded classification performance under

the non-parametric model. The second reason is that the results based on

measured data, presented in Chapter 5, did not analyze defocusing effects. It

is likely that simple defocus would further degrade classification performance

and, even if it were taken into account, the single-parameter focus model is

probably insufficient to capture all significant effects. The third reason is that

the computational burden of even the approximate Bayesian solution is high.

The computation time is proportional to the third power of the number of

pixels used – if an image measures N × N pixels then the computation time

is proportional to N6. Even with advances in processor power the ability to

process large images would remain beyond reach for the foreseeable future.

Although the Bayesian super-resolution target-recognition framework as pre-

sented in this thesis appears to be unsuccessful in solving the multi-resolution

target-recognition problem there are a number of modifications to it that could

enable it to work. These possibilities are outlined in the next section where

recommendations for further work are given.

6.2 Recommendations for Further Work

One of the reasons given for the relatively low classification performance when

using super-resolution images was that feature values are not robust with respect

to super-resolution processing. This is a major obstacle to successful execution

of the Bayesian super-resolution target recognition framework. However, only

five features were tested and is possible that other features could be more ro-

bust. The target recognition literature has many examples of different features.

These should be analyzed to see how they are affected by changes in resolu-

tion – both for resolution degradation and super-resolution. One feature that

may be of use would be the RCS coefficient of variation. This is the standard

deviation of a target’s distributed RCS, Var[σ0(x, y)]1/2, divided by its mean
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RCS, E[σ0(x, y)]. This feature is not affected by image amplitude scaling, and

could provide a certain amount of robustness when changes in resolution cause

changes overall image amplitude. A separate possibility is combining features

from both low-resolution and super-resolution images. The low-resolution im-

ages may be better at determining large-scale features such as those related to

target shape, and the super-resolution images better at determining fine-scale

detail such as the position of closely placed scatterers.

Another problem with the super-resolution algorithms presented in this the-

sis is the computational burden associated with them. This arises from the need

either to calculate the inverse of large matrices or to multiply large matrices to-

gether. It is shown in Appendix A that the convolution matrix is Toeplitz-block

Toeplitz. The repetitive nature of this type of matrix means that processing ad-

vantages are possible if the matrix structure is taken into account [65,153]. This

form of processing should be investigated to determine whether the algorithms

can be made to run significantly faster than using a standard matrix multipli-

cation implementation. Another way of potentially speeding up algorithms is

through the use of FFTs. Convolution can be performed as a multiplication

in the Fourier domain, which is faster than a straight-forward implementation

of convolution in the spatial domain. A number of super-resolution algorithms

do use Fourier processing – see [122, 139], for example. However, some work is

necessary to determine how the Fourier representation of signals would fit into

the Bayesian framework.

A third major problem with the super-resolution algorithms presented here is

that they are based on the low-level continuum scattering model [90,140]. Under

this model the amplitude of every pixel in the super-resolved image is calculated.

This means a large number of parameters must be estimated – often as many

parameters as there are data points in the input image. The addition of focus

parameters makes the system under-determined for autofocus and complex-

field recovery. A solution to this is to use the high-level scattering centre model

[90, 140]. Under this model the scene can be described by a small number

of point scatterers. This has two advantages. The first is that the number

of parameters required to be estimated is dramatically reduced, especially for

large images. This would allow more complex focusing models to be used and

each parameter should be able to be estimated more accurately. The second
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advantage is that the computational burden of algorithms using the scattering

centre model depends on the number scatterers in the scene rather than the

size of the scene image. Therefore it is quicker to process large images using the

scattering centre model than the continuum model as long as the whole image

is not completely filled with objects that must be modelled.

The disadvantage of the scattering centre model is that the number of scat-

terers present must be estimated for each image – an order selection problem.

Since the number of scatterers is unknown in advance this would result in a vari-

able number of dimensions under the Bayesian framework. This requires extra

work to keep track of the dimensions and is the reason the scattering centre

model has not been analyzed in this thesis. However, several papers mentioned

in the literature survey use the reversible jump Markov chain Monte Carlo

(RJMCMC) method to estimate model order and it seems that this approach is

worth pursuing further in conjunction with the target-recognition framework.

It has been assumed throughout this thesis that a Gaussian scattering model

applies to each pixel value. This model is valid when there are a large number

of scatterers in a single resolution cell and the central limit theorem applies.

However, at very high resolutions, there may only be one dominant scatterer

in each resolution cell. In this case the central limit theorem no longer applies

and some model other than Gaussian scattering ought to be used. This issue

should be investigated further to determine a more accurate scattering model

using measured data. This model should then be tested in the Bayesian super-

resolution target-recognition framework to see whether recognition performance

can be improved under this model.

Another area where the modeling could be more accurate is the focus model.

The work in this thesis assumed a single-parameter was sufficient to describe

focusing effects. Simulations were based on Luttrell’s approximate model [88].

A more accurate model derived from first principles of radar signal processing

is presented in Appendix C. In that model the focus parameter can be related

directly to uncompensated cross-track acceleration. However, in practice, a

number of other defocus effects are likely to be present and a multi-parameter

model should be investigated.

Under the imaging model used for this thesis the thermal noise was uncor-

related and independent of the point spread function. This model is used by
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many other authors in super-resolution or image restoration work. However,

in a radar receiver, noise is generated in the front-end electronics before ap-

plication of the matched filter. This means the noise is correlated with the

filter weights. The detailed effect of correlated noise on super-resolution algo-

rithms is unknown but Blunt has partially addressed this issue in his version

of MMSE super-resolution [11]. It has also been assumed that the scattering

model for speckle is independent of the PSF and can effectively be modelled

as multiplicative noise. However Kuan et al. [76] state that speckle is spatially

correlated and the correlation function depends on the coherent point spread

function of the imaging system and the original image intensity. Correlated ther-

mal noise and speckle should be analyzed under the Bayesian super-resolution

target-recognition framework to determine whether they have an effect on target

recognition performance and, if so, they should be included future models.

The presence of correlations in the image can also be attributed, to some

extent, to properties of the target, as opposed to the point spread function. An

example of using spatial correlations with the MMSE super-resolution technique

is given in [22]. In a more general Bayesian analysis, the scene can be modelled

by a Markov random field (MRF), in which each pixel depends on adjacent pix-

els in a defined neighbourhood [51]. It is required to specify the form of prior

information for the MRF. One possibility is to use a Gaussian MRF that directly

defines the correlation between adjacent pixels [148]. Another possibility is to

use a Gibbs distribution, which utilizes a potential function that is a function

of image gradients [58]. Three possibilities for the potential function are the

hyper-surface convex function [66], the Huber function [114], or a log-cosh func-

tion [58]. All these functions have quadratic behaviour near zero but are linear

further out. This type of prior can be preferable to Gaussian priors because im-

age edges are not penalized so severely. Example applications of MRFs applied

to radar data can be found in [36] and [131]. These techniques should be con-

sidered for further development in conjunction with Bayesian super-resolution

analysis.

Finally, the performance of super-resolution algorithms can be measured

in a number of different ways. Two measures used in this thesis are output

SNR and the effect on classification performance. Other super-resolution per-

formance metrics have been proposed, such as super-resolution gain [43], the
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ability to segment an image into target and background regions [42], and Black-

nell’s heuristic performance metric based on the position and amplitude of re-

covered scatterers [7]. There seems to be no consensus as to which is the best

performance metric. Indeed, different metrics might be useful for different ap-

plications. The MMSE super-resolution algorithm is derived by attempting to

maximize the output SNR metric. Other super-resolution algorithms could be

designed to maximize performance on other metrics. It would be especially

interesting to see whether an algorithm specifically designed to maximize clas-

sification performance could be implemented. Such an algorithm would be a

good candidate for the Bayesian super-resolution target-recognition framework

presented in this thesis.
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Appendix A

The Point Spread Function

Matrix is Toeplitz

A.1 One-dimensional PSF

Let the sampled one-dimensional point spread function be defined by

h = [h1, h2, . . . , hc, . . . , hn]T , (A.1)

where c is the centre co-ordinate. The one-dimensional image g is the convo-

lution of h and the one-dimensional scattered field vector f . This convolution

may be written in the form

g = Tf , (A.2)

where

T =




hc hc−1 . . . h2 h1 0 . . . 0 0

hc+1 hc . . . h3 h2 h1 . . . 0 0
...

...
. . .

...
...

...
. . .

...
...

hn−1 hn−2 . . . hc hc−1 hc−2 . . . h1 0

hn hn−1 . . . hc+1 hc hc−1 . . . h2 h1

0 hn . . . hc+2 hc+1 hc . . . h3 h2

...
...

. . .
...

...
...

. . .
...

...

0 0 . . . hn hn−1 hn−2 . . . hc hc−1

0 0 . . . 0 hn hn−1 . . . hc+1 hc




. (A.3)

The structure of T is such that its ijth element Tij is a function of only (i−j)

and thus has identical elements along its main diagonal and sub-diagonals. This
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is the definition of a Toeplitz matrix [153]. The special structure of Toeplitz

matrices allows savings in memory storage and processing requirements. The

work in this thesis has used truncated convolution where the scene is assumed

to be zero-valued outside the analysis region. Sometimes the PSF is assumed to

“wrap around” from one end of the scene to the other. If this were the case the

top right values of the T matrix would have values [. . . , h2, h1, hn, hn−1, . . .]
T

and the matrix would be a special kind of Toeplitz matrix known as a circulant

matrix. In that case further processing advantages would be possible via the

use of an FFT [65].

A.2 Two-dimensional PSF

Application of the two-dimensional point spread function is somewhat more

complicated than that for one-dimensional data. Let the two-dimensional scat-

tered field be defined by

F =




f11 f12 . . . f1M

f21 f22 . . . f2M

...
...

. . .
...

fN1 fN2 . . . fNM




. (A.4)

This is converted to vector form by scanning along the columns of F to form

f = [f11, . . . , fN1, f12, . . . , fN2, . . . , f1M , . . . , fNM ]T . (A.5)

The two-dimensional image G and vector form g are defined in a similar manner

to F and f , respectively. The two-dimensional PSF with centre co-ordinate (d, c)

is defined by

H =




h1,1 h1,2 . . . h1,c . . . h1,M−1 h1,M

h2,1 h2,2 . . . h2,c . . . h2,M−1 h2,M

...
...

. . .
...

. . .
...

...

hd,1 hd,2 . . . hd,c . . . hd,M−1 hd,M

...
...

. . .
...

. . .
...

...

hN−1,1 hN−1,2 . . . hN−1,c . . . hN−1,M−1 hN−1,M

hN,1 hN,2 . . . hN,c . . . hN,M−1 hN,M




. (A.6)
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If g = Tf , the MN ×MN two-dimensional convolution matrix T is given by

T =




Tc Tc−1 . . . T2 T1 0 . . . 0 0

Tc+1 Tc . . . T3 T2 T1 . . . 0 0
...

...
. . .

...
...

...
. . .

...
...

TM−1 TM−2 . . . Tc Tc−1 Tc−2 . . . T1 0

TM TM−1 . . . Tc+1 Tc Tc−1 . . . T2 T1

0 TM . . . Tc+2 Tc+1 Tc . . . T3 T2

...
...

. . .
...

...
...

. . .
...

...

0 0 . . . TM TM−1 TM−2 . . . Tc Tc−1

0 0 . . . 0 TM TM−1 . . . Tc+1 Tc




,

(A.7)

where each N × N sub-matrix Ti is the one-dimensional convolution matrix

determined from the ith column of H. The sub-matrices Ti form a Toeplitz

structure meaning T is block Toeplitz. Furthermore, since each sub-matrix is

also individually a Toeplitz matrix, the overall convolution matrix T is Toeplitz-

block Toeplitz [153].
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Appendix B

Choosing the Singular Value

Threshold

B.1 Experimental Setup

Performance of the SVD super-resolution algorithm is analyzed here in terms of

the input and output SNRs as defined in Section 2.2. The high-resolution scene

f was taken to be a 41x41 pixel image of a T-72 tank taken from the MSTAR

data set. The point spread function is based on the FFT of a Hamming window

as described in Section 2.4.5. The high-resolution and low-resolution images

relating to this setup are shown in Figure B.1.

The low-resolution image had noise added to it with SNRs ranging from

0 dB to 50 dB. At each SNR ten images were generated with different noise

realizations, the SVD algorithm was applied, and the mean output SNR was

measured. Five versions of the SVD algorithm were tested, each of which used

a different threshold to determine the number of singular values used. These

were:

• use all singular values in the calculation;

• use the top 80% singular values;

• use the top 50% singular values;

• use the top 20% singular values; and

• use singular values s such that s2 > max(s2)/SNR.
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(a) High-resolution image

X−range index

Y
−

ra
n

g
e

 i
n

d
e

x

5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40
−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

0

(b) Low-resolution image

Figure B.1: Test imagery for the SVD super-resolution algorithm.

B.2 Results and Conclusions

The singular value spectrum of the convolution matrix is shown in Figure B.2,

where it can be seen that the smallest values have a very low magnitude com-

pared to the largest value. Results of the super-resolution experiment, except

for the all-singular-value version, are shown in Figure B.3. The best perform-

ing algorithm was the one based on a variable squared-singular-value threshold.

This was the only version to maintain an output SNR of greater than 0 dB for

the whole range of input SNRs. At low SNRs, the majority of the singular values

were excluded, which tends to produce images that are not fully super-resolved

but do not contain any spurious noise spikes. At higher SNRs more singular

values are used, which allows a more accurate super-resolution result. The next

best performing version was the one that used the top 20% singular values. At

low SNRs more singular values were used than the variable threshold version.

Using too many singular values allows the creation of noise spikes, which ex-

plains the lower performance of this algorithm at low SNRs. At the high end

of SNRs tested here the algorithm uses a similar number of singular values as

the variable threshold version and has a similar performance. Ultimately as the

SNR approaches infinity more than 20% of the singular values should be used

and the performance of this version would be expected to be lower than the
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Figure B.2: Singular value spectrum of the 1681x1681 convolution matrix.

variable threshold version of the algorithm. Similar comments to those made

for the 20% version apply to the other versions of the algorithm that use a fixed

percentage of singular values, except that they clearly use too many values for

the range of SNRs tested. Performance of the algorithm that used all singular

values is not shown in Figure B.3 as its output SNR was constantly about 100

dB below that of the 80% version.

The original and super-resolved images for the variable-threshold SVD algo-

rithm at an input SNR of 50 dB are shown in Figure B.4. Although the output

SNR of the super-resolved image is about 5 dB, the algorithm has visually done

a reasonable job of restoring the image from the low-resolution one shown in

Figure B.1b. An SNR of 5 dB may seem low, but it should be remembered that

this is an information-theoretic SNR based on the whole image rather than the

peak SNR used in detection, which is always higher. The resolution of the

super-resolved image is slightly lower than the original – it can be seen that a

little detail has been lost. Although it may be possible to increase performance

of the SVD algorithm with this particular image by changing the number of sin-

gular values used, this would not necessarily apply to other images in general.

In fact it has previously been shown that resolution improvement using SVD

is limited by noise [7]. Given that the variable-threshold version of the SVD

algorithm takes SNR into account it seems like a good candidate for a general

super-resolution algorithm.
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Figure B.3: Performance of four versions of the SVD super-resolution algorithm.
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(a) Original high-resolution scene
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(b) Super-resolved high-resolution scene

Figure B.4: Comparison of the original high-resolution scene with the SVD

super-resolved scene.
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Appendix C

The Radar Point Spread

Function

C.1 Introduction

The point spread function model used in this thesis to test super-resolution al-

gorithms is the single-parameter model introduced by Luttrell [88]. It is stated

by Luttrell that a SAR system undergoing anomalous motion can in first order

be modelled as the defocusing of a simple linear imaging system and can be con-

sidered as “a microwave version of an optical bench experiment using coherent

illumination with the lens misplaced from its correct focus”. The point spread

function derived from Luttrell’s model shall therefore be referred to here as an

optics-based PSF. However, this model may not strictly be accurate for SAR

systems as the physics involved is slightly different. Here we present the simi-

larities and differences between Luttrell’s model and a simple single-parameter

model derived from first principles of radar signal processing. This allows us to

relate Luttrell’s focus parameter θ to the more conventional focus parameter δβ

used by Oliver [106–108]. A more detailed analysis of the radar point spread

function from a focusing point of view is given by Blacknell [7]. This appendix

was published in a shortened form in [78].
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C.2 Radar-based PSF

The precise nature of the radar PSF is dependent on several aircraft and radar

parameters. Where necessary, reasonable values for the parameters have been

assumed and correspond to those used in the work of Oliver [106]. The relevant

parameters are: minimum range R0 = 40 km, wavelength λ = 0.03 m, antenna

length d = 2 m, aircraft velocity vx = 200 ms−1 and synthetic-aperture time T

= 3 s.

For a sideways looking radar traveling in a perfectly straight line the range-

to-target is given by

R2 = R2
0 + x2, (C.1)

where x is the distance traveled by the radar platform from the position of

closest approach. Since x ¿ R0 this may be approximated by

R ≈ R0

(
1 +

x2

2R2
0

)
. (C.2)

The amount the range-to-target differs from the minimum range is then

∆R =
x2

2R0

. (C.3)

If the radar platform is undergoing constant cross-track acceleration ay, there

is an additional displacement of ayt
2/2, where t is the time elapsed since closest

approach. Thus overall the variation in phase with time is

φ(t) =
4π∆R

λ
= (β0 + δβ)t2, (C.4)

where

β0 =
2πv2

x

R0λ
(C.5)

and

δβ =
2πay

λ
. (C.6)

The signal received by the radar for a point target is s(t) = exp(−iφ(t)). The

matched filter output g(t) is given by the cross-correlation of s(t) with a refer-

ence signal h∗(t) = exp(iβ0t
2):

g(t) =
1

T

∫ T/2

−T/2

s(t + τ)h∗(τ)dτ (C.7)

=
1

T

∫ T/2

−T/2

exp
[−i(β0 + δβ)(t + τ)2 + iβ0τ

2
]
dτ (C.8)

=
1

T
exp

[−i(β0 + δβ)t2
] ∫ T/2

−T/2

exp
[−i(β0 + δβ)2tτ − iδβτ 2

]
dτ.(C.9)
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For zero cross-track acceleration δβ=0 and this simplifies to the familiar mod-

ulated sinc function

g(t) = sinc(β0Tt) exp(−iβ0t
2). (C.10)

When the cross-track acceleration is non-zero the integral in (C.9) can be Fourier

transformed to give

I(ω) =
1

T

∫ T/2

−T/2

exp
(−iδβτ 2

) ∫ T/2

−T/2

exp [−i(β0 + δβ)2tτ ] exp(iωt)dtdτ

=

∫ T/2

−T/2

exp
(−iδβτ 2

)
sinc

(
[(β0 + δβ)2τ − ω]

T

2

)
dτ. (C.11)

If π
(β0+δβ)T

¿ 1, which holds well for the parameters used here, the width of the

sinc function is much less than its height and it may be approximated by the

Dirac delta function

sinc

(
[(β0 + δβ)2τ − ω]

T

2

)
≈ π

(β0 + δβ)T
δ

(
τ − ω

2(β0 + δβ)

)
. (C.12)

Using this approximation gives the Fourier domain representation of the integral

as

I(ω) =
π

(β0 + δβ)T
exp

[ −iδβω2

4(β0 + δβ)2

]
. (C.13)

The inverse Fourier transform of this function cannot be evaluated in terms of

simple functions. However, the analytical form when using integration limits

ω = ±W/2 is given by Mathematica 4.0 [157] as

I(t) =

(
π

βT

) (√
π(−1)1/4β

W
√

δβ

)
exp

[
iβ2t2

δβ

]
× ... (C.14)

{
erfi

[
(−1)

3
4 [4β2t− δβW ]

4
√

δββ

]
− erfi

[
(−1)

3
4 [4β2t + δβW ]

4
√

δββ

]}
,

where β = β0 + δβ, erfi(z) = erf(iz)/i and erf(z) = (2/
√

π)
∫ z

0
exp(−t2)dt. This

can be substituted for the integral in (C.9) to give the desired PSF as a function

of time. To obtain the PSF in spatial co-ordinates t is replaced with x/vx.

In practice, for the simulations to be presented, the inverse Fourier transform

has been performed numerically. The numerical result has been verified by

comparing it to the analytic form of the PSF.
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C.3 Optics-based PSF

Luttrell’s model of the point spread function is given in [88] as

g(x) =
1

2c

∫ +c

−c

exp(ikx + iθk2x2)dk. (C.15)

The paper goes on to make a linear approximation valid when |θc2x2| < 1 to

solve this analytically. It is stated that for super-resolution within the main lobe

|x| < π/c and it is required that |θ| < 0.1. However, it should be noted that in

practice the image obtained from a radar will also contain energy in the side-

lobes and either a much smaller value of θ should be used, which would limit the

range of motion that can be accommodated, or the approximation would have

to be be expanded to quadratic or higher orders of θ. If the approximation were

expanded then Luttrell’s autofocus/super-resolution algorithm would no longer

apply because it depends on a PSF linear in θ. It is in fact possible to evaluate

the integral (C.15) in terms of special functions and is given by Mathematica

as:

g(x) =
(−1)3/4e−i/(4θ)

√
π

4c
√

θx
× ... (C.16)

[
erfi

(
(−1)1/4(1− 2cθx)

2
√

θ

)
− erfi

(
(−1)1/4(1 + 2cθx)

2
√

θ

)]
.

Again, the integral has been implemented numerically and verified for the fol-

lowing simulations.

C.4 PSF Comparison

A comparison between the optics model and the radar cross-track acceleration

model was made by setting integration limits such that the -3dB resolution

with no distortion was 1m for both models, setting θ to various values and

then adjusting δβ until the two PSFs had the same first side-lobe level. The

corresponding values of θ and δβ are displayed in Figure C.1 showing a mildly

non-linear relationship between the two focus parameters. From the graph

and using the assumed radar parameters, the residual cross-track acceleration

corresponding to θ=0.1 (the value used in this thesis and [31, 80, 81, 88]) is

4.0×10−3 ms−2.
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Figure C.1: Relationship between focus parameters when matching first side-

lobe levels
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Figure C.2: Comparison of radar and optics PSFs for two levels of defocus
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Examples of the PSFs are shown in Figures C.2a and C.2b where θ=0.02 and

0.10 respectively. For θ=0.02 the level of defocus is low and the two PSFs are

similar both to each other and to a completely focused sinc function (not shown)

for the first few side-lobes. However, at larger distances from the main lobe the

PSFs start to diverge with the optics PSF showing more distortion. For θ=0.10

the PSFs are substantially different. The optics PSF has a much higher level

of distortion and the first side-lobe is no longer the strongest. In comparison,

the radar cross-track acceleration PSF has deteriorated only slightly and is still

similar to a sinc function. The resolution of the two PSFs degraded by about

3.6% for θ = 0.10 and 5.0% for δβ = 0.831s−2.

C.5 Super-resolution Implications

The effect of the differing PSFs is analyzed here using three standard superres-

olution algorithms: matrix inverse (INV), singular value decomposition (SVD)

and thresholded minimum mean square error (MMSE-T). The super-resolution

performance metric used to assess performance was the output signal-to-noise

ratio defined as SNRout = ||f ||2/||̂f − f ||2, where f is the true high-resolution

scene and f̂ is the estimated scene using any particular algorithm. A Monte

Carlo assessment has been carried out using measured SAR data. A high-

resolution target image of 27x33 pixels had its resolution degraded using the

cross-track acceleration PSF with δβ = 0.831s−2 and noise was added at an SNR

of 30dB. Each super-resolution algorithm was then executed using the correct

cross-track acceleration PSF, the optical PSF with the correct first side-lobe

level (θ = 0.10), and a sinc PSF. This was repeated 100 times with different

noise realizations and the mean and standard deviations of the output SNR

were measured.

Results of the assessment are shown in Table C.1. The radar PSF gives the

best performance for SVD and MMSE-T, which are the most reliable algorithms.

This is to be expected as cross-track acceleration is the correct model used in

the simulation. Using the optics PSF gives a worse performance than using a

sinc function. This is because the optics PSF is less similar to the radar PSF

than is the sinc function. Example images before and after super-resolution

using MMSE-T and the radar PSF are shown in Figure C.3.
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Radar PSF Optics PSF Sinc PSF

Algorithm Mean S.D. Mean S.D. Mean S.D.

INV -11.83 1.16 -1.46 0.31 -4.16 1.10

SVD 8.85 0.08 2.14 0.03 8.10 0.11

MMSE-T 10.52 0.44 2.22 0.10 8.19 1.40

Table C.1: Output SNR in dB

(a) Original high-resolution image (b) Low-resolution image

(c) Super-resolved image

Figure C.3: Stages of super-resolution. (a) Original image. (b) blurred low-

resolution image. (c) Super-resolved image.
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C.6 Conclusions

A radar and optics PSF have been compared using analytic expressions and

numerical evaluations for the functions. The effect of using the optics PSF

during super-resolution when the actual PSF is due to cross-track acceleration

was found to be worse than using an idealized sinc function when no cross-track

acceleration is present. Out of the algorithms tested MMSE-T was the best

using the output SNR metric, which confirms previous results [81].

It should be noted that the single-parameter model based on cross-track ac-

celeration may be insufficient to describe realistic motion of an aircraft. If this

were the case, a multi-parameter model would have to be developed. Effects

other than anomalous motion between the radar and target may also alter the

PSF. Phase noise or non-linearities due to imperfections of the radar receiver,

quantization noise and atmospheric phase disturbances all increase side-lobe

levels. Also, scattering centres whose properties vary with frequency and imag-

ing geometry result in non-ideal PSFs. These effects would further reduce the

performance of super-resolution algorithms.
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[66] A. Jalobeanu, L. Blanc-Féraud, and J. Zerubia. Hyperparameter estima-

tion for satellite image restoration using a MCMC maximum-likelihood

method. Pattern Recognition, 35(2):341–352, February 2002.

[67] E. T. Jaynes. Prior probabilities. IEEE Transactions on Systems Science

and Cybernetics, 4(3):227–241, September 1968.

[68] E. T. Jaynes. Confidence intervals vs. Bayesian intervals. In W. L. Harper

and C. A. Hooker, editors, Foundations of Probability Theory, Statistical

Inference, and Statistical Theories of Science, pages 175–257. D. Reidel

Publishing, Dordrecht, Holland, 1976.

[69] E. T. Jaynes. On the rationale of maximum entropy methods. Proceedings

of the IEEE, 70(9):939–952, September 1982.

[70] E. T. Jaynes. Bayesian methods: general background. In J. H. Justice,

editor, Maximum Entropy and Bayesian Methods in Applied Statistics,

pages 1–25. Cambridge University Press, 1985.

[71] S. M. Kay and S. L. Marple. Spectral analysis – a modern perspective.

Proceedings of the IEEE, 69(11):1380–1419, November 1981.

[72] K. T. Kim, J. H. Bae, and H. T. Kim. Effect of AR model-based data

extrapolation on target recognition performance. IEEE Transactions on

Antennas and Propagation, 51(4):912–914, April 2003.

190



BIBLIOGRAPHY

[73] K. T. Kim, D. K. Seo, and H. T. Kim. Efficient radar target recognition

using the MUSIC algorithm and invariant features. IEEE Transactions

on Antennas and Propagation, 50(3):325–337, March 2002.

[74] M. Kirscht. Detection and imaging of arbitrarily moving targets with

single-channel SAR. IEE Proceedings – Radar, Sonar and Navigation,

150(1):7–11, February 2003.

[75] D. E. Kreithen, S. D. Halverson, and G. J. Owirka. Discriminating targets

from clutter. The Lincoln Laboratory Journal, 6(1), 1993.

[76] D. T. Kuan, A. A. Sawchuk, T. C. Strand, and P. Chavel. Adaptive

restoration of images with speckle. IEEE Transactions on Acoustics,

Speech, and Signal Processing, ASSP-35(3):373–383, March 1987.

[77] R. O. Lane. Estimating radar cross section using Bayesian image restora-

tion. Proceedings of the London Communications Symposium, pages 1–4,

September 2003.

[78] R. O. Lane. Super-resolution and the radar point spread function. Pro-

ceedings of the London Communications Symposium, pages 5–8, Septem-

ber 2005.

[79] R. O. Lane. The effects of doppler and pulse eclipsing on sidelobe reduc-

tion techniques. IEEE National Radar Conference, Verona, NY, April

2006.

[80] R. O. Lane, K. D. Copsey, and A. R. Webb. A Bayesian approach to simul-

taneous autofocus and super-resolution. Proceedings of SPIE, 5427:133–

142, April 2004.

[81] R. O. Lane, K. D. Copsey, and A. R. Webb. Assessment of a Bayesian

approach to recognising relocatable targets. NATO RTO SET-096 special-

ists’ meeting on the millimeterwave advanced target recognition and iden-

tification experiment (MATRIX 2005), Oberammergau, Germany, May

2005.

[82] P. M. Lee. Bayesian Statistics, An Introduction. Arnold, London, 2nd

edition, 1997.

191



BIBLIOGRAPHY

[83] J. Li and P. Stoica. Efficient mixed-spectrum estimation with applications

to target feature extraction. 29th Asilomar conference on Signals, Systems

and Computers, 1:428–432, November 1995.

[84] J. Li and P. Stoica. An adaptive filtering approach to spectral estimation

and SAR imaging. IEEE Transactions on Signal Processing, 44(6):1469–

1484, June 1996.

[85] X. Liao and Z. Bao. Radar target recognition using superresolution range

profiles as features. Proceedings of SPIE, 3545:397–400, September 1998.

[86] Z.-S. Liu and J. Li. Implementation of the RELAX algorithm. IEEE

Transactions on Aerospace and Electronic Systems, 34(2):657–664, April

1998.

[87] S. P. Luttrell. Prior knowledge and object reconstruction using the best

linear estimate technique. Optica Acta, 32(6):703–716, June 1985.

[88] S. P. Luttrell. A Bayesian derivation of an iterative autofocus / superres-

olution algorithm. Inverse Problems, 6(6):975–996, 1990.

[89] S. P. Luttrell. The theory of Bayesian super-resolution of coherent im-

ages: a review. International Journal of Remote Sensing, 12(2):303–314,

February 1991.

[90] S. P. Luttrell and C. J. Oliver. Prior knowledge in synthetic-aperture

radar processing. J. Phys. D: Appl. Phys., 19:333–356, 1986.

[91] P. A. C. Marques and J. M. B. Dias. Moving targets in synthetic aperture

images: a Bayesian approach. IEEE International Conference on Image

Processing, 1:685–688, September 2000.

[92] G. T. Maskall. Feature extraction for robust automatic target recognition.

PhD thesis, School of Electronic, Electrical and Computer Engineering,

University of Birmingham, UK, November 2006.

[93] S. Maskell. Sequentially structured Bayesian solutions. PhD thesis, Engi-

neering Department, University of Cambridge, UK, February 2004.

192



BIBLIOGRAPHY

[94] J. Mather. The incremental multi-parameter algorithm. 24th Asilomar

conference on signals, systems and computers, 1:368–372, November 1990.

[95] A. L. McLean. Applications of Maximum Entropy Data Analysis. PhD

thesis, Department of Physics, University of Southampton, UK, Septem-

ber 1995.

[96] R. K. Mehra, A. Gandhe, M. Huff, and B. Ravichandran. A comparison

of superresolution algorithms. Proceedings of SPIE, 3462:252–260, July

1998.

[97] R. K. Mehra, B. Ravichandran, and M. Huff. Survey of radar superres-

olution methods with applications to automatic target recognition. Pro-

ceedings of SPIE, 3374:186–193, April 1998.

[98] A. Mohammad-Djafari, J.-F. Giovanelli, G. Demoment, and J. Idier. Reg-

ularization, maximum entropy and probabilistic methods in mass spec-

trometry data processing problems. International Journal of Mass Spec-

trometry, 215(1):175–193, April 2002.

[99] T. G. Moore, B. W. Zuerndorfer, and E. C. Burt. Enhanced imagery using

spectral-estimation based techniques. The Lincoln Laboratory Journal,

10(2):171–186, 1997.

[100] F. D. Neeser and J. L. Massey. Proper complex random processes with

applications to information theory. IEEE Transactions on Information

Theory, 39(4):1293–1302, July 1993.

[101] D. H. Nguyen, G. R. Benitz, J. H. Kay, B. J. Orchard, and R. Whiting.

Superresolution HRR ATR with high definition vector imaging. IEEE

Transactions on Aerospace and Electronic Systems, 37(4):1267–1286, Oc-

tober 2001.

[102] M. K. Nguyen and A. Mohammad-Djafari. Bayesian approach with the

maximum entropy principle in image reconstruction from microwave scat-

tered field data. IEEE Transactions on Medical Imaging, 13(12):254–262,

June 1994.

193



BIBLIOGRAPHY

[103] L. M. Novak and M. C. Burl. Optimal speckle reduction in polarimetric

SAR imagery. IEEE Transactions on Aerospace and Electronic Systems,

26(2):293–305, March 1990.

[104] L. M. Novak, G. J. Owirka, and C. M. Netishen. Performance of a high-

resolution polarimetric SAR automatic target recognition system. The

Lincoln Laboratory Journal, 6(1):11–24, 1993.

[105] L. M. Novak, G. J. Owirka, and A. L. Weaver. Automatic target

recognition using enhanced resolution SAR data. IEEE Transactions on

Aerospace and Electronic Systems, 35(1):157–175, January 1999.

[106] C. J. Oliver. Synthetic-aperture radar imaging. J. Phys. D: Appl. Phys.,

22:871–890, 1989.

[107] C. J. Oliver. High-frequency limits on SAR autofocus and phase correc-

tion. Int. J. Remote Sensing, 14(3):495–519, February 1993.

[108] C. J. Oliver. The limits on SAR resolution imposed by autofocus uncer-

tainty. Int. J. Remote Sensing, 14(3):485–494, February 1993.

[109] S. C. Park, M. K. Park, and M. G. Kang. Super-resolution image re-

construction: a technical overview. IEEE Signal Processing Magazine,

20(3):21–36, May 2003.

[110] D. Pastina, A. Farina, J. Gunning, and P. Lombardo. Two-dimensional

spectral analysis applied to SAR images. IEE Proceedings – Radar, Sonar

and Navigation, 145(5):281–290, October 1998.

[111] D. N. Pedlar and D. Blacknell. Target delineation and classification using

a region-based active-contour and a support vector machine classifier on

SAR imagery. 5th European Conference on Synthetic Aperture Radar

(EUSAR 2004), Ulm, Germany, pages 141–144, May 2004.

[112] R. P. Perry, R. C. Dipietro, and R. L. Fante. SAR imaging of mov-

ing targets. IEEE Transactions on Aerospace and Electronic Systems,

35(1):188–200, January 1999.

194



BIBLIOGRAPHY

[113] B. Picinbono. Second-order complex random vectors and normal dis-

tributions. IEEE Transactions on Signal Processing, 44(10):2637–2640,

October 1996.

[114] L. C. Pickup, D. P. Capel, S. J. Roberts, and A. Zisserman. Bayes-

ian image super-resolution, continued. In B. Schölkopf, J. Platt, and

T. Hoffman, editors, Advances in Neural Information Processing Systems

19, pages 1089–1096. MIT Press, Cambridge, MA, 2007.

[115] L. C. Potter and R. L. Moses. Attributed scattering centers for SAR ATR.

IEEE Transactions on Image Processing, 6(1):79–91, January 1997.

[116] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery.

Numerical Recipes in C. Cambridge University Press, 2nd edition, 1992.

[117] E. Radoi and A. Quinquis. Superresolution imagery based classification

of some types of scale reduced radar targets. The 31st internationally

attended scientific conference: Modern Technologies in the XXI century,

Bucharest, Romania, November 2005.

[118] E. Radoi, A. Quinquis, F. Totir, and F. Pellen. Automatic radar target

recognition using superresolution MUSIC 2D images and self-organising

neural network. Proceedings of the European signal processing conference,

pages 2139–2142, September 2004.

[119] B. D. Rao and K. V. S. Hari. Performance analysis of ESPRIT and TAM

in determining the direction of arrival of plane waves in noise. IEEE

Transactions on Acoustics, Speech, and Signal Processing, 37(12):1990–

1995, December 1989.

[120] B. Ravichandran and R. K. Mehra. FOPEN radar ATR using superres-

olution and Fishertemplates. Proceedings of SPIE, 3721:253–260, April

1999.

[121] Q. S. Ren and A. J. Willis. High resolution array processing algorithm

for characterisation of extended sources. Electronics Letters, 34(21):2006–

2007, October 1998.

195



BIBLIOGRAPHY

[122] M. A. Richards. Iterative noncoherent angular superresolution. Proceed-

ings of the IEEE National Radar Conference, pages 100–105, April 1988.

[123] T. Ross, S. Worrell, V. Velten, J. Mossing, and M. Bryant. Standard SAR

ATR evaluation experiments using the MSTAR public release data set.

Proceedings of SPIE, 3370:566–573, April 1998.

[124] R. Roy and T. Kailath. ESPRIT–estimation of signal parameters via

rotational invariance techniques. IEEE Transactions on Acoustics, Speech,

and Signal Processing, 37(7), July 1989.

[125] J. J. Sacchini, A. Romano, and W. M. Steedly. Evaluation of single and

full-polarization two-dimensional prony techniques applied to radar data.

Proceedings of SPIE, 2234:91–105, April 1994.

[126] T. K. Sarkar. An ultra-low sidelobe pulse compression technique for high

performance radar systems. IEEE National Radar Conference, pages 111–

114, May 1997.

[127] T. K. Sarkar and O. Pereira. Using the matrix pencil method to estimate

the parameters of a sum of complex exponentials. IEEE Antennas and

Propagation Magazine, 37(1):48–55, February 1995.

[128] T. K. Sarkar, D. D. Weiner, and V. K. Jain. Some mathematical con-

siderations in dealing with the inverse problem. IEEE Transactions on

Antennas and Propagation, AP-29(2):373–379, March 1981.

[129] R. O. Schmidt. Multiple emitter location and signal parameter estimation.

IEEE Transactions on Antennas and Propagation, 34(3):276–280, March

1986.

[130] P. J. Schreier and L. L. Scharf. Second-order analysis of improper complex

random vectors and processes. IEEE Transactions on Signal Processing,

51(3):714–725, March 2003.
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