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On Solving SAR Imaging Inverse Problems
Using Non-Convex Regularisation with a

Cauchy-based Penalty
Oktay Karakuş, Member, IEEE, Alin Achim, Senior Member, IEEE

Abstract

Synthetic aperture radar (SAR) imagery can provide useful information in a multitude of applications, including
climate change, environmental monitoring, meteorology, high dimensional mapping, ship monitoring, or planetary
exploration. In this paper, we investigate solutions to a number of inverse problems encountered in SAR imaging.
We propose a convex proximal splitting method for the optimisation of a cost function that includes a non-convex
Cauchy-based penalty. The convergence of the overall cost function optimisation is ensured through careful selection
of model parameters within a forward-backward (FB) algorithm. The performance of the proposed penalty function is
evaluated by solving three standard SAR imaging inverse problems, including super-resolution, image formation, and
despeckling, as well as ship wake detection for maritime applications. The proposed method is compared to several
methods employing classical penalty functions such as total variation (TV ) and L1 norms, and to the generalised
minimax-concave (GMC) penalty. We show that the proposed Cauchy-based penalty function leads to better image
reconstruction results when compared to the reference penalty functions for all SAR imaging inverse problems in
this paper.

Index Terms

Non-convex regularisation; Convex optimisation; Cauchy proximal operator; Inverse problems; Denoising; Image
reconstruction.

I. INTRODUCTION

SYNTHETIC aperture radar (SAR) is an important remote sensing technology that is capable of providing high-
resolution images of the Earth, during day and night, for various terrains and in challenging conditions, for

example due to adverse weather [1]. Thanks to recent technological developments, new generations of satellites
have been launched and spatial resolutions that were previously unavailable are now offered by space-borne SAR
remote sensing. Despite SAR images reaching resolutions of up to 1m, the image formation process, which is
effected by atmospheric delays and creates speckle noise, still affects the interpretability of acquired data and there
is still scope for improving the quality of the images. It is therefore of significant importance to further improve
SAR image quality to facilitate target detection and tracking, classification, security-related tasks, high dimensional
mapping, maritime, or agricultural monitoring.

The problem of estimating an object of interest directly from the measurements (images) occurs in all imaging
systems. Problems of this type are generically referred to as imaging inverse problems. The measurements and the
forward-model connecting observations and sources are not enough to obtain solutions to these problems directly,
due to their ill-posed nature. Unlike the forward-model which is well-posed almost every time [2], SAR imaging
inverse problems are always ill-posed [3]. Therefore, having prior knowledge about the object of the interest plays
a crucial role in reaching viable solutions in SAR imaging inverse problems. This leads to regularisation based
methods, which have received great attention in SAR applications including super-resolution [4], [5], despeckling
[6]–[8], auto-focusing [9], [10], ship wake detection [11], [12], or image formation/reconstruction [13]–[15].

All these examples involve either a well-known regularisation function, e.g. L1, TV , or some combinations
thereof. Despite its popularity, the L1 norm penalty function tends to underestimate high intensity values, whilst
TV tends to over-smooth the data and may cause loss of details. Non-convex penalty functions can generally lead
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to better and more accurate estimations [16]–[18] when compared to L1, TV , or other convex penalty functions.
Notwithstanding this, due to the non-convexity of the penalty functions, the overall cost function becomes non-
convex, which leads to a multitude of sub-optimal local minima. Convexity preserving non-convex penalty functions
are essential in order to solve this problem, an idea that has been successfully exploited by Blake and Zimmerman
[19], and by Nikolova [20] by setting the penalty function in accordance with the data fidelity term. This was further
investigated in [16], [21]–[26]. Specifically, a convex denoising scheme is proposed with tight frame regularisation
in [21], whilst [22] proposes the use of parameterised non-convex regularisers to effectively induce sparsity of the
gradient magnitudes. In [26], the Moreau envelope is used for TV denoising in order to preserve the convexity
of the TV-based cost function. Finally, the non-convex generalised minimax concave (GMC) penalty function was
proposed in [16] for convex optimisation problems.

In this paper, we propose the use of the Cauchy distribution as a basis for the definition of a non-convex penalty
function in a variational framework for solving SAR imaging inverse problems. The Cauchy distribution is a special
member of the α-stable distribution family (α = 1), which is known for its ability to model heavy-tailed data in
various signal processing applications. It is a sparsity-enforcing prior similar to the L1 and Lp norms [27] and it
has generally been used in denoising applications by modelling sub-band coefficients in transform domains [6],
[28]–[31]. The Cauchy distribution was also used as a noise model in image processing applications, in conjunction
with quadratic [32] and TV norm [33] based penalty terms. Indeed, the approaches presented in [32], [33] preserve
the convexity of the overall cost function while using the Cauchy distribution as data fidelity term rather than as
penalty term as is the case in this paper.

Often, variational Bayesian methods are used to tackle Cauchy regularised inverse problems due to the lack of a
closed-form analytical expression of the corresponding proximal operator. This prevented so far the Cauchy prior
from being used in proximal splitting algorithms such as FB or ADMM. Moreover, having a proximal operator
would make it applicable in advanced Bayesian image processing methodologies such as uncertainty quantification
(UQ) via e.g., proximal Markov Chain Monte Carlo (p-MCMC) algorithms [34], [35].

In a recently submitted contributions [36], we proposed such a proximal splitting algorithm employing a non-
convex Cauchy-based penalty. Specifically, we developed a closed-form expression for the Cauchy proximal operator
similar to the MAP estimator in [37], and derived the necessary conditions (with appropriate proofs) for the Cauchy
model parameters and splitting algorithm step size µ to ensure convergence. Furthermore, we showed the effect of
the choice of the Cauchy scale parameter, γ, on performance, and presented results on generic 1D and 2D signal
reconstruction examples.

In this paper, we extend the work in [36] to advanced SAR imaging inverse problems. We investigate the per-
formance of the proposed method in four different cases, including super-resolution, image-formation, despeckling,
and ship wake detection. We follow the convexity conditions proposed in [36] to guarantee the convergence for
all the examples in this paper. The performance is then evaluated in comparison to methods based on several
state-of-the-art penalty functions, such as L1, TV and GMC. All the minimisation problems are solved via the FB
algorithm proposed in [36] for all the penalty functions considered.

The rest of the paper is organised as follows: Section II introduces the SAR imaging inverse problems considered
in this study, whilst Section III presents the proximal splitting algorithm proposed for solving those problems. In
Section IV, the experimental validation and analysis of the proposed solutions are presented. We conclude our study
by sharing remarks and future work directions in Section V.

II. SAR IMAGING INVERSE PROBLEMS

We begin this section by presenting the generic SAR image formation model, which can be expressed as

Y = AX +N, (1)

where Y denotes the observed SAR data, X is the unknown SAR image, which can also be referred to as the target
image (either an enhanced image or the raw data), A is the forward model operator and N represents the noise.

Since recovering the object of interest X from the observation Y is an an ill-posed problem, we must consider
prior information on X to obtain a stable and unique reconstruction result. Under the assumption of an independent
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and identically distributed (iid) Gaussian noise case, we express the data fidelity term Ψ(·) (i.e. the likelihood) as

Ψ(Y,AX) =
‖Y −AX‖22

2σ2
(2)

where σ refers to the standard deviation of the noise. Having the prior knowledge p(X), the problem of estimating
X from the observed SAR image Y by using the signal model in (1) turns into a minimisation problem

X̂ = arg min
X

F (X), (3)

= arg min
X

{
‖Y −AX‖22

2σ2
− log p(X)

}
(4)

where we define ψ(X) = − log p(X) as the penalty function, and F (X) = Ψ(Y,AX) +ψ(X) is the cost function.
As discussed earlier, the selection of ψ(X) (or equivalently p(X)) plays a crucial role in MAP estimation in order
to overcome the ill-posedness of the problem and to obtain a stable solution. In the literature, depending on the
SAR application, the penalty function ψ(X) has various forms, among others the L1, L2, TV or Lp norms.

In the sequel, details of the four SAR imaging inverse problem examples considered in this paper are discussed.
Table I presents the relationship between the generic inverse problem in (1) and the ones which we express for
each application in the following sub-sections.

TABLE I
THE RELATIONSHIP BETWEEN THE GENERIC INVERSE PROBLEM IN (1) AND APPLICATIONS. (I refers to the identity matrix.)

Inverse Problem Equation Relation
Super-Resolution (5) X ← X Y ← Y A ← DH

Image Formation/Reconstruction (6) X ← f Y ← y A ← Φ

Despeckling (12) X ← Ψ(i) Y ← Γ(i) A ← I

Ship Wake Detection (13) X ← Ω Y ← Π A ← C

A. Super-Resolution

Super-resolution (SR) image reconstruction is a relatively common image processing technique, which seeks to
reconstruct a high-resolution (HR) image through various approaches, starting with either a single or multiple low-
resolution (LR) images [38]. Due to previously mentioned limitations of SAR imagery, various SR methodologies
have been proposed specifically for SAR. These include among others an L1 norm based Bayesian SR methodology
proposed in [39] or a TV regularisation based approach based on a gradient profile prior in a MAP framework in
[40]. In [41], a SR method using wavelet domain interpolation with edge extraction was proposed whilst a dual-tree
complex wavelet transform has been used in [42].

The SR image formation model employed here considers the HR SAR image X being blurred and down-sampled,
corresponding to an observed LR SAR image Y [40] as

Y = DHX +N, (5)

where H models a blurring filter, D represents the down-sampling operator and N is additive white Gaussian noise
(AWGN).

B. Image Formation/Reconstruction

A SAR system transmits a sequence of pulses and then receives echoes back-scattered from the interrogated
surface and targets, which form the raw-data or so-called phase history data. A SAR image f can be modelled as
a linear system under the assumptions of (i) free space propagation, (ii) scalar wavefields, (iii) static targets. The
corresponding linear image formation model is therefore [43]

y = Φf + n, (6)
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where y represents the acquired complex phase history data, Φ refers to the measurement matrix and n is the
additive system noise.

The traditional reconstruction of a SAR scene can be performed using matched-filter based (MF) techniques
by approximating the pseudo-inverse of Φ (filtered adjoint). Moreover, a least squares reconstruction approach
can be used, which employs only a data fidelity term and ignores prior information on f , i.e. the function ψ(·)
[43]. Despite their efficiency, traditional reconstruction techniques necessitate Nyquist rate samples of the echoes
[44]. Considering the ill-posedness of the problem, sparsity, and compressive signal cases with few samples, prior
knowledge on f should be taken into account in order to obtain a unique and stable solution. Hence, regularisation
based techniques are again suitable, as already proposed in the literature based on L1 [43]–[45], TV [14] norms,
or the GMC [15].

C. Despeckling

A common and important problem hampering statistical inferences in SAR imagery is the presence of multi-
plicative speckle noise. In SAR systems, the received back-scattered signals sum up coherently and then undergo
nonlinear transformations. This in turn causes a granular look in the resulting images, which is referred to as
speckle noise. This may lead to loss of crucial details in SAR images and can cause problems in their analysis, e.g.
for feature detection, segmentation or classification [46]–[49]. Over the last three decades, despeckling approaches
were mostly implemented in transform domains, such as the discrete wavelet transform (DWT) [6], [50], [51].
The idea behind these approaches is to apply a direct transform on the observed noisy SAR images, estimate the
speckle-free transform coefficients, and finally apply the inverse transform on the despeckled coefficients [6]. In
the literature, regularisation based approaches have been used in conjunction with SAR despeckling methods with
TV [52], [53] and L1 [54], [55] norms.

Let us consider an observed SAR image G, affected by multiplicative speckle noise, V . We can write

G = SV, (7)

where S is the speckle-free SAR image. The multiplicative speckle image formation model given in (7) is often
transformed into an additive one by taking the logarithm of both sides as

log(G) = log(SV ) (8)

log(G) = log(S) + log(V ) (9)

G̃ = S̃ + Ṽ , (10)

where G̃, S̃ and Ṽ refer to the logarithms of G, S and V , respectively. The DWT is a linear operation. Hence,
when applied to (10) we get additive terms corresponding to noisy wavelet coefficients (Γ(i)) at each resolution
level and for all orientations that can be written as the sum of the transformations of the speckle-free signal (Ψ(i))
and the noise components (ν(i)) as [6]

WG̃ = WS̃ +WṼ , (11)

Γ(i) = Ψ(i) + ν(i), where i = 1, 2, 3. (12)

The despeckling model in this paper is depicted in Figure 1, where blocks W and W−1 represent the forward
and inverse discrete wavelet transform operators.

D. Ship Wake Detection

In SAR images, a moving ship in deep sea typically creates three different types of wakes: (i) turbulent wake:
the central dark streak, (ii) Narrow V-wake: two bright arms lying either side of the turbulent wake, (iii) Kelvin
wake: two outer arms on each side of the turbulent wake, which limit the signatures of the moving ship.

Assuming that ship wakes can be modelled as linear structures, ship wake detection methods are generally based
on the Radon transform, which creates bright peaks in the transform domain for bright lines, and troughs for dark
lines. In the literature, the first Radon transform based ship wake detection method has been proposed by Murphy
[56]. Combining Wiener filtering with the Radon transform, Rey et al. [57] have proposed a method to increase
the detectability of the peaks in Radon domain. Eldhuset [58] proposed a method for detection of ships and wakes
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Fig. 1. Signal-dependent despeckling model in transform domain [6].

automatically, whereby the detection performance is characterised by the number of lost and false wakes. A wavelet
correlators based detection method has been proposed by Kuo and Chen [59] whilst Tunaley [60] proposed a method
based on a restricted search area in Radon domain. Zilman et al. [61] have applied an enhancement operation to
the Radon transform based on ship beam and speed estimation, and developed a SAR image simulator for moving
vessels and their wakes in [62]. Graziano et. al. [63], [64] have proposed a wake detection methodology, based on
noisy SAR images without performing any preliminary enhancement. Karakus et. al. [11], [12] have proposed a
method for ship wake detection, which involves solving an inverse problem based on the GMC penalty function.
Furthermore in [65], the Cauchy based penalty function was used for ship wake detection through a p-MCMC
algorithm. Here, we propose in fact an extension of the work in [65], whereby we use SAR images from several
sources and observe the convergence condition detailed in [36].

Since we model ship wakes as linear features, the SAR image formation model can be expressed based on the
Radon transform as [12]

Π = CΩ +N (13)

where Π is the M ×M SAR image, N is AWGN, C = R−1 is the inverse Radon transform operator. Ω(r, θ) refers
to lines as a distance r from the centre of Π, and an orientation θ from the horizontal axis of Π. We use discrete
operators R and C as described in [66].

III. CAUCHY-BASED REGULARIZATION

In this section, we propose the use of the Cauchy distribution in the form of a non-convex penalty function
for the purpose of solving imaging inverse problems. The Cauchy distribution is one of the special members of
the α-stable distribution family which is known to be heavy-tailed and promote sparsity in various applications.
Contrary to the general α-stable family, it has a closed-form probability density function, which is given by [37]

p(X) ∝ γ

γ2 +X2
(14)

where γ is the scale (or the dispersion) parameter, which controls the spread of the distribution. By replacing p(X)
in (3) with the Cauchy prior given in (14), we have

X̂Cauchy = arg min
X

‖Y −AX‖22
2σ2

− log

(
γ

γ2 +X2

)
, (15)

which is the Cauchy regularised minimisation in X , with the proposed non-convex Cauchy based penalty function

ψ(x) = − log

(
γ

γ2 + x2

)
. (16)

In order to solve the minimisation problem in (15) by using proximal algorithms such as the forward-backward
(FB) or the alternating direction method of multipliers (ADMM), the proximal operator of the Cauchy based penalty
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function should be defined. In a related recent publication [36], we proposed such a closed-form expression for the
proximal operator of the Cauchy based penalty function in (16).

For the Cauchy based penalty function in (16), we write the Cauchy proximal operator as

proxµCauchy(x) = arg min
u

{
‖x− u‖22

2µ
− log

(
γ

γ2 + u2

)}
(17)

The solution to this minimisation problem can be obtained by taking the first derivative of (17) in terms of u
and setting it to zero. Hence we have

u3 − xu2 + (γ2 + 2µ)u− xγ2 = 0. (18)

The solution to the cubic function given in (18) can be obtained through Cardano’s method as [37]

p← γ2 + 2µ− x2

3
, (19)

q ← xγ2 +
2x3

27
− x

3

(
γ2 + 2µ

)
, (20)

s← 3

√
q/2 +

√
p3/27 + q2/4, (21)

t← 3

√
q/2−

√
p3/27 + q2/4, (22)

z ← x

3
+ s+ t. (23)

where z is the solution to proxµCauchy(x).

A. Proximal splitting algorithm

The use of a proximal operator corresponding to the proposed penalty function would enable the use of a proximal
splitting algorithm to solve the optimisation problem in (15). In particular, an optimisation problem of the form

arg min
x

(f1 + f2)(x) (24)

can be solved via the FB algorithm. From the definition [67], provided f2 : RN → R is L-Lipchitz differentiable
with Lipchitz constant L and f1 : RN → R, then (24) can be solved iteratively as

x(n+1) = proxµf1

(
x(n) − µ5 f2(x

(n))
)

(25)

where the step size µ is set within the interval
(
0, 2

L

)
. In our case, the function f2 is the data fidelity term and

takes the form of ‖y−Ax‖
2
2

2σ2 from (15) whilst the function f1 corresponds to the Cauchy based penalty function ψ,
which in [36] we have proved to be twice continuously differentiable.

Observing (15), it can be easily deduced that since the penalty function ψ is non-convex, the overall cost function
is also non-convex in general. Hence, in order to avoid local minimum point estimates, one should ensure convexity
of the proximal splitting algorithm employed. To this effect, we have formulated the following theorem in [36],
which we recall here for completeness.

Theorem 1 (Theorem 2. in [36]). Let the twice continuously differentiable and non-convex regularisation function
ψ be the function f1 and the L-Lipchitz differentiable data fidelity term ‖y−Ax‖22

2σ2 be the function f2. The iterative
FB sub-solution to the optimisation problem in (15) is

x(n+1) = proxµCauchy

(
x(n) − µAT (Ax(n) − y)

σ2

)
(26)

where 5f2(x(n)) = AT (Ax(n)−y)
σ2 . If the condition

γ ≥
√
µ

2
(27)
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holds, then the sub-solution of the FB algorithm is strictly convex, and the FB iteration in (26) converges to the
global minimum.

For the proof of the theorem, we refer the reader to [36]. In order to comply with the condition imposed by
the theorem, two approaches are possible: either the step size µ can be set following estimation of γ directly
from the observations, or the scale parameter γ can be set, for cases when the Lipchitz constant L is computed
or if estimating γ requires computationally expensive calculations. In this paper, we follow the second option, i.e.
(calculate L) → (set µ) → (set γ).

Based on Theorem 1, in Algorithm 1 we provide our proposed FB-based proximal splitting method for solving
(15).

Algorithm 1 Forward-backward algorithm for Cauchy regularised cost function
1: Input: SAR data, Y and MaxIter

2: Input: µ ∈
(
0, 2

L

)
and γ ≥

√
µ
2

3: Set: i← 0 and X(0)

4: do
5: u(i) ← X(i) − µAT (AX(i) − Y )

6: X(i+1) ← proxµCauchy(u
(i)) via (23)

7: i+ +

8: while
‖X(i) −X(i−1)‖
‖X(i−1)‖

> ε or i < MaxIter

The notations in Algorithm 1 are based on the generic inverse problem given in (1) for the Cauchy based penalty
function. For each application discussed in Sections II-A, II-B, II-C and II-D, the generic variables Y , X and the
forward operator A in Algorithm 1 should be substituted with the corresponding variables for the inverse problems
given in (5), (6), (12) and (13) respectively, according to Table I.

Finally, please note that as long as the the data fidelity term is convex and L-Lipchitz differentiable, for the
Cauchy-based penalty function in (16), the FB algorithm proposed here can be replaced by other proximal splitting
algorithms such as (ADMM) or Douglas-Rashford (DR) and convergence is still going to be guaranteed according
to Theorem 1.

IV. RESULTS AND DISCUSSIONS

In this section, we show results obtained when employing our proposed Cauchy proximal operator and cor-
responding splitting algorithm to the four inverse problems introduced in Section II. In the sequel, we describe
separately the simulation experiments and data sets utilised, and discuss the results for each example.

A. Super-Resolution

In the first set of simulations, we investigated the single image super-resolution problem. The data set for these
simulations comprises of five X-band, HH polarised, Stripmap SAR products from TerraSAR-X [68], all of which
of 700×700 pixels. In order to obtain the LR images (of size 350×350), we used the degradation model given in
(5) with a point spread function which was modelled as a symmetric, 5×5 Gaussian low-pass filter with standard
deviation of 2. Down-sampling by a factor of 2 was applied, while the AWGN corresponds to a blurred-signal-to-
noise-ratio (BSNR) of 30dB.

The performance of the proposed super-resolution algorithm was compared to methods based on the L1 and TV
regularisation functions, as well as the standard method of SR by bicubic interpolation. The performance of all
methods was evaluated in terms of the peak signal to noise ratio (PSNR), structural similarity index (SSIM) and
root mean square error (RMSE). In addition to simulations, for subjective evaluation, a real X-band TerraSAR-X
image of size 500×500, representing an urban scene was also utilised, and HR images of size 1000×1000 were
obtained for each method. Results are presented in Table II, and Figures 2 and 3.

From Table II, we can clearly see that our proposed Cauchy based penalty function leads to the highest
PSNR/SSIM and lowest RMSE values for all the images. Even though the results are close for all the methods, the
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TABLE II
SAR SUPER-RESOLUTION PERFORMANCE QUANTIFICATION IN TERMS OF PSNR, SSIM AND RMSE.

PSNR SSIM RMSE

Image-1
Bicubic 24.149 0.617 0.062
L1 25.218 0.599 0.055
TV 25.413 0.640 0.054
Cauchy 25.727 0.686 0.052

Image-2
Bicubic 28.042 0.458 0.040
L1 28.203 0.507 0.039
TV 28.163 0.459 0.039
Cauchy 28.562 0.526 0.037

Image-3
Bicubic 23.851 0.549 0.064
L1 24.641 0.596 0.059
TV 24.626 0.594 0.059
Cauchy 25.048 0.650 0.056

Image-4
Bicubic 22.293 0.492 0.077
L1 23.281 0.568 0.069
TV 23.180 0.542 0.069
Cauchy 23.654 0.616 0.066

Image-5
Bicubic 22.433 0.584 0.076
L1 23.538 0.599 0.067
TV 23.479 0.638 0.067
Cauchy 23.898 0.667 0.064

proposed method achieves a PSNR gain of around 0.5 dBs over the second best method, which is generally either
TV or the L1 regularisation based method. Furthermore, TV and L1 results are similar whilst bicubic results fall
short of all other methods, as expected.

When examining reconstruction results in the enlarged area in Figure 2, it is obvious that the bicubic reconstruction
result is very blurry compared to the others. Furthermore, even though it looks smoother and less noisy than all
other methods, the TV -based SR reconstruction approach discards lots of background details, e.g. sea surface
waves. These structures are clearer in the Cauchy case in Figure 2-(g), which further highlights the reconstruction
performance of the proposed method. Reconstruction results in Figure 3, which correspond to direct SR without
downsampling are visually consistent with those achieved on simulated LR SAR images.

B. Image Formation/Reconstruction

In the second set of simulations, we tested the proposed penalty function in SAR image reconstruction for three
different SAR data sets: (i) GOTCHA volumetric SAR data set [69], (ii) Backhoe Data Dome [70], and (iii) Civilian
Vehicle Data Dome [71].

The Air Force Research Laboratory (AFRL) released GOTCHA data set [69] as a challenge problem for 2D/3D
imaging of targets from a volumetric data set in an urban environment in 2007. The scene includes several targets
and civilian vehicles. The data set consists of fully polarimetric data from 8 passes and covers full 360 degrees
of azimuth. We utilised the data for the pass 1 with HH polarisation and for full azimuth of 360 degrees with
15 degrees separations. The scene has a size of 100 m×100 m with a pixel spacing of 20 cm, which results in a
501×501 pixel SAR image.

The Backhoe data dome data set [70] was also released by the AFRL in 2004 for a synthetically generated data
dome of a backhoe target. The data set consists of 110 degrees azimuth cut between 350 to 100 degrees at 0 and
30 degrees elevations at 6GHz bandwidth. To form the image, we used all 110 degrees azimuth and 0 degrees
elevation. The scene has a size of 10 m×10 m with a pixel spacing of 2 cm, which results in a 501×501 pixel
SAR image.

Civilian Vehicle Data Dome data set [71] was released by the Ohio State University in 2010 and includes a set
of synthetically generated data domes of various civilian vehicles. The data set consists of full 360 degrees azimuth
at 30 and 60 degrees elevations with 5.35GHz bandwidth. We used 30 degrees elevation data for full 360 degrees
azimuth for the civilian vehicles Tacoma, Jeep93 and Camry. The scene has a size of 10 m×10 m with a pixel
spacing of 2 cm, which results in a 501×501 pixel SAR image.
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(a)

(b) (c) (d)

(e) (f) (g)

Fig. 2. Super-resolution results for Image-1. (a) Original image, (b) Cropped original image, (c) Low resolution image, super-resolved
images by (d) Bicubic, (e) L1, (f) TV and (g) Cauchy.

The performance of the proposed method was compared to L1 and GMC regularisation-based methods, as well
as the reconstructed image by the traditional back-projection (BP) method [72]. We used the relative error (RE)
[15], which measures the bias between the reconstructed and matched-filtered results (i.e. the BP results) and is
calculated as [15]

RE =

∣∣∣∣∣10 log10

(
‖X̂‖2

‖XMF ‖2

)∣∣∣∣∣ (28)

where X̂ refers to the reconstructed image and XMF is the back-projected SAR image. The lower the RE value
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(a) (b) (c)

(d) (e)

Fig. 3. Super-resolution results for a real 500×500 SAR Image in (a). 1000×1000 super-resolved images by (b) Bicubic, (c) L1 (d) TV,
(e) Cauchy.

the better the corresponding image reconstruction performance.
From GOTCHA and Backhoe data sets several targets were selected whilst for civilian vehicles the whole vehicle

was selected as a single target for the comparisons performed in this section. These correspond to the red-numbered
rectangles on the images in the first column of Figure 4. All the reconstruction results are given in Figure 4. All
images were normalised between -50 and 0 dbs for a better visual analysis. Table III presents RE values for all the
methods and given targets for each data sets. The measurement matrix Φ given in (6) is the re-projection operation
which was proposed in [43], whilst ΦT is the back-projection operation [72].

On examining Figure 4, for all data sets it is clear that all methods achieve improvements over the traditional
BP technique. Specifically, GMC and Cauchy reconstruction results are very similar, whereas L1 reconstruction
exhibits a slightly worse performance, especially for the GOTHCA (cf. Figure 4-(d)).

For the chosen targets from each data set, Table III shows a better performance for the proposed method over
GMC and L1. It is obvious from the Table III that the GMC and Cauchy based methods achieve very close RE
results, but Cauchy is the one achieving the smallest RE values for most targets. For all the data sets, L1 falls short
in terms of RE values. These results show that the GMC and Cauchy based penalty function can lead to better
estimation than the L1-based approach.

In addition to the smaller RE values and good visual results, the Cauchy based method is also much less
computational expensive than its L1 and GMC counterparts. Specifically, GMC is twice slower than L1 and Cauchy
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Fig. 4. Reconstruction results for Gotcha, Backhoe and Civilian Vehicles (Camry) data sets at 1st, 2nd and 3rd rows, respectively. (a), (e)
and (i) Matched filter. (b), (f) and (j) L1. (c), (g) and (k) GMC. (d), (h) and (l) Cauchy. Numbered rectangles in the first column refer to
targets analysed in terms of RE values in Table III.

in a single iteration, however it converges in less number of iterations than L1, which makes the reconstruction
time for GMC and L1 very similar. Despite having similar duration for a single iteration, the Cauchy based penalty
necessitates around 10-15 iterations to reach the results with corresponding ε value of 10−3, whilst GMC and L1

need around 250-300 and 450-500 iterations, respectively. This is a very significant gain for a single iteration of the
FB algorithm. As an example, for the GOTCHA data set, due to the high number of samples, a single iteration takes
around 55-60 seconds. Overall, The proposed Cauchy based method converges in around 10-12 minutes whilst it
takes around 8 hours for L1 and GMC.

C. Despeckling

In the third set of simulations, the performance of the Cauchy based penalty function in SAR image despeckling
application was tested. Five different speckle-free X-band, HH polarised, Stripmap SAR products from TerraSAR-X
[68] were used, with sizes varying between 700×700 and 900×900 pixels. All five speckle-free SAR images were
then multiplied with log-normal [73] and gamma noise sequences with number of looks, L, chosen to be 5 and 15,
which correspond to a high and a low speckle noise levels, respectively. Speckle images for all noise cases were
processed by using the despeckling method based on L1, TV and Cauchy penalty functions. The performance of
the methods were then compared in terms of PSNR and signal-to-mean squared error (S/MSE) [73] values, which
are given in Table IV. In Figure 5, despeckling results for Image-4 are depicted for Gamma distributed speckle
with L = 5. Figure 6 presents subjective results for a real SAR image with speckle noise.
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TABLE III
PERFORMANCE COMPARISON IN TERMS OF RE VALUES FOR VARIOUS TARGETS.

Data set Target L1 GMC Cauchy

Gotcha

T1 0.671 0.140 0.129
T2 4.068 0.726 0.701
T3 1.416 0.346 0.308
T4 4.254 0.539 0.514
T5 6.279 0.950 0.933
T6 4.179 0.065 0.084
T7 5.414 0.780 0.781

Backhoe

T1 0.396 0.358 0.351
T2 0.096 0.051 0.044
T3 0.092 0.068 0.061
T4 0.850 0.846 0.836
T5 0.102 0.097 0.089
T6 0.038 0.019 0.012

Civilian Vehicle
Tacoma 0.154 0.134 0.120
Jeep93 0.843 0.781 0.782
Camry 0.408 0.374 0.370

TABLE IV
SAR DESPECKLING PERFORMANCE COMPARISON FOR VARIOUS IMAGES AND DIFFERENT SIMULATED SPECKLE NOISE.

Gamma Speckle Lognormal Speckle
L = 5 L = 15 L = 5 L = 15

PSNR S/MSE PSNR S/MSE PSNR S/MSE PSNR S/MSE

Image-1

Noisy 18.767 6.989 23.372 11.758 18.891 6.997 23.419 11.766
L1 17.417 6.270 18.088 6.942 17.523 6.376 18.105 6.959
TV 22.364 11.218 23.317 12.172 22.561 11.416 23.337 12.192
Cauchy 22.370 11.051 25.087 13.804 22.783 11.454 25.178 13.895

Image-2

Noisy 15.829 6.990 20.080 11.764 16.179 6.994 20.210 11.762
L1 13.239 6.172 13.878 6.813 13.336 6.269 13.891 6.826
TV 16.746 9.680 17.576 10.511 16.895 9.830 17.592 10.527
Cauchy 18.284 10.746 20.654 13.241 18.669 11.112 20.732 13.318

Image-3

Noisy 15.595 6.989 19.997 11.761 15.850 6.987 20.038 11.759
L1 14.197 6.088 14.818 6.709 14.290 6.180 14.833 6.724
TV 18.610 10.501 19.375 11.266 18.761 10.651 19.389 11.280
Cauchy 18.810 10.667 21.211 13.096 19.172 11.025 21.282 13.166

Image-4

Noisy 16.683 6.988 21.009 11.761 17.003 6.987 21.146 11.759
L1 13.563 5.789 14.098 6.325 13.645 5.870 14.108 6.335
TV 16.010 8.238 16.547 8.775 16.108 8.336 16.556 8.784
Cauchy 17.993 9.831 19.730 11.705 18.289 10.116 19.777 11.754

Image-5

Noisy 16.180 6.995 20.317 11.759 16.533 6.991 20.433 11.762
L2 14.119 6.417 14.836 7.134 14.228 6.525 14.849 7.147
TV 19.939 12.238 21.185 13.484 20.183 12.482 21.206 13.505
Cauchy 19.547 11.512 22.628 14.734 20.013 11.961 22.741 14.840

Table IV shows that the proposed penalty function achieved the best despeckling results for both L values and
both speckle noise cases, for all but Image-5. TV achieved better results for Image-5 for L = 5. When examining
the visual results in Figure 5, we can clearly see that the proposed method both reconstructs various structures in
the image, and shows similar characteristics to the original speckle-free SAR image shown in Figure 5-(a) when
compared to TV . Even though TV preserves building structures, as can be seen from the results in Figure 5-(d)
and 5-(i), it discards a multitude of background details and leads to a very blurry final result.

In Figure 5-(k), (l) and (m), we show ratio images corresponding to element-wise division of the original SAR
image by each despeckled image result. On examining these figures, we can clearly see that the result obtained
using the TV penalty includes a high number of image structures, which is indicative of poor performance in terms
of structure preservation. L1- and Cauchy-based results include less structures, with the former again coming across
as the best.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m)

Fig. 5. Despeckling results for Image-4 under Gamma speckle with L = 5. (a) and (f) Original image, (b) and (g) Speckle image, (c) and
(h) L1, (d) and (i) TV, (e) and (j) Cauchy. (k), (l) and (m) are ratio images for L1, TV and Cauchy, respectively. Images on the second row
represent zoomed-in images of the rectangle given in (a).

Finally, when examining Figure 6, which corresponds to a real SAR image, similar to the simulated speckle
situation, it is obvious that the Cauchy-based method outperforms both reference methods.

D. Ship Wake Detection

For the final set of simulations, we studied the suitability of the Cauchy-based penalty function as a building
block of a method for ship wake detection in maritime applications. Eleven different SAR images of the sea
surface containing ship wakes, from four different satellite platforms, namely TerraSAR-X (3), COSMO-SkyMed
(4), Sentinel-1 (2) and ALOS2 (2) were used. We then used these 11 wake images in the inverse problem formulation
discussed in Section II-D, followed by the ship wake detection procedure described in [12].

For comparison, we chose the two best performing regularisation functions in [12], which include the GMC
and TV , and compared their wake detection performances with the proposed Cauchy based penalty function. For
objective evaluation of the detection results, we used the receiver operation characteristics (ROC) of true positive
(TP), true negative (TN), false positive (FP) and false negative (FN) as well as other common classification metrics
such as accuracy, the F1 score, positive likelihood ratio (LR+) and Youden’s J index [12]. In Table V, we present
the results over all data sets in terms of the metrics defined above, whilst the visual evaluation of wake detection
for a single image is illustrated in Figure 7.

The proposed method outperforms the reference methods by at least 3% in terms of accuracy and to various
degree in terms of the other performance metrics presented. Specifically, the GMC TP (correct detection) value is
higher than that of Cauchy, however the Cauchy based penalty function leads to higher TN (correct discard) and
less FP (false detection) values than the others, which makes it the most suitable method in ship wake detection
overall.

In Figure 7, we provide visual results to assess ship wake detection performance. In Figure 7-(a) the original
image (re-centred on the ship) is shown. There are three detected wakes, which are the turbulent wake, one arm
of the narrow V-wake and one Kelvin arm as shown in Figure 7-(b). GMC and TV detected all five hypothetical
wakes, resulting in a 60% detection accuracy for each (two false detections), whilst the Cauchy result shows that
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k)

Fig. 6. Visual despeckling results for a real SAR image. (a) and (e) Speckle image, (b) and (f) L1, (c) and (g) TV, (d) and (h) Cauchy.
(i), (j) and (k) are ratio images for L1, TV and Cauchy, respectively. Images on the second row represent zoomed-in image of the rectangle
given in (a).

it detects correctly 2 visible wakes (TP) and discards two invisible wakes (TN), with a false discard (FN) for the
visible Kelvin arm, which corresponds to an 80% detection accuracy.

V. CONCLUSIONS

In this paper, we proposed the use of a proximal splitting algorithm which remains convex when used in
conjunction with a non-convex Cauchy based penalty function for solving several SAR imaging inverse problems.
We followed the conditions defined in our previous work [36] to guarantee convergence by establishing a relationship
between the Cauchy scale parameter γ and the proximal splitting algorithm step size parameter µ.

We illustrated the proposed proximal splitting method in four different SAR imaging inverse problems, including
super-resolution, image formation, despeckling and ship wake detection. In addition to presenting an easy-to-
implement methodology for the use of the Cauchy based penalty function, we also demonstrated its superiority for
all the examples considered. The Cauchy based penalty function achieved better image reconstruction performance
compared to all alternative penalty functions investigated, including L1, TV and the GMC function.
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