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ABSTRACT 

Contourlet Domain Image Modeling and its Applications in 

Watermarking and Denoising 

Hamidreza Sadreazami, Ph. D. 

Concordia University, 2016. 

 

Statistical image modeling in sparse domain has recently attracted a great deal of 

research interest. Contourlet transform as a two-dimensional transform with multiscale 

and multi-directional properties is known to effectively capture the smooth contours and 

geometrical structures in images. The objective of this thesis is to study the statistical 

properties of the contourlet coefficients of images and develop statistically-based image 

denoising and watermarking schemes. 

Through an experimental investigation, it is first established that the distributions 

of the contourlet subband coefficients of natural images are significantly non-Gaussian 

with heavy-tails and they can be best described by the heavy-tailed statistical 

distributions, such as the alpha-stable family of distributions. It is shown that the 

univariate members of this family are capable of accurately fitting the marginal 

distributions of the empirical data and that the bivariate members can accurately 

characterize the inter-scale dependencies of the contourlet coefficients of an image.  

Based on the modeling results, a new method in image denoising in the contourlet 

domain is proposed. The Bayesian maximum a posteriori and minimum mean absolute 
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error estimators are developed to determine the noise-free contourlet coefficients of 

grayscale and color images. Extensive experiments are conducted using a wide variety of 

images from a number of databases to evaluate the performance of the proposed image 

denoising scheme and to compare it with that of other existing schemes. It is shown that 

the proposed denoising scheme based on the alpha-stable distributions outperforms these 

other methods in terms of the peak signal-to-noise ratio and mean structural similarity 

index, as well as in terms of visual quality of the denoised images.  

The alpha-stable model is also used in developing new multiplicative watermark 

schemes for grayscale and color images. Closed-form expressions are derived for the log-

likelihood-based multiplicative watermark detection algorithm for grayscale images using 

the univariate and bivariate Cauchy members of the alpha-stable family. A multiplicative 

multichannel watermark detector is also designed for color images using the multivariate 

Cauchy distribution. Simulation results demonstrate not only the effectiveness of the 

proposed image watermarking schemes in terms of the invisibility of the watermark, but 

also the superiority of the watermark detectors in providing detection rates higher than 

that of the state-of-the-art schemes even for the watermarked images undergone various 

kinds of attacks. 
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CHAPTER 1 

Introduction 

1.1  General 

Multiscale image analysis is known to be useful and indispensable to the field of image 

processing [1]. Depending on the requirements of an application, a variety of multiscale 

and multi-resolution transforms have been used. Signals can be effectively projected 

using these transforms. The wavelet transform is by far the most prevalent transformation 

in signal processing offering a multiscale and multi-resolution signal representation. In 

many applications such as classification, denoising, texture retrieval, restoration and 

watermarking, it has led to the development of very efficient algorithms, for instance, 

those in JPEG 2000 and video codecs [2]. This transform also offers sparsity and 

localization features to the transformed signals. However, the wavelet transform provides 

an optimal representation only to one-dimensional (1-D) piecewise smooth signals [3]. A 

direct extension of wavelets to higher dimensions by the tensor product of 1-D wavelets 

does not provide an optimal representation to multidimensional signals such as images. 

This is because of the intrinsic geometrical structure of typical natural images [3], [4]. In 

other words, the separable wavelets are optimal only in representing point discontinuities 

in two-dimensional (2-D) signals, but not optimal in capturing line discontinuities, which 

correspond to directional information in images. This is in view of the fact that 2-D 

wavelet transforms provide a limited number of directions resulting in capturing only 

partial directional information from images. In order to overcome this deficiency of the 

wavelet transform for 2-D signals, the contourlet transform has been proposed in [4] as a 
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new image decomposition scheme that provides an efficient representation for 2-D 

signals with smooth contours. The contourlet transform not only has the multiscale and 

time-frequency localization features of the wavelet transform, but it offers a higher 

degree of directionality with better sparseness, and as such, outperforms the wavelet 

transform [4]. The contourlet transform also recognizes the smoothness of the contour in 

images. There are a number of other multiscale representations such as the dual-tree 

complex wavelet transform [5], ridgelet transform [6] and curvelet transform [7]-[9] that 

also provide multiscale and directional image representation. However, the contourlet 

transform can provide a flexible number of directions in each subband, and in this regard, 

this transform is superior to the complex wavelet transforms. Compared to the curvelet 

transform, the contourlet transform is preferred, since it is defined on rectangular grids 

and offers a seamless translation to the discrete world [4]. Moreover, the contourlet 

transform has a 2-D frequency partitioning on concentric rectangles rather than on 

concentric circles as in the case of the curvelet, and hence, overcomes the blocking 

artifact deficiency of the curvelet transform. Further, due to the use of iterated filter 

banks, the contourlet transform is computationally more efficient than the curvelet 

transform. In view of the above properties, the contourlet transform has become a 

suitable candidate in many image processing applications.  

Images are often corrupted by noise during the acquisition and transmission processes, 

leading to significant degradation of image quality for the human interpretation and post-

processing tasks. Therefore, denoising is essential for images not only to improve the 

image quality, but also to proceed with further data analysis. It is required to preprocess 

images and remove the noise while retaining as much as possible the important image 
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features. Therefore, finding a better image denoising algorithm is of the utmost 

importance. In view of the properties of the contourlet transform, an image denoising 

problem can be effectively addressed in the contourlet domain. 

With the huge amount of transferred data over the internet, the duplication of digital 

images has created a new set of challenging problems in digital world. Watermarking is 

regarded an indispensable requirement for copyright protection, authentication and 

ownership verification of all kinds of data especially images which is more prone to be 

copied, counterfeited and shared. Through invisible insertion of an auxiliary signal in 

digital images, one can potentially solve the piracy and ownership problems. This 

auxiliary signal should remain intact under any intentional or unintentional distortions, 

allowing us to protect the ownership rights in digital images. Therefore, finding a robust 

watermarking scheme is desirable. In view of the above-mentioned properties of the 

contourlet transform, a watermarking scheme in the contourlet domain can be a good 

solution for the robustness problem.     

Many problems in image processing require a prior probability model of images. This is 

true for a wide range of applications in which measurements and observations are 

regarded as stochastic processes. In these applications, the theoretical limits of an 

algorithm can be overcome by a prior model of the underlying signal. For images, a 

statistical model is considered as a particular prior probability model for the underlying 

frequency domain coefficients for capturing certain characteristics of an image in a small 

number of parameters so that they can be used as prior information in image processing 

tasks [10]. Statistical modeling of images in the transform domain has recently attracted 
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much research interests, since understanding the statistical properties of transform 

domain coefficients may result in developing new algorithms for image processing tasks.  

This thesis is concerned with the modeling of the contourlet coefficients of images and its 

application in on image denoising and image watermarking.   

 

1.2  A Brief Literature Review on Image Denoising and Watermarking 

in the Contourlet Domain 

Many image denoising and watermarking schemes have been recently investigated in the 

contourlet domain.  

In image denoising applications, it has been shown that the removal of the noise 

performed in the contourlet domain is superior to those conducted in the wavelet domain 

[11], [12]. Most of the image denoising algorithms in the contourlet domain have been 

developed based on the thresholding or shrinkage functions [11] in which the coefficients 

with small magnitudes are simply set to zero, while the rest are kept unchanged in the 

case of hard-thresholding, and shrunk in the case of soft-thresholding. In recent years, 

statistical models have been adopted for the transform domain coefficients in which the 

image and noise are modeled as random fields and Bayesian methods are employed to 

develop shrinkage functions for the estimation of the noise-free coefficients from the 

noisy observations [12]. It is to be noted that the prior distributions for the original image 

and the noise have considerable effect on the performance of the denoising algorithm. 

Several prior distributions have been employed to characterize the transformed 

coefficients of images [15]-[21]. The contourlet transform has been considered to be a 
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decorrelator for images, and thus the transform domain coefficients have been assumed to 

be independent and modeled by using marginal statistics such as the generalized 

Gaussian (GG) distribution [3]. However, these distributions are not capable of 

accurately capturing the peak and tails of the empirical distribution [15]. Moreover, the 

contourlet coefficients of an image have been shown to have across scale dependencies 

with their parents and children [3]. Therefore, it is necessary to consider the inter-scale 

dependencies of the contourlet coefficients in order not only to capture the heavy tails of 

the distribution of the contourlet coefficients, but also to take into account the contourlet 

coefficient dependencies across the scales. The Bayesian estimators utilizing such priors 

can then be developed for denoising purposes.  

In watermarking applications, there exist several studies in which embedding procedure 

is performed in a transform domain such as in the discrete Fourier transform (DFT) [22], 

[23] discrete cosine transform (DCT) [24]-[26] and discrete wavelet transform (DWT) 

[27]-[29]. Recently, a number of watermarking schemes have been proposed, wherein the 

watermark is embedded into the contourlet coefficients of the image [14]. In view of the 

above-mentioned properties of the contourlet transform, several algorithms have been 

developed suggesting that the performance of the contourlet-domain watermarking 

algorithms is superior to those based on other frequency-domain watermarking 

algorithms in terms of their resilience to common image processing attacks and the 

invisibility of the embedded watermark [14], [30]-[35]. The most commonly used 

detector for the frequency domain watermarking schemes is the correlation-based 

detector, which is optimal only if the data samples follow the Gaussian distribution 

function [37]. If these data samples are not Gaussian, optimal or sub-optimal detectors 
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are developed by modeling the frequency domain coefficients using non-Gaussian 

probability density functions (PDF), such as the Laplacian [28] Student-t [36], and GG 

distributions [13], [24], [37], [38]. 

Since the distribution of the contourlet domain coefficients of images have large peaks 

around zero and tails heavier than that of a Gaussian PDF, an appropriate choice of the 

distribution to model the statistics of the contourlet coefficients would be the one having 

a heavy-tailed PDF. For this purpose, in [13], an attempt has been made to model the 

contourlet coefficients using the GG distribution. However, this PDF still cannot provide 

an accurate fit to the empirical density function of the images in the transformed domain 

[15] and thus, the performance of image denoising and watermarking schemes based on 

the GG PDF is not sufficiently satisfactory [14].    

 

1.3  Objective and Organization of the Thesis 

The objective of this thesis is to study the properties of the contourlet subband 

coefficients of images through their suitable statistical modeling and apply this model in 

developing efficient algorithms for image denoising and watermarking.  

Various existing distributions are examined from the viewpoint of their suitability to 

model the contourlet image coefficients. It is shown that the distribution of the contourlet 

subband coefficients of images is highly non-Gaussian, i.e., the tails of the distribution 

are heavier and the peak is sharper than a Gaussian PDF. This non-Gaussian behavior of 

the distribution of the contourlet coefficients of images and its comparison with various 

other PDFs, leads to the modeling of the contourlet coefficients of images using the 

alpha-stable family of distributions in this investigation. It is established that the 
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univariate members of this family are capable of accurately fitting the marginal 

distribution of the empirical data and that the bivariate members accurately characterize 

the inter-scale dependencies of the contourlet coefficients of an image. Based on these 

modeling results, statistical estimation and detection techniques are developed for image 

denoising and watermarking applications. The Bayesian maximum a posteriori and 

minimum mean absolute error based denoising algorithms are developed to obtain the 

noise-free contourlet coefficients of grayscale and color images as well as synthetic 

aperture radar images. A spatially-adaptive method using the fractional lower order 

moments is proposed to estimate the parameters of the model. Next, blind watermark 

detectors in the contourlet domain are designed by using the univariate and bivariate 

alpha-stable distributions. The closed-form expressions are derived for the log-likelihood-

based multiplicative watermark detection algorithm for grayscale images using the 

univariate and bivariate Cauchy members of the alpha-stable family. A multiplicative 

multichannel watermark detector is also designed for color images using the multivariate 

Cauchy distribution. 

The thesis is organized as follows. 

In Chapter 2, a brief introduction of the contourlet transform is presented. It is 

shown that a number of advantages can be drawn from the use of the contourlet transform 

over that achieved using other multi-scale and multi-dimensional transforms. The 

statistical properties of the contourlet coefficients of images are studied showing that the 

contourlet coefficients follow a non-Gaussian distribution with heavy tails. The alpha-

stable family of distributions provides a more accurate fit to the empirical data than that 

provided by other non-Gaussian distributions. 
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Based on the modeling results, a novel image denoising scheme in contourlet 

domain is proposed in Chapter 3 by using the alpha-stable family of distributions. Both 

the univariate and bivariate distributions are considered for the contourlet coefficients in 

order to remove the noise from images. In order to estimate the noise-free contourlet 

coefficients, Bayesian MAP and MMAE estimators are developed. To estimate the 

unknown parameters of the alpha-stable distribution more accurately, a new parameter 

estimation method based on the fractional lower order moments of the empirical data is 

proposed. An extension of the proposed denoising scheme to color images, is also carried 

out by taking into account the dependencies between the RGB color channels. The 

proposed denoising scheme based on the alpha-stable distribution is compared to other 

existing methods in terms of the peak signal-to-noise ratio and mean structural similarity 

index, as well as in terms of the visual quality of the denoised images. 

          In Chapter 4, despeckling of SAR images in the contourlet domain is studied. In 

order to remove the multiplicative speckle noise from SAR images, a homomorphic 

filtering-based method is proposed wherein the alpha-stable PDF is used as a prior for 

describing the log-transformed contourlet coefficients. A Bayesian MAP estimator using 

the symmetric alpha-stable distribution is designed to estimate the noise-free coefficients. 

Simulations are conducted using synthetically-speckled and real SAR images, and the 

performance of the proposed method using the MAP estimator is evaluated. 

In Chapter 5, a novel blind image watermarking scheme in the contourlet domain 

is proposed. Watermark detectors in the contourlet domain using the univariate and 

bivariate alpha-stable distributions are designed. Watermark detectors based specifically 

on the univariate and bivariate Cauchy members of the alpha-stable family, which lead to 



 9

closed-form expressions for the test statistics, are also designed. The detectors based on 

the alpha-stable distribution and its Cauchy member are then evaluated against various 

kinds of attacks and compared to that of the GG-based detector. 

In Chapter 6, a new color image watermarking scheme is presented and a 

multichannel multiplicative watermark detector for color images in the contourlet domain 

is designed. In order to take into account the cross-correlation that exist between the 

coefficients of the color bands, a statistical model based on the multivariate Cauchy 

distribution is presented. The performance of the multivariate Cauchy-based detector is 

evaluated by conducting several experiments and the results are compared to that of the 

other existing detectors for color images.  

Finally, some concluding remarks and scope for further research are presented in 

Chapter 7.  



 10

CHAPTER 2 

Contourlet Transform of Images and Modeling of its 

Coefficients   

 

2.1 Introduction 

Wavelet transform has been established as a tool for generating efficient representations 

for piecewise continuous 1-D signals. Natural images consist of 1-D piecewise smooth 

lines as well as many discontinuity points along smooth contours. However, separable 

wavelets cannot efficiently capture directional information in 2-D signals. To overcome 

this deficiency, many directional image representations have been proposed to find new 

two-dimensional transforms such as steerable pyramid [39], brushlets [40], complex 

wavelets [5], and curvelet [8], that can better capture the geometrical structures of edges. 

Candes and Donoho initially developed the curvelet transform [7] in the continuous 

domain via multiscale filtering followed by applying the ridgelet transform on each 

bandpass image. These authors later proposed a second generation of the curvelet 

transform [8] that was defined through frequency partitioning without employing the 

ridgelet transform. Both the curvelet constructions are established on a 2-D frequency 

partitioning based on the polar coordinates. This converts the curvelet transform simple 

to the continuous domain, but causes the implementation for discrete images, sampled on 

a rectangular grid, to be very challenging. In particular, achieving critical sampling is 

difficult in such a discretized construction. Inspired by the curvelets, the contourlet 
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transform has been developed by Do and Vetterli [4] directly in the discrete domain by 

employing non-separable filter banks. This transform is defined on a rectangular grid, and 

thus it has 2-D frequency partitioning on concentric squares, rather than on concentric 

circles as in the case of the curvelet. Contourlet transform not only possesses the main 

features of wavelets, such as time-frequency localization, but also offers a richer degree 

of directionality and anisotropy [4]. The difference between the contourlet transform and 

other multiscale directional transforms is that the contourlet transform allows a flexible 

number of directions at each scale. The contourlet transform can effectively capture 

smooth curves and contours that are the main features in natural images. This transform 

consists of two stages: the Laplacian pyramid filters are used as the first stage and 

directional filter banks as the second one. 

In view of the appealing characteristics of the contourlet transform in capturing both the 

geometric structures and smooth contours in images, it has received considerable 

attention in recent years and has been regarded an alternative to other multi-resolution 

transforms in many image processing applications such as feature extraction, text 

retrieval, image denoising, image watermarking and feature extraction [13], [41], [42]. In 

view of this, in this chapter, first a brief introduction of the contourlet transform is given 

and then the statistical characteristics of the contourlet subband coefficients of images are 

comprehensively studied [15], [43]. The contourlet coefficients within a subband is 

shown to have highly non-Gaussian properties. In view of this, in order to model the 

distribution contourlet coefficients of images, we propose using the alpha-stable family of 

distributions. The modeling performance of this distribution is then investigated in details 

and compared to that of the previously-used models in the contourlet domain.  



 12

2.2 Contourlet Transform 

2.2.1 Laplacian Pyramid 

Multiscale data representation is known to be a powerful tool in many applications. It can 

capture data in a hierarchical manner where each level corresponds to a lower resolution 

approximation. One way of achieving a multiscale decomposition for images is to use a 

Laplacian pyramid [44] which has been used in many applications. It is known that the 

major feature of the Laplacian pyramid representation is that, it is oversampled or 

redundant, i.e., there are more coefficients after the Laplacian pyramid analysis than the 

pixels in the input image. This feature is desirable in many applications such as image 

denoising and watermarking, and undesirable in image compression. 

The Laplacian pyramid has analysis and synthesis processes. The Laplacian pyramid 

decomposition at each level generates a sampled lowpass version of the input image of a 

certain size and the difference between the input and the prediction, resulting in residual 

signal, i.e., the prediction error. The process may be iterated on the coarse version. A 

lowpass compression filter is employed to obtain the coarse coefficients that approximate 

the original image and a lowpass prediction filter is used to predict the input image from 

the coarse coefficients. Typically, for reconstruction, the image is obtained by adding 

back the difference to the prediction from the coarse image. Analysis and synthesis parts 

of the Laplacian pyramid are shown in Figure 2.1(a) and Figure 2.1(b), respectively. The 

Laplacian pyramid decomposition at each step generates a sampled lowpass version of 

the original and the difference between the original and the prediction, resulting in a 

bandpass image. An example of applying the Laplacian pyramid to the Barbara image is 

shown in Figure 2.2. In this figure five scales are considered in which there is one 
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lowpass and one bandpass image. A drawback of the Laplacian pyramid is the inherent 

oversampling, i.e., the number of coefficients after applying the Laplacian pyramid is 

greater than the number of pixels of the original image which means the Laplacian 

pyramid is a redundant image representation [45]. Despite this redundancy, Laplacian 

pyramid is preferred over critically sampled wavelet scheme for some primary reasons. 

First, it is simpler as it requires only a pair of lowpass filters. Second, the Laplacian 

pyramid has the distinctive feature that each pyramid level generates only a bandpass 

image, which does not have “scrambled” frequencies [4]. 
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(a) 

 
 
 
 

 
(b) 

 
Figure 2.1. a) Analysis part of the Laplacian pyramid; the outputs are a coarse 
approximation and a residual between the original image and the prediction. b) Synthesis 
part of the Laplacian pyramid. 
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Figure 2.2. Five levels of decomposition using the Laplacian pyramid. In each level, there 
is a lowpass and a bandpass part. 
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The frequency scrambling happens in the usual wavelet scheme when highpass filtering 

and downsampling are performed. It is the folding back of the high frequency band into 

the low frequency band, and thus the spectrum is reflected. In the Laplacian pyramid, this 

effect is avoided by downsampling only the lowpass channel, and not the highpass 

channel. Consequently, the Laplacian pyramid permits further subband decomposition to 

be applied to its bandpass images. The bandpass images can be fed into the next level of 

process so that more information such as geometrical information can be captured [3]. In 

the contourlet transform the next level is called the directional filter bank, which is 

applied to each single bandpass image.  

 

2.2.2 Directional Filter Bank 

The directional filter bank has been introduced in [46] where the individual channels are 

critically sampled without no information loss. In other words, the directional filter bank 

can be realized by decomposing an image into angular components which are maximally 

decimated while still allowing the original image to be fully reconstructed from its 

decimated channels. The directionally-oriented representation implemented by the 

directional filter bank is very useful for the applications exploiting aspect of visual 

perception, since retina and visual cortices have cells with directional selectivity [47].  

The directional filter bank can be used in applications such as feature extraction, image 

enhancement, image watermarking and image denoising. The key idea of the directional 

filter bank is to divide the frequency plane into many frequency directions. The frequency 

plane partitioning of a directional filter bank with sixteen subbands in each scale is shown 

in Figure 2.3.  
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Figure 2.3. An example of possible frequency partitioning by the contourlet transform. 
 

 

The directional filter bank is a maximally-decimated and perfect reconstruction filter 

bank. This means that the total number of subband coefficients is the same as the pixels 

of the original image, and are used to reconstruct the original image without any error. 

The directional filter bank is implemented by a decomposition tree structure of two-band 

systems. The wedge-shaped frequency partition of a directional filter bank is realized by 

an appropriate combination of directional frequency partitioning by the two-channel 

filters [3], [4], [46]. 
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2.2.3 Pyramidal Directional Filter Bank 

The directional filter bank is intended to capture the high frequency components and 

represent the directionality of an image. On the other hand, the low frequency 

components may be poorly handled by this filter bank. In fact, with the frequency 

partition shown in Figure 2.3, low frequencies leak into many directional subbands, and 

hence the directional filter bank may not provide a sparse representation for images. In 

view of this, the low frequency components must be removed before applying the 

directional decomposition. This provides a logical reason to combine the directional filter 

bank with a multiresolution scheme. As discussed, the Laplacian pyramid permits further 

subband decomposition to be applied on its residual images. These residual images can 

be fed into a directional filter bank so that directional information are efficiently 

captured. The scheme can be iterated repeatedly on the coarse image as shown in Figure 

2.4. The result is a double iterated filter bank structure, named pyramidal directional filter 

bank (PDFB), which decomposes an image into directional subbands at multiple scales. 

The scheme is flexible since it allows for a different number of directions at each scale. 

Image reconstruction is done using a procedure that is inverse of the decomposition 

procedure. 
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(a) 
 
 

 
(b) 

 
Figure 2.4. Block diagram of the contourlet filter bank structure. a) In analysis, the 
Laplacian pyramid is applied to the original image in order to have multiscale 
decomposition where the coarse image, denoted by “L”, is iteratively subsampled and 
each residual image, denoted by “R”, is fed into directional filter bank to obtain 
directional information. The scheme is flexible since it allows for a different number of 
directions at each scale. b) In synthesis, the original image is reconstructed using the 
same filters for Laplacian pyramid as in analysis part. 
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With perfect reconstruction Laplacian pyramid and directional filter bank, the PDFB is 

obviously perfect reconstruction. It should be pointed out that there are other multiscale 

and directional decompositions such as the cortex transform [48] and the steerable 

pyramid [39]. However, PDFB differs from those in that it allows different number of 

directions in each scale. An example of applying the PDFB to Barbara image is shown in 

Figure 2.5. The image is first decomposed into two pyramidal levels followed by eight 

and four directional subbands. 

 

 

 
 
 
Figure 2.5.   Contourlet representation of the Barbara image. The original image is first 
decomposed into two pyramidal levels followed by eight and four directional subbands. 
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2.3 Statistical Modeling of the Contourlet Coefficients 

It is known that the contourlet coefficients of images have non-Gaussian and heavy-tailed 

properties that are best described by the heavy tailed distributions [14], [15]. This can be 

observed through studying the statistics of the contourlet coefficients of natural images. 

In Figure 2.6, histograms of the contourlet coefficients for the Barbara image are 

obtained when two finest scales with eight directions in each scale are considered. In 

comparison to a Gaussian distribution, these densities are more sharply peaked around 

zero with more extensive tails. This implies that the contourlet transform is sparse, as the 

majority of coefficients are close to zero. This is due to the fact that the spatial structure 

images are mostly dominated by the smooth areas with occasional edges or other abrupt 

transitions. These smooth regions lead to many small coefficients and occasional large 

coefficients. In order to quantify this, we compute the kurtosis value [49], i.e., the fourth 

moment divided by squared second moment. The kurtosis value is defined as  
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where x  is a zero mean random variable with the standard deviation of xσ  and N  is the 

number of coefficients in a subband. The estimated kurtoses of all of the subbands are 

significantly larger than the kurtosis value of a Gaussian distribution, namely, three. 

Similar results have also been observed for other test images which verify the non-

Gaussianity of the contourlet coefficients of natural images, i.e., having large peaks 

around zero and tails heavier than that of the Gaussian PDF.  
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(a) 

 

 
(b) 

 
Figure 2.6.  Histograms of the contourlet coefficients of two finest scales for Barbara 
image. The kurtosis value k  shows the degree of the non-Gaussianity for the coefficients 
of each subband. a) Finest scale and b) Second finest scale. 
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Figure 2.7. Normal probability plot of the Barbara image. The empirical data does not 
follow a straight line showing that the data is not Gaussian. 
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Figure 2.8. Average kurtosis values of contourlet subband coefficients for various 
values of the number of subbands S . 
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The normal probability plot, a graphical technique for normality testing, displayed in 

Figure 2.7, for the Barbara image, shows that the empirical data deviates from the 

normal distribution and that it is heavy-tailed. Figure 2.8 shows the averaged kurtosis 

value of the contourlet subband coefficients over 96 images, taken from [50], for 

different values of the number of subbands as a function of the scale number. It is seen 

from this figure that the kurtosis value is close to, yet greater than, the kurtosis value of 

the Gaussian distribution, namely, three, when the number of scales is increased. It 

indicates that in higher scales of a multiscale representation such as the contourlet 

transform, the distribution of the subband coefficients is closer to the Gaussian 

distribution [15]. In view of this, choosing an appropriate number of scales has a great 

influence on modeling the transformed domain coefficients by a non-Gaussian 

distribution. 

 

2.3.1 Generalized Gaussian Distribution 

In view of the fact that the distribution of the contourlet coefficients of images is non-

Gaussian, a proper distribution to model the statistics of the contourlet coefficients is a 

heavy-tailed PDF. It has been shown in [13] that the generalized Gaussian distribution 

can be used to model the marginal density of the contourlet coefficients. The generalized 

Gaussian distribution is characterized by its PDF given by  
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where 5.01 )]/3(/)/3([),( ββσβσα ΓΓ= − , )/1(2/),(),( ββσβαβσ Γ=C , σ  is the 

standard deviation of x , β  is the shape parameter and � >=Γ ∞ −−
0

1 0,)( zdttez zt  is the 

Gamma function. The generalized Gaussian model contains the Gaussian and Laplacian 

PDFs as special cases when 2=β  and 1=β , respectively. There are a number of 

methods to estimate the GG parameters [51]-[56]. The common estimator for GG 

parameters is the maximum-likelihood estimator since it has been shown to be more 

accurate for heavy-tailed distribution of the subband coefficients [55], [56].  

 

2.3.2 Alpha-Stable Family of Distributions 

The generalized Gaussian distribution has been used to model the contourlet coefficients 

of images [13]. However, this distribution is not capable of accurately capturing the peak 

and tails of the empirical distribution [15]. In order to overcome this deficiency, we 

propose the use of the alpha-stable family of distributions as a heavy-tailed PDF, to 

characterize the distribution of the contourlet subband coefficients of natural images. This 

model is suitable for describing signals that are highly non-Gaussian. The use of alpha-

stable distributions as statistical models for signals is due to two important reasons [57]. 

First, stable random variables should satisfy the stability property, i.e., any linear 

combination of the stable variables are still stable (shape of the distribution is 

unchanged). Second, according to the generalized central limit theorem, the limiting 

process of sums of independent and identically distributed (i.i.d.) random variables is 

stable. Several experiment have suggested that many data sets in several physical systems 

show heavy tail features that can be justified by the use of stable models [57], [58]. In 
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view of this and the non-Gaussian properties of the contourlet coefficients, the alpha-

stable family is assumed to be a prior for the contourlet coefficients of images. A random 

variable ),,(~ δβγαSX  is distributed by the alpha-stable distribution and best described 

by its characteristic function [57], [59]  
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and α  is a characteristic exponent, 20 ≤<α , ℜ∈δ  a location parameter, ]1,1[−∈β  a 

skewness parameter and 0>γ  a dispersion parameter. A stable distribution is called 

standard if 0=δ  and 1=γ . If 0=β , the distribution is called symmetric alpha-stable 

( SSα ). The characteristic function of a SSα  distribution simplifies to  

 

)exp()( α
ωγδωωϕ −= j  (2-5) 

 
 

The characteristic exponent α  determines the shape of the distribution. The smaller the 

value of α , the heavier the tail of the distribution. Thus, the SSα  distributed random 

variables with small α  are impulsive. By using power series expansions, the standard 

SSα  density function for a random variable )0,0,1(~ αSX  is given by [57] 
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It should be noted that there are three special cases of the alpha-stable PDF that have 

closed-form expressions, namely, the Levy )5.0( =α , Cauchy )1( =α  and 

Gaussian )2( =α  PDFs. In Figures 2.9 (a) and 2.9 (b), for different values of α , the 

PDFs and CDFs of standard SSα  distributions are, respectively, depicted. 
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Figure 2.9. a) PDFs and b) CDFs of SSα  distributions for different values of the characteristic 
exponent α . 
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2.4 Parameter Estimation of the Alpha-Stable Distribution 

A zero-mean symmetric SSα  distribution is characterized by two parameters: the 

characteristic exponent 20 ≤<α , the dispersion parameter 0>γ . Various methods have 

been so far presented for estimating the parameter of the alpha-stable family of 

distributions, namely, tail power law method [57], quantile-based method [57], [60], 

maximum likelihood method [58], [61]-[63], characteristic function-based method [64]-

[66], moments method [67] and fractional lower order moments method [68]. 

 

2.4.1 Characteristic Function Method 

The characteristic function method is based on minimizing the distance between the 

theoretical and empirical characteristic functions [64]. The sample characteristic function 

is defined as 
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where N  is the sample size and Nxx ...,,1  are the observations. The distance between the 

theoretical and empirical characteristic functions can be formulated by mean of a 

Hermitian quadrature formula as [66] 
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where kw ’s are zeros of the Hermite polynomials of order n , kψ ’s are the respective 

weights and )exp()( 2wwW −= . 

2.4.2 Moments Method 

The moment method is based on the relations between the logarithm of the characteristic 

function α , power of its argument and γ  [67]. Solving this equation for a number of 

values produces estimates for both parameters. In this case, a number of frequencies like 

nωωω ...,,, 21  and their inverses
nωωω

1,...,1,1
21

 are chosen for estimation purpose. 

After taking natural logarithm of the characteristic function in (2-7), we have   
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Replacing )(ωxΦ  by its estimate )(ωNxΦ

�
, we obtain γ  as 
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Note that 1ω  and 2ω  are known and after some mathematical simplification, parameter 

α  can be obtained as  
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where γ
�

 is an estimate of γ . When the number of frequencies is increased, the 

theoretical formulation becomes challenging. The moment method of estimation can be 

generalized using two frequencies as 
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After some mathematical simplification, we have  
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An estimate of α  is calculated by using (2-13) and employed in (2-9) to find γ .  

 

2.4.3 Fractional Lower Order Moment Method 

It is known that the second moment of an SSα  random variable X , i.e., ][ 2XE , does 

not exist. However, moments of order less than α  do exist and are called the fractional 

lower order moments (FLOM) [68]. The FLOMs are defined by ][ pXE , 20 ≤<< αp  

and can be obtained from the dispersion and characteristic exponents as  
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when α<<− p1 , ][ pXE is called negative order moment [69], [70]. The parameters 

α and γ  can be estimated in terms of the estimated moments (positive and negative) as 
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By assuming a predefined value for ε , an estimation of α  can be obtained as 
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To obtain γ , (2-14) is rewritten as 
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2.5 Alpha-Stable Modeling of the Contourlet Subband Coefficients 

In view of the non-Gaussian properties of the contourlet coefficients of images, a proper 

distribution to model these coefficients would be a non-Gaussian PDF. Therefore, we 

propose the use of the SSα  distribution to model the distribution of the contourlet 

coefficients of images. To this end, we first estimate the characteristic exponent α  values 

for various contourlet subbands for a given test image, when the image is decomposed 
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into three pyramidal levels, with eight, eight and four directions, respectively. In Table 

2.1, the results obtained by estimating α  for various test images are given. It can be seen 

from Table 2.1 that the value of α varies from 0.8 to 1.6 indicating the heavy-tailed 

property of the contourlet coefficients and that the distribution is not Gaussian. Thus, the 

distribution of the contourlet coefficients of an image can be described by the SSα  PDF.  

We now examine the histograms of the actual data as well as the SSα , Cauchy, GG and 

the Laplacian density functions for a number of test images to see as to how accurately 

the SSα  distribution and its Cauchy member fit the distribution of the contourlet 

coefficients. Figure 2.10 shows the modeling performance of the contourlet coefficients 

for two of the images, Barbara and Baboon. It is seen from this figure that the alpha-

stable distribution, and even its Cauchy member for which the characteristic exponent is 

unity, can more accurately fit the empirical data than the GG and Laplacian distributions 

can. Moreover, to quantify the performance of the PDFs, we use the Kolmogorov-

Smirnov distance (KSD) metric given by 

 

� − dffPfP ff
f

)]()([max
�

 (2-18) 

 

where )( fPf  denotes the PDF of the random variable and )( fPf

�
 represents the PDF of 

the empirical data. Table 2.2 gives the values of the KSD metric for the SSα , Cauchy, 

GG, Laplacian and Levy PDFs of the image contourlet coefficients in the two finest 

scales. These values are obtained by averaging over a number of images. It is seen from 

this table that the SSα  distribution, and even its Cauchy member, provide better fits to 

the empirical data than the GG, Laplacian and Levy distribution do. 
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Table 2.1:  Characteristic exponent α  values for the contourlet subband coefficients of 
various test images. Deviation from 2=α  reveals the degree of non-Gaussianity. 
 

Direction Scale Peppers Barbara Baboon 
1  1.516 1.436 1.577 
2  1.506 1.358 1.514 
3 I 1.571 1.337 1.562 
4  1.541 1.308 1.538 
1  1.330 1.376 1.471 
2  1.253 1.335 1.475 
3  1.260 1.392 1.484 
4  1.403 1.334 1.406 
5 II 1.407 1.106 1.342 
6  1.294 1.261 1.256 
7  1.211 1.203 1.225 
8  1.313 1.423 1.335 
1  1.432 0.966 1.341 
2  1.336 1.024 1.467 
3  1.196 0.848 1.312 
4  1.216 1.105 1.523 
5 III 1.225 1.375 1.412 
6  1.217 1.264 1.332 
7  1.115 1.209 1.314 
8  1.388 1.591 1.425 
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Figure 2.10. Log-scale PDFs of empirical data as well as the alpha-stable, Cauchy, GG 
and Laplacian distributions for two of the test images. a) Barbara 8.0=α . b) Baboon 

31.1=α .  
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Table 2.2: Averaged KSD values of the alpha-stable, Cauchy, GG, Laplacian and Levy 
distributions in modeling the contourlet coefficients over 10,000 images, Sij denoting the 
subband in scale i and direction j.  
 
Direction S�S Cauchy GG Laplacian Levy 

S21 0.1014 0.1044 0.1321 0.1234 0.1206 
S22 0.1083 0.1097 0.1436 0.1297 0.1229 
S23 0.1156 0.1204 0.1432 0.1357 0.1349 
S24 0.0880 0.0923 0.1269 0.1224 0.1189 
S25 0.1253 0.1275 0.1355 0.1291 0.1215 
S26 0.1189 0.1229 0.1347 0.1305 0.1279 
S27 0.0798 0.0822 0.1351 0.1403 0.1381 
S28 0.0819 0.0835 0.1281 0.1280 0.1253 
S11 0.1135 0.1302 0.1347 0.1468 0.1361 
S12 0.0875 0.0881 0.0895 0.1030 0.1049 
S13 0.0958 0.0959 0.0984 0.1117 0.1012 
S14 0.0727 0.0734 0.0759 0.0995 0.0853 
S15 0.0917 0.0949 0.0928 0.1073 0.0947 
S16 0.0956 0.0957 0.0982 0.1090 0.0979 
S17 0.0884 0.0889 0.0885 0.1063 0.0914 
S18 0.0900 0.0904 0.0878 0.1098 0.0919 

 
 
   

The amplitude probability density (APD) function, given by )( xXP > , is another 

common statistical representation of heavy-tailed signals. The APD can be used to 

compare the closeness of the alpha-stable Cauchy distribution to the empirical data. It can 

be empirically calculated by counting the data, X  for which xX > . It can be also 

evaluated theoretically from a given density function by estimating its parameters from 

the transformed coefficients. It is known that the alpha-stable density function has a 

polynomial tail ∞→> − xxcxXP ,~)( αα
α γ , where X  is a non-Gaussian SSα random 

variable and 
π
απα

α
)(

)2sin(
Γ

=c [57]. We now examine the APD curves of the actual data 

as well as the SSα , Cauchy, GG and Laplacian distributions for a number of test images. 

In Figure 2.11 the APD curves for two of the images, Barbara and Baboon, are depicted. 
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It is seen from this figure that the SSα  distribution, and even its Cauchy member, 

provide better fits to the distribution of the contourlet coefficients for both the mode and 

the tail of the actual data than that provided by the GG and Laplacian distributions. 

Similar results have also been obtained for other test images. 
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Figure 2.11. APD curves of the empirical data as well as the alpha-stable, Cauchy, GG 
and Laplacian distributions for two of the test images. a) Barbara and b) Baboon. 
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2.6 Summary 

 
In this chapter, an introduction of the contourlet transform as a multiscale and 

multiresolution transform has been given. The contourlet transform is capable of 

capturing more directional information in images. The statistical properties of the 

contourlet coefficients of images have been carefully investigated. The empirical PDFs of 

the contourlet subband coefficients of images have seen to have highly non-Gaussian 

properties. In view of this, the alpha-stable family of distributions have been proposed to 

model the contourlet coefficients of images. The performance of the proposed model has 

been studied in detail by conducting several experiments, and comparing the results with 

that of the formerly-used distributions for the contourlet coefficients, namely, the 

generalized Gaussian and Laplacian PDFs. Simulation results have shown that the alpha-

stable distribution can model the contourlet subband coefficients more accurately both 

subjectively in terms of the Kolmogorov-Smirnov distance and objectively by plotting 

the log-scale histograms. Moreover, comparing the amplitude probability density 

functions of the various distributions have shown that the alpha-stable distribution 

provides a better fit for the distribution of the contourlet coefficients than that provided 

by for both the mode and the tail of the actual data. The proposed alpha-stable model will 

be employed in developing image denoising and despeckling algorithms in the contourlet 

domain in Chapters 3 and 4, respectively. 



 39

CHAPTER 3 

 

Image Denoising in the Contourlet Domain Using the Alpha-

Stable Distribution 

 

3.1 Introduction  

This chapter deals with image denoising problem in the contourlet domain using the 

alpha-stable model proposed in Chapter 2. Image denoising is a problem of estimating the 

noise-free image from noisy observations while preserving the image features. The image 

denoising techniques may be classified into spatial [71], and transform domain [16], [18] 

approaches. The image denoising in the transform domain has received considerable 

interest in view of its improved performance in recovering signals from noisy data. In the 

transform domain approach, denoising process is performed on the coefficients of a 

transform such as the wavelet transform [17]-[20]. Donoho proposed a simple and non-

probabilistic thresholding method in the wavelet domain to remove noise from an image 

[72]. However, it is known that the wavelet transform is good at isolating discontinuities 

at edge points and cannot efficiently capture the smoothness along the contour [3], [4]. In 

addition, applying wavelet to an image results in capturing limited directional 

information. In [73], the principal component analysis has been proposed to overcome the 

drawbacks of the wavelet transform in highly-structured images. However, these 

components are highly affected by the noise. In [74], the K-SVD algorithm has been 

proposed for the same purpose. However, exhaustive search in learned dictionaries give 
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rise to a time-consuming algorithm. Another class of image denoising techniques is the 

non-local means (NLM) algorithms [75]-[81]. The NLM algorithms estimate a pixel by a 

weighted average of the local and non-local pixels throughout the image and perform 

denoising by exploiting the natural redundancy of the patterns inside an image. In [82], 

similar to motion estimation algorithms, a block-wise matching has been used to 

preprocess the noisy image followed by a transform-domain shrinkage, known as BM3D. 

However, the accuracy of such block correlations is highly dependent on the noise. In 

[83], a patch-based locally-optimal Wiener filter has been proposed for image denoising. 

This method uses similar patches to estimate the filter parameters. In [84], a spatially 

adaptive iterative singular-value thresholding method has been proposed, which provides 

slightly better performance in terms of peak signal-to-noise-ratio (PSNR) than that 

provided by BM3D. 

 To enhance the sparsity and effectively capture the directional information in natural 

images, other multi-scale and multi-resolution transforms, such as wavelet-packets [85], 

complex wavelet [5], [86]-[88], curvelet [8], or contourlet [4], [11], [12], [42], [64] 

transforms, have been proposed. The better sparseness and decorrelation properties of 

these transforms result in improved image denoising schemes. In [86], [87], the image 

denoising is performed in complex wavelet domain, which provides more directionality 

than that provided by wavelet, yet it is not efficient to handle 2-D singularities. In [8], the 

curvelet domain image denoising has been proposed. The curvelet transform provides 

higher directional information of an image resulting in a denoising scheme with visually 

improved image and more edge preservation. However, the curvelet transform has been 

defined originally on concentric circles in the continuous domain and the process of 
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discretization is complex and time-consuming. Therefore, to overcome these 

disadvantages of the curvelet transform, the contourlet transform has been proposed. Due 

to the various properties of this transform, discussed in Chapter 2, image denoising in the 

contourlet domain is superior to that in other multiscale transform domains. Most of the 

image denoising algorithms in the contourlet domain have been developed based on the 

thresholding or shrinkage functions [9], [11]. In recent years, statistical models have been 

adopted for the transform domain coefficients in which the image and noise are modeled 

as random fields and Bayesian methods are employed to develop shrinkage functions for 

estimation of the noise-free coefficients from the noisy observations. It is to be noted that 

the prior distributions for the original image and the noise have considerable effect on the 

performance of the denoising algorithm. Several prior distributions have been employed 

to characterize the transform coefficient properties such as their sparsity, i.e., having a 

large number of small coefficients along with a small number of large coefficients [17]-

[21], [88]. It has been shown in Chapter 2 that that the contourlet-domain subband 

decomposition of images have significant non-Gaussian statistics that are best described 

by the alpha-stable family. 

In this chapter, a new image denoising technique in the contourlet domain based on the 

alpha-stable family of distributions as a prior for the contourlet coefficients is proposed 

[89]. Bayesian MMAE and MAP estimators using the alpha-stable distribution are 

developed to obtain the noise-free contourlet coefficients. The contourlet coefficients are 

first modelled by the univariate alpha-stable distribution. Then, across-scale 

dependencies of the contourlet coefficients are taken into account by employing the 

bivariate alpha-stable distribution to capture these dependencies. In order to estimate the 
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parameters of the model more accurately, a spatially-adaptive method based on the 

fractional lower-order moments is proposed. An extension of the proposed denoising 

scheme to color images is also carried out. Several experiments are conducted to evaluate 

the performance of the proposed denoising scheme and to compare it with those of the 

current state-of-the-art techniques. The estimated images are compared with the original 

ones in terms of the peak signal-to-noise-ratio (PSNR) and mean structural similarity 

(MSSIM) index, as well as in terms of the visual quality of the denoised images.  

  

3.2 Denoising Scheme in the Contourlet Domain 

It is known that the use of downsamplers and upsamplers in the structure of the 

contourlet transform makes it shift-variant, which may produce artifacts around the 

singularities, e.g., edges. In view of this, in image denoising, the cycle spinning method 

[11], [90] is employed to compensate for the lack of translation invariance. It is a simple, 

yet efficient, method to improve the denoising performance for a shift-variant transform. 

In fact, the cycle spinning is to average out the translation dependence of the subsampled 

contourlet transform and can be expressed as 
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where I  and  I
�

 are noisy and denoised images, CT and ICT are the contourlet transform 

and its inverse, respectively, nmS ,  is the cycle spinning operator with ),( nm  as shifts in 
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the horizontal and vertical directions, and h  is the denoising operator in the contourlet 

domain [90].  

Figure 3.1 depicts a parent-children relationship for a three-scale contourlet 

decomposition with eight directions in each scale. The across scale dependencies between 

parents and children play an important role in the modeling of the contourlet coefficients. 

In view of this, we also model the contourlet coefficients of an image using the bivariate 

alpha-stable distribution not only to capture the heavy tails of the distribution of the 

contourlet coefficients, but also to take into account the contourlet coefficient 

dependencies across scales. Similar to the univariate SSα  distribution, a zero-mean 

bivariate SSα  is characterized by its characteristic function given by 
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Equivalently, the bivariate SSα PDF is obtained as 
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Figure 3.2 shows the joint histogram of the contourlet coefficients across scales for one 

of the test images, Barbara, along with a possible configuration of the bivariate SSα  

PDF. It can be seen from this figure that the bivariate SSα  PDF can suitably model the 

parent-children relationship of the contourlet coefficients across two consecutive scales. 

Figure 3.3 shows the distribution of the coefficients conditioned on its parent value in the 
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four directional subbands of the finest scale for one of the test images, Barbara image. It 

is seen from this figure that the conditional histograms for various directional subbands 

resemble a bow-tie shape indicating the dependency between the children and their 

parents. Therefore, in our image denoising task, we model contourlet coefficients of an 

image using the bivariate alpha-stable distribution in order to not only capture the heavy 

tails of the distribution of the contourlet coefficients, but also to take into account the 

contourlet coefficient dependencies across scales. 

 

 

 

 
Figure 3.1. Parent-children relationship for a three-scale contourlet decomposition with 
eight directions in each scale. 
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(a) 
 

 
(b) 

 
 

Figure 3.2. (a) Empirical joint child-parent histogram across two scales of the contourlet 
coefficients for the fourth direction of the Barbara image. b) The configuration of the 
bivariate SSα  distribution. 
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Figure 3.3.   Distribution of the contourlet coefficients (vertical axis) conditioned on the 
corresponding coarser-scale coefficient, i.e., parent coefficient (horizontal axis), in the 
four directional subbands of the Barbara image; A normalized pair of parent and child 
coefficients is considered. 
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Let a noise-free image X  be contaminated by an additive white Gaussian noise N  with 

a zero-valued mean and known standard deviation ησ . The corresponding noisy image is 

denoted by Y . We then have 

 
NXY +=  (3-4) 

 

The contourlet transform is applied to the noisy image. Suppose that a noisy image is 

decomposed into Jj ,...,1=  scales and Dd ,...,1=  direction subbands by the contourlet 

transform. We have  
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where ),( nmyd
j , ),( nmxd

j  and ),( nmd
jη  denote the thnm ),(  contourlet coefficient at scale 

j  and direction d  of the contourlet transform of Y , X  and N , respectively. For 

notational simplicity, we drop the subscripts and indices as well and use henceforth y , x  

and η  .  

3.2.1. Bayesian MAP Estimator for Gaussian Noise 

 

The Bayesian method imposes a prior model on the contourlet coefficients that describe 

their distribution. In this work, we propose the SSα  distribution as a prior for modeling 

the contourlet coefficients x , corresponding to a specific subband of a noise-free image. 

We assume that the probabilistic model associated with the noisy data y  conditionally on 

x  is Gaussian 
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),0,(~| 2
ησμ =xNxy  (3-6) 

 
The noise distribution can be expressed as 
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For estimating the original image, i.e., the noise free coefficients x , given the noisy 

observation y , we employ the MAP estimator. Using the Bayes rule, the MAP estimator 

is defined by 
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where )(xPx  is the PDF of the contourlet coefficients of the noise-free image. To obtain 

the MAP estimate, after inserting )(ηηP  into (3-8), the derivative of the logarithm of the 

argument in (3-8) is set to zero resulting in 
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We now need a model for the distribution of the contourlet coefficients )(xPx . At this 

stage, we consider the following three cases.  
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Case 1: ),0(~)( 2σNxPx , where 2=α  and 2σ  is the variance of the Gaussian PDF.  

Case 2: 
5.1

2

2
)(

x

e
xP

x
x

γ

π

γ

−

= , where 5.0=α  and γ  is the dispersion parameter of the 

Levy PDF.  

      Case 3:  
)(

)(
22 γπ

γ

+
=

x
xPx , where 1=α  and γ  is the dispersion parameter of the 

Cauchy PDF. 

      Case 4:  Best-fit SSα for which there is no closed-form PDF. 

 
 

It should be noted that Cases 1 to 3 are the special cases of the alpha-stable PDF having 

closed-form expressions [57]. For Case 1, the estimate x
�

 for the Gaussian data is 

obtained from (3-9) as 
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which is the minimum mean square error (MMSE) solution for the Bayesian estimator. 

For Cases 2 to 4, the Bayesian MAP estimator for non-Gaussian data is obtained from (3-

9) as 
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, while for Case 2, the Levy PDF, one needs to solve a cubic function as 
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023 =+++ cbxaxx , where ya −= , 
2

3 2
ησ−

=b and 
2

2
ηγσ

=c . In the case of the best-fit 

SSα , we have to numerically compute the Bayesian MAP estimator.  
 

3.2.2. Bayesian MAP Estimator for Non-Gaussian Noise 
 
We also develop the MAP estimator using zero-mean, independent and identically 

distributed non-Gaussian noises modelled by the Maxwell and Rayleigh distributions 

given by 
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where 
3

ησ
=v . The noise standard deviation ησ  can be estimated by applying the robust 

median absolute deviation method in the finest subband of the observed noisy 

coefficients. For the case of �=1, Cauchy member of the alpha-stable distribution, due to 

having a closed form expression for its PDF, the Bayesian MAP estimator is derived after 

some manipulations as a root of the following quadratic function 
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where for the Maxwell noise  
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and for the Rayleigh noise 
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The quadratic function in (3-13) can be solved by using Ferrari’s method as 
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By solving two quadratic functions in (3-16), x
�

 is found as 
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where 0t  is a root of the cubic function  
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It should be noted that for the general case (best-fit �), and the Bayesian MMAE 

estimator, we have numerically estimated the noise-free coefficients.  

 

3.2.3. Bayesian MMAE Estimator 
 
We now develop a Bayesian MMAE estimator, using the proposed SSα  prior, by 

minimizing the mean absolute error between the observed data and the estimated one. 

Since the coefficients in the approximation subband carry most of the information about 

the signal to be recovered, we leave them unchanged, and apply the Bayesian MMAE 

estimator to the coefficients of the detail subbands. The Bayesian MMAE estimator of x , 

given a noisy observation y , is given by 
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According to the Bayesian rule, )|(| yxP yx can be written as  
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where )(xPx  is the prior model for the contourlet coefficients of a noise-free image. 

Substituting (3-22) into (3-21), we obtain 

 

�
�
�
�

=

=

dxxPP

dxxPPx

dxxPxyP

dxxPxyPx
yx

x

x

xxy

xxy

)()(

)()(

)()|(

)()|(
)(

|

|

η

η

η

η

�

 (3-23) 

 

where )(ηηP  is the PDF of the noise. In order to estimate the noise-free coefficients, we 

consider the four cases mentioned above, namely, the Gaussian, Cauchy, Levy and the 

best-fit  SSα  distributions. It should be noted that in case of the general best-fit SSα , 

the Bayesian MMAE estimator has to be computed by direct numerical integration [57], 

[58]. To lower the computational complexity, we resort to the shrinkage function in terms 

of a linear convolution as 
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where * is the convolution operator. Therefore, instead of employing direct numerical 

integration for each coefficient, the Bayesian MMAE estimator of the coefficients of a 

subband are obtained using the cubic spline interpolation method when the convolution 

operation is carried out at a limited number of points using the fast Fourier transform 

(FFT) algorithm as 
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where 1−F  and F denote the FFT and inverse FFT transforms, respectively. A 

consequence of using (3-23) is reducing the computational effort in obtaining the MMAE 

estimates.  

 

3.2.4. Parameter Estimation 

In order to employ the SSα  prior in denoising, first it is needed to estimate the 

parameters α  and γ  from the noisy coefficients. As mentioned in Chapter 2, there are 

several estimators, that can be used to estimate the parameters of the alpha-stable 

distribution, such as the characteristic function-based estimators including regression-

type [65] and methods based on minimum distance [91], moments [91], quantiles [60], 

fractional lower order moments [70], [92] and maximum likelihood (ML) [93], [94]. 

Among these, the ML estimator [93] has been shown to provide an efficient estimate of 

the parameters. We now propose a method for parameter estimation that uses spatially-

adaptive fractional lower order moments. It has been shown in [15] that when the number 

of scales is increased, the distribution of the contourlet coefficients is close to the 

Gaussian distribution. In other words, the distribution of the contourlet coefficients of 

images is locally Gaussian. In view of this, the dispersion parameter γ  of an alpha-stable 

distribution can be estimated as 
2

2σγ = , in which 2σ  is the variance of the Gaussian 
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distribution in a small spatial window. In order to estimate 2σ  in a given scale j , we 

employ the spatially-adaptive technique [18] as 
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where S  is a square-shaped window of size ll × . The characteristic exponent α  is then 

estimated using the fractional lower order moment (FLOM) method. The moments of 

order less than α  for a SSα  random variable [92], [95], [96] is defined as 
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in which 21 ≤<<− αp . It should be noted that the choice of the order p  of the 

fractional moment is arbitrary. However, as shown in [97], the best choice is 
3
α≈p . In 

order to estimate the standard deviation of the noise ησ  from the noisy contourlet 

coefficients, the Donoho’s estimator [72] is modified in the finest decomposition scale as  
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where MAD is the median absolute deviation and dS ,1  denotes the d th directional 

subband coefficients in the finest scale. The contourlet domain image denoising 

algorithm using the alpha-stable distribution can be summarized as follow: 

 

Step 1: Apply the contourlet transform to the noisy image. 

Step 2: Estimate the parameters γ , α  and ησ  from the noisy coefficients. 

Step 3: Obtain an estimation of the noise-free coefficients by using the Bayesian 

MAP (3-11) or MMAE (3-23) estimator. 

Step 4: Apply the inverse contourlet transform to the estimates obtained in Step 3. 

 

The above method of denoising an image is also shown in the form of a block diagram in 

Figure 3.4. 
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Figure 3.4. Block diagram of the proposed denoising algorithm in the contourlet domain. 
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3.3 Experimental Results 

The performance of the contourlet domain denoising method is evaluated by conducting 

experiments using set of images obtained from [98], and then compared to that of the 

many of the state-of-the-art techniques. The experiments are performed on images 

corrupted with Gaussian noise of standard deviation, ησ  varying from 10 to 40. The 

noisy images are decomposed by the contourlet transform into three scales with eight 

directions in each scale. Note that any further decomposition beyond these levels does not 

produce a significant increase in the denoising performance. We use the 9-7 bi-

orthogonal filters for both the multi-scale and multi-directional decomposition stages. 

Since the contourlet transform is not shift-invariant, the denoised image is affected by the 

pseudo-Gibbs phenomena, resulting in artifacts in smooth regions and ringing effect 

around the edges. To overcome this problem, as discussed in Section 3.2, we employ the 

cycle spinning mode by averaging the result of the contourlet shrinkage method over all 

the circulant shifts of the input noisy image. The PSNR, in decibels, and MSSIM index 

measure are used to provide quantitative evaluations of the algorithm. It should be noted 

that for a particular noise level, the PSNR value is calculated by repeating the experiment 

ten times and then averaging over these values.  

Tables 3.1 and 3.2 give the PSNR values obtained for various estimators using the alpha-

stable family of distributions including the bivariate and univariate SSα  distributions 

and its Cauchy member (α =1) in the wavelet and contourlet domains for two of the test 

images, namely, Barbara and Peppers, respectively. From these tables, it is seen that the 

performance of the denoising algorithm in the contourlet domain is better than that 

obtained in the wavelet domain, irrespective of the distribution employed. Further, it is 
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observed that the proposed denoising scheme using the bivariate SSα distribution 

provides higher PSNR values than that provided by using the univariate SSα . Finally, it 

is noted that the bivariate alpha-stable distribution in the contourlet domain using the 

MMAE estimator (CT-Bi- SSα -MMAE) provides the highest PSNR values for all the 

noise levels considered. We further compare the performance of the SSα  prior to that of 

the GG, Cauchy, Levy and Laplacian distributions in our proposed denoising scheme. 

Table 3.3 gives the PSNR values obtained using the proposed method when different 

priors are used for two of the test images, namely, Barbara and Peppers. It is seen from 

this table that the SSα distribution provides a better denoising performance than the other 

distributions do.  

Moreover, to investigate the performance of the proposed denoising scheme on textured 

images, we apply our proposed denoising algorithm to a set of textured images [99] and 

the results are given in Table 3.4. It is seen from this table that the proposed algorithm 

performs very well even for images with high textures. 
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Table 3.1: PSNR values obtained using denoising methods employing the alpha-stable 
family of distributions in wavelet (WT) and contourlet (CT) domains for Barbara image.  
 
 
 Barbara 

10 15 20 25 30 40 

Noisy 28.13 24.61 22.13 20.17 18.63 16.14 

WT-Cauchy 32.22 30.41 28.42 26.87 24.61 22.64 

CT-Cauchy 32.71 30.66 28.74 26.99 25.16 22.97 

WT-S�S-MAP 32.60 30.46 28.56 26.31 24.93 22.74 

CT-S�S-MAP 32.97 31.01 29.21 28.09 26.23 24.03 

WT-S�S-MMAE 32.78 30.77 28.97 27.10 25.39 23.11 

CT-S�S-MMAE 33.62 31.34 29.47 28.53 26.74 24.95 

WT-Bi-S�S-MAP 33.34 31.17 29.22 28.22 26.51 24.83 

CT-Bi-S�S-MAP 34.61 32.86 31.19 30.23 27.84 26.58 

WT-Bi-S�S-MMAE 33.70 31.42 29.77 28.76 26.98 25.74 

CT-Bi-S�S-MMAE 34.89 33.03 31.65 30.61 28.24 26.97 
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Table 3.2: PSNR values obtained using denoising methods employing the alpha-stable 
family of distributions in wavelet (WT) and contourlet (CT) domains for Peppers image.  
 

 Peppers 

10 15 20 25 30 40 

Noisy 28.13 24.61 22.15 20.17 18.63 16.13 

WT-Cauchy 32.13 30.05 28.24 26.56 24.39 22.55 

CT-Cauchy 32.45 30.35 28.33 26.79 25.01 22.67 

WT-S�S-MAP 32.31 30.21 28.25 26.74 24.97 22.57 

CT-S�S-MAP 32.65 30.80 29.10 27.92 25.94 23.19 

WT-S�S-MMAE 32.60 30.62 28.76 27.28 25.22 23.19 

CT-S�S-MMAE 33.41 31.13 29.34 28.23 26.19 24.76 

WT-Bi-S�S-MAP 33.02 30.89 29.14 28.01 26.04 24.66 

CT-Bi-S�S-MAP 34.29 32.55 30.51 29.02 27.51 26.35 

WT-Bi-S�S-MMAE 33.41 31.06 29.51 28.34 26.56 25.11 

CT-Bi-S�S-MMAE 34.59 32.73 30.78 29.22 28.10 26.78 
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Table 3.3: PSNR values obtained using the proposed denoising method with different 
priors for two of the test images, Barbara and Peppers, when ησ =10.  

 
 S�S Cauchy GG Laplacian Levy 

 MAP MMAE MAP MMAE MAP MMAE MAP MMAE MAP MMAE 

Barbara 32.97 33.62 32.13 32.71 31.98 32.48 31.51 31.83 31.46 31.75 

Peppers 32.65 33.41 32.01 32.45 31.75 32.22 31.21 31.60 31.26 31.64 

 Bi-S�S Bi-Cauchy Bi-GG Bi-Laplacian Bi-Levy 

 MAP MMAE MAP MMAE MAP MMAE MAP MMAE MAP MMAE 

Barbara 34.61 34.89 33.45 33.96 33.15 33.69 32.74 33.10 33.23 33.64 

Peppers 34.29 34.59 33.13 33.61 32.68 33.18 32.24 32.53 32.87 33.29 

 

 

Table 3.4: Averaged PSNR values obtained using the proposed denoising method over 60 
textured images [99], when ησ =20. 

 
S�S Cauchy GG Laplacian 

MAP MMAE MAP MMAE MAP MMAE MAP MMAE 

28.39 29.02 28.04 28.65 28.01 28.58 27.34 28.11 

Bi-S�S Bi-Cauchy Bi-GG Bi-Laplacian 

MAP MMAE MAP MMAE MAP MMAE MAP MMAE 

29.84 30.11 29.35 29.76 29.26 29.69 28.87 29.27 
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In order to compare the denoising performance using the proposed parameter estimation 

method discussed in Section 3.2.4 with that using the ML method, the corresponding 

PSNR values are obtained and presented in Table 3.5 for various noise levels. It is seen 

from this table that the proposed method provides higher PSNR values as compared to 

that provided by the ML method, irrespective of whether a MAP or an MMAE estimator 

is employed. The effect of window size on images of various sizes in parameter 

estimation is now investigated. Table 3.6 gives the PSNR values obtained using the 

proposed denoising method for a few of the test images, namely, Lena, Boat, Peppers and 

Couple. It can be seen from this table that the window size of the local variance has an 

impact on the overall denoising performance. It is observed that, in general, for images of 

size 1024×1024, 512×512 and 256×256, windows of size of 15×15, 7×7 and 5×5, 

respectively, give the best denoising results in terms of the PSNR values. Similar results 

are also observed for other test images. We now compare the performance of the CT-Bi-

SSα -MMAE denoising method, to that of a large number of existing methods, namely, 

Visu-shrink (hard) [71], Bayes-shrink [16], HMT [19], LPG-PCA [73], K-SVD [74], 

NSCCT-NLM [75], R-NL [76], NHDW[77], LSSC [78], CASD [79], TDNL [80], NCSR 

[81], BM3D [82], PLOW [83], SAIST [84], WPshrink [85], BLS-GSM [17], CW-Bi-

shrink [86], Surelet [100], MGGD [101], SURE-shrink [102], CW-CGSM [103], NSCT-

LAS [104], Trivariate [105], TIDFT [106], LAWMAP [107], Fuzzy-shrink [108], 

NSSTM [109], MMSE-MAP [110], PID [111], DDID [112], NLB [113], EPLL [114] and 

GNW [115].  
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Table 3.5: PSNR values obtained using the ML method and the proposed parameter 
estimation method for various noise levels. 
 
  10 20 30 40 

  ML Prop. ML Prop. ML Prop. ML Prop. 

Barbara MMAE 34.73 34.89 31.49 31.65 28.09 28.24 26.53 26.97 

MAP 34.53 34.61 31.03 31.19 27.58 27.84 26.21 26.58 

Peppers MMAE 34.48 34.59 30.63 30.87 27.83 28.10 26.35 26.78 

MAP 34.21 34.29 30.34 30.51 27.22 27.51 26.10 26.35 

 

 
Table 3.6: PSNR values obtained using denoising methods with various windows and 
image sizes. 
 
  3×3 5×5 7×7 9×9 11×11 15×15 19×19 

Lena 256×256 

Lena 512×512 

Lena 1024×1024 

34.61 

35.76 

36.78 

34.82 

35.91 

37.04 

34.75 

36.01 

37.52 

34.64 

35.98 

37.74 

34.49 

35.92 

37.85 

34.22 

35.84 

37.93 

34.01 

35.70 

37.82 

Boat 256×256 

Boat 512×512 

Boat 1024×1024 

32.82 

33.65 

34.24 

32.89 

33.87 

35.20 

32.74 

34.05 

35.62 

32.60 

33.93 

35.80 

32.47 

33.81 

35.89 

32.21 

33.56 

35.96 

32.07 

33.40 

35.82 

Peppers 256×256 

Peppers 512×512 

Peppers 1024×1024 

33.12 

34.32 

35.51 

33.17 

34.47 

35.64 

33.09 

34.59 

35.79 

32.99 

34.51 

35.91 

32.85 

34.85 

36.05 

32.77 

34.20 

36.14 

32.64 

34.07 

36.02 

Couple 256×256 

Couple 512×512 

Couple 1024×1024 

33.00 

33.98 

35.24 

33.06 

34.05 

35.39 

32.95 

34.10 

35.51 

32.87 

34.03 

35.65 

32.73 

33.96 

35.77 

32.61 

33.84 

35.87 

32.49 

33.71 

35.76 
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Table 3.7: PSNR values obtained using various denoising methods for three of the test 
images, Barbara, Boat and Lena. 
 

 Barbara Boat Lena 

Visu-shrink 
 

26.87 26.99 26.31 25.77 28.61 26.90 25.82 25.03 30.65 28.89 27.76 27.02 

Sure-shrink 
 

30.21 28.34 27.02 25.84 31.83 29.88 28.55 27.50 33.42 31.50 30.17 29.18 

Bayes-shrink 
 

30.86 28.51 27.13 26.01 31.77 29.84 28.45 27.37 33.29 31.38 30.14 29.19 

HMT  
 

31.36 29.23 27.80 25.99 32.25 30.28 28.81 27.65 33.81 31.73 30.36 29.21 

LAWMAP 
 

32.57 30.19 28.59 27.42 32.22 30.27 28.97 27.88 34.31 32.36 31.01 29.98 

Surelet  
 

32.15 29.61 27.93 26.65 32.67 30.55 29.14 28.09 34.56 32.68 31.37 30.36 

GNW 
 

32.41 - 27.64 - - - - - 33.96 - 30.62 - 

CW-Bi-shrink 
 

33.35 31.31 29.80 28.61 33.10 31.36 30.08 29.06 35.21 33.50 32.28 31.34 

LPG-PCA 
 

32.50 - 28.50 - - - - - 33.70 - 29.70 - 

Trivariate 
 

33.66 31.49 29.97 28.78 33.23 31.35 30.01 28.98 35.32 33.60 32.36 31.38 

TIDFT 
 

33.81 - 30.37 - - - - - 35.70 - 32.98 - 

MGGD - - - - 33.31 31.46 30.14 29.12 35.35 33.70 32.46 31.48 

CW-CGSM  34.01 31.79 30.25 29.07 33.49 31.51 30.13 29.09 35.50 33.72 32.40 31.35 

BLS-GSM  34.03 31.86 30.32 29.13 33.58 31.70 30.38 29.37 
 

35.61 
 

33.90 
 

32.66 
 

31.69 

NSCT-LAS  34.09 - 30.60 - - - - - 34.46 - 32.50 - 

K-SVD  34.42 32.37 30.83 29.60 
 

33.64 
 

31.73 30.38 29.37 35.61 33.90 32.66 31.69 

Fuzzy-shrink 33.99 31.81 30.31 - 33.67 31.75 30.24 - - - - - 

WP-shrink  34.15 32.00 30.50 - 33.52 31.70 30.38 - - - - - 

NSSTM  33.56 - 30.02 - - - - - 35.87 - 32.93 - 

EPLL  33.59 31.33 29.75 - 33.63 31.89 30.63 - 35.56 33.85 32.60 - 

MMSE-MAP  32.50 - 28.55 - 32.43 - 28.94 - 34.29 - 31.09 - 

NSCCT-NLM 34.49 - 30.99 - 33.71 - 30.52 - 35.98 - 32.96 - 

NCSR  34.98 33.02 31.72 - 33.90 32.03 30.74 - 35.81 34.09 32.92 - 

PLOW  - 32.17 - 30.20 - 31.53 - 29.59 - 33.90 - 31.92 

TDNL  - - - - - - - - 35.87 34.13 32.86 31.86 

CASD  34.38 32.22 30.64 29.33 33.69 31.46 30.90 29.69 34.66 32.46 30.94 29.81 

R-NL  - - 29.76 - - - 29.92 - - - 32.04 - 
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PID  34.55 - 30.56 - 33.77 - 29.80 - 35.81 - 32.12 - 

DDID  34.67 - 30.80 - 33.74 - 29.79 - 35.81 - 32.14 - 

NBL  34.82 - 30.24 - 33.91 - 29.67 - 35.78 - 31.80 - 

LSSC  34.97 33.00 31.57 30.47 34.02 32.20 30.89 29.87 35.83 34.15 32.90 31.87 

NHDW  35.01 - 31.79 30.70 - - - - 35.89 - 32.99 32.02 

BM3D  34.98 33.11 31.78 30.72 33.92 32.14 30.88 29.91 35.93 34.27 33.05 32.08 

SAIST  35.23 33.32 32.10 - 33.91 32.09 30.81 - 35.90 34.21 33.08 - 

CT-Bi-S�S-MMAE 34.89 33.02 31.65 30.57 34.05 32.19 30.95 29.94 36.01 34.34 33.06 32.01 

 

 

Table 3.7 gives the PSNR values obtained using these methods and the proposed method 

for three of the test images, namely, Barbara, Boat and Lena. It is seen from this table 

that the proposed CT-Bi- SSα -MMAE method provides PSNR values that are generally 

higher than that provided by the other methods.  

To subjectively evaluate the performance of the proposed denoising method, the zoomed-

in versions of the three test images as well as the denoised versions obtained using the 

proposed CT-Bi- SSα -MMAE method and the BM3D method when 
η

σ  = 30, are shown 

in Figures 3.5, 3.6 and 3.7. Although the denoised images obtained using BM3D may be 

visually appealing, a closer look at these figures clearly shows that the denoised images 

obtained using BM3D are over smoothened. This over smoothing diminishes the 

sharpness of the edges and results in a loss of some details; on the other hand, they are 

better preserved by the proposed algorithm. This is clearly noticeable, especially from the 

edges highlighted by the arrows and the surrounding areas.  
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Figure 3.5. Top-left: original Boat image. Top-right: Noisy image with ησ =30. Bottom-

left: Denoised using BM3D. Bottom-right: Denoised using the proposed method. 
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Figure 3.6. Top-left: original Barbara image. Top-right: Noisy image with ησ =30. 

Bottom-left: Denoised using BM3D. Bottom-right: Denoised using the proposed method. 
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Figure 3.7. Top-left: original Lena image. Top-right: Noisy image with ησ =30. Bottom-

left: Denoised using BM3D. Bottom-right: Denoised using the proposed method. 
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To further compare the performance of the proposed CT-Bi- SSα -MMAE denoising 

method to that of the other methods, Table 3.8 gives the average PSNR values over 1000 

images obtained using the proposed denoising scheme and that of some of the existing 

image denoising methods. It is seen from this table that the proposed denoising method 

provides a better performance in terms of higher PSNR values. It is also observed that the 

proposed CT-Bi- SSα -MMAE denoising method outperforms BM3D, K-SVD, BLS-

GSM, Trivariate and LAWMAP methods in 77%, 93%, 96.8%, 98.3% and 100% of 

images, respectively. Moreover, to statistically compare the performance of the proposed 

denoising scheme and that of BM3D, as the closest competitor, we compute the t-value of 

confidence between the two algorithms. The t-value between BM3D and the proposed 

denoising method is 1.962 that falls in 0.05 column of the t-Table of significance (95%). 

In view of this, the difference is considered to be significant. 

 

Table 3.8: Averaged PSNR values obtained using various denoising methods over 1000 
images. 
 Standard Deviation 

 10 15 20 25 

LAWMAP 33.09 31.37 29.83 28.37 

BLS-GSM 34.53 32.78 30.97 29.76 

Trivariate 34.11 32.55 30.71 29.45 

K-SVD 34.82 33.02 31.36 30.03 

BM3D 35.41 33.40 32.01 30.99 

CT-Bi- SSα -MMAE 35.63 33.51 32.05 30.90 
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Table 3.9 gives MSSIM [116] values obtained using the proposed denoising method and 

some of the other existing methods for three of the test images, Barbara, Boat and Lena. 

It is seen from this table that the values of the MSSIM index obtained from our proposed 

method is generally higher than that of the other methods, except for BM3D in which 

case our results are comparable, indicating the effectiveness of the proposed method in 

preserving edges and providing better visual quality. It should be noted that for denoising 

an image of size 256×256, the approximate execution time is 18 seconds, indicating the 

computational efficiency of the proposed algorithm. 

 

Table 3.9: MSSIM values obtained using proposed denoising method and some of the 
other existing methods for three of the test images, Barbara, Boat and Lena. 
 

ησ
 [16] [19] [107] [86] [105] [18] [82] Proposed 

                                                     Barbara    

10 0.92 0.93 0.93 0.94 0.94 0.95 1.00 0.96 

20 0.85 0.87 0.87 0.88 0.89 0.91 0.98 0.94 

30 0.78 0.79 0.81 0.83 0.82 0.84 0.95 0.91 

                                                      Boat    

10 0.93 0.94 0.94 0.95 0.96 0.97 1.00 0.98 

20 0.89 0.90 0.91 0.92 0.92 0.93 0.97 0.96 

30 0.86 0.85 0.87 0.87 0.89 0.90 0.95     0.93 

         Lena 

10 0.93 0.94 0.94 0.96 0.97 0.98 1.00    0.98 

20 0.87 0.89 0.90 0.89 0.91 0.91 0.97    0.95 

30 0.81 0.84 0.83 0.85 0.86 0.87 0.94    0.92 
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To evaluate the performance of the proposed denoising scheme in presence of non-

Gaussian noises such as Maxwell and Rayleigh, we compute the root mean squared error 

(RMSE) between the original and denoised images. Table 3.10 gives the averaged RMSE 

between the original and denoised images obtained for the proposed MAP and MMAE 

estimators using the alpha-stable family of distributions including the bivariate and 

univariate SSα distributions and its Cauchy member (α =1) over a number of test images. 

It is seen from this table that the CT-Bi- SSα -MMAE gives a lower RMSE values 

indicating its superiority to other estimators in removing non-Gaussian noises. Figures 

3.8 and 3.9 illustrate the noisy Lena image and the corresponding denoised images 

obtained using BM3D and proposed CT-Bi- SSα -MMAE denoising methods. It is seen 

from these figures that the proposed denoising method is superior to BM3D in removing 

non-Gaussian noises from images. The averaged RMSE over 20 test images obtained 

using BM3D and the proposed denoising methods are 0.0097 and 0.0086, when images 

are corrupted by the Rayleigh noise, and 0.0123 and 0.0102, when images are corrupted 

by the Maxwell noise, respectively. The lower RMSE values obtained using the proposed 

denoising scheme indicates its superiority to BM3D method in presence of non-Gaussian 

noises.  

 

Table 3.10: Averaged RMSE values obtained for the MAP and MMAE estimators using 
the alpha-stable family of distributions over a number of test images corrupted by the 
Maxwell and Rayleigh noises with � = 5. 
 
 Cauchy SSα  Bi-Cauchy Bi- SSα  
 MAP MMAE MAP MMAE MAP MMAE MAP MMAE 
Maxwell 0.0217 0.0195 0.0169 0.0145 0.0164 0.0140 0.0126 0.0102 
Rayleigh 0.0189 0.0161 0.0147 0.0118 0.0133 0.0112 0.0105 0.0086 
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Noisy (Maxwell) �=5 BM3D, RMSE=0.0945 Proposed, RMSE=0.0883 

(a) (b) (c) 

Figure 3.8: (a) Noisy Lena image by the Maxwell noise with � = 5, (b) Denoised image 
obtained using BM3D method, RMSE=0:0945, and (c) Denoised image obtained using 
the proposed method, RMSE = 0.0883. 

 

 

 

   

Noisy (Rayleigh) �=5 BM3D, RMSE=0.0051 Proposed, RMSE=0.0023 

(a) (b) (c) 

Figure 3.9: (a) Noisy Lena image by the Rayleigh noise with � = 5, (b) Denoised image 
obtained using BM3D method, RMSE = 0.0051, and (c) Denoised image obtained using 
the proposed method, RMSE = 0.0023. 
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3.3.1. Extension to Color Image Denoising 

 
 
To denoise color images, we consider standard RGB images corrupted by additive 

Gaussian noise in each channel. The most common approach to denoise color images is 

to employ the grayscale denoising method for each of the channels. However, in order to 

take into consideration the dependencies of the RGB channels in color images, as shown 

in Figure 3.10, we use the trivariate alpha-stable model, i.e., CT-Tri- SSα -MMAE, and 

its Cauchy member in the contourlet domain. An efficient closed-form shrinkage function 

corresponding for the MAP estimator using the multivariate Cauchy distribution is 

derived. 

 

 
 
Figure 3.10. Contourlet domain decomposition of the RGB channels for color images. 
Each subband coefficients X1 are highly dependent to the same-oriented subband 
coefficients of two other channels, namely, X2  and  X3. 
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The PDF of the multivariate Cauchy distribution is given by 

 

[ ] 2
1

1T5.05.0
2
1

2
1n

1)(

)(
);(P

+
−

+

Σ+ΣΓ

Γ
=Σ

n

xx

xx

π

 (3-29)

 

where n  is the dimensionality of the distribution, i.e., the number channels, Σ  is the 

covariance matrix that for the case of 3=n  is given by 
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where n...,2,1,ji,;�ij = denotes the correlation coefficient between each of the two color 

channels. Let a noise-free color image ]X,X,[X 321=X  be corrupted by an additive 

noise N  which is assumed to be i.i.d. Gaussian with zero mean and standard deviation 

�� . The corresponding noisy image ]Y,Y,[Y 321=Y  is given by NXY += . Suppose 

that a noisy image is decomposed to K,...,1k =  scales and D,...,1d =  directional 

subbands by the contourlet transform. Then, we have 

)m,(m�)m,(mx)m,(my 21
i

dk,21
i

d,k21
i

dk, += , where )m,(my 21
i

dk, , )m,(mx 21
i

dk,  
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and )m,(m� 21
i

dk,  denote the )m,(m 21 th coefficient at scale k  and direction d  of the 

contourlet transform of Y , X  and N , respectively. The purpose here is to estimate the 

noise-free coefficients of the RGB channels. The Bayesian MAP estimator of x , given 

noisy observation y , is given by 
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where )(P xx  is the PDF of the contourlet coefficients of a noise-free image and 

)(P ��  is the noise PDF which is given by  
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The parameters i�  and ij�  of the noise-free coefficients can be estimated by using  

where S  is a square-shaped window of size ll×  applied to estimate the variance of 

each signal coefficient in a given channel i . After inserting (3-29) and (3-32) into 

(3-9), the derivative of the logarithm of the argument in (3-9) is set to zero resulting 

in the MAP estimate given by 
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where B  for each channel is given by 
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A comparison with some of the state-of-the-art methods [17], [117]-[119], is given in 

Table 3.11 for three of the test images, namely, Lena, Peppers and Baboon. It is seen 

from this table that the proposed color image denoising method is better than the other 

methods in terms of the PSNR values, except for CBM3D method for which our results 

are comparable. Figures 3.11, 3.12 and 3.13 illustrate the cropped noisy Lena, Girl and 

Peppers images and their corresponding denoised images obtained using the proposed 

CT-Tri- SSα -MMAE and CBM3D methods. It can be seen from these figures that the 

proposed denoising method is capable of significantly suppressing the noise and 

preserving the details and providing a better visual quality for denoised images than that 

provided by CBM3D. To further investigate the performance of the proposed color image 

denoising, we use another group of test images, namely, the Kodak dataset which consists 

of 24 color images of size 512×768. Table 3.12 gives the averaged PSNR values obtained 

using the proposed denoising method as well as that yielded by other methods over the 

Kodak dataset. It is seen from this table that the proposed image denoising for color 

images provides higher PSNR values compared to that yielded by the other methods. 
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Table 3.11: PSNR values obtained using various denoising methods for two of the color 
images, Lena and Peppers. 
                                                    
ησ

 10 15 20 25 30 

Lena 

Noisy 28.13 24.61 22.13 20.17 18.60 

BLS-GSM [17] 34.45 32.90 31.78 30.89 30.15 

Surelet [118] 34.64 33.02 31.90 31.04 30.33 

ProbShrink-MB [117] 34.60 33.03 31.92 31.04 - 

CT-Tri-Cauchy-MAP 35.05 33.76 32.91 32.10 31.15 

CBM3D [119] 35.22 33.94 33.02 32.27 31.59 

CT-Tri-S�S-MMAE 35.25 33.95 32.96 32.11 31.33 

Peppers 

Noisy 28.13 24.61 22.15 20.17 18.59 

BLS-GSM [17] 33.26 31.89 30.92 29.46 27.47 

Surelet [118] 33.35 31.79 30.72 29.89 29.19 

ProbShrink-MB [117] 33.44 32.05 31.12 30.35 - 

CT-Tri-Cauchy-MAP 33.61 32.43 31.59 30.79 30.09 

CBM3D [119] 33.78 32.60 31.83 31.20 30.60 

CT-Tri-S�S-MMAE 33.86 32.64 31.68 30.99 30.32 

Baboon 

Noisy 28.13 24.61 22.15 20.17 18.59 

BLS-GSM [17] 30.13 27.66 26.08 24.95 24.07 

Surelet [118] 30.49 28.15 26.64 25.55 24.71 

ProbShrink-MB [117] 30.15 27.72 26.17 25.04 24.16 

CT-Tri-Cauchy-MAP 30.61 28.26 26.93 25.80 25.02 

CBM3D [119] 30.64 28.39 26.97 25.95 25.14 

CT-Tri-S�S-MMAE 30.71 28.43 27.00 25.97 25.13 
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Figure 3.11. Color image denoising; (a) Cropped noisy Lena image with σ =20, 
PSNR=18.60 dB as well as the corresponding denoised images obtained using (b) 
CBM3D, PSNR=31.59 dB and (c) the proposed CT-Tri- SSα -MMAE, PSNR=31.33 dB. 
 

 

 

 
 
Figure 3.12. Color image denoising; (a) Cropped noisy Girl image with σ =30, 
PSNR=18.61 dB as well as the corresponding denoised images obtained using (b) 
CBM3D, PSNR=31.78 dB and (c) the proposed CT-Tri- SSα -MMAE, PSNR=31.90 dB. 
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Figure 3.13. Color image denoising; (a) Cropped noisy Peppers image with σ =30, 
PSNR=18.61 dB as well as the corresponding denoised images obtained using (b) 
CBM3D, PSNR=31.61 dB and (c) the proposed CT-Tri- SSα -MMAE, PSNR=31.42 dB. 
 
 
 
 
 
 
Table 3.12: Averaged PSNR (in dB) values obtained using various denoising methods on 
the Kodak dataset. 
 
 Standard Deviation 
 10 15 20 25 30 
NLM 33.45 31.49 30.06 28.93 28.00 
K-SVD 34.16 32.12 30.75 29.72 28.88 
BM3D 34.90 32.88 31.55 30.57 29.81 
Proposed 35.01 32.95 31.61 30.59 29.80 
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3.4 Summary 

In this Chapter, a new image denoising method in the contourlet domain has been 

proposed. In this method the contourlet subband coefficients of images have been 

modeled by using the univariate alpha-stable distribution. The bivariate alpha-stable 

distribution has also been used to model the across-scale dependencies of the contourlet 

coefficients. Bayesian MAP and MMAE estimators have been developed by using the 

proposed prior in order to estimate the noise-free contourlet coefficients. To estimate the 

parameters of the alpha-stable distribution, a spatially-adaptive method based on 

fractional lower-order moments has been proposed and shown to be superior to the 

maximum likelihood method. Extensive experiments have been conducted to evaluate the 

performance of the proposed algorithm and results have been compared with that 

provided by the state-of-the-art methods. It has been shown that the proposed denoising 

method outperforms other methods in terms of the PSNR and MSSIM values as well as 

in terms of the visual quality of the denoised images. These results have been shown to 

be equally true in the case of color images, where a trivariate alpha-stable distribution has 

been proposed to capture cross correlations between the RGB color channels. In the next 

chapter, the proposed alpha-stable model will be employed in developing a technique for 

despeckling the synthetic aperture radar images. 
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CHAPTER 4 

 

Despeckling of the SAR Images in the Contourlet Domain 
 

4.1 Introduction  

Synthetic aperture radar (SAR) images are intrinsically affected by multiplicative speckle 

noise. There has been a growing effort in preprocessing of the SAR images due to their 

importance in many applications such as high-resolution remote sensing, surface 

surveillance and automatic target recognition [120], [121]. A prerequisite of using SAR 

images is to remove the multiplicative speckle noise. In recent years, multiscale 

transforms have been used with considerable success for recovering signal from noisy 

data [121]-[126]. It has been shown that denoising of images in the contourlet domain in 

comparison to wavelet domain reduces the noise more significantly [127], [128]. This is 

due to the fact that the contourlet transform because of its flexible directional 

decomposability in each scale is more effective than wavelet is in representing smooth 

contour details in images [4].  

It is known that the Bayesian estimators outperform classical linear processors and simple 

thresholding estimators in removing speckle noise from SAR images [122]. In view of 

this, the homomorphic filtering-based methods wherein a suitable PDF is used as a prior 

model for describing the log-transformed wavelet coefficients have been proposed for 

multiplicative noise reduction [123]-[126]. In [123], a spatially-adaptive despeckling 

method has been proposed in wavelet domain. In [124], a dual-tree complex wavelet 

transform based despeckling method has been used to denoise the SAR images. In [125], 
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a Laplacian-Gaussian modeling has been used in wavelet domain for despeckling the 

SAR images. The performance of the Bayesian estimator depends considerably on the 

suitability of the model assumed for the prior PDF of the image and noise. As discussed 

in Chapter 2, the contourlet subband coefficients of an image have significant non-

Gaussian and heavy-tailed statistics and can be accurately modeled by the alpha-stable 

family of distributions [15]. In view of this, in this chapter, a new Bayesian MAP 

estimator using the symmetric alpha-stable distribution is developed to despeckled SAR 

images [129]. The proposed estimator exploits the statistics of the contourlet coefficients. 

Simulations are conducted using synthetically-speckled and real SAR images, and the 

performance of the proposed method using the MAP estimator is evaluated and compared 

to that of the existing techniques. 

 

4.2 Bayesian MAP Estimator 

Since the speckle noise model for SAR images is considered to be multiplicative, the 

observed output of the SAR imaginary system can be defined as 

 

jijiji nxy ,,, =  (4-1) 

 

where jiy ,  denotes the ),( ji th noisy pixel in a SAR image corresponding to the noise-

free pixel jix ,  and jin , denotes the corrupting multiplicative speckle component. For an 

L -look SAR image, the PDF of the speckle noise has a Gamma distribution given by 
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where Γ  denotes the gamma function and variance of noise equals to L/1  [124]. It 

should be noted that the lower the value of L , the higher is the level of the noise. With 

log-transformation, (4-1) becomes 

 

jijiji NXY ,,, +=  (4-3) 

where )ln(yY = , )ln(xX =  and )ln(nN = . The mean and variance of the 

logarithmically transformed gamma distribution are )ln(),0( LL −ψ  and ),1( Lψ , 

respectively [124], where ),( Liψ is the i th polygamma function of L  looks, and it is 

given by )(ln)(),( 1 z
z

zi i Γ
∂
∂= +ψ . Suppose that a noisy image is decomposed to 

Jj ,...,1=  scales and Dd ,...,1=  direction subbands by the contourlet transform. Then, 

we have 

),(),(),( nmnmxnmy d
j

d
j

d
j η+=  (4-4) 

 

where ),( nmyd
j , ),( nmxd

j and ),( nmd
jη  denote the ),( nm th contourlet coefficient of the 

log-transformed noisy image at scale j  with direction d , the corresponding log-

transformed noise-free coefficient and the corresponding noise component after 

logarithmic transformation. Despeckling is based on estimating the noise-free coefficients 

x  as a function of the noisy observations y .  To this end, a Bayesian MAP estimator is 

developed through modeling the contourlet coefficients of a noisy image by the alpha-
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stable PDF. The Bayesian MAP estimator of x , given noisy observation y , can be 

derived as 
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where )(xPx  is the PDF of the contourlet coefficients of a noise-free image, )(ηηP  is the 

noise PDF. Although the speckle noise can be modelled by the gamma PDF, it becomes 

very close to the Gaussian distribution as a result of the logarithmic transformation [123]. 

Therefore, in the proposed denoising method, the noise is assumed to be white Gaussian 

with a zero mean and a standard deviation of ησ . The corresponding PDF is given by 
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If ησ  is unknown, it may be estimated by applying the robust median absolute deviation 

method [72] in the finest subband of the observed noisy coefficients. To obtain the MAP 

estimate, after inserting the noise PDF into (4-5), the derivative of the logarithm of the 

argument in (4-5) is set to zero resulting in 
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Therefore, the Bayesian MAP estimator for non-Gaussian data is derived as  
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Since there is no closed-form PDF for the alpha-stable distribution, we numerically 

compute the Bayesian MAP estimator output in (4-8). The proposed despeckling, whose 

block diagram is shown in Figure 4.1, can be summarized as follows:  

 
1) Perform the log-transformation of the observed SAR image. 

2)  Apply the contourlet transform on the log-transformed image and obtain the 

contourlet coefficients. 

3) Estimate the parameters of the alpha-stable distribution γ  and α  from the noisy 

coefficients. 

4)  Estimate the noise-free coefficients using the Bayesian MAP estimator in (4-8). 

5)  Apply the inverse contourlet transform on the estimated noise-free coefficients. 

6)  Carry out the mean adjustment of the quantity obtained in Step 5 by subtracting it 

from the mean of log-transformed noise, i.e., )(ln)( LL −ψ . 

7)  Perform the exponential transformation of the values obtained in Step 6 to obtain 

the despeckled image. 

 

 

Figure 4.1. Block diagram of the proposed algorithm for speckle reduction. 
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4.3 Experimental Results 

The performance of the proposed despeckling method is evaluated by conducting 

experiments on synthetically-speckled or real SAR images. The obtained results are 

compared to those obtained by some of the existing speckle filtering methods in the 

wavelet and contourlet domain, namely, WIN-SAR [122], UWT [126], LAM [128], and 

NSCT [130]. It should be noted that the contourlet transform is a shift-variant transform. 

In order to overcome the possible pseudo-Gibbs phenomenon in the neighborhood of 

discontinuities, in the proposed despeckling method, the cycle spinning method is 

performed on the observed noisy image. The noisy image is then decomposed, using the 

contourlet transform, into four scales with eight directions in each scale. In order to 

quantify the performance improvement, the PSNR is computed between the 

synthetically-speckled and denoised images. Table 4.1 shows the PSNR values in 

decibels for the two synthetically-speckled images, namely Boat and Lena. It can be seen 

from this table that the proposed contourlet-based despeckling method provides PSNR 

values that are higher than those provided by the other methods for a given range of noise 

level. In case of the Lena image, the proposed despeckling method exhibits a clearly 

better performance than that of other methods do. Figure 4.2 shows a real SAR image, 

Ajkwa image, obtained from [131] and its despeckled versions obtained by using the 

NSCT, UWT and LAM methods. The equivalent number of looks (ENL) value is given 

by [123] 
2

2

x

xENL
σ

μ
= , which is used to evaluate the performance of these methods for 

speckle noise reduction in which μ  and σ  are the mean and standard deviation within 

the selected homogenous region x . For the ENL calculation, two uniform regions in the 
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Ajkwa image are considered, shown in Figure 4.2(a). Table 4.1 gives the ENL values 

obtained for two regions using various despeckling methods. From this table, it can be 

seen that the proposed method outperforms the other methods in reducing speckle noise 

in uniform regions and provides better visual quality by preserving the edges than those 

given by the other methods. 

 

TABLE 4.1: PSNR values obtained using different despeckling methods for 
synthetically-speckled Boat and Lena images. 
 
 Number of looks (L) 

3 4 5 6 

Boat 

Proposed 23.05 23.89 24.32 24.56 

WIN-SAR [122] 22.14 23.13 23.92 24.42 

NSCTS [130] 22.93 23.79 24.35 24.68 

UWT [126] 21.83 22.49 23.07 23.88 

LAM [128] 21.55 22.89 23.69 24.15 

 Lena 

Proposed 28.95 30.08 30.72 31.46 

WIN-SAR [122] 25.09 26.93 29.05 30.62 

NSCTS [130] 28.65 29.70 30.75 31.46 

UWT [126] 28.12 29.36 30.29 31.08 

LAM [128] 25.78 26.73 27.29 27.90 
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Figure 4.2. (a) Ajkwa image. Obtained despeckled images by using various methods, 
namely, (b) WIN-SAR, (c) NCST, and (d) the proposed method. 
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4.4 Summary 

In this chapter, a new scheme for despeckling of SAR images in the contourlet domain 

has been proposed. The SAR images are logarithmically transformed to convert the 

multiplicative speckle noise into an additive noise. It is then decomposed into various 

scales and directional subbands via the contourlet transform. The proposed method has 

been developed by modeling the contourlet coefficients of the log-transformed SAR 

image using the symmetric alpha-stable distribution. The noise in all the detail subbands 

is removed by the Bayesian MAP estimator using the alpha-stable prior. Experiments 

have been carried out using the synthetically-speckled and real images to examine the 

performance of the proposed method and compare it with that of some of the existing 

methods. The results have shown that the proposed despeckling method outperforms 

other methods in term of the PSNR values and provides better visual quality despeckled 

images. The proposed method has also been shown to provide a better speckle reduction 

in the homogeneous regions of images. 
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CHAPTER 5 

Multiplicative Watermark Detection in the Contourlet Domain 

Using Alpha-Stable Distributions 

 

5.1 Introduction 

Based on the study carried out in Chapter 2 on effectiveness of the alpha-stable family of 

distributions in modeling the contourlet coefficients of images, in this chapter, a new 

image watermarking scheme in the contourlet domain is proposed [132]. A new blind 

watermark detector is also designed based on the proposed alpha-stable family of 

distributions.  

Digital data distribution on the internet has made researchers to pay special attention to 

copyright issues. Digital watermarking has been widely applied to different media 

contents such as videos, audios and images for the purpose of identifying the ownership 

of the media. Various watermarking schemes have been proposed to protect the copyright 

information. These schemes may be categorized in many ways such as the domain in 

which the watermark is embedded for example pixel [133], frequency [134], and the 

method of embedding, additive [135], [136] multiplicative [137], [138] or based on 

quantization [139]. In many applications, the detection of a specific watermark is 

sufficient, without it being extracted. The commonly-used additive and multiplicative 

embedding rules are given by 

Additive watermarking: 

WXY ξ+=  (5-1) 
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Multiplicative watermarking: 

WXXY ξ+=  (5-2) 

where X and Y  are, respectively, the original and watermarked data, W  is a watermark 

sequence and ξ  a weighting factor. It should be mentioned that by increasing the amount 

of embedded information, i.e., by increasing ξ , the robustness of the watermarking 

scheme is increased. The multiplicative watermarks have been widely used for copyright 

protection, in view of its robustness. Hence, detection of multiplicative watermarks has 

received a great deal of attention. Due to their simplicity, correlation-based detectors 

have been used for detecting the watermarks, especially for additive watermarking 

schemes [135].  However, it has been shown that these detectors are not optimal for the 

detection of multiplicative watermarks [138].  

A watermarking scheme should be robust against any intentional or unintentional 

distortion and the authorized user should be able to detect the watermark. The robustness 

can be significantly increased by utilizing the spread spectrum technique in which the 

watermark is embedded in a transformed domain such as DCT [24], [25], DWT [26]-

[28], ridgelet transform [140], curvelet transform [141] and the contourlet transform [33], 

[34]. Recently, a number of watermarking schemes have been proposed, wherein the 

watermark is embedded into the contourlet coefficients of the image [13], [142]. It has 

been shown that the contourlet-domain watermark techniques are more robust than other 

frequency-domain watermarking algorithms against any kind of attack [13], [33], [34]. 

The most commonly used detector for the frequency domain watermarking schemes is 

the correlation detector, which is optimal only if the data samples follow the Gaussian 

distribution function [143]. In the case when these data samples are not Gaussian, optimal 
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or sub-optimal detectors have been developed by modeling the frequency-domain 

coefficients using various PDFs, such as the Laplacian [28], student-t [36], and 

generalized Gaussian [13]. In view of the fact that the contourlet coefficients of an image 

are highly non-Gaussian [12], [15], a proper distribution to model the statistics of the 

contourlet coefficients is a heavy-tailed PDF. It has been shown in [13] that the 

generalized Gaussian distribution can model the contourlet coefficients. Accordingly, a 

statistical watermark detector has been proposed in [13] for the contourlet-domain image 

watermarking by modeling the contourlet coefficients with the GG distribution.  

In this chapter, multiplicative watermark detectors are designed in the contourlet domain 

by using the univariate and bivariate alpha-stable distributions.  The watermark detectors 

using the univariate and bivariate Cauchy members of the alpha-stable family are also 

designed. The performance of the proposed detectors are evaluated experimentally and 

theoretically by obtaining the receiver operating characteristics. The robustness of the 

proposed watermarking scheme is examined when the watermarked images are attacked 

by various kinds of attacks. Finally, we compare the performance of the proposed 

detectors with that of the GG detector. 

5.2 Watermarking 

 In watermarking applications, there have been several works suggesting that the 

performance of the contourlet-domain algorithms is better than those based on the 

wavelets [12], [36]. This is mostly due to the spreading property of the contourlet 

transform in that if the watermark bits are inserted into specific subbands (e.g., lowpass 

or highpass), they will be spread out into all the subbands when the watermarked image is 

reconstructed [36]. Thus, it makes the contourlet-domain watermarking algorithms more 
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resistant to attacks. The spreading effect and robustness are affected by many factors such 

as the embedded watermark, the content of the original image and the filter 

characteristics of the contourlet transform.  

5.2.1 Watermark Embedding 

In the embedding process, we focus specifically on a multiplicative spread spectrum 

scheme in the contourlet domain. The contourlet transform is first applied to an image to 

capture the important features of the image in a few coefficients. It has been shown that a 

watermark should be inserted into the significant features of an image in order to increase 

the robustness of the watermark [133]. In view of this, we are going to find the 

coefficients that represent most of the features of an image; hence, we compute the 

variance of the coefficients in each directional subband and then select the subband X  

that has the highest value for its variance for embedding the watermark. For an 

21 MM × image, this subband X  is given by 
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where Jj ...,,1=  refers to the number of resolution levels and jDd ...,,1=  to the 

number of frequency directions. Figure 5.1 shows a block diagram of the proposed 

watermark embedding procedure. The watermark sequence W modifies the contourlet 

coefficients of the selected subband X  giving the watermarked coefficients Y . The 

watermark may or may not contain a message. When the watermark carries a message, 

the message is coded into a binary sequence N
iib 1}{ =  with +1 for bit 1 and -1 for bit 0 for 
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the message. The watermark is generated using a direct sequence spread spectrum 

technique, wherein the watermark is generated using a pseudorandom sequence generator 

that has an authentication key as its initial value. This pseudorandom sequence spreads 

the spectrum of the watermark signal over many coefficients making it difficult to be 

detected. To maximize the security and robustness of the watermarking scheme, the 

sequence should have white-noise like properties [27]. Let such a sequence be denoted 

by N
iis 1}{ = , where is  takes the values 1 or -1 with equal probability. In order to assure a 

robust watermarking scheme, the watermark should have maximum strength without 

affecting the perceptual quality of the image. For this purpose, a positive watermark 

weighting factor ξ  is used to provide a trade-off between the robustness of the 

watermarking method and the imperceptibility of the embedded watermark based on the 

local characteristics of the image for a given resolution level and frequency direction. The 

contourlet coefficients of the selected subband are modified as iiii wxxy ξ+= , 

where N
iix 1}{ = and N

iiy 1}{ =  are the original and watermarked coefficients, respectively, and 

N
iiii sbwW 1}{ === . 

 

 
 
Figure 5.1. Block diagram of the watermark embedding procedure. 
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The weighting factor ξ  is calculated for an image by using the watermark to document 

ratio (WDR) given by [27] 
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where the term “document” refers to the contourlet coefficients of the original image and 

�= i iix
x

N
22 1σ . In this case, the watermark can be adapted to the local properties of the 

original image. It should be mentioned that ξ  can be increased to a point where the 

watermark is still invisible, and yet it is still detectable. The watermarked contourlet 

coefficients are then inverse transformed to get the watermarked image. 

 

 
Figure 5.2. Block diagram of the watermark detection procedure. 

 
 

5.2.2 Watermark Detection 

In general, a watermarking scheme for copyright protection has an embedded watermark 

that is known to the intended receiver. Hence, the verification of its existence, i.e., the 

detection of the watermark, is sufficient for the purpose of checking the authenticity of 

the copyright. Figure 5.2 gives a block diagram of the different steps involved in the 
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watermark verification process. Current detection methods use the signal statistics for the 

watermark detection. We propose a method based on Bayesian log-likelihood ratio test 

for detecting the watermark in the contourlet coefficients of a watermarked image. This 

method can be reduced to a binary hypothesis test to verify the presence of a watermark. 

It consists of testing a hypothesis 1H  against a null hypothesis 0H  and can be 

mathematically formulated based on the statistical properties of the contourlet 

coefficients [144]. The hypotheses 1H  and 0H  represent as to whether the contourlet 

coefficients are watermarked by the sequence  W  or do not carry any watermark, 

respectively, and can be stated as 
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 (5-5) 

In detection, the goal is to see whether or not there is a watermark in the received image 

Y , based on the statistical properties of the original image X . The data is modeled by an 

appropriate statistical distribution. The decision rule is then defined as the likelihood ratio 
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The likelihood ratio uses the probability density functions as 
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The likelihood ratio becomes 
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In practice, the log-likelihood ratio is usually preferred in hypothesis testing [144], and is 

defined as the natural logarithm of )(det YΛ ; hence, the decision rule becomes: 
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and the log-likelihood ratio is  
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The detector is supposed to choose between 1H  and 0H  based on the received image Y . 

In this case, if  )ln()ln( det τΛ > , 1H  is accepted; otherwise, 0H  is accepted. The log-
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likelihood ratio is clearly a superposition of N statistically independent random variables 

with finite mean and variance. Thus, according to the central limit theorem for large N  

[143], the log-likelihood ratio follows an approximately Gaussian distribution under each 

hypothesis. The mean and variance of each of the Gaussian distributions can be estimated 

from the empirical data and are given by ),( 2
00 σμ  and ),( 2

11 σμ , for 0H  and 1H , 

respectively.  It is known that in the decision task there may be two types of errors [37], 

[144]. Type I error occurs when detector decides 1H  when in fact 0H  is correct. This 

error is called the probability of false-alarm denoted by faP . Type II error occurs when 

0H  is accepted while 1H  is correct. This error is called miss-detection denoted by 

det1 PPm −= , where detP  is the detection probability of accepting 1H  when the 

watermark is present. In order to design our watermark detector based on the alpha-stable 

distribution, we obtain the log-likelihood ratio in (5-11) using the alpha-stable PDF. It is 

to be noted that there is no closed-form expression for the SSα  distribution except when 

α  takes the values 0.5 for the Levy, 1 for the Cauchy and 2 for the Gaussian 

distributions. Therefore, we use the Monte Carlo simulations to numerically find the log-

likelihood ratio )ln( detΛ . To this end, 1000 randomly generated watermark sequences 

that have uniquely-defined keys are employed. For each run, we first estimate the log-

likelihood ratio )ln( detΛ  of an image using (5-11) for both the hypotheses. The 

experimental mean and variance of )ln( detΛ  for each of the detectors are then estimated. 

Thus, when the mean and variance of the log-likelihood ratio under both hypotheses are 

known, for a particular value of τ , the probabilities of false alarm and detection can be 

estimated as [144] 
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where )(xQ  is defined as �
∞
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x

dzzexQ 2/
2
1)(

2

π
. The decision threshold is obtained 

by using the Neyman-Pearson criterion that minimizes the probability of miss-detection, 

i.e., det1 P− , for a given probability of false alarm faP  [37], [144] and can be expressed as 
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and detP  as 
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The performance of the proposed statistical detector can be analyzed theoretically by 

relating the probability of detection and the probability of false alarm. Resulting curves 

are called the receiver operating characteristics (ROC). It should be noted that the 

probability of detection needs to be kept at a high level for a predefined rate of false 

alarm to increase the reliability of detection.  
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5.2.3 Detector Based on the Univariate Alpha-Stable Distribution 

The theoretical ROC curves can be derived by obtaining the mean and variance of the 

log-likelihood ratio under each hypothesis. Using the Cauchy member of the alpha-stable 

family, the log-likelihood ration in (5-11) can be rewritten as 
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Having (5-15), the theoretical mean and variance of )ln( detΛ  under 0H  can be obtained 

as follows:  
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It is known in that for large N , the log-likelihood ratio under both the hypotheses can be 

approximated by Gaussian distributions with means ),( 10 μμ  and variances )( 2
1,

2
0 σσ  

[143]. The mean and variance of the log-likelihood ratio under 0H  can be obtained as  
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and 
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We assume that the watermark sequence W  is generated by a pseudorandom sequence 

taking values +1 and -1 with equal probability. Hence, )(
1 iq yμ  and )(

2 iq yμ  can be 

obtained as 
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and hence 0μ  can be calculated as 
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In order to find the variance of the log-likelihood ratio, given by (5-18), the various terms 

can be found as   
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Then, after some mathematical manipulations, the final expression for the variance, 2
0σ  is 

obtained as 
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where parameter γ  of the Cauchy distribution can be directly computed from the 

contourlet coefficients of the watermarked image. The mean and variance of the log-

likelihood ratio under 1H  can also be found as 0μ = 1μ−  and 2
0σ = 2

1σ . Figure 5.3 depicts 

the experimental ROC curves for the SSα  distribution. This figure also shows the 

theoretical ROC curves for the Cauchy with 1=α  and GG distributions. It is seen from 

Figure 5.3 that the detectors based on the SSα  distribution, and even its Cauchy 

member, have higher rates of detection for a given probability of false alarm than that 

based on the GG distribution.  
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Figure 5.3.  ROC curves for the detectors based on alpha-stable, Cauchy and GG 
distributions. 
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5.2.4 Detector Based on the Bivariate Alpha-Stable Distribution 

Using the bivariate SSα  and its Cauchy member with 1=α , we also obtain the ROC 

curves. Figure 5.4 shows the corresponding ROC curves for the bivariate and univariate 

SSα , bivariate and univariate Cauchy and GG distributions. It should be noted that for 

the case of bivariate Cauchy distribution, having the PDF given by 

2/322
1

2
1

21
)(2

),(
γπ

γ
γ

++
=

xx
xxf , one can obtain the theoretical mean and variance of 

)ln( detΛ  under 0H  , i.e., ii yx = , as  
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where parameter γ  of the bivariate Cauchy distribution can be directly computed from 

the children contourlet coefficients of the watermarked image. To obtain the mean and 

variance of the log-likelihood ratio, following assumptions have been made. 1) The 

number of directions in each scale should be the same in order to have a relation between 

the parents and their children in each direction. 2) The watermark is embedded only in 

the children subband. To have both 1ix  and 2ix  to be of the same size, we expand the 

parent subband by a factor of 2. It should be noted that the PDF of the original and 

watermarked images are assumed to be the same, i.e., embedding the watermark does not 

change the distribution of the original image coefficients [37]. It is seen from Figure 5.4 

that the detectors based on the bivariate SSα  distribution, and even its Cauchy member, 

have higher rates of detection for a given probability of false alarm than that based on the 

GG distribution. We also obtain the CPU times for the detectors based on these 

distributions; Table 5.1 gives the CPU times averaged over a number of images. It is 

observed from this table that the CPU time when using the best fit bivariate and 

univariate SSα  is indeed high. Thus, the performance improvement of the bivariate 

SSα  over that using bivariate Cauchy distribution, as seen from Figure 5.4, is at the 

expense of a substantially high computational complexity. Therefore, without any 

appreciable loss of the rate of detection, a watermark detector is also designed based on 

the bivariate Cauchy distribution. It should be noted that the bivariate Cauchy distribution 

has a closed form expression for its PDF which leads to a computationally efficient 

detector with low CPU time required. 
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Figure 5.4.   ROC curves for the detectors based on bivariate alpha-stable (bi-alpha-
stable), univariate alpha-stable, bivariate Cauchy (bi-Cauchy), Cauchy and GG 
distributions, (a) WDR= - 38 dB, (b) WDR= - 40 dB. 
 

 
Table 5.1: The computational complexity of the detectors based on the SSα , Cauchy and 
GG distributions. 
 
  

Bi-S�S S�S 
 

Bi-Cauchy 
 

Cauchy 
 

GG 
 

 
CPU time(sec) 

 
60.53 

 
43.47 

 
3.12 

 
1.85 

 
1.83 
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5.3 Experimental Results  

Experiments are conducted to investigate the imperceptibility of the embedded 

watermark as well as the robustness of the proposed method against attacks. The standard 

images considered in these experiments are images of size 512×512 [99]. In our 

experiments, the watermark is generated following the procedure described in 5.2.1. To 

select the appropriate subband for embedding the watermark bits adopting the 

multiplicative embedding rule, both the robustness and the visual quality of watermarked 

image should be considered. In view of this, we embed the watermark through the 

following procedure.  

•   Decompose the original image into a number of subbands by using the contourlet 

transform with two pyramidal levels followed by eight directions in each scale.  

•    Compute the variance of the intensity of each subband by using (5-3) and 

choosing the subband that has the highest variance for embedding the watermark. 

•    By using iiii wxxy ξ+= , we can embed the watermark in a multiplicative manner. 

•    Apply the inverse contourlet transform to the modified coefficients to obtain the 

watermarked image.  

   In Figures 5.5(a)-(e), a few of the original images namely, Barbara, Peppers, Airplane 

and Baboon are presented and the watermarked images with WDR = - 40 in Figures 5.5 

(f)-(j). The images are indistinguishable, thus showing the effectiveness of the 

multiplicative contourlet-domain watermarking in terms of the invisibility of the 

watermark. Watermark detection is performed without requiring the use of the original 

image (i.e., blind image watermarking).  
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Figure 5.5. Original (a-e) and watermarked with WDR = - 40 dB (f-j) images of Lena 
PSNR = 58.42, Barbara PSNR = 52.19, Peppers PSNR = 60.20, Airplane PSNR = 56.85 
and Baboon PSNR=53.35. No visual difference can be realized. 
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To compare the performance of the contourlet transform with other sparse transforms 

such as wavelet, dual-tree complex wavelet and curvelet transforms, we assume a two 

level of decomposition for each transform and a same-size watermark inserted in the 

subband coefficients with highest value for their variances. Based on this assumption, the 

ROC curves for various transforms are derived for the univariate Cauchy and GG 

distributions. Figure 5.6 depicts the ROC curves obtained for one of the test images, the 

Barbara image. It is seen from this figure that the contourlet and curvelet transforms 

have the best rates of detection as compared to other transforms. Similar results have 

been obtained for other test images. The reason for better rates of detection for these two 

transforms is due to their capability in capturing more geometrical shapes by allowing for 

a flexible number of directions at each scale [3], [4]. However, the fact that the contourlet 

transform has been directly defined in the discrete domain and on rectangular grids, 

resulting in having 2-D frequency partition on concentric rectangles rather than on 

concentric circles for curvelet, motivated us to use the contourlet transform in our work. 

Table 5.2 gives the CPU times averaged over a number of images, required by the 

detectors using the contourlet and curvelet transforms. It is seen from this table that the 

detector using the contourlet transform has a very much lower computational complexity 

compared to that using the curvelet transform. The significantly lower CPU time for the 

contourlet-based method can be attributed to the fact that this transform is not only 

defined directly in the discrete domain, but also employs iterated filter banks making it 

computationally efficient.  
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Figure 5.6.   ROC curves for the detectors using contourlet, curvelet, wavelet and dual-
tree complex wavelet (DTCW) transforms. 
 
  
Table 5.2: The computational complexity of the detectors based on the univariate Cauchy 
distribution using the contourlet and curvelet transforms. 
               

Contourlet 
 

Curvelet 

 
CPU time(sec) 

 
1.85 

 
213.90 

 
    
Now, for each image, the performance of the bivariate Cauchy detector is first compared 

to that of the GG detector in terms of the ROC curves without any kind of attack. It is to 

be pointed out that the theoretical ROC can be computed directly from the data by 

estimating the parameters for each of the two distributions. To validate this theoretical 

ROC, Monte Carlo simulations are performed. The experimental mean and variance of 

)ln( detΛ  for each of the detectors are estimated. The theoretical and experimental ROC 

curves are shown in Figure 5.7 for the bivariate Cauchy and GG detectors. It is seen from 

this figure that the experimental ROC curves are very close to the theoretical ones for 

both the detectors. It is also seen that the bivariate Cauchy detector yields a performance 

better than that of the GG detector as evidenced by a higher probability of detection for 

any given value of false alarm.        
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Figure 5.7.   Theoretical and experimental ROC curves for the bivariate Cauchy and GG 
detectors. 
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Figure 5.8.   Probability of detection for watermarks of varying strength parametrized by 
the WDR (dB) for various detectors. 
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In order to compare the performance of the detectors for watermarks with different 

strengths, we consider WDR in the range - 42 dB to - 32 dB for all the test images. Figure 

5.8 shows the results of detection rate when faP  is fixed at 310− . From this figure, it can 

be seen that as WDR decreases, the performance of both the schemes deteriorates. 

However, the bivariate SSα  and bivariate Cauchy detectors outperform the GG detector 

at any level of watermark strength, as can be seen from the values of the detection 

probabilities. Figure 5.9 shows the probability of false alarm faP  as a function of the 

strength of the watermark, WDR, for a fixed value of the probability of detection 

9.0det =P . It is seen from this figure that the probability of false alarm for the proposed 

bivariate SSα  and bivariate Cauchy detectors are lower than that of the GG detector for 

different watermark strengths. The robustness of the detectors against the various attacks 

is next studied using the same test images.  
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Figure 5.9.   Probability of false alarm for watermarks of varying strength parametrized 
by WDR (dB) for various detectors. 
 
 
 
 

 
 
Figure 5.10.  ROC curves for various detectors when the AWGN with various standard 
deviations is added to the watermarked images. 
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To study the robustness against noise, the watermarked images are corrupted by AWGN 

with σ  varying from 0 to 25. Figure 5.10 shows the averaged ROC curves obtained 

using various detectors when the watermarked image is contaminated by AWGN attack. 

It is seen from this figure that the proposed bivariate SSα  and bivariate Cauchy detectors 

are more robust than GG detector is.  

The robustness of the proposed detector under JPEG compression is now investigated. 

For this purpose, we compare the log-likelihood ratio )ln( detΛ  with the decision 

threshold τ  for a given false alarm probability to obtain the detector response for a given 

image. The detector responses of the proposed watermarking scheme with the bivariate 

S�S and bivariate and univariate Cauchy detectors as well as that with the GG detector 

for one of the test images, the Lena image, are shown in Figure 5.11. It is seen from this 

figure that by using the proposed watermarking scheme with the bivariate SSα  detector 

and even its Cauchy member, a higher detection rate is obtained and that the scheme is 

more robust than the one with the GG detector. Finally, the robustness of the proposed 

scheme when the watermarked image undergoes median filtering is studied. Figure 5.12 

shows the detector responses of the proposed watermarking scheme with the bivariate 

SSα and bivariate and univariate Cauchy detectors as well as that with the GG detector 

for the Lena image with windows of size 3×3, 5×5 and 7×7 for the median filter. It is 

evident from this figure that for the size of 7×7, the GG detector cannot recognize the 

presence of the watermark. Thus, the proposed scheme using the bivariate SSα  and 

bivariate Cauchy detectors are much more robust than that with GG detector.  
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Figure 5.11.  Detector response for the (a) bivariate alpha-stable, (b) bivariate Cauchy, (c) 
univariate Cauchy and (d) GG distributions when the Lena image is JPEG-compressed 
with different quality factors varying from 1 to 100, WDR = - 38 dB. 
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Figure 5.12.  Detector response for the (a) bivariate alpha-stable, (b) bivariate Cauchy, (c) 
univariate Cauchy and (d) GG distributions when the Lena image is under median 
filtering with windows of size of 3×3, 5×5 and 7×7;WDR = - 38 dB. 
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5.4 Summary 

In this chapter, blind watermark detectors using the univariate and bivariate alpha-stable 

distributions have been designed. The proposed detectors employ the Bayesian log-

likelihood ratio criterion for the watermark detection. It has been shown that the detectors 

based on both of these distributions have rates of detection for a given probability of false 

alarm higher than that of the detector designed based on the GG distribution. Even 

though the detector based on the best-fit alpha-stable distribution provides a higher 

detection rate, it is computationally expensive because of the lack of a closed-form 

expression for its distribution. In view of this, watermark detectors have been designed 

based on the univariate and bivariate Cauchy members of the alpha-stable family. It has 

been shown that a very significant advantage of the closed-form expression of the 

Cauchy PDF is that it allows a derivation of closed-form expressions for the mean and 

variance of the log-likelihood ratio in terms of the empirical data. This has resulted in the 

design of significantly reduced-complexity detectors, and yet has provided a performance 

that is much superior to that of the GG detector and very close to that corresponding to 

the best-fit alpha detectors. The performance of the proposed detectors have been 

evaluated in detail by conducting several experiments. The robustness of the proposed 

detectors against additive white Gaussian noise, JPEG compression and median filtering 

attacks has been studied and shown to be superior to that of the GG detector. In the next 

chapter, the problem of watermarking color images will be investigated by taking into 

account the inter-channel dependencies of the RGB color channels. 
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CHAPTER 6 

Multiplicative Watermark Detector for Color Images in the 

Contourlet Domain 

 

6.1 Introduction  

Most of the image watermarking schemes have focused on grayscale images [24]-[29]. 

The generalization of such schemes to color images is feasible by embedding the 

watermark into the luminance channel in the luminance/chrominance, i.e., YUV, domain 

or through watermarking each channel separately. However, it has been shown that the 

dependencies between the RGB channels can remarkably improve the performance of the 

watermark detection [145]. In [145], a watermarking technique has been proposed in the 

discrete cosine transform domain in which the dependencies of the RGB channels have 

been taken into account by defining a global correlation measure. In [146]-[149], the 

complex and quaternion Fourier transforms have been used to capture the chromatic 

information of the color images. However, quaternion Fourier transform-based 

watermarking is computationally inefficient. In [150], a wavelet-based watermarking 

scheme for color images has been proposed through visual masking in the YUV domain. 

However, it does not take the color information into account by ignoring the chrominance 

components. In [151], the histogram bin shifting technique has been used for reversible 

watermarking of the color images. However, the performance of this algorithm is not 

satisfactory in the RGB color space. In many watermarking schemes in the transform 
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domain, a decision rule has been devised as a binary hypothesis test to verify the presence 

or absence of the hidden information. It has been shown that the effectiveness of a 

watermark detector depends highly on the modeling of the transform-domain coefficients 

[13], [24]. In [24], the Weibull density function has been used to model the discrete 

Fourier transform coefficients of color images. In [152], a multivariate power-exponential 

(MPE) distribution has been proposed to capture the wavelet subband statistics and 

dependencies across RGB channels in an additive color image watermarking scheme. 

However, the detector proposed in [152] is not robust when the watermark is low-

powered or the watermarked image is under attack. In this chapter, a multichannel 

multiplicative watermark detector for color images is proposed [153]. The proposed 

detector is developed by using the multivariate Cauchy distribution. A Bayesian log-

likelihood ratio test is employed to derive an efficient closed-form expression for the test 

statistics. The performance of the proposed detector is evaluated by obtaining the receiver 

operating characteristics curves. The robustness of the proposed watermarking scheme is 

examined when the watermarked images undergo JPEG-compression, salt and pepper 

noise, median filtering and Gaussian noise attacks. 

 

6.2 Watermarking Scheme 

To embed the watermark bits, the original RGB color channels are separately 

decomposed into a number of subbands by using the contourlet transform with highest 

sparsity among other transforms [4], [13]. It is known that the watermark should be 

inserted into the significant features of an image in order to increase the robustness of the 

watermark [154]. In view of this, the directional subband with highest entropy in the 
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second scale of each channel is chosen for embedding purpose. The contourlet 

coefficients of the selected subband are modified as 

 

)1( wxy ζ+=  (6-1) 
 

where [ ]321 x,x,x=x  and [ ]321y y,y,=y  are the original and marked coefficients of 

RGB channels, [ ]321w w,w,=w  is the watermark of size 3×N  and ζ  is a positive 

watermark weighing factor. The watermark is generated using a direct sequence spread 

spectrum technique, wherein the watermark is generated using a pseudorandom sequence 

generator that has an authentication key as its initial value. This pseudorandom sequence 

spreads the spectrum of the watermark signal over many coefficients making it difficult 

to be detected. The watermarked contourlet coefficients are then inverse transformed to 

obtain the watermarked image.  

In order to detect the presence of the watermark in the receiver, the signal statistics is 

taken into account via modeling the contourlet coefficients of RGB color channels by the 

multivariate Cauchy distribution. The Cauchy model has been shown to accurately fit the 

histogram of the contourlet coefficients of images [15]. To design the watermark 

detector, we employ a Bayesian log-likelihood ratio test which can be reduced to a binary 

hypothesis test as 
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The hypotheses 1H  and 0H  represent as to whether the contourlet coefficients are 

watermarked by the sequence w  or do not carry any watermark, respectively. The 

decision rule is then defined as the log-likelihood ratio given by  
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where τ  is the decision threshold and 
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The detector is supposed to choose between 1H  and 0H  based on the received image 

coefficients y . Then, by assuming the independence of the observations, the log-

likelihood ratio becomes 
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To take into account the information carried out by all the three color channels, the data 

x  is modeled by the multivariate Cauchy distribution given by 
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where (.)Γ  is the gamma function and Σ  is the covariance matrix of size nn× . Thus, the 

log-likelihood ratio for the multivariate Cauchy distribution is obtained as 
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where 
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The log-likelihood ratio can be seen as a superposition of N  statistically independent 

random variables. Thus, according to the central limit theorem, the log-likelihood ratio 

follows a Gaussian distribution under each hypothesis. The mean and variance of each of 

the Gaussian distributions can be estimated from the empirical data and are given by 

),( 10 μμ  and ),( 2
1

2
0 σσ  for 0H  and 1H , respectively. Having (6-7), the theoretical mean 

and variance of detΛ  under 0H  can be obtained as follows:  

Let )()( 21det ygyg +Λ = , where 
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The mean and variance of the log-likelihood ratio under 0H  can be obtained as  
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We assume that the watermark sequence 321 www ==  where is generated by a 

pseudorandom sequence taking values +1 and -1 with equal probability. Hence, 
1

gμ and 

2
gμ can be obtained as 
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Substituting (6-13) and (6-14) in (6-11), and after making some manipulations, the mean 

of the log-likelihood is obtained as 
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 In order to find the variance of the log-likelihood ratio under 0H , the various terms are 

found as 
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Substituting (6-16) to (6-19) in (6-12), and after some mathematical manipulations, the 

final expression for the variance if found as 
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It can be shown that 01 μμ −=  and 2
0

2
1 σσ = . Having found the mean and variance of the 

log-likelihood ratio under both the hypotheses, the probabilities of false alarm and 

detection can be estimated by   
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The ROC curves are obtained by relating the probability of detection detP  to a predefined 

probability of false alarm faP  in a Neyman-Pearson sense, given by [144] 
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In order to estimate the covariance matrix Σ  from the observation, we resort to the 

maximum likelihood estimation via the expectation-maximization algorithm proposed in 

[155]. 

 

6.3 Experimental Results 

Experiments are performed using a set of color images including Kodak and standard, 

e.g., Lena and Baboon images, each resized to 256×256 pixels. The RGB color channels 

are first decomposed using the contourlet transform into two scales and eight directions 

in each scale. The watermark bits are embedded in each color channel in a multiplicative 

manner resulting in a higher robustness with respect to single channel [24], [146], or 

additive watermarking algorithms [153]. In Figure 6.1, some of the original and 

watermarked Kodak images are illustrated. The images are indistinguishable with high 

PSNR values obtained by averaging over 10 runs with 100 different watermark sequences 

and a watermark weighting factor ζ = 0.5, thus showing the effectiveness of the 

proposed scheme in terms of the invisibility of the watermark. In order to show the 

capability of the proposed watermark detector in detecting the desired watermark among 

a set of known marks, we obtain the log-likelihood ratio, ln (�det), for each of the marks 

and the decision threshold  �  for a given false alarm probability, to obtain the detector 

response for a given image. Figure 6.2 shows the detector responses as a function of 

watermark for some of the test images. It is seen from this figure that the proposed 



 127

detector can perfectly detect the watermark among 1001 random marks since the log-

likelihood ratio is greater than the threshold value. It should be noted that the desired 

watermark is placed in 500th place, i.e., the authorized user knows the secret key. 

 

 

 

      

 
 
Figure 6.1. (a) Original and (b) watermarked images, from left to right: Girl, Headlight, 
Window and Parrots with PSNR values 68.08, 64.16, 63.45 and 69.57 dB, respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 128

 
 
 
 
 
 
 

0 100 200 300 400 500 600 700 800 900 1000
-250

-200

-150

-100

-50

0
Parrots

Watermark

D
et

ec
to

r R
es

po
ns

e,
 Δ

de
t

0 100 200 300 400 500 600 700 800 900 1000
-250

-200

-150

-100

-50

0

50
Girl

Watermark

D
et

ec
to

r 
R

es
po

ns
e,

 Δ
de

t

(a) (b) 
 
 

0 100 200 300 400 500 600 700 800 900 1000
-400

-350

-300

-250

-200

-150

-100
Headlight

Watermark

D
et

ec
to

r 
R

es
po

ns
e,

 Δ
de

t

0 100 200 300 400 500 600 700 800 900 1000

-1500

-1000

-500

0

Lena

Watermark

D
et

ec
to

r 
R

es
po

ns
e,

 Δ
de

t

(c) (d) 
 
 

Figure 6.2. Detector response of the proposed watermark detection scheme for some of 
the test images, namely, (a) Parrots (b) Girl (c) Headlight and (d) Lena. 
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In order to evaluate the performance of the proposed watermark detector, we examine the 

closeness of the theoretical and experimental ROC curves for the proposed detector. The 

experimental results are obtained by using a Monte Carlo simulation with 1000 randomly 

generated watermark sequences. Figure 6.3 shows the experimental and theoretical ROC 

curves averaged over a set of color images. It is seen from this figure that the theoretical 

ROC curves are close to the empirical ones indicating the accuracy of the closed-form 

expressions in (6-15) and (6-20) for the mean and variance of the log-likelihood ratio. 

We then compare the detection performance of the proposed blind watermark detector to 

that of the RGB-joint correlator [146], luminance-GG/Cauchy [24] and RGB-MPE [152]. 

Figure 6.4 shows the ROC curves of various detectors averaged over a set of color 

images. It is seen from this figure that the proposed multiplicative watermark detector 

yields a performance which is substantially better than that of the other detectors as 

evidenced by a higher probability of detection for any given value of false alarm 

probability. It is also seen that the proposed multiplicative watermark detector provides a 

15% gain over its additive counterpart. The performance of the proposed watermark 

detector against some of the commonly-used attacks, namely, JPEG compression, 

AWGN, median filtering, Gaussian filtering and salt and pepper noise are then examined. 
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Figure 6.3.  Experimental (dashed) and theoretical (solid) ROC curves averaged over a 
set of color images obtained using the proposed detector. 
 
 
 
 
 

      
 
Figure 6.4.  ROC curve obtained using the proposed detector (multiplicative and additive) 
as well as that of the RGB-joint correlator, luminance-GG/Cauchy and RGB-MPE. 
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Figure 6.5 shows the ROC curves obtained using the proposed watermark detector 

averaged over a set of color images when the watermarked images are JPEG-compressed 

with quality factor (QF) = 5, 15 and 35. From this figure, it can be seen that the proposed 

detector is highly robust against JPEG compression attack. More specifically, the detector 

is capable of detecting the presence of the watermark with the highest possible detection 

rate for a given faP when QF > 35.  

To study the robustness against noise, the watermarked images are corrupted by AWGN 

with standard derivation 
η

σ  varying from 0 to 40. Figure 6.6 shows the averaged ROC 

curves obtained using the proposed detector when the watermarked images are 

contaminated by Gaussian noise. It is seen from this figure that the proposed detector is 

highly robust against AWGN even under high-strength noise, i.e., 
η

σ = 40.  

Figure 6.7 shows the ROC curves obtained using the proposed watermark detector 

averaged over a set of color images when the watermarked images are under median filter 

with mask of sizes 3×3, 5×5 and 7×7. From this figure, it is seen that the proposed 

detector is highly robust against median filter attack. Figure 6.8 shows the ROC curves 

averaged over a set of images when the watermarked images are filtered by the Gaussian 

filters with mask sizes of 3×3, 5×5 and 7×7. It is seen from this figure that the proposed 

detector is highly robust against Gaussian filtering.  
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Figure 6.5.  ROC curves obtained using the proposed detector averaged over a set of 
color images when the watermarked images are JPEG-compressed with various QFs. 
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Figure 6.6.  ROC curves obtained using the proposed detector averaged over a set of 
color images when Gaussian noise with various 

η
σ  is added to the watermarked images. 
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Figure 6.7. ROC curves obtained using the proposed detector averaged over a set of color 
images when the watermarked images are under median filter with different mask sizes. 
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Figure 6.8. ROC curves obtained using the proposed detector averaged over a set of color 
images when the watermarked images are under Gaussian filter with various mask sizes. 
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Figure 6.9. ROC curves obtained using the proposed detector averaged over a set of color 
images when the watermarked images are under salt and pepper noise with various 
probability of noisy pixels. p denotes the percentage of corrupted pixels. 
 

 

Figure 6.9 shows the ROC curves averaged over a set of images when the watermarked 

images are contaminated by the salt and pepper noise attack with equal probability. It is 

seen from this figure that the proposed watermark detector is robust against salt and 

pepper noise especially when the noise levels are less than 10 %. 

In terms of complexity, the proposed multiplicative detector is computationally efficient, 

since it requires 0.89 and 7.42 seconds CPU time for the lightweight, i.e., with predefined 

parameters, and regular versions averaged over a set of images on an Intel Core i7 2.93 

GHz personal computer with 8 GB RAM. 
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6.4 Summary 

In this chapter, a blind multichannel multiplicative watermark detector in contourlet 

domain for watermarking of color images has been proposed. To efficiently exploit the 

statistical dependencies between the color channels in designing the watermark detector, 

the contourlet domain coefficients of the channels have been modeled by the multivariate 

Cauchy distribution. By employing this model, the statistical watermark detector has 

been designed through the Bayesian log-likelihood ratio test and closed-form expressions 

for the mean and variance of the log-likelihood ratio have been derived. Experiments 

have been carried out using standard color images to evaluate the performance of the 

proposed watermark detector. It has been shown that the performance of the proposed 

multiplicative watermark detector for color images is substantially superior to that of the 

other detectors in providing a higher detection rate. It has also been shown that the 

proposed detector is highly robust against JPEG compression, salt and pepper noise, 

median filtering, Gaussian filtering and Gaussian noise attacks. 
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CHAPTER 7 

Conclusion 

 

7.1 Concluding Remarks  

This thesis has been concerned with the statistical modeling of images in the 

contourlet domain and in developing detection and estimation techniques using these 

models for applications in image denoising and watermarking. The modeling of images 

in the contourlet domain has been first investigated. It has been shown that the 

distributions of the contourlet subband coefficients of natural images are highly non-

Gaussian. The suitability of different non-Gaussian distributions to model the contourlet 

coefficients has been comprehensively studied. It has been shown that the alpha-stable 

distribution is more accurate in modeling the contourlet coefficients of images than other 

distributions are.  

Motivated by the capability of the alpha-stable family of distributions in modeling 

the contourlet coefficients of images, new image denoising methods in the contourlet 

domain for grayscale and color images have been designed. Bayesian minimum mean 

absolute error and maximum a posteriori estimators have been developed using the 

alpha-stable family of distributions to estimate the noise-free contourlet coefficients. 

Extensive experiments have been conducted using a wide variety of natural images from 

a number of image databases. It has been shown that the denoising scheme based on the 

alpha-stable distribution outperforms the other existing methods in terms of the peak 
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signal-to-noise ratio and mean structural similarity index, as well as in terms of visual 

quality of the denoised images. 

The univariate and bivariate alpha-stable distributions, including its Cauchy 

member, have been used in designing blind multiplicative watermark detectors for 

grayscale images. The proposed detectors have been designed based on the Bayesian log-

likelihood ratio criterion for the watermark detection. The performance of the detectors 

designed have been evaluated through extensive experiments. It has been shown that the 

detectors based on these distributions have rates of detection for a given probability of 

false alarm higher than that of the other detectors. The robustness of the proposed 

detectors against various attacks has been studied and shown to be superior to that of the 

other detectors. A blind multichannel multiplicative watermark detector in the contourlet 

domain for watermarking of color images has also been proposed. In order to efficiently 

exploit the statistical dependencies of the color channels in designing the watermark 

detector, the contourlet domain coefficients of the channels have been modeled by the 

multivariate Cauchy distribution. By employing this model, the statistical watermark 

detector has been designed based on the Bayesian log-likelihood ratio test and closed-

form expressions for the mean and variance of the log-likelihood ratio have been derived. 

It has been shown that the performance of the proposed multiplicative watermark detector 

for color images is substantially superior to that of the other detectors in providing a 

higher detection rate for both with and without attacks on the watermarked images. 
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7.2 Contributions 

 
Multiscale representation of images is almost indispensable to image processing tasks. 

Contourlet transform provides an efficient representation of images with smooth 

contours. This representation not only has the multiscale and time-frequency localization 

features of the wavelet transform, but it also offers higher degrees of directionality and 

sparseness and recognizes the smoothness of the image contours. In almost all 

applications, an effective and accurate modeling of the underlying signals in the original 

domain or in a transformed domain is a prerequisite. The success of an image denoising 

or watermarking scheme greatly depends on the use of a statistical model of the image 

that can accurately capture its characteristics and inter- and intra-scale dependencies 

using a small number of parameters so that the model can be used as a prior information 

in such a task. This thesis has investigated the modeling problem of the contourlet 

coefficients from the standpoint of image denoising and watermarking and has proposed 

a number of novel and efficient denoising and watermarking algorithms. In a nutshell, the 

contributions of the investigation undertaken can be described as follows. 

1. A comprehensive study has been undertaken for the modeling of the contourlet 

coefficients of images [15], [89], [132]. It has been established that the empirical 

distributions of images can be characterized by the heavy-tailed alpha-stable 

family of the distributions. Through this study, it has been shown that a univariate 

member of this family can accurately fit the marginal distributions of the 

empirical data and that a bivariate member can accurately characterize the inter-

scale dependencies of the image contourlet coefficients. 
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2. The alpha-stable models for contourlet coefficients have been used to design new 

Bayesian maximum a posteriori and minimum mean absolute error estimators for 

the denoising of grayscale and color images [64], [89]. The effectiveness of the 

denoising schemes developed can be attributed to the use of the univariate alpha-

stable distribution in capturing the statistical behavior of the contourlet subband 

coefficients, the use of the bivariate distribution in capturing the across-scale 

dependencies, and the use of trivariate alpha-stable distribution in capturing the 

cross-correlations between the RGB color channels. A new scheme has also been 

proposed for despeckling of SAR images by modeling the contourlet coefficients 

of the log-transformed SAR images using the symmetric alpha-stable distribution 

in a Bayesian MAP estimation framework [129]. 

3. New multiplicative blind watermark detectors for grayscale images using the 

univariate and bivariate alpha-stable distributions in the framework of the 

Bayesian log-likelihood ratio criterion with closed-form expressions for the mean 

and variance of the log-likelihood ratio have been designed [132]. A multichannel 

multiplicative watermark detector for color images using multivariate Cauchy 

distribution in the framework of Bayesian log-likelihood ratio test with an 

efficient closed-form expression for the test statistics has also been proposed 

[153]. It has been established that the use of the Cauchy distribution leads to 

significantly reduced-complexity detectors and provides a performance that is 

much superior to that using other distributions. 

 
 
 
 



 140

7.3 Scope for Future Work 

While the research work undertaken in this thesis has focused on developing efficient and 

cost-effective techniques for various estimators and detectors, there are a number of 

additional studies that can be undertaken along the ideas developed in this thesis. Some 

of the possible studies are as follows: 

• The proposed image denoising scheme in this thesis can be applied to video 

frames in intra-coding mode, wherein, the alpha-stable family of distributions can 

capture the high dependency of the contourlet coefficients of the neighboring 

frames.  

• Short video clips are being shared widely on the Internet. In order to protect video 

contents and to verify the ownership, one can employ the proposed watermarking 

schemes for video contents in intra-coding mode. In this scheme, the motion 

compensation vectors may be modelled by using the proposed alpha-stable family 

of distributions for detecting the existing watermark. 

• The multivariate alpha-stable distribution may be used in developing estimation 

and detection algorithms to take into account the inter-scale, intra-scale and inter-

orientation dependencies of the contourlet coefficients of images. 
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