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Abstract 

 

Spaceborne Synthetic Aperture Radar (SAR) is commonly considered a powerful 

sensor to detect sea ice. Unfortunately, the sea-ice types in SAR images are difficult to 

be interpreted due to speckle noise. SAR image denoising therefore becomes a critical 

step of SAR sea-ice image processing and analysis. In this study, a two-phase 

approach is designed and implemented for SAR sea-ice image segmentation. In the 

first phase, a Gamma-based bilateral filter is introduced and applied for SAR image 

denoising in the local domain. It not only perfectly inherits the conventional bilateral 

filter with the capacity of smoothing SAR sea-ice imagery while preserving edges, but 

also enhances it based on the homogeneity in local areas and Gamma distribution of 

speckle noise. The Gamma-based bilateral filter outperforms other widely used filters, 

such as Frost filter and the conventional bilateral filter. In the second phase, the 

K-means clustering algorithm, whose initial centroids are optimized, is adopted in 

order to obtain better segmentation results. The proposed approach is tested using 

both simulated and real SAR images, compared with several existing algorithms 

including K-means, K-means based on the Frost filtered images, and K-means based 

on the conventional bilateral filtered images. The F1 scores of the simulated results 

demonstrate the effectiveness and robustness of the proposed approach whose overall 

accuracies maintain higher than 90% as variances of noise range from 0.1 to 0.5. For 

the real SAR images, the proposed approach outperforms others with average overall 

accuracy of 95%. 
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Chapter 1  

Introduction 

1.1 Importance of Sea-Ice Detection  

 

Sea ice is frozen water, which is a part of the cryosphere. The growth and decay of sea 

ice occur as a seasonal circulation at the surface of the ocean (Sandven and 

Johannessen, 2006). According to Casey (2010), Earth’s climate system, oceanic 

surface heat and salinity fluxes, and human activities are deeply affected by sea ice 

processes. To this end, monitoring and mapping sea ice coverage and its dynamic 

changes is of importance for many countries (Sandven and Johannessen, 2006). 

 

Sea ice has a great influence on Earth’s climate system. The most important point is 

the albedo because sea ice has much greater albedo than sea water. As a result, more 

incoming solar radiation will be reflected where ice covers (Sandven and Johannessen, 

2006; Casey, 2010). The difference amount of refection of solar radiation in different 

regions can lead to local climate change (i.e. wind). In addition, there exists an 

ice-albedo feedback in ice-covered area. Cooling tends to increase ice extent and 

hence the albedo, reducing the amount of solar energy absorbed and leading to more 

cooling; conversely, warming does in an inverse way (Deser et al., 2000). This 

feedback mechanism has mostly been discussed in terms of climate change in the 
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Arctic (Archer and Bufett, 2005; Eisenman and Wettlaufer, 2009). In recent years, 

investigating the climate change in the Arctic becomes a trend (Serreze et al., 2009). 

 

Moreover, sea ice is also critical for the sea current. As the intermediate layer between 

sea water and atmosphere, sea ice prevents sea water from heated by the sun while 

decreases the amount of heat loss from sea water. In addition, where ice forms, the 

salinity of water will increase as large amount of brine will get away from ice crystals. 

In general, the heat and salinity fluxes have a great impact on thermohaline circulation, 

since they are the most significant source of salty water for the oceans all over the 

world (Carsey et al., 1991). 

 

Finally, human activities can be affected by sea ice as well. Navigation is one of the 

most important issues on human activity. Oceanic transportation, fisheries and other 

marine activities at high latitudes may come across a trouble where first-year and 

multiyear ice covers. For example, Fig. 1.1 demonstrates a ship stuck in the ice. It can 

hardly move due to the thickness and strength of first-year or multiyear ice. In 

addition to the navigation concerns, marine creatures, marine operations (i.e. oil 

platform), and even human’s traditional way of life (i.e. the fast ice edge is a 

productive hunting ground) (Casey, 2010) are likely to be impacted by sea ice. 
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Fig. 1.1 A ship stuck in Baltic Sea ice between Sweden and Finland's Aland Island 

(Jacobs, 2010) 

 

In summary, sea ice plays critical roles in not only the Earth’s climate system but also 

human activities, so detecting sea ice and obtaining a near-real time report are in 

demand.  

 

1.2 Importance of SAR for Sea-Ice Detection 

 

The first sea ice observation from coastal stations and ships may come back to more 

than 100 years ago, and use of satellite data has gradually been the most important 

observation method. Among different kinds of satellite data, Synthetic Aperture Radar 

(SAR) data is commonly considered outstanding. Satellite SAR data has the following 

three main advantages.  

First, it permits wide area coverage like 50km-500km swath widths (Sandven and 
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Johannessen, 2006) and has relatively high spatial resolution from satellite altitudes, 

which is appropriate for sea-ice monitoring. For example, RADARSAT-2 with 

ScanSAR narrow beam mode has 300km swath widths and still keeps 50m spatial 

resolution (CSA, 2011), whereas, in spite of providing higher spatial resolution, 

optical instruments such as ASTER only cover 60km widths (SIC, 2012).  

Second, utilization of microwave rays should be the most attractive point for satellite 

SAR, which can penetrate clouds, fog and other atmospheric substances, obtaining 

operational and reliable imagery. For example, in RADARSAT-2, C-band 

(8.0-4.0GHz, 3.8-7.5cm) (CSA, 2011) has relatively long wavelengths that can hardly 

be weaken by clouds and fogs, which are composed by small particles. 

Third, especially for sea-ice detection, SAR is sensitive to ice type and surface 

roughness, meaning that it can provide us a lot of useful information content (Sandven 

and Johannessen, 2006). Moreover, polarization also provides different responses in 

terms of various ice types, resulting in some successful segmentation approaches 

based on fusion of different polarizations of SAR imagery (Li et al., 2009; Du et al., 

2002). 

 

SAR sea ice images acquired by Canada’s RADARSAT-1 and -2 are increasingly 

received daily at the Canadian Ice Service (CIS) in Ottawa and are currently 

interpreted manually by well-trained human operators, which is time-consuming and 

inaccurate. As such, automatic detection of sea-ice coverage is urgently needed. 

Furthermore, as an indispensable part of automatic detection, automatic 
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segmentation has become the focus of this study.  

 

1.3 Importance of Automatic Segmentation of SAR Sea-Ice Imagery 

 

In image processing, segmentation and classification always play important roles. 

Image segmentation refers to clustering or grouping the homogeneous pixels into 

various groups while classification is next hierarchy which labels those clustered 

pixels as different classes. In this study, a primary task of sea-ice detection is to divide 

different ice types into segments, which contain different gray values, textures and 

other characteristics; and the classification depends on scientists’ knowledge. Although 

easily segmented by human observer, there exists no robust automated approach that can 

consistently separate relevant categories in SAR sea-ice imagery (Jobanputra, 2004). 

Automatic approaches mainly have two advantages: 

 They can liberate some human resources and save time. Although human cannot be 

replaced completely, applying a good automatic segmentation approach in a 

computer may be helpful in parallel processing large numbers of images, and 

assisting human’s work via pre-processing. 

 The results produced by a computer are consistent or unified, and often show more 

details. In fact, the same images operated by different people may lead to different 

results due to human’s subjective reasons (i.e. carelessness). Conversely, given a 

confidence rate, a good automatic approach can guarantee a fair accuracy and 

provide segmentation results as detailed as possible. 
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There has been no perfect approach for SAR sea-ice segmentation so far. Considering the 

accuracy, stability and computational cost, existing approaches have more or less weakness or 

shortcomings. Therefore, alternative approach should be more accurate, more reliable, and 

most importantly, very fast. In this study, a new approach has been proposed in order to 

pursue these goals. 

 

1.4 Objectives 

 

The principal goal of this study is to propose a new alternative approach that can 

automatically segment SAR sea-ice imagery. In particular, this thesis focuses on the 

important role of suppressing speckle noise in SAR images and implements a new and 

effective filter to deal with it. In order to achieve these goals several sub-objectives 

have been set: 

i. To identify how different ice types appear in SAR (in our case, RADARSAT-2) 

sea-ice images. 

ii. To study the mechanism of formation of the speckle noise in SAR images and 

to develop a proper method in order to suppress the speckle noise. 

iii. To find a proper algorithm so as to cluster the filtered images. 

iv. To evaluate the effectiveness of our approach by using an appropriate and 

reliable method. 
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1.5 Structure of Thesis 

 

The rest of the thesis is organized as follows. Chapter 2 provides a brief background 

on both the physical and electrometric properties of sea ice, the foundations of SAR, 

and the mechanism of speckle noise. Then several literature reviews of approaches of 

SAR sea ice segmentation are illustrated. In particular, some denoising methods for 

SAR imagery are discussed afterwards. 

 

Chapter 3 mainly introduces the Conventional Bilateral Filter (CBF) and its 

modifications. Some discussion follows behind that. 

 

In Chapter 4, the methodology of a two-phase approach is proposed for segmenting 

SAR sea-ice images, including first denoising image by Gamma-based Bilateral 

Filtering (GBF), and then clustering by K-means algorithm. Finally, an optional 

process is discussed. 

 

Chapter 5 presents and discusses the experimental results obtained using both 

simulated and real SAR images.  

Finally, Chapter 6 presents conclusions drawn from this study and recommendations 

for future work. It is clear that the proposed approach still has a large room to be 

developed. 
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Chapter 2  

 

Background  

 

2.1 Sea ice and SAR   

 

In this study, the main goal is to segment SAR seaice imagery automatically. As the 

importance of that has been discussed in Chapter 1, knowing a clear definition of 

various ice types, the physical and electromagnetic properties of sea ice, the 

fundamentals of SAR, and the existing SAR sea-ice image segmentation approaches 

is necessary.  

 

2.1.1 Ice Chart and Egg Code 

 

One of the most interests on sea-ice monitoring should be segmenting different types 

of sea ice and seawater, which has been first standardized by the Sea Ice Working 

Group of the World Meteorological Organization (WMO). It employs the Ice Chart, 

which provides information about the type, concentration, and floe size of the ice 

components in the region. An example of daily ice chart that covers the sea area 

nearby the Island of Newfoundland in Canada is shown in Fig. 2.1. Sea ice in this 

map is divided into different segments, each of which is interpreted by an egg code 

(some numbers within an ellipse like an egg). In Fig. 2.1, the egg codes in red 
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rectangles demonstrate the condition of ice in our study area. 

 

Fig. 2.2 presents the definition of egg code, which is used to indicate ice observations 

interpreted from radar imagery. The first row defines the total concentration of ice in 

the segment (Ct). The second row defines the partial concentration of each types of 

ice in the segment (Ca, Cb, Cc, Cd). The third row defines the stages of development 

of ice in the segment (So, Sa, Sb, Sc, Sd, Se). Finally the fourth row defines the forms 

of ice in the segment (Fa, Fb, Fc, Fd, Fe). In detail, Table 2.1 codes for sea-ice stages 

of development (from new ice to multiyear ice) based on the thickness of ice; and 

Table 2.2 shows the codes for various forms of ice based on the width of ice.  

 

Notice that segments in ice chart usually cover relatively large-scale areas and egg 

code tends to show the overall concentrations of different types of ice in a single 

segment. In this situation, it is difficult for us to know how different types of ice are 

distributed in this relatively small segment. Therefore, segmentation approaches on 

small scale is in demand. Of course, ice chart and egg code can also play a critical 

role of providing some prior knowledge for the further segmentation and 

classification. According to the definition of egg code and the ice chart in Fig. 2.1, it 

is easy to see that there are new ice, gray or gray-white ice and first-year ice in our 

study area. 
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Fig. 2.1 Daily ice chart. The egg codes in red rectangular relate to the regions that 

cover our study area (CIS, 2009). 
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Fig. 2.2 Definition of the Egg Code (CIS, 2012). 

 

Table 2.1 Coding for Sea-Ice Stages of Development (SoSaSbScSdSe) (CIS, 2012) 

Description Thickness (cm) Code 

New ice < 10 1 

Nilas, Ice rind < 10  2 

Young Ice 10 - 30  3 

Gray Ice 10 - 15  4 

Gray-white ice 15 - 30  5 

First-year ice >= 30  6 

Thin first-year ice 30 - 70 7 
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First stage thin first-year 30 - 50 8 

Second stage thin first-year 50 - 70  9 

Medium first-year ice 70 - 120 1· 

Thick first-year ice > 120  4· 

Old ice - 7· 

Second-year ice - 8· 

Multi-year ice - 9· 

Ice of land origin - · 

Undetermined or unknown - X· 

 

Table 2.2 Coding for Forms of Ice (FaFbFcFdFe) (CIS, 2012) 

Description Width (m) Code 

Pancake ice - 0 

Small ice cake, brash ice, agglomerated brash < 2 1 

Ice cake 2 - 20  2 

Small floe 20 - 100  3 

Medium floe 100 - 500  4 

Big floe 500 - 2000  5 

Vast floe 2000 - 10000 6 

Giant floe > 10000 7 

Fast ice - 8 
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Icebergs, growlers or floebergs - 9 

Undetermined, unknown or no form - X 

 

2.1.2 Physical Properties of Sea Ice  

 

In this section several physical properties of sea ice are introduced in order to make 

sense how they have impacts on the appearances of various ice types in satellite SAR 

imagery. WMO has a list of various types of sea ice shown in Table 2.3. In this study, 

it is necessary to understand the properties of new ice, gray ice and first-year ice, 

since these three types of ice cover the study area.  

 

Table 2.3 Types of sea ice defined by the WMO (adapted from Casey, 2010) 

Stage of 

Development  

(Ice Type) 

 

  Definition  

New ice 

 

A general term for recently formed ice. These types of ice are 

composed of ice crystals, which are only weakly frozen together 

(if at all) and have a definite form only while they are afloat. 

Here, new ice refers collectively to frazil, grease ice, nilas and 

pancake ice.  

Frazil ice Fine spicules or plates of ice, suspended in water  
 

Grease ice A later stage of freezing than frazil ice when the crystals have 
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coagulated to form a soupy layer on the surface. Grease ice 

reflects little light giving the sea a matte appearance. 
 

Nilas A thin elastic crust of ice easily bending on waves and swell and 

under pressure, thrusting in a pattern of interlocking “fingers” (finger 

rafting). Has a matte surface and is up to 10 cm in thickness.  

Pancake ice Predominantly circular pieces of ice from 30 cm – 3 m in 

diameter, and up to about 10 cm in thickness, with raised rims due 

to the pieces striking against one another.  
 

Young ice Ice in the transition stage between nilas and First-year ice, 10-30 

cm in thickness. May be subdivided into grey and grey-white ice.  
 

Gray ice Young ice 10-15 cm thick. Less elastic than nilas and breaks on 

swell. Usually rafts under pressure.  
 

Gray-white ice Young ice 15-30 cm thick. Under pressure more likely to ridge 

than to raft.  
 

First-year ice Sea ice of not more than one winter’s growth, developing from 

young ice; thickness 30 cm – 2 m. May be subdivided into thin 

First-year ice (30-70 cm thick), medium First-year ice (70-120 cm 

thick) and thick First-year ice (over 120 cm thick).  
 

 

According to Sandven and Johannessen (2006), sea ice has several physical 

parameters, including temperature, salinity, crystal structure, surface roughness, snow, 

and water on the ice surface. The water on top of ice often occurs in summer when ice 
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and snow melt. As long as I consider, salinity, crystal structure, surface roughness and 

liquid water on top of the ice are more critical for radar remote sensing among these 

parameters of sea ice.   

 

The formation of ice begins when the sea water reaches the freezing point. Then it is 

called frazil which is composed of small ice crystals. As freezing continues and more 

ice crystals are formed, the crystals coagulate to form grease ice in rough sea states or 

to form nilas under calm conditions (Casey, 2010). In general, sea ice with thickness 

of less than 10 cm is named as new ice. The new ice has considerable impact on SAR 

imagery of open sea water because either frazil ice or grease ice dampens the short 

gravity waves on the open sea water surface (Sandven and Johannessen, 2006). In this 

stage, the connection between ice crystals is so weak that pancake ice can be formed 

due to the effects of wind and waves. For SAR imagery in HH mode, new ice looks 

like open sea water because the small thickness results in most incoming radiation 

passing through the ice into the sea water. For example, in Fig. 2.3, the new ice 

(actually nilas, marked by triangle) is darkest and has little speckle, which is similar to 

sea water as water can absorb most incoming radiation. 

 

As the new ice grows thicker and becomes less elastic, it forms gray ice (10–15 cm), 

gray-white ice (15–30 cm) and eventually first-year ice (>= 30 cm). During this stage, 

congelation growth (water molecules freezing to ice crystals at the ice-seawater 

interface) becomes dominant (Casey, 2010). In detail, as the ice crystals enfolds and 
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compress the brine, the voids of air among brine pockets are replaced by brine 

drainage, leading to the visual appearance from almost black new ice to bright gray 

ice, and eventually much bright first-year ice in SAR images (Sandven and 

Johannessen, 2006). The rectangles in Fig. 2.3 represent the gray ice which looks 

brighter than new ice and has much more speckles. Of course, as congelation growth 

continues, the gray ice get thicker and brighter visually. When the thickness reaches 

30 cm, it turns to the first-year ice (shown in Fig. 2.3, marked by circles).  

 

Salt is released after ice is formed from the water and continuously runs off in the 

upper layer over time (Sandven and Johannessen, 2006), so the newer the ice is, the 

higher salinity it has. With changes of salinity the crystal structure also changes, 

which makes the most contribution to different appearances in SAR imagery in terms 

of new ice, gray ice and first-year ice. In addition, since the freezing point of ice is 

below zero degree, increasing surface temperature may cause ice or snow melting and 

forming water ponds on top of the ice. In general, these water ponds can show the 

dark spots in SAR images for the first-year sea ice (Casey, 2010). Finally, surface 

roughness is mainly determined by weather conditions (new ice and young ice) and 

deformation (first-year ice). Surface roughness of new ice is easy to be affected by 

wind and waves. For example, if the nilas is broken by waves, after it freezes again, 

pancake ice may form, which completely differs from the nilas (Casey, 2010). 

However, this change is meaningless for SAR monitoring because sea water is 

dominant in this stage. On contrary, for the first-year ice, deformation occurs “when 
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ice is subject to compacting ice motion (due to convergent ice drift) the stress (Casey, 

2010, pp. 14)”. The deformed ice can be further divided into ridging and rafting. The 

ridging, rafting or other processes can generate various roughnesses of surface, which 

are much properly observed by SAR, because radar backscatter shows significant 

contrast between rough and smooth ice surfaces (Sandven and Johannessen, 2006).  

 

In summary, the physical properties of sea ice are not determined by a single factor. In 

my opinion, salinity, temperature and crystal structure play the most primary roles in 

not only the formation of sea ice but also the appearance in SAR imagery. 

 

 

Fig. 2.3 Different types of sea ice in SAR imagery 

 

 

 

 

 

Legend 

New ice 

 

First-year ice 

 

Gray ice 
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2.1.3 Electromagnetic Properties of Sea Ice 

 

Electromagnetic properties of sea ice are critical for microwave remote sensing as 

well. To make a better interpretation of backscatter from sea ice, one should 

understand the electromagnetic properties of each component of sea. Of course, 

characteristics of SAR should also be considered due to their effects on 

electromagnetic properties of sea ice. 

 

Two fundamental electromagnetic properties of surface are reflection and emission 

(Sandven and Johannessen, 2006). The latter can be governed by a dimensionless 

coefficient called emissivity, which can be calculated by the complex dielectric 

constant (or the relative permittivity) expressed by 

 

                                                               (   ) 

                     

where    is the dielectric constant,     is the dielectric loss factor and   √   

(Sandven and Johannessen, 2006; Hallikainen and Winebrenner, 1992). In addition to 

emission, reflection can be determined by reflection coefficient r which is defined as: 

                         

  |
   

   
|
 

                                                    (   ) 

                   

where      denotes complex index of refraction (Sandven and Johannessen, 2006). 
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Since reflection coefficient r can be calculated from complex dielectric constant  , 

emissivity can just be regarded as the representation of electromagnetic properties. In 

general, higher emissivity means more backscatter, which is determined by the 

dielectric constant and surface roughness of objects (Sandven and Johannessen, 

2006).  

 

For saline ice, the dielectric constant is high and “strongly dependent on both 

temperature and salinity of ice” (Sandven and Johannessen, 2006, pp. 13). In detail, 

the dielectric constant decreases as the temperature decreases (Sandven and 

Johannessen, 2006) because temperature controls the brine volume in ice as the 

dielectric constant is strongly dependent on brine volume (Casey, 2010). Meanwhile 

brine itself, of course, also has a great influence on the dielectric constant of ice due to 

its high dielectric loss factor that causes attenuation when incident microwave 

radiation goes through the ice layer. As a result, saline ice types produce less 

backscatter whereas less saline ice types produce more backscatter (Casey, 2010). 

 

Roughness on top of ice plays a critical role for emissivity as well. When wavelength 

of incident radiation is nearly as same as the size of objects, a defuse scattering will 

occur, leading to high emissivity. On contrary, if wavelength of incident radiation is 

large enough, reflection will play a dominant role. Therefore, the frequencies of 

remotely sensed instruments have a significant impact on how surface roughness 
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affects emissivity or backscatter (Casey, 2010). 

 

2.1.4 Fundamental Parameters of SAR 

 

The imaging geometry of present spaceborne SAR systems is shown in Fig. 2.4. More 

details of SAR systems can be found in Sandven and Johannessen (2006). There are 

many factors that can influence backscatter: wavelength of incident signal, incident 

angle, number of looks and polarization. For sea-ice monitoring, X-band (12.5-8.0 

GHz, 2.4-3.8cm) or C-band (8.0-4.0 GHz, 3.8-7.5cm) are more appropriate, since 

shorter wavelength (i.e. K-band (30 GHz, 1cm)) may cause radiation significantly 

attenuated by the atmosphere and longer wavelength (i.e. L-band (2.0-1.0 GHz, 

15-30cm)) has too coarse spatial resolution (Clausi, 1996). 

 

Radar remote sensing is more sensitive to the surface roughness compared with visual 

or infrared remote sensing (Sandven and Johannessen, 2006). If the surface is smooth, 

specular reflection occurs on the surface and little radiation can be received by 

sensors for off-nadir viewing. On the other hand, if the surface becomes rougher, 

more diffuse reflection will occur. Hence roughness on the surface is able to control 

the amount of backscatter that can be received by sensors. For SAR system, whether 

the surface is considered rough or not can be judged by the Rayleigh criterion: 

                               

  
 

     
                                                                      (   ) 
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where h is the root mean square (rms) height of the surface,   is the incident angle 

and   is the signal wavelength (Clausi, 1996). The surface is considered smooth if the 

Rayleigh criterion is true while rough if the Rayleigh criterion is false. It is obvious 

that angle of incidence deeply affects the behavior of backscatter as the range distance 

increases. However, for the spaceborne SAR this problem can be ignored because 

high flight path of satellites let the angle of incidence almost holds a constant over the 

same effective area (Clausi, 1996).  

 

Fig. 2.4 The imaging geometry of present spaceborne SAR systems (adapted from 

Sandven and Johannessen, 2006) 

 

Speckle is always an important point for SAR imagery. “Speckle arises from the 

coherent nature of radar waves, causing random constructive and destructive 
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interference and, hence, random bright and dark areas in radar imagery” (Lillesand 

and Kiefer, 1987, pp. 499). A typical two-class example of SAR image is illustrated in 

Fig. 2.5. It is easily observed that significant amount of speckle degrades the image 

since its histogram (shown in Fig. 2.6) forms nearly a unimodal shape, meaning that it 

is difficult for computer to distinguish the two classes. Multiple looking processing 

has ability of reducing the amount of speckle via averaging images of the same region 

and how many images are used to be averaged is recorded as the number of looks 

(Clausi, 1996). It is a basic parameter usually provided by the producer. The amount 

of speckle has an inverse relationship with the number of looks while the resolution 

cell size has a direct relationship with the number of looks (Lillesand and Kiefer, 

1987). 

 

Polarization is also an important parameter for SAR system. There are two kinds of 

manners to transmit or receive signals: horizontal (H) and vertical (V); thus, four 

modes can be created: HH, VV, HV and VH. Different polarization modes can lead to 

different types of backscatter returns, then different SAR images (Clausi, 1996). 
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Fig. 2.5 Typical two-class SAR image with speckle (adapted from Kwon et al., 2012) 

 

Fig. 2.6 The histogram of SAR image in Fig. 2.5 

 

2.2 SAR Sea-Ice Image Segmentation 

 

There are many studies on SAR image segmentation but relatively less concentrating 
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on SAR sea-ice imagery. Typically, these approaches can be divided into three 

categories: pixel-based approaches, texture-based approaches and other approaches 

(Wackerman et al., 1988).  

 

Indeed, “Other approaches” mentioned above are some sort of supervised methods 

like Artificial Neural Network (ANN) and Expert System (ES). Karvonen (2004) 

proposed a method for SAR sea-ice segmentation and classification using modified 

pulse-coupled neural networks, and Soh et al. (2004) provided an ES named 

ARKTOS for the same task. These supervised methods always require a priori 

knowledge to train the data so as to build up their models or rules for segmenting 

images. However, little researches about this can be seen in recent years because 

supervised methods are not appropriate in practice due to more human involvement 

and low automation. Therefore, more attention will be paid to the pixel-based 

approaches and texture-based approaches in following content. 

 

2.2.1 Texture-based Approaches 

 

Texture-based approaches are popular for SAR sea-ice segmentation recently, since 

distinct textural patterns of different types of ice, especially the pancake ice which has 

strong texture, can be illustrated by SAR imagery. They often first extract features by 

taking in to account the correlation of pixels (not just single pixel’s intensity), then 

reduce the amount of features in order to select optimal ones, and finally segment by 
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some grouping methods such as edge detection (Jobanputra and Clausi, 2006) or 

K-means iterative Fisher (KIF) algorithm (Clausi, 1996).  

 

Gray level co-occurrence is one of the most widely used texture features. Based on 

gray level co-occurrence matrix (GLCM) (Soh et al., 1999) and gray level 

co-occurrence probability (GLCP) (Jobanputra and Clausi, 2006), one can effectively 

reduce the effect of noise and improve the accuracy of segmentation. Markov Random 

Field (MRF) is another important texture-based algorithm. There is a large amount of 

literature on image segmentation using MRF (Descombes et al., 1996; Weisenseela et 

al., 1999; Deng and Clausi, 2005; Benboudjema et al., 2007; Yang and Clausi, 2009; ). 

MRF can be combined with model-based segmentation or clustering to take into 

account the spatial relationship between pixels (Wang, 2006). It is assumed that the 

class probability of a pixel is only dependent on class relationships of its (spatial) 

neighbor clusters, so that it reduces the possible influence and overlapping clusters 

(Tran et al., 2005). 

 

However, texture-based approaches have their weakness that pixels located near the 

texture boundaries are likely to be misclassified (Kwon et al., 2012). More 

importantly, some of these approaches have low computational efficiency (i.e. 

generating a GLCM of 256 x 256 SAR image with 6 features takes more than one 

minute under Intel(R) Core(TM)2 2.13 GHz CUP according to my experience), which 

is not suitable for operational applications. Finally, in this study, there is no strong 
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texture features (i.e. In Fig. 2.3, it is hardly observed strong texture in homogenous 

areas due to the calm ocean states.), so texture analysis cannot make a difference in 

this study. 

 

2.2.2 Pixel-based Approaches 

 

The pixel-based approaches are based on the behavior of the intensity of the 

individual pixels. They usually have an assumption that pixel intensities are 

identically distributed and independent (Wackerman et al., 1988).  

 

Global thresholding (Otsu, 1979) is the simplest and earliest SAR segmentation 

methods based on pixels. Then it was developed to adaptive thresholding methods 

soon. For example, the dynamic thresholding algorithm proposed by Haverkamp et al. 

(1993) first chooses thresholding values from local regions and then thresholds the 

entire image. As it accounts for the local variance in an image, it meets success in 

segmenting the sea ice images which have an obviously bimodal gray-level 

distribution. Moreover, the finite Gamma mixture model was originally applied by 

Samadani (1995) to estimate proportions of ice types in a SAR image. The method 

uses a mixture model based on assuming a Gamma distribution for each of the ice 

classes and uses an iterative method to estimate the parameters of the distribution 

function. Another one that should be mentioned is the K-means clustering method 

first proposed by Hartigan et al. (1979), which is applied as a step in this approach 
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and as a comparison as well. It can be used to cluster feature vectors and generate 

image segmentations. All of these three methods have a basic assumption of intensity 

distribution, so their performances significantly depend on how accurately the 

intensity distribution is modeled. In addition, since they are all global methods that do 

not consider the spatial relationship of the image pixels, they are inevitably sensitive 

to image noise. Hence a filter must be first employed in order to reduce the influence 

of speckle noise.  

 

2.2.3 Summary of Segmentation Approaches 

 

Table 2.4 summarizes the advantages and disadvantages of different kinds of 

segmentation methods. 

 

Table 2.4 Advantages and disadvantages of categories of segmentation methods 

Categories of 

segmentatio

n methods 

Typical 

techniques 

Advantages Disadvantages 

Pixel-based Thresholding; 

adaptive 

thresholding; 

K-means 

algorithm;  

• Low 

complexity; 

• High 

computational 

efficiency; 

• Stable; 

• Sensitive to 

noise; 

• Low 

accuracy;  
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Texture-based Gray level 

co- 

occurrence 

matrix; 

Markov 

random field; 

Fourier 

transform; 

Semivariance

;  

• High 

accuracy; 

• Good at 

locating 

directional 

features such 

as ridge lines; 

• More 

information 

about the 

image; 

• Flexibility;  

• Long 

computing 

time; 

• Unreliable 

boundaries;  

Others Artificial 

neural 

network; 

expert system  

• Flexible; 

• Adaptive; 

• Using a prior 

data; 

• Hard to know 

the details 

about the 

classifier; 

 

 

2.3 Filtering Techniques 

 

In order to reduce the image noise, filtering is usually applied as pre-processing. As 

more and more new and powerful filtering techniques have been carried out, the 

importance of filtering increases rapidly. Particularly for SAR imagery, which carries 

quite a lot speckle noise, a filtering phase may be indispensable.  

 

In the case of SAR image segmentation, the most commonly used domain filters can 

be Lee filter (Lee, 1980), Kuan filter (Kuan et al., 1987), Frost filter (Frost et al., 

1982), Gamma Filter (Lopes et al., 1993), and Anisotropic Diffusion (Yu and Action, 
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2002). (Strictly speaking, Anisotropic Diffusion is not a filter. However, since it also 

aims to reduce the image noise, it could be discussed with other filters together in this 

section.) All these filters have an adaptive scheme in order to smooth image in 

homogeneous areas while preserving edges. For further understanding the filters, their 

brief equations will be illustrated in the following context. 

 

A. Lee Filter and Kuan Filter 

Both the Lee filter and the Kuan filter are based on the Minimum Mean Square Error 

(MMSE) criterion. Indeed, the Lee filter is a particular case of the Kuan filter 

(Gagnon and Jouan, 1997). A linear speckle model can be written in the following 

form as a weighted sum of the observed and mean values: 

                     

 R̂(t)  I(̅t)  W(t)(I(t)  I(̅t))                                           (  4) 

              

where I(̅t) is the mean value of the intensity within the filter window S, and W(t) is 

the weighting function. 

For the Kuan filter, W(t) is given by: 

                               

W(t)  

  
Cu

 

CI
 (t)

  Cu
 

                                                   (  5) 

                     

where  
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 CI
 (t)  

 

N

∑ (I(t)  I(̅t)) 
t∈S

(I(t)  I(̅t)) 
                              (  6) 

 

and Cu is the noise variation coefficient determined by: 

                                     

Cu  
σu

u̅
                                                            (  7) 

                    

For the Lee filter, Eq. (2.5) can be modified as: 

                               

W(t)    
Cu

 

CI
 (t)

                                                      (   ) 

                     

From above equations it is evident that coefficient of variation Cu is critical because 

the ability of smoothing in homogenous areas while preserving edges depends on this 

statistics in the window. When CI(t) approaches Cu, then W(t) approaches to 0, the 

filter behaves like a mean filter; when  CI(t) approaches ∞, then W(t) approaches to 

1, the filter does nothing on the image.  

 

B. Frost Filter 

The Frost filter is a sort of the Wiener filter.  It can adaptively convolve the pixel 

values within a fixed window (Gagnon and Jouan, 1997). The filter output is 

determined by: 

                             



31 

 

R̂(t)  ∑ mI(t)
t∈S

                                            (  9) 

                      

where the exponential impulse response m is given by Yu and Action (2002): 

                        

m(t)  K1 e p( 𝐾𝐶𝑢(𝑡0)|𝑡|)                                (   0) 

             

where K is the damping factor, t0 represents the location of current pixel, |t| is the 

distance measured from t0, Cu  
σu

u̅
 is the observed coefficient of variation, and K1 

normalizing constant. When KCu(t0) approaches to 0, then the filter behaves like a 

mean filter; conversely, at an edge KCu(t0) becomes so large that the filtering is 

inhibited completely. 

 

Since above three filters are based on a linear model, their ability of preserving edges 

significantly depends on the window size. A too large window size (compared to the 

scale of interest) will cause over-smoothing and blur edges. However, a small window 

size can lead to impairing the power of smoothing in homogenous areas and leaving 

the noise (Yu and Action, 2002). As a consequence, extent versions of the Lee filter 

and the Frost filter have been introduced to alter performance locally according to 

three cases (Lopes et al., 1990, 1993). In the first case, the local coefficient of 

variation is below a lower threshold, so averaging is applied. Additionally, when it is 

above a higher threshold, the filter acts as an all-pass (identity) filter. Finally if it 

locates between the two thresholds, a balance should be made between the mean and 
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identity filters (Yu and Action, 2002). 

 

C. Gamma Filter 

The Gamma filter is a maximum a posteriori (MAP) based on Bayesian analysis of 

the images statistics (Lopes et al., 1993).  It assumes that the reflectivity and speckle 

are both the Gamma-distributed, and then the observed intensity is K-distributed 

(Gagnon and Jouan, 1997). The Gamma-Gamma MAP estimate is given by: 

                    

R̂  
(α  L   )〈R〉  √〈R〉 (α  L   )  4αLI〈R〉

 α
                         (    ) 

                 

where  

                                  

α  
L   

L(
σI

〈R〉
)   

                                           (    ) 

                            

where L is the number of looks, I is the observed intensity, 〈R〉 is a priori mean 

(Lopes et al., 1993).  

 

Unlike the Lee and Kuan filters, R̂ is a nonlinear function of I and 〈R〉. Under 

homogenous conditions, α tends towards infinity, then R̂ becomes the same as 〈R〉. 

On the other hand, when L tends towards infinity, the MAP estimate is observed 

intensity I itself, which is expected as there is no more speckle noise (Lopes et at., 

1993). 
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D. Anisotropic Diffusion 

Anisotropic Diffusion initially based on the nonlinear partial differential equation 

(PDE) for smoothing images in homogenous areas (Yu and Action, 2002): 

                              

{

∂I

∂t
  iv[ (|∇I|) ∙ ∇I]

I(t  0)  I0

                                          (    ) 

                 

where ∇ is the gradient operator, div is the divergence operator,  (|∇I|) is the 

diffusion coefficient, and I0  is the original image. Perona and Malik (1990) 

suggested two functions for diffusion coefficient: 

                              

 (|∇I|)  e−(
|∇I|
k

)2                                                    (   4) 

                  

and 

                             

 (|∇I|)  
 

  (
|∇I|
k

) 

                                                   (   5) 

                 

where k controls the sensitivity to edges and is usually chosen experimentally or as a 

function of the noise in the image. 

 

When |∇I|>>k, then  (|∇I|) tends to 0, and it acts as an all-pass filter; when 
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|∇I|<<k, then  (|∇I|) tends to 1, and it becomes a Gaussian filter (Yu and Action, 

1993). The resulting image is a combination between original image and a filter that 

depends on local content of original image. As a result, anisotropic diffusion is a 

nonlinear method. However, anisotropic diffusion still has drawback that the 

convergence of the diffusion process is time-consuming. In addition, as an iterative 

algorithm, the selection of parameters such as the scaling factor and the time step can 

be difficult, resulting from a balance has to be made between algorithm’s performance 

and time-consuming.   

 

In general, even though typical filters have been commonly used for SAR imagery, 

their limitation directs us to introduce a new filter: Bilateral Filter. This nonlinear and 

non-iterative filter is widely used in computer vision field, for example, achieves a 

success in medical imagery processing, which is likely to be attractive for SAR image 

processing as well. In this project, actually the most important contribution is to adopt 

and modified the Bilateral Filter, then achieving a better performance in the filtering 

or denoising phase. 
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Chapter 3  

Bilateral Filtering 

 

3.1 Conventional Bilateral Filter 

 

Consider the input data denoted as f can be represented as multiplication of real gray 

value g and noise n: 

                              

  g ∗                                                              (   ) 

 

The aim for filtering or denoising is to suppress noise n in order to extract g from f. In 

spatial filtering, the output data g is usually obtained by using a local filter: 
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g( )  k−1( )∫ ∫  (ξ) (ξ  ) ξ
∞

−∞

∞

−∞

                                         (   ) 

             

where x represents current pixel, ξ  represents neighbor pixel from x,  (ξ  ) 

represents the spatial closeness between ξ and x, and k(x) is the normalization: 

                     

k( )  ∫ ∫  (ξ  ) ξ
∞

−∞

∞

−∞

                                               (   ) 

                       

In the case of Gaussian filtering, the spatial closeness can be expressed by: 

                            

 (ξ  )  e−
1
 
(
‖ξ−x‖

σ
)2                                                    (  4) 

                     

where the ‖ξ   ‖  is the Euclidean distance between x and ξ , σ  is standard 

deviation. 

 

The Gaussian low-pass filter has a strong ability to smooth the image. However, it 

will greatly blur the boundaries when used for filtering. Therefore, Tomasi and 

Manduchi (1998) first came up with a filter named Bilateral Filter (BF) based on 

human perception through incorporating the similarity of intensity (or range), and 

others gradually improve its mathematical theory (Pianykh, 2010; Elad, 2002).  

In Conventional Bilateral Filtering (CBF), given a window, the centre pixel x’s value 

can be estimated by the weighted average of nearby pixels ξ. According to Tomasi 
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and Manduchi (1998), given the input image f(x), the output image g(x) can be 

expressed by: 

   

g( )  k−1( )∫ ∫  (ξ) (ξ  ) ( ( )  (ξ)) ξ
∞

−∞

∞

−∞

                               (  5) 

         

where k(x) is normalization: 

 

k( )  ∫ ∫  (ξ  ) ( ( )  (ξ)) ξ
∞

−∞

∞

−∞

                                      (  6) 

.                

The local filter of CBF is a combination of two terms (filters): spatial filter  (ξ  ) 

and range filter  ( ( )  (ξ)). The spatial filter  (ξ  ) describes the spatial closeness 

while the range filter  ( ( )  (ξ)) describes the similarity of intensity (or range) 

between ξ and x. In the Gaussian case, the spatial filter is defined as follows: 

                      

 (ξ  )  e
−

1
 
(
‖ξ−x‖

σd
)2

                                               (  7) 

                     

where ‖ξ   ‖ is the Euclidean distance between x and ξ, and σd is the spatial 

spread in the domain. The range filter can be expressed by: 

                        

 ( ( )  (ξ))  e
−

1
 
(
|f(ξ)−f(x)|

σr
)2
                                      (   ) 

                  

where | (ξ)   ( )| is the absolute difference of pixel intensities between ξ and x, 
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and  r is the photometric spread in the image range.  

 

On the one hand, if two pixels are nearer, their gray values should be more similar. 

Based on this assumption, a Gaussian filter has the ability of smoothing images. It can 

be effective in homogenous areas but may fail in the areas that contain edges and 

strong textures; because it will blur the edges and textures that should be kept. 

Therefore, a range filter is incorporated to preserve them. On the other hand, 

according to Tomasi and Manduchi (1998), the spatial distribution of image intensities 

plays no role in range filter taken by itself, meaning that if the range filter is applied 

alone, results can be as the same as the original images. But when combining it to the 

previous spatial filter, something interesting occurs, that is, the CBF has significant 

effect on smoothing while preserving the edges. The effectiveness of this combination 

is shown in Fig. 3.1. 

 

   

(a)                      (b)                     (c) 

Fig. 3.1 (a) A 100-gray-level step perturbed by Gaussian noise with σd=10 gray 

levels; (b) Combined similarity weights  (ξ  ) ( ( )  (ξ))  for a 23x23 

neighborhood centered two pixels to the right of the step in (a); (c) The step in (a) 

after bilateral filtering with σr=50 gray levels and σd=5 pixels. (adapted from 
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Tomasi and Manduchi, 1998) 

 

3.2 Sensitive Analysis 

 

For a sensitive analysis of CBF, Equivalent Number of Looks (ENL) is used to test 

the smoothing capacity in homogeneous regions because the larger ENL indicates the 

smoother results (Anfinsen et al., 2008). The ENL is given by Walessa and Datcu 

(2000): 

                         

ENL  
E (I)

Va (I)
                                                        (  9) 

                     

where E(I) and Var(I) are the expectation and variance for the image I, respectively. In 

addition, the Edge Preserve Index (EPI) (Zhang et al., 2009) is adopted to evaluate the 

effectiveness of preserving details in heterogeneous regions as follows: 

                         

EPI  
∑√[pf(i  )  pf(i     )]  [pf(i  )  pf(i    )] 

∑√[po(i  )  po(i     )]  [po(i  )  po(i    )] 
                     (   0) 

                                           

where pf(i  ) represents the filtered image at position (i, j), po(i  ) represents the 

original image at position (i, j). Note that the EPI of original image is one, and the 

larger EPI means stronger power to preserve the edges. 
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According to Zhang et al. (2009), given  d=3, the relationship of normalized ENL and 

EPI versus  r is shown in Fig. 3.2; given  r=0.12, the relationship of normalized ENL 

and EPI versus  d is shown in Fig. 3.3. Zhang et al. (2009) suggest that the parameters 

corresponding to the crossing points in Figs. 3.2 and 3.3 should be the optimal choice. 

However, visually evaluation indicates that cannot achieve the best results because for 

SAR data, the “balance” of ENL and EPI does not mean the best. Fortunately, this 

method provides a way to analyze the sensitivity of parameters for BF. According to 

the Figs. 3.2 and 3.3, it is obvious that as  d and  r increase, their influence to the 

results weaken rapidly.  

                     

 

Fig. 3.2 ENL and EPI versus  r ( d=3) 
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Fig. 3.3 ENL and EPI versus  d ( r=0.12) 

 

3.3 Advantages of CBF 

 

The most important advantage of CBF is its ability to smooth images while preserving 

edges by means of nonlinear combination of nearby image values. In other words, the 

CBF replaces each pixel by a weighted average of its neighbors. The weight assigned 

to each neighbor determines its influence on the result and is crucial to the output 

quality (Paris et al., 2009). In addition to the most critical advantage, other advantages 

can be listed as follows (Paris et al., 2009): 

 Its simple formulation: this is of importance because the low complexity 
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makes it easy to understand, implement and then improve it. 

 Only two parameters have to be determined in terms of the size and range 

difference of observations.  

 It is a non-iterative approach. Thus the computational time is efficient and the 

parameters are easy to be set becaue their effect is not cumulative over 

several iterations. 

 Based on efficient numerical schemes (Chaudhury et al., 2011; Elad, 2002; 

Weiss, 2006; Durand and Dorsey, 2002), its time cost can become lower. 

Last but not least, the CBF is a robust filter as well. Durand and Dorsey (2002) 

studied the bilateral filter according to the framework of robust statistics. They 

indicated that as a robust term, the range filter can distinguish the inliers and outliers. 

In fact, the bilateral filter follows this strategy: there are little relationships and 

interactions between pixels that have different intensities; conversely, pixels with 

similar intensities should be greatly related and impact each other. This strategy is 

mainly defined or described by range weight (Paris et al., 2009).  

 

Although there are several advantages of CBF, it cannot become a general approach 

for every application, especially for SAR imagery. Therefore, researchers have been 

continuously improving the CBF according to the actual situations. 
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3.4 Modifications of Bilateral Filter 

 

Since CBF was proposed by Tomasi and Manduchi (1998), many researchers began to 

make a development in it. Except the methods that purely accelerate the 

computational efficiency (Chaudhury et al., 2011; Weiss, 2006; Durand and Dorsey, 

2002), the main attention is paid to the methods that can improve the performance of 

CBF in this section. Although some of these approaches have not been used for SAR 

imagery, their algorithm is worth learning and consulting as well.  

 

The simplest way to use BF is to combine it to other algorithms. Yang and Clausi 

(2007) proposed an approach for SAR sea ice segmentation based on edge-preserving 

watershed. In fact, the “edge-preserving” ability comes from the BF that is applied as 

a pre-processing before watershed algorithm. Moreover, Zhang and Gunturk (2008) 

presented a multi-resolution bilateral filtering for image denoising. They combine BF 

and wavelet decomposition as a new framework, and indicate that BF can eliminate 

low-frequency noise components. However, even though the BF is used in their 

approaches, there is no “real” improvement of BF because the BF itself is not 

improved or modified. 

 

In bilateral filtering, there are two parameters, spatial spread  d and photometric 

spread  r, which are difficult to be determined. Someone sets them by empirical trial 

and error (Tomasi and Manduchi, 1998) while others try to make them adjusted by 
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some criterions.  

 

Wong (2008) modified CBF using local phase characters. Based on the human 

perception system, the maximum moment of phase coherence is computed and added 

to BF in order to adjust BF’s parameters. This algorithm has a good performance 

where noise level is high. Zhang et al. (2009) determine the parameters of BF via the 

evaluation indexes, including the equivalent number of looks (ENL) and the edge 

save index (ESI). In detail, they make one of the parameters constant and another 

changeable, apply the BF using these parameters, and then calculate the ENL and ESI. 

Since ENL and ESI have inverse relationship, the optimal parameters can be 

determined by drawing their curves and picking up the parameters in terms of the 

point of intersection. However, there is a conflict between computing time and 

accuracy of parameters’ estimation. As the amount of pairs of parameters increases, 

the computing time increases rapidly whereas the accuracy of parameters’ estimation 

raises little. 

 

In addition to adjusting the two parameters adaptively, the formulation of BF can also 

be modified. Zhang and Allebach (2007) add an offset in the range filter. The 

modified range filter is defined as: 

                        

 ( ( )  (ξ))  e
−

1
 
(
f(ξ)−f(x)−ζ(x)

σr(x)
)2

                                 (    ) 
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where the ζ( ) is an offset. In the sliding window S, let MIN, MAX, and MEAN 

denote the operations of taking the minimum, maximum, and average value of the 

data in S. The offset ζ( ) can be expressed by: 

   

ζ( )  {
MAX(S)   ( )    i  Δ > 0
MIN(S)   ( )    i  Δ  0
0                              i  Δ  0

                                      (    ) 

                

here, 

                     

Δ   ( )  MEAN(S)                                                  (    ) 

                          

This mean-shift operation can significantly sharpen the image at edges. However, the 

authors point out that shifting the range filter based on Δ is very sensitive to noise. 

Hence it may not obtain good results for dealing with SAR imagery where high-level 

speckle noise exists. 

 

Another enhanced BF was proposed by Huang and Fuh (2006). They used other 

equations to replace Gaussian function in both spatial and range filter. The spatial 

filter is defined as following: 

 

 (ξ  )  
 

‖ξ   ‖   
                                             (   4)  

 

where ‖ξ   ‖ is the Euclidean distance between x and ξ. And the range filter is 
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replaced by a hybrid function which combines the alpha-trimmed filter and the single 

difference function: 

 

 ( ( )  (ξ))  
 

⌊
| (ξ)   ( )|

σc
   5⌋

                              (   5) 

 

where | (ξ)   ( )| is the absolute difference of pixel intensities between ξ and x, 

and  c is the combinational range. This is a two-phase procedure and has perfect 

ability to reduce the impulse noise in images (Huang and Fuh, 2006). 

 

Sharp changes in gradients and large, high-gradient areas degrade the desirable 

smoothing abilities of the bilateral filter (Paris et al., 2009). The trilateral filter 

introduced by Choudhury and Tumblin (2003) addressed these problems by 

combining modified bilateral filters with a pyramid-based method to limit filter extent. 

In this method, the BF is first applied to the image gradients to estimate the slopes; 

then the extent of the BF applied to the intensity is skewed according to the slopes. 

Furthermore, for each output pixel, they apply a threshold to the staircase features to 

form a binary signal that limits the smoothed neighborhood to connected regions that 

share similar filtered-gradient values. This approach achieves good performance for 

denoising polygonal meshes. However, this good performance relies on higher 

computational cost (Paris et al., 2009). 

 

In summary, though several modifications have been proposed and made an 
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achievement in different applications in the past years, they still have the weakness 

and shortcomings, such as time-consuming. Particularly for SAR sea ice images, there 

is no evidence to show the effectiveness of some of above approaches. As a result, a 

new modification of BF for SAR sea-ice segmentation is introduced in the next 

Chapter. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



48 

 

Chapter 4  

 

Methodology 

 

4.1 Flowchart of GBFK Approach 

 

In this project, a two-phase scheme (Kwon et al., 2012) is designed for the 

segmentation task. The main flowchart of the proposed approach is demonstrated in 

Fig. 4.1.  

 

In Phase 1, the original SAR images are first denoised as the preprocessing via a 

Gamma-based bilateral filter (GBF), which consists of two terms: spatial closeness 

and similarity of intensity. In detail, for the spatial closeness, its parameter is tuned as 

the coefficient of variation, which is a significant measure of homogeneity in the 

sliding window; for the similarity of intensity, a new likelihood probability function is 

exploited instead of Gaussian function based on the fact that the speckle noise in SAR 

imagery usually follows the Gamma distribution.  

 

In Phase 2, a median filter is adopted in the filtered images as an optional process 

(mostly used for the simulated images). Then the K-means algorithm with optimized 

initial centroids of classes is utilized in order to cluster the filtered images into various 

classes.  
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Since this two-phase approach includes a Gamma-based Bilateral Filtering and 

K-means algorithm, it can be named as GBFK in short.   

 

Fig. 4.1 Flowchart of the GBFK approach 
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4.2 Gamma-based Bilateral Filter 

 

The most critical problem for CBF is how to determine the parameters. To evade this 

problem, one can just test large number of different parameters and then obtain 

optimal ones. For instance, after lots of tests, Tomasi and Manduchi (1998) select the 

parameters by their visual comparison, and Zhang et al. (2009) rely on ENL and ESI 

indexes. In addition, although several approaches (Zhang and Allebach, 2007; Wong, 

2008) discussed in Section 3.3 find a way to determine the parameters adaptively, it is 

hard to say whether they are effective for SAR sea-ice images.  

 

What is more, when dealing with the SAR images, it is extremely difficult for CBF to 

achieve satisfied performance by adjusting the two parameters according to my 

experiments. Speckle noise in SAR images has a great influence on the results. To this 

end, the similarity of intensity can be described by a likelihood probability function 

based on Gamma distribution, since the mean square root of speckle noise is usually 

satisfied unit-mean Gamma distribution (Goodman, 1976). In this section, a new way 

to modify the CBF is presented as follows. 

 

4.2.1 Spatial Closeness 

 

Since the bilateral filtering has two terms, each of them can be modified separately. 

For the spatial filter  (ξ  ), most researchers come cross a problem that how to 
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choose the spatial spread σd in Eq. (3.6). For an automatic approach, less parameters 

that are input by human is expected. 

 

Parameter σd determines the shape of the Gaussian curve. Learning from Eq. (3.6), it 

is obvious that the bigger σd is, the lower decreasing rate of  (ξ  ) is as the spatial 

distance of two pixels decreases; and vice versa. So if σd is a constant, a large σd 

may cause relatively large weights of neighborhood resulting in blurring the details, 

while a small σd may cause relatively small weights of neighborhood resulting in 

bad smoothing ability in homogeneous regions. Hence the selection of σd could be 

significantly relevant to the homogeneity in a region. As we know, the coefficients of 

variation denoted as CV is the most commonly used measure of homogeneity, which 

is given by (Lopes et al., 1990): 

                           

 CV( )  
√va ( ( ))

E( ( ))
                                                     (4  ) 

                       

where var(f(x)) and E(f(x)) are variance and mean of pixels in the window 

respectively. As a result, CV is utilized to determine the spatial spread σd in this 

project. 

 

Now the problem is how to build up the relationship between σd and CV. Lopes et al. 

(1990) divide the regions into three classes with two thresholds Cu and Cmax, based 

on the regions’ homogeneities. For L-look intensity image, Lopes et al. (1990) 
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recommended that Cu and Cmax can be given by 

 

Cu  √
 

L
                                                          (4  ) 

                           

Cmax  √ Cu                                                         (4  ) 

                       

where L is the number of looks of SAR images. If  CV ≤ Cu, then the area denoted as 

Class 1 should be smoothed; if Cu  CV  Cmax, then the area denoted as Class 2 

should be filtered, containing some textural information; if CV ≥ Cmax, then the area 

denoted as Class 3 should be preserved, containing more details.  

 

As mentioned above, large spatial spread σd blurs more, so a large σd works well in 

homogeneous areas, where a small coefficients of variation CV exists. Therefore, 

there is an inverse relationship between σd a   CV, so a model for them can be 

expressed by: 

                         

σd(CV)  
A

  eK(CV−C)
                                                   (4 4) 

                         

There are three unknown parameters A, K and C to be determined in Eq. (4.4). Two 

schematic diagrams are demonstrated in Fig. 4.2 in order to clearly and intuitively 

explain how to determine the parameters. Since  (ξ  )  belongs to [0, 1] after 

normalization, the median value 0.5 is select as the threshold. Therefore, for Class 1 
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area, assuming when ‖ξ   ‖ ≥
N−1

 
, then  (ξ  ) ≤ 0 5, and the equality is satisfied 

when CV  Cu, marked as triangle in Fig. 4.2(a); for Class 3, when ‖ξ   ‖ ≤  , 

then  (ξ  ) ≥ 0 5, and the equality is satisfied when CV  Cmax, shown as ellipse in 

Fig. 4.2(a). Fig. 4.3(a) shows the curve of the model. The curve is segmented into 

three parts by two breakpoints: the top part is for Class 1, the bottom part is for Class 

3 and the intermediate is for Class 2. Fig. 4.2(b) shows the positive half of Gaussian 

curve of spatial closeness at two different values of CV. It is easily observed that 

when region is smoother (CV  Cu), the Gaussian curve is relatively flatter, meaning 

that it has stronger power to smooth; and vice versa. Hence, combined with Eq. (3.6), 

the two equivalent conditions of Class 1 and Class 3 can be described as follows: 

                             

e
−

1
 
(

N−1
 σd(Cu)

)2

 0 5                                                     (4 5) 

                             

e
−

1
 
(

1
σd(Cmax)

)2

 0 5                                                    (4 6) 

                      

In addition, assuming that the model in Eq. (4.4) is symmetric, we can get: 

                         

 σd(Cu)  σd(Cmax)  A                                                 (4 7) 

                     

By integrating Eqs. (4.2) to (4.7), the three unknown parameters can be computed as 

following: 
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A  
N   

 √  l g0 5
                                                 (4  ) 

                                

K  
 l g

 
N   

Cu  Cmax
                                                    (4 9) 

 

C  
Cu  Cmax

 
                                                     (4  0) 

 

In final, the new spatial closeness is defined as: 

 

 (ξ  )  e
−

1
 
(
‖ξ−x‖
σd(CV)

)2

                                               (4   ) 

                       

 

 

(a) Cv versus  σd 
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(b) ‖ξ   ‖ versus  (ξ  ) 

Fig. 4.2 Schematic diagrams for determining the parameters 

 

4.2.2 Similarity of Intensity 

 

Gaussian function is commonly used to describe noise in image processing, including 

CBF. However, it can be applied for the spatial filter reasonably but not for the range 

filter. 

 

On the one hand, Gaussian function cannot deal with the convex impulse noise. 

According to Huang et al. (2006), CBF by Tomasi and Manduchi (1998) cannot deal 

with the impulse noise (shown in Fig. 4.3). The range weight will contribute more in 

this case. In fact, the similarity of intensity will achieve nearly zero weights for 
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nearby pixels but very high weights for centre pixel if the centre pixel is an impulse. 

Hence the impulse will remain after filtering. Unfortunately, speckle noise in SAR 

imagery is also a sort of salt-and-pepper noise that has significant impulse, so CBF 

based on Gaussian function does not works well. On contrary, Gamma function is 

able to deal with the convex impulse due to the sharp slope of its curve at [0, 1]. For 

instance, Fig. 4.4 shows the difference of CBF and GBF when dealing with convex 

impulse noise. It is obvious that GBF has stronger ability to smooth the convex 

impulse noise. 

 

 

(a)                    (b)                   (c) 

Fig. 4.3 Disadvantage of the bilateral filter where salt-and-pepper noise remains after 

bilateral filtering: (a) Impulse noise in a noisy image; (b) Bilateral filter mask at the 

impulse point; (c) Impulse noise after the bilateral filtering (adapted from Huang et al., 

2006) 
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               (a)                 (b)                 (c) 

Fig. 4.4 Difference of CBF and GBF when dealing with convex impulse noise. (a) 

original image; (b) image filtered by CBF; (c) image filtered by GBF. 

 

On the other hand, researchers often build speckle noise model for SAR imagery via 

noise with unit-mean gamma distribution (Goodman, 1976; Yu et al., 2009; Kwon et 

al., 2012). Thus in SAR image segmentation, the use of Gamma distribution presents 

the better results than Gaussian distribution (Rocha, 2008). For SAR images with 

number of looks L, probability model of the speckle noise is expressed by Molina et 

al. (2010): 

                              

P (
 

g
)  

 LL

Γ(L)
(
 

g
)
 L−1

e
−L(

f
g
)
2

                                               (4   ) 

                 

where g is noise-free pixels, and f is observed pixels. 

 

A typical equation defining the probability density function of a Gamma-distributed 

random variable x is: 

 

                    ( ; k  )  
1

θk

1

Γ(k)
 k−1e−

x

θ                        (4.13) 

 

where k and   are shape and scale parameters, respectively. Under the unit-mean 

condition,   can be expressed by: 
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1

k
                          (4.14) 

 

thus Eq. (4.13) can be rewrite as: 

 

                             ( ; k)  
kk

Γ(k)
 k−1e−kx                 (4.15) 

 

It is easy to see that Eq. (4.15) has similar format as Eq. (4.12), which is in line with 

the multiplicative property of speckle noise in SAR imagery. As a result, using 

Gamma distribution may be more appropriate to describe the similarity of intensity 

for SAR imagery.  

 

In this project, based on the Eq. (4.15), a likelihood probability function for similarity 

of intensity can be defined as follows: 

                

 ( ( )  (ξ))  P( (ξ)| ( ))  
TT

Γ(T)
(
 (ξ)

 ( )
)
 T

e
−T(

f(ξ)
f(x)

)2

              (4  6) 

 

where x is the current pixel, ξ is the nearby pixel, and T is the parameter. Since Eq. 

(4.16) is similar as Eq. (4.12), T and L may have simple relationship. In fact, the value 

of T is not very sensitive to the results. Therefore, in the tests, a linear assumption is 

made between T and number of looks. By trial and error, T can be calculated by an 

empirical equation: 
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T  
L

 0
                                                               (4  7) 

 

where L is the number of looks.  

 

4.2.3 Summary of Denoising Phase 

 

To sum up, the denoising phase can be described as follows: 

Input: The original image 

Output: The filtered image 

Procedure: 

1. Set the size of window N. 

2. Determine number of looks. If number of looks is unknown, using equivalent 

number of looks (ENL) to replace (how to calculate ENL is introduced in Chapter 

4). Then compute parameter T by Eq. (4.17). 

3. Integrate Eq. (4.2)~(4.3) and Eq. (4.8)~(4.10) to compute three parameters A, K 

and C, then get the model Eq. (4.4). 

4. In each window, estimate the value of central pixels: 

1) Calculate the coefficient of variation 𝐶𝑉 by Eq. (4.1). 

2) Calculate  𝜎𝑑(𝑥) from 𝐶𝑉(𝑥) by using Eq. (4.4). 

3) Substitute  𝜎𝑑(𝑥) into Eq. (3.6) to get the spatial weight. 

4) Incorporate the spatial weight and range weight calculated by Eq. (4.13) to 
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obtain the estimated value of central pixel. 

 

4.3 K-means algorithm 

 

In this study, the K-means clustering algorithm is used for SAR sea-ice image 

segmentation since it is a widely used clustering algorithm and simple to use. 

Moreover, the K-means clustering algorithm has high computational efficiency.  

 

4.3.1 Typical K-means Algorithm 

 

 

Regarding the pixels all over the image as the observations X, K-means algorithm 

aims to partition them into k classes Si (i = 1, 2, …, k) based on their inherent 

distance from each other. The key point is to minimize the within-cluster sum of 

squares expressed by 

                    

a gmi 
S

∑ ∑ ‖ j  μi‖
 

xj∈Si

k

i=1

                                           (4   ) 

                   

where μi is the centroids or means of points in Si. 

 

This algorithm can be described as follows: 

Input: The filtered image 



61 

 

Output: The labeled image 

Procedure: 

1. Set the number of class k. 

2. Compute the intensity distribution (histogram) of the images. 

3. Initialize the centroids with k uniform distributed values. 

4. Repeat the following steps until the class labels do not change any more. 

a) Cluster the pixels based on the distance between pixels’ intensities and 

centroids’ intensities. 

b) Compute the new centroids for each class. 

Note that the K-means algorithm adopted in this study was coded by Herrera (2005). 

More details in connection with K-means algorithm can be found in Hartigan and 

Wong (1979). 

 

4.3.2 Optimization of Initial Centroids 

 

The typical K-means algorithm usually selects the initial centroids randomly or 

uniformly. However, this probably leads to convergence at local minima but not 

global optimum, so that the performance of K-means greatly relies on the correctness 

of the initial centroids (i.e. in our experiment, the final centroid can hardly reach the 

gray value of the new ice for some test images due to less pixels belonging to new ice 

in these images). 



62 

 

 

An intelligent optimization method for initializing centroids of K-means is introduced 

based on density and distance. In this project, it is adopted instead of initializing 

uniformly in above K-means algorithm.  

 

First of all, based on the histogram of input image, a new set containing all non-zero 

number of gray value is built. Then for each gray value in this set, the density can be 

calculated by: 

 

Pi  k−1 ∑
 

| j   i|
 

n

j=0 j≠i

                                         (4  9) 

 

where | j   i| is the absolute difference between gray values  j and  i, k is the 

normalization constant. Pi can measure the density of the ith gray value. The bigger 

pi is, the more gray values locate near the ith gray value; and vice versa. Therefore, 

the gray value which has the largest pi can be selected as the first centroid of class.  

 

In addition to concerns about the density, the distance of gray values also have to be 

considered. In detail, the distance between centroids should be as large as possible; 

otherwise all obtained centroids of classes will be too close. The distance can be 

expressed by: 
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Dij  k−1 ∑ | j   i|

n

j=0 j≠i

                                           (4  0) 

 

where | j   i| is the absolute difference between gray values  j and  i ( i is the 

previously selected centroid value), k is the normalization constant. Based on the 

previous centroid, the new centroid should satisfy the maximum cumulative 

multiplication of density and distance, which can be expressed as: 

 

Wi  Pi ∑Dij                                                     (4   ) 

 

where i denotes the number of the previous centroid and j denotes the number of new 

centroid. 

 

In general, this initialization algorithm can be summarized as follows: 

Input: The image data 

Output: The initial centroids of classes M 

Procedures: 

1.  Calculate the histogram of input image and extract the non-zero number of gray 

value as a new set. 

2.  Calculate the density of each gray value in the new set using the Eq. (4.19). 

3.  Initialize the M={ }, and 𝑊𝑖  0. 

4.  Let j=1, choose the first centroid 𝑚1 which has the largest 𝑃𝑖:  

    𝑃1  𝑚𝑎𝑥(𝑃𝑖) (𝑖  0     …  𝑛), then 𝑀  𝑀 ∪ {𝑚1}. 
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5. According to Eqs. (4.20) and (4.21), calculate the distance between the previous 

centroid 𝑚𝑗 and other gray values, and then compute the 𝑊𝑖. 

6. Let j=j+1, choose the centroid 𝑚𝑗 which satisfies: 

 𝑊𝑗  𝑚𝑎𝑥(𝑊𝑖) (𝑖  0     …  𝑛), then 𝑀  𝑀 ∪ {𝑚𝑗}. 

7. Repeat step 5 to step 6 until setting k centroids of classes. 

 

4.4 Optional Process 

 

In this study, a median filter (with 3x3 window size) is used for the filtered images for 

simulated tests, because there exist some dark points remaining after Gamma-based 

bilateral filtering. The dark points mostly appear in simulated images due to the “zero” 

pixels. The simulated images are normalized to [0,1] when recorded, so there are 

some zero pixels on them. Even though a small value has been added to the synthetic 

images in order to avoid the zero-denominator problem, when the near-zero pixel 

locates at the centre of window, the ratios of nearby pixels and centre pixel can be 

extremely large, leading to nearly all weights of nearby pixels tending to zero. Hence 

the estimate value of centre pixel eventually is determined by itself, that is, almost 

zero. 

 

For this reasons, the median filter is utilized in the simulation. It is a really suitable 

one that can preserve boundaries well as a nonlinear filter. Moreover, it can achieve 

relatively high signal-to-noise ratio (SNR) and in the meantime low computation time 
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(Huang et al., 2006). On contrary, real SAR images do not have the “zero” pixels, thus 

without the median filter, results are still satisfying. Therefore, the median filter is not 

applied in the real SAR data tests, leading to this “optional” process. 

 

4.5 Experimental Design 

 

In this study, two main experiments are implemented based on both simulated images 

and real SAR images. The purpose of simulation is to make the results derived from 

the real SAR data more reliable, and to show the robustness of the proposed method 

under various variances. Of course, three other approaches, including Frost filter 

followed by K-means (FK), CBF followed by K-means (CBFK) and Maximum 

Likelihood Classification (MLC), are adopted as comparative approaches. Notice that 

the parameters of comparative methods are selected by one-at-a-time, in which the 

best one is visually determined depending on the final labeled results.  

 

4.5.1 Choice of Comparative Approaches 

 

Two other methods, Frost filtering followed by K-means (FK) and Conventional 

Bilateral Filtering followed by K-means (CBFK), were selected to compare with the 

proposed method.  
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First, in this study, denoising or filtering phase plays the most important role, so the 

FK approach is very proper to be a compared method. It even can be the baseline in 

the experiments, since the Frost Filter (Frost, 1982) is considered to be among the best 

filters for SAR imagery (Gagnon and Jouan, 1997; Touzi, 2002; Leeuw and Carvalho, 

2009). In addition, CBFK, of course, should become a comparison since the GBFK is 

based on it.  

 

4.5.2 Test Design Using Simulated Data 

 

A. Creation of Simulated Image 

A clean image, i.e. image shown in Fig. 4.5 consisting of three different classes with 

irregular edges, is degraded by speckle noise to simulate SAR sea-ice images. The 

gray values of three classes are set as 30, 110 and 150 degree resulting from that they 

represent new ice, gray ice and first-year ice, respectively. The relatively small 

difference between 110 and 150 gray tones can be a challenge of the discriminative 

ability of segmentation techniques. In this experiment, the simulated images are 

created by adding Gamma-distributed noise, meaning that the mean squared root 

(MSR) of speckle noise satisfies Gamma distribution with unit-mean (Goodman, 

1976).  

 

Commonly, the SAR image f can be modeled as multiplication of noise-free image g 

and noise n (Touzi, R., 2002) as follows: 
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  g ∗                                                              (4   ) 

 

And the noise follows the Gamma distribution, described by Eq. (4.12). In detail, the 

images are degraded with different levels of speckle noise from L=14 to L=2 step by 

step, corresponding to variances from σ2
=0.071 to σ2

=0.500. 

 

 

Fig. 4.5 Original synthetic image with 30, 110 and 150 gray level 

 

B. Selection of Parameters 

As controlled experiments, their parameters are selected by one-at-a-time, especially 

for the CBF. Table 4.1 shows the parameters of various filters in tests using simulated 

images. For all three filters, window size has a significant influence on the filtered 

results. Considering the total image size, the size of interests and the computational 

time, the same 7x7 window is chosen for all three filters. In addition, for the Frost 

Filter, damping factor defines the extent of exponential damping. The smaller the 
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value is, the better the smoothing ability and filter performance. Hence it is set up as 

the smallest and commonly used value: 1. Furthermore, for the CBF, a simulated 

noise image (L=5) is selected to determine the parameters. The spatial spread σd 

should correspond to the local window size and the photometric spread σr should 

correspond to the difference in the range (Tomasi and Manduchi, 1998). Therefore, σd 

is initially set as half of window size: 3, then σr is changed from 0.1 to 1 step by step 

with a 0.1 interval. As a result, σr=0.5 leads to a satisfying result based on visually 

detection. Afterwards σr=0.5 is made a constant, and σd is changed from 0.5 to 5 step 

by step with a 0.5 interval. The result shows that the values of σd that are bigger than 

3 yields similar and satisfying labeled images, so σd=3 is selected because the smaller 

one can preserve more details. 

 

Table 4.1 Parameters of various filters in tests using simulated images 

Filters Parameters 

Frost  7x7 window, damping factor K=1 

CBF 7x7 window, σd=3, σr=0.5 

GBF 7x7 window 

 

4.5.3 Test Design Using Real SAR Data 

 

The real SAR image used to test the proposed method is a RADARSAT-2 image with 

several sea-ice types provided by CIS, as shown in Fig. 4.6. The image covers the sea 
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area nearby the Island of Newfoundland in Canada, and it was taken in HH 

polarization under ScanSAR Wide beam mode at 22:29:36 on March 16, 2009. Its 

spatial resolution had been degraded to 100m to enhance sea-ice types. The CIS 

website provides daily regional ice charts which can help interpret the ice 

concentration and distributions (see Fig. 2.1).  

 

Four sub-images denoted by R1, R2, R3 and R4 respectively, whose information is 

shown in Table 4.2, were chosen to test segmentation techniques (shown in Fig. 4.7). 

In this study, the number of class is considered a prior knowledge. R1 consists of new 

ice and first-year ice, the boundaries between which are easy to be discriminated. R2 

has the same ice types but the boundaries are not very clear. Both R3 and R4 include 

three ice types: new ice, gray ice and first-year ice. In detail, there are only a little new 

ice areas in R3, which makes a trouble to discriminate the new ice class. As to R4, the 

boundaries between gray ice and first-year ice are so blurred that it is even difficult to 

depict them manually. 

 

B. Selection of Parameters 

For the bilateral filter, selection of parameters is the same as that in the simulation. 

Table 4.3 lists the best parameters for three approaches in this study. Notice that the 

window size of Frost filter is 5x5. The reason is that it is able to preserve more details 

while still keep good smoothing ability than 7x7 window size. 
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Fig. 4.6 RADARSAT-2 sea-ice imagery in HH polarization under ScanSAR Wide 

beam mode at 22:29:36 on March 16, 2009 (CIS, 2009) 

 

 

R1                      R2 
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R3                      R4 

Fig. 4.7 Four subsets of original SAR image 

 

Table 4.2 Summary of tested images 

Test Site Size (pixels) Number of sea ice types 

R1 256×256 2 (Gray sea ice & Medium first-year sea-ice) 

R2 256×256 2 (Gray sea ice & Medium first-year sea-ice) 

R3 256×256 3 (Gray sea ice, Medium first-year sea-ice & new ice) 

R4 256×256 3 (Gray sea ice, Medium first-year sea-ice & new ice) 

 

Table 4.3 Parameters of various filters in tests using real SAR sea-ice images 

Filters Parameters 

Frost  5x5 window, damping factor K=1 

CBF 7x7 window, σd=3, σr=0.2 

GBF 7x7 window 
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Chapter 5  

 

Experimental Results and Discussion 

 

5.1 An Overview 

 

In this study, both simulated and real SAR images with different sea-ice types are 

used to test the proposed method. In simulated tests, clean image with ice-like gray 

tone is degraded by speckle noise whose number of looks range from 14 to 2. Such a 

large range is able to validate the effectiveness and robustness of the proposed 

approach. Indeed, F1 score is used to calculated the accuracy of methods for each 

class. It can directly reflect how accuracy the tests are at various variances. For real 

SAR images, the true labels are determined by visual interpretation based on prior 

information provided by ice chart. After segmentation, several statistics are calculated 

from the confusion matrix to evaluate the results. Instead of using the Kappa indices, 

the allocation disagreement and quantity disagreement (Jr et al., 2011) is adopted, 

which were proved being more interpretable and more capable of revealing the 

sources of errors than Kappa indices. Allocation disagreement results from the 

mismatch between estimated labels and true labels in the spatial location, while 

quantity disagreement is the mismatch in the proportion of categories. Furthermore, 

the overall accuracy is also used as a measure of proportion of pixels that are correctly 

classified.  
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5.2 Results Using Simulated Images 

 

5.2.1 Visually Performance Evaluation 

 

 

A. Segmentation Results 

 

The results of different segmentation methods are shown in Fig. 5.1. It can be easily 

seen from the first column in Fig. 5.1 that using K-means alone failed to obtain 

expected results due to the sensitivity of speckle noise. Moreover, visually evaluation 

on results in Fig. 5.1 suggests that FK, CBFK and GBFK perform the similar results 

(GBFK slightly outperforms the other two), and there are more and more unexpected 

spots in the results as the variance of noise increases. This phenomena result from the 

K-means clustering algorithm, which has poor ability to distinguish the classes whose 

tones are close.  

 

                FK              CBFK             GBFK 

L    
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Fig. 5.1 Segmentation results for simulated images added noise with number of looks 
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from L=14 to L=2 (rows from top to bottom), using FK, CBFK and GBFK 

respectively (columns from left to right) 

 

B. Filtering Results 

 

To further validate the power of GBF for suppressing speckle noise in SAR images, a 

synthetic image added speckle noise at L=5 is selected to be tested, shown in Fig. 5.2. 

In Figs. 5.3-5.5, there are filtered results and their corresponding intensity histograms 

by applying the Frost filter, CBF and GBF, respectively. Their parameters are shown 

in Table 5.1. It is observed that there are three clear peaks in histogram in Figs. 

5.3-5.5 whereas just two in Fig. 5.2(b), meaning that all the three methods have the 

ability towards discerning the two classes that have close gray tones. Among these 

filters, Frost filter and CBF show stronger smoothing power than GBF, whereas GBF 

preserves edges better than the others. 

 

 

               (a)                               (b) 

Fig. 5.2 (a) Simulated noisy image (L=5), (b) its histogram. 
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Fig. 5.3 Filtered image and its histogram via Frost filter                            

 

Fig. 5.4 Filtered image and its histogram via CBF 
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Fig. 5.5 Filtered image and its histogram via GBF 

 

5.2.2 Quantitative Performance Evaluation 

 

Besides visual inspection in Fig. 5.1, quantitative results are shown in Figs. 5.6-5.8. 

F1 score test is performed, which is widely used to validate the accuracy of test data, 

in order to find out how each test method performs under different circumstances (in 

our case, different test methods and noise levels). In other words, within only one 

figure, it is easy to show how the approaches work for each class under different 

variances via F1 score. The general equation for F1 score derived based on 

Rijsbergen’s (1979) effectiveness measure can be expressed by: 
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F  
 TP

 TP  FN  FP
                                                 (5  ) 

                     

where TP, FN and FP denote true positive, false negative and false positive 

respectively. Since there are three classes in test images, three various figures should 

be drawn so as to observe how accurately the segmenting result of each class is 

matched to the ground truth image (derived from original synthetic image in Fig. 4.5). 

The F1 score ranges from zero to one corresponding to the poorest and the best match 

pattern.  

 

For the other three approaches, the F1 scores of FK, CBFK and GBFK are all higher 

than 0.8, indicating that these three methods can reduce the speckle noise effectively. 

Particularly Fig. 5.6 illustrates the F1 score of “new ice” class, in which all other three 

techniques achieved very high level of scores due to the big difference between the 

gray values of new ice and other ice. In detail, GBFK algorithm outperforms the 

others because it uses Gamma distribution to measure the similarity of intensity. 

 

As to the rest two classes shown in Figs. 5.7 and 5.8, F1 score of the proposed method 

still outperforms the others. Furthermore, it is easily observed that FK performs 

slightly better than CBFK when the variance of noise is below 0.25. However, as the 

variance of noise increases, the F1 scores of FK increasingly drop away from CBFK. 

This demonstrates BF can perform better than the Frost filter at high-level noise. In 
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the mean time, it can be predict that the F1 scores of CBFK will beyond GBFK as the 

variance of noise keep increasing, but it is meaningless when the variance of noise is 

too high.  

 

To sum up, almost all F1 scores of GBFK for each class are higher than 0.9 regardless 

of the variances of noise, and beat FK and CBFK completely. Since the effect of 

improvement of BF can be seen, one reason for this is that the constant spatial spread 

cannot fit various level of speckle noise, while the other reason is that applying 

difference of gray tones as the measure of Gamma model is more appropriate than 

using ratio of gray tones as the measure of Gaussian model for the range filter. 

 

 

Fig. 5.6 F1 score versus number of looks (L) for new ice class 
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Fig. 5.7 F1 score versus number of looks (L) for first-year ice class 

 

 

Fig. 5.8 F1 score versus number of looks (L) for gray ice class 
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5.3 Results with Real SAR Sea-Ice Images 

 

5.3.1 Visually Performance Evaluation 

 

A. Segmentation Results 

 

The four subsets were delineated manually according to their differences of gray tone 

values, shown in Fig. 5.9. The segmentation results are treated as ground truth. 

Meanwhile in Fig. 5.10, the overlay segmentation results can be generated by GBFK 

approach using the parameters shown in Table 4.3. It can be found that even a very 

small segments can be delineated using the proposed method according to Fig. 5.10. 

More details will be discussed later based on the labeled images. 

 

 



83 

 

 

Fig. 5.9 Manully digitized segmentation results 

 

 

 

Fig. 5.10 Overlay segmentation results using the proposed method 

 

The experiments on real SAR sea-ice images demonstrated consistent results with the 

simulated study. It is evident that the proposed GBFK algorithm outperforms the rest 

algorithms by visual inspection according to Fig. 5.11.  
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First, according to the simulations, FK and CBK tend to blur the boundaries, so the 

new ice in Figs. 5.11(a), (b), (e), (f) looks bloated, especially for R2. However, the 

window size of Frost filter and photometric spread of CBF cannot be turned to small, 

because if so, their ability to suppress noise will decline rapidly. On contrary, it is easy 

to find a proper parameter T for GBFK so as to distinguish the new ice more 

accurately, which results from both the adaptive spatial spread and the range filter 

based on Gamma distribution. 

 

Secondly, when looking at three-class situation, the proposed GBFK method still 

outperforms the others. Since new ice in R3 occupies significantly less areas than gray 

ice and first-year ice, FK and CBFK run into disaster by misclassifying a lot of area of 

gray ice into new ice, shown in Figs. 5.11(c) and (g). On the other hand, GBFK can 

achieve satisfied result (Fig. 5.11(k)) as a result of the Gamma-distributed range filter. 

It has greater ability to preserve edges, thus the K-means algorithm could discriminate 

the new ice correctly.  

Finally, the same problem occurs for R4 using FK and CBFK according to Figs. 

5.11(d) and (h), that is, some gray ice is misclassified to new ice. Since the difference 

of gray value between new ice and other ice is large, the Frost filter and CBF tends to 

blur the “sharp” edges between new ice and other ice. On contrary, in Fig. 5.11(l), the 

“sharp” edges are preserved well due to the range filter based on Gamma distribution. 
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Therefore, using Gamma function to replace Gaussian function for the range filter is 

effective and necessary in SAR image segmentation. 

 

R1               R2              R3              R4 

 

        (a)                (b)              (c)              (d) 

 

         (e)               (f)               (g)              (h) 

 

          (i)              (j)               (k)              (l) 
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        (m)               (n)               (o)              (p) 

Fig. 5.11 Segmentation results for real SAR images for R1, R2, R3 and R4 (columns 

from left to right), using FK, CBFK and GBFK respectively (rows from top to bottom 

except the last row); the ground truth images are shown in the last row.  

 

B. Filtering Results 

 

Fig. 5.12 shows the filtered results using FK, CBFK and GBFK. It is easy to see that 

the boundaries by GBFK are clearer and sharper than another two when comparing 

the filtered images in the same row. Therefore, the improvement of the proposed 

method exactly makes a difference. Furthermore, according to the histograms, the 

proposed GBFK approach demonstrates more power to delineate various classes, 

especially the small class such as new ice class. The satisfying results should mainly 

be attributed to the Gamma distribution that used as the similarity of intensity. Of 

course, the adaptive spatial filter is also helpful for preserving edges. 

 

           FK                  CBFK                 GBFK   
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Fig. 5.12 Filtered results and their histograms using FK, CBFK and GBFK (from left 

to right) for R1, R2, R3 and R4 (from top to bottom) 

 

5.3.2 Quantitative Performance Evaluation 

 

What is more, a statistical analysis is presented in Table 5.1, in which the 

disagreements and overall accuracy are presented. The disagreement indexes 

proposed by Jr et al. (2011) are based on the confusion matrix (or error matrix). Let 

 ij denotes the number at the ith row and jth column in the confusion matrix. Then 

the new entry pij can be expressed by: 
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pij  
 ij

N
                                                                    (5  ) 

where N is the total number of pixels. The quantity disagreement  g for an arbitrary 

category g can be computed by: 

 g  |∑pig

 

i=1

 ∑pgj

 

j=1

|                                                     (5  ) 

where J is the number of classes. Then the overall quantity disagreement can be 

calculated by: 

  
 

 
∑ g

 

g=1

                                                                      (5 4) 

The allocation disagreement ag can be computed by: 

ag   mi (∑pig

 

i=1

 pgg ∑pgj

 

j=1

 pgg)                     (5 5) 

Thus the overall allocation disagreement is: 

A  
 

 
∑ag

 

g=1

                                                            (5 6) 

The total disagreement can be calculated by: 

D    A                                                               (5 7) 

The overall accuracy can be computed by: 

 A  ∑pgg

 

g=1

                                                             (5  ) 

For an intuitive sense, the disagreement and the overall accuracy diagrams are shown 
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in Figs. 5.13 and 5.14. In general, the statistical analysis demonstrates a consistent 

conclusion as the visually evaluation. It is easy to find that the proposed GBFK 

method performs the best disagreement indexes and overall accuracy for each image; 

particularly for R3 and R4, it has a significant excellence over the others. From Table 

5.1, GBFK achieves average disagreement of 0.0406 and average overall accuracy of 

95.62%. Its results are approximately from 6.7% to 15.1% better than other 

approaches in terms of average overall accuracy. From the Fig. 5.13, it is easily 

observed that both quantity and allocation disagreements of GBFK are lower than 

those of compared approaches. Furthermore, GBFK shows a big excellence in 

quantity disagreement over the others, because quantity disagreement shows more 

about the results’ accuracies. Notice that the FK and CBFK fail to discriminate the 

new ice class in R3, so their disagreements are significantly large accordingly. 

 

To sum up, the statistical analysis also indicates the proposed GBFK approach can 

achieve satisfied performances for SAR sea-ice segmentation. Of course, its 

effectiveness should satisfy some computing time. However, its good performance 

makes this satisfy accessible. 

 

Table 5.1 Quantity disagreement (Q), allocation dissgreement (A), total dissagreement 

(D) and overall accuracy (QA) of segmentation results for real SAR images 

R1 GBFK FK CBFK R2 GBFK FK CBFK 

Q 0.0050 0.0189 0.0093 
 

0.0116 0.0682 0.0442 
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A 0.0050 0.0069 0.0088 0.0105 0.0094 0.0166 

D 0.0100 0.0257 0.0181 0.0221 0.0776 0.0608 

OA 98.5% 97.43% 98.19% 96.74% 92.24% 93.92% 

R3 
 

R4 
 

Q 0.0052 0.1643 0.1732 
 

0.0337 0.0679 0.0627 

A 0.0320 0.0362 0.0362 0.0594 0.0834 0.0772 

D 0.0372 0.2005 0.2110 0.0931 0.1513 0.1399 

OA 96.28% 79.95% 78.9% 90.69% 84.87% 86.01% 

 

 

 

0 0.005 0.01 0.015 0.02 0.025 0.03

GBFK

FK

CBFK
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GBFK

FK

CBFK
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Fig. 5.13 Disagreement for R1, R2, R3 and R4 using GBFK, FK and CBFK 

 

0 0.05 0.1 0.15 0.2 0.25

GBFK

FK
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Disagreement (proportion of the 
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GBFK

FK
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Disagreement (proportion of the 
observations) for R4 

Quantity disagreement Allocation disagreement
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Fig. 5.14 Overall accuracy for R1, R2, R3 and R4 using GBFK, FK and CBFK. 

 

All the algorithms were implemented under the MATLAB platform. All the 

computations were running on a laptop with an Inter(R) 2.40 GHZ Quad-Core 

processor. It took approximately 0.03, 4, 6, and 11 seconds, respectively for K-means, 

FK, CBFK and the proposed GBFK to process a 256×256 pixels SAR image.  
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Chapter 6  

 

Conclusions and Recommendations 

 

6.1 Summary 

 

This thesis introduces a novel SAR sea-ice image segmentation approach named 

GBFK, which is based on the combination of the Gamma-based bilateral filter (GBF) 

and K-means clustering. In detail, this approach first employs a GBF in order to 

suppress the speckle noise. Since bilateral filter has proved to be a useful one that has 

the ability of smoothing while preserving edges, it is modified by taking spatial 

homogeneity into account and applying gamma distribution to describe the similarity 

of intensity. Then a K-means clustering algorithm is used as the second phase, 

followed by post-processing. As a pixel-based approach, GBFK achieved satisfactory 

performances in both simulated and real SAR data tests over several compared 

pixel-based approaches.  

 

The main contributions of this thesis can be summarized as follows: 

First, a novel approach for SAR sea-ice segmentation by adopting a new filter: 

bilateral filter (BF) was proposed. BF has low complexity and high computational 

efficiency. Consequently, it works well for SAR sea-ice image segmentation, and is 
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able to make a contribution to sea-ice detection. 

 

Second, based on conventional BF, the spatial spread is made not a constant but 

adaptive to the local homogeneity. As a result, BF can effectively save more details 

when smoothing images in homogenous areas. In the meantime, an alternative 

function based on Gamma distribution is used to replace the original function of 

similarity of intensity in BF. It is obvious that Gamma function is more suitable for 

SAR sea-ice imagery than Gaussian function in this case. This improvement shows 

evident effectiveness according to the experimental results. 

 

Third, quantitative evaluation shows that the proposed approach can achieve average 

overall accuracy of 95% when dealing with RADASAT-2 images in this study. Its 

results are approximately from 6.7% to 15.1% better than the comparative approaches, 

FK and CBFK, in terms of average overall accuracy. That means the proposed method 

is useful and promising on segmenting SAR imagery. 

 

6.2 Recommendations 

 

For automatic SAR sea-ice segmentation, although the proposed GBFK approach 

demonstrates promising results, several priorities for future research remain. 

 

Firstly, although the local homogeneity was fully used in this approach, the texture 
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information was not employed. Since texture is considered to be critical for sea ice 

(Clausi, 1996), it could be useful to establish a model to adapt the parameter in BF 

accordingly using texture information. This is a way to improve the accuracy yet 

costing more processing time. 

 

Secondly, like the replacement of similarity of intensity in BF, other model can be 

adopted as spatial closeness as well. For instance, Huang (2006) introduced a new 

model for spatial closeness and got a good effect on dealing with the impulse noise. In 

addition, new model can also be created for spatial closeness in BF based on 

properties of SAR sea-ice imagery. 

 

Thirdly, the modifications in our approach focus on the performance or accuracy of 

the results, so the computational time is put on the secondary stage. Since some 

researcher have come up with ideas to accelerate the BF (Chaudhury et al., 2011; 

Weiss, 2006; Durand and Dorsey, 2002), their methods can be incorporated to the 

GBFK approach in order to achieve better time cost. 

 

Finally, although the K-means clustering is used to underline the filtering phase, 

K-means is exactly too simple to be used in the clustering phase. It is worth to try 

other clustering methods such as GMM or KIF mentioned in the Chapter 2. 

Particularly in my opinion, fuzzy C-means algorithm can become a useful one for 

SAR sea-ice segmentation, because in fact, the boundaries between different ice types 
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are fuzzy, and even not easy to be distinguished by human (i.e. in Fig. 4.12, the 

boundaries between gray ice and first-year ice are difficult to be drawn for R4). 

Therefore, a fuzzy approach probably can achieve better results.  
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