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ABSTRACT

In this work operational sea ice synthetic aperture radar (SAR) data products were
improved and developed. A SAR instrument is transmitting electromagnetic ra-
diation at certain wavelengths and measures the radiation which is scattered back
towards the instrument from the target, in our case sea and sea ice. The mea-
sured backscattering is converted to an image describing the target area through
complex signal processing. The images, however, differ from optical images, i.e.
photographs, and their visual interpretation is not straightforward. The main idea
in this work has been to deliver the essential SAR-based sea ice information to
end-users (typically on ships) in a compact and user-friendly format. The opera-
tional systems at Finnish Institute of Marine Research (FIMR) are currently based
on the data received from a Canadian SAR-satellite, Radarsat-1.

The operational sea ice classification, developed by the author with colleagues,
has been further developed. One problem with the SAR data is typically that the
backscattering varies depending on the incidence angle. The incidence angle is the
angle in which the transmitted electromagnetic wave meets the target surface and
it varies within each SAR image and between different SAR images depending on
the measuring geometry. To improve this situation, an incidence angle correction
algorithm to normalize the backscattering over the SAR incidence angle range for
Baltic Sea ice has been developed as part of this work. The algorithm is based on
SAR backscattering statistics over the Baltic Sea.

To locate different sea ice areas in SAR images, a SAR segmentation algorithm
based on pulse-coupled neural networks has been developed and tested. The pa-
rameters have been tuned suitable for the operational data in use at FIMR. The
sea ice classification is based on this segmentation and the classification is segment-
wise rather than pixel-wise.

To improve SAR-based distinguishing between sea ice and open water an open
water detection algorithm based on segmentation and local autocorrelation has
been developed. Also ice type classification based on higher-order statistics and
independent component analysis have been studied to get an improved SAR-based
ice type classification.

A compression algorithm for compressing sea ice SAR data for visual use has



been developed. This algorithm is based on the wavelet decomposition, zero-
tree structure and arithmetic coding. Also some properties of the human visual
system were utilized. This algorithm was developed to produce smaller compressed
SAR images, with a reasonable visual quality. The transmission of the compressed
images to ships with low-speed data connections in reasonable time is then possible.

One of the navigationally most important sea ice parameters is the ice thickness.
SAR-based ice thickness estimation has been developed and evaluated as part
of this work. This ice thickness estimation method uses the ice thickness history
derived from digitized ice charts, made daily at the Finnish Ice Service, as its input,
and updates this chart based on the novel SAR data. The result is an ice thickness
chart representing the ice situation at the SAR acquisition time in higher resolution
than in the manually made ice thickness charts. For the evaluation of the results
a helicopter-borne ice thickness measuring instrument, based on electromagnetic
induction and laser altimeter, was used.
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List of Abbreviations and
Acronyms

ALOS Advanced Land Observing Satellite
ALP Adaptive Laplacian Pyramid, an image compression technique

ANSI American National Standards Institute, an organization that admin-
isters and coordinates the U.S. voluntary standardization and conformity
assessment system

ASAR Advanced Synthetic Aperture Radar, the SAR instrument of the En-
visat satellite

ASCII American Standards Committee for Information Interchange, a stan-
dard for coding characters

AVHRR Advanced Very High Resolution Radiometer, a space-borne remote
sensing instrument of NOAA

CCRS Canada Centre for Remote Sensing
CGI Common Gateway Interface

CI Consolidated Ice, concentration 90-100 %
CLI Close Ice, concentration 70-80 %

CQF Conjugate Quadrature Filter

CR Compression Ratio

DCRS Danish Centre for Remote Sensing
DEM Digital Elevation Model

EM Expectation-Maximization algorithm
ENL Equivalent Number of Looks

Envisat ENVIronment SATellite of ESA, carrying many instruments also the
ASAR

ERS European Remote Sensing Satellite, the currently operating satellite
with a SAR instrument is ERS-2, successor of ERS-1

ESA European Space Agency

EOS End Of Sequence

FBI Frozen Brash Ice

FI Fast Ice

FIMR Finnish Institute of Marine Research

FINSTASHIP A state owned shipping company (e.g. ice breakers are owned
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by Finstaship)

FIR Finite Impulse Response digital filter

FIS Finnish Ice Service, an operational part of FIMR

FMA Finnish Maritime Administration

FTP File Transfer Protocol, an Internet protocol for file transfer

FYT First Year Ice, ice developed during the same year, Baltic Sea ice is all
FYI

GLCM Gray Level Co-occurrence Matrix, a matrix computed to describe the
local image texture

GSM Global System for Mobile Communications, originally Groupe Special
Mobile which was changed to Global System for Mobile Communications
later

HDI Highly Deformed Ice

HEM Helicopter-borne Electromagnetic Induction, an instrument for mea-
suring sea ice thickness based on electromagnetic induction, operated from
helicopter

HH Horizontal-Horizontal, the instrument is transmitting horizontally po-
larized radiation and receiving horizontally polarized radiation

HUT Helsinki University of Technology

HUTSCAT Helsinki University of Technology Scatterometer. A device de-
veloped at HUT LST

HV Horizontal-Vertical, see HH

HVS Human Visual System

IC Independent Component

ICA Independent Component Analysis

ICM TIterated conditional Modes algorithm

IEEE Institute of Electrical and Electronics Engineers

IEM Integral Equation Model, a (SAR) backscattering model

IGARSS IEEE International Geoscience and Remote Sensing Symposium,
an annual symposium

JERS Japanese Remote Sensing Satellite

JPEG Joint Photographic Experts Group (development group for lossy image
compression also a file extension) image compression standard

JPEG-2000 A wavelet-based updated version of JPEG standard
KNN K Nearest Neighbors algorithm

KSAT Kongsberg Satellite Services AS, A company in Tromsg, Norway, re-
ceiving and processing satellite-borne remote sensing instrument data, earlier
known as Tromsp Satellite Station (TSS)

LBI Loose Brash Ice
LI Level Ice, contains both SLI and RLI
LST Laboratory of Space Technology at HUT

LVQ Learning Vector Quantization, a training algorithm for vector quanti-
zation

MCMC Markov Chain Monte Carlo



12

MODIS Moderate Resolution Imaging Spectroradiometer, a space-borne re-
mote sensing instrument of NASA. The instrument has 36 frequency bands
ranging from optical to infrared bands. The instrument has been mounted
on two satellites, Aqua and Terra

MRF Markov Random Field

MYT Multi-Year Ice, ice developed during more than two years, sometimes
also division to only FYT and MYTI can be seen, and SYT is then included in
MYI

NASA National (USA) Aeronautics and Space Administration
NI Nilas Ice

NMT Nordic Mobile Telephone, a cell phone system formerly in use in Scan-
dinavia, NMT-450 operated at the frequency of 450 MHz and NMT-900 at
the frequency 900 MHz

NOAA National (USA) Oceanic and Atmospheric Administration
NRT Near-Real-Time

OI Open Ice, concentration 40-60 %

PDF Probability Density Function

PC Principal Component

PCA Principal Component Analysis

PCNN Pulse coupled Neural Network

PE Processing Element, a single processing element in an artificial neural
network (e.g. PCNN) corresponding to a neuron in a biological neural net-
work

PBM see PNM
PGM see PNM

PNM Netpbm superformat, a portable image file format, includes portable
bit map (PBM) for monochrome images, portable gray map (PGM) for gray
tone images and portable pixmap (PPM) for color images

PPM see PNM

POT Physical Optics Theory, a (SAR) backscattering model
PRF Pulse Repetition Frequency

PSNR Peak Signal to Noise Ratio

Radarsat A Canadian SAR-equipped satellite, Radarsat-1 has been orbiting
since 1995 and Radarsat-2 will be launched in 2006 or 2007

RCS Radar Cross Section

RLI Rough Level Ice

RMS Relative Mean Square

SAR Synthetic Aperture Radar, an imaging radar instrument
SEM Stochastic Expectation-Maximization algorithm

SFT Smart File Transfer, a reliable mobile file transfer technology developed
at VI'T

SIR-C/X-SAR Spaceborne Imaging Radar-C / X-Band Synthetic Aperture
Radar

SLI Smooth Level Ice
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SNN Symmetric Nearest Neighborhood filter
SNR Signal to Noise Ratio
SMHI Swedish Meteorological and Hydrological Institute

SNA Radarsat-1 ScanSAR narrow mode A, refers to an imaging mode of
Radarsat-1

SNB Radarsat-1 ScanSAR narrow mode B, refers to an imaging mode of
Radarsat-1

SPM Small Perturbation Model, a (SAR) backscattering model, for small
surface roughness

SRTM Shuttle Radar Topography Mission

SSM /T Special Sensor Microwave/Imager, a space-borne remote sensing in-
strument

SWA Radarsat-1 ScanSAR wide mode A, refers to an imaging mode of
Radarsat-1

SWB Radarsat-1 ScanSAR wide mode B, refers to an imaging mode of
Radarsat-1

SYT Second Year Ice, ice which has developed during two years

TGARS Transactions on Geoscience and Remote Sensing, an monthly IEEE
publication

VH Vertical-Horizontal, see HH

VOI Very open ice, concentration 10-30 %

VTT Technical Research Centre of Finland (Valtion Teknillinen Tutkimuskeskus
in Finnish)

VV Vertical-Vertical, see HH

WGS-84 World Geodetic System 1984, an earth-fixed global reference frame
including a set of earth-related parameters, e.g. shape of an earth ellipsoid
and the earth mass
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List of Symbols
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& estimate of «

«; scaling coefficient (with subindex i)

a4 absorption constant (of a media)
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0p penetration depth
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Ap Bragg scattering wavelength

A wavelength

Ar kth eigenvalue of a matrix, \; is the largest (1st) eigenvalue and so on
14 mean

p, pi relative edge densities (processed image value divided by the original
image value). Index values (k) refer to different types of edges.

pr reflection coeflicient in the interface of two media
>} sum operator

o standard deviation

o9 radar backscattering coefficient
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o? variance
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Chapter 1

Introduction

1.1 Overview

About 90 % of the Finnish export and 70 % of the import is transported by sea
[40]. Because of this and the fact that all the Finnish harbors are ice-surrounded
for several months during a usual ice winter, navigation in the Baltic Sea ice is
very important. Ice breakers and other ships need to be aided and remote sensing
data can be used for this purpose. Synthetic aperture radar (SAR) data plays
an important role in the winter navigation in the Baltic Sea. SAR data over
the sea can be acquired also during dark hours and through cloud cover, which
are obvious advantages compared to conventional optical and infrared frequency
passive instruments. Finnish Ice Service (FIS) is an operative part of Finnish
Institute of Marine Research (FIMR), and the role of FIS is to produce and deliver
sea ice information products to the end-users in the Baltic Sea.

Due to the limited bandwidths to the ships, data compression to transmit the
original SAR data is necessary. Because expertise is required to correctly interpret
SAR data, automated interpretation of the SAR data has been developed to make
the data more user-friendly for operational use in the Baltic Sea area. The term
compaction in this thesis’ context stands for compressing the data, without losing
any or losing only a little of the important sea ice information. In the extreme,
compaction means producing an interpreted data product, which is more user-
friendly and as a byproduct also the data size is reduced. This reduction is due to
ignoring the navigationally useless information. The aim is also that the end-user
will get the data in a compact and useful format. The main ideas of SAR data
compaction are presented for Radarsat-1 ScanSAR narrow and ScanSAR wide
mode data, which are the main operational SAR data types at FIMR. Radarsat-
1 is a Canadian space-borne SAR instrument [1] used by FIMR for operational
remote sensing of the Baltic Sea.

In this work, three SAR-based sea ice products, i.e. sea ice information combined to
its geological location, have been developed. First the existing sea ice classification
[108] has been further developed. Second a compression algorithm for compress-
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ing sea ice SAR data has been developed. Third a new sea ice product, SAR ice
thickness estimation, has been developed. The products (compressed original SAR
images, ice thickness charts, ice classifications) are typically delivered to end-users
as thematic maps, which can be viewed in their navigation and information sys-
tems on-board. The SAR compression algorithm was developed to address the
requirement of an efficient data compression to make it possible to deliver SAR
data in high resolution to end-users.

1.2 Goals and Contributions of the Work

Sea ice classifications based on Radarsat-1 SAR data have been delivered oper-
ationally since 1998 by the Finnish Ice Service. The algorithms were developed
and the system was implemented at FIMR [108]. However, the first version of
the operational system only produced ice type classification. In most cases the
classification could distinguish between navigationally easy areas (open water or
thin ice) and navigationally difficult areas (deformed ice, fast ice), but it still had
several drawbacks. The goal of this work has been to improve the operational sea
ice SAR products and develop new useful products for winter navigation purposes
in the Baltic Sea. The main objective has been to produce and deliver sea ice
information in compact and informative form to the end-users, and to produce
and deliver this information automatically with a minimum delay after a SAR
image has been received. Scientific contributions of this work can be summarized
as follows:

1. The operational sea ice SAR classification system, developed at FIMR by
the author with colleagues, has been updated using the methods developed
and tested in this work.

2. A new sea ice product, the SAR-refined ice thickness chart, has been devel-
oped.

3. For SAR image preprocessing an iterative incidence angle correction algo-
rithm has been developed. This is a necessary step before classifying typical
operational SAR scenes with a relatively large incidence angle range.

4. Compression of SAR data has been developed significantly from the earlier
and has been integrated in the user-program run on board the vessels, making
delivery of higher-resolution SAR data to the end-users possible.

5. Pulse-Coupled Neural Network (PCNN) based segmentation algorithm has
been developed as a part of the work and it gives reasonable segmentations
in applicable execution time for our data. Its performance for our Radarsat-1
data is comparable or better than some other segmentation methods typically
used.

6. Distinguishing open water and sea ice from each other has been developed
from the earlier pixel-wise method to a segment-wise classification. Accord-
ing to our tests this improves the classification performance.
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7. Higher-order statistical methods have been developed and tested for sea ice
SAR classification. The Independent Component Analysis (ICA) based tex-
ture classification gives extra information about the SAR texture compared
to the standard SAR texture statistics (mean, variance) approach or the
roughness statistics (relative number of edges in a segment). The geophysi-
cal interpretation and combining it to certain sea ice classes seems, however,
to be a difficult task and still requires further research.

8. The evaluation and validation of SAR-based sea ice products has been devel-
oped. Typically the classification results are only compared either to a very
few point-wise field measurements or visual interpretation of the SAR data.
We use digitized ice charts from FIS and electromagnetic induction based ice
thickness measurements to evaluate and validate our algorithms. Digitized
ice charts are drawn by FIS sea ice experts based on many data sources,
including field observation and multiple remote sensing data sets. This kind
of evaluation scheme covers large areas and makes statistical comparison of
the data sets feasible.

The techniques and methods developed and described in this work make it possi-
ble to produce and deliver better SAR-based sea ice products than earlier. One
significant improvement is also the higher spatial resolution. Our operational ice
typing algorithm has been updated based on these results, and the SAR-refined
ice thickness is also currently in operational use.

1.3 Organization of the Work

This thesis consists of an introductory part, giving a summary of the problem
and main results of the research work, together with a set of original publications
covering details. Some of the introductory part also extends the content of the
publications.

The introduction consist of different sections, whose common denominator is the
aim to develop and to deliver Near-Real-Time (NRT) sea ice information to end-
users in a user-friendly format. These SAR-based sea ice products are typically
thematic maps compatible with the end-users’ navigation and information systems.

First the basic properties of SAR and Baltic Sea ice are presented in Section
2. In section 3 an overview of the earlier related work is presented. Then the
preprocessing stages of SAR data are shortly presented in Section 4, including
rectification into a geographical projection, and correcting the radar measurement
(incidence) angle for sea ice. Also some speckle filtering techniques are presented.

Our wavelet-based sea ice SAR compression algorithm is presented in Section 5.
Use of this algorithm enables transmission of large SAR images to end-users on
ships with relatively narrow communication bandwidths.

In Section 6 a combined SAR image segmentation and classification method based
on Pulse Coupled Neural Networks (PCNNs) is presented. In Section 7 a selection
of texture based methods for the same purpose are presented. All the presented
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methods can be used to refine the sea ice classification based on the SAR backscat-
tering level only.

In Section 8 ice thickness history is combined with a novel SAR image, and sea
ice thickness estimates are generated based on this information. The digitized
ice charts (including thickness information) of the earlier days are used as the
history information, and the pixel intensity segment averages for a segmented SAR
image are used together with the history information to generate segment-wise ice
thickness estimates.

Validation of the sea ice SAR data products which contain parameters (such as
ice thickness) estimated from SAR data, are difficult to evaluate and validate.
These validation and evaluation questions are addressed in the end of the sections
describing the methods. Finally the work is summarized with some concluding
remarks in Section 9.

An overview of earlier related work on SAR image compression is presented at
the end of the Section 5. An overview of SAR classification, including ICA-based
classification, is presented at the end of Section 7. This selection was made because
the overviews utilize much terminology presented in these sections. On the other
hand it is very difficult to distinguish between intensity-based segmentation or
classification and texture-based classification, because they are typically used in
combination.

The parts extending the publications are the section describing speckle filtering
(Section 4.3.), the section dealing with PCNN and perfect segmentation (Section
6.4), the section comparing SAR segmentation methods (Section 6.5), the section
describing the fast ice detection (Section 6.7), the section describing the pixel-
wise ICA-based classification (Section 7.6) and the section describing ICA-Based
classification of known textures (Section 7.7).

1.4 List of Original Publications

1. J. Karvonen, M. Simila and M. Makynen, An Iterative Incidence Angle Nor-
malization Algorithm for Sea Ice SAR Images, Proc. IEEE International
Geoscience and Remote Sensing Symposium 2002 (IGARSS’02), vol. 111, pp.
1524-1528, 2002.

2. J. Karvonen, M. Similé, A wavelet transform coder supporting browsing and
transmission of sea ice SAR imagery, IEEE Transactions on Geoscience and
Remote Sensing, vol. 40, n. 11, pp. 24642485, 2002.

3. J. Karvonen, Baltic Sea Ice SAR Segmentation and Classification Using Mod-
ified Pulse Coupled Neural Networks, IEEFE Transactions on Geoscience and
Remote Sensing, vol. 42, n. 7, pp. 1566-1574, 2004.

4. J. Karvonen, M. Simild, M. Mikynen, Open Water Detection from Baltic Sea
Ice Radarsat-1 SAR Imagery, IEEE Geoscience and Remote Sensing Letters,
vol. 2, n. 3, pp. 275-279, 2005.
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5. J. Karvonen, Feature Detection from Preprocessed Sea Ice SAR Data Based
on Higher-Order Statistics, Proc. IEEE International Geoscience and Re-
mote Sensing Symposium 2003 (IGARSS’03), vol. VI, pp. 3450-3452, 2003.

6. J. Karvonen and M.Simild, Independent Component Analysis for Sea Ice
SAR Image Classification, Proc. IEEFE International Geoscience and Remote
Sensing Symposium (IGARSS’01), vol. II1, pp. 1255-1257, 2001.

7. J. Karvonen, M.Simila, ICA-Based Classification of Sea Ice SAR Images,
Proc. 23rd European Association of Remote Sensing Laboratories (EARSeL)
Annual Symposium, Gent, Belgium, pp. 211-217, 2003. Millpress 2004.

8. J. Karvonen, M. Simil4, I. Heiler, Ice Thickness Estimation Using SAR Data
and Ice Thickness History, Proc. IEEE International Geoscience and Remote
Sensing Symposium 2003 (IGARSS’03), vol. 1, pp. 74-76, 2003.

9. J. Karvonen, M. Simil4, J. Haapala, C. Haas, M. Makynen, Comparison of
SAR Data and Operational Sea Ice Products to EM Ice Thickness Measure-
ments in the Baltic Sea, Proc. IEEFE International Geoscience and Remote
Sensing Symposium (IGARSS’04), vol. V, pp. 3021-3024, 2004.

1.5 Author’s Contribution

In publication 1, correction, or normalization, of the radar incidence (or measuring)
angle, which varies in SAR images and in different parts of each SAR image is
studied. The SAR backscattering is dependent on this angle. An incidence angle
normalization algorithm is presented. The statistical work which forms the basis
of the publication 1, was done at Helsinki University of Technology Laboratory
of Space Technology (HUT/LST) by Mr. Marko Makynen [154]. The iterative
algorithm was mainly developed by the author, based on the statistical analysis
made at HUT/LST, and the algorithm was implemented by the author.

In publication 2, a wavelet-based sea ice SAR compression is presented and per-
formance evaluations and comparisons to other existing algorithms are performed.
The compression algorithm was mainly developed by the author. The statistical
analysis, aiding to define algorithm parameters, was mostly made by Mr. Markku
Simild, the writing of the publication was done in co-operation, and the algorithm
was implemented by the author.

In publication 3, sea ice SAR segmentation and classification based on a simpli-
fied pulse-coupled neural network are studied. Also some empirical results for
Radarsat-1 data over the Baltic Sea ice are presented. The idea to use pulse-
coupled neural networks in SAR segmentation and classification was by the author.
The author is the sole author of this publication.

Publication 4 is about distinguishing between open water and sea ice in SAR data
over the Baltic Sea. It was mainly written by the author and the implementation,
testing and comparisons were also made by the author. The idea to utilize signal
autocorrelation in distinguishing open water from sea ice was adopted from ref.
[210]. In references [209] and [210] the discrimination problem is formulated using a
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Gaussian mixture model for the backscattering intensity values and the contextual
information is based on the Markov Random Field formalism in which the strength
of the contextual information is based on the autocorrelation value.

Publication 5 is about locating edge-like and spot-like features in sea ice SAR
images using higher-order moments. These features can then be utilized in clas-
sification of ice areas. The method can also be utilized in detecting targets, e.g.
ships, in open water regions. The author is the sole author of this publication.

In publications 6 and 7, texture-based classification of sea ice SAR imagery, using
basis generated by ICA as texture primitives, is studied. The idea of applying
ICA to our SAR data was by the author, and most of the writing work of the
publications 6 and 7 was done by the author.

In publication 8, an algorithm for estimating sea ice thickness in the Baltic Sea
using ice thickness history data and novel SAR data is presented. The publication
8 was written in co-operation with two other authors. The ideas of the algorithm
were developed by the author and Mr. Markku Simild. The algorithm implemen-
tation and testing were made by the author.

In publication 9, SAR data and our sea ice products (i.e. geographically local-
ized sea ice information in form of thematic maps) are compared to ice thickness
measurements conducted in the Baltic Sea during the winter 2002/2003. The ice
thickness measurements were made with a helicopter-borne electromagnetic induc-
tion (HEM) based instrument. The publication 9 was written in co-operation with
four co-authors. The statistical analysis and comparisons were mainly made by
the author. The ice thickness measurements were made by the Alfred Wegener
Institute (AWI, Bremerhafen, Germany) using their HEM instrument, mostly by
Dr. Christian Haas.

Most of the data processing and all the operational implementations were pro-
grammed using standard ANSI C-language to maintain portability between dif-
ferent operating system platforms in use at FIMR and our co-operators (product
co-developers and end-users). All of these programs were written by the author,
likewise the Unix shell-scripts making automation of computation and data trans-
mission at the FIMR server possible. Also the web-pages, interactive web feedback
form and CGI scripts to collect user feedback about the sea ice SAR compression,
were implemented by the author.
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Chapter 2

Synthetic Aperture Radar and
Baltic Sea Ice SAR Data

2.1 Introduction

In this chapter basic concepts of synthetic aperture radar (SAR), some character-
istic properties of Baltic Sea ice, and the delivery of sea ice products derived from
SAR data to end-users are presented.

Finnish Institute of Marine Research (FIMR) and its operational part Finnish Ice
Service (FIS) provide sea ice information for navigational purposes in the area of
the Baltic Sea, especially in the Gulf of Bothnia and Gulf of Finland. During
winters a daily ice chart (see Fig. 2.1) is made at FIS. The ice charts are based
on several sources of information, e.g. NOAA (National Oceanic and Atmospheric
Administration) AVHRR (Advanced Very High Resolution Radiometer) images,
Radarsat-1 (a Canadian base-borne C-band SAR instrument) images and field
observations.

In addition to the daily ice charts FIS produces ice reports in text or oral formats,
and digital versions of the ice chart in several formats. FIS also provides some other
digital products which are delivered to customers. FIS is in close co-operation
with Finnish Maritime Administration (FMA) and with the ice breakers hosted
by FINSTASHIP, a shipping company owned by the state. The operational digital
products derived from SAR data are the automated sea ice SAR interpretation
and an ice thickness map which is based on SAR data and an earlier digital ice
chart. Also compressed Radarsat-1 and NOAA AVHRR images are available and
transmitted to ships. Additionally ice forecasts based on an ice dynamics model
and sea weather forecasts are provided by FIS. For more details about the services
and operation of FIS see references [77, 78, 191, 238, 239].

FIMR, together with the Swedish Meteorological and Hydrological Institute (SMHI),
buys each winter about 100 Radarsat-1 ScanSAR narrow mode and ScanSAR wide
mode images, with a range of about 300 x 300 km? and 500 x 500 km?, respectively,
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Figure 2.1: A part of an ice chart, covering the Bay of Bothnia, Feb 27th
2003. Ice charts over the Baltic Sea are produced daily during the ice
period every winter.

over the Baltic Sea. These images are used in making ice charts and producing an
automated sea ice classification. Because of the dark and cloudy winters, Radarsat-
1 images are a very important source of sea ice information in the area of the Baltic
Sea. The images are received from Radarsat-1 in Tromsg, Norway by Kongsberg
Satellite Services AS (KSAT). The images are then sent by File Transfer Protocol
(FTP) to FIS, where they are rectified and processed into the Mercator projection,
and a land mask is applied to them. The rectified and land-masked images are
again sent to FIMR by FTP. At FIMR an automated classification and a SAR-
refined ice thickness chart are produced immediately after receiving a SAR image.
The produced thematic maps are sent back to FIS in a custom format, readable by
the on-board client software. From FIS the resulting thematic maps can then be
sent to the end-users. Also the rectified Radarsat-1 images can be sent to end-users
for their visual interpretation.
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azimuth (flight) direction

earth surface contour

Figure 2.2: Simplified SAR measuring geometry. The azimuth and
ground range directions are perpendicular to each other at nadir and
the incidence angle varies between ; and 79, h is the satellite track
height from the earth surface. The instrument makes measurements in
slant range which is then usually converted to the ground range, from
which it can then be further processed to a desired projection (Mercator
projection in our case). The nadir track is the projection of the flight
track (in azimuth direction) on the earth surface.

2.2 Synthetic Aperture Radar

Radar instruments are active instruments i.e. transmitting electromagnetic ra-
diation of a certain frequency (frequency band), and then measuring the signal
backscattered from targets, in our case Baltic Sea ice. Radars typically transmit
pulses of radiation with a constant repetition time interval. The inverse of this
time is known as the pulse repetition frequency (PRF).

Synthetic aperture radar (SAR) is a radar instrument moving over the object
area to be measured. Synthetic aperture comes from the fact that the measuring
resolution in the azimuth direction (i.e flight direction, see Fig. 2.2) is improved by
utilizing the Doppler effect, and producing a larger “synthetic aperture” compared
to the real aperture. The utilization of the Doppler effect is based on the fact that
the instrument has slightly different velocity with respect to the different parts of
the object area because the distance from the instrument to the different parts
of the object area differ. These Doppler shifts can then be used to localize the
backscattering more precisely within the antenna footprint in azimuth direction.
More detailed descriptions of SAR operation and signal processing can be found
e.g. in [132] and [5].

SAR resolution in the ground range direction (see Fig. 2.2) is dependent on the
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PRF and the pulse length. Short pulses with a high PRF produce high ground
range resolution, but short pulses require high transmission power. In SAR the
ground range resolution is improved by using a technique called range pulse com-
pression. In this technique, instead of a single-frequency pulse, a so-called “chirp”
is transmitted. A chirp is a short-time pulse in which the frequency varies from
higher to lower frequency and then back to higher frequency again (e.g. linear
frequency modulation). Matched filtering of the received signal with the complex-
conjugated, time-reverted function of the SAR system response of a point target,
i.e. the range reference function is applied to compress the pulse. Pulse compres-
sion technique is used to resolve targets which have overlapping radar returns.
This is possible because of the frequency modulated (“chirp”) signal. In practice
the image reconstruction is divided into range and azimuth compression (the fre-
quency in azimuth direction is varied because of the Doppler effect) which perform
compression of signals spread over a larger area (over multiple desired resolution
points) in both the range and azimuth directions into a point signal. The compres-
sion is usually carried out by adopting Fourier transform to calculate convolution
of received signals and a reference function. The reference function of range com-
pression is the complex conjugate of the transmitted signal, while the reference of
azimuth compression is a complex conjugate of the chirp modulated signal. There-
fore the process in the azimuth direction is similar to that in the range direction
because the Doppler-shift of different locations along the azimuth direction causes
similar kind of frequency altering. The azimuth reference function, however, differs
depending on the range.

Radar cross section (RCS, denoted by o) is a property of a single target, describ-
ing how well the target reflects the radar energy. RCS is the energy received by
the sensor relative to the energy received in the case of an isotropic (i.e. scattering
equal to all directions) scatterer. The backscattering coefficient, 0¥, is the average
scattering cross section per unit area

g,
Ai]
where o; and A; describe the RCS and area of a single scatterer inside the resolution
cell (image pixel), and E is the expectation operator. Backscattering coefficient is a
normalized version of the radar cross section, describing the backscatter properties
of a pixel area, probably containing several different backscatterers.

o’ = E[ (2.1)

The backscattering coefficient is usually expressed in logarithmic scale and in deci-
bels (dB)

0% = 101log,, o°. (2.2)
For the isotropic case 0%45 = 0 dB. If the scattering is focused toward the receiving
antenna then ¢°,; > 0 dB, and if the scattering is focused away from the receiving
antenna then ¢, < 0 dB. Typically a very high backscattering, e.g. from urban
areas or very rough surfaces is higher than —5dB, and high backscatter from rough
surfaces (e.g. dense vegetation) is between —10dB and 0dB. Smooth surfaces (e.g.
calm water or level ice) produce low backscatter, typically below —20dB.

The relation between the transmitted and received power is defined by the radar
equation [232]
P,G A*N\?
P =——— 2.3
TTSEr T (2:3)
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Table 2.1: Typical microwave frequency bands.

’ Band ‘ A (mm) ‘ f (GHz) ‘

Ka &-11 40-26.5
K 11-17 26.5-18
Ku 17-24 18-12.5
X 24-38 12.5-8
C 38-75 84

S 75-150 4-2

L 150-300 | 2-1

P 300-1000 | 1-0.3

where o is the RCS, P, is the received power, P; is the transmitted power, G 4 is
the antenna power gain, A is the wavelength and R is the distance to the object.

The backscattering of a SAR resolution cell typically consists of multiple scatterers.
If there are N scatterers in a resolution cell, the received amplitude Ag,r and phase
6 can be expressed as a sum of the N scatterers [170]

N
A€ =3 Age'®, (2.4)
k=1

where Ay are the amplitudes and 6 the phases of the scatterers.

Both the real and imaginary parts of the backscattering are normal-distributed
with zero mean and variance of or/2, while the phase 6 is evenly distributed
between 7 and —m. The amplitude is Rayleigh distributed and intensity (power)
Isan = A2, has negative exponential distribution. From these a product model
for the measured intensity can be derived [170]:

I\ = orN, (2.5)

where n is a noise term, also known as speckle. The received and averaged inten-
sity is K-distributed [170]. K-distribution is derived from the gamma distribution.
Because the phase is, according to the model, evenly distributed noise, its infor-
mation content is usually considered insignificant, and only amplitude or intensity
are used in most SAR products. However, phase information has significance e.g.
in SAR interferometry applications.

The common microwave frequency bands used e.g. in radar applications are shown
in Table 2.1. Typically the SAR~instruments used for sea ice monitoring are C-
band instruments (Radarsat-1, Envisat ASAR), and the wavelength is around 5
cm. The history of space-borne SAR-instruments is listed in Table 2.2. The SIR-
C/X-SAR and SRTM mission were on the space shuttle and only operated for the
durations of the shuttle flights. In addition to the space-borne instruments SAR-
campaigns with air-borne instruments have been performed typically for preparing
a space-borne mission.
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Table 2.2: Space-borne SAR missions, history and near future.

Mission ‘ Country ‘ Band ‘ Time
SEASAT USA L 1978
ERS-1 Europe (ESA) | C 1991-2000
J-ERS-1 Japan L 1992-1998
SIR-C/X-SAR USA L,C, X | 1994
Radarsat-1 Canada C 1995—
ERS-2 Europe (ESA) | C 1995-
SRTM USA C, X 2000
ENVISAT ASAR | Europe (ESA) | C 2002-
ALOS PALSAR | Japan L 2005—
TerraSAR-X Germany X 2006
SAR-Lupe Germany X 2006
CosmoSkymed Italy X 2006
Radarsat-2 Canada C 2007

The current satellite-borne SAR instruments for operational sea ice monitoring
covering reasonably wide areas of the Baltic Sea are the above mentioned C-band
instruments. The widest area in range can be achieved using the ScanSAR mode
of the instruments. In this mode the antenna beam is steered such that a larger
swath (extend in range direction) can be covered, in a lower resolution. Radarsat-
1, which is our main operational data source, has two ScanSAR modes, ScanSAR
narrow mode and ScanSAR wide mode. ScanSAR narrow mode has a swath width
of about 300 km, and ScanSAR wide mode about 500 km. ScanSAR narrow mode
has the resolution of 50 m/pixel and ScanSAR wide mode 100 m/pixel. However,
FIMR has used both in the resolution of 100 m.

Typically several SAR intensity values over the same area are averaged to reduce
speckle. Because the speckle components of these samples are independent, the
speckle variance is reduced in the averaging. The number of looks is the number
of measurements over the same pixel area averaged in the SAR processing. SAR
with only one measurement over one pixel is a single look SAR. The number of
independent single look (complex) components over a pixel can also be non-integer
if the measuring areas overlap only partially. In the SAR processing some adja-
cent measurements are often averaged to further reduce the speckle, in the cost of
resolution, increasing the number of looks in such products. The statistics of the
speckle are usually described in terms of the effective (or equivalent) number of
looks (ENL). This is intended to represent the speckle component of the observed
intensity. Normally, of course, the intensity combines both speckle and RCS fluc-
tuations. However, if the underlying RCS is uniform then ENL can be defined
as

2

ENL = £
0-2

(2.6)
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where p and o2 are the local mean and variance, respectively. In general estimating
the looks measure yields values which are smaller than the true ENL because
additional RCS fluctuations are included. Only if the RCS is constant, or if the
observed intensity is divided by the true underlying RCS, would the looks measure
correspond to the ENL.

We are receiving Radarsat-1 SAR data from KSAT in Tromsg, Norway, and they
have built a SAR processor, i.e. a system converting the raw SAR data received
from the satellite into SAR images, of their own. For this data the backscattering

coefficient can be computed as
2
B"
0 l .
o =|——] sinvy, 2.7
( e > g (2.7)

where P is the 8-bit image pixel value we receive, logarithmic scale B; = 1.024, gain
factor G = 0.16, and ~ is the local incidence angle (communication with KSAT)
between ~; and ~s in Fig. 2.2.

According to our research [publications 3 and 5] the data distributions in uniform
areas of such logarithmic images are very close to Gaussian distributions. This
gives some advantages in data processing compared to more complex distribution
families in modeling the data.

2.3 Backscattering

Backscattering of electromagnetic radiation from a medium is defined by the geom-
etry of the medium and by the electrical features of the medium. Assuming that we
have two uniform media and a boundary surface between them, the backscattering
is then described by the geometry of the boundary surface and by the electrical
properties of the two media. The boundary surface geometry is typically described
by two parameters, slope and roughness. The electrical features are described by
the dielectric constant, €., for each medium:

€. =€ —ie”, (2.8)

where the real part ¢ is the permittivity and the imaginary part ¢” is the dielectric
loss of the medium. Permittivity describes how easily energy passes across the
dielectric interface, and the loss term describes how much energy is absorbed in
the volume while passing through the dielectric interface. A large difference in
permittivity between two media causes larger scattering at the media surface,
and when the difference is small scattering from the volume is dominating. The
permittivity is very high for conductors, like metals, for dry natural materials
it is typically in the range 3-8. For water permittivity is around 80, and thus
dampness increases the permittivity of natural materials. Usually a value relative
to the permittivity of the vacuum is used

€c

(2.9)

€ =
€0
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Penetration depth d, is defined as

1

= 2.10
e (2:10)

p

where a4 is the absorption coefficient of the media. Absorption coefficient is de-
pendent of the dielectric constant, for details see e.g. [231]. The penetration depth
indicates the maximum depth of the medium that contributes to the backscattering

coefficient. The loss tangent
1

tans, = — (2.11)
€

is directly related to the attenuation of the radar signal (i.e. penetration depth)
in the medium. First-year sea ice is a mixture of pure ice, air baubles and brine
and its dielectric properties can vary significantly. A review of the dielectric and
extinction properties of sea ice and snow can be found in [83].

Backscattering is typically divided into surface backscattering, i.e. backscattering
from the boundary surface, and volume backscattering, i.e. backscattering from the
media (in our case sea ice) volume. Backscattering from the Baltic Sea ice depends
on ice and snow surface small-scale roughness, large-scale ice deformation, snow
wetness, density and thickness, ice density, temperature, salinity and size and
distribution of air bubbles in the ice. The main scattering mechanisms measured
by the SAR instruments in the case of Baltic Sea ice are shown in Fig. 2.3. The
measured scattering is also contributed by multiple scattering (e.g. the scattering
from the ice/water interface can scatter further from the ice volume or water /snow
interface). Radar scattering occurs when there is an abrupt change in the value
of €, within the distance of a wavelength, which indicates that the backscattering
is dependent on the wavelength. The reflection coefficient p, is related to the
dielectric constant as
Ve -1

T
The scattering thus comes from the air/ice interfaces, ice/water interfaces, (if the

losses are low enough to permit penetration), snow/ice interfaces and inhomo-
geneities in snow and ice.

(2.12)

In scattering modeling, surface scattering of a homogeneous surface is modeled by
terms of deviation of the relative means square (RMS) height and correlation length
Lc. L. is defined as the distance [ where the autocorrelation C(l) = 1 ~ 0.37.
For small surface roughness the small perturbation model (SPM) [232] can be
applied. In this case the roughness is noticeably less than the wavelength and the
slope is less than one. The backscattering is proportional to that height profile
component which is in resonance with the transmitted wave. The corresponding
surface roughness wavelength Ap is

A
~ 2siny’

Ag (2.13)

This mechanism is called the Bragg scattering [232]. Scattering from surfaces
with a larger roughness comes from the surfaces perpendicular to the SAR signal.
These surfaces reflect the radiation back towards the instrument. For larger surface
roughness the integral equation model (IEM) [67] is typically used. IEM is based
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Figure 2.3: Basic scattering mechanisms contributing the measured
backscattering of the Baltic Sea ice. From left to right: Scattering from
snow surface (snow /air boundary), scattering from the snow/ice surface,
scattering from the snow volume, scattering from the ice volume, and
scattering from the ice/water surface.

on approximative iteration of surface integral equations with the physical optics
theory model (POT) [232] as its starting point. Also more elaborated scattering
models based on multi-resolution surface roughness have been developed, e.g. [162,
163]. Deformed ice has high surface roughness and IEM is not suitable for modeling
deformed ice. Deformed ice is typically modeled by scattering blocks of different
shape and orientation distributions [26, 161].

Volume scattering comes from inside the ice, and typical volume scattering models
assume the volume to contain air bubbles and brine pockets. Statistical distribu-
tions for the brine pockets and air bubbles are also required [29]. However, surface
scattering is the dominant scattering mechanism for the Baltic Sea ice at C—band
and volume scattering has only minor importance [26].
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Figure 2.4: Rafted ice (upper) is formed when two ice layers are rafted
over each other, rubble fields (middle) and ridges (stripe-shaped, lower)
are more deformed ice types.

2.4 Baltic Sea Ice

Based on ice surface structure sea ice can be divided into level ice, which is formed
by thermal growth, and deformed ice which is caused by ice dynamics, i.e. motion.
The motion can be diverging, compacting or shearing, where rotational forces are
present. Divergent motion causes leads or fractures in the ice, and thinner level
ice is formed in these leads. Thicker level ice is originated from the initial freezing.
Convergent motion in the sea ice causes deformations: rafted ice, rubble fields,
ridges and hummocks. A schematic cross-sectional view of rafted ice, rubble field
and ice ridge is shown in Fig. 2.4. It should be noted that the ridge keel (the
underwater part of the ridge) height is significantly larger than the height of the
ridge sail (the part above water). According to [106] the keel height h,.., is related
to the sail height, h,,; as

By = 6.35h00 — 0.02 m. (2.14)

Sea ice can be divided into different types in multiple ways, e.g. by concentration,
stage of development, form, or the ice thickness [168, 240]. The Baltic Sea ice is all
first-year ice, i.e. all the Baltic Sea ice melts every year. In the polar areas there
are also second-year and multi-year ice (this is a classification based on stage of
development). The research at FIMR is mainly concentrated on the classification
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of the forms of the Baltic Sea ice distinguishable in the SAR images. Here are
some divisions of first-year sea ice into different ice classes, according to [240]:

1. Stage of development

New ice, recently formed ice, composed of ice crystals only weakly frozen
together.

Shuga, an accumulation of spongy white ice lumps, whose size is a few
centimeters across.

Nilas Ice, a general term for recently formed ice which is usually less
than 10 cm thick. Nilas ice is a thin elastic crust of ice, easily bending on
waves and swell and under pressure, thrusting in pattern of interlocking
“fingers” (finger rafting). It has a matt surface.

Ice rind, a brittle shining crust of ice formed on a quiet surface by direct
freezing or from new ice, usually in water of low salinity, thickness up
to about 5 cm.

Pancake ice, predominantly circular pieces of ice from 30 cm to 3 m in
diameter, thickness up to about 10 cm.

2. Concentration

The concentrations here are given in tenths which is typical in ice charting.

Compact ice, concentration 10/10, no open water visible,
Consolidated ice, concentration 10/10, floats frozen together.
Very close ice, concentration 9/10 but less than 10/10.
Close ice, concentration 7/10-8/10.

Open ice, concentration 4/10 — 6/10.

Very open ice, concentration 1/10-3/10.

Open water, concentration < 1/10, freely navigable water.

Ice-free, no ice at all present.

3. Forms of fast ice

Fast ice is ice which remains fast along the coast. It is attached to the shore
or between shoals.

Grounded ice, ice which is aground in shoal water.
Stranded ice, ice which has been deposited on shore during high water.

Grounded hummock, hummocked grounded ice formation.

4. Forms of floating ice

Ice floe, any relatively flat piece of sea ice, 20 cm or more across.
Ice cake, a relatively flat piece of sea ice, less than 20 cm across.

Floeberg, a massive piece of sea ice composed of a hummock or group
of hummocks frozen together and separated from any ice surroundings.
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o Floebit, a relatively small piece of ice, normally not more than 10 m
across, composed of hummocks or part of ridges frozen together and
separated from any ice surroundings.

e Brash ice, accumulations of floating ice, made up of fragments not more
than 2 m across. The pieces are wreckage of other forms of ice.

5. Deformation processes

Fracturing.
Rafting.
Ridging.

o Hummocking.

6. Openings in sea ice

Fracture, a general term.

e Crack, all fractures which have not parted.

Fracture zone, area which has many fractures.

Lead, a fracture or passage way through sea ice navigable by surface
vessels.

7. Ice surface features (large scale)

Level ice.

Deformed ice.
o Snow-covered ice.

e Bare ice, no snow cover.

Additionally classification can be made by the stage of melting, during the melt-
ing period. Melting period is, however, difficult for SAR-based sea ice monitoring
because of wet snow or water on the ice surface. Yet another division is division
by the shape or arrangement of the ice fields (large, medium and small ice fields
depending on their size, ice belts and ice strips). The term ice edge refers to inter-
faces between ice and open area, and ice boundary to interfaces between different
ice areas.

Navigationally the most important sea ice parameters are ice thickness, ice con-
centration i.e. the relative amount of ice per unit area, locations and sizes (distri-
butions) of the deformations like ice ridges and rubble fields, and locations of the
leads.

Because many of the classes presented above are much smaller than SAR resolu-
tion (in our case 100 m), many of the single features can not be distinguished or
classified based on SAR data. However, even a single such feature can contribute
to backscattering, and multiple features more probably have their contributions
on the backscattering. Because of these facts a coarser classification of sea ice
types is required in studies with Radarsat-1 SAR data. A division of the Baltic
Sea ice types into classes is based on the classification operationally used for the
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Finnish ice charts, and also on the Baltic Sea ice code in [203]. We have used this
classification in evaluation of some of our SAR classification schemes. The ice type
classes used are:

1. Nilas ice (NI).

2. Smooth level ice (SLI) is almost unaffected by deformation, only cracking or
finger rafting may occur.

3. Rough level ice (RLI) has protruding ice blocks and floe edges and low uneven
surface areas and it has typically broken and frozen several times.

4. Slightly deformed ice (SDI) consists of ice ridges, uneven surfaces and level
ice areas, the sizes of which are usually larger than the pixel size in SAR
images.

5. Highly deformed ice (HDI) is such that the average size of level ice areas
is usually smaller than the SAR pixel size and the proportion of level ice
areas is smaller than in SDI, i.e. the degree of deformation is higher. Visual
discrimination of SDI from HDI (e.g. from video imagery) is often difficult
and subjective.

6. Brash ice consists of accumulations of ice fragments not more than 2 m
across. They are wreckage of other forms of ice. Their surface is very rough
in scales of about 10-30 cm. Brash ice is further divided into loose brash ice
(LBI) and frozen brash ice (FBI).

In this classification most of ridged ice, hummocked ice and rubble fields are all
included in the HDI class, and rafted ice is in the SDI class.

Also the inner structure of the sea ice varies depending on the amount of air bubbles
and brine pockets in the ice. This inner structure affects the volume scattering.
The ice salinity is defined by the brine volume which affects to the electrical and
also the structural properties, e.g. ice strength. Baltic Sea ice is brackish water
whose salinity varies depending on the location, typical salinities are 0.2-2 %eo.
Experiments show that if the salinity is over 0.5 %o and RMS height is over 1.5
mm, surface backscattering is fully dominant at C-band. In practice only when
the salinity is less than 0.2 %o the volume scattering plays a role in the Baltic Sea
ice scattering process [26]. According to [26] for the Baltic Sea ice

€ =3.05+ 7.2u,,, (2.15)

¢ = 0.001 + 3.3v,,, (2.16)

where 0.001 is €¢” for saltless water and wv,, is the brine volume fraction, i.e. v,, €
(0,1).

Two typical smoothed ice thickness distributions, measured by the HEM instru-
ment in March 2004, in the Baltic Sea are shown in Fig. 2.5, these distribution
correspond to two different Radarsat-1 backscattering levels (-20 dB and -10 dB).
Actually there is also a peak at zero thickness (open water), i.e. the ice concentra-
tion is typically less than 100 %, but it has been removed from the distributions.
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Figure 2.5: Two smoothed ice thickness distributions at different
backscattering levels, based on Radarsat-1 and HEM ice thickness data.

It can be seen that typically the distribution has a heavier tail and lower peak
as the backscattering level increases. This can also be seen in Fig. 2.6 where the
distributions are interpolated for a range of ice thickness and backscattering values
based on the Radarsat-1 data and HEM ice thickness measurements.

Also the effects of the snow cover to the backscattering must be taken into account
because Baltic Sea ice is typically snow covered. At C-band dry snow cover is in
practice meaningless, it only slightly changes the incidence angle because of refrac-
tion at the air-snow boundary. Wet snow instead is problematic because dampness
attenuates the backscattering, and very wet snow is even the dominant backscat-
terer, masking off most of the sea ice information. Actually the penetration depth
in snow decreases rapidly as a function of snow wetness for wetness values below
1 % and the decerase is lower for higher wetness [82].
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Figure 2.6: Contour plot of estimated ice thickness distributions as a
function of the Radarsat-1 backscattering coefficient ¢°. The distribu-
tions shown in Fig. 2.5 are cross sections of this distribution at -20 dB
and -10 dB.

2.5 Backscattering Models and Scatterometer Mea-
surements over the Baltic Sea

Modeling of the surface backscattering plays an important role for the Baltic Sea ice
because surface scattering is the dominant scattering mechanism for the Baltic Sea
ice. For open water the volume scattering is always practically nonexistent. The
surface backscattering from a homogeneous surface is typically modeled with RMS
height and correlation length. RMS height is the standard deviation of a Gaussian
distribution when the surface height profile is described as a zero-mean stationary
process and correlation length is the distance where the autocorrelation is e ! =
0.37. Models typically used for surface scattering are SPM (small perturbation
model) [232], POT (physical optics theory) [232] IEM (integral equation model)
[67]. The multi-scale surface roughness models [162, 163, 164, 165, 50, 66] are
based on the assumption that the RMS height and correlation length are dependent
on the measurement length. Natural surfaces are often close to the behavior of
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Brownian surfaces, i.e. the correlation length L. is linearly dependent on the
measurement length x, L. = kox + b, where kg is a constant, and the logarithm of
the RMS height is linearly dependent on the logarithm of =, o = cz®. From these
conditions, using commonly used surface correlation functions (e.g. Gaussian,
exponential, isotropic exponential, transformed exponential), the backscattering
coefficient can be derived using the IEM. These models are, however, valid only
for level ice.

Deformed sea ice (ice ridges) has been modeled using randomly oriented circular
scatterer blocks [26], or using 3-D cylindrical scatterer blocks [29] and dihedrals
[161]. Typically applicable wavelengths for these block models are significantly
less than the dimension of the scatterer blocks. The volume scattering is usually
modeled using radiation transfer theory, i.e. transportation of energy through a
medium containing particles, and iterative and numerical methods. Wave theory
based on Maxwell’s equations is too complicated. Typically for co-polarized SAR
only single scattering is considered, and multiple scattering is more significant for
the cross-polarized case. Volume scattering modeling is important in the arctic
areas where multi-year ice exist. Also some inversion models have been developed
for the sea ice. A simple inversion model for the Baltic Sea ice was presented in
[25]. An overview of inversion techniques for sea ice backscattering can be found
in [73].

We have been able to make only some relative comparisons to scattering models
and scatterometer results because we do not have absolutely calibrated Radarsat-
1 data. However, it is possible to get useful information about the order of the
backscattering signatures from these models. The scatterometer results for the
Baltic Sea ice we have used have been measured by the HUTSCAT (Helsinki Uni-
versity of Technology Scatterometer) [84] which is a helicopter-borne non-imaging
scatterometer having two bands (C at 5.4 GHz and X at 9.8 GHz) and all four
polarization combinations. The instrument has been developed at HUT Labora-
tory of Space Technology (LST). The incidence angle can be adjusted between 0
and 45 degrees. We have utilized the C-band HH-polarized measurements of the
instrument [152, 153, 155]. The instrument is equipped with a video camera which
records the flight line. This video data is then used for visual ice type classification
and based on this information e.g. backscattering distributions for sea ice classes
can be computed. Scatterometer measurement based Baltic Sea ice class distri-
butions for C-band HH-polarization and for incidence angles of 23 and 45 degrees
are shown in Fig. 2.7.

We have made some relative comparisons to the Baltic Sea ice model results [26,
163] and the scatterometer results of HUT LST [153, 155]. These comparisons
have been useful in defining the ice classes of our algorithms, but no absolute
comparison is possible until we have absolutely calibrated data.

2.6 SAR Interferometry

In SAR interferometry the same target area is measured from two slightly dif-
ferent orbits. Based on the phase difference of these two SAR measurements an
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Figure 2.7: Estimated probability density functions of Baltic Sea ice
classes based on visual classification and HUTSCAT scatterometer C-
band (5.4GHz) HH-polarization measurements [153] for two incidence
angles (23 degrees upper, 45 degrees lower) and dry snow conditions.
The classes of higher deformation, i.e. deformed ice classes (see Section
2.4, the sea ice classes shown in the figure legends are roughly ordered
by increasing deformation from top to bottom), have higher backscatter-
ing value, and the backscattering for these classes at different incidence

angles differs significantly.
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interference image can be computed, and from the interference data a digital eleva-
tion model (DEM) of the object area can be formed. This requires very accurate
locating of the instrument and the image pixels. Interferometry can be either
single-pass, i.e. the instrument has two separate receiving antennas separated by
some distance called baseline, or repeat-pass, where the same instrument mea-
sures over the same area from different orbits. For repeat-pass interferometry the
baseline can be relatively large, making more accurate DEMs possible. SAR In-
terferometry for the Baltic Sea ice has also been studied in [41] where repeat-pass
interferometry using ERS data was applied. A problem with the Baltic Sea ice is
that it is difficult to distinguish between the sea ice surface topography and sea
ice movement from the interferograms.

2.7 SAR Polarimetry

In SAR instruments the transmitted radiation is plane polarized, either horizon-
tally or vertically. Also the receiving antennas receive either horizontally or ver-
tically polarized radiation. In a fully polarimetric SAR the instrument is capable
to transmit and receive both horizontally and vertically polarized radiation. This
SAR measurement, containing the amplitude and phase information for HH, HV,
VH, and VV combinations of transmitted/received polarization, contains all the
necessary polarimetric information, which makes it possible to interpret the scat-
tering mechanisms better.

The current operating instruments, however, only have one polarization combina-
tion in their wide swath mode, producing a reasonably large coverage for oper-
ational sea ice monitoring. For Radarsat-1, which is our main operational SAR
data source, the HH-combination is available. Also the Envisat ASAR instrument
of the European Space Agency (ESA) has the same polarization combination in
its wide swath mode.

2.8 Sea Ice Data and Delivery to End-Users

Fast delivery of satellite images to ice breakers has been studied and tested by
FIMR and VTT since 1985. The test transmissions to ships were based on the
mobile phone network (NMT-450, NMT-900) [150]. Also satellite-based commu-
nication, using the INMARSAT system was studied. The workstations in use on
the ships were developed from the first transmission tests made in 1986 [126] for
the tests made in 1989. The images used in the tests were NOAA/AVHRR data.
The current data transmission system has been further developed from the system
tested then. In the present system the GSM mobile phone network or satellite con-
nection can be used, and there also exist other optional data compression schemes,
in addition to the ALP compression already present in the 1989 tests, including
JPEG and the wavelet compression scheme developed as part of this work.

After an overflight of Radarsat-1 in a suitable track, the Radarsat-1 data is first
received and SAR processing is done by KSAT in Tromsg, Norway. The processed
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Figure 2.8: The Radarsat-1 data based Baltic Sea ice product chain from
Radarsat-1 to end-users. The final products are transmitted to ships by
SEFT. Air links are blue and earth links green in the figure.

SAR data is then received using FTP at FIS where the data is rectified into a map
projection and a land area mask is applied. Then the rectified and land-masked
data are sent to FIMR by FTP, where the data are classified produced into data
products, which are then sent back to FIS by FTP, and from there to the end-
users by a technique called smart file transfer (SFT) developed by the Finnish
Research Centre (VIT). SFT is a mobile-based reliable file transfer technology
[130]. The whole operational data transmission chain is illustrated in Fig. 2.8.
The transmissions between FIMR and FIS are also shown because FIMR and FIS
are situated physically apart from each other.

This work mainly describes the part of this operational chain run at FIMR. There
are two operational products which are produced automatically at FIMR, the SAR
information refined ice thickness chart and the SAR-based sea ice classification.
The SAR-refined ice chart uses the latest available digitized ice thickness chart,
received from FIS daily, as a starting point and the recently received SAR data
to adjust the thickness area boundaries and local thickness values. This process is
schematically described if Fig. 2.9. The classification consists of multiple stages, in-
cluding segmentation and classification based on the backscattering strength (SAR
pixel intensity), texture based classification, open water and fast ice detection. As
a result a thematic map describing the ice types is produced. The classification
scheme is shown in Fig. 2.10. All the separate stages of the classification algorithm
are designed to be independent modules which can easily be replaced by new ver-
sions. The modules exchange information by ASCII text files and PNM (Netpbm
super image format) binary graphics files.

These sea ice products are produced automatically on a Linux server at FIMR
and also delivered automatically back to FIS from where they are further sent
to end-users. The automation at FIMR has been implemented as a Unix script,
which polls the incoming FTP directory to check whether new SAR images have
been received from FIS by FTP. If new SAR images have been received the scripts
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producing and sending the end products to FIS are called.
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2.9 Evaluation and Validation of SAR-Based Sea
Ice Products

Because the Baltic Sea ice is moving and deforming continuously, evaluation and
validation based on in-situ measurements is very difficult. The traditional sea ice
measuring techniques include measuring ridge heights by hand and ice thickness
by drilling. Evaluation and validation of our SAR-based methods would require
a large number of such in-situ measurements simultaneously with the SAR data
acquisition, which is practically impossible.

The main data sets for evaluation have been the digitized ice thickness charts and
ice type charts, and since the winter 2003 we have also had some ice thickness mea-
surements based on helicopter-borne electromagnetic induction sensor (HEM) mea-
surements. Unfortunately these measurements have been concentrated on short
periods related to some field experiments, and we only have a few simultaneous
Radarsat-1 scenes. However, in the future more HEM data over the Baltic Sea ice
will be collected, hopefully also enabling comparisons to our operational data. No
funding for separately collecting HEM data for evaluation and validation of the
operational Radarsat-1 based algorithms will be available in the near future. A
cheaper alternative compared to helicopter flights would be to mount an electro-
magnetic induction sensor on some ship operating in the Baltic Sea ice, e.g. an ice
breaker.

One alternative way is to compare visual interpretation of the SAR data to the
automatic SAR classification. Additionally we have used some data measured
by a scatterometer operating at the same frequency band as the space-borne in-
struments. The scatterometer measurements have been compared to visual ice
type interpretation from simultaneous video recording [152, 153, 155]. Also some
scattering models have been studied and comparisons with sea ice backscattering
measurements have been performed [156].

Because making enough simultaneous in-situ measurements with the SAR image
acquisition using traditional measuring techniques for validation purposes is prac-
tically impossible, advanced automated measuring techniques would be required
for validating the SAR-based sea ice algorithms.

Alfred Wegener Institute (AWI) has performed HEM measurements in Gulf of
Bothnia and Gulf of Finland in 2003 and 2004. The HEM instrument measures
the distance to the water below sea ice based on low-frequency electromagnetic
induction from the sea water. Sea ice is typically resistive and water is conduc-
tive and electromagnetic induction from the water occurs. The ratio between the
measured HEM field (also know as secondary field) and the transmitted (primary)
HEM field, depends on the distance between the EM system and the conductive
media, and on the electrical conductivity of the media. Main part of the secondary
magnetic field comes from the sea water, and the instrument’s distance to the sea
water can be derived from the measured secondary field strength. Then the ice
(plus snow) thickness is the distance to the sea water, measured by the HEM in-
strument, subtracted by the distance to the surface measured by a laser altimeter
included in the instrument. The HEM measurement principle is shown in Fig.
2.11. The HEM instrument and the field measurements made in the Baltic Sea
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Figure 2.11: The HEM measurement principle.

are described in more detail in references [79, 80, 81].

It has been assessed that for level ice the accuracy of HEM measurements is about
10 cm [79] whereas for ridged ice the accuracy is weaker due to water appearing
between ice blocks. However, the occurrence of an ice ridge can almost always be
detected.
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Comparison with Earlier
Related Works

The compression and classification of SAR data have been widely studied. In
many cases the compression of SAR data is, however, performed using methods
developed for optical image compression, without taking into account the special
nature of SAR data. SAR-based classification and target detection has also been
studied a lot. Classification of land areas, e.g. fields and forests, has been studied
more widely than classification of sea ice. The ground truth in the land areas is
typically more easily available and more stable compared to the dynamic sea ice.
The development of sea ice measuring methods has made possible to study the
relations between sea ice measurements and SAR signatures and to develop more
accurate sea ice algorithms. This section describes the earlier work done in the
fields of sea ice SAR compression and classification, especially in the area of the
Baltic Sea.

3.1 SAR Compression

The wavelet transform has been applied with great success to numerous image
compression problems, see [160]. However, only relatively few articles utilizing
transform coding for SAR compression exist. Operational Radarsat-1 data has
been compressed using Adaptive Laplacian Pyramid (ALP) compression [151],
originally presented by Burt and Adelson [19]. Some recent contributions are
[10, 18, 244, 250]. In [244] three different orthogonal wavelet filters were tested in
SAR compression, and in [18] wavelet packet type decomposition was used for SAR
compression. Baxter [10] used the Gabor transform and utilized in his work results
related to the human visual system (HVS) processing. The publication by Zeng and
Cumming [250] was published during revision of this work [publication 2|. Their
approach relies on the tree-structured wavelet transform, which is closely related
to wavelet packet decomposition. Some ideas similar to our approach are presented
in [250], e.g., division into homogeneous sets (in our terminology: textureless area)
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and target sets (in our terminology: textured area). The approach in [250] also
contains several adjustable parameters. We have also noticed that interesting ideas
for using the tree structure in the pruning or classification of the wavelet coefficients
have been presented in [204]. We at FIMR have studied the use of fractal coding
for our sea ice SAR images [109], but the results for the fractal methods tested
have not been very convincing.

3.2 SAR Segmentation and Classification

3.2.1 Overview

The previous sections have already shown that sea ice SAR classification is a very
difficult task. The classification is dependent on many factors, e.g. on instrument
properties and data processing, current weather and weather history. Backscatter-
ing from open water can cover the whole dynamic range of the sea ice backscatter,
depending on sea waves (wind speed) and local incidence angle. In most cases there
is no ground-truth available and visual classification based on either the SAR data
or some additional remote sensing instrument measurements is used in place of
ground truth. Backscattering from sea ice and open sea at different incidence an-
gles can vary significantly. Direct inter-comparison of classification methods and
results is thus impossible, unless exactly the same data sets were in use.

Most of the research in SAR-based sea ice classification has been done for the arctic
sea ice, where the distinguishing between open water, first-year ice and multi-year
ice is important. Some efforts to classify the Baltic Sea ice have also been made.
C-band has been used in most of the classification studies because most of the
available operational instruments, like ERS-1 and ERS-2, Radarsat-1 and Envisat
ASAR are C-band instruments.

In earlier works typically SAR-backscatter mean and some measure of deviation,
typically standard deviation, are used as the features in sea ice SAR classification.
These values are computed in a data window around each pixel. According to these
earlier works it is clear that ice classes with higher degree of deformation produce
higher backscattering but also that most of the sea ice classes have large standard
deviations and overlap each other. The measure of deviation is typically used as
a measure of texture. Such window based methods perform a low-pass filtering
and reduce the output resolution. Applying segmentation, such as in our method,
and computing segment-wise features reduces the low-pass filtering effect and also
reduces the class overlapping because the class boundaries are better taken into
account.

3.2.2 Methods Based on First-Order Statistics

The basic approach is to use the value of the backscattering coefficient or local
backscatter coefficient mean and variance (so-called first-order statistics) for clas-
sification. Such studies for the arctic sea ice are made e.g. in [225, 61, 129, 220,
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207, 148]. In [147] also locational and meteorological data were utilized in the
classification. The result is that first-year ice (FYI) and multi-year ice (MYI)
can mostly be distinguished, but the different FYT classes have much overlap and
are difficult to distinguish. Also the occasional appearance of frost flowers (about
the effect of frost flowers to backscattering see e.g. [237]) in nilas ice makes the
distinguishing of nilas ice from other ice types more difficult [225].

Studies utilizing the ERS-1 data have been also been made, especially as part of
the Baltic Experiment for ERS-1 (BEERS) [236]. The radar signatures for seven
classes were compared during data from three winters (1992-94). The classes were
smooth level ice, rough level ice, slightly deformed ice, ridged ice, hummocked ice,
rubble field and jammed brash barrier. The backscattering coefficient and texture
coefficient [183] were computed for samples of these classes. the results show that in
general the backscattering coefficient increases as the ice deformation increases, but
the texture coefficient values for most of the classes cover quite a wide range and
overlap significantly. Based on assumption of dominant surface backscattering an
empirical model for relating backscattering to ice surface roughness and incidence
angle was presented for C-band. In [144] the fuzzy C-means algorithm has been
applied to ERS data over the Baltic Sea ice using first-order statistics.

3.2.3 Context-Based Methods

Contextual segmentation is based on the magnitude of the backscattering coeffi-
cient, also taking into account the context to reduce the effect of speckle. Such
approaches include the ICE algorithm [179] utilizing Markov chains after scanning
the 2-D image into 1-D signal using the Hilbert-Peano scan. In [46] the classi-
fication is based on 4-parameter Pearson’s system of distributions and the ICE
algorithm. In our algorithm [publication 7] a Gaussian mixture and PCNN were
used for contextual classification. This was because experimental studies show that
our data in uniform segments are very close to Gaussian data (see, e.g. [publication
6] and [publication 7]).

3.2.4 Texture-Based Methods

Some classification schemes also try to utilize the tezture in the SAR image. The
most typical measure of texture are computed based on the gray-level co-occurrence
matrix (GLCM) [87]. GLCM has been used in e.g. in [7, 8, 9, 33, 105, 206, 248]. In
[169] the GLCM was compared with standard first order statistics (mean, variance,
range) for sea ice classification, and the classification based on standard statistics
clearly outperformed GLCM classification. Also Markov random fields (MRF)
have been used in texture classification, in [248] and [33] they are compared with
GLCM features. In [33] these two texture classification methods are compared
to Gabor-filter [60, 68] based texture classification. Based on these studies the
Gabor-filter based and GLCM based classification outperform MRF based classi-
fication. Still, MRF brings some additional information to the classification and
can thus be used in combination with either GLCM features or Gabor features.
The results of using texture features in SAR classification are somewhat contradic-
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tory: some publications report about improvements in classification using texture
features [9, 206] and some do not see any significant improvement [220] [169]. This
disagreement can, at least partly, be explained by different data, due to different
instrument properties, data processing and ice, snow and weather conditions.

3.2.5 Methods Utilizing Data Fusion

Most of the practical classifiers use other data sources in addition to the SAR
data to improve the classification. Two such systems are worth mentioning. First,
the ARKTOS classification system, which classifies the sea ice into five categories
(MYI, FYI, fast ice, open water/new ice, unknown) using a SAR-based expert
system with ancillary data, e.g. land mask SSM/I based satellite data concentra-
tion classification, climatology data [89, 223]. Second, the ARTIST classifier [105]
using multiple features computed from ERS-2 SAR data and SSM/I data, using
the NASA team algorithm [228]. This latter approach uses the Learning Vector
Quantization (LVQ) [123] algorithm for training.

3.2.6 Studies Utilizing C-Band SAR Data in Sea Ice Clas-
sification

The backscattering from the Baltic Sea ice has been studied in [26] in the sense of
modeling and to define which backscattering mechanisms produce the backscatter
for level ice and deformed ice. The volume scattering is significant only for level
ice, and the surface scattering is the dominant scattering mechanism at C-band
for rough level ice and deformed ice. In [162, 163, 164] more precise models based
on multi-scale roughness were developed and validated.

Open water and sea ice discrimination in the Baltic Sea has been studied in [209]
and [210]. The discrimination problem is formulated using a Gaussian mixture
model for backscattering intensity values and the contextual information is based
on the Markov Random Field formalism in which the strength of the contextual
information is based on the autocorrelation value.

In [147] a large set (over 100) of ERS SAR images from arctic areas were used for
studying the separability of sea ice and open water. Additionally also meteoro-
logical data (temperature, wind speed) were utilized in the classification. Ground
truth was replaced by visual classification of 5 km by 5 km data windows, then
SAR backscattering mean and standard deviation in these windows were com-
puted. A multivariate regression analysis was then applied to this SAR statistics
complemented with meteorological and locational information. This method gave
results comparable to other studies in open water classification.

In [71] a semi-automated sea ice classification method for Radarsat-1 data is pre-
sented. It is based on three features computed from the SAR data, power-to-mean
ratio, estimated gamma parameter of the gamma distribution and entropy (derived
from GLCM), in addition to the pixel amplitude. The classification is based on
fuzzy rules, which classify the data into four classes: calm water, turbulent water,
low and high concentration sea ice. These four classes are classified differently in



50 Chapter 3. Comparison with Earlier Related Works

the near range and far range, thus yielding a total of eight classes.

In [148] the derivation of the Baltic Sea ice concentration from Radarsat-1 SAR
data was studied, based on local mean backscatter thresholds. The method is
similar to the one in [53]. However, using only a method based on thresholding of
backscattering coefficients, one does not achieve very good results in open water
classification (because of backscatter dependence on sea waves, and also on air
temperature history).

The C-band HH-polarization scatterometer data of the Baltic Sea ice is also used
in [215], where the posterior distribution of a mixture parameter describing the
surface roughness is empirically approximated using Markov Chain Monte Carlo
(MCMC) method. These results were compared to video classification. The re-
sults were promising and their geophysical interpretation is possible. Also some
suggestions to extend the method for 2-D images were given.

In [211] the wavelet transform was utilized to characterize the local statistics typ-
ical of different ice deformation categories using ERS SAR data. The distribution
of the wavelet coefficients was modeled using the mixture of three normal distri-
butions. The class parameters were estimated applying a stochastic version of the
EM-algorithm [30, 31]. The ice classification map was generated using the maxi-
mum likelihood classification. An operative sea ice classification system based on
ERS-1 data was developed by adding open water identification based on block-wise
autocorrelation [212]. The algorithm was made operational in 1995 [76]. It con-
sisted of image rectification, land area masking and generating a classification map.
The algorithm was run at FIS each time after receiving of an ERS SAR image. Be-
cause of the relatively narrow swath width, about 100 km, of ERS images acquired
by ERS-1 (operational in 1991-2000) and ERS-2 (1995-), the ERS-data were not
very suitable for practical near-real-time operational use. There also existed some
data delivery problems from ERS satellites to ice service. This situation was im-
proved after the launch of Radarsat-1 in 1995. The swath width of the Radarsat-1
ScanSAR Narrow mode images is 300 km, and the swath width of the ScanSAR
Wide mode images varies from 440 km to 500 km. An operational SAR classi-
fication algorithm was then developed for Radarsat-1 data at FIMR [108, 192],
and this algorithm is still in operational use and run for each received Radarsat-
1 scene at FIS. The operational Baltic Sea ice SAR classifier, using Radarsat-1
ScanSAR narrow mode images in classification, was made operational in 1998 at
FIMR and FIS. This classifier is based on simple experimental incidence angle
correction, intensity-based segmentation, and some additional texture features to
locate deformed ice and open sea. The algorithm classifies the Baltic Sea ice into
open water, three level ice classes, and two deformed ice classes (slightly deformed
ice and highly deformed ice), and fast ice. An example of a Radarsat-1 ScanSAR
narrow mode SAR image and its classification result are shown in Fig. 3.1. The
classification result (a thematic map) is given in 500 m resolution.
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Figure 3.1: A Radarsat-1 ScanSAR wide mode image, Feb 18th 1998,
(©Canadian Space Agency (CSA), left, and its classification based on
the algorithm of [108].

3.2.7 Studies with Multi-Channel SAR and Scatterometer
Data

In [226, 227] sea ice classification capabilities of ERS-1 SAR data over the sea ice
in Gulf of Bothnia were studied using airborne and simulated SAR data. The fre-
quency channels were those corresponding to the ERS-1 SAR channels, i.e. C- and
X-bands. The best performing of the compared methods was based on segmenta-
tion [219] and backscattering mean and texture values (computed as backscatter
standard deviation divided by the backscatter mean) in these segments. In a four-
class (open water, level ice, rubble fields, brash ice) classification, about 80 %
classification accuracy was achieved, compared to visual interpretation of aerial
photographs.

Some studies have also been made in the area of the Baltic Sea. The Bothnian Ex-
periment in Preparation for ERS-1 (BEPERS) was performed in 1988. In BEPERS
an airborne SAR instrument, whose frequencies and polarizations were similar to
the coming ERS-1 frequencies, was used. C-band and X-band data at the four dif-
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ferent polarization combinations [138, 139, 140] were collected using the airborne
CCRS (Canada Centre for Remote Sensing) SAR. The studies mostly concentrated
on X-band data, but the results probably are quite similar for C-band because these
two frequency bands are close to each other. The affect of incidence was reported
to be quite similar for the studied ice types, indicating that a linear model could
be used to model the decrease of the logarithmic backscattering as a function of
the incidence angle. Also the potentials of SAR data for sea ice classification were
studied. On the basis of the validation the ice was divided into eight categories:
open water, bare smooth ice, patchy (ice-snow) level ice, snow-covered ice, frozen
uneven ice, old ridges, young ridges and brash ice [120]. Discriminating between
open water and undeformed ice, and between brash ice and ridged ice were the
most problematic cases. The standard deviations in the classes were typically quite
high and also other class pairs had mutual overlap.

In the European Multi-Sensor Airborne Campaign (EMAC) also snow and ice ex-
periments in the Baltic Sea were included, the tests were made in 1995. Fully
polarimetric C- and L-band SAR-data were acquired over the Baltic Sea ice us-
ing the EMISAR instrument of the Danish Centre for Remote sensing (DCRS)
[85, 86, 213, 216]. Also multifrequency scatterometer measurements were made
[51]. This experiment compared the use of L- and C-band SAR data in sea ice
monitoring, and also the use of polarimetric SAR-data at these channels was stud-
ied. Space-borne fully polarimetric SAR instruments do not exist yet, but also
multiple polarization combinations and even fully polarimetric modes are avail-
able in the future instruments, e.g. in Radarsat-2. It was reported that L-band
would potentially give more information about the sea ice, because it penetrates
deeper giving more information about the ice volume. Also some new ice areas,
which produce high backscattering because of small-scale roughness, can better be
distinguished at L-band, and the masking effect of moist snow is weaker at L-band.

In [155] the C-band and X-band signatures based on scatterometer measurements
were studied, and compared to a visual classification from simultaneous video
recordings. These studies were made for HH- and HV-polarization combinations
and for two incidence angle values (23 and 45 degrees), and both dry and wet
snow conditions. In this study distributions for six Baltic Sea ice classes are given
for calibrated backscattering coefficients, and these distributions can be used as a
basis for classifying calibrated data. In [155] the incidence angle dependence of the
Radarsat ScanSAR data were studied for the Baltic Sea ice, and incidence angle
dependencies for level ice and deformed ice were given. These dependencies can
be used to correct the effects of incidence angle e.g. in classification.

Repeat-pass SAR interferometry for the Baltic Sea ice has been studied [41], but
because of the ice movement and deformation, it is impossible to generate a real-
istic surface elevation model. Fully polarimetric classification of sea ice has also
been studied, e.g. in [136, 194, 195, 196, 197, 198, 202], based both on airborne and
some space-borne test instruments. However, currently there does not exist any
fully polarimetric space-borne instruments suitable for operational sea ice classifi-
cation. The Radarsat-2 SAR will have dual polarization mode (one co-polarized
and one cross-polarized channel) in its wide swath and ScanSAR modes. Unfor-
tunately the use of dual-polarization for sea ice classification has not been studied
very much. In [173] a sea ice classification study for dual-polarization at Ku-band
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is presented, and in [199, 200, 201] possibilities to use C-band dual-polarized SAR-
data in sea ice classification are studied. These C-band studies are made to prepare
for Radarsat-2. The data used in the experiments has been Envisat ASAR alter-
nating polarization (APP) mode data. Unfortunately the ASAR APP image areas
are too small for typical operational sea ice monitoring. Based on the studies it
seems that using dual-polarization, i.e. adding information from a cross-polarized
channel to the co-polarized channel information, slightly improves the sea ice clas-
sification. Using fully polarimetric information further improves the classification
giving more detailed information about the scattering mechanisms from the sea
ice.

3.2.8 Application of Independent Component Analysis to
Feature Detection

Classification of optical images based on independent component analysis (ICA)
has been studied e.g. in [131, 137, 102]. The basic idea is to use image data
windows to generate a set or sets of typical basis vectors, or filters, for the training
data. Then this set of basis vectors (or filters) is used in the analysis of the image
data. For natural (optical) images the resulting basis vectors correspond to edge
filters [172], but for images containing only some specific features, e.g. for textures,
very specific basis vectors describing the training data, can be generated by ICA
[102, 131]. As a result, images or image windows can be classified based on how
they are projected on the ICA basis vectors.

In [102] some Brodatz textures [16] are classified based on ICA, and also compared
to use of Gabor filters. In [131] the ICA-based classification is compared to classi-
fication based on a PCA basis. These results show that ICA-based classification,
with large enough number of filters (basis vectors), outperforms Gabor-based and
PCA-based classification. Also [137] shows that ICA-based classification can im-
prove the classification accuracy compared to standard Gaussian mixture models.

ICA has also been applied to multichannel SAR data. Computing the independent
channel components, which are linear combinations of the original channel images,
have been used to improve visual and automated data interpretation, e.g. in [62].
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Chapter 4

Data Preprocessing

Some preprocessing steps are typically required before utilizing the SAR data in
operational products. The preprocessing at FIMR consists of three stages: (1) SAR
image rectification into a suitable map projection compatible with the information
system used by the end-users, (2) incidence angle correction and, possibly, (3)
some kind of a speckle filtering. Also re-sampling to some lower resolution before
delivering the data to end-users can be done, but the re-sampling procedure is
straightforward and not discussed here.

4.1 SAR Image Rectification

The image measured by the instrument is in the coordinate system where the
columns coincide with the azimuth directions, and each row contains the evenly-
spaced measurements in slant range, see ( Fig. 2.2). For utilization of the data
it is necessary to convert this measuring instrument specific imaging geometry to
some map projection.

Usually the image is first converted into the latitude-longitude projection. This can
be done based on the 3-D geometry, i.e. each pixel is first converted to the Cartesian
3-D coordinate system, where the origin is located at the center of the earth ellip-
soid, and the coordinates are denoted by the vector (x,y, z). The coordinates in the
latitude-longitude coordinate system are denoted by (latitude,longitude)=(¢g, 0g).
For the earth surface an ellipsoid model is used in the sea areas. In the land areas,
due to local altitude variations, an elevation model describing the terrain is typi-
cally used to improve the mapping. For images covering relatively small areas, a
locally spherical earth model can be used. In the spherical model the local earth
radius R,.; computed from the ellipsoidal earth model is used as the radius of the
sphere. The ellipsoid parameters are the major axis (z-axis) radius a., the minor

axis (y-axis) radius b, the ellipsoid flattening f. = ‘“T_be, and the ellipsoid eccen-

tricity e. = v/2f. — f.°. The local earth radius at latitude ¢z can be defined from
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the ellipsoid parameters a. and b,.:

- (4.1)

R = \/ b2 cos?(¢) + a2 sin*(¢)
ref — .
The (x,y, z)-coordinate system origin is located at the center of the sphere, the a-
axis is from west to east, y-axis is from south to north, and the z-axis is perpendic-
ular to z- and y-axes. The conversion from latitude-longitude (¢g,0g) coordinate
system can in this simple model be written as

(#,,2) = (Rier c08(¢5) Sin(0p), R Sin(P), Ree cos(9p) cos(fr)),  (4.2)
and the inverse relation can be derived from equation (4.2).

We use the Mercator projection [157] as our map projection. The Mercator projec-
tion is a cylindrical projection which makes meridians straight lines. The scaling
is correct at the reference latitude ¢..,, at which the projection is computed. Typ-
ically the equator (0°) is used as the reference latitude. However, we use the
reference latitude ¢,., = 61°40’, which is more suitable for the Baltic Sea, and the
scale distortion is not very noticeable. The conversion from latitude-longitude grid
to the Mercator projection, i.e. to the Mercator easting and northing coordinate
values z,,, and y,,, can be performed using the equations

ko = L%’ (4.3)
\/ 1 —62 Sin2 ¢ref
T = Aeko®E, (44)
. ee/2
T g 1 —ecsingg
m = aekoln [ t -+ — || — , 4.
Ym =4 On(an(4+ 2><1+eesm¢E> ) (45)

where kg is a scaling factor dependent on the reference latitude. We use the Hayford
ellipsoid with a. = 6378388.000 m and b, = 6356911.946 m as our reference
ellipsoid. For the more recently defined WGS84 ellipsoid, which is used in many
maps today, a, = 6378137.000 m and b, = 6356752.314 m.

The inverse for the Mercator easting, x,,, is obvious, but the Mercator northing,
Ym, for an ellipsoid model does not have a closed form inverse. However, a serial
expansion can be used to compute the latitude approximately:

1 1 13

7 29 811
( 4 + 6 +

—eée —e

8 .
jin(4
48 240 " 11520 ) sin(47) +

7T 5 81 g\ .
(12066 + {1906 ) sin(67) +

279\ .
(16128066 )sm(ST),




56 Chapter 4. Data Preprocessing

satellite

Figure 4.1: Range geometry of the spherical earth model.

— Ym
where 7 = 7 + —2arctan (exp (— . ))
We first re-sample the image into a grid corresponding to the minimum resolution
of the input image (the resolution varies depending on the pixel location), and
then it can be down-sampled to the desired resolution applying a suitable low-pass
filter. In re-sampling from projection to another we use bilinear interpolation.

The local incidence angle ~, which is required in our computations, can be com-
puted from the geometry of Fig. 4.1, by using the local radius R,.; at the reference
latitude as the spherical earth model radius. Based on the law of cosines we have

he? 4 Roi® — (Rou + hs)?
2N, Ryt

cosfl = (4.6)

and

y=m—p0. (4.7)

The satellite height hs from the earth surface and the distance h,. from the location
of the measurement can be derived from the satellite track parameters, or are
included in the processed SAR data headers. These local incidence angle values
are used e.g. in correcting (normalizing) the effect of the incidence angle variation
over SAR images. The rectification geometry and methodology for our data is
described in more detail in [90].
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4.2 Incidence Angle Correction

The backscattering at different incidence angles from different targets varies and,
because of the wide incidence angle range of Radarsat-1 ScanSAR data (20-50 de-
grees), the incidence angle effect to the backscattering must be taken into account
in sea ice classification algorithms using this data. Our approach is to correct the
SAR pixel values to correspond to a single incidence angle value. Another ap-
proach would be to use incidence angle dependent parameters in the classification.
Radarsat-1 ScanSAR images have different modes. First, there are ScanSAR wide
and ScanSAR narrow modes. In ScanSAR narrow mode the swath width (image
size in ground range direction) is narrower (about 300 km) than for ScanSAR wide
images (about 500 km). Both ScanSAR narrow and ScanSAR wide images are
further divided into A and B modes, which have different incidence angle ranges.
This means that there exist four Radarsat-1 ScanSAR modes, ScanSAR narrow A
(SNA), ScanSAR narrow B (SNB), ScanSAR wide A (SWA) and ScanSAR wide
B (SWB) modes. The corresponding incidence angles are 20.00-39.55 for SNA,
30.81-46.58 for SNB, 20.00-49.42 for SWA and 20.00-46.58 for SWB [180].

The results in [154] indicate that the decrease of the backscattering is a function
of the incidence angle difference and can be modeled in logarithmic (dB) scale by
using a linear fit. The performed analysis yielded the slopes of —0.25 dB/degree
and —0.21 dB/degree for level ice and deformed ice, respectively. Using this knowl-
edge, the ScanSAR narrow SNA images are normalized to the fixed angle of 29
degrees, the ScanSAR narrow mode SNB images to the fixed angle of 38 degrees,
and both the ScanSAR wide image modes (SWA and SWB) to 35 degrees. These
values are roughly in the middle of the angle intervals of the ScanSAR narrow SNA
and SNB modes and ScanSAR wide mode, thus minimizing the average angle dif-
ference. To utilize this different behavior for level ice and deformed ice, a rough
classification into these two classes is included in the incidence angle correction
algorithm. The classification into the two classes (level ice and deformed ice) is
performed iteratively in parallel with the normalization.

The iterative incidence angle normalization algorithm consists of an initialization
phase and an iteration phase. In the initialization phase, the decision boundary
between the two classes is determined by applying a linear discriminant in a two-
dimensional feature space. We use an 11x 11 pixel square data window around each
pixel for computing two features i.e. mean and standard deviation. The marginal
distributions of the logarithmically scaled pixel values in the Radarsat images, for
which the estimated value for equivalent number of looks (ENL) varies from 6 to
8 [154], are mostly Gaussian or nearly Gaussian. Hence, the mean and standard
deviation are independent, leading to thresholding either of these values by using
the linear discriminant. In our discrimination method the direction of the linear
discriminant is perpendicular to the first principal component (PC) in the feature
space. We first compute the projections of the feature vectors to the first PC
vector. Then the initial class boundary is obtained by thresholding the histogram
of these projections. Currently we are using an initialization that linearly divides
the pixels evenly between the classes in the direction perpendicular to the first
PC, see Fig. 4.2. Thresholding either mean or standard deviation did not lead to
satisfactory results for our purposes, however. Using window sample mean u, and
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Figure 4.2: A simple example of a contour plot of a correlated 2-D dis-
tribution, and axes drawn along its principal components P, and P; (a).
The initial division into two classes is performed perpendicular to the
P-axis, in this case actually along the P»-axis because the distributions
are symmetric. The discriminant along the P»-axis is defined from the
distribution projected on the Pj-axis (b).

window sample mean multiplied by window sample standard deviation po yielded
better results, and we selected to use these features in our algorithm.

We have also studied some alternatives to the current PC approach. Projections to
the independent components (ICs) defined by the independent component analysis
(ICA) [98] were tested as a substitute to PCs, but it seems that in this case the ICs
are typically close to the PCs. We have also tested several algorithms for finding
an ideal initial discriminant from the histogram of the features. We have tested
the Otsu algorithm [174] and the Expectation-Maximization (EM) and Stochastic
Expectation-Maximization (SEM) algorithms [31]. In the last two algorithms the
data is modeled as a mixture of two normal distributions. However, the shape of
the histogram of the projections is usually not bimodal. Hence, these algorithms
often yield unsatisfactory results, e.g., it can happen that only a small proportion
of the pixels is allocated to another of the initial classes. Consequently, this leads

to a situation where all the pixels are classified to one class after some iterations,

even when both classes actually are present in the image, as usually is the case.

The current division into halves avoids such anomalies. However, the question of
an optimal initial threshold is still open and under research.

The iteration phase consists of normalizing the image using the class dependent
slopes and then reclassifying the pixels according to the Bayes rule. Probability
density functions (PDFs) for both classes in the 2-D feature space are estimated
using a Gaussian kernel estimate, and these PDFs are then used to classify the

pixels. According to the Bayes rule the class of a pixel with a feature vector x is
the one maximizing

I (z) = pefu(z), k=12 (4.8)

over classes k. py is the estimated prior probability of the class k£ and fk(x) is the
estimated PDF of the class.
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The value of the kernel estimate of PDF at point x depends essentially only on
the values near the point in question. We write y for intensity values corrected
according to the level ice slope value (class 1) and z for intensity values corrected
according to the deformed ice slope value (class 2). The operation of computing
the feature vector (p,puo) from the data window z is denoted by F(z). Let us
assume that the number of partly overlapping windows belonging to the classes 1
and 2 are ny and ns, respectively. Then the Bayes rule for the window x is: select
class 1 if r(z) > 1, otherwise class 2, where

_ ity Ke((F(x) = F(yi)/h)

r(a) = &2 . (4.9)
Y21 Ka((F(x) = F(z))/h)
The kernel K¢ (x,y) is a product of two one-dimensional Gaussian kernels:
1 —(z—wzg)2—(y— 2
Ko(z,y) = —e = (4.10)

2T

(z0,Yo) is the center of the kernel and the smoothing parameter h = 2 is common
for both features. The kernel is scaled such that it integrates to one. This smooth-
ing kernel was used because of its simplicity. Actually the features are correlated
and a kernel including the covariance should rather have been used.

We scaled both features onto the same interval [0,255]. Because the behavior of
a kernel estimate depends crucially on the smoothing parameter used, we also
tested parameter values h = 1 and h = 4, but the classification result did not
change much. Only about 2% of the pixel classifications differed in comparison
between kernels with h = 1 and A = 4. Using a narrower kernel only changes
some minor details in the classification. The bandwidth values larger than h = 4
were in our application impractical due to the heavy computational work load in
these cases. The decision rule in Eq. (4.9) has some similarity to the majority vote
filtering. In the latter approach, all pixels have the same weight whereas in Eq.
(4.9) the weights are exponentially decaying.

The incidence angle normalization algorithm proceeds as follows:

1. Initialize classification based on the linear discriminant.
2. Normalize the image based on the previous classification.

3. Perform the classification in the 2-dimensional feature space according to the
Bayes rule.

4. If less than a given number of class changes occur or maximum allowed num-
ber of iterations has been reached, stop, else go back to step 2.

In practice the classification is performed in steps of half of the window size. An
example of the processing can be seen in Fig. 4.3. In Fig. 4.4 the effect of the
incidence angle correction on classification can be seen. On the left side of the fig-
ure are classifications of two successive SAR images acquired from different flight
directions and having different incidence angles in corresponding image locations.
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Figure 4.3: A ScanSAR narrow mode SAR image, acquired on Feb 27th
1999 over Gulf of Finland, (©Canadian Space Agency (CSA), upper
left), and after incidence angle correction (lower left). On the right are
the classification into level ice and deformed ice in the beginning of the
iteration (upper) and after the iteration (lower). The open water has
been masked off in the incidence angle corrected SAR image (lower left),
the correction does not work for open water areas.

The ice fields had not changed much between the images, however the classifica-
tions differ significantly. After the incidence angle correction (images on the right)
the classifications are more alike. An example of mean SAR pixel values over the
incidence angle range of two sea ice SAR images is shown in Fig. 4.5.

4.3 Speckle Filtering

We have tested several speckle filtering methods for our data at FIMR [118]. We
have found a method based on anisotropic diffusion useful for our purposes. Here
the method is shortly discussed and comparisons to some other methods presented.

The anisotropic diffusion filtering [178] encourages intra-region filtering and in-
hibits inter-region filtering. Its mathematical formula is
Ol(x,y,t)
ot

I(z,y,t) refers to the intensity at location (x,y) at time instant ¢, c¢(z,y,t) is the
diffusion function, monotonically decreasing with the image gradient magnitude.
We have used the function

2
c(I,z,y,t) = exp (— <M) ) ) (4.12)

=V (C(:Z?,y,t)VI(l?,y,t)) (411)

K

where « is an adjustable parameter. The algorithm is implemented as an iteration
with constant time increment for each iteration. The method is originated from
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Figure 4.4: An example of the effect of the incidence angle correction
on the classification. Two SAR image classifications from adjacent days
without incidence angle correction (left side), and with incidence angle
correction (right). It can be seen that the classifications of the cor-
responding image areas of the incidence angle corrected images match
each other much better than in the uncorrected versions. There was not
much changes in the ice situation between the images. The classification
was performed using the algorithm presented in [108].

the principle of heat flow in media. The change of I(x,y,t) is described by the
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Figure 4.5: Effect of the incidence angle correction for two SAR images,
the curves for the two images are drawn with solid line for one image and
with dashed lines for the other. The pixel mean values for the different
incidence angles (blue) and corrected values (red).

flow ®, which is the change rate of I(x,y,t) i.e. time derivative of I(xz,y,t) and
approximated as a difference in the discrete version. In the practical implemen-
tation the intensity value I(x,y,t) is iteratively updated in the 8-neighborhood of
each pixel as

Iz, y,t + At) = I(z,y,t) + At[D, + Oy, + P, + D,

1
+— (I)ne + (I)nw + (I)se + (bsw )
7! )

where At is the time step and ®s are flows from each neighbor, the sub-indices
referring to the neighbor location relational to the pixel. These directional flows
are proportional to the pixel value difference between the mid-pixel and the neigh-
bor pixel in each direction, respectively. In anisotropic diffusion the amount of
the flow is adjusted by the function ¢;(x,y,t), and is thus restricted more from
directions determined by higher gradients and less from directions determined by
lower gradients.

By selecting x equal to the average gradient produced by noise, the anisotropic
diffusion filtering performs a noise reduction filtering. For our data we found that
the mean absolute gradient values are around 7 for homogeneous areas i.e. noise.
For rough scenes the gradient mean absolute values are higher, typically in the
range 10-13. However, the signal-to-noise ratio for our data is quite low, and we
experimentally found that the values x? € [20-30] work better for our data than
k? 2 49 suggested by the theory. A suitable number of iterations for our purposes,
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taking into account the execution time limitations in some applications, is about
10.

There are still some slight small-scale fluctuations left in the uniform image areas
after anisotropic diffusion. These can be reduced e.g. by running a one-pass median
filter, using a 3 x 3 window for median computation. We also tested some other
post-filtering methods after the anisotropic diffusion. One alternative is to use a
filter which was designed for smoothing single pixels deviating more than a given
threshold from the pixels of their 8-neighborhood. If the minimum difference
between the pixel’s value and any of its neighborhood pixels is more than the
threshold, the pixel is set to the nearest neighbor value, else it is set to the mean of
the pixel and its two nearest neighbor values. This algorithm is applied iteratively,
for some iterations until convergence, or stopped after a maximum number of
allowed iterations.

Because anisotropic diffusion tends to compress the image dynamics, we finally
remap the filtered image pixels based on the original image pixel values. In this
mapping, for each different pixel value in the filtered image, the mean of the
original image pixel values corresponding to those pixel locations, are computed,
and the filtered image pixel values are replaced by the mean. Instead of mean e.g.
mode or median can also be used.

In order to evaluate the effect of the filtering, we computed statistics based on
locating of edges from the original speckled test images and from the filtered images
[118]. This was done because the main information, in addition to the intensity
value, in the Baltic Sea ice SAR images is the location of the edges. Most of
the small edges, i.e. edges whose size in pixels is less than a given threshold T,
are more likely due to the speckle than larger detected edge segments. We used
the value of threshold T, = 10, and the Canny edge detection algorithm [21] for
detecting the edges.

For each filtering method we computed five values describing the reduction and
preservation of edges in the filtered image. These values are: p, the number of
edges in the filtered image divided by the number of edges in the original image;
p1, portion of the filtered image small edges which are edges in the original image;
p2, portion in the filtered image larger edge segments which are edges in the original
image. Similar values p3 and p, were calculated for the original image relative to
the filtered image. A good filtering algorithm prunes the edges compared to the
original images, i.e. p < 1, but not all of the edges, i.e. for an image containing
edges p must be above zero depending on the amount of true edges. Also the edges
in the filtered images should correspond to the edges in the original images, i.e. py
and py are closer to one than zero, and more of the small edges are pruned than
the larger edges, i.e. p3 < ps. These values for the tested filtering methods are
tabulated in Table 4.1.

For the median filtered image p is small and too many edges are pruned. For
the segment mean image p is large and too many edges are located. The other
algorithms seem to work better, the anisotropic diffusion prunes most (about 99%)
of the small edges in the original image, and preserves about 30% of the larger
ones.
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Table 4.1: Edge statistics comparing the edges in the original and filtered
images. References to literature are after the filter names in the first

column.

Method p 1 02 03 P4

Kuan [125] 0.339 | 0.998 | 0.996 | 0.0208 | 0.402
Lee [134] 0.357 | 0.996 | 0.885 | 0.0302 | 0.383
Segment mean 1.429 | 0.474 | 0.532 | 0.463 | 0.815
Median 0.0924 | 0.953 | 0.955 | 0.001 | 0.106
SNN [88] 0.231 | 0.945 | 0.773 | 0.037 | 0.221
Anisot. diff. [178] 0.283 | 0.853 | 0.907 | 0.011 | 0.302
Wavelet [55] 0.440 | 0.751 | 0.826 | 0.050 | 0.417
Kuwahara [128] 0.240 | 0.848 | 0.895 | 0.027 | 0.249
Gamma MAP [146] | 0.762 | 0.934 | 0.826 | 0.577 | 0.764

Figure 4.6: A test SAR image ((©)Canadian Space Agency (CSA), left).
Anisotropic diffusion filtering of the test SAR image (right).

We also performed visual inspection of the filtered images and edge images, and
noticed that the wavelet filtering causes some artifacts due to the ringing effect
near edges. The enhanced Lee filter and the Kuan filter preserve some very small
details, some of which may be due to the speckle. After SNN filtering there are still
visible fluctuations in areas which in visual interpretation consist of random noise.
The noise is suppressed, however. Median filtering and Kuwahara filtering seem
to smooth too much. For our purposes, we found the anisotropic diffusion filtering
the most suitable of these methods. In Fig. 4.6 an original test SAR image and
the speckle-filtered image using the anisotropic diffusion based algorithm described
above are shown.
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Chapter 5

Wayvelet-Based Compression of
Baltic Sea Ice SAR Images

This section describes the wavelet-based algorithm designed for compressing
Radarsat-1 ScanSAR data for transmission and visual inspection. High compres-
sion ratio is necessary because the SAR images are large and bandwidths to end-
users on ships are restricted. The contents of this section extend that of Publication
2. The first two subsections describe the wavelet transform and arithmetic cod-
ing in general and in the following subsections the implemented coding method is
described in detail.

5.1 Wavelets

According to the Heisenberg uncertainty principle [229] it is impossible to obtain
exact information on which frequencies exist at a certain spatial location (or time
in the case of signals in time). If we denote the spatial (or time) spread around
a center spatial location (time) by o; and frequency spread around the center
frequency by oy the Heisenberg inequity can be written as [160]:

1
oo > 1 (5.1)

In wavelet analysis the spatial (time) resolution increases as the frequency in-
creases, and as the frequency decreases the spatial resolution also decreases. This
is unlike in e.g. short-time Fourier analysis, where a fixed-size spatial window is
used to compute the local frequency distributions.

The continuous wavelet transform (CWT) for a continuous signal z(t) is defined
as

CWT{a(t)} = X(a,b) = % /Z 2(O)W <tab> dt, (5.2)

where a is a scaling parameter and b is a shift parameter. The analyzing function,
W (t), is a short oscillatory function, wavelet. CWT can be thought as an inner
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product of the original signal with scaled and shifted versions of the wavelet basis
function W (t). The scaling and shifting variables are discretized such that the
wavelet, coefficients can be described by two integers, here denoted by m and n,
and then the discrete wavelet transform (DWT) can be written as

1
vag'

N is the length of the discretized sequence. In practice usually the value ag = 2
is used and this is called the dyadic scale. A commonly used technique for the
discrete wavelet transform is to use two half-band finite impulse response (FIR)
filters, i.e. a low-pass and a high-pass filter in an iterative manner. The relations
between the low-pass filter hg and the scaling function ¢(¢) can be written as

N-1
DWT{z(t)} = X(m,n) = Z (k)W (ag™k —n). (5.3)
k=0

o(t) =2 )  ho(k)op(2t — k), (5.4)

k=0

and between the high-pass filter go(t) and the wavelet function W (t)
Wity =23 go(k)o2t — k). (5.5)

By replacing 2t with 2/t in Eqs. (5.4) and (5.5) a more convenient form for
constructing a wavelet basis corresponding to a filter bank is yielded, this is also
known as Mallat’s algorithm [160].

A two-level filter bank is presented in Fig. 5.1, the analysis filters in the upper part,
and synthesis filters in the lower part. For an orthogonal wavelet basis the same
filters can be used in analysis and synthesis, i.e. ho(n) = h(—n), h1(n) = h(n),
go(n) = g(—n) and g1(n) = g(n). In the bi-orthogonal case the analysis and
synthesis filters differ. A higher-level filter bank can be constructed by further
splitting the low-pass signal into low-pass and high-pass portions by applying the
same high-pass and low-pass filters. If the output of the analysis filter bank is
directed to the inputs of the synthesis filter bank whose output equals to the
original signal, the filter bank is said to have the perfect reconstruction property.
If, in addition, the same filters can be applied in both analysis and synthesis (in
reversed order) the filters are referred to as conjugate quadrature filters (CQF).
Actually every orthonormal wavelet basis associated with a multi-resolution anal-
ysis corresponds to a pair of CQF filters [42]. Many different criteria for designing
wavelets for different purposes have been used, e.g. the Daubechies wavelets [42]
use the maximum number of vanishing moments (in addition to the orthogonality
condition) to yield high smoothness.

The orthogonal wavelet transform preserves energy. However, a general shortcom-
ing in using orthogonal compactly supported real-valued wavelet filters for com-
pression is that they are all asymmetric except the Haar filter. This asymmetry
blurs edges during quantization because asymmetric filters do not preserve phase.
Symmetric filters also make it easier to deal with the boundaries of image [42,
Chapters 8, 10]. On the other hand, the bi-orthogonal wavelet filters can be sym-
metric, compactly supported and real-valued [42, Chapter 8]. In the bi-orthogonal
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Figure 5.1: A two-level wavelet filter bank.

case the analysis filters (here ho and gg) differ from the synthesis filters (here h;
and g1). The wavelet functions associated with the filters hy and g; are called the
dual functions of the wavelet functions associated with the filters hg and go (and
vice-versa). The dual functions are orthogonal with respect to each other.

We used the 7/9 bi-orthogonal wavelet filters introduced in Antonini et al. in [2].
In addition to symmetry, the Antonini filters have also other attractive proper-
ties. They are bi-orthogonal perfect reconstruction filters with the property that
both the analysis and synthesis wavelets have the regularity of four vanishing mo-
ments. Their dual functions are very similar. Hence the basis associated with the
filters is almost orthogonal. The quasi-orthogonality guarantees that they almost
preserve energy. The number of vanishing moments gives the filters enough reg-
ularity to create small wavelet coefficients for slowly varying domains during the
analysis phase and also the reconstruction from the sparse data with quantized
values is performed smoothly [160, Chapter 7]. The discrete wavelet transform is
implemented by using separable wavelet filters as described e.g. by Mallat in [160].
Hence the two-dimensional convolution can be computed as one-dimensional con-
volutions along the columns of the image followed by one-dimensional convolutions
along the rows:

Ir(i,g) = m(i—k)Y n(i—DIik,1), (5.6)

k l

where the pair (71, 72) comprises of high- and low-pass filters, variables 7, j indicate
the pixel coordinates and I;(4,j) the value of pixel in the location (4,5). The
appropriate pairings of the filters in the analysis phase are (go, ko), (7o, 90), (g0, g0)
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Figure 5.2: An example of a two-level wavelet transform. Upper left: The
original image; upper right: the transform; lower left: the approximation
image scaled up to the original scale; lower right: a diagram showing how
the image is divided in the frequency space. If more levels are used in
the wavelet transform, the LL band is recursively divided further into
four sub-channels.

or (ho, ho). In the synthesis phase one uses the corresponding pairings for the filters
hi and g;1. The pairing (go, ho) refers to the fact that the high-pass filtering is first
applied along the columns, followed by the low-pass filtering along the rows. In Fig.
5.2 this operation is denoted by HL. Each filtering is followed by down-sampling
by decimation in the analysis phase and preceded by up-sampling in the synthesis
phase. The meaning of the other pairings and their corresponding abbreviations
in Fig. 5.2 are obvious. In our algorithm we used five resolution levels.

A wavelet coefficient ¢ is said to be insignificant with respect to a given threshold
T if |¢| < T. The idea of a zero-tree is based on the hypothesis that if a wavelet
coefficient at a coarse scale is insignificant with respect to a threshold, then all
wavelet coefficients of the same orientation in the same spatial location at the
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Figure 5.3: An example of the parent-child dependencies shown by the
arrows in a three-level wavelet decomposition. The coefficients at the
same location and resolution level, but at different frequency sub-bands,
are called cousins. For example the shown locations at LH3 and HH3
are cousins. The zero-trees are formed as trees of parents and children
within one frequency band.

finer scale are likely to be insignificant with respect to the same threshold. More
specifically, in a hierarchical sub-band system, with the exception of the highest
frequency sub-bands, every coefficient at a given scale can be related to a set of
coefficients at the next finer scale of similar orientation. The coefficient at the
coarse scale is called the parent, and all coefficients corresponding to the same
spatial location at the next finer scale of similar orientation are called its children.
Similarly, we can define the concepts of descendants, ancestors and cousins, see Fig.
5.3. Given a threshold T' to determine whether or not a coeflicient is significant, a
coefficient ¢ is said to be an element of a zero-tree for the threshold 7' if itself and
all of its descendants are insignificant with respect to the threshold T. Therefore,
given a threshold, any wavelet coefficient could be represented in one of the four
data types: zero-tree root (ZTR), isolated zero (IZ) (it is insignificant but its
descendant is not), positive significant (PS) and negative significant (NS) [205].

Many of the current wavelet-based image coders, such as the EZW [205] and
SPIHT [190] algorithms, are progressive in nature. This means that they divide
the quantized integer outputs into bit-planes, starting from the most significant
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bits, and transmitting those bits first, and then transmitting the less-significant
bits, until the desired accuracy has been reached or the allowed bit-budget has
been used.

5.2 Arithmetic Coding

The entropy E of a sequence of symbols from an alphabet of fixed number N of
symbols with known probabilities p;, i = 1,2,..., N, is

N
E=- Zpi logs (pi)- (5.7)

Assuming inter-symbol independence in the sequence, the optimal number of bits
for encoding such a sequence of symbols would then be

Np = NsE = —log,(p), (5.8)

where Ng is the total number of symbols in the sequence, and p is the probability
of the sequence, which is the product of the individual symbol probabilities in the
sequence.

The arithmetic coding algorithm [133, 186] is an entropy coding method, producing
a nearly optimal coding length, i.e. —log,(p) bits, for a sequence of symbols with
a known probability p. The arithmetic coding algorithm basically works as follows
(a more detailed description is given e.g. in [246] or [93]):

1. Begin with a current interval [L, H) initialized to [0, 1).

2. For each symbol of the sequence, we perform two steps:

Subdivide the current interval into subintervals, one for each available sym-
bol. The size of a symbol’s subinterval is proportional to the estimated
probability that the symbol will be the next symbol in the sequence, accord-
ing to the model of the input. This means that if we only have a few zero-tree
symbols to be coded, the distributions of the symbols can be computed and
included without increasing the encoded sequence length significantly.

Select the subinterval corresponding to the symbol that actually occurs next
in the sequence, and make it the new current interval. After the interval
corresponding to the whole sequence has been computed, it uniquely corre-
sponds to the sequence.

3. Use enough output bits to distinguish the final current interval from all other
possible final intervals (for details, see the example below).

The length of the final subinterval is equal to the product of the probabilities of the
individual symbols, which is the probability p of the particular sequence of symbols
in the sequence. The final step uses almost exactly —log,(p) bits to distinguish
the sequence from all other possible sequences. We need some mechanism to
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Table 5.1: A simple arithmetic coding example (from [93]).

Current Action Subintervals Input

Interval a b EOF
[0.000,1.000) | Subdivide | [0.000,0.400) [0.400,0.900) [0.900,1.000) b
[0.400,0.900) | Subdivide | [0.400,0.600) [0.600,0.850) [0.850,0.900) | b
[0.600,0.850) | Subdivide | [0.600,0.700) [0.700,0.825) [0.825,0.850) b
[0.700,0.825) | Subdivide | [0.700,0.750) [0.750,0.812) [0.812,0.825) | EOS
[0.812,0.825)

indicate the end of the sequence, either a special end of sequence (EOS) symbol,
indicating the end of the sequence, coded just once, or some external indication
of the sequence length. The probability of the EOS symbol is selected to be a low
value.

Step 1 of the algorithm is just a straightforward initialization of the current in-
terval. In step 2, we need to compute only the subinterval corresponding to the
symbol a; that actually occurs. To do this we need two cumulative probabilities,
Po =" pr and Py = Y._, pr, The new subinterval is [L + Po(H — L), L +
Py(H - L)).

In Table 5.1 an example encoding of an input containing the symbols bbb adopted
from [93] is shown. Using arbitrary fixed probability estimates p(a) = 0.4, p(b) =
0.5, and p(EOS) = 0.1.

The step 2 of the algorithm repeated for each of the symbols in the example
sequence are shown in the rows of the Table 5.1. Each row of the table shows
the current interval and the subintervals corresponding to each possible symbol
(a, b, EOS). The interval corresponding to the symbol appearing in the sequence
determines the interval which is further subdivided in the next iterations. In the
example the final interval (without rounding) is [0.8125, 0.825), which in binary is
approximately [0.11010 00000, 0.11010 01100). We can now uniquely identify this
interval by the binary value 1101000 (a value inside the interval). According to the
fixed model, the probability p of this particular sequence is (0.5)3(0.1) = 0.0125
(exactly the size of the final interval) and the code length should be —log,(p) =
6.322 bits. In practice we have to use 7 whole bits.

5.3 Compression Algorithm

The block diagram of the SAR image compression algorithm is presented in Fig.
5.4. The first phase of the algorithm performs a wavelet transform on the image
data to yield the wavelet coefficients. To prune the wavelet coefficients, we then
use a technique described in Section 5.3.1. The coefficients that are left (i.e. have
nonzero values) after the pruning process are called significant coefficients, while
the pruned ones are called insignificant coefficients. The zero-tree structure for
coding the locations and signs of the significant coefficients is used. The absolute
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Figure 5.4: Block diagram of the image compression algorithm.

values of the significant wavelet coefficients are quantized as described in Section
5.3.2. Finally, the zero-tree symbols and quantized wavelet coefficients’ absolute
values are coded using arithmetic coding [133, 186, 246].

We have adopted the zero-tree structure and coding the zero-tree labels from the
EZW algorithm [205]. Our algorithm uses the human visual system (HVS) de-
pendent quantization which is different from the successive approximation quan-
tization used in the EZW algorithm. We do not order the wavelet coeflicients
according to their importance as in EZW, but take their importance to visual per-
ception into account in our quantization scheme. Thus our algorithm also does not
use embedding like EZW. Embedding means that a single coded file can used to
decode the image at almost any rate less than or equal to the coded rate, to give
the best reconstruction possible with the particular coding scheme. This makes
progressive coding, i.e. gradually refining the image resolution during the decoding,
possible.

In the current operative application the image is compressed with a suitable set
of parameters and then transmitted to end-users either via satellite connection or
mobile connection, depending on the receiver equipment on board of the receiving
vessel. After receiving the image, it is decompressed in the background and only
after that the user is notified about the arrival of a new image. Progressive cod-
ing could be a useful addition to the algorithm in the future, depending on the
development of the operative system.

In our algorithm there are multiple user-defined parameters, which need to be set
for a specific set of data (e.g. for a certain SAR instrument) and user requirements.
This usually necessitates some expert supervision in the set up phase to adjust the
parameters suitably, but it also allows great flexibility for many different kinds
of data sets and user requirements. The parameters have now been adjusted for
Radarsat ScanSAR data. A future improvement would be to give more exact
guidelines for selecting the parameters for different kinds of data.

5.3.1 Wavelet Coefficient Pruning

In our algorithm we are using a 5-level wavelet transform, the levels are numbered
such that level 5 corresponds to the coarsest resolution and level 1 to the finest
resolution. For the approximation image at level 5, we save all the coefficients.
For the wavelet coefficients at resolution levels 3—4, thresholding is used that is
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dependent on the detail (high-pass) image statistics, i.e., we prune coefficients
whose absolute values are less than a threshold Th(z,y) defined as

Tp(x,y) = Tp(G,1) = fa(z,y) fiop. (5.9)

The index D refers to the detail image with standard deviation op. The resolution-
level-dependent factor f; is given as a parameter to the algorithm. The term
fo(x,y) takes into account the local statistics in the image by applying different
thresholding in different areas of the image. We were led to implement this option
because of the change in local image statistics in the SAR data caused by the
change of the incidence angle [154]. The amount of the local thresholding can be
adjusted by a gain parameter G as described by the equation

fa(z,y) = 1.0+ G(0.a(z,y) — 1.0). (5.10)

A single threshold for all the pixel positions is achieved by setting G to zero, which
is also the default value. Values above zero cause the local variation to be taken
into account proportionally to G. The values of the factor fo are computed in the
centers of local windows and smoothed between adjacent windows. The relative
standard deviation o, (x,y) at image location (z,y) is computed as

Ora(T,y) = a(xa, y), (5.11)

where o(x,y) is the local standard deviation, and o is the global standard deviation
for the image. The local standard deviation is computed in a n X n pixel window,
where the value of n is a user-adjustable parameter.

At the two finest scales (I = 1 and | = 2), we use a thresholding scheme which
takes into consideration whether the wavelet coefficient was determined as being
significant at a previous scale i.e. inter-scale dependency. We first compute a
threshold value Tz using the statistics for the second-finest resolution level

Ty = ULHJFU;&. (5.12)

We then divide the wavelet coefficients at level 2 into two categories, i.e., the
textured area coefficients, and the textureless area coefficients. A coefficient is called
a textured area (“cheap”) coefficient if the wavelet coefficient at the next lower
resolution level at the same location is significant, otherwise it is a textureless area
(“expensive”) coefficient. The thresholds applied to the two types of coeflicients
differ from each other.

The coefficient pruning process for the textured area coefficients is as follows. First,
we compute a threshold

Ti(z,y) = fo(z,y) 1T, (5.13)
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where fg(z,y) is as in Eq. 5.10 and f; is a user-adjustable parameter. The condi-
tion for pruning is

. {c, if || > T (5.14)

CcC =
0, otherwise,

where ¢ is the new wavelet coefficient value, i.e., the coefficient is pruned if the ab-
solute value is less than or equal to the threshold 7;. After applying the threshold
T1 most of the significant coefficients at resolution level 2 are determined. Let us
denote the set of coefficients that satisfy the condition in Eq. (5.14) by A. In addi-
tion to set A, some other coefficients, denoted here by set B, will also be included
in the set of significant coefficients. A coefficient will be included in set B if the
coefficient together with coefficients in A is believed to form an edge in the image.
The stepwise procedure, described below, to determine if this is the case can be
regarded as a geometric filter.

The test whether a coefficient is in the set B proceeds as follows: we first ap-
ply threshold T, to exclude very small coefficients from set B. Threshold 75 is
computed as

Tr(z,y) = fa(x,y) f2Ts, (5.15)

where f5 is a user-adjustable parameter so that fo < fi. Let us suppose that the
magnitude of a coefficient exceeds this threshold. Then a 5 x 5 pixel neighborhood
in the wavelet domain is studied for coefficients for which the absolute strength
Cy, defined as the sum of the coefficients’ absolute values in the three detail images
at the same resolution level (the sum of “cousins”, see Fig. 5.3),

Cw = |CLH| + ‘CHL‘ + |CHH|7 (5.16)

exceeds a third threshold value

T3(xay) = fG(x)y)f3TB7 (517)

where f3 is a parameter. First we study whether in the 3 x 3 neighborhood there
is more than one coefficient who has the same sign as the coefficient studied,
whose absolute strength C,, exceeds T3(x,y). If that condition is fulfilled and,
additionally, if in the 5 x 5 neighborhood there is more than one coefficient for
which the same condition holds, then the coefficient ¢ is included in set B. The
sign condition is necessary because, in the case of symmetric FIR filters, an edge
pixel generates two large wavelet coefficients with different signs.

A similar pruning process is performed for the textureless area coefficients, but
using higher values of pruning factors fs, f5 and fs instead of f1, fo and f3 (i.e.
f1 < fa, f2 < fs and f3 < fg). All these values are user-adjustable parameters. At
the finest resolution level a similar pruning process with textured and textureless
areas is performed.
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5.3.2 Quantization

The sensitivity of the human visual system (HVS) to changes in the intensity level
is dependent on three different factors: the local background intensity level, the
local spatial frequency and the local texture content [74, 101, 119, 189]. The first
term, sensitivity to the background intensity level, is also known as the Weber-

Fechner law :
dl
dRI = 0477 (518)
where dRy is the change of the HVS response to the intensity stimulus change dI
with background intensity I, and « is an experimentally defined constant. After
integration, the Weber-Fechner law has the form R; = alog(l/Iy). Ip is the
stimulus below which nothing is perceived, and R; is thus zero for I below Ij.

There have also been several studies on the spatial frequency sensitivity of the
HVS [65, 72, 101]. The spatial frequency perceived depends on the pixel size
of the image viewed and the viewing distance. Some numerical values can be
computed, for example, for a typical viewing distance and a typical monitor or
printer resolution. The spatial frequency is typically expressed in cycles per degree.
Some formulas for computing the contrast and frequency sensitivity of the HVS
are given e.g. in [166].

The quantization model we have used is similar to that presented in [142]. We use
a basic quantization step for each wavelet coefficient computed as

Sp = qof1(x,y) fr fr, (5.19)

where g is a user-adjustable factor, fr is a spatial frequency factor and fr is a
texture content factor. The background intensity factor fr(z,y) is computed from
the approximation image as

aq(z,
ff(‘r7y) =30+ %7

(5.20)
where a4(z,y) is the quantized approximation image value at image location (x,y),
and 64 is the number of quantization steps. For the frequency sensitivity factor
fr we have used the values in Table 5.2, which we have experimentally selected.

Table 5.2: The HVS frequency sensitivity values f used in our algorithm
for the different wavelet decomposition bands. Level 1 is the highest
resolution level and level 5 the lowest resolution level.

| Resolution/Band [| LH [ HL [ HH |

1 1.00 [ 1.00 [ V2

0.32 | 0.32 | 0.32v2
0.16 | 0.16 | 0.16v/2
0.10 | 0.10 | 0.10v/2
0.08 | 0.08 | 0.08v2

QU | W N
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The texture factor fr is a very simple approximation based on the number of
significant coefficients at the location and computed as

N,
=1.0+05-—=—, 5.21
Ir 3Nicvars (5:21)
where N, is the overall number of significant wavelet coefficients at the location
and N, is the number of resolution levels, which is equal to five in our algorithm.

The number of quantization steps N, is computed from the original step value S
as
round(l/S), if N, < Ny < N,..
Nq = Nmim if Nq < Nmin (5'22)
N, if Ny > N,

max ) max )

where N,;, and N, are user-defined parameters that can be used to adjust the
number of quantization steps. [ is the length of the interval of the wavelet coeffi-

cients’ absolute values in the detail image in question,
I = max |¢;| — min |¢;]. (5.23)
(] K3

The first quantization level is that closest to the minimum, and is now defined as

_ fd

So N,

(5.24)

and the quantization step is increased by a value A, at each step toward the
band maximum, producing a linearly-increasing quantization step. f; is a user-
adjustable parameter; f; = 1 produces a uniform quantization, while values f; < 1
produce an increasing quantization. The value of A, can be found to be

~ 2(1 = NgSo)

A, = a0 (5.25)

NS - N,

We found experimentally that the value f, = 0.1 gives quite a good visual quality
performance. We also found that this value gave a much smaller quantization error
in the L? norm than uniform quantization.

The approximation image, i.e., the values of the wavelet coefficients in the LL-
band of the lowest resolution level are quantized using similar kind of nonuniform
quantization with a fixed number of 64 quantization steps corresponding to six
bits.

5.3.3 Coding

The quantized approximation image coefficients are coded using a fixed number
of six bits. The wavelet coefficients of the detail images are coded for each detail
image separately using arithmetic coding [93, 133, 186, 246]. This also requires a
description of the distribution of each detail image’s coefficients to be written into
the compression output file, but with only a few quantization steps the distribution
descriptions do not occupy very much file space. The zero-tree labels, see Section



5.3. Compression Algorithm 7

5.1, are also coded using arithmetic coding. The finest resolution level labels are
coded separately from the others because there are only three labels possible, as
no isolated zeros can be at the finest resolution level. The other resolution levels
can contain all four possible labels.

5.3.4 Open Sea Masking

We have also used an open sea detection algorithm to reduce the compressed file
sizes. If we can detect the open sea areas correctly, we can then mask off these areas
before compressing the images and get significant reduction in the compressed file
size for images with large open water areas. The open sea detection algorithm is
similar to that presented in [108], and is based on spatial signal autocorrelation.
The open sea detection is not yet totally reliable under all circumstances, especially
in wet snow conditions, i.e. there is wet snow or even water on the sea ice. However,
the results of the open sea identification are mostly satisfactory as the experiences
gathered during the winters of 1999/2000 and 2000/2001 show. Together 147
Radarsat images were classified, the majority of them correctly. In 20 images some
ice area was interpreted as open sea, which is a serious error in this context. The
classification errors occurred mainly in late springtime. Anyhow, visual verification
of the classification result is required before compression. An example of open sea
masking is shown in Fig. 5.5. The compression ratio for the image is clearly lower
without than with open water masking. The compression ratios naturally depend
on the image and the sizes and shapes of the masked (land and open sea) areas.
The parameters used in this test were similar to those producing a compression
ratio of about 20 : 1 for the test images. The compression ratio for the image
without the open water mask is higher than the usual 20 : 1 because also a land
mask has been applied to the original image. The masked land area appears white
in Fig. 5.5.

5.3.5 Computational and Technical Aspects

The compression program requires a relatively large amount of random access
memory (RAM); for typical SAR images of some 8 megabytes (MB), a minimum
of 64 MB is required, and 128 MB is recommended. On a 3 GHz PC, currently in
operational use, with 1024 MB of RAM and running Linux, the compression and
decompression of a typical SAR image takes just a few seconds.

The algorithm parameters can be adjusted to be suitable for visual images, or also
for some other type of images, e.g. images produced by a specific sensor. There also
exists an RGB color version of the algorithm tested for some visual RGB images.
The algorithm first makes a conversion into the YIQ color coordinate system and
then uses a coarser compression for the chromatic information (I and Q) than for

the luminance information (Y). In the decompression the inverse conversion from
YIQ to RGB is performed.

The algorithm has been implemented using the standard C language without any
platform-specific code and should work on any platform. Also the microprocessor-
dependent byte order of multi-byte data types is tested and taken into account in
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Figure 5.5: A SAR image, April 5th 1999, Gulf of Bothnia, (¢ Canadian
Space Agency (CSA), before (left) and after open sea detection (right).
The masked pixels appear white in the image. The compression ratios
for the original image was 43.4 : 1 and 54.1 : 1 for the masked image
using the default compression parameters.

run-time.

5.4 Some Performance Comparisons

The algorithm performance has been compared to the JPEG algorithm [177], which
was the most popular standard image compression method available at the time of
the developing of our algorithm. Also comparisons to the SAR image compression
algorithm, i.e. the ALP algorithm [151], in use at FIS were made. Both objective
image quality measures and subjective evaluation by sea ice SAR experts were
made. Also different compression ratios (CRs) using our algorithm were tested to
find out useful compression ratios for visual operational use of our SAR data.

5.4.1 Experiments for Parameter Selection

We varied the parameters starting with values selected during our preliminary
studies. The compression ratio for typical SAR images using this set of parameters
is about 20 : 1. When changing the wavelet coefficient threshold parameters,
both the error measures and compression ratio change smoothly. The results for
quantization parameters are similar. For details, see [publication 2]. The final
adjustment of the parameters can be done using visual inspection of the images.

For objective comparison between an image pair (original and compressed) we use
two measures, Peak Signal to Noise Ratio (PSNR) and coefficient of determination,
R? [242]. The PSNR is defined (for an eight-bit image with a maximum value
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I...=255) as
I 2
PSNR = 10log o — (5.26)
v % > Zj(IO(Za]) — I.(3,5))?

and R? is defined as

2 Zi E](Io(lvj) - M)Z - Ei Z](IO(Z?]) - Ic(la.j))Q
Zi Z_j(IO i,J) — p1)? ’
where I, refers to the original (uncompressed) image, I.. to the compressed image,

and p is the computed mean value of the original image. The sums are computed
over whole images, consisting of N pixels.

R

(5.27)

We used both SAR and optical images in our study. The R? values are higher
for the optical images, around 0.95, compared to the corresponding values for the
SAR data, around 0.60. Because of the nature of the SAR data [publication 2] it
is obvious that the reduction of oscillation at the two finest scales has a greater
effect on the SAR data than on the Lena image, which was used as one optical
comparison image in our experiments.

The number of quantization bins is less significant in SAR image compression
than in compression of optical images. When the maximum number of quantiza-
tion steps was set to three, the PSNR and R? values of optical images decreased
considerably (PSNR almost 4 dB) compared to the corresponding values for SAR
data (PSNR about 0.4 dB). Also our visual observations have shown that using
a small number of quantization steps has only a slight effect on the visual image
quality of SAR images.

To get higher compression ratios using the proposed algorithm both quantization
and wavelet coefficient thresholding can be tightened for SAR images; for optical
images increasing the wavelet coefficient threshold values yields better results. The
compression ratios with the same set of parameters are generally higher for optical
images than for SAR images. It should be noted that the set of parameters has
been adjusted for visual compression of SAR images, and it is not optimal for
optical images in the sense of the error measures and the compression ratio.

5.4.2 Objective and Subjective Comparisons to ALP and
JPEG Algorithms

We computed many objective image quality measures and in Table 5.3 give some
PSNR and R? values computed from our set of SAR test images. According to
our experience the studied objective measures do not directly indicate the visual
quality of compressed SAR images very well. For example, there can be a signifi-
cant visual quality difference between two compressed SAR images with the same
PSNR. In the case of SAR images lower PSNR values than for optical images are
typically acceptable if the edges are preserved and the speckle is attenuated in
the compression. A subjective image quality test was implemented by creating a
WWW-page and the feedback was collected using an on-line feedback form and a
CGI script. The web pages contained eight 512 x 512 image windows, one for each
of the eight test images, each compressed using six different compression schemes,



80 Chapter 5. Wavelet-Based Compression of Baltic Sea Ice SAR, Images

Figure 5.6: Two 512 x 512-sized windows from SAR images, referred to
as SAR1 (left), and SAR2 (right), used as examples of the compression,
(©Canadian Space Agency (CSA).

Table 5.3: Some objective quality measures for SAR images compressed
with different methods. The values given are medians of the values
computed for eight SAR test images.

| Method (CR) / Measure || PSNR | R® |

250 m (6.25: 1) 27.67 | 0.610
ALP (20: 1) 27.18 | 0.564
JPEG (20: 1) 27.55 | 0.599

Wavelet (20 : 1) 27.82 | 0.624

Wavelet (40 : 1) 26.85 | 0.529

i.e., (1) image down-sampled to 250 meter resolution (typical highest resolution in
which the images are delivered to ships, compression ratio is about 6 : 1), (2) ALP
compression with a compression ratio of about 20 : 1, (3) JPEG with a similar
compression ratio, (4) our wavelet compression with a similar compression ratio,
(5) our wavelet compression with a higher compression ratio of about 40 : 1, and
(6) JPEG with about similar higher compression ratio. Compression results for
the images SAR1 and SAR2, shown in Fig. 5.6 using these methods have been pre-
sented in Figs. 5.7 and 5.8. The compression results with the higher compression
rate are shown in Fig. 5.9. Some Gaussian noise has been added to the wavelet-
compressed image of Fig. 5.9, because it seemed to help the visual interpretation
of the images with high compression ratios in our visual tests.

Subjective assessments were given through the WWW-pages by awarding grades
from zero (useless) to five (contains practically all the necessary information for
navigation) to the images. Totally eight persons gave their assessments, all of them
had long experience with using sea ice SAR data (including ice service personnel
and ice breaker captains). We have divided the assessments into two categories, one
being the overall category containing all the assessments, and the other contain-
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Figure 5.7: The original SAR1 at 250 m resolution (upper-left) and
compressed with a compression ratio of about 20 : 1 using three algo-

rithms: ALP compression (upper-right), JPEG compression (lower-left),
and wavelet compression (lower-right).

ing assessments from the sea ice specialists at FIS. The FIS category is presented
separately because the staff at FIS are specialists in interpreting sea-ice SAR im-
ages, and this feedback can therefore be considered to be the most valuable for our
purposes. The images were presented in the web pages in random order so that
the person giving the numbers could not know from the order of the images which
method was used for the compression. The feedback evaluation is presented in
Table 5.4. The values in the table are the grading means for the eight test images,
and the values in parenthesis are the standard deviations of these appraisals.

It can be seen from the Table 5.4 that the wavelet compression receives the best
marks. It should also be noted that the quality of the monitor used for inspecting
the images on the WWW-pages can affect the grading. For a reasonable feedback,
a monitor capable of showing all the 256 gray levels and with enough resolution to
show 512 x 512 pixel images is required. A problem with the JPEG compression
is that the method produces some undesired artifacts at high compression ratios,
e.g. JPEG 8 x 8 pixel block boundaries can produce visible artificial edges in the
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Figure 5.8: The original SAR2 at 250 m resolution (upper-left) and
compressed with a compression ratio of about 20 : 1 using three algo-

rithms: ALP compression (upper-right), JPEG compression (lower-left),
and wavelet compression (lower-right).

images that can lead to misinterpretations. This blockiness is especially disturbing
for high compression ratios, and clearly visible in the JPEG compression example
of Fig. 5.9.

Typical end-user comments were that all the essential features can be seen in the
wavelet compressed images, but there exist some unsharpness in certain areas.
Such unsharpness they called “frog spawn”. These are homogeneous areas actually
containing very little sea ice information important for navigation. This kind of
feedback can partly be explained by the fact that the end-users are used to view
speckled SAR-data.
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Figure 5.9: The panel displays the original images SAR1 and SAR2
compressed with a compression ratio of about 40 : 1 using JPEG (upper
images) and the wavelet algorithm (lower images). The blocking effect is
very clearly visible in the JPEG compression. The wavelet compressed
images are post-processed as described in the text.

5.5 Some Properties of the Algorithm and Discus-
sion

A wavelet-based compression algorithm for SAR images with many target-dependent
features was developed for operational use at the Finnish Ice Service. Sea ice is
a very specific target with a lot of strong transitions due to fragmentation of the
ice cover on multiple scales. The statistics of SAR images differ significantly from
that of optical images, and the special features of the image data to be compressed
must be taken into account in the compression. For SAR images compression ratios
about 20 : 1 give reasonable results for practical use. In practice, higher compres-
sion ratios are achieved for typical images because the land areas are masked off
(i.e. coded with a single value) before compression. Also, higher compression ratios
are possible depending on the use of the images.

The compression results with the implemented method are visually better than
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Table 5.4: Subjective quality evaluation of SAR test images. FIS repre-
sents the grades given by the sea ice specialists of the Finnish Ice Service.
The values in parentheses after the method names are the approximate
compression ratios, and the values in parentheses after the assessment
grades are their standard deviations.

] Category I All | FIS ‘
Persons 8 3
Images 42 24

250m 1.62 (0.91) | 1.29 (0.75)

ALP (CR 20:1) || 1.45 (0.86) | 1.17 (0.70)
JPEG (CR 20:1) || 3.21 (1.18) | 3.00 (1.02)
(1.32) (1.25)

(1.12) (0.88)

Wavelet (CR 20:1) || 3.38 (1.32) | 3.50 (1.25
Wavelet (CR 40:1) || 1.79 (1.12) | 1.63 (0.88

ALP or JPEG compressed images with similar compression ratios, though the
objective quality measures do not differ very much. A more thorough statistical
analysis of user assessments would require a much larger evaluation test and it
is practically impossible to implement with our resources. The main point of
the user assessments received is that our wavelet compressed images are useful in
operational use contain most of the navigationally essential sea ice information
and outperform the other tested more standard methods.

Sea ice SAR data transmission to ice breakers and ships has also been imple-
mented by the Canadian Ice Service (CIS). At CIS a commercial wavelet-based
compression technique (MrSid by LizardTech, inc. [15]) is used for automatically
compressing the Radarsat data with a compression ratio of 15 : 1. This software
utilizes image tiling, i.e. splitting the image into subsets, or tiles, and applying
the wavelet transform to these tiles separately. This technique makes it possible
to process very large images because only a part of the image is necessary to be
stored in the central memory at a time. The transmission to ice breakers has
been accomplished by either satellite (Inmarsat, Msat) or by cellular connection
[193]. The possible advantage of our system is that we can integrate the compres-
sion more tightly to our sea ice SAR transmission and viewing system and also
adjust and further develop the compression. Basically, the transmission systems
are quite similar, heavily compressing the data using a wavelet-based scheme, and
then transmitting the compressed data via satellite or cellular connection to the
ice breakers.

After the implementation of our algorithm the JPEG 2000 still image compression
standard [217] has been completed. JPEG 2000 also uses wavelet transform and
similar bi-orthogonal filters as in our algorithm. In JPEG 2000 it is possible
to select regions of interest which are compressed more accurately than other
areas and it is possible to tile the image into rectangular non-overlapping blocks
and compress these separately reducing the memory requirements. Image tiling
could be useful for large SAR images and considered as an improvement to our
algorithm. In our current algorithm the local image statistics can be taken into
account by adjusting the user-defined parameters which produce local wavelet
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coefficient thresholding. JPEG 2000 also uses visual frequency weighting to take
advantage of the human visual perception. In our algorithm we also take into
account the background intensity and texture in the HVS dependent quantization.
JPEG 2000 supports scalability meaning that it is possible to reconstruct images
of more than one quality or resolution simultaneously. Our algorithm does not
currently support this kind of progressive coding scheme, but it could possibly be a
future improvement if it will be needed in our operational system. In our algorithm
the coefficients are handled differently in homogeneous and textured areas and the
quantization scheme also differs from that of JPEG 2000. For entropy coding both
algorithms use the arithmetic coding.

Through the manipulation of the wavelet coefficients one can control the local
regularity of the reconstructed image. Hence, the wavelet-based compression also
performs speckle-reduction filtering. One can optimize the performance of the
algorithm with respect to this property with properly selected parameters (either
without quantization or with very accurate quantization). The wavelet coefficient
thresholding presented can also be seen as a despeckling filter. It could be possible
to improve this by applying e.g. Wiener filtering in the wavelet domain [70]. Also
some kind of image preclassification could be performed to define local wavelet
thresholds. These improvements will be considered in the future.

The parameters of the system are easily adjustable. The optimal parameters for
a certain class of images, such as SAR images produced by a specific instrument,
or optical images of some typical scenery, must be defined experimentally by an
expert aware of the importance of the features that should be preserved in the
compression. This may be a time-consuming process because of the large number
of parameters, but needs to be done only once for a specific set of data and user
requirements.

The compression can be further improved by using an open water mask before
applying the algorithm. The land and open sea masks can optionally be produced
to be smoothly changing at the mask/ice edges to improve the wavelet compression
because the smoothed edges do not produce such large wavelet coefficients as sharp
edges do. A much larger land mask covering the whole arctic area has also been
implemented at FIMR. This land mask is coarser than the mask for the Baltic
Sea area, and a small band of the land in the coasts has been left outside the
mask to make smoothing in the boundaries possible. This masking and smoothing
of the mask boundaries has shown to further improve the compression ratio by
even about 10 — 20% compared to the unsmoothed mask boundary. With high
compression ratios also some post-processing can improve the visual appearance
of the images.

It is not at all obvious that the wavelet transform is the best possible choice for
compressing the data in question, although it did give better results than e.g.
the cosine transform (JPEG). Especially the new representations (ridgelets and
curvelets) developed by David Donoho and his colleagues, see e.g. [20], would be
interesting research topics. In these representations it is possible to describe an
edge with a few coefficients. In this way we could partly overcome the problem that
most of the variation is concentrated at high spatial frequencies in SAR imagery.



86

Chapter 6

Baltic Sea Ice SAR Image
Segmentation and
Classification Using

Pulse-Coupled Neural
Networks

Because of speckle noise present in all SAR data, it is necessary to take the con-
textual information, i.e. information present in the neighborhood of a single SAR
image pixel, into account in SAR image segmentation. Pulse-Coupled Neural Net-
works (PCNN) [57, 188] are a convenient way to implement contextual image
segmentation. PCNNs are based on modeling operations found on mammals’ vi-
sual cortex. The simplified PCNN algorithm used in this work is relatively easy to
implement and it performs adequately for our Radarsat-1 SAR data. When com-
pared to some other tested segmentation methods it gives very good segmentation
results for our sea ice SAR data. Also the execution times are reasonable for our
operational data delivery in near-real-time (NRT) to the end-users.

Because our operational SAR data is not absolutely calibrated, we can not directly
use the relationship between SAR backscattering and different sea ice classes. In-
stead we define the classes from the data by decomposing the estimated SAR
sample distribution into Gaussian distributions. The assumed underlying sea ice
classes derived from the estimated total distribution are then described by the
Gaussian distributions of the decomposition. According to our studies the distri-
butions estimated from data (e.g. histograms scaled to sum up to one) in uniform
areas of our SAR data are very close to Gaussians distributions, and this assump-
tion is justified. By making this assumption we can first decompose a training set
into sea ice classes solely based on a training data set and then use this information
to segment the image with PCNNs.
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6.1 Decomposing Sample Distribution into Class
Distributions

To define classes from data, we compute an estimate of the SAR pixel value dis-
tribution for the training data set. First, the sample histogram is calculated using
all the incidence angle corrected images of the training data set. We make an
assumption that the estimated total distribution is a mixture of underlying sea ice
distributions, which are additionally assumed to have Gaussian form. To decom-
pose the sample distribution into these class distributions, we first note, that it
is practically impossible to find the class distributions from the SAR pixel value
distribution computed from the incidence angle corrected training set of 8 bpp
SAR data processed by the KSAT SAR processor. This is because the assumed
underlying distributions are overlapping very much. However, we can make use of
the assumption that in uniform sea ice areas the pixel value data have Gaussian
distributions.

We locate fixed size, say N x NN pixels, sample windows in the image, where the
sample distribution is close to a Gaussian distribution, and compute the distribu-
tion of the means of the pixel values in these windows. Assuming that the total
distribution is composed of distributions of sea ice classes, we may now denote the
mean of a sea ice class k by ui and the variance by 0']3. As a consequence of the
central limit theorem, the assumed underlying Gaussian class distributions in the
pixel value distribution become Gaussian distributions with the same mean pu; and
variance o7 /N in the distribution computed for the window means. To measure
the Gaussianity of the sample windows we fit a Gaussian to the sample window
distribution and compute the coefficient of determination, denoted by R?, and use
only those sample windows for which R? exceeds a given threshold 7.

In practice the estimated window mean distribution with suitable window size
really shows some peaks, unlike the total pixel value distribution. However, it is
still impossible to determine the variances of the assumed classes corresponding
to these peaks from this distribution. This is because there are probably some
minor classes with low prior probabilities, the incidence angle correction is not
perfect for all types of sea ice, and at the used resolution (100 m) also many
pixels are mixtures of several sea ice classes. However, the modes of the most
probable classes can be determined from this distribution. And from assuming the
distributions to be Gaussians follows that the class-wise means are the same as the
modes. A simple peak detection algorithm is applied to the sample window mean
distribution, after it has been slightly smoothed by applying a Gaussian kernel
to reduce the high frequency ripple, which could cause some undesired peaks, in
the estimated distributions. We used a Gaussian kernel with standard deviation
o = 1.0. The peak detection is based on the sign changes of the local difference, i.e.
the sign of the difference changes from positive to negative at peaks. Additionally
the algorithm only accepts the highest peak within a given neighborhood to filter
possible peaks very close to each other. The number of classes is defined by the
number of peaks. The peaks (modes) located are then assumed to be the means
of the class distributions.

Then the algorithm uses the pixel value distribution to estimate the class distri-
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butions. This is accomplished by using a modified version of the EM algorithm
[44]. The EM algorithm basically consists of two iterative steps, the expectation
(E-step) and maximization (M-step) steps. The E-step finds the expectation of
the log-likelihood, given the observed (incomplete) data x = (z1,...,2x) and the
current parameter estimates, and then the M-step maximizes this expectation with
respect to the parameters. The x;s are assumed to be independent and identically
distributed (i.i.d), i.e. their covariance matrix is diagonal. We use a mixture model
of M Gaussians over all the data values y (i.e. SAR pixel values):

M
p(y7 6) = Z ampm(y|9m)a (61)

m=1

where the parameters are © = (a1, ...,an, 01, ...,0)) such that Z%zl am =1
(prior probabilities of the M Gaussians) and each p,,(y) is a Gaussian density
function with parameters 6,, = (tm,0n) i.e. mean and standard deviation. Based
on the Bayes’s rule, we can compute
/
p(m|z;,0") = O;\;%pm(%WM) ) (6.2)
Zj:l Q;pPj (wz\%)

m is the index of the Gaussian m = 1, ..., M, and ©' and 0 refer to the estimated
parameters from the previous iteration for the jth Gaussian. Now the iterative
update rules of the EM algorithm for the Gaussian mixture become:

N
— 1 A
Q= N ;p(mkvl, ), (6.3)

N
> iy Tip(m|zi, ©')
N )
Zi:l p(m‘xia @/)
N
2 _ e (T — pm)?p(mlz, ©)
0 = ~ p . (6.5)
21:1 p(ml|z;, ©')
However, we keep the means u,, fixed to the peaks computed from the sample
mean distribution, i.e. we are not using Eq. (6.4) at all in our version. Instead we
only use the variances 02, and prior probabilities a,, of the class-wise Gaussians
are allowed to change during the EM iteration.

L = (6.4)

The prior probabilities of the Gaussians determined by the EM algorithm are not
used in the classification, but the class-wise Gaussians are assumed to be equally
probable. This assumption of equiprobability has been made because the proba-
bilities of actual sea ice classes vary depending on the weather conditions and the
stage of development of the sea ice, so they can vary a lot between images. Thus,
a very large set of data representing different sea ice conditions would be required
to define these parameters better, and probably even then different probabilities
should be applied for different ice development conditions.

For our training data of four ScanSAR-Wide mode images, the peak detection
algorithm located six peaks, see Fig. 6.1. Also the total pixel value distribution
can very well be composed of the six resulting distributions, the coefficient of
determination was R? = 0.996.
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Figure 6.1: Distribution of averaged window means for our training data.
Six peaks, shown by dots in the figure, were located by the peak find-
ing algorithm (upper panel). The total pixel value distribution of the
training data and the Gaussian mixture of the six estimated Gaussians,
the mixture curve has been lifted a little to make curves non-overlapping
(middle panel). The six Gaussians forming the mixture (bottom panel).

6.2 Pulse-Coupled Neural Network and Segmenta-
tion Network

Pulse-Coupled Neural Network algorithm [57, 103, 149, 188] is an iterative algo-
rithm in which a binary output image is produced at each iteration. The output
images at different iterations typically represent some segments or edges of the
input image. The PCNN has a neuron corresponding to each pixel of the input
image. One PCNN processing element consists of sub-elements: the feeding ele-
ment F', the linking element L, the internal activation element U, and the output
element O. The input stimulus is received by the feeding element and the internal
activation element combines the feeding element with the linking element. The
value of the internal activation element is compared to a dynamic threshold which
gradually decreases at each iteration. The internal activation element accumu-
lates the signal until it surpasses the dynamic threshold. After that the activation
element fires the output element and the dynamic threshold is simultaneously in-
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Figure 6.2: One PCNN element is connected to the neighboring elements
via the linking L and feeding F'.

creased by a large value. The output Y of the output neuron is then iteratively
fed back to the same element with a delay of one iteration. The network can be
implemented by iterating the equations [103, 149]

EJ’ [n] = e_aFAtF [n - 1 + VFZmukl k1 n - 1] + S (66)
k,1
Lyn] = e “ALin—1]+ VLZwUlek1 [n— 1] (6.7)
k,1
Usln] = Fy[n](1+ BLy[n)) (6.8)
Yiln] = { : ! q)therWlse " (6.9)
Tiln] = e “T2T[n— 1]+ VYyn — 1]. (6.10)
S,; is the stimulus input i.e. the pixel intensity, F}[n] the feeding portion of the

neuron, Lj;[n| is the linking, U;[n| is the internal activity, Y;[n] is the output
and Tj;[n] is the dynamic threshold, the indices ¢ and j refer to the pixel row
and column coordinates, indices k£ and [ refer to the dislocation in a symmetric
neighborhood around a pixel, and n refers to time (number of iteration). [ is the
PCNN linking parameter, ap, ay, ap are parameters related to the feeding, linking
and thresholding, respectively. m;;,, and w;;, refer to two weight functions, which
are typically decreasing functions of the distance from the pixel at location (4, 7).
These functions are called the PCNN kernels. They can e.g. have Gaussian shapes

with standard deviations o,, and o, for m and w.

A simplified block diagram of one PCNN element can be seen in Fig. 6.2. There
are three potentials V' and decay constants « associated with F'; L and 7. The
firing in the binary images produced by the PCNN mainly due to the primary
inputs is called the natural firing. The second type of firing, which occurs mainly
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due to the neighborhood firing at the preceding iterations, we call the secondary
firing or excitatory firing.

Three of the PCNN equations above, namely the equations (6.6)—(6.8), include
a contextual component, i.e. the output at a certain pixel location is dependent
of the inputs from the neighboring locations in addition to the input from the
pixel location itself. All these equations describe a different source mechanism for
the contextual information. However, in practice the multitude of the contextual
parameters complicates the determination of the parameter values, i.e. the training
of the network. Hence one is tempted to simplify the PCNN equations (6.6)-(6.8)
by grouping together the contextual parameters. Such re-parametrization and
simplification of the PCNN equations was proposed e.g. by Ranganath et al. [181].
In their model the PCNN equations are given in the following form:

Lyln] = wuYaln —1] (6.11)
Ujln] = bl“:jl(l + BL;[n]) (6.12)
- (" o
Tyl = { 6’”“‘27{” -1 é[[%] -0 (6.14)

Ly;[n] is linking from a neighborhood of the pixel at location (i, j), U;[n] is internal
activity at location (4, j), which is dependent on the signal value S;; (pixel value) at
(i,7) and linking value, 3 is the PCNN linking parameter, and Y;[n] is the output
value of the PCNN element at (i,7). Tj[n] is a threshold value. Ranganath et al.
called their PCNN network the segmentation network. In general, the segmenta-
tion property of PCNNs and segmentation networks is based on the contextual

linking.

6.3 Modified Pulse Coupled Neural Network

The PCNN model we have applied is a modification of the original PCNN [57,
149, 188], adapted slightly from the PCNN model of [181], and is implemented
by applying iteratively the equations (6.11), (6.12) and (6.13). In our model,
however, we use a fixed class-wise threshold value Tj;[n] = T, (m = 1,..., M refers
to the class) instead of a time-varying threshold value. Our algorithm processes the
distributions in two class pairs, starting from the class with the highest mean paired
with the class with next highest mean, and then continuing to the pair consisting
of the classes with second highest mean and third highest mean, and so on. All the
adjacent distribution pairs representing the classes are processed pairwise using the
PCNN algorithm. For each pair, based on the estimated Gaussian distributions
of these two classes, the pixels belonging to the class with higher mean are found
using the PCNN algorithm. Only the pixels not classified previously are included
in each pairwise classification. For each pair of classes the network is initialized
such that all Y;;[0]’s are zeros. For class 1 the parameters are defined using PDF
of that class only because there is no pair for it.
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Because our class distributions are highly overlapping, we can not select § such
that perfect segmentation can be achieved (for details, see [127]). Instead, we
allow a small classification error, and first select 7},’s such that only some minor
percentage of the Gaussian with the lower mean are misclassified by the natural
firing. In general, for a given error-level

T = pm—1+ fgOm—1, (6.15)

fq is a factor based on the cumulative Gaussian distribution function. For example
for 5 % misclassification we have f; ~ 1.64 and thus T}, = fi,,., +1.640,,,, actually
this seems to be a suitable value of f; in practice. This selection must be done
such that the amount of mis-classifications is reasonable small and at the same
time there are still enough pixels representing the class with higher mean. This
ensures that the neural network can locate the segments of the class with higher
mean during the PCNN iteration.

We keep the threshold T, the same for a given number of iterations, and also
retain the previously fired values Y;;[n|. At each iteration the pixels fired by the
excitatory firing are collected. A suitable amount of iterations in practice is 10-30.

We denote the Gaussian with the higher mean with A and the Gaussian with the
lower mean with B and say A,.. = pa — fq0a and B,.. = pp + feo0B. B
is also the value of T,,. Then we can select § such that the values of A, are
included into the class A with the minimum accepted linking. We are using the
neighborhood with the radius R = 1.5 (i.e. a usual 3 x 3 neighborhood, for details
see [127]), with the linking relative to the inverse of the squared distance from
the mid-pixel and normalized to one. Now the minimum allowed linking would be
L..= % + % + %2 = 15—2 ~ 0.4167, and the value of (3 is chosen to be

— A
Dmax T LPmin 1
LI (6.16)

min-~min

Biax
6 =

After the pixels of a class have been collected, the values of Y;[0]’s are set to zeros,
and a new threshold T,,, and linking parameter 8, based on the class distributions
of the next pair of classes, are used and new PCNN iteration is started. This is
repeated until all the adjacent class pairs have been processed. For the class with
the lowest mean value i.e. m = 1, there is not any pair B, so we just set B.., = tta
and compute 3 using this value.

There may still remain some pixels which are not mapped to any class. These
pixels are just mapped according to the closest already mapped pixel value in
their 8-neighborhood, iteratively if necessary. A block diagram of the algorithm
is presented in Fig. 6.3. In practice the only user-adjustable parameter of the
algorithm is the allowed error rate in classification defined by the factor f,. All
the other parameters are derived from the data distributions and the value of f,.

6.4 PCNN and Perfect Segmentation of SAR Data

Perfect image segmentation by PCNN is possible on some conditions, described in
detail in [127]. Assuming that we have two segment classes A and B, and the mean
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from class m Init Yij[n]=0
class and m-1 pdfg PCNN iter.
— ) m=m-1 Stop
m=M define T, (collect pixels Yes
and B of class m)

No

Figure 6.3: Block diagram of the algorithm for the case of M classes. The
class means are increasing from class m = 1 to class M. The PCNN block
runs the PCNN iterations described by Eqgs. 6.11-6.13 after initializing
Y, [n]’s to zeros.

of A is higher than the mean of B, a condition for selecting the PCNN parameter
0 for perfect segmentation can be expressed by the equations [127]:

Avin(14+8LA_,) > Anax (6.17)

Buin(1+ BLB,s,) 2 Bus (6.18)

B....(1+ BLp

L refers for linking here, and the subindex of the linking refers to the maximum or
minimum linking in A and B. The first two conditions come from the restriction
that all the pixels belonging to the classes A and B must be classified to the
class. This means that even with the minimum linking, the minimum value in
each class must be classified correctly. The third condition is due to the fact that
the maximum value of B even with the maximum linking is not allowed to be
classified to A. So, we get limits for the value of 3:

< Apox- (6.19)

max)

B = Do (6.20)

Brin = MaAX (6.21)

Now for the 8-neighborhood case L4, = Lp,,, = 2.5V, and Lg_, =2V, [127]. If
Bmin < Pmax Derfect segmentation is guaranteed. In our case the classes are however
so much overlapping that perfect segmentation is impossible. We can locate the

limit where (., = Omax, and by inserting the values of L4, , Lp,,. and Lp__,
into the equation we get
Amax Amax _ Bmax __
Bmax 1 = max min 1 , Bmin 1 (622)
2 2.5 2.5

Based on the assumption of normal distributions, we can set A,... = pa — f404,
Apax = 4A + f04, Boiw = 4B — [40B, Buax = 1tB + fq0, Where the means and
variances are estimated from the data, and solve the equation for f,. For example
for our ScanSAR narrow test image data the values of f; between two adjacent
classes varied from 0.611 to 0.918, corresponding to 45.8-60 % of the distribution
mass. This shows that even nearly perfect segmentation is impossible.
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6.5 Comparison of Some Segmentation Methods
for SAR Data

We have tested several segmentation algorithms for our data at FIMR. However, it
is impossible to know the actual ground truth, and we can only make visual judg-
ments and comparisons between the segmentation methods. Here some comments
on different segmentation methods are given, and also the segmentation results for
one SAR image window are presented, to make possible for the reader to compare
the segmentations. This SAR image window contains a lot of details and in this
sense serves as a good example of highly textured SAR area. The image is the
same used in speckle filtering test in section 4.3 and is shown in Fig. 4.6.

Segmentation results for the test image, shown in Fig. 4.6, using different segmen-
tation methods, are shown in Figs. 6.4-6.7, and the execution times are shown in
Table 6.1. Also the PCNN segmentation with parameters defined by the perfect
segmentation condition are shown for comparison in Fig. 6.4, left panel. The exe-
cution times for the perfect segmentation PCNN were similar to that of our PCNN
algorithm.

This experiment was performed with a set of Radarsat-1 ScanSAR narrow images
using four image windows for training and four image windows for testing. The
training for this material only produced four peaks and thus M = 4 Gaussians in
the decomposition. The parameters (mean u, and standard deviation o) of the
Gaussians for this material are (u1,01) = (50.64, 13.55), (u2,02) = (70.53,11.16),
(us,03) = (93.52,10.04) and (u4,04) = (108.36,11.61). ScanSAR narrow mode
data were used because at the time of developing segmentation methods, most of
the SAR data were in ScanSAR narrow mode. Some later comparisons [publication
5] for the ScanSAR wide mode data, which is currently our main operational data,
show that the method works well for this data too.

6.5.1 Markov Random Field Based Methods

We tested two algorithms that are based on Markov Random Fields (MRFs). These
algorithms are based on the dependence of the pixel segmentation class on the
neighboring pixel values and on the conditional pixel class probabilities. The
neighborhood pixels are described by cliques C;, which are groups of neighborhood
pixels of different shapes and conditional probabilities of the state sj; at pixel k,{
on condition that the neighborhood of pixel at (k,1) has a set of states Sy ;. Then
the discrete conditional probability density function p(s,,|S..) is

P(swalSi) = exp ZF (6.23)

JEC’

C is the set of cliques. Typically simple linear product potential functions Fj
for the cliques C; are used. 7' is a so-called temperature parameter, and Z; is
a scaling factor such that the sum of the probabilities is unity. The number of
clique types grows rapidly as the neighborhood size grows. We have used a 4-pixel
neighborhood and three clique types in our experiments.
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In the Iterated Conditional Modes (ICM) algorithm [13] the states are initialized
to maximum of p, ..(y(k,1)), i.e. the conditional density at (k,!) with observation
y(k,1) given the state s,;. m is an index referring to the state of M possible
states i.e. m € {0,...,M — 1} Then the new state is iteratively selected to be
maximum of p, .,(y(k,1))p(sx,]Sk,:). This is repeated until no changes occur or the
states begin to oscillate. The ICM algorithm started to oscillate between classes
after some iterations, and we used 10 iterations in our test. In another MRF
algorithm based on simulated annealing [69] the segmentation is optimized for the
whole image using simulated annealing where the temperature parameter is slowly
reduced during the optimization process. This algorithm proved to be very slow
to compute.

6.5.2 Edge Detection Based Methods

An edge detection based algorithm presented in [219] by Skriver. This algorithm
used gamma distribution testing for edge detection. However, this did not work
well for our down-sampled images and we used a gradient-based edge detection
instead. This seemed to work better, but still produced too many edges. The
situation was improved by using edge thinning and then removing edge segments
that were smaller than a given threshold. Then the algorithm computes for each
non-edge pixel the distance to the nearest edge pixel to produce a distance image.
This computation is performed using a technique known as chamfering [14], where
the distance value of a non-edge pixel is computed from its neighbors by adding
the neighbor distance to the neighbors’ distances from edges and the smallest
value is selected to be the distance image value at the pixel location. In this
initial segmentation each distance maximum corresponds to a segment. Then a
linking i.e. combining of segments close to each other is performed using the linking
criterion

Dg(my,mg) < a(D(mq) + D(ms)). (6.24)

Dp is the Euclidean distance between maxima m; and ms, and D(m;) is the
distance function at the location of m;. « is a constant for which a value of 0.6
was used. Then the segments correspond to each remaining maximum and are
labeled. Finally the edges are iteratively merged using a merging criteria based on
the segment mean intensity differences of adjacent segments. We have used two
merging iterations, which produced visually good result in our experiments. It
seems that this kind of segmentation results in all too many small segments, and
the merging applied to produce a more reasonable number of segments resulted
in visually unsatisfactory segmentation. The algorithm behaved even worse with
the original edge detection algorithm proposed in [219] and it is even still not very
useful with our simpler edge detection algorithm.

6.5.3 Comparison Results

The results of the comparisons are collected here. The execution times are shown
in Table 6.1, and the segmentation results for the used test image are shown in
Figs. 6.4-6.7 For comparison, we also tried direct thresholding, using the Bayesian
thresholds for the Gaussian distributions describing the classes derived from the
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Table 6.1: Execution times of the segmentation algorithms tested. The
algorithms were run on a 900 MHz AMD Athlon based computer with
512 MB RAM, and in the Linux operating system. The mean time values
and standard deviations are given for a set of eight test images.

Method Mean time (s) | Standard Dev (s)
PCNN (our method) 20.1 6.24
ICM (MRF) 42.1 0.35
Simul. annealing (MRF) | 1238 16.1
Edge-based (Skriver) 314 182
Thresholding 0.25 0.02
Filter + threshold 18.2 2.98

Figure 6.4: PCNN algorithm segmentation using the thresholds at which
Bin = Bumax, 1-€. thresholds of the classes are defined by the perfect seg-
mentation condition (left). Our PCNN algorithm segmentation (right).

training data, and also thresholding after anisotropic diffusion filtering [178]. These
results can be seen in Fig. 6.7.

There are quite many possibilities how to perform an intensity-based segmentation
for a SAR image. The noise present in our images either requires some filtering or
a method that takes the contextual information into account. We have seen that
our PCNN algorithm with properly selected parameters gives plausible segmen-
tation results compared to subjective visual segmentations. Also the execution
time was reasonable for operational use. The MRF-based models produced quite
nice segmentation results, but only the ICM algorithm can be used in practice be-
cause the simulated annealing algorithm had far too long execution times for our
purposes. Edge-based segmentation either produced some small segments which
should have been merged with other segments or merged visually reasonable seg-
ments, and the overall segmentation result did not look very good. The adjusting
of the parameters for this method proved to be very difficult. Applying anisotropic
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Figure 6.5: ICM (MRF) segmentation for the test image of Fig. 4.6 (left),
and simulated annealing (MRF) based segmentation (right).

Figure 6.6: Edge-based segmentation, with heavy edge pruning.

diffusion filtering [178] and then thresholding also makes some of the smaller seg-
ment boundaries fuzzy.

6.6 Evaluation of PCNN Segmentation Based on
Digitized Ice Charts and Visual Interpretation

We have made a statistical comparison between the digitized ice charts and our
PCNN-based classification results with m = 6 classes. In our experiments with our
operational data, Radarsat-1 ScanSAR Wide mode images, we used four Radarsat-
1 ScanSAR Wide mode images from the winters 2001-2002 and 2002-2003 for
training our algorithm and five Radarsat-1 ScanSAR Wide mode images from the
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Figure 6.7: Thresholding of the test image (left), and anisotropic diffu-
sion filtering and thresholding (right).

Table 6.2: Class characteristics based on digitized ice charts. The ice
types are class-wise modes, the thickness values (T,.., Tocans Lmax) are
class-wise means rounded to the closest integer centimeter.

Class 1 2 |3 |4 5 6

Ice type LI |LI|LI|CI|CI|CI
Town(cm) |6 |8 [13 |19 |21 |19
Toean (cm) | 11 | 14 [ 19 | 29 | 31 | 30
T.ox (cm) 17 | 22 | 28 | 41 | 44 | 42

same two winters for testing. The digitized ice charts give us the sea ice type,
minimum, mean and maximum ice thickness values in a rough scale. The ice
types in digitized ice chart are mainly based on ice concentration. The ice types
of the digitized ice charts are new ice (NI), level ice (LI), very open ice (VOI,
concentration 1/10-3/10), open ice (OI, 4/10-6/10), close ice (CLI, 7/10-8/10),
consolidated ice (CI, 9/10-10/10) and fast ice (FI).

We calculated the mode of the ice type for each PCNN-segmented class for our test
set of five images. We also calculated means of the minimum, mean and maximum
ice thicknesses for each class using the digitized ice charts. The results are shown
in Table 6.2. Unfortunately there were only two ice types present in the ice charts
for our test set, i.e. level ice and consolidated (deformed) ice.

It should be noticed that especially the ice chart consolidated ice type typically
contains many different kinds of segments of different classes, including many areas
with high backscattering value. In our classification these are included in class 6.

The geophysical interpretation of the classes is basically just that the degree of de-
formation (surface roughness) increases as the class mean intensity increases. The
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darker areas are less deformed, and the light areas are more deformed ice. In [155]
the signatures of different Baltic Sea ice types at C and X bands, for two different
incidence angles (23 and 45 degrees), and for two different polarization combi-
nations (HH and VH), were studied, using scatterometer data (HH-polarization
class distributions for dry snow condition were shown in Fig. 2.7). The sea ice
classification was visually based on the video of the flight lines, and it was com-
pared to some surface measurements for estimating the accuracy of the method.
The classes used were based on the operational Baltic Sea ice code [203]. The sea
ice classes used in the study are New Ice (NI), Smooth Level Ice (SLI), Rough
Level Ice (RSI), Slightly Deformed Ice (SDI), Highly Deformed Ice (HDI), Loose
Brash Ice (LBI, does not appear in our test set) and Frozen Brash Ice (FBI). The
backscattering intensity means of the classes are increasing in this order, except
that NI and SLI have about the same mean, and also HDI and FBI have about the
same mean. Because our data is not absolutely calibrated, and the incidence angle
is normalized to 35 degrees, direct comparison is difficult. Based on this analysis
we can only say that the classes with lowest means are likely to be NI or SLI, the
classes with highest means HDI or FBI, and the classes in between RLI or SDI.

Based on visual inspection of our test set we can say some more than based on the
scatterometer measurements. According to our visual interpretation and visual
comparison with the ice chart for the test images the conclusion is that class 1
mostly represents new ice, class 2 represents smooth level ice, class 3 represents
rough level ice. Class 4 mostly contains fast ice and areas of slightly deformed
ice, classes 5 and 6 contain fast ice, highly deformed ice areas (scrub fields), and
brash ice. The main characteristic that differentiates classes 5 and 6 is that class
6 contains the strongest back-scatterers, i.e. highest ridges and most of the frozen
brash ice. It thus seems, based on the visual interpretation, that fast ice is classified
to multiple classes. Fast ice classification can, however, be improved based on an
algorithm detecting fast ice and then taking into account the probable location of
fast ice (shallow coastal areas) as prior information [108]. Also frozen brash ice
gives a strong backscattering and will be mixed with the deformed ice areas, and
our existing algorithms can not distinguish frozen brash ice from highly deformed
ice areas.

As an example, a SAR image, its classification and corresponding ice thickness
mean map and ice type map, derived from the digitized ice chart, are shown in
Figs. 6.8 and 6.9. The difference between the resolution of the details in SAR
classification and ice chart derived maps can clearly be seen in the figure. Many of
the ice chart features are only marked with point-wise symbols and it is difficult
to exactly locate these manually placed features in the SAR image. For example
the bright area in the SAR image of Fig. 6.8 (classified to class 6) near the open
sea boundary is frozen brash ice, which is not a segment feature in digitized ice
chart, but only indicated with a couple of point-wise symbols.



Chapter 6. Baltic Sea Ice SAR Image Segmentation and Classification Using
100 Pulse-Coupled Neural Networks

Figure 6.8: A whole SAR image, February 2nd 2003, Gulf of Bothnia,
(©Canadian Space Agency, left, with incidence angle correction, and its
classification (right), only large scale features are visible in these images.
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Figure 6.9: Ice mean thickness image (left) and ice type image (right)
derived from the digitized ice chart, covering the SAR image in Fig. 6.8.
Ice thickness varies from 1 cm (dark) to 50 cm (light), open sea and land
appear as white.
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6.7 Fast Ice Detection

Fast ice is sea ice which remains fast along the coast, where it is attached to the
shore (land fast ice), to an ice wall or an ice front. It may also exist over shoals,
or between grounded icebergs [203]. In the Baltic Sea the fast ice is mostly land
fast ice connected to land. The fast ice detection [108] is currently based on SAR
intensity and the probable location of fast ice. Fast ice is naturally most common
in the shallow coastal areas. The PCNN classification is used as a basis for the fast
ice detection. Only the areas of the highest and second highest mean are considered
to be classified to fast ice. Extra conditions related to their location relative to
land are used in the final decision whether a segment represents fast ice or not.
The algorithm starts to look for fast ice in these areas from the coast and proceeds
toward the normal direction of the coast until it reaches a noticeable edge. This
approach with some filtering was tuned for the Radarsat-1 ScanSAR narrow mode
images and gave acceptable results. However, a more precise algorithm, based on
the ice history, has recently been developed. In this algorithm an approximation of
the fast ice area is first taken from the most recent digitized ice chart and updated
by the SAR segments in a similar manner as described in Section 8. This is justified
because fast ice, as its name suggests, is typically quite stable by nature and the
area covered by it does not usually change much in short time interval.



102

Chapter 7

Texture-Based Classification of
Baltic Sea Ice SAR Imagery

The texture of Baltic Sea ice SAR images, excluding uniform areas, mostly contains
different types of boundaries, representing ice type edges, leads, ridges and spot-
like features (representing smaller details, e.g. small ice segments). To analyze the
local content of these features, several methods have been tested at FIMR. We have
studied the use of local autocorrelation in open water detection and the results have
been promising. The method is presented in this section. Also two categories of
texture classification methods based on higher-order statistics are presented. The
first one is simply based on detecting edges and spot-like features based on higher
than second order moments. The other category of methods consists of utilizing
independent component analysis (ICA).

7.1 Open Water Detection from Baltic Sea Ice SAR
Imagery

Open water can not be distinguished based on the intensity only because the
backscattering from open water varies from very low to very high depending on the
waves and the local radar incidence angle. According to our knowledge, the local
autocorrelation seems to be a stable measure, with regard to the backscattering
strength, to detect open water. By autocorrelation we here denote the estimated
autocorrelation function value at a fixed distance. Areas of open water are actually
noise-like areas in SAR images, and autocorrelation can be used to measure the
existence of regular patterns (texture) in the image. Thus areas with random
pixel distribution i.e. with low enough autocorrelation are more probably open
water than areas of higher autocorrelation values. For the ideal (Gaussian) white
noise the autocorrelation value at any nonzero distance would be zero.

The image to be classified is first segmented and the autocorrelation is computed
for the segments rather than for small windows around single pixels. The autocor-
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relation of a segment is the mean of the local autocorrelation, computed in a small
window, over the segment. The segmentation is based on the SAR intensity after
the incidence angle correction [154] [publication 2]. This segmentation is further
refined by segmentation based on local autocorrelation.

The computation of the two-dimensional local autocorrelation, here denoted by
C(k,1), is carried out by using only the neighboring pixels, i.e. with 2-D lag values
(k,1) = (0,1), corresponding to vertical direction, (k,1) = (1,0) corresponding
to horizontal direction, (k,l) = (1,1) and (k,l) = (1,—1) corresponding to the
diagonal directions. The diagonal direction values are linearly interpolated to the
unit distance because their distance from the reference pixel is \/2. The corrected

autocorrelation for the diagonal directions at distance 1 thus becomes C(k,1) =

%Z‘[H, where C(k,[) is the computed diagonal autocorrelation value. The

local autocorrelation values computed only from the neighboring 3 x 3 pixel block
exhibit high random fluctuation. To obtain a more reliable estimate for C(k,1),
we first compute the autocorrelation in a 11 x 11 pixel block, here denoted by
B, around the center pixel, in the four directions separately. The directional
autocorrelation estimate for the lag (k,1) is computed as

Ok 1) = 187 2oisen (L0 =k, j —é) —pp) (1(4,7) — /iB)7 (1)

9B

where the |B| denotes the size of the pixel block B, up and op are the sample
means and standard deviation in B. Actually, only the pixels inside the segment
where the center pixel lies are used in the computation of the directional block
autocorrelations. The autocorrelation at the center pixel is then computed as
the weighted (by the relative amounts of samples in each direction) mean of the
four directional autocorrelations in the block. The autocorrelation of a segment is
finally the mean of the values C over the segment.

The threshold applied in the classification for the segment-wise autocorrelation is
determined on the basis of training data consisting of Radarsat-1 data and the
digitized ice charts of the same days. The digitized ice charts are used as reference
data, and by using this data it is possible to estimate the SAR autocorrelation
distributions for the open sea and sea ice areas of the ice chart. In the estima-
tion of the autocorrelation distributions, a Gaussian mixture model is used. The
number of components in this model is selected such that the coefficient of deter-
mination R? exceeds a threshold (here 0.95). The expectation-maximization (EM)
algorithm is used to estimate the parameters of the components. This approach
suggests two components for the open water, and three components for the sea ice
distributions. However, based on the small mixing proportion of the weaker open
water component, one may assume that the occurrence of this component is due
to the different resolutions of the SAR data (100 m) and the ice chart (1 km), i.e.
the area boundaries and small details in the ice chart are not of the same precision
as in the SAR image. This leads to some misclassification in the finer resolution
near the boundaries as well as in the case of isolated ice floes appearing in the
middle of open sea. The automated algorithm correctly identifies them as ice, but
in the ice charts they are not indicated.

The threshold is chosen to optimize the Bayesian decision rule between two den-
sities, whose prior probabilities sum to one, i.e., the threshold is the point where
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Figure 7.1: The estimated probability density functions of the local au-
tocorrelations C. In the upper panel are shown the PDFs for the training
data set, and in the lower panel the corresponding Gaussian components
with the estimated mixing proportions. The mean values associated to
the distributions are marked with a circle. The open water distributions
are drawn with blue and ice distributions with red color.

the two posterior densities are equal. The appropriate densities in this problem
are selected with the following procedure. The open water density in the threshold
determination is the mixture component with the large mixing proportion. The
selected component from the sea ice mixture density is the component with the
lowest mean. These densities for the training data are shown in Fig. 7.1, blue color
corresponds to open water and red to ice.

Determining the Bayesian threshold in this case leads to a second-order polynomial
equation from which the threshold can be solved. We calculated the optimal
threshold using two types of prior probabilities for the two distributions, the first
type utilized the mixing proportions estimated from the training data set, and
the second one the assumption of equiprobability of the distributions. The former
assumption gave the threshold value T}; = 0.258 and the equiprobable case the
value T,, = 0.225.

The algorithm first uses the lower threshold to define whether a segment certainly
contains open water or not. Then it tests the segments adjacent (in the sense
of 8-neighborhood) to these open water segments for the upper thresholds. If
the neighboring values are less than the upper threshold, the open water area is
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Table 7.1: Percentages of correctly classified pixels for the proposed al-
gorithm and for direct autocorrelation thresholding with two threshold

values.
Algorithm Data set | Water (%) | Ice (%)
Proposed algorithm | Train 94.00 81.49
Test 89.44 81.88
Wet 91.57 81.06
Threshold T, Train 76.09 75.13
Test 67.10 79.12
Threshold T; Train 79.58 68.65
Test 71.12 74.07

expanded by these segments. The threshold values are always compared to the
segment autocorrelation mean values instead of comparing the values computed
for small windows around each pixel separately.

Finally a filtering step is performed, and open water segments with size less than
a given threshold are set to ice, unless they are long and narrow, corresponding to
the typical shape of leads. An example of the open water classification is shown
in Fig. 7.2.

7.2 Evaluation of Open Sea Detection

In adjusting our algorithm parameters and testing of the algorithm we used a set
of 52 ScanSAR Wide mode images processed by KSAT in Tromsg, Norway. The
images were mainly acquired during the winter 2003/2004 while also some images
from the winter 2002/2003 were included. The training data set consisted of 20
images from the winter 2003/2004 which mostly represented dry snow condition.
Also some wet snow condition images were included. One test data set of 20
images over the winter 2003/2004 was then used to evaluate the performance of
the algorithm. These images also mostly represented dry snow conditions. Another
test set for wet snow conditions consisting of 12 images from the winters 2002/2003
and 2003/2004 was tested separately.

The classification performance of the algorithm for the training set, the test set,
and the wet snow condition test set are shown in Table 7.1. For comparison,
also the results of pixel-wise thresholding classification using the lower and upper
autocorrelation thresholds 7], and 7,; are shown for the training and test sets.
Using the proposed algorithm about 90 % of the open water is correctly classified
in all conditions, and over 80 % of the ice is correctly classified compared to the
information of the digitized ice charts of the same day.

However, when we compare what kind of ice is misclassified in the wet and dry
snow conditions, there are clear differences. In the dry snow conditions most of
the ice classified to open water is thin ice, but in wet ice conditions most of the
misclassified ice is rather thick, see Fig. 7.3. According to visual interpretation, the
misclassified open water areas are typically areas with some floating ice producing
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Figure 7.2: An example of open water detection (Gulf of Finland, April
1st 2004). The clear changes in open water backscattering as a func-
tion of the incidence angle can be seen in the SAR image (©FEuropean
Space Agency (ESA), top), the backscattering is significantly higher at
lower incidence angles. The incidence angle correction (middle) does not
change this much. The classification (bottom) locates the open water
areas (shown with a dark gray tone) quite well. It can also be seen that
the algorithm is sensitive to small ice floats and classifies open water
with floats as ice.

higher local autocorrelation. Two examples of the classification are shown in Figs.
7.4-7.7. The SAR image in Fig. 7.4 is from the ice melting period representing
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Figure 7.3: Proportions of the misclassified ice in different ice thickness
classes.

wet snow conditions, the average snow cover thickness at that time was around
5-10 cm in the Finnish coastal stations of Bay of Bothnia. The SAR image of Fig.
7.6 and its classification result in Fig. 7.7 are from a colder period when the snow
cover thickness in the Finnish coastal stations of Gulf of Finland was 30-45 cm.

It can be seen that the shape of the open water and sea ice edge in the classification
result is more detailed, causing some difference to the ice charts. There are also
some areas of thin ice, according to the ice chart, which are classified as open sea.
Also the edges of the SAR beam often cause misclassification of open water as sea
ice. This can be seen as the straight lines of the ice class in the open water areas
of Figs. 7.4 and 7.5).
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Figure 7.4: A SAR image, April 29th 2003, Gulf of Bothnia, (¢Canadian
Space Agency (CSA), left. Local autocorrelation (smoothed) over the
SAR image, right.

Figure 7.5: Open sea (darker gray tone) and ice in the area of the SAR
image in Fig. 7.4 according to the ice chart, left. Open sea and ice in
the area of the SAR image in Fig. 7.4 according to our algorithm, right.
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Figure 7.6: A SAR image, February 15th 2004, Gulf of Fin-
land, ©Canadian Space Agency (CSA), left. Local autocorrelation
(smoothed) over the SAR image, right.

’
F. F

Figure 7.7: Open sea (darker gray tone) and ice in the area of SAR image
in Fig. 7.6, according to the ice chart, left. Open sea and ice according
to our algorithm, right.

7.3 Sea Ice SAR Texture Feature Detection Based
on Higher Moments

Edges, i.e. ice deformations and boundaries of different ice types and open water
are an essential feature in Baltic Sea ice SAR images. Another essential type of
feature are in our SAR scale small spot-wise features typically representing local
deformations or small open areas. To detect these kinds of features we have studied
the use of local higher moments. Segment-wise statistics of these features can then
be used for texture classification of the segments. The segmentation can be done
e.g. using our PCNN segmentation algorithm.
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Figure 7.8: Fitting Gaussian distributions to SAR data windows from
uniform image areas representing different types of sea ice, or open wa-
ter. The estimated Gaussians and normalized histograms derived from
the data fit very well. The distributions for filtered data are typically
narrower Gaussians.

The moment-based feature detection method assumes Gaussian distributions of
the SAR pixel values inside uniform image areas, image segments. We have made
some experimental studies, fitting Gaussian distributions to PDFs estimated from
our SAR data (100 m resolution, logarithmic intensity values), and have observed
that the distributions are practically Gaussian ones. In Fig. 7.8, the blue curves
are the data PDFs and the red ones are the estimated Gaussians. In these areas the
Gaussian statistics gives most of the statistical information available in the SAR
image. However, in deformed ice fields the statistics significantly differs from the
Gaussian statistics (see Fig. 7.9). In our feature detection approach, in addition to
the usual Gaussian statistics, i.e. mean and standard deviation, also higher-order
statistics are computed in a round-shaped sliding window around each SAR image
pixel. The values we use are the normalized skewness and kurtosis values, which
are normalized versions of the third and fourth order moments, skewness M3 and
kurtosis My. The estimate of the £’th moment from N samples z; is computed as

my, = %Z(x — )", (7.2)

The sample mean (1st moment) is denoted by p = m; and the sample variance
(2nd moment) by 02 = my. The sample estimates for the normalized third and
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Figure 7.9: Fitting Gaussian distributions to SAR data windows from
image areas representing deformed ice. The histograms significantly dif-
fer from the Gaussians fit to them.

fourth moments, skewness M3, and kurtosis My, are computed as

ms3

My = (7.3)

=)

my
The values z; consist of pixel values in an image window around a pixel. The nor-
malization is such that both skewness and kurtosis are zero-valued for a Gaussian
distribution.

The detection of edges between larger uniform areas is based on the fact that the
sign of the skewness of the data window changes when crossing the edge, being
close to zero at the edge and having higher absolute value further away from the
edge. We can think the intensity distribution of the sliding data window near an
edge as a bimodal two-component distribution, consisting of the mixture of the
uniform area distributions on both sides of the edge. On both sides the mixture
distribution is dominated by one component, while at the edge the contribution of
both components to the mixture distribution is even. The dominant distribution
has a heavier tail on the side of the minority distribution. This implies that the
direction of the heavier tail changes to the opposite side at the edge. Hence,
the sign of the skewness changes. The skewness has zero value at the edge, but
also inside a Gaussian segment this statistic mostly has a value close to zero. To
avoid from including these non-edge locations, we use the fourth moment of the
distribution. For an edge we require that the kurtosis is less than a given threshold
T < 0, indicating a sub-Gaussian distribution, as multi-modal distributions, like
the bimodal distribution at an edge, typically are sub-Gaussian ones, see Fig. 7.10.

For spot-like features, the absolute value of the skewness is required to exceed a
given threshold value. This indicates a heavier tail, which results from the pixel
values of the spot-like feature, on one side of the dominating Gaussian distribution,
i.e. background pixels. Because the moments of a distribution can be similar to
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Figure 7.10: The skewness near an edge is close to zero. In the leftmost
image is shown an ideal case with two Gaussian distributions, with the
same variance, exactly at the edge. The middle and right images describe
the distribution and skewness on both sides of the edge.

those of a point at a distance from an edge, we additionally require the local gra-
dient magnitude to be centered close to the window center. Additional conditions
for the kurtosis can be used to get more information about the feature. In practice
also a threshold for the standard deviation value is used to find areas where the
higher-order statistics thresholding is then applied to precisely locate the desired
features. This also reduces the amount of required computation.

7.4 Some Experimental Results with Method Based
on Higher Moments

Originally we intended to use the method in SAR segment classification. We tried
classification based on locating the edges and spot-like features in each segment
and computing edge and spot-like feature statistics per unit area. However, this
approach was not very successful. We have used this kind of feature detection
for two purposes. In our classification algorithm [publication 1], based on the
Independent Component Analysis (ICA) [94], we need to select the training data
representing non-Gaussian image windows, which are just around the features
detected by the algorithm. Another application is to find candidate locations
for matching areas in two successive SAR images to get information about sea
ice movement. In the left panel of Fig. 7.11 we show an example of the feature
detection with a relative large open sea area on the left and sea ice on the right
side of the image. There is e.g. probably a ship, shown as a bright spot, in the
upper open sea area, and it is detected as a spot-like feature. In Fig. 7.11 the
feature detection has been applied directly to the SAR data. However, we noticed
that applying e.g. anisotropic diffusion filtering before feature detection reduces
the speckle-caused possible mis-detections. The filtered image and the feature
detection result for it are shown in the right panel of Fig. 7.11. It can be seen that
the potential ship is the only detected spot-like feature in the open see area.

A compromise must be made in the sample window size, large windows loose
features, and using smaller windows leads to false detections because of the noise.
For unfiltered images we have used a slightly larger window size. We have used
window diameter sizes of 7-9 for the filtered data and 9-13 for the unfiltered SAR
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Figure 7.11: The detection of edges and spot-like features (lower left
image) applied to the original SAR data (upper left image, ©Canadian
Space Agency (CSA)). A filtered version of the SAR image (upper right
image), and edges and spot-like features detected (lower right image).
Here the parameters are selected such that only strong features are de-
tected and very few “false alarms” occur. The ship in the upper part of
the open sea area is correctly detected as a point-like target.

data. The image in Fig. 7.11 is a good example because it shows both uniform,
speckled area (open sea on the left) and some deformed ice with clear features (on
the right).

7.5 Independent Component Analysis

The Independent Component Analysis (ICA) is a statistical data analysis method
that has gained popularity during the last decade. In ICA the measured sample
vectors are thought to be linear mixtures of some underlying signals. These un-
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derlying signals (basis vectors) are determined adaptively from a large collection
of sample signals of interest. The only assumption is that the coordinates of a
given signal in the ICA basis are statistically independent [22, 98, 99]. It has been
noted that in practice the application of the ICA basis usually leads to a sparse
representation of a given signal, i.e., the representation contains only relatively few
basis vectors. A characteristic feature of the ICA is that the set of basis vectors
used in the representation change from one sample signal to another, unlike in the
Principal Component Analysis (PCA).

The ICA model can be expressed as
x = As, (7.5)

where x with elements x1,...,x, is the measured data, A is the n x n unknown
basis vector matrix and s = (s;), ¢ € 1,...,n contains the unknown independent
components which are the coordinates of x in the basis given by A. The estima-
tion in the model (7.5) is performed by trying to find a solution, or rather, an
approximative solution, for the problem

y = Bx, (7.6)
)T

where y = (y1,...,yn)" are independent and, thus, the same as s;’s.

The mutual information [ is chosen as a measure of dependence. It is defined for
a vector y as

I(y) = ZH(yi) — H(y), (7.7)

where H refers to the differential entropy of a random variable. A direct compu-
tation of (7.7) shows that the joint distribution of y and the product distribution
of the marginal distributions of y; are equal if 7 = 0. In this case the random vari-
ables y; are independent. Hence, one can base the ICA algorithm on search of such
mapping B that y = Bx and the mutual information between y; is minimized.
It can shown [99] that to find such a mapping B is equivalent to maximizing the
non-Gaussianity of the y;. On this principle is built the FastICA algorithm [94]
which we have been using.

Whitening of the input data is performed as a preprocessing step, making the
computations much easier by removing pairwise correlations and making the sepa-
rating matrix W in the whitened coordinate system orthogonal (thus having only
n(n — 1)/2 free parameters for an n X n orthogonal matrix).

It can be shown, e.g. by the well-known Lagrangian method, that for a function
F(w), on the condition w is on the unit sphere, i.e. ||w|| = 1, the gradient at
the maximum points to the same (or opposite) direction as w. The derivation
of a family of fixed point algorithms, known as FastICA, is based on this. The
algorithms simply iteratively update w to be the gradient of the selected measure

of non-Gaussianity, and then normalizing w at each iteration such that ||w|| = 1.
For maximizing negentropy the update rule becomes:
w — E{xg(w'x)} — E{¢' (w"'x)}w, (7.8)

where g is a scalar function which is the derivative of a non-quadratic function G
used in the estimate of negentropy [95] and ¢’ is the derivative of g. The expectation
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operations F should in practice be replaced with the corresponding sample means.
This algorithm has at least a quadratic convergence and no adjustable parameters.

The algorithm presented above is a way to find one independent component (IC).
To find multiple ICs we first note that for whitened data the separating vectors w;
corresponding to different ICs are mutually orthogonal. This leads to an implemen-
tation where after each iteration we orthogonalize the components w;. In practice
we do this using the symmetric orthogonalization, in which no vectors are priv-
ileged over other (which is the case in e.g. Gram-Schmidt orthogonalization [3]):
let A”1 =W = (WWT)"2W where (WWT)~2 = (FAFT) 2z = FA 2FT ie.
we utilize the eigenvalue decomposition FAFT of WWT where A is a diagonal
matrix. Sometimes the dimension of the IC problem is reduced after the whitening
phase, using only n, (< n) whitened basis vectors corresponding to directions of
highest variances, i.e. principal components corresponding to highest eigenvalues.

We have used two categories of methods utilizing ICA. The first one is to use
predefined sea ice classes and then computing ICs for these classes separately.
These classes are defined by the sea ice surface roughness, for more information
about Baltic Sea ice typing see Section 2.4. In the other category of methods the
sea ice classes are considered as unknown and feature vector clustering is used to
generate a set of sea ice classes from the training data.

7.6 Pixel-Wise ICA-Based Classification

To measure the similarity between a basis vector b; and an image window x we
used a normalized ICA coeflicient

= | cos(a)], (7.9)

where ¢ is an index to the set of basis vectors {1,...,n}. Above « can be interpreted
as the angle between the vectors x and b;. Then we select the basis vectors best
discriminating the classes using a criterion function r to be maximized over all the
basis vectors. We use the criterion 71 of the form (adopted from [54])

Opetween (k)
O within (k) '

Here 0peiween (k) = Zj (@5 —ay)? is the variance of the j class means corresponding

ri(k) = (7.10)

to a basis vector with index k and o, (k) = Zj >i(aijk — @j)? is the sum
of variances within each class. k is an index referring to the kth basis vector.
The values of (k) are computed for the ICA coefficients. We selected 100 best
distinguishing vectors by using this procedure.

Another measure to select the vectors we have used is related to the tail part of
the frequency distribution of the ICA coefficients S;. We examined the quantity

ro(c, i) = #{S|Sf > T}/N¢, (7.11)

where c¢ refers to the class of the learning samples, ¢ € {1,..., N¢} and N°¢ is the
amount of the training samples from the class ¢ and T is a threshold value. If the
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difference ro(c1,1) — ro(c2,1) is large enough for some pair of classes {c1,ca}, the
basis vector ¢ is regarded as a good discriminator and the vector is used in the
classification. Then a larger set of vectors is generated from the selected vectors.
This is done by rotating each of the selected basis vectors in multiples of a given
angle, say . For example 8 = /4 will produce eight vectors corresponding to
each initial vector. This extended set of vectors can then be used in the classifi-
cation procedure. We have studied the methods described in the following three
subsections.

7.6.1 KNN-Based Classification

The KNN algorithm [37] is based on collecting prototypes (typical feature vectors)
representing the classes. This is the so-called training phase. In classification the
data vectors to be classified are compared to the prototypes, and the class of a
data vector is decided based on the k smallest distances from the class prototypes.

In our implementation, some prototype vectors are randomly selected from the
data classes in the training phase, and the normalized ICA coefficients of these
vectors are computed. In the classification phase, the normalized ICA coefficient
with each basis vector is computed, and then compared in the Euclidean sense
with the prototype vectors’ coefficients. Denoting the ith prototype ICA coefficient
vector with a; and the ICA coefficient vector of image window with b, we get for
the Euclidean distance

Dg(ai, b) = (7.12)

In the algorithm we find k& smallest Euclidean distances Dpg, and then by vot-
ing decide the class, i.e. the class of the window is the class which occurs most
frequently in the k selected prototypes. If there is a draw situation, the most de-
formed ice class used in the classification scheme (navigationally the most difficult
of the candidates) is selected.

The other version of the KNN algorithm tested computes an estimate of the ice
thicknesses, given the mean ice thicknesses of the classes. The ice thickness esti-
mate is computed as

S g
i=1 D?(ai,b)

Toe(b) = = 2iteet)
ice Zi-c:l 5 (}1i7b)

; (7.13)

where T; is the mean thickness of the class of the ith best matching prototype.

In KNN-based methods, the image window intensity information (mean) is ap-
pended to the feature vector used in classification and weighted with appropriate
weights to weight both the ICA coefficients and the mean value suitably for our
classification task. In our experiments these weights were selected experimentally
based on training data.
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7.6.2 PDF-Based Classification

In PDF-based classification the probability densities of the ICA coefficients are
first estimated and based on these estimated PDFs, the most probable class is
selected for each data window to be classified. For every class ¢, the PDFs of
the coefficients are estimated separately for each basis vector b§ of that class by
using the set of image windows {x} drawn from the training data. The estimation
is performed by applying a Gaussian kernel. The resulting PDF is denoted with
p(S§(x)). To classify a vector z (an image window), we first find m (a predefined
value) largest values of S¢(z) separately for every class c¢. Then, we compute the
probability p°(S(z)) using the estimated PDFs of the m best matching base vectors
b
m
p°(S(2)) = [ p(S¢(2)). (7.14)
i=1

The class for z is selected as the one which has the maximum probability p©(S(z))
among all the classes. Also the class-wise intensity distributions are computed in
the training phase, and the intensity probabilities can be used in the classification
like the ICA coefficient probabilities, with an appropriate weighting between the
ICA coefficient and the mean. However, in practice, a weighted sum of the prob-
abilities seems to work better because even one almost zero probability can cause
the product to be close to zero. Then the criterion becomes

p°(5(2) = Z wip(5;i(2)), (7.15)

where w;’s are weighting factors which are experimentally selected based on train-
ing data. Then the classification rule is: Select the class ¢ where

p’(z) = maxp°(5(z)). (7.16)

We have also tested some voting-based variants of the PDF methods. In these
methods we compute the class-wise ICA coefficient probabilities for all the basis
vectors, and increase the vote count of the class corresponding to the highest
probability. The classification for the data window is then the class with the
highest vote count. In another variant, instead of the votes the absolute values of
the ICA coefficients are used (i.e. the votes are weighted with the absolute ICA
coefficient values) for the class corresponding to the highest probability. Instead
of voting, summing the probabilities, or absolute ICA coefficient values weighted
by the probabilities could also be used.

7.6.3 Direct Classification Based on ICA Coefficient Mag-
nitudes

In direct ICA coefficient magnitude based classification a data window is classified
based on the absolute magnitude of the ICA coefficients by selecting the class
corresponding to the largest sum of absolute ICA coefficients. The sums of the
absolute values of the ICA coefficients are computed for each class (index k =
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1,..., N¢) based on the labeling of the basis vectors over all the basis vectors:

Sk =wy »_{|Si| | 9i] > T, class(i) = k}. (7.17)

i=1

The method can be adjusted using the weight coefficients wy, which can be selected
experimentally based on training data, by default they are all set to ones. The
class ¢ of the image window is selected to be the class corresponding to maximum
Ek:
¢ = arg max(Xyg). (7.18)
k
The image window mean intensity I can be taken into account using ! instead
of Ekt
Sho= Sk (p(1). (7.19)

pr(I) is the intensity PDF value for class k at I and aj is a properly selected
parameter, here called as intensity factor, which is selected experimentally, based
on training data.

7.7 ICA-Based Classification of Well-Known Tex-
tures

The methods were first tested by using a set of Brodatz textures from [16]. We
used six different textures, numbers 17, 21, 34, 38, 77 and 93 in [16] here denoted
by D17, D21, D34, D38, D77 and D93. These textures represent both very regular
patterns and on the other hand also more irregular patterns. The test image used
in classification tests containing all of the six textures is shown in Fig. 7.12. The
size of the original texture images was 640x640 pixels, and we used one half of
each image for training and the other half for testing the algorithm, i.e. 640x320
pixel images.

The results are presented here for the method directly based on ICA coefficient
magnitudes. The more complex methods did not give any significant improvement.
The sets of basis vectors were not expanded by rotations because the rotations in
Brodatz textures are quite limited, and they did not improve the classification
significantly, but only increased the amount of computation. We used one half of
the textures for training and the other half for testing. An example of ICA bases
generated by two of these textures is shown in Fig. 7.13.

We used round-shaped windows with a diameter of 13 pixels in our test. The
length of the input vectors were n = 145. From the sets of basis vectors the ICA
coefficient magnitude algorithm selected vectors (20 representing each texture class
or basis) which were used in the classification procedure, i.e. the total number
of basis vectors for six classes became N, = 120. The classification results are
concluded in Table 7.2 and an example of classification (with the intensity factor
ay = 0.2) is shown in Fig. 7.14. The results for these textures were very promising,
especially because two of the textures, i.e. D38 and D93 contained some similar
patterns visible in our SAR images. There was one larger area in D93 misclassified
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Figure 7.12: Brodatz textures used in classification tests. From left to
right textures D17, D21, D34, D38, D77 and D93.

Figure 7.13: ICA bases generated by the Brodatz textures D34 (left) and
D9s3.

Table 7.2: Classification accuracies for the Brodatz textures.

| D17 | D21 [ D34 [ D38 | D77 [ D93 [ Overall |
(896 % [ 998 % [ 96.4% [ 89.7% [ 98.7% [ 70.1% || 90.7 % |

to D38, but they are also visually close to each other, both in intensity and their
texture pattern.
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Figure 7.14: Classification of the textures in Fig. 7.12 with the intensity
factor oy = 0.2.

7.8 Segment-Wise ICA-Based Sea Ice SAR Classi-
fication

Because the Baltic Sea ice varies very much, it is difficult to define pixel-wise sea
ice classes accurately, and thus we can not use class-wise bases, i.e. generate sets
of basis vectors corresponding to each predefined sea ice class. That kind of an
approach is very easy e.g. for Brodatz textures and gives good classification results
as was seen in the previous section. However, we can first segment SAR images
and compute some ICA-based statistics giving information about the texture of
each segment. We can perform a clustering of the ICA statistics computed for a
training set, and produce a set of classes this way. Then we can use these classes
to classify SAR segments by texture.

7.8.1 Training

In the training phase the ICA basis vectors representing areas of interest, which we
here call featured areas in the images, are selected. Then the ICA basis vectors are
automatically grouped to present different local feature classes. For each featured
pixel of a segment in a segmented SAR image we compute the distribution of the
ICA-based local feature classifications. This distribution is then used to classify
the texture within the segment. The training procedure consists of the following
steps:

1. Perform incidence angle normalization for the SAR image.

2. Find featured areas in the image i.e. areas containing edge-like or spot-like
features, e.g. non-Gaussian data with reasonable variance, detected by the
algorithms represented in Section 7.3, or pixels detected by an edge detection
algorithm.

3. Create ICA bases using the windows located in the areas found in the pre-
vious step. Bases can be computed in multiple resolutions.
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10.

11.

12.

If multiple bases were computed, combine the bases into one set.

Prune duplicates that are very similar to some other vector(s) and also prune
some small features located at the edge of the 2-D window corresponding to
a basis vector. The matching is done by cross-correlation, first locating
the center of mass for thresholded gradient window of each window. The
cross-correlation between two vectors is computed by rotating another of
the vectors in increments of «; (a parameter) and using the largest cross-
correlation of these as the cross-correlation value.

Select basis vectors from the combined set that best fit a large number of
samples drawn from the training data. The criterion is based on the sum of
the absolute ICA coefficient values cumulated to each basis vector. In the
coefficient cumulation only those values exceeding a threshold T' are taken
into account. Also here each basis vector is rotated in increments of o and
the largest ICA coefficient for each vector is used. The basis vectors that
have sum larger than a given percentage of the largest sum are selected.

Cluster the basis vectors based on a large number of features. We just use a
k-means type algorithm [145] for that, with k& = 10.

Expand the basis by rotating each basis vector in increments of «s.

Classify each featured pixel location. The class is defined by the cluster
of the best matching basis vector, or if the cross correlation is less than a
threshold, the class is set to an “undefined” class, i.e. there are k+1 classes.

Segment the SAR image. We use the PCNN-based segmentation presented
in Section 6.3.

For each SAR segment attach the distribution of the featured pixel classes
computed in the previous stage. The pixels at the segment edges are not used
in the computation as segment edges may contain similar features which
exist inside segments and can thus have effect on the classification. The
distributions are normalized to sum to one, and the number of featured
pixels in each segment is used as a separate feature in the classification.

The segment-wise normalized distributions and counts of featured pixels per
unit area, i.e. segment-wise numbers of featured pixels divided by the seg-
ment areas. The counts of featured pixels per unit area and the normalized
distributions are then clustered, e.g. using the ISODATA algorithm, produc-
ing two sets of cluster centers. We call these features roughness and texture.
This is performed for the segments of the whole training material, i.e. several
images.

7.8.2 Classification

The classification uses the count of featured pixels per unit area and the local
feature distribution to classify the segments. Each segment is simply classified to
correspond to the class of the nearest cluster center created in the training phase.
The classification procedure consists of the following steps:
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1. Perform incidence angle normalization for the SAR image.
2. Find the featured areas (as in training) for the image.

3. Classify each featured pixel location using the basis vector classes computed
in the training.

4. Segment the SAR image, as in the training phase.
5. For each SAR segment attach a distribution of the featured pixel classes.

6. Classify each segment such that the class corresponds to the shortest Eu-
clidean distance between the segment features and the cluster centers. We
get two classifications, one simply based on the number of featured segments
in the segment divided by the segment size, and the other based on the
normalized distribution of the features.

7.8.3 A Practical Example

We used a large set (27 scenes) of Radarsat-1 ScanSAR wide mode data for the
ICA training. As a result we got a set of vectors mapped into k = 6 categories
shown in Fig. 7.15. The vector length is 145, corresponding to a round-shaped
image window with a diameter of 13 pixels.

We here use the SAR scene of Fig. 4.6 in Section 4.3 as an example. The seg-
mentation of this image, based on the PCNN-segmentation is shown in Fig. 7.16.
The classification was applied to the same SAR image window (containing many
edge-like and spot-like features), which has also been used as an example earlier.
The featured areas were here located using the Canny edge detection algorithm
(see Fig. 7.17) and filtering out very small edge segments, assuming they are due
to speckle. The result of the roughness and texture classifications are shown in
Fig. 7.18, and the final combined classification in Fig. 7.19.

The texture classification can better distinguish the deformed areas, based on the
type of deformation, making difference between smaller features and longer edge-
like features. In general, by visual comparison of the ICA-based classification
results and ice charts, it can be seen that the textures of fast ice and new ice are
rather similar. Also, the texture of consolidated close ice pack and compact or very
close ice pack are similar to each other, but different from the previous two. In
addition, the texture of level ice differs from these two main classes. The texture
of open ice and open sea depends on the amount of ice floes among the open sea
and on wind conditions (waves).

The roughness value is lowest for level ice, higher for close ice and even higher for
consolidated, compact or very close ice. By combining the texture and roughness
classifications we get a classification describing the ice surface inside segments as
seen by the C-band SAR instrument. This description is usually in finer resolution
than the symbols and segments drawn on the ice chart, making the verification
difficult, especially for small segments.

We have also ordered the set of basis vectors by their orientation. The edge-like
filters were selected by first generating a gradient image of the ICA filters, then
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Figure 7.15: Extended set of ICA vectors, ordered in 6 classes. The class
number increases from top (class 1) to bottom (class 6), the classes are
separated by horizontal lines.

thresholding this gradient image and generating binary images to locate edges in
the filters. The two principal components A\; and Ay of the binary edge images
were ordered such that |A;| > |\z| for the filter edges were computed. If the value

= /|A1]/] 2| exceeded a given threshold T, that window was decided to be an
edge filter. The direction for each selected filter was defined based on the direction

of the first eigenvector.

A set of ICA vectors automatically ordered according to their direction is shown
in Fig. 7.20. This set was used in defining local edge direction distributions for
SAR data. Such distributions can be useful in navigation in the Baltic Sea ice.
This has been tested to generate ridge direction distributions over high-resolution
Envisat ASAR images to aid navigation, but it has not been in operational use.
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Figure 7.16: Segmentation result for the SAR image of Fig. 4.6, based
on PCNN and segments smaller than a threshold (100 pixels) joined to
the neighboring segments.
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Figure 7.17: Edge detection (Canny [21]) applied to the SAR image in
Fig. 4.6, left. Edge image with small edge segments (less than 10 adjacent
pixels) filtered out, right.

7.9 Discussion

It seems that the proposed ICA-based classification method can distinguish be-
tween some elementary types of sea ice. By combining this method with segment
mean intensity classification and local autocorrelation classification, we can get an
improved classification scheme compared to our earlier classifier [108]. It is also
obvious that the texture, i.e. the classification based on the relative distribution
of the feature types inside a segment, gives extra information compared to the
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Figure 7.18: Roughness classification of the segments. Blue represents
low and red high roughness (left). Texture classification of the segments
(right). The light green areas mostly represent new ice (no fast ice
present), the green areas level ice, and the colors from dark green to
red more deformed ice types with leads or ridges.

Figure 7.19: Combined roughness and texture classification of the seg-
ments.

roughness feature only. However, the exact geophysical interpretation of the tex-
ture information is very difficult and combining it with the ice types currently in
use in our operational classifier [108] or with the ice types described in Section 2.4
seems to be very difficult.

The training of the ICA with Radarsat-1 ScanSAR data requires selection of the
input data, e.g. based on the location of the edges. However, the training results
were better for the ERS SAR-data which has better contrast (i.e. higher signal
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Figure 7.20: Selected edge-like ICA basis vectors ordered by their com-
puted direction.

to noise ratio) compared to our Radarsat-1 data. We also tested training ICA
with filtered Radarsat-1 data, but most of the tested filtering techniques seem to
emphasize the spot-like features making most of the ICA basis vectors to describe
these spot-like features. Also the use of the noisy ICA [97] was tested for Radarsat-
1 data, but the results were not very promising. Possibly a combination of careful
automated selection of the training data set and noisy ICA could improve the
training.

The edge and spot-like feature detection based on higher-order statistics works for
our noisy data rather well, but the accuracy is dependent on the selection of the
window size and possible pre-filtering. The speckle has stronger effect for small
windows and weaker for large windows (or for pre-filtered images), while large
window size and pre-filtering reduce the local accuracy. We have used window
sizes of 7-11 pixels in diameter and in some cases also applied anisotropic diffusion-
based pre-filtering. These settings give reasonable results for our data, based on
visual judgment. In the future we are going to study adding of a corner pixel
detector into the pixel classification and then detecting three classes of pixels, i.e.
edges, spot-like and corner pixels.
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Chapter 8

Estimation of Ice Thickness
Based on Baltic Sea Ice SAR

Data and Thickness History

Ice thickness is one of the most important parameters for the navigation in sea
ice, and the ice charts produced by FIS include ice thickness values for each chart
area (segment). However, the manually drawn segments are typically large and
spatially more accurate information about the sea ice thickness would aid the
navigation. Additionally the information in digitized ice charts is based on visual
interpretation of remote sensing data and on sparse ice thickness measurements and
approximations coming from coastal stations and ships. In this work an algorithm
which refines the ice thickness information available in the latest available digitized
ice chart based on our operational Radarsat-1 SAR data has been developed. The
ice charts are drawn daily by FIS personnel on duty. For each area in the ice chart
an ice thickness interval and mean ice thickness value are given. An example of an
ice chart in vector graphics is shown in Fig. 8.1, however, the digitized ice charts
we use are converted into raster graphics.

8.1 Preprocessing

One operational product delivered to the end-users are the SAR-refined ice thick-
ness charts. In this product the most recent available digitized ice chart, derived
from the daily ice chart made at FIS, is refined based on a newly arrived SAR
image. The steps of the operational algorithm are described here.

First, our incidence angle normalization algorithm developed for Baltic Sea ice
[154] is applied to the SAR data. Then the incidence angle corrected images are
segmented using a slightly modified ISODATA clustering algorithm [6]. The ISO-
DATA algorithm is a variant of the k-means algorithm [145]. Instead of a prede-
fined number of cluster of the k-means algorithm, ISODATA algorithm produces a
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Figure 8.1: Ice chart (©Finnish Ice Service) of January 6th 2003.

data-dependent number of clusters adjusted by some input parameters (minimum
distance between cluster, maximum variance inside a cluster, minimum number of
samples in a cluster). In the ISODATA algorithm the clusters are merged and split
according to these criteria during the iteration. In our ISODATA algorithm the
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" 99

Figure 8.2: An example of a round-shaped image window with an edge
(left), finding the edge pixels by gradient thresholding (middle) and
showing the estimated edge direction and location (right). For visual
purposes this window size is larger than the size used in the actual algo-
rithm. Only the pixels lying on the same side of the detected gradient
line as the mid-pixel (shown bright) are used in computing the mean
value used in the segmentation.

all = of

Figure 8.3: A small piece of a SAR image with a segment edge (left).
The detected edge pixels in a 13x13 pixel window and gradient direction
shown as an arrow (middle). Final segmentation result (right).

split and merge procedures slightly differ from those of the standard ISODATA
algorithm. Our variant does the splitting by applying 2-means (k-means with
k=2) inside the cluster to be split, and merging is done by merging each sample
separately to the cluster corresponding to the closest cluster center.

The values used in the ISODATA segmentation are not the pixel values, but means
computed in a round-shaped window with a diameter D around each pixel. For
each such window the gradient inside the window is computed and thresholded with
a threshold relative to the maximum and minimum gradients inside the window,
T = grmin + @(Ginax — Gmmin), Where 0 < o < 1 is a coefficient. The locations of the
gradient values exceeding T' are considered as (linear) edge pixel locations. The
connected edge contour is formed as follows. The direction of the edge is defined
to be the first principal component of the edge pixel locations. The location of
the edge is determined by assigning the principal component vector to the center
of mass of the gradient pixel locations, see Figs. 8.2 and 8.3. Finally, the mean in
the window is computed only including those pixels which are on the same side of
the edge as the mid-pixel of the window, and if the mid-pixel happens to be at the
edge, the mean is computed for the edge pixels only.
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8.2 Combining Ice Thickness History and SAR Data

After segmentation each SAR segment is compared to the segments in the ice
thickness map. If over 50 % of a SAR segment is covered by one chart thickness
segment, this chart thickness segment is extended to cover the whole SAR segment,
otherwise the chart thickness segment remains unchanged. This step defines anew
the boundaries of the chart thickness segments. Naturally, one can also apply some
other threshold than 50 % coverage currently in use. Smaller percentages change
the digitized ice chart more and higher percentages less. After this updating of
the ice thickness segment boundaries the thickness values are linearly mapped such
that the minimum thickness is mapped to correspond to the minimum SAR seg-
ment intensity mean and the maximum thickness to correspond to the maximum
SAR segment intensity mean inside the same thickness map segment. This proce-
dure is applied to a thickness map and a SAR image of the same day, producing
a map which we call an augmented ice thickness map. If we have at our disposal
a new SAR image and the ice thickness map of the previous day, this procedure
can be utilized to give an estimate for the current ice thickness distribution. The
estimation works well if only minor changes in the ice conditions between the time
of the SAR acquisition and the time of making the ice chart have occurred.

However, due to the dynamic nature of drift ice fields, the changes in ice conditions
can be radical. Especially this is true if the time gap between the SAR data and
ice history is larger than one day. For this purpose we have developed an algorithm
which tries to correct the ice thickness map generated from the ice history with the
aid of the SAR data. The empirical observations guiding the correction procedure
are that the areas with low spatial autocorrelation are often open water areas and
the areas with high intensity and higher autocorrelation have often higher mean
ice thickness. By utilizing these observations, certain changes (e.g. identification of
open water areas) to the existing segmentation can be made. To ensure that these
changes mostly lead to corrections instead of misinterpretations, certain thresholds
for autocorrelation and intensity statistics need to be defined. These thresholds
were estimated from a training data set containing simultaneous SAR and ice
thickness data. In the training phase 10 different intensity classes were determined.
In the updating algorithm the image is then classified by utilizing these fixed class
centers, shown in Table 8.1.

The features used in the classification are the local autocorrelation computed in an
11x11 pixel window around each pixel and the SAR segment intensity mean. The
segments are further divided if the autocorrelation segments do not match with the
intensity segmentation with a required accuracy. As a result, we have a segmenta-
tion with two values, intensity mean and autocorrelation, for each segment. These
segments are then classified to four probable open sea classes and six ice classes.
The thickness is changed to zero (open sea) if the class of the segment is one of
the open sea classes and the thickness in the previous ice thickness map is less
than a threshold. The remaining six ice classes have values for minimum thickness
associated to each of them, and if the ice chart thickness value is less than this
minimum value, it is set to a mode value in a neighborhood of the segment. This
mode value is computed only for values greater or equal than the given class-wise
minimum thickness. The mode computing neighborhood is defined as the area of
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Table 8.1: Segment classification for ice thickness map correction. The
SAR intensity and autocorrelation are used to correct segment thickness
values for such segments that could probably be misclassified without
any correction. The segment minimum thicknesses deviating from the
values given here are changed to these values.

Object type | Class | Intensity | AC mean Assigned min tck (cm)

Open water 1 63.4 < 0.29 0
2 84.9 < 0.29 0
3 99.6 < 0.29 0
4 113.7 < 0.29 0

Ice 5 56.5 029...044 | 1
6 59.6 > 0.44 2
7 69.9 029...044 | 5
8 83.0 0.29...044 | 10
9 79.9 > 0.44 15
10 94.9 029...044 | 5

the bounding box of the segment enlarged by a constant factor into directions of
its four sides.

The segments are classified to the class corresponding to the nearest class centre
using the 2-dimensional Euclidean distance. The autocorrelation is normalized to
be in the interval (0, 255) before the classification. These values shown in Table 8.1
were defined based on a small set of experimental data, and in practice they make
cautious corrections to the right direction. To define more precise correction values
an analysis of larger data set would be required. An example of some steps of the
algorithm are shown in Figs. 8.4-8.6. The original SAR image, the segmentation
result for the image and the resulting ice thickness chart are shown.

It is also possible to generate mosaics of several successive thickness images to
cover larger areas of the Baltic Sea in the same image. This kind of a product is
not operational, but could be made such depending on the interests of the end-
users. The operational mosaics would always be updated after arrival of a new
SAR image. An example of a SAR mosaic and SAR-refined thickness chart is
shown in Figs. 8.7 and 8.8. These can be compared to the ice chart of January
6th 2003 shown in Fig. 8.1.

8.3 Comparisons between FIMR Ice Thickness Prod-
ucts and EM Measurements

The maximum daily temperatures during the HEM measurement campaign in the
winter 2003 were typically above zero degrees, probably making the ice surface and
snow on the ice wet in the daytime, and thus attenuating the SAR backscattering
from the sea ice. This data set mainly describes the statistics of wet snow or frozen
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Figure 8.4: A Radarsat-1 ScanSAR wide mode image over the Bay of
Bothnia, January 2nd 2003, ©Canadian Space Agency (left). The image
after our incidence angle correction algorithm has been applied (middle).
And a segmentation image (right), where the segments have been filled
with the segment mean intensity value. This is a filtered version of the
original SAR image. For visual purposes the mean values in the figure
have been scaled between black and white.

Figure 8.5: The ice thickness chart of January 1st 2003 (left) and January
2nd 2003 (right).

snow-surface conditions, and a similar study for dry snow conditions would also be
useful. The time gap between the SAR image and the HEM measurement varied
from about 2 hours to about 9.5 hours, and the wind speeds between the SAR
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Figure 8.6: The SAR-refined ice thickness chart of January 2nd 2003
(left) based on the previous day ice thickness chart, with the correc-
tion procedure applied. The SAR-refined ice thickness chart (right) of
January 2nd 2003 based on the same day ice thickness chart.

acquisition and the HEM measurement were relatively low (in maximum about 4
m/s in the coastal stations). The data are in different resolutions, the sampling
rate of the HEM measurement is 3-4 m and the HEM measurement resolution is
around 20-30 m, while the Radarsat-1 images are in 100 m resolution. The nominal
resolution of digitized ice thickness charts is about 1 km, and the resolution of our
operative SAR-refined ice thickness chart is 500 m. In 100 m resolution the HEM
flight line in maximum covers about 20 % of the pixel area (assuming straight flight
line over the pixel center), and in 500 m resolution this area is only 4 %. The only
reasonable way to compare these kind of data is to make statistical comparisons.
The material covers five SAR images from 4 days, and about 1000 km of HEM
flight lines in total. The measurements were conducted in highly ridged drift ice
area during February 17th and February 23rd 2003 in Gulf of Finland and Gulf of
Bothnia. Before the comparisons the incidence angle correction [154] [publication
2] was applied to the SAR data, normalizing the SAR pixel values to correspond
an incidence angle of 35 degrees.

For each SAR or product pixel in the HEM measurement lines, we first deter-
mined a distribution of the measured HEM thicknesses. From this histogram
several statistics can be extracted, we computed e.g. the relative amounts of three
ice classes, the mean thickness and the thickness mode over each 500 m pixel. To
analyze our data, we coarsely divided the sea ice into three categories, the first
representing level ice corresponding to the thermal growth, the second representing
rafted ice, and the third representing ridged ice. Additionally there appear also
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Figure 8.7: A SAR mosaic of three Radarsat-1 ScanSAR wide mode
images, from Jan 6th 2003 (2 images) and Jan 7th 2003 (1). The image
boundaries have been drawn in the image.

open water. The level ice, is ice with the HEM thickness less than 50 cm (rep-
resenting the estimated maximal thermal growth until late February, being about
50-60 cm), rafted ice is the HEM thickness measurement range from 50 to 100 cm
(corresponding to doubles of the level ice), and the ridged ice is the ice with HEM
thickness over 100 cm (including higher multiples of the level ice).

In our statistical analysis, the most expressive statistical relationship between the
incidence angle corrected SAR pixel values and the HEM thickness distribution was
established as follows. The range of the amplitude values was first divided into 15
equal-sized bins. Then, given a fixed bin, we computed the conditional distribution
of the three ice thickness categories based on the HEM thickness values. It was
observed that the fraction of small ridges (rafted ice) remained relatively constant
independent of the SAR pixel value. In this data set with these thickness limits,
this fraction remained about the level of 30 %. On the other hand, the area covered
by large ridges grows almost linearly from 0-10 % at very low amplitude values to
90-100 % at the highest amplitude values. The fraction of level ice decreased from
70 % at low amplitudes to less than 10 % at high amplitude values, see Fig. 8.9.
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Figure 8.8: The refined thickness map mosaic corresponding to the mo-
saic of Fig. 8.7. Some minor differences on opposite sides of image bound-
aries can be seen. They can be due to improper image co-calibration at
KSA or due to changes in ice conditions during the time gap between
the images.

If the limits in the three ice categories are changed, the figures of relative fraction
change accordingly, but qualitatively they exhibit the same kind behavior.

We also examined the (cross-)correlations between the incidence angle corrected
SAR pixel values, ice thickness of the ice charts, the SAR enhanced ice thickness
charts and values computed from the HEM measurements. The correlations are
shown in Table 8.2. The trends seen in these correlations are consistent with the
results presented in Fig. 4.6. The correlation between the SAR pixel value and the
relative amount of level ice is negative, for rafted ice the correlation is practically
zero and for ridged ice positive. Also it can be seen that the correlations between
the HEM measurement values describing the thickness (mean, mode) and the
refined thickness chart are slightly higher than the corresponding values for the
refined ice chart.

The digitized ice chart has three thickness values for each segment, i.e. the level
ice minimum, mean and maximum thicknesses. In our data along the flight lines,
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Figure 8.9: The relative amounts of the three ice types as a function
of incidence angle corrected SAR intensity. The tails of the curves have
been set to zero because at those pixel values levels the number of samples
was too small for making reliable statistical conclusions.

Table 8.2: Correlations between the products and pixel-wise values de-
rived from the HEM measurements. The pixel resolution is 500 m.

Variable | SAR | Thickn. | Refined thickn.
level -0.32 -0.18 -0.21
rafted 0.02 0.16 0.12
ridged 0.30 0.07 0.12
mean 0.25 0.11 0.14
mode 0.16 0.14 4 0.20

we could find the following different classes described by the triplet thickness
minimum-mean-maximum: 5-5-5, 5-5-10, 5-15-30, 10-15-30, 10-20-30, 20-25-40,
20-30-50, 20-35-50, 10-40-50, 30-40-60, 30-45-60 and 40-50-70.

The accuracy of the estimates given by different ice thickness charts is assessed
as follows. First, the digitized ice charts are divided into classes based on the
triplets described above. The SAR refined ice charts are divided into 30 bins with
a fixed bin width of 2 cm. Second, the class-wise ice chart distributions for open
water and the three ice types are calculated for each bin. In the ideal case, the
amount of deformed ice types increases with the estimated level ice thickness. For
the digitized ice charts this seems not to be the case. There occurs random-like
fluctuation in the fraction of highly ridged ice areas up to the estimated mean level
of about 35 cm. Above that the amount of highly deformed ice area remains high
and, approximately, at the same level, i.e., the higher bins are not significantly
different from each other, see Fig. 8.10 upper panel.

For the SAR refined thickness chart the results are more satisfactory. Excluding
the thin ice case (estimated thickness less than 4 cm), the amount of deformed
ice types increases as a function of the level ice thickness estimate until about



8.3. Comparisons between FIMR, Ice Thickness Products and EM Measurements 137

35 cm. Then a state is reached, where the fraction of deformed ice type remains
approximately at the same level independent of the thickness estimate. This is
illustrated in Fig. 8.10 lower panel. This is explicable because the initial data has
this same deficiency and in the forming of the SAR refined thickness chart some
very restrictive rules are applied [publication 5]. These rules are necessary because
one can not make any confident statement about the degree of ice deformation
on the basis of single pixel value. As a result, correlations based on pixel-wise
computations are very low, see Table 8.2.

In the areas estimated by the SAR-refined ice chart to represent very thin ice, 1 to
4 cm, there occurred also relatively high fractions of deformed ice. To find out the
explanation for this peculiar behavior, we checked the location of measurements
where the SAR-refined ice chart thickness is less than 10 cm and more than half
of the HEM thickness measurements inside the pixel have thickness values more
than 50 cm. We found that these measurements typically were made at the edges
of thin ice or leads (open water areas), according to the SAR-refined ice chart. In
addition these erroneous pixels typically appear in relatively short segments. Such
errors can be reasoned to be (1) due to the time gaps between the SAR images
and HEM measurements, and (2) sea ice movement and reformation during the
time gaps. Probably a larger number of HEM measurements over areas with thin
ice and even larger open water areas, not just narrow leads, would have yielded
more representative statistics for the areas interpreted as thin ice according to the
SAR-refined ice charts.

We have also studied the mean ice thickness and ice concentration as a function
of the incidence angle corrected SAR pixel value. These comparisons were also
made for the winter 2003 Radarsat-1 ScanSAR wide mode data and the HEM
measurements. According to these statistical comparisons the mean ice thickness
increases as the SAR pixel value increases (see Fig. 8.11, left panel) and is saturated
at the high SAR pixel values. The ice concentration, computed from the HEM
measurements as complement of the relative amount of ice thickness values less
than 1 cm, clearly increases as a function of the SAR intensity (see Fig. 8.11, right
panel), and finally saturates at SAR pixel intensity of about 120.

If we study the standard deviation of the laser altimeter measurements of the HEM
instrument, over a short period, we can see clear positive correlation with the HEM
thickness measurement. We can interpret the short time changes in the altitude
from the sea ice surface to be mainly due to the sea ice surface roughness, and
this indicates positive correlation between the sea ice surface roughness and sea
ice thickness in the Baltic Sea. This correlation is at highest for small number of
measurements and decreases as the number of included samples is increased (see
Fig. 8.12, left panel). The dependence of surface roughness on SAR pixel value
is shown in Fig. 8.12, right panel. It can be seen that the surface roughness is
clearly increasing at the low SAR intensity values, then very slowly increasing in
the midrange and at the high SAR intensity values the surface roughness is also
very high.
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Figure 8.10: The relative amounts of the three ice types and open water
for the ice types present in the ice chart (upper figure), and for the
SAR-refined ice chart (lower figure).
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Figure 8.11: Ice thickness as a function of the SAR pixel value computed
for the Radarsat-1 data with incidence angle correction applied (left) and
HEM measurements for the winter 2003 data set. The drop in the high
SAR pixel value range is probably due to the very few samples available
at the high pixel value range and the effect of speckle. Ice concentration
(%, right) derived from the HEM measurements as a function of SAR
intensity.
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of the SAR intensity, right.
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Chapter 9

Summary and Conclusions

The aim of this work has been to improve the operational SAR ice products for
winter navigation purposes in the Baltic Sea. The main objective has been to
produce sea ice information in compact and informative form to the end-users,
and to produce and deliver this information automatically after a SAR image has
been received at FIS. As a result, an improved, both in resolution and accuracy,
sea ice classification scheme has been developed, and a new sea ice product, the
SAR-refined ice thickness chart has been created and made operational. We have
received positive feedback about the data products from the end-users on ships.
Our operational ice typing algorithm has been updated based on these results, and
the SAR-refined ice thickness chart is also currently in operational use. The main
results of the work are:

e The operational sea ice SAR classification system, developed at FIMR by
the author with colleagues, has been updated using the methods developed
and tested in this work. These methods include the incidence angle normal-
ization, improved segmentation, computation of new segment-wise features
and improved open sea classification.

e A new sea ice product, the SAR-refined ice thickness chart, has been de-
veloped. This product is delivered operationally to FMI and Finnish and
Swedish ice breakers, and is also available via Internet (at polarview.fimr.fi).

e For SAR image preprocessing an iterative incidence angle correction algo-
rithm, based on statistical comparisons made at HUT/LST, has been de-
veloped. This is a necessary step before classifying typical operational SAR
scenes with a relatively large incidence angle range. This algorithm performs
an iterative normalization and classification into two sea ice classes, level ice
and deformed ice. This is because the backscattering properties for these two
classes as a function of the incidence angle are slightly different from each
other [154]. We have also compared several speckle filtering algorithms and
found the anisotropic diffusion based filtering suitable for our operational
SAR data.
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e Compression of SAR data has been developed significantly from the earlier
and has been integrated in the user-program run on board the vessels, making
delivery of higher-resolution SAR data to the end-users possible.

e Pulse-Coupled Neural Network (PCNN) based segmentation algorithm has
been developed as a part of the work and it gives reasonable segmentations
in applicable execution time for our data. Its performance for our Radarsat-1
data is comparable or better than some other segmentation methods typically
used and compared in this work.

One advantage is that the PCNN-based segmentation also gives a preliminary
intensity-based classification based on the training data. The data-driven ap-
proach was necessary because we do not have absolute calibration of the data
and can not directly compare the pixel values to calibrated measurements
or values produced by a model. We can only indirectly reason the possible
interpretation for the classes yielded by the data-driven training, based on
relative comparisons, i.e. the order of the sea ice class means.

After a segmentation it is possible to compute segment-wise features rather
than use either pixel-wise features or features computed in a fixed-size win-
dow. Segmentation makes possible to use several statistical segment-wise
features, including features based on segment shape, in classification.

e Distinguishing open water and sea ice from each other has been developed
from the earlier pixel-wise method to a segment-wise classification. Accord-
ing to our tests this improves the open sea classification performance com-
pared to the earlier, pixel-based algorithm in use at FIMR and FIS.

e Higher-order statistical methods have been developed and tested for sea ice
SAR classification. The Independent Component Analysis (ICA) based tex-
ture classification gives extra information about the SAR texture compared
to the standard SAR texture statistics (mean, variance) approach or the
roughness statistics (relative number of edges in a segment). In the ICA-
based classification some typical features present in the image are computed
from a training data set and then automatically classified into a few feature
classes. For each segment the relative amounts of these feature classes in the
segment are used as classification information, in addition to the segment
mean intensity and roughness. The geophysical interpretation and combin-
ing it to certain sea ice classes seems, however, to be a difficult task and still
requires further research. The ICA method presented is a novel method in
SAR texture classification.

e The evaluation and validation of SAR-based sea ice products has been devel-
oped. The evaluation of the classification products is very difficult because
of the large area and dynamic nature of the Baltic Sea ice. Typically the
classification results are only compared either to very few point-wise field
measurements or visual interpretation of the SAR data. We use digitized
ice charts from FIS and electromagnetic induction based ice thickness mea-
surements by the HEM instrument to evaluate and validate our algorithms.
Digitized ice charts are drawn by FIS sea ice experts based on many data
sources, including field observation and multiple remote sensing data sets.
This kind of an evaluation scheme covers large areas and makes statisti-
cal comparison of the data sets feasible. The comparisons between SAR
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backscattering and the HEM instrument were the first in the area of the
Baltic Sea.

Still a lot more data would be required for more detailed algorithm evaluation
and validation. However, it can be said that the evaluation and validation
has been significantly improved by the digitized ice charts and especially by
the HEM measurements, which will be an important part of the future field
campaigns. One problem in comparing our Radarsat-1 data to scatterometer
measurements and backscattering models for Baltic Sea ice has been that
most of our data is uncalibrated and we can only make relative comparisons
of the sea ice classes. Another practical problem has been that the resolutions
of the SAR image and validation data are typically quite different from each
other.

An example of a SAR image and the FIMR sea ice products can be seen in Figs.
9.1 and 9.2. The SAR image is from the first of May 2006, i.e. from the melting
period. For comparison also an optical RGB image captured by a passive space-
borne instrument operating at optical and infrared frequencies is shown in Fig. 9.1.
This image was generated from data of the NASA’s MODIS instrument (Moder-
ate Resolution Imaging Spectroradiometer). The MODIS RGB image is generated
from three MODIS bands (1: 620-670nm, 4: 545-565nm, 3: 459-479nm). Typ-
ically open sea and ice can be distinguished based on MODIS data, especially
because there are also infrared channels available and surface temperatures can be
estimated based on MODIS data. Also new ice can typically be distinguished in
MODIS images. The major problems with MODIS data in sea ice monitoring are
clouds, darkness and snow. In cloudy weather MODIS can not see the ice surface,
and if the sky is partially cloudy, a cloud mask algorithm is required to locate the
regions where the data can be used. Because MODIS is a passive instrument, only
the infrared bands are useful during the dark hours, and the days in wintertime
are quite short in the area of the Baltic Sea. MODIS is capable to measure the
snow surface only and thus can not see the ice surface structure under the snow
cover. In Fig. 9.2 are shown the segmentation result (segment means computed for
the segments) using the PCNN algorithm, open sea classification, SAR-based ice
thickness chart, and ,for comparison, the result of the old operational classification
algorithm [108]. It can be seen that the old operational algorithm overestimates
the open water areas. This is because of the wet snow cover and the wet ice surface
smoothing and attenuating the backscattering and the pixel-wise autocorrelation
thresholding used in the old algorithm.

The techniques and methods described in this work make possible to deliver more
detailed SAR-based sea ice classification maps over the Baltic Sea and in higher
spatial resolution. On a modern personal computer even the full SAR resolution
of 100 m can be used in the products. Currently the classification procedure
(incidence angle correction, segmentation, texture classification, open water and
fast ice detection) takes a few hours for one SAR scene. With e.g. 200 m resolution
the amount of computations and execution time are reduced roughly to a quarter
and the time needed is then less than an hour for one SAR scene, which is a
reasonable delivery time for these products. The different parts of the algorithm
work as independent modules exchanging data in a predefined way, thus making
module updating and replacement easy.
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Figure 9.1: A SAR image, May 1st 2006 (left), and a MODIS RGB image
from the same day (right).

The classification methods developed here are mainly for dry snow conditions.
For wet snow conditions different parameters would typically be required. Also,
fewer sea ice classes can be distinguished during wet snow conditions because the
wet snow cover attenuates backscattering from the underlying sea ice strongly. In
the future we are going to update the algorithms so that the snow condition is
recognized based on the temperature history of a few recent days, and different
parameters for dry and wet snow conditions will be applied accordingly.

In the future, space-borne SAR instruments will be improved and also dual-
polarized and fully-polarized data suitable for operational use will be available.
This will improve the sea ice classification significantly, but also the algorithms
will require updating to fully utilize the polarimetric data. Also more geophysical
information (temperature, wind etc.) will be included in the future classification
schemes. In addition, the classification will be compared to the operational ice
(forecasting) models at FIMR and efforts to assimilate the SAR classification with
ice models will be made. In the near future we are also expecting to have absolutely
calibrated Radarsat-1 and Radarsat-2 SAR data from KSAT. Then we can better
compare the algorithm results to scatterometer measurements and backscattering
model outputs. Also some simultaneous HEM and SAR data over polar areas will
be collected and the suitability of our algorithms for these areas with multi-year
ice will be studied. The algorithm parameters will be adjusted better suitable for
polar area data. Depending on the results with the existing algorithms, algorithms
better suitable for polar areas will possibly be developed.
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Figure 9.2: Segmentation result (upper left) corresponding to the SAR
in Fig. 9.1, the segments are filled with the segment mean values, open
water classification (upper right), SAR-based ice thickness chart (lower
left), and ice classification based on the old operational algorithm (lower
right).



145

Bibliography

[1] S. Ahmed, H. R. Warren, M. D. Symonds, R. P. Cox, The Radarsat System,
IEEE Trans. Geoscience and Remote Sensing, v. 28, n. 4, pp. 598-602, 1990.

[2] M. Antonini, M. Barlaud, P. Mathieu, I. Daubechies, Image coding using
wavelet transform, IEEE Trans. Image Proc., v. 1, n. 2, pp. 205-220, April,
1992.

[3] G. Arfken, Gram-Schmidt Orthogonalization, g9.3 in Mathematical Methods
for Physicists, 3rd ed, Academic Press, pp. 516-520, 1985.

[4] H. H. Arsenault, G. April, Properties of speckle integrated with a finite aperture
and logarithmic transformation, Opt. Soc. Amer., v. 66, n. 11, pp. 1160-1163,
1976.

[5] Atlantis Scientific Inc., Theory of Synthetic Aperture Radar, available at URL

http://eosl.snu.ac.kr/~djkim/k page/remote/sar/sar _theory/sar theory.html,

1997.

[6] G. H. Ball, D. J. Hall, ISODATA, an Iterative Method of Multivariate Analysis
and Pattern Recognition, Proc. IEEE Int. Communications Conference, 1966.

[7] D. G. Barber, E. F. LeDrew, SAR Sea Ice Discrimination Using Texture Statis-
tics: A Multivariate Approach, Photogrammetric Engineering & Remote Sens-
ing, v. 57, n. 4, pp. 385-395, 1991.

[8] D. G. Barber, D. Johnson, E. F. LeDrew, Measuring Climatic State Variables
from SAR Images of Sea Ice: The SIMS SAR Validation Site in Lancaster
Sound, Arctic, v. 44, supp- 1, pp. 108-121, 1991.

[9] D. G. Barber, M. E. Shokr, R. A. Fernandez, E. D. Soulis, D. G. Flett, E.
F. LeDrew, A Comparison of Second Order Classifiers for SAR Sea Ice Dis-
crimination, Photograametric Engineering and Remote Sensing, v. 59, n. 9, pp.
1397-1408, 1993.

[10] R. A. Baxter SAR image compression with the Gabor transform, IEEE Trans.
Geoscience and Remote Sensing, v. 37, n. 1, pp. 574-588, 1999.

[11] A. J. Bell, T. J. Sejnowski, The Independent Components of Natural Scenes
Are Edge Filters, Vision Research, v. 37, n. 23, pp. 3327-3338, 1997.



146 Bibliography

[12] C. Bertoia, M. R. Keller, D. Gineris, L.-K. Soh, C. Tsatsoulis. Operational
Evaluation of a Knowledge-Based Sea Ice Classification System, World Meteo-
rological Organization (WMO) Steering Group for Global Digital Sea Ice Data
Bank - Eighth Session and WMO Workshop on Mapping and Archiving Sea
Ice Data Derived from Radar Data Processing, Ottawa, Canada, 2000.

[13] J. Besag, On the Statistical Analysis of Dirty Pictures, J. R. Statis. Soc. B,
v. 48, 1. 3, pp. 259-302, 1986

[14] G. Borgefors, Chamfering: A Fast Method for Obtaining Approximations
of the Euclidean Distance in N Dimensions, Proc. of the 3rd Scandinavian
Conference on Image Analysis, pp. 250-255, 1983.

[15] J. N. Bradley, Storage and Retrieval of Large Digital Images, U.S. Patent No.
5710835. Online http:/patft.uspto.gov, 1998.

[16] P. Brodatz, Textures - A Photographic Album for Artists and Designers.
Dover Publications, New York, 1966.

[17] R. W. Buccirossi, E. P. Simoncelli, Image compression via joint statistical
characterization in the wavelet domain, IEEE Trans. Image Processing, v. 8,
n. 12, pp. 1688-1701, 1999.

[18] D. Wei, H. Guo, J. Odegard, M. Lang, and C. Burrus, Simultaneous speckle
reduction and data compression using best wavelet packet bases with appli-
cation to SAR based ATD/R, in Proc. SPIE, v. 2491, Orlando, FL., Apr.,
1995.

[19] P. J. Burt, E. H. Adelson, The Laplacian pyramid as a compact image code,
IEEE. Trans. Communications, v. 31, n. 4, pp. 532-540, 1983.

[20] E. Candes and D. Donoho, Ridgelets: a key to higher-dimensional intermit-
tency?, Phil. Trans. R. Soc. Lond., Ser. A, v. 357, pp. 2495-2509, 1999.

[21] J. Canny, A Computational Approach to Edge Detection, IEEE Trans. Pat-
tern Analysis and Machine Intelligence, v. 8, n. 6, pp. 679 - 698, 1986.

[22] Jean-Francois Cardoso, Blind signal separation: statistical principles. Proc.
IEEE, v. 9, n. 10, pp. 2009-2025, 1998.

[23] A. Carlstrom, Simulation of Synthetic-Aperture Radar Images of Baltic Sea
Ice, Research Report 168, Dept. of Radio and space Science, Chalmers Univ.
of Technology, Sweden, 1992.

[24] A. Carlstrom, L. M. H. Ulander, C-Band Backscatter Signatures of Old Sea Ice
in the Central Arctic During Freeze-Up, IEEE Trans. Geoscience and Remote
Sensing, v. 31, n. 4, pp. 819-829, 1993.

[25] A. Carlstrom, L. M. H. Ulander, W. Dierking, Radar Backscattering Models
and ERS-1 Data Inversion for Baltic Sea Ice, Baltic Experiment for ERS-1
(BEERS), Winter Navigation Research Board, Research Report 51, Géteborg,
1994.



Bibliography 147

[26] A. Carlstrom, L. M. H. Ulander, Validation of Backscatter Models for Level
and Deformed Sea Ice in ERS-1 SAR Images, Int. J. Remote Sensing, v. 16, n.
17, pp. 3245-3266, 1995.

[27] A. Carlstrom, Modelling Microwave Backscatter from Sea Ice for Synthetic-
Aperture Radar Applications, Technical Report 271, Chalmers University of
Technology, Sweden, 1995.

[28] A. Carlstrém, L. M. H. Ulander, W. Dierking, Radar Scattering Models and
ERS-1 SAR Data Inversion for Baltic Sea Ice, in Baltic Experiment for ERS-1
(BEERS), Winter Navigation Research Board, Research Report 51, National
Maritime Administration, Sweden, 1995.

[29] A. Carlstrém, A Microwave Backscattering Model for Deformed First-Year
Sea Ice and Comparisons with SAR Data, IEEE Trans. Geoscience and Remote
Sensing, v. 35, n. 2, pp- 378-391, 1997.

[30] G. Celeux, J. Diebolt, The SEM Algorithm: A Probabilistic Teacher Algo-
rithm Derived from the EM Algorithm for the Mixture Problem, Computa-
tional Statistics Quarterly, v. 2, n. 1, pp. 73-82, 1985.

[31] G. Celeux, D. Chauveau, J. Diebolt, On Stochastic Versions of the EM Al-
gorithm, Institut National de Recherche en Informatique et en Automatique
(INRIA) report 2514, France. Available online at http://www.inria.fr/rrrt /rr-
2514.html, 1995.

[32] D. Cheng, Q. Pu, K. Cheng, H. Burkhardt, Possibilistic Hopfield Neural Net-
work on CT Brain Hemorrhage Image Segmentation, Proceedings of the 4th
Asian Conference on Computer Vision, pp. 871-876, 2000.

[33] D. A. Clausi, Comparison and Fusion of Co-Occurrence, Gabor and MRF
Features for Classification of Sea Ice SAR Imagery, ATMOSPHERE-OCEAN,
n. 3, v. 39, pp.183-194, 2001.

[34] S. R. Cloude, E. Pottier, Concept of Polarization Entropy in Optical Scatter-
ing, Optical Engineering, v. 34, n. 6, pp. 1599-1610, 1995.

[35] A. Cohen, I. Daubechies, O. Guleryuz, and M. Orchard, On the importance
of combining wavelet-based non-linear approximation with coding strategies,
submitted to IEEE Trans. Image Processing, 2000.

[36] R. Cook, I. McConnell, C. J. Oliver, MUM (Merge Using Moments) Segmen-
tation of SAR Images, Europto Conf. on SAR Data Processing for Remote
Sensing, Proc. SPIE, v. 2316, pp. 92-103, 1994.

[37] T. M. Cover, P. E. Hart, Nearest neighbor pattern classification, IEEE Trans.
Inform. Theory, v. IT-13, pp. 21-27, 1968.

[38] M.S. Crouse, R.D. Nowak, R.G. Baraniuk Wavelet-based Statistical Process-
ing Using Hidden Markov Models, IEEE Trans. Signal Processing, v. 46, n. 4,
pp. 886-902, 1998

[39] T. M. Cover and J. A. Thomas, Elements of Information Theory, John Wiley
& Sons, 1991.



148 Bibliography

[40] Foreign Trade Transportations 2001, Statistics by the Finnish Customs, 2002.

[41] P. B. G. Dammert, M. Leppédranta and J. Askne, SAR interferometry over
Baltic sea ice, Int. J. Remote Sensing, n. 16, v. 19, pp. 3019-3037, 1998.

[42] I. Daubechies, Ten Lectures on Wavelets, Society for Industrial and Applied
Mathematics (STAM), 1992.

[43] M. Davison, Development of Neural Network Techniques for the Classification
of Multi-Temporal ERS-1 SAR Imagery with respect to Agricultural Applica-
tions, Proceedings of the First ERS-1 Pilot Project Workshop, ESA Publica-
tions, 1994.

[44] A. P. Dempster, N. M. Laird, D. B. Rubin, Maximum Likelihood from In-
complete Data via the EM Algorithm, Journal of the Royal Statistical Society
Series, v. 39, n. 1, pp. 1-38, 1977.

[45] S. Derrode, G. Mercier, J-M. Le Caillec, R. Garello, Estimation of Sea-Ice
SAR clutter statistics from Pearson’s system of distributions, IEEE Int. Conf.
on Geoscience and Remote Sensing 2001 (IGARSS’01), Sydney (Australia),
2001.

[46] S. Derrode, W. Pieczynski, SAR Image Segmentation Using Generalized Pair-
wise Markov Chains, Proc. SPIE International Symposium on Remote Sensing,
2002.

[47] W. Dierking, A. Carlstrém, L. M. H. Ulander, The Effect of Inhomogeneous
Roughness on Radar Backscattering from Slightly Deformed Sea Ice, IEEE
Trans. Geoscience and Remote Sensing, v. 35, n. 1, pp. 819-829, 1997.

[48] W. Dierking, J. Askne, M. Pettersson, Baltic sea ice observations dur-
ing EMAC-95using multifrequency scatterometry and EMISAR data. EMAC
94/95 Final Results, Noordwijk, WPP-136 (ESA), pp. 171-177, 1997.

[49] W. Dierking, J. Askne, Polarimetric L- and C-band SAR signatures of Baltic
sea ice observed during EMAC-95. In Future Trends in Remote Sensing, edited
by P. Gudmandsen, A.A. Balkema, Rotterdam, pp. 329-336, 1998.

[50] W. Dierking, Quantitative Roughness Characterization of Geological Surfaces
and Implications for Radar Signature Analysis, IEEE Trans. Geoscience and
Remote Sensing, v. 37, n. 5, pp. 2397-2412, 1999.

[51] W. Dierking, Multifrequency Scatterometer Measurements of Baltic Sea Ice
During EMAC-95, International Journal of Remote Sensing, v. 20, n. 2, pp.
349-372, 1999.

[52] W. Dierking, H. Skriver, P. Gudmandsen, SAR Polarimetry for Sea Ice Clas-
sification, Proc. of the ESA POLinSAR Workshop, 2003.

[53] S.T. Dokken, B. Hakansson, J. Askne, Inter-comparison of arctic sea ice con-
centration using Radarsat, ERS, SSM/I and in-situ data. Canadian Journal of
Remote Sensing, v. 26, n. 6, pp. 521-536, 2000.

[54] G.Donato, M. S. Bartlett, J. C. Hager, P. Ekman, T. J. Sejnowski, Classifying
Facial Actions, IEEE Trans. PAMI, v. 21, n. 10, 1999.



Bibliography 149

[55] D. Donoho, De-noising by Soft-Thresholding, IEEE Trans. Information The-
ory, v. IT-41, n. 3, pp. 613-627, May 1995.

[56] M. R. Drinkwater, D. P. Winebrenner, E. Rignot, Multifrequency Polarimetric
Synthetic Aperture Radar Observations of Sea Ice, Journal of Geophysical
Research, v. 96, n. C11, pp. 20679-20698, 1991.

[57] R. Eckhorn, H. J. Reitboeck, M. Arndt, P. Dicke, Feature Linking via Syn-
chronization among Distributed Assemblies : Simulations of Results from Cat
Visual Cortex, Neural Computation, v. 2, pp. 293-307, 1990

[58] L. Eriksson, M. Drinkwater, O. Nortier, SIR-C Polarimetric Results from
the Weddell Sea, Antarctica, Trans. Trans. IEEE International Conference on
Geoscience and Remote Sensing 1998 (IGARSS’98), 1998.

[39] G. Fan, X.-G. Xia, A Joint Multi-context and Multi-scale Approach to
Bayesian Image Segmentation, IEEE Trans. Geoscience and Remote Sensing,
v. 39, n. 12, 2001.

[60] H. G. Feichtinger, T. Strohmer (ed.), Gabor Analysis and Algorithms,
Birkhauser, 1997.

[61] F. M. Fetterer, D. Gineris, R. Kwok, Sea Ice Type Maps from Alaska Synthetic
Aperture Radar Facility Imagery: An Assessment, Journal of Geophysical Re-
search, v. 99, n. C11, pp. 22443-22458, 1994.

[62] S. Fiori, Overview of Independent Component Analysis Technique with an
Application to Synthetic Aperture Radar (SAR) Imagery Processing, Neural
Networks, v. 16, n. 3-4, pp. 453-467, 2003.

[63] R. Fjortoft, Y. Delignon, W. Pieczynski, M. Sigelle, F. Tupin Unsupervised
classification of radar images using hidden Markov chains and hidden Markov
random fields IEEE Trans. Geoscience and Remote Sensing, v. 41 n. 3 , pp.
675-686, 2003.

[64] D. L. Donoho, A. G. Flesia, Can recent innovations in the harmonic anal-
ysis ’explain’ the key findings in natural image statistics, Preprint, Stanford
University, Statistics Department, 2001.

[65] F. L. Van Nes, M. A. Bouman, Spatial modulation in the human eye, Journal
of the Optical society of America, v 57, n 3, pp 401-406, March, 1967.

[66] G. Franchescetti, A. Todice, M. Migliaccio, D. Riccio, Scattering from Natu-
ral Rough Surfaces Modeled by Fractional Brownian motion Two-Dimensional
Processes, IEEE Trans. Antennas and Propagation, v. 47, n. 9, pp. 1405-1415,
1999.

[67] A. K. Fung, Z. Li, K. S. Chen, Backscattering from a Randomly Rough Di-
electric Surface, IEEE Trans. Geoscience and Remote Sensing, v. 30, n. 2, pp.
356-369, 1992.

[68] D. Gabor, Theory of Communication. The Journal of the Institute of Electri-
cal Engineers, v. 93, n. 21 (Part III), pp. 429-457, 1946.



150 Bibliography

[69] S. Geman, D. Geman, Stochastic Relaxation, Gibbs Distributions, and the
Bayesian Restoration of Images, IEEE Trans. Pattern Analysis and Machine
Intelligence, v. PAMI-6, p. 721-741, 1984

[70] S. Ghael, A. Sayeed, R. Baraniuk, Improved Wavelet Denoising via Empirical
Wiener Filtering, Proc. SPIE 3169, pp. 389-399, 1997.

[71] R.S. Gill, SAR Ice Classification Using Fuzzy Screening Method, Proc. Work-
shop on SAR polarimetry and polarimetric interferometry, Frascati, Italy, 2003.

[72] B. Girod, Psychovisual aspects of image communication, Signal Processing, v
28, pp 239-251, 1992.

[73] K. M. Golden, D. Borub, M. Cheney, E. Cherkaeve, M. S. Dawson, K.-H.
King, A. K. Fung, D. Isaacson, A. Johnson, A. K. Jordan, J. A. Kong, R.
Kwok, S. V. Nghiem, R. G. Onstott, J. Sylvester, D. B. Winebrenner, 1. H.
H. Zabel, Inverse electromagnetic Scattering Models for Sea Ice, IEEE Trans.
Geoscience and Remote Sensing, v. 36, n. 5, pp. 1675-1704, 1999.

[74] C. H. Graham ed., Vision and Visual Perception, 2nd edition, John Wiley &
Sons, 1966.

[75] P. J. Green, Reversible Jump Markov Chain Monte Carlo Computation, and
Bayesian Model Determination, Biometrika, v. 82, pp. 711-732, 1995.

[76] H. Gronvall, A. Seind, M. Simil4, The Finnish Ice Service and Real-Time
Automatic Classification of SAR Data, Nordic space activities v. 4, n. 4, pp.
28-29, 33-35, 1996.

[77] H. Gronvall, A. Seind, The IMSI Results in the Baltic Sea: Digital Sea Ice
Products to the Users at Sea, Proc. POAC’99 (Proceedings of the 15th Inter-
national Conference on Port and Ocean Engineering under Arctic Conditions,
Espoo, Finland), v. 1, pp 210-219, 1999.

[78] H. Gronvall, A. Seiné, 2000. Toward Optimal Sea-Ice Monitoring in the Baltic
Sea, Proc. of ICES Symposium, Helsinki, 1998, ICES Journal of Marine Science
56(suppl), pp 165-171, 2000.

[79] C. Haas, W. Dierking, M. Lensu, Airborne Measurements of Baltic Ice Thick-
ness in February 2003: The Campaign, Report of the EU-project IRIS (EVK3-
CT-2002-00833), 2003.

[80] C. Haas, IRIS Data Report: Airborne EM Measurements of Baltic Ice Thick-
ness in February 2003, Report of the EU-project IRIS (EVK3-CT-2002-00833),
2003.

[81] C. Haas, Airborne EM Sea-Ice Thickness Profiling over Brackish Baltic Sea
Water, in Proc. of the International Symposium on Ice St. Petersburg, 2004.

[82] M. Hallikainen, F. T. Ulaby, M. Abdelrazik, Dielectric Properties of Snow in
the 3 to 37 GHz Range, IEEE Trans. Antennas and Propagation, v. AP-34, n.
11, pp. 1329-1340, 1986.



Bibliography 151

[83] M. Hallikainen, Review of the Microwave Dielectric and Extinction Properties
of Sea Ice and Snow, Trans. of the IEEE Geoscience and Remote Sensing
Symposium (IGARSS’92), pp. 961-965, 1992.

[84] M. Hallikainen, J. Hyyppé, J. Haapanen, T. Tares, P. Ahola, J. Pulliainen, M.
Toikka, A Helicopter-Borne Eight-Channel Ranging Scatterometer for Remote
Sensing - Part I: System Description, IEEE Trans. Geoscience and Remote
Sensing, v. 31, pp. 161-169, 1993.

[85] M. Hallikainen, M. Nikulainen, H. Taskinen, E. Panula-Ontto, L. Kurvonen,
M. Kemppinen, EMAC-95 Snow and Ice Airborne Campaign, Proceedings
of the IEEE International Geoscience and Remote Sensing Symposium 1995
(IGARSS’95), pp. 1811-1813, 1995.

[86] M. Hallikainen, P. Ahola, K. Rautiainen, J. Pihlflyckt, T. Tirri, M. Mékynen,
J. Lahtinen, H. Servomaa, P. Makkonen, J. Grandell, M. Kemppinen, Overview
of EMAC’95 snow and ice airborne campaign in Finland. Proceedings of the
International Geoscience and Remote Sensing Symposium 1996, (IGARSS’96),
pp- 1998-2001, 1996.

[87] R. M. Haralick, K. Shanmugam, I. Dinstein, Textural features for image clas-
sification, IEEE Trans. Syst. Man and Cybern., v. SMC-3, pp. 610-621, 1973.

[88] D. Harwood, M. Subbarao, H. Hakalahti, L.S. Davis, A New Class of Edge-
Preserving Smoothing Filters, Pattern Recognition Letters, v. 6, pp. 155-162,
1987.

[89] D. Haverkamp, L.-K. Soh, C. Tsatsoulis, A Comprehensive Automated Ap-
proach to Determining Sea Ice Thickness from SAR Data, IEEE Trans. Geo-
science and Remote Sensing v. 33, n. 1, pp. 46-57, 1995.

[90] E.-A. Herland, R. Berglund Demonstration of Operational Sea-Ice Monitoring
in the Baltic Sea with ERS-1 SAR Int. J. Remote Sensing, v. 16, n. 17, pp.
3427-3439, 1995.

[91] E. Hoekman, Speckle ensemble statistics of logarithmically scaled data, IEEE
Trans. Geoscience and Remote Sensing, v. 29, n. 1, pp. 180-182, 1991.

[92] J. J. Hopfield, Neural Networks and Physical Systems with Emergent Collec-
tive Computational Abilities, Proceedings of the National Academy of Sciences,
pp. 2554-2558. National Academy of Sciences, 1982.

[93] P. G. Howard, J. S. Vitter, Practical Implementations of Arithmetic Coding,
Image and Text Compression, pp. 85-112, Kluwer Academic Publishers, 1992.

[94] A. Hyvérinen and E. Oja, A Fast Fixed-Point Algorithm for Independent
Component Analysis. Neural Computation, v. 9, n. 7, pp. 1483-1492, 1997.

[95] A. Hyvérinen, New Approximations of Differential Entropy for Independent
Component Analysis and Projection Pursuit, Advances of Neural Information
Processing Systems, v. 10, pp. 273-279, MIT Press, 1998.

[96] A.Hyvérinen, Fast and Robust Fixed-Point Algorithms for Independent Com-
ponent Analysis. IEEE Trans. Neural Networks, v. 10, n. 3, pp. 626-634, 1999.



152 Bibliography

[97] A. Hyvérinen, Gaussian Moments for Noisy Independent Component Analy-
sis. IEEE Signal Processing Letters, v. 6, n. 6, pp. 145-147, 1999.

[98] A. Hyvirinen and E. Oja, Independent Component Analysis: Algorithms and
Applications. Neural Networks, v. 13, n. 4-5, pp. 411-430, 2000.

[99] A. Hyvérinen, J. Karhunen, E. Oja, Independent Component Analysis, John
Wiley & Sons, 2001.

[100] IEEE Trans. Geoscience and Remote Sensing, v. 36, n. 5. Special Issue on
Sea Ice Electromagnetics, 1999.

[101] N. Jayant, J. Johnston, R. Safranek, Signal compression based on models
of human perception, Proc. of the IEEE, v 81, n 10, pp 1385-1422, October,
1993.

[102] R. Jenssen, T. Eltoft, ICA Filter Bank for Segmentation of Textured Im-
ages, Proceedings of the International Symposium on Independent Component
Analysis and Blind Signal Separation (ICA2003), pp. 827-832, 2003.

[103] J. L. Johnson, Pulse-Coupled Neural Nets: Translation, Rotation,Scale, Dis-
tortion, and Intensity Signal Invariances for Images, Applied Optics, v. 33(26),
pp. 6239-6253, 1994

[104] D. S. Jones, Acoustic and Electromagnetic Waves, Oxford Science Publica-
tions, 1989.

[105] L. Kaleschke, S. Kern, ERS-2 SAR Image Analysis for Sea Ice Classification
in the Marginal Ice Zone., Proc. International Geoscience and Remote Sensing
Symposium 2002 (IGARSS’02), p. 3038-3040, 2002.

[106] P. Kankaanpéi, Distribution, Morphology, and Structure of Sea Ice Pressure
Ridges in the Baltic Sea, doctoral Thesis, Department of Geography, University
of Helsinki, 1998.

[107] J. Karvonen, M. Simild, Classification of Sea Ice Types from ScanSAR
Radarsat Images Using Pulse-Coupled Neural Networks, Proc. IEEE Interna-
tional Conference on Geoscience and Remote Sensing (IGARSS’98), pp. 2505-
2508, 1998

[108] J. Karvonen and M. Simild, Pulse-Coupled Neural Networks for Sea Ice SAR
Image Segmentation and Classification. Proc. Workshop on Virtual Intelligence
- Dynamic Neural Networks 1998 (VI-DYNN’98), Proc. SPIE v. 3728, pp. 333-
350, 1999.

[109] J. Karvonen, Fractal coding of SAR images, Technical Report, Finnish In-
stitute of Marine Research, 2000.

[110] J. Karvonen, M. Simild and M. Makynen, An Iterative Incidence Angle Nor-
malization Algorithm for Sea Ice SAR Images, Proc. IEEE International Geo-
science and Remote Sensing Symposium 2002 (IGARSS’02), v. III, pp. 1524-
1528, 2002.



Bibliography 153

[111] J. Karvonen, M. Simild, A wavelet transform coder supporting browsing and
transmission of sea ice SAR imagery, IEEE Trans. Geoscience and Remote
Sensing, v. 40, n. 11, pp. 2464- 2485, 2002.

[112] J. Karvonen, M.Simild, ICA-Based Classification of Sea Ice SAR Images,
Proceedings of the 23rd European Association of Remote Sensing Laboratories
(EARSeL) Annual Symposium, Gent, Belgium, pp. 211-217, 2003.

[113] J. Karvonen, M. Similé, I. Heiler, Ice Thickness Estimation Using SAR Data
and Ice Thickness History, Proceedings of the IEEE International Geoscience
and Remote Sensing Symposium 2003 (IGARSS’03), v. I, pp. 74-76, 2003.

[114] J. Karvonen, Feature Detection from Preprocessed Sea Ice SAR Data Based
on Higher-Order Statistics, Proceedings of the IEEE International Geoscience
and Remote Sensing Symposium 2003 (IGARSS’03), v. VI, pp. 3450-3452,
2003.

[115] J. Karvonen, Baltic Sea Ice SAR Segmentation and Classification Using Mod-
ified Pulse Coupled Neural Networks, IEEE Trans. Geoscience and Remote
Sensing, v.42, n. 7, pp. 1566-1574, 2004.

[116] J. Karvonen, M. Simila, J. Haapala, C. Haas, M. Mikynen, Comparison
of SAR Data and Operational Sea Ice Products to EM Ice Thickness Mea-
surements in the Baltic Sea, Proc. IEEE International Geoscience and Remote
Sensing Symposium (IGARSS’04), v. V, pp. 3021-3024, 2004.

[117] J. Karvonen, M. Simild, M. M&kynen, Open Water Detection from Baltic Sea
Ice SAR Imagery, Proc. IEEE International Geoscience and Remote Sensing
Symposium (IGARSS’04), v. VII, pp. 4382-4385, 2004.

[118] J. Karvonen, Comparison of Some Speckle Filtering Methods for Radarsat-1
Sea Ice Data, Internal Report, Finnish Institute of Marine Research, 2004.

[119] L. Kaufman, Sight and Mind, an Introduction to Visual Perception, Oxford
university Press, 1974.

[120] H. Kemppainen, The applicability of Synthetic Aperture Radar in Studying
Ice Properties in the Gulf of Bothnia (in Finnish), M. Sc. thesis, Helsinki
University of Technology, Department of Land Survey, 1989.

[121] B. Kerman, Fusion of dual-frequency sar imagery of sea ice. Atmosphere-
Ocean, v. 37, n. 4, pp. 417-438, 1999.

[122] B. S. Kim, R. K. Moore, R. G. Onstott, S. Gogoneni, Towards Identification
of Optimum Radar Parameters for Sea-Ice Monitoring, Journal of Glaciology,
v. 31, n. 109, pp. 214-219, 1985.

[123] T. Kohonen, Self-Organization and Associative Memory, 3rd edition,
Springer-Verlag, 1989.

[124] D. Kovacevic, S. Loncaric, Radial Basis Function-Based Image Segmentation
Using a Receptive Field, Proc. of the IEEE Symposium on Computer-Based
Medical Systems, pp. 126-130, 1997.



154 Bibliography

[125] D.T. Kuan, A.A. Sawchuk, T.C. Strand, and P. Chavel, Adaptive restoration
of images with speckle, IEEE Trans. Acoustics, Speech and Signal Proc., v. 35,
n. 3, pp. 373-383, 1987.

[126] R. Kuittinen, M. Leppéranta, Real-Time System for Transmitting Satellite
Data Products to Icebreakers, Advances in Space Research, v. 9, n. 7, pp.
393-397, 1989.

[127] G. Kuntimad, H. S. Ranganath, Perfect Image Segmentation Using Pulse
Coupled Neural Networks, IEEE Trans. Neural Networks, v. 10, n. 3, pp. 591-
598, 1999.

[128] M. Kuwahara, Processing of Rl-angiocardiographic images, in Digital Pro-
cessing of Biomedical Images, ed. K. Preston and M. Onoe, Plenum Press, New
York, pp. 187-203, 1976.

[129] R. Kwok, G. F. Cunningham, Backscatter characteristics of the Winter Ice
Cover of the Beaufort Sea, Journal of Geophysical Research, v. 99, n. C4, pp.
7787-7802, 1994.

[130] M. Laakso, SFT - Smart File Transfer, ERCIM News, n. 37, pp. 31-32,
http://www.ercim.org/publication/Ercim _News/enw37, 1999.

[131] A. Labbi, H. Bosch, C. Pellegrini, Higher Order Statistics for Image Classi-
fication, Int. Journal of Neural Systems, v. 11, n. 4, pp. 371-377, 2001.

[132] P. Lacomme, J-P. Hardange, J-C. Marchais, E. Normant, Air and Space-
borne Radar Systems: An Introduction, SciTech Publishing Inc., 2001.

[133] G. G. Langdon, Jr., An introduction to arithmetic coding, IBM Journal Res.
Develop., n. 2, pp. 135-149, 1984.

[134] J. S. Lee, Refined filtering of image noise using local statistics, Computer
Vision, Graphics and Image Processing, V. 15, pp. 380-389, 1981.

[135] J.-S. Lee, 1. Jurkevich, Segmentation of SAR Images, IEEE Trans. Geo-
science and Remote Sensing, v. 27, n. 6, pp. 674-680, 1989.

[136] J.-S.Lee, M. Grunes, R. Kwok, Classification of Multi-look Polarimetric SAR
Imagery Based on Complex Wishart Distribution, Int. J. of Remote Sensing,
v. 15, n. 11, pp. 2299-2311, 1994.

[137] T.-W. Lee, M. S. Lewicki, T. J. Sejnowski, ICA Mixture Models for Unsuper-
vised Classification of Non-Gaussian Classes and Automatic Context Switching
in Blind Signal Separation, IEEE Trans. Pattern Analysis and Machine Intel-
ligence, v.22, n. 10, pp. 1078-1089, 2000.

[138] M. Leppéranta, T. Thompson, Sea Ice Remote Sensing with Synthetic Aper-
ture Radar in the Baltic Sea, Earth Observation System (EOS), Trans. of
American Geophysical Union, v. 70, n. 28, pp. 698-699, 708-709, 1989.

[139] M. Leppéranta, T. Thompson, On the Potentials of SAR in ice mapping in
the Baltic Sea, Proc. of the EARSeL 1990, pp. 381-385, 1990.



Bibliography 155

[140] M. Leppéranta, R.Kuittinen, J. Askne, BEPERS Pilot Study : an Experi-
ment with X-band Synthetic Aperture Radar over Baltic Sea Ice, Journal of
Glaciology, v. 38, n. 128, pp. 23-35, 1992.

[141] M. Lewicki, B. Olshausen, Inferring Sparse Overcomplete Image Codes Using
an Efficient Coding Framework, Advances in Neural Information Processing
Systems 10, pp. 556-562, 1998.

[142] A.S. Lewis, G. Knowles, Image compression using the 2-D wavelet transform,
IEEE Trans. Image Proc., v. 1, n. 2, pp. 244-256, April 1992.

[143] J. E. Lewis, M. Leppéranta, and H. B. Granberg, Statistical properties of
sea ice surface topography in the Baltic Sea, Tellus, v. 45A, pp. 127-142, 1993.

[144] A. Li, P.B.G. Dammert, G. Smith, and J. Askne, Fuzzy C-Means Clustering
Algorithm for Classification of Sea Ice and Land Cover from SAR Images, Proc.
of European Symposium on Aerospace Remote Sensing: Image Processing,

Signal Processing and Synthetic Aperture Radar for Remote Sensing, Proc.
SPIE, v. 3217, pp. 86-97, 1997.

[145] Linde, Y., Buzo, A., and Gray, R. M. (1980). An algorithm for vector quan-
tizer design. IEEE Trans. Communication, v 28, n 1, pp 84-95, 1980.

[146] A. Lopes, R. Touzi, E. Nezry, Adaptive Speckle Filters and Scene Hetero-
geneity, IEEE Trans. Geoscience and Remote Sensing, V. 28, No. 6, November
1990.

[147] M. Lundhaug, ERS SAR Studies of Sea Ice Signatures in the Pechora Sea
and Kara Sea Region, Canadian Journal of Remote Sensing, v. 28, n. 2, pp.
114-127, 2002.

[148] M. Lundin, M.Sc. Remote Sensing of Snow Covered Sea Ice in Brackish Water
- Investigations from the Baltic Sea, Licentiate Thesis, Chalmers University
of Technology, Technical Report No. 395L, Department of Radio and Space
Science, Sweden, 2001.

[149] T. Lindblad, J. M. Kinser, Image Processing using Pulse-Coupled Neural
Networks, Springer-Verlag, 1998.

[150] K. Maikisara, R. Berglund, Y. Rauste, T. Tikkanen, J. Savola, R. Kuittinen,
M. Leppéaranta, J. Pohjola, Digital Transmission of Satellite Images to Ice
Breakers (in Finnish), VI'T Research Note No. 1165, 1990.

[151] K. Mékisara, Adaptive Laplacian pyramid compression of remote sensing im-
ages, IEEE Proc. on Int. Conf. on Geoscience and Remote Sensing Symposium
(IGARSS’91), pp. 1439-1442, 1991.

[152] M. Mékynen, M. Hallikainen, C-Band Backscattering Signatures of Baltic
Sea Ice, Proc. of the IEEE Int. Conf. on Geoscience and Remote Sensing
(IGARSS’98), pp. 983-985, 1998.

[153] M. Makynen, Investigation of Passive and Active Microwave Signatures of
the Baltic Sea Ice, Lic. Tech. Thesis, Helsinki University of Technology, 1999.



156 Bibliography

[154] M. Mé&kynen, T. Manninen, M. Simild, J. Karvonen, M. Hallikainen,
Incidence Angle Dependence of the Statistical Properties of C-Band HH-
Polarization Backscattering Signatures of the Baltic Sea Ice, IEEE Trans. Geo-
science and Remote Sensing, v. 40, n. 12, pp. 2593-2605, 2002.

[155] M. Mékynen, M. Hallikainen, Investigation of C-Band and X-Band Backscat-
tering Signatures of the Baltic Sea Ice, International Journal of Remote Sens-
ing, v. 25, n. 11, pp. 2061-2086, 2004.

[156] M. Mékynen, ESSI-2, ENVISAT and the Baltic Sea Ice Conditions, Final
Report, Helsinki University of Technology / Laboratory of Space Technology,
2005.

[157] D. H. Maling, Coordinate Systems and Map Projections, London: George
Philip and Son Ltd, 1973

[158] S. Mallat and S. Zhong, Characterization of signals from multiscale edges,
IEEE Trans. Pattern Analysis, v. 14, n. 7, pp. 710-732, July 1992.

[159] S. G. Mallat and W. L. Hwang, Singularity detection and processing with
wavelets, IEEE Trans. Information Theory, v. 38, n. 2, pp. 617-643, March
1992.

[160] S. Mallat, A Wavelet Tour of Signal Processing, 2nd edition, Academic Press,
1999.

[161] A.T. Manninen, Effects of Ridge Properties on Calculated Surface Backscat-
tering in BEPERS-88, Int. Journal of Remote Sensing, v. 13, n. 13, pp. 2469-
2487, 1992.

[162] A. T. Manninen, Backscattering from a dielectric surface with a continuous
roughness spectrum, Meri, Report series of FIMR v. 23, pp. 1-26, 1996.

[163] A. T. Manninen, Microwave Surface Backscattering and Surface Roughness
of Baltic Sea Ice, Dr. Tech. Dissertation, Finnish Marine Research, n. 265,
1996.

[164] A. T. Manninen, Multiscale Surface roughness and Backscattering, Progress
in Electromagnetic Research, v. 16, pp. 173-201, 1997.

[165] A. T. Manninen, Multiscale Surface roughness and Backscattering - Sum-
mary, Journal of Electromagnetic Waves and Applications, v. 11, pp. 471-475,
1997.

[166] M. Miyahara, K. Kotani, V. R. Algazi, Objective picture quality scale (PQS)
for image coding, IEEE Trans. Communications, v. 46, n. 9, pp. 1215-1226,
1998.

[167] A. B. Lee, K. S. Pedersen, and D. Mumford, The nonlinear statistics of
high-contrast patches in natural images, Brown University, Division of Applied
Mathematics, Preprint, 2001.

[168] NOAA, Observers’ Guide to Sea Ice, National Oceanic and
Atmospheric Administration (NOAA), National Ocean Ser-
vice, Office of Response and Restoration, draft. Online at
http://response.restoration.noaa.gov/oilaids/seaice /seaice.html, 2001.



Bibliography 157

[169] J. A. Nystuen, F. W. Garcia, Sea Ice Classification Using SAR Backscatter
Statistics, Trans. Geoscience and Remote Sensing, v. 30, n. 3, pp. 502-509,
1992.

[170] C. Oliver, Information from SAR Images, J. Phys. D: Appl. Phys. v. 24, pp.
1493-1514, 1991.

[171] C. Oliver, S. Quegan Understanding Synthetic Aperture Radar Images,
Artech-House, 1998.

[172] B. Olshausen, D. Field, Emergence of Simple-Cell Receptive Field Properties
by Learning a Sparse Code for Natural Images, Nature, v. 381, pp. 607-609,
1996.

[173] J. R. Orlando, R. Mann, S. Haykin, Classification of sea-ice images using
a dual-polarized radar, IEEE Journal of Oceanic Engineering, v. 15 n. 3, pp.
228-237, 1990.

[174] N. Otsu, A Threshold Selection Method from Gray-Level Histograms, IEEE
Trans. Systems, Man, and Cybernetics, V. SMC-9, No. 1, pp.62-66, 1979.

[175] N. R. Pal, S. K. Pal, A Review on Image Segmentation Techniques, Pattern
Recognition, v. 26, n. 9, pp. 1277-1294, 1993.

[176] J. Park, J. W. Sandberg, Universal Approximation Using Radial Basis Func-
tions, Neural Computation, v. 3, n. 2, pp. 246-257, 1991.

[177] W. B. Pennebaker, J. L. Mitchell, JPEG Still Image Data Compression Stan-
dard, New York : Van Nostrand Reinhold, 1993.

[178] P. Perona, J. Malik, Scale-Space and Edge Detection using Anisotropic Dif-
fusion, IEEE Trans. Pattern Analysis and Machine Intelligence, v. 12, pp.
629-639, 1990.

[179] W. Pieczynski, Statistical Image Segmentation, Mach. Graph. and Vis., v.
1, n. 1/2, pp. 261-268, 1992.

[180] Radarsat Data Product Specifications, Document number RSI-GS-026,
Radarsat International, 1997.

[181] H. S. Ranganath, G. Kuntimad, Image Segmentation Using Pulse Coupled
Neural Networks, Proc. IEEE International Conference on Image Processing
(ICIP’94), pp. 1285-1290, 1994

[182] C. C. Reyes-Aldasoro, A. L. Aldeco, Image Segmentation and Compression
using Neural Networks, Proc. Advances in Artificial Perception and Robotics
2000, 2000.

[183] E. Rignot, R. Kwok, Characterization of Spatial Statistics of Distributed
Targets in SAR Data, Int. Journal of Remote Sensing, v. 14, n. 2, pp. 345-363,
1992.

[184] E. Rignot, R. Kwok, Characterization of Spatial Statistics of Distributed
Targets in SAR Data, Int. Journal of Remote Sensing, v. 14, n. 2, pp. 345-363,
1993.



158 Bibliography

[185] E. Rignot, M. R. Drinkwater, Winter Sea-Ice Mapping from Multi-Parameter
Synthetic-Aperture Radar Data, Journal of Glaciology, v. 40, n. 134, pp. 31-45,
1994.

[186] J. Rissanen and G. G. Langdon, Jr., Arithmetic coding, IBM Journal Res.
Develop., n. 2, pp. 149-162, 1979.

[187] J. Ruiz-del-Solar, D. Kottow, Neural-based Architectures for the Segmenta-
tion of Textures. Proc. of the 15th Int. Conf. on Pattern Recognition, ICPR
2000, v. 3, pp. 1092-1095, 2000.

[188] I. A. Rybak, N. A. Shevtsova, V. A. Sandler, The Model of Neural Network
Visual Processor, Neurocomputing, v. 4, pp. 93-102, 1992

[189] R. J. Safranek, J. D. Johnston, A perceptually tuned sub-band image coder
with image dependent quantization and post-quantization data compression,
IEEE Proc. ICASSP’89, v. 3, pp. 1945-1948, 1989.

[190] A. Said, W. A. Pearlman, A New Fast and Efficient Image Codec Based on
Set Partitioning in Hierarchical Trees, IEEE Trans. Circuits and Systems for
Video Technology, v. 6, pp. 243-250, 1996.

[191] S. Sandven, A. Seind, H. Gronvall, H. H. Valeur, H. S. Andersen, OSIMS:
Operational Sea Ice Monitoring by Satellites in Europe, Proc. POAC’99, v. 2,
p 508-517, 1999.

[192] S. Sandven, M. Makynyn, M. Hallikainen, H. Gronvall, A. Seind, M. Sim-
ila, J. Karvonen, M. Nizovsky, A. Cavanie, R. Ezraty, R. Gill, H. H. Valeur,
L. T. Pedersen, V. Alexandrov, A. Bogdanov, R. Tonboe, M. Lundhaug, O.
Dalen, K. Kloster, IMSI (Integrated Use of New Microwave Satellite Data for
Improved sea Ice Observation) Final Report, NERSC (Nansen Environmental
and Remote Sensing Center) Technical Report 170, European Commission En-
vironmental and Climate Program 1994-1998, contract No. ENV4-CT96-0361,
1999.

[193] B. Scarlett, End to End Scenario for Compressed SAR Imagery, Report of
the Canadian Ice Service, 1999.

[194] B. Scheuchl, M. Grunes, R. Kwok, I. Cummins, Automated Sea Ice Classifi-
cation Using Space-borne Polarimetric SAR Data, Proc. IEEE International
Geoscience and Remote Sensing Symposium (IGARSS’01), pp. 3117-3119,
2001.

[195] B. Scheuchl, I. Hajnsek, I. Cumming, Model Based Sea Ice Classification Us-
ing Polarimetric SAR Data, Proc. IEEE International Geoscience and Remote
Sensing Symposium (IGARSS’02), 2002.

[196] B. Scheuchl, I. Hajnsek, I. Cumming, Sea Ice Classification Using Multi-
Frequency Polarimetric SAR Data,Proc. IEEE International Geoscience and
Remote Sensing Symposium (IGARSS’02), 2002.

[197] B. Scheuchl, I. G. Cumming, Potential of Radarsat-2 for Sea Ice Classifi-
cation,, Proc. IEEE International Geoscience and Remote Sensing Symposium
(IGARSS’02), 2002, pp. 2185-2187.



Bibliography 159

[198] B. Scheuchl, T Hajnsek, I. G. Cumming, Model-Based Classification of Po-
larimetric SAR Sea Ice Data, Proc. IEEE International Geoscience and Remote
Sensing Symposium (IGARSS’02), 1521-1523, 2002.

[199] B. Scheuchl, D. Flett, R. Caves, I. G. Cumming, Potential of Radarsat-2 for
Operational Sea Ice Monitoring, Canadian Journal of Remote Sensing, v. 30,
n. 3, pp. 448-461, 2004.

[200] B. Scheuchl, R. Caves, D. Flett, R. De Abreu, M. Arkeet, I. G. Cumming,
The potential of Cross-Polarization Information for Operational Sea Ice Mon-
itoring, Proc. Envisat Symposium, Salzburg, Austria, 2004.

[201] B. Scheuchl, R. Caves, D. Flett, R. De Abreu, M. Arkeet, I. G. Cumming,
Envisat ASAR Data for Operational Sea Ice Monitoring, Proc. IEEE Interna-
tional Geoscience and Remote Sensing Symposium (IGARSS’04), v. III, pp.
2142-2145, 2004.

[202] B. Scheuchl, I. G. Cumming, I. Hajnsek, Classification of Fully Polarimetric
Single- and Dual-Frequency SAR Data of Sea Ice Using the Wishart Statistics,
Canadian Journal of Remote Sensing, v. 31, n. 1, pp. 61-72, 2005.

[203] A. Seind, H. Gronvall, S. Kalliosaari, J. Vainio, P. Eriksson, J.-E. Lundqvist,
WMO Sea ICE Nomenclature: Terminology for the Baltic Sea in English,
Finnish and Swedish, MERI Report n. 43, Finnish Institute of Marine Research,
2001.

[204] S. G. Servetto, K. Ramchandran, M. T. Orchard, Image coding based on a
morphological representation of wavelet data, IEEE Trans. Image Proc. v. 8,
n. 9, pp. 1161-1174, 1999.

[205] J. M. Shapiro, Embedded image coding using zerotrees of wavelet coefficients,
IEEE Trans. Signal Processing, v. 41, n. 12, pp. 3445-3462, December 1993.

[206] M. E. Shokr, Evaluation of Second Order Texture Parameters for Sea Ice
Classification from Radar Images, Journal of Geophysical Research, v. 96, n.
C6, pp. 10625-10640, 1991.

[207] M. E Shokr, R. Jessup, B. Ramsay, An Interactive Algorithm for Deriva-
tion of Sea Ice Classifications and Concentrations from SAR Images, Canadian
Journal of Remote Sensing, v. 25, n. 1, pp. 70-79, 1999.

[208] M. Simard, G. DeGrandi, K. P. B. Thomson, G. B. Benie, Analysis of speckle
noise contribution on wavelet decomposition of SAR images, IEEE Trans. Geo-
science and Remote Sensing, v. 36, n. 6, pp. 1953-1962, 1998.

[209] M. Similé, The Evaluation of Two Classification Algorithms to Discriminate
Open Water and Sea Ice from SAR Image, Proc. 2nd WMO Operational Ice
Remote Sensing Workshop, v. 1, pp. 89-103, 1991.

[210] M. Simild, SAR image segmentation by a two-scale contextual classifier, in
Desachy, J. (ed.), Image and signal processing for remote sensing, Proc. SPTE
v. 2315, pp. 434-443, 1994.



160 Bibliography

[211] M. Simild, J. Helminen, The Identification of the Deformed Sea Ice Fields
from ERS-SAR Image by Wavelets, Proc. International Geoscience and Remote
Sensing Symposium (IGARSS’95), v. II, pp. 868-870, 1995.

[212] M. Simild, SAR Image Classification According to the Ice Deformation, Proc.
of the Second International Workshop on ERS Applications, London 1995, pp.
211-214, 1996.

[213] M. Simild, I. Heiler, M. M&kynen, M. Hallikainen, Observations about the
Discrimination properties of polarimetric SAR data over the Baltic Sea ice,
SPIE Proceedings V. 3496, pp.150-165, 1998.

[214] M. Simild, J. Karvonen, Classification of First-Year Sea Ice Using Pulse-
Coupled Neural Network, Information Processing for Remote Sensing, ed. C.
H. Chen, World Scientific Publishing, 1999.

[215] M. Simild, E. Arjas, M. Mikynen, M. Hallikainen, Bayesian classification
model for sea ice roughness from scatterometer data, IEEE Trans. Geoscience
and Remote Sensing v. 39, n. 7, pp. 1586-1595, 2001.

[216] M. Simil4, I. Heiler, J. Karvonen, EMAC-95 Sea Ice Campaign, Final Report,
internal report, Finnish Institute of Marine research, 2004.

[217] A. Skodras, C. Christopoulos, T. Ebrahimi, The JPEG 2000 Still Tmage
Compression Standard, IEEE Signal Proc. Magazine, v. 18, n. 5, pp. 36-58,
2001.

[218] A. N. Skourikhine, L. Prasad, B. R. Schlei, Neural Network for Image Seg-
mentation, Applications and Science of Neural Networks, Fuzzy Systems and
Evolutionary Computation III, Proc. of SPIE, v. 4120, 2000.

[219] H. Skriver, Extraction of Sea Ice Parameters from Synthetic Aperture Radar
Images, Lic. Thesis, Technical university of Denmark, 1989.

[220] D. M. Smith, E. C. Barrett, J. C.4Scott, Sea Ice Type Classification from
ERS-1 SAR Data, Based on Grey Level and Texture Information, Polar Record,
v. 31, n. 177, pp. 135-146, 1995.

[221] P. C. Smits, S. G. Dellepiane, Synthetic Aperture Radar Image Segmen-
tation by a Detail Preserving Markov Random Field Approach, IEEE Trans.
Geoscience and Remote Sensing, v. 35, n. 4, pp. 844-857, 1997.

[222] P. C. Smits, S. G. Dellepiane, Discontinuity-adaptive Markov Random Field
Model for the Segmentation of Intensity SAR Images, IEEE Trans. Geoscience
and Remote Sensing, v. 37, n. 1, pp. 627-631, 1999.

[223] L.-K. Soh, C. Tsatsoulis, Multisource Data and Knowledge Fusion for Intel-
ligent SAR Sea Ice Classification, Proc. of the International Geoscience and
Remote Sensing Symposium 1998 (IGARSS’98), v. I, pp. 68-70, 1998.

[224] ARKTOS: An Intelligent System for SAR Sea Ice Image Classification, IEEE
Trans. Geoscience and Remote Sensing, v. 42, n. 1, pp. 229-248, 2004.



Bibliography 161

[225] K. Steffen, J. Heinrichs, Feasibility of Sea Ice Typing with Synthetic Aperture
Radar (SAR) Merging of Landsat Thematic Mapper and ERS 1 SAR Satellite
Imagery, Journal of Geophysical Research, v. 99, n. C11, pp. 22413-22424,
1994.

[226] Y. Sun, A. Carlstrom, J.Askne, SAR image classification of ice in the gulf of
Bothnia, Int. Journal of Remote Sensing, v. 13, n. 13, pp. 2489-2514, 1992.

[227] Y. Sun, SAR Remote Sensing of Sea Ice : Towards Automatic Extraction
of Geophysical Information, DR. Tech dissertation, Chalmers University of
Technology, Sweden, Technical Report n. 275, 1995.

[228] C. T. Swift, D. J. Cavalieri, Passive microwave remote sensing for sea ice
research. EOS. v. 66 n. 49, pp. 1210-1212, 1985.

[229] P.N. Topiwala (ed.), Wavelet Image and Video Compression, Kluwer Aca-
demic Publishers, 1998.

[230] S. Tjuatja, A. K. Fung, J. Bredow, Scattering Model for Snow-Covered Sea
Ice, IEEE Trans. Geoscience and Remote Sensing, v. 30, n. 4, pp. 804-810,
1992.

[231] F.T. Ulaby, R. K. Moore, A. K. Fung, Microwave Remote Sensing, Active
and Passive, v. I : Microwave Remote Sensing Fundamentals and Radiometry,
Addison-Wesley, 1981.

[232] F.T. Ulaby, R. K. Moore, A. K. Fung, Microwave Remote Sensing, Active
and Passive, v. I : Radar Remote Sensing and Surface Scattering and Emission
Theory, Addison-Wesley, 1982.

[233] F. T. Ulaby, R. K. Moore, and A. K. Fung, Microwave Remote Sensing, V.
ITI. Norwood, MA: Artech House, 1986.

[234] F. T. Ulaby, C. Elachi (ed.), Radar Polarimetry for Geoscience Applications,
Artech House, 1990.

[235] F.T. Ulaby, D. Held, M. C. Dobson, K. C. McDonald, T. B. Senior., Relating
Polarization Phase Difference of SAR Signals to Scene Properties, IEEE Trans.
Geoscience and Remote Sensing, v. GE-25, n. 1, pp. 83-92, 1987.

[236] L. M. H. Ulander (ed.), Baltic Experiment for ERS-1, Research Report n.
51, Winter Navigation Research Board, Sweden, 1994.

[237] L. M. H. Ulander, A. Carlstrém, J. Askne, Effect of the frost flowers, Rough
Saline Snow, and Slush on the ERS-1 SAR Backscatter, Int. Journal of Remote
Sensing, v. 16, n. 17, pp. 3287-3306, 1995.

[238] J. Vainio, H. Grénvall, Operational Use of Radarsat SAR Data in the Baltic
Sea During the Winter 1997/98, Proc. POAC’99, v. 1, pp 166-171, 1999.

[239] J. Vainio, M. Simil4, H. Gronvall, Operational Use of Radarsat SAR Data
as Aid to Winter Navigation in the Baltic Sea, Canadian Journal of Remote
Sensing, v. 26, n 4, pp 314-317, 2000.



162 Bibliography

[240] J. Vainio, A. Seind, P. Backman, Sea Ice Nomenclature, English-Finnish-
Swedish-Estonian-Russian, Finnish Maritime Administration, 2002.

[241] J. D. Villasenor, B. Belzer, J. Liao, Wavelet filter evaluation for image com-
pression, IEEE Trans. Image Proc., v 4, n 8, pp 1053-1060, August, 1995.

[242] N. A. Weiss, Introductory Statistics, 7th ed., Addison-Wesley, 2005.

[243] T. A. Welch, A Technique for High-Performance Data Compression, IEEE
Computer, v. 17 n. 6, pp. 819, 1984.

[244] S. A. Werness, S. C. Wei, and R. Carpinella, Experiments with wavelets for
compression of SAR data, IEEE Trans. Geoscience and Remote Sensing, v. 32,
n. 1, pp. 197-201, 1994.

[245] R. G. White, Change Detection in SAR Imagery, Int. J. Remote Sensing, v.
12, pp. 339-360, 1991.

[246] 1. H. Witten, R.M. Neal, J. G. Cleary, Arithmetic coding for data compres-
sion, Comm. of the ACM, v. 30, n. 6, pp. 520-540, June 1987.

[247] Y. Yu, S. T. Acton, Speckle Reducing Anisotropic Diffusion, IEEE Trans.
Image Processing, v. 11, n. 11, pp. 1260-1270, 2002.

[248] B. Yue, SAR Sea Ice Recognition Using Texture Methods, M. Sc Thesis,
University of Waterloo, Ontario, Canada, 2002.

[249] J. Ziv, A. Lempel, A Universal Algorithm for Sequential Data Compression,
IEEE Trans. Information Theory, v. IT-23, n. 3, pp. 337-343, 1977.

[250] Z. Zeng and I. G. Cumming, SAR image data compression using a tree-
structured wavelet transform, IEEE Trans. Geoscience and Remote Sensing, v.
39, n. 3, pp. 546-552, 2001.



