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Any sufficiently advanced technology is indistinguishable from magic.

—Arthur C. Clarke

Abstract

This chapter describes the research activities of the Royal Military Academy on remote
sensing applied to mine action. Remote sensing can be used to detect specific features that
could lead to the suspicion of the presence, or absence, of mines. Work on the automatic
detection of trenches and craters is presented here. Land cover can be extracted and is
quite useful to help mine action. We present here a classification method based on Gabor
filters. The relief of a region helps analysts to understand where mines could have been
laid. Methods to be a digital terrain model from a digital surface model are explained. The
special case of multi-spectral classification is also addressed in this chapter. Discussion
about data fusion is also given. Hyper-spectral data are also addressed with a change
detection method. Synthetic aperture radar data and its fusion with optical data have been
studied. Radar interferometry and polarimetry are also addressed.

Keywords: multi-spectral, hyper-spectral, radar, interferometry, polarimetry

1. Problem statement

Experience shows that a lot of effort is sometimes spent to clear areas that are not actually

mines [1]. It is therefore paramount to have a good assessment of the areas that are contami-

nated so that clearance is done on actually mined areas. Remote sensing can be used for that. It

provides information on large areas that surveyors cannot enter because of the suspicion of

mine contamination.

© 2017 The Author(s). Licensee InTech. Distributed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/), which permits use, distribution
and reproduction for non-commercial purposes, provided the original is properly cited.



In the early days of research, the main objective was to find ways to detect mines by airborne

survey by developing the right sensors. Nowadays, the goal is to use remote sensing to collect

the right data about an area, to merge it with information from other sources, for instance

expert knowledge and then improve awareness on the suspicious areas to update our assess-

ment of their contamination.

This chapter describes some techniques developed to use remote sensing to help this activity.

A key objective is the detection of elements in the remote sensing data that may indicate the

possible presence of mines. Trenches are such indicators. Section 2 describes the detection of

long trenches on visible images.

Another example of the detection of indicators is the detection of craters as in Section 3.

The texture of an area as seen in airborne data may be an indication of the land use and

therefore may help understand the contamination. A good example is the use of Gabor filters

as in Section 4.

Remote sensing can also be used to provide a three-dimensional (3D) representation of an area.

This information proves to be invaluable to photo-interpreters when they want to understand

a certain area. A method to provide this surface, or terrain, model is in Section 5.

Classification of the land use may benefit from the multi-spectral sensors as described in

Section 6.

Section 7 explains how to fuse the data from several sensors to obtain a common and improved

understanding of an area.

Hyper-spectral sensors can bring a lot of added information for instance for change detection

as explained in Section 8.

Radars are less often used in mine action but prove to be quite useful. A good example can be

found in Section 9.

In order to help the mine action community to use remote-sensing data, a geoinformation

platform has been created and is available on the TIRAMISU website: http://www.fp7-tira-

misu.eu/.

2. Long trench detection (Vinciane Lacroix)

Using aerial photographs for individual mine recognition has been proposed in Humanitarian

Demining since 1998 (e.g., see Ref. [2]) although with little success. Maathuis then introduced

the concept of indirect minefield indicators in Ref. [3]. This concept has been further developed

in the SMART project (e.g., see Ref. [4]) and used in AIDSS, an operational system designed to

find indicators of mine presence (IMP) and indicators of mine absence (IMA) (e.g., see Ref. [5]).

In the scope of the EU FP7 TIRAMISU project, new methods to detect and map IMAs and

IMPs on aerial and satellite images were developed and tested [6–9]. The choice of indicators

results from an analysis involving photo-interpreters and possibly former members of the

military who took part in the conflict that caused the contamination.
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In the case of military conflicts, trenches are examples of IMPs. The first step for detecting an

IMP/IMA consists in translating the indicator in terms of basic image features. As trenches can

be detected thanks to their long straight linear shadows, an automatic dark line detection tool

is proposed for their extraction.

The low occurrence of trenches in the huge amount of aerial photos collected during a flight

over a suspected hazardous area (SHA) makes the detection task overwhelming for a photo-

interpreter. Figure 1 gives an idea of the amount of data collected during a typical campaign.

The line in Figure 1 shows the path of a plane, which performed an aerial campaign over the

SHAs of Bihać, Bosnia and Herzegovina, in 2010.

Five stripes of 17 colour photographs of size 4288� 2848were taken usingNikonD90 camera. On

the right of the figure, the corresponding photographs of one of the airplane tracks are overlaid.

Various scenarios using the dark line detector were proposed to extract some suspicious

photographs from the whole set. The result of such a scenario is shown in Figure 2. Note that

the area is covered by forest producing tree shadows generating many other dark lines.

The trench detector based on dark line detection is described in Ref. [8] and summarized hereafter.

Figure 1. Example of a partial aerial campaign over Bihać region in Bosnia and Herzegovina. Left: the partial fight path.

Right: a stripe made of 17 colour photographs taken during the flight.
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The success of line detection relies on (i) a line filter producing the contrast of the line and its

direction at each pixel, (ii) an efficient non-maximum suppression to extract the line axis and

(iii) an appropriate linking of line elements. In order to use the line detection process for trench

detection, a set of relevant local properties enabling to discriminate a trench from other

elements should then be computed.

The line filter is based on the gradient line detector, which exploits the change in gradient

direction at each side of a line [10]. Each pixel p is considered as a potential line element: in an

eight-neighbourhood, dp, the dot product of the gradient of the intensity at pixels arranged

symmetrically around p is computed (see Scheme 1); in the presence of a line, dp is negative

for some of the four pairs, and |dp|, its absolute value, is the highest for the pair lying in the

direction perpendicular to the line (quantized direction). A more precise direction is provided

by the difference of the gradient vectors G located at the pixels belonging to this pair. The

direction of each of these gradient vectors enables to discriminate between dark and bright

lines (see Scheme 1 (centre) and (right)), while the square root of |dp| provides quantitative

information related to the contrast in the neighbourhood of p.

Figure 2. Extraction of the most suspicious image thanks to the long trench detection tool: Image #9 has been identified as

having the longest dark linear structures.

Scheme 1. Local neighbourhood at p (left); dark line at p (centre); bright line at p (right).
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A line filter providing a vector field is thus available over the image, based on the above

computation. Non-maxima suppression is then used to obtain the line median axis. Local

line width is then computed by associating the line axis with its borders; the gradient

norm at these borders enables to compute the local line contrast, while linking axis

elements enables to obtain various average attributes over line segments: contrast, direc-

tion and width.

Red, green, blue and possibly panchromatic channels may be available for trench detection. As

linear shadows should be detected, the channel offering the highest dark line contrast is kept

for line extraction. This will most probably be the red channel. The IMP (i.e., trenches) should

then be translated into image features according to image resolution and scene characteristics.

In this case, the minimum length (in pixels) of the line segments and the minimum average

width (in pixels) should be provided. Several scenarios were considered, all of them analysing

the series of images taken during the aerial campaign displayed in Figure 1. In the first one,

information about potential trench orientation is provided thanks to old annotated scanned

maps, focusing the detection on a specific orientation. In another one, the detection in a specific

orientation will be avoided; this could be an option in areas where tree shadows may generate

a lot of dark lines. In the most general scenario, no constraint on the orientation is provided. In

all cases, line features satisfying the constraints are provided as a list vectors ranked based on

the average line contrast. The vectors may be superimposed on the image or imported in a

geographic information system. The most suspicious image is the one providing the larger

total length of valid segments.

When looking at the results, the photo-interpreter may consider the image as suspicious and

note it for further visual analysis, object-based image analysis [9] or further processing such as

ortho-photo production.

The result of launching the dark line detector with a minimum length of 180 pixels and a

minimum width of five pixels (the image resolution is about 10 cm) with no orientation

constraint provides only three suspected photographs, all of which contain trenches. Part

of the most suspected one is displayed together with the superimposed detected linear

objects.

3. Crater detection (Vinciane Lacroix)

3.1. Introduction

In the scope of the TIRAMISU project, image-processing tools to help non-technical survey

were developed and tested (see Section 2). In this framework, the Cambodian Mine Action

Centre (CMAC) expressed the need for having the mapping of craters in the eastern part of

Cambodia as they might provide indication on the presence of unexploded ordnance (UXO).

The presence of UXOs resulting from the US bombing during the late 1960s and 1970s is still

preventing the use of the land in Cambodia. When dropped, the bombs produced craters that

may still exist today. Many of them are filled with water so that they appear as circular objects

on satellite images.

Remote Sensing for Non‐Technical Survey
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Similar work was made by Hatfield-Consultants [11] for Laos. The authors used historic

Corona satellite images; they computed differences between the original image and its smoothed

version and used these differences in an unsupervised K-means fuzzy classifier.

We rather used data acquired by the WorldView-2 (WV2) instrument. We used circularity of

the craters with the assumption of water or bare soil inside.

This initial circle detection method applied to the panchromatic image is described in Ref. [12]

and has been validated as a circle detection technique on various sets of images used for circle

detection [13] and on artificial images made of controlled shapes (circles, ellipse, squares and

triangles). The method called CGC (constrained gradient for circle) has been enhanced and

further applied to the pan-sharpened Band 8 (covering near-infrared (NIR) range from 860 to

900 nm) and to various normalized difference indices. In order to validate the method as a crater

detection tool, since ground truth was not available, a visual crater detection has been performed

by an independent photo-interpreter at IGEAT (Institut de Gestion de l’Environnement et

d’Aménagement du Territoire). A summary of the whole process is provided in this section.

3.2. Circle detection overview

The state of the art in circle detection is provided in Ref. [12]. The most existing approaches use

the fact that some basic elements (pixels, edge elements or ‘edgels’, or connected segments) are

part of a circumference so that they can be combined to generate a centre-radius pair hypothesis.

To our knowledge, none of these methods directly uses a centre-radius hypothesis. We designed a

‘Roundness Index’ filter providing at each pixel a radius and a contrast corresponding to the

most contrasted circle having the current pixel as centre. The current design of the filter is such

that a unique circle is assigned to a pixel (i.e., if the pixel is the centre of several circles, only the

most contrasted one will be kept). The filtering involves a computation on pre-defined digital

circles of radius spanning the radius range to detect (see Figure 3, left). The Roundness Index

computation described in the next section is based on the average flux and circulation of the

gradient of the intensity along the tested circle and a gradient angle compatibility test. Indeed, in

Figure 3. Left: Various digital circles of odd radius (from 7 to 11) generated by Bresenham's circle algorithm. Right: local

computation at p located on the digital circle of radius 7, involving projection of G, the gradient of the intensity, along two

perpendicular directions (normal and tangent to the circle).
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the case of a perfect circle, all gradient directions of pixels located on (and nearby) the circumfer-

ence should point along the normal―that is, the line joining the current point to the centre of the

circle; in the case of an imperfect circle, a small difference α should be tolerated. If the test is

positive for a minimum proportion of pixels on the considered circumference, the pixel is

considered as a potential circle centre candidate, and the radius providing the highest contrast

is kept. The local maxima of the contrast are then selected. A final test on the variation of the

gradient on the identified digital circle is performed in order to keep circular shapes only. A

reasonable range for the tolerated gradient difference α is [0.06, 0.14] radian. And a reasonable

range for the fraction of pixels satisfying the gradient angle compatibility is [0.7, 1]. The method

should not be used for too small radius (i.e., above or equal to 6 pixels) because the digitalization

generates errors on the gradient direction.

3.3. Round index computation

The computation of the Gaussian gradient G and angleA is a prerequisite to the filtering process.

Let r0 and rn be, respectively, the minimum and maximum radius of the circles to detect. Let

C ¼ C0,…, Ck,…, Cnf g be the list of digital circles located at the origin, corresponding to the

increasing radii r0,…, rk,…, rn. In order to initialize the process, the following information about

each Ck is stored: Z the number of pixels in the circle and, for each of these pixels, the integer

Cartesian coordinates i and j, and the angle in polar coordinates θ. Bresenham's circle algorithm

may be used to compute i and j. Finally, let α be the tolerance angle, that is, the maximum angle

difference between the gradient and the normal to the assumed circle, and let b represent the

minimum portion of pixels satisfying the gradient angle compatibility test.

Two rasters, R, the local radius, and F, the filtered image providing the ‘Roundness Index’, are

initialized. The image is scanned; each pixel c is considered as a potential circle centre candi-

date; each digitized circle in C is translated at c; the average flux jGnj (absolute value of the

projection of G along the normal) and average circulation jGtj (absolute value of the projection

of G along the tangent) over all pixels of the translated circle is computed (see an example in

Figure 3, right). If jGnj > jGtj and if the gradient angle compatibility test are satisfied for at

least bz pixels, c is accepted as a circle centre candidate. The compatibility test at pixel P located

on circle Cj is jθ� Apj < α, where Ap represents the gradient angle at p translated by c and θ is

the polar angle of P in Cj. The maximum average flux jGnj computed over all digital circles and

the radius r of the circle providing that maximum values are stored in R and F, respectively.

Bright circles are discriminated from dark circles based on the sign of the gradient projection

(bright circles are such that the gradient is pointing towards the centre), so that the average

flux is computed for dark and bright circles separately. For practical purpose, dark circles are

stored as negative values. The result of the filtering process holds in these two rasters R and F.

3.4. Crater detection

The main assumption underlying the crater detection is that craters are circular. Moreover, we

assume that they are either filled with water or made of bare soil. This is probably too restrictive

but limits the false-positive rate especially in the presence of trees whose crowns are circular.

Therefore, we have identified Band 8 covering near-infrared (NIR) range from 860 to 900 nm as

Remote Sensing for Non‐Technical Survey
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ideal band to detect dark circles. Water has indeed a low reflectivity in this part of the spectrum.

A threshold at 0.6 on the normalized difference vegetation index (NDVI) computed from WV2

data has been added: only circles having their average NDVI equal to or lower than threshold

are considered as potential craters. NDVI is computed on WV2 as the normalized difference

between Band 6 B6 and Band 5 , that is, B6�B5

B6þB5
. All potential normalized differences have also been

considered as a basis for dark circle detection.

We purchased WV2 data taken on 26 November 2011, covering 100 km2 of the eastern part of

Cambodia near the border with Vietnam, in a rural zone (Choam Kravien), with a spatial

resolution of about 0.5 and 2 m for panchromatic band and multi-spectral band, respectively,

and a pixel depth at acquisition of 11 bits. The dark circle detection has been performed on the

data after ortho-rectification and atmospheric correction.

3.5. Validation

In order to validate the crater detection algorithm, as ground truth was not available, a photo-

interpreter analysed five zones of 4000� 4000 pixels, each one covering 4 km2, based on a coloured

composition (red¼ Band 7, green¼ Band 5, blue¼ Band 3). The photointerpreter provided for each

detected crater the centre, the radius, the land cover, the circularity expressed in percentage (100%

representing perfect circles) and a confidencemeasurement also expressed in percentage. She found

334 craters over the five zones (20 km2). In the following, ‘visual crater’ and ‘CGC circle’denote a

crater identified by the photo-interpreter and a circle detected using the automatic method, respec-

tively.Table1 summarizes somestatisticsderived fromthevisual craterdetectionover the fivezones.

The following remarks can be drawn from Table 1:

• As far as the land cover is concerned, the assumption of bare soil or water inside crater

makes sense as only four visual craters over 334 (less than 1%) have another land cover

according to the photo-interpreter.

• The circularity assumption (i.e., assuming that the crater is almost a circle) is far from true:

152 visual craters only (45%) have a circularity coefficient larger than 60.

• The radius of the visual crater can be very small: 71 (21%) have a radius lower than 6

pixels, which are the minimum radius recommended for our circle detection technique.

• Only 211 visual craters (63%) are detected with a confidence larger than 50.

Confidence # Circularity # Radius # Land cover #

[75, 100] 102 [80, 100] 32 Larger than 12 12 water 187

[50, 75] 109 [60, 80] 122 [9, 12] 80 Bare soil 143

[25, 50] 86 [40, 60] 109 [6, 9] 171 Vegetation 2

[0, 25] 37 [20, 40] 58 [3, 6] 69 Unknown 2

[0, 20] 13 Lower than 3 2

Total 334 334 334 334

Table 1. Statistics on visual crater detection: confidence, circularity, radius and land cover.
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Given these remarks, it seems a priori difficult to detect the craters based on the CGC method:

less than 1/3 (33%) satisfies the required assumption of a radius larger or equal to 6 and

circularity larger or equal to 70%. The percentage drops to 28% if one considers only the craters

with a confidence larger or equal to 75%. Nevertheless, the comparison between the visual

craters and the CGC circles has been performed. In order to obtain quantitative results,

precision p and recall r have been computed over the five zones; p and r are defined as

p ¼ TP
TPþFP and r ¼ TP

TPþFN where TP, FP and FN are the number of true positive, false positive

and false negative, respectively. A false positive is a CGC circle, which is not identified as a

visual crater. A true positive is a CGC circle, which corresponds to a visual crater. A false

negative is a visual crater that has been missed by the automatic method. Precision is also

referred as the positive-predictive value while recall is also called true-positive rate, sensitivity

or hit rate. These definitions are better understood in view of Table 2, where it is assumed that

visual detection corresponds to ‘Ground Truth’.

The circle detection has been performed on Band 8 (with NDVI of >0.6), and on various

normalized difference indices: ND83, ND84, ND85, ND73, ND74, ND75 and ND65, where NDij

refers to the normalized difference between Bi and Bj, that is,NDij ¼
Bi�Bj

BiþBj
. A true positive is

counted if the centre of the CGC circle is falling inside a visual crater. Fusion using logical

operator ‘OR’ has been considered. Several precisions and recalls (summed up on Figure 4) have

been computed in different ways:

1. All visual craters have been considered with an equal weight.

2. Visual craters (TP and FN) are counted according to the confidence assigned by the photo-

interpreter: the weight assigned is 25th of the confidence so that a crater of confidence 100

has a weight of 4 compared to a crater with the lowest confidence having a weight of 1.

False positives have an equal weight of 1.

3. Only visual craters having a radius larger than or equal to 6 and circularity c ≥ 70 are

equally considered. Nevertheless, CGC circles corresponding to visual craters having

radius or circularity outside these bounds are not considered as FP.

4. Only visual craters having a radius larger than or equal to 6 and circularity c ≥ 70 are

considered and weighted according to their confidence. Similarly, CGC circles corresponding

to visual craters having a radius or circularity outside these bounds are not considered

as FP.

Ground Truth

Crater No Crater Sum Ratio

Detection Circle TP FP Detected P ¼ TP/(TP þ FP)

No Circle FN TN

Sum Existing

Ratio r ¼ TP/(TP þ FN)

Table 2. Precision p and recall r definitions.
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Selected results among these four sets of experiments are presented in Figure 5. The selec-

tion is based on the ‘best precision’, the ‘best recall’ and the ‘best average of precision and

recall’, taking each considered image independently and fusion (OR) of all of possible

results.

As expected, results are less good if all the visual craters are considered in the computation,

independently of their circularity and radius. Indeed, the CGC method assumes a minimum

circularity of the shape and should not be used for detecting too small circles. As long as the

craters satisfy the working hypothesis, the detection of craters showing much evidence is very

good (more than 80% for the best fusion result).

Weighting the craters according to the confidence given by the photo-interpreter always

improves the results, which means that the CGC circles mainly correspond to visual craters

with high confidence.

In general, recall is better than precision, which means that they are more FP than FN, which

could be interpreted as CGC method generating too many FP. This statement should be

qualified; indeed, there are 116 FP for the experiment providing the best precision, which

corresponds to a density of 5.8 FP per km2 or 1.45 FP for 108 pixels, which is quite reasonable

compared to the 334 visual craters corresponding to a density of 16.7 craters per km2or 4.17

visual craters for 108 pixels. For the experiment providing the best recall, they were 738 FP

(36.9 per km2 or 9.22 for 108 pixels) which is still acceptable.

The distribution of FP is not uniform: in particular, one zone presents a lot of false positives,

which are generated either by the shadow of small-squared houses (on Band 8) or by the house

themselves (on ND74) as can be seen in Figure 5.

The best precision is always obtained for the ND of Band 7 and Band 4―which means it is the

best image to consider if low false-positive rate is searched for. CGC method applied to that

image provided 161 FP and 116 TP.

The best recall is a fusion of results obtained on different images. If all visual craters are consid-

ered, the fusion involves Band 8, ND83, ND84, ND75 and ND65. On the other hand, if craters

Figure 4. Precision and recall of the CGC automatic crater detection method.
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outside the domain of CGC are filtered out, Band 8 fused with ND84 and ND75 provides the best

results. That experiment provided 738 FP and 223 TP.

The CGC circles have been presented to the photo-interpreter. While some circles (FP) have

been easily identified as house shadow or house themselves (see Figure 5), others were

recognized by the photo-interpreter as potential craters that could have been missed. Indeed,

this visual inspection is quite tedious and is prone to errors. Other examples of TP, FP and FN

are shown in Figure 6.

Figure 5. Examples of FP superimposed on part of Band 8 (left) and part of ND74 (right). Bright and dark circles represent

CGC circles detected on band 8 and ND74 respectively.

Figure 6. Examples of TP, FP and FN over part of Band 8 (left) and ND74 (right).
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3.6. Conclusions

This study showed that, according to a photo-interpreter, the naive idea of a crater being seen

as perfect circle on satellite image is not true; indeed, only 45% of the craters visually detected

can be considered as such. Nevertheless, the CGC method used over Band 8 and fused with

various normalized difference indices enables to detect at least half of them, mainly the ones

having a radius larger than 6 pixels, and the ones for which the photo-interpreter gives a larger

confidence, all this with a reasonable amount of false positives. The fusion method providing

the best recall should probably be used in the current context as it should be more important

not missing a crater than having more false positives.

The performances would be enhanced if the method could be adapted to small circle detection,

for example, by making the detection parameter dependant on the radius.

4. Segmentation with Gabor filters (Mahamadou Idrissa)

4.1. Introduction

In satellite image interpretation, classification is the operation by which an operator would

like to detect different kinds of region like forest, urban zone, waterways, and so on. As the

scene is a set of points (pixels) with intensity in grey-scale values in several bands, most

methods use these grey-scale values to determine the kind of terrain. However, a single

ground cover usually occupies a number of pixels with some variability in their grey-scale

values. A more satisfactory interpretation of the scene should thus include textural aspects of

regions.

In general, texture is characterized by invariance of certain local attributes that are periodically

or quasi-periodically distributed over a region. There are many approaches for analysing

image texture. Haralick [14] proposed a set of features (energy, entropy, maximum probability,

correlation, etc.) based on grey level co-occurrence matrices (GLCMs). Some statistical tech-

niques use Markov Random Field models to characterize textures [15]. The spectral approach

[16, 17] to texture analysis is referred to as the multi-channel filtering approach. Textures are

characterized by their responses to filters, each one being selective in spatial frequency and

orientation.

We present a spectral approach to extract texture features. The textured input image is

decomposed into feature images using a bank of Gabor filters. These feature images are used

to form feature vectors and each of them corresponds to one dimension of the feature space.

Then, we present the Fuzzy c-means-clustering algorithm used for unsupervised classification

of the input pixels based on their associated feature vector. This method considers clusters as

fuzzy sets, while membership function measures the possibility that each feature vector

belongs to a cluster. At last, we present methods for evaluating how well different textures

are separated in feature space, as well as measuring classification performance. In most appli-

cations, the number of classes is unknown. Here, we propose a method for choosing the best

number of classes and we apply it to a real texture representation problem.
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4.2. Gabor filters

Gabor filters perform a local Fourier analysis thanks to sine and cosine functions modulated by

a Gaussian window. In the complex space, these filters are defined as follows:

G x, yjX,Y, kx, ky
� �

¼ e
�ððx�XÞ2þðy�YÞ2Þ

2σ2 :ejðkxxþkyyÞ ð1Þ

where x,y represent the spatial coordinates while represent the frequency coordinates. X and Y

are the spatial localization of the Gaussian window.

As signal is discrete, two simplifications are proposed [18]. The first one makes use of short-

time Fourier transform (STFT) enabling a fixed window size independently of the filter fre-

quency. The second introduces binomial window as approximation of the Gaussian. The basis

functions of this decomposition are as follows:

Ck, lðn,mÞ ¼ Wðn,mÞ � cos2π
kn

N þ 1
þ

lm

Mþ 1

� �

Sk, lðn,mÞ ¼ Wðn,mÞ � sin2π
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N þ 1
þ

lm

Mþ 1

� � ð2Þ

where W2ðn,mÞ ¼ 1
2ðNþMÞ C

ðN2þnÞ
N C

ðM2þmÞ

M is the (N þ 1) � (M þ 1) binomial window. The coeffi-

cients are given by

Ci
j ¼

j!

i!ðj� iÞ!
0 ≤ i ≤ j

0 elsewhere

8

<

:

9

=

;

ð3Þ

The indexes n ¼ � N
2 ,…, N

2 and m ¼ �M
2 ,…, M

2 are the window spatial coordinates with N and

M even integers. The filters selectivity in frequency (expressed in number of cycles per pixel)

and orientation (in radian) is derived from the following equation:

f ¼ 2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k
Nþ1

� �2
þ l

Mþ1

� �2
r

θ ¼ arctan
k

N þ 1

Mþ 1

l

ð4Þ

with k ¼ � K
2 ,…, K

2, l ¼ � L
2 ,…, L

2 and K ≤ N, L ≤ M. Figure 7 shows a subset of filter functions

(their corresponding sine and cosine terms) for a 31 � 31 binomial window with K ¼ 4 and

L ¼ 4, while Table 3 shows their corresponding sine and cosine terms.

A set of feature images is obtained by convolving the image Iwith each filter providing a local

‘Energy’ given by

Ek, lðn,mÞ ¼ ðCk, l IÞðn,mÞ½ �2 þ ðSk, l IÞðn,mÞ½ �2 ð5Þ

Here, ⊗ denotes the convolution and k,l the frequency-orientation coordinates.

Remote Sensing for Non‐Technical Survey
http://dx.doi.org/10.5772/66691

113



4.3. Classification

Many algorithms have been developed for supervised and unsupervised classification. In super-

vised classification, training sets are neededwhereas unsupervised classification classifies images

automatically by finding clusters in the feature space. One of the unsupervised data-clustering

methods is the hard k-means-clustering algorithm. It assigns each sample (feature vector) to one

and only one of the clusters. This method assumes that boundaries between clusters are well

defined. The model does not reflect real data where samples are in general mixed. In fuzzy

c-means algorithm [19], unlike the k-means algorithm, samples belong to all clusters with various

membership degrees. Membership degree is defined as a function of the distance between

sample and the ith-cluster centre. The fuzzy c-means may be seen as a generalization of the

k-means method with membership values in the interval [0,1] rather than in the set {0,1}.

4.4. Classification validity

Classification of data should be of high quality, that is, all samples should have a large

membership degree for at least one cluster. This problem is related to how many classes there

are in the data. In fuzzy c-means algorithm, the number of clusters is required though in many

applications this information is unknown. A method for measuring performance is needed to

compare the goodness of different classification results. Gath has defined an ‘optimal partition’

of the data into subgroups as follows [20]:

1. Clear separation between the resulting clusters.

2. Minimum volume of the clusters.

3. Maximum number of data points concentrated around the cluster centre.

Figure 7. Filter bank for N ¼ M ¼ 30 (grey ¼ 0, white ¼ positive values, black ¼ negative values).

C0,0 C0,1 S0,1 C0,2 S0,2

C1,0 C1,1 S1,1 C1,2 S1,2

S1,0 C�1,1 S�1,1 C�1,2 S�1,2

C2,0 C2,1 S2,1 C2,2 S2,2

S2,0 C�2,1 S�2,1 C�2,2 S�2,2

Table 3. Filters legend: respectively, for the sine and cosine terms.
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In literature, this is known as cluster validity problem; there exists a wide variety of cluster

validity parameters. Gath has proposed the partition density PD more related to the geometry

of the dataset. The method accounts for variability in cluster shapes and the number of data

points in each of the subsets:

PD ¼
S

FHV
ð6Þ

where s ¼
XC

i¼1

Xn

j¼1
uij is the fuzzy cardinality of dataset and FHV ¼

XC

i¼1
½det

X

i

� �1=2
the

fuzzy hyper-volume of dataset.

This parameter is only sensitive to well-compact substructures in the dataset and does not take

the overlapping between them into account.

For this work, we have defined a cluster validity parameter, which combines Gath partition

density PD (Eq. (6)) and a resemblance function r defined by Bloch in Ref. [21]. This function r

is used as separation measurement between clusters

r ¼
f ðA ∩BÞ

f ðA ∪BÞ
ð7Þ

where A and B are two fuzzy sets; f(X) is the fuzzy cardinality of a set X. The intersection A

∩ B is the largest fuzzy set, which is contained in both A and B; the union is the smallest

fuzzy set containing both A and B. The new definition of Compactness and Separation

coefficient is

nCS ¼
PD

maxðrÞ
ð8Þ

The factor max(r) corresponds to the maximum resemblance value measured between two

clusters. This normalized factor always takes a value close to zero as soon as the clusters are

disjoint; the higher resemblance value is close to one. It can also be interpreted as a punishing

factor applied to the partition density PD to avoid the over-segmentation problem.

With this definition, the procedure to select the best number of classes is to cluster the dataset

for many different numbers of classes; the best one should give the maximum nCS index.

4.5. Experiments

We now apply this texture classification method to a grey-scale image (Figure 8) taken in

November 1998 during an airborne minefields survey in Mozambique [22]. In the surveyed

area, minefields are homogeneous regions with no human activity inside and surrounded by

agricultural fields. Since the vegetation in these minefields is different from the vegetation

outside, texture-based classification is a good approach for the interpretation of this image.

Unfortunately, exact class maps or texture models are not available. Thus, the use of the pro-

posed cluster validity parameter will help us to find the optimal class number, which maximizes

the final classification accuracy.
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Gabor filters are computed with an 11 � 11 binomial window and five discrete values of

frequency coordinates k, l {�2,�1,0,1,2} (empirically determined). We have used only 9 fea-

tures selected from the 13 feature images. The feature selection scheme is based on a simple

method, which consists in sorting the feature images based on their amount of energy and pick

up as many features as needed to achieve 95% of the total energy.

The optimal number of clusters that we find for this image is 5 (Figure 9), and the classification

result is presented in Figure 10. As we can see in Figure 11, the dark area corresponding to the

suspected minefield is determined and the other types of vegetation as well.

Figure 8. Aerial image of a minefield area in Mozambique.

Figure 9. Compactness-separation function (nCS) for the aerial image.
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4.6. Conclusions

A fuzzy-clustering approach to textured image classification has been presented. The

texture features are extracted using a set of Gabor filters with different frequencies and

orientations.

The fuzzy c-means algorithm has been successfully used for discriminating different types of

textured image, but the drawback is that one has to specify the number of clusters. We thus

discussed the use of cluster validity parameters. A modification of Compactness and Separa-

tion validity function is proposed as index to estimate the optimal number of texture catego-

ries, which have proven adequate for texture discrimination.

5. From DSM to DTM (Charles Beumier)

The bare ground is of interest for applications such as flood-risk evaluation, environment

planning or terrestrial navigation. In the specific case of minefield delineation, a terrain model

is a precious piece of information to spot where camps could have been settled and hence

where mines could have possibly been laid or buried.

Figure 10. Classification in five classes.

Figure 11. Minefield region classification.
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In a mine context, the earth surface model is ideally captured by a remote-sensing method,

resulting in a fast and cost-effective solution if the area of interest may be flown over. LIDAR

and photogrammetry are the two classic options to deliver a dense digital surface model

(DSM) with high resolution. Since it is taken from the air, this model contains elevated objects

such as trees and buildings. These usually complicate the automatic extraction of features of

the bare soil useful for detection.

By contrast, a digital terrain model (DTM) is a representation of the bare ground surface. It is

advantageously derived from the DSM by automatic or semi-automatic procedures. Most of

them filter elevated points and fill filtered areas by interpolation between remaining points.

In the specific case of the TRAMISU project, gigantic DSMs (one or several giga-pixels) were

produced with a spatial resolution of 0.3 m. Fortunately, a rougher level of detail for the

desired DTM is sufficient and we opted for 3-m resolution, leading to tractable images in terms

of speed and memory.

We implemented a DTM from DSM approach based on the sate-of-the-art solution ‘lasground’

distributed by rapidlasso Gmbh in the LASTOOLS suite, and inspired from the work of Ref.

[23] about LIDAR point filtering. The method filters out recursively locally elevated points

from a point cloud and returns the reduced cloud normally made of ground points.

We first converted the DSM raster to a point cloud after low-pass filtering and regularly sub-

sampling the raster to get a reasonable file size. The lasground programme was then run to

deliver a reduced point cloud, normally made of ground points. The main parameter (‘step’)

was set to 10 to accommodate for rather mountainous/forest scenes. Finally, a raster was

created from the resulting point cloud and filled in by interpolation thanks to the las2dem of

LASTOOLS.

Figure 12. Digital surface model and digital terrain model.
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The project TIRAMISU successfully employed the produced DTM. By subtracting it to the

DSM, obtaining the so-called normalized DSM (nDSM), the vegetation and buildings were

easily localized. Figure 12 shows perspective views for one example of extracted DTM and the

corresponding nDSM.

6. Multi-spectral classification (Nada Milisavljevic)

Daedalus, the multi-spectral scanner used in the project SMART [24], records the electromag-

netic spectrum in 12 channels ranging from visible blue to thermal infrared, with the spatial

resolution of 1 m. The appearance of objects in the different Daedalus channels may vary

widely, depending on the molecular reflection and absorption characteristics of the matter of

the objects.

Generally speaking, multi-spectral remote sensing takes benefit from the fact that the way that

different types of material or of land cover absorb and reflect solar radiation depends on the

wavelength. This means that any type of land cover or material has its own multi-spectral

signature. This signature can be represented as a plot of the fraction of reflected radiation in

function of the incident wavelength. For instance, the reflectance of bare soil increases with the

increasing wavelength. On the contrary, clear water generally has a low reflectance, but it

reaches the maximum at the blue region of the spectrum and decreases with the increasing

wavelength. Finally, the reflectance of vegetation is minimal in blue and red parts of the

spectrum; the reflectance increases as the wavelength increases towards the near-infrared part

of the spectrum, and becomes significantly higher than in the visible part. Apart from these

general tendencies of soil, water and vegetation, differences exist in the spectral signature

(i.e., shape of the reflectance spectrum) between different types of the same class. In other

words, the exact shape of the signature of bare soil is a function of the type of soil, its moisture,

composition, and so on. The main idea behind our work with the Deadalus data is based

on the fact illustrated by these examples. Namely, in order to perform land-cover classification,

we analyse the shape of the multi-spectral signatures and then assign pixels to classes based

on their similar signatures.

There are two main types of multi-spectral classification. In supervised classification (applied

when the knowledge about the data and types of land-cover classes is good), classes are

related to known features on the ground. In unsupervised classification, the pixels are

analysed in an automatic way and divided in spectrally distinct classes (i.e., accumulations of

points in a multidimensional feature space). The unsupervised classification is used when we

have a low knowledge about the data before classification, and the classification result is given

to the image analyst, who should then give meaning to the obtained classes.

In our case, there is no reliable information on the minefield indicators (as a matter of fact, one

goal of our work is to determine useful minefield indicators). In addition, we have to be

careful, taking into account the context, and avoid any misclassification that could have

dangerous consequences. Consequently, our plan is to proceed as follows:

- as a first step, to perform an unsupervised classification which should provide us with classes

of different land cover;
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- then, based on the available ground-truth information, we attach meaning to typical and

wide-spread classes of land cover (such as forest, water, grass and cornfield);

- finally, the remaining regions that are not labelled could be related to land-cover anomalies,

which means that they are possibly dangerous and should be analysed further.

Note that in order not to discard, misclassify or miss any mined area, the first two steps have to

be performed slowly and carefully. Another reason for being cautious lies in the fact that the

mine density is often low in mine-affected regions of Croatia. Furthermore, combining these

results with data coming from synthetic aperture radar (SAR) (Section 7), we can improve the

reliability of the obtained results.

During the application of this unsupervised classification, we take advantage of another piece of

information related to the multi-spectral signature analysis—the information provided by com-

paring the reflectance in the red part (r) and in the near-infrared of the spectrum (n), the so-called

vegetation index.NDVI, that is, the normalizeddifference vegetation index is calculated as n�r
nþr and

- is below 0 for snow and water;

- is close to 0 for bare soil and rocks;

- is between 0 and 1/3 in case of lower vegetation;

- increases above 1/3 with the vitality and density of the plant canopy (e.g., for fresh vegetation

and forests).

Water and forests are not potential minefield indicators. Thus, before we apply a land-cover

classification, we can mask areas with NDVI below 0 and above 1/3, taking into account that

there is no fresh biomass in several year-old pioneer vegetations of the mine-suspected fields.

Thus, the way our unsupervised classification proceeds can be summarized in the following way.

As a first step, the 12 Daedalus channels are analysed pixel per pixel. A first analysed pixel is

assigned to a first class, and its multi-spectral signature (i.e., its values p1,1, p1,2,…, p1,12in the 12

channels) is stored as the representative of that class, noted as c1,1, c1,2,…, c1,12. The following

pixel, which has values p2,1, p2,2,…, p2,12in the 12 Daedalus channels, is compared with the

representative of the first class based on their multi-spectral distance t, as t ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X12

i¼1
p2;i � c2;i

� �2
r

.

The analysed pixel is grouped in the first class if t is lower than or equal to a tolerance set in

advance (k), and the representative multi-spectral signature of that class is then updated

(replaced by averaging the signature of the prior existing pixel in the class and the newly

found pixel). If t is greater than k, the analysed pixel is the founder of a new class, which

means that its values initialize the multi-spectral representative of that class. For all pixels

having NDVI > 1 or NDVI < 0, a separate rejection class is formed. This procedure is repeated

so that each pixel signature is compared with all existing classes. Each pixel is always grouped

to the class having the minimum distance t or it creates a new class if t is greater than k. Once

all pixels are analysed, we obtain a first output of our unsupervised classification, as well as

the final multi-spectral signature representative for each of the classes. At this step, there are

two possibilities: our method can either end or it can go on for a new iteration, where the
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results of the last iteration are used as a priori classes. As a matter of fact, in the first iteration,

the process of finding the multi-spectral signatures of the classes consists in updating the class

representatives each time a new class member is found, which means that misclassifications

for pixels belonging to similar vegetation types are possible. After the first iteration, the class

representatives are fixed, so they can be used to reclassify the pixels and correct most mis-

classifications (if not all). Furthermore, in such a way, a strong influence of the choice of the

tolerance, k, that influences the number of classes is significantly diminished.

The described method is illustrated for the mine-suspected area shown in Figure 13. Figure 14

contains results of the method for k ¼ 19 (20 classes) and k ¼ 22 (10 resulting classes), while

results obtained for a larger area are given in Figure 15. If the number of classes increases, both

Figure 14. Results of anunsupervised classificationofDaedalusdata for the test area inCroatia: 10 classes (left), 20 classes (right).

Figure 13. Daedalus geocoded images of a mine-suspected area in Croatia. Left: visible, right: infrared.
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the level of details and noise (i.e., isolated pixels that are grouped with other classes than their

surroundings) increase as well, where the former could result in identifying possible anomalies

in land cover. Although the resulting classified data are relatively noisy, we do not smooth the

image in order to preserve possible minefield indicators.

7. Multisensor data fusion (Nada Milisavljevic)

As shown in detail in Ref. [25], in order to find indicators of mine absence and mine presence

as well as to provide image analysts with adequate tools to analyse and interpret potentially

mined zones during the process of area reduction, various pieces of information obtained

using Daedalus and airborne full-polarimetric SAR, together with the existing context infor-

mation (all integrated in a geographical information system), are classified and then combined.

As far as the data fusion module is concerned, we have worked on several numerical fusion

methods. The proposed methods are to a large extent original thus representing a result of the

project SMART. Results are obtained on three test sites using the three most promising

methods: fusion using belief functions [26] and having a global discounting factor, fusion

using belief functions and using confusion matrices for a more specific discounting, and fusion

using fuzzy logic. Then, in the next step, we have shown how the results obtained on this basic

Figure 15. Left: RGB composite of geocoded Daedalus channels of a larger area in Croatia; r,g,b ¼ ch5, ch3, ch2. Right:

result of an unsupervised classification of Daedalus data, 10 classes.
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level can be improved by introducing additional knowledge in the fusion process (e.g., knowl-

edge on the width of the roads, on the existence of rivers, etc.). Finally, as the third step, a

spatial regularization at a regional level further improves the results, based on the idea that

isolated pixels of one class quite unlikely appear in another class. Note that the results are at

least as good as those obtained for each class using the best classifier for that particular class. In

other words, they are globally better than any separate input detector or classifier, which

proves the improvement that is brought by fusion. The user can influence the choice of the

classifiers as well as the choice of some parameters (some supervision is still required in the

choice of parameters for the fuzzy fusion approach in particular).

As an illustration, Figure 16 contains results with fuzzy fusion. For more detailed information,

please refer to Ref. [25].

8. Hyper-spectral change detection (Michal Shimoni)

8.1. Introduction

Hyper-spectral imaging collects information from the visible to the microwave regions of the

electromagnetic spectrum by taking a series of images over a range of narrow and continuous

wavelengths. This results in the creation of a three-dimensional hyper-spectral imaging cube,

where the x- and y-axes present the spatial dimension of the image and the z-axis denotes the

Figure 16. Results with fuzzy logic fusion: basic version (left), after knowledge inclusion and spatial regularization

(right).
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spectrum as dependent on the number of bands. For the visible to short-wave infrared (SWIR)

wavelengths, a continuous reflectance spectrum for each pixel is formed, whereas for the mid-

wave infrared (MWIR) to long-wave infrared (LWIR) wavelengths, an emittance spectrum is

created. These wave ranges are, respectively, named in the literature as the reflective and the

emittance domains.

Hyper-spectral imagery has been applied with success to many security and defence applica-

tions including the detection of buried mines and occluded improvised explosive devices

(IEDs) [27]. In the reflective domain, spectral-based methods were applied for the detection of

surface landmines using anomaly detection [28], matched filtering [29], the constrained energy

minimization (CEM) [30] and the discrete wavelet transform (DWT) [31]. The presence of

buried landmines was investigated using the changes in the spectrum of the covered vegeta-

tion or soil upon burying the devices [32–37].

In the radiative domain, the detection of disturbed soil exploits the ‘reststrahlen effect’, in

which the emissivity absorption of a particular soil is changed within the 8–10-μm spectral

range [38]. However, the reststrahlen effect has been shown to be quite variable depending on

the geographic location and the soil composition, and it requires the use of higher-order

decision fusion (i.e., fusion of thermal, textural and spectral information) to achieve target/

clutter discrimination from a single thermal hyper-spectral image [34]. Our study tries to

overcome this limitation by applying spectral-based change detection of buried IED using

temporal thermal hyper-spectral scenes. Our study assesses the detection of small buried

objects using multi-temporal thermal hyper-spectral images and by applying two change

detection methods based on multivariate statistical algorithms: the Chronochrome (CC) and

the class-conditional change detector (QCC).

8.2. Dataset

A measurement campaign took place on the 21 October 2009 in the location of a quarry in the

periphery of Quebec City (Canada).

The TELOPS imager (Hyper-Cam) [39] was located at a distance of 2.5 m away from the area of

interest. The sensor scanned the area site looking downwards at an angle of 26� and with an

instantaneous field of view of 1.4 μrad (Figure 17). The spectral images were collected using

660 bands in the wavelengths 800–1350 cm�1. A magnifying telescope was installed for

improving the spatial resolution. The detector array was set to 220 � 200 pixels, resulting in

an FOV of 17.6� by 16�.

Four aluminium plates consisting of 6.5 � 8 � 0.25 inches (Figures 17 and 18) were buried in a

sandy soil and were framed with several rocks (diameter of 10–25 cm). The plates were buried

at different depths: 2, 5, 10 and 15 cm (Figure 18) the day prior to the experiment on 20 October

2009, between 12h00 and 13h00. Part of the site was undisturbed as indicated at the upper part

of Figure 18.

Images were collected from 6h40 am on the 21 October 2009 in nine sequences consisted with

the following:
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• 50 acquisitions of a blackbody at a given temperature;

• 100 acquisitions of the target site;

• 50 acquisitions of a blackbody at a second given temperature.

Table 4 summarizes the environmental conditions in the nine measured sequences.

8.3. Change detection methods

For automatic target detection of the buried objects, two change detection methods were

applied: the Chronochrome (CC) and the class-conditional CC (QCC).

Figure 17. View of the experimental layout showing the Hyper-Cam field of view, buried targets, and undisturbed area.
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8.3.1. Chronochrome (CC)

For the two hyper-spectral matrices x and y, the diagonal matrices Tx and Ty are written as

follows [40]:

Figure 18. Target site showing the location of the buried targets.

Sequence Start time Ambient temp �C Humidity % Ground temp (E ¼ 0.98)

IED#1 06:40 1.3 80 �7.3

IED#2 07:55 1.8 79 �2.5

IED#3 09:10 3.1 78 7

IED#4 10:50 6.5 57 8.5

IED#5 00:00 9.9 45 16

IED#6 13:16 9.1 45 12–14

IED#7 14:24 9.3 44 9.5–11

IED#8 15:34 7.9 44 3.5–4.5

IED#9 17:24 4.4 54 �1.3

Table 4. Experiment log.
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xi ¼ Txρi þ dx

yi ¼ Tyρi þ dy
ð9Þ

where ρi is the spectral reflectance and dx and dy are the changes between the observations. The

spatial position index on the vector is dropped for notation convenience:

x ¼ Txyyþ dxy

Txy ¼ TxTy�1

dxy ¼ dx � Txydy

x̂ ¼ T̂xyyþ d̂xy

ð10Þ

And the change residual image (δ) is defined as follows:

δ ¼ x� x̂ � T̂xyyþ d̂xy
� �

ð11Þ

Using second-order statistics, the transformation parameters T̂ xy and d̂xy can be estimated

using the mean vectors mx and my and the covariance matrices Cx and Cy. Following, the

covariance matrices are diagonalized:

Cx ¼ VxDxVxT

Cy ¼ VyDyVyT
ð12Þ

where Vx and Vy are the eigenvector matrices, and Dx and Dy are the diagonalized covariance

matrices. The Chronochrome (CC) change detection method is written as

T̂
ðCCÞ

xy ¼ CxyC
�1
yy

d̂
ðCCÞ

xy ¼ mx � T̂
ðCCÞ

xy
my

ð13Þ

8.3.2. Class-conditional CC (QCC)

The QCC [41, 42] is an image with a normal mixture model that allows the transformation

parameters T̂xy and d̂xy to vary between spectral classes. In QCC, each spectrum (x) is defined

by the class index q (where q ¼ 1, 2, …, Q) with a prior probability P(q) to belong to each

respective class. In this method, a class-conditional probability function p(x|q) is assigned to

the transformation parameters in Eq. (2):

x̂jq ¼ T̂ xyjq:yþ d̂xyjq ð14Þ

And the change residual image (δ1) is defined as

δ1 ¼ x� x̂jq ¼ x� T̂ xyjq:yþ d̂xyjq
� �

ð15Þ
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As a classification method, we applied the stochastic expectation maximization (SEM) [43]

after principal component analysis on the reference image (x). The SEM is a quadratic-cluster-

ing method that addresses the bias against overlapping class-conditional probability density

functions and uses a Monte-Carlo class assignment. Because in thermal imagery, the tempera-

ture variations will cause a large non-linear radiance offset [43], we selected a stochastic model

rather than a linear-mixing model. We assume that local thermal variation occurs due to

changes in the upwelling radiance and the down-welling illumination from nearby object

emissions.

8.4. Results

The nine sequenced acquisitions were resulted in 72 pairs of images to which the CC was

applied. From Figure 19, one can learn that the obtained changes are spectral-based and not

thermal-based. Apart from the illumination and the shadow effects, the obtained changes did

not vary along the day. Nevertheless, because the thermal spectra are influenced by the down-

welling illumination, clear changes were recorded only from sequence #3 (i.e., 09h10 am).

When the up-spectra increase in the afternoon, the spectral changes between the disturbed soil

and its surrounding are reduced.

In Figure 19, the disturbed soil is clearly detected using the sequenced images #3, #4 and #5

(i.e., image x ¼ #3). It is also clearly detected using the short temporal sequences (i.e., x ¼ 3;

y ¼ 4) as the long temporal sequences (i.e., x ¼ 1; y ¼ 5).

Further, the detection of the buried objects was applied using the QCC method. Following the

results acquired using the CC method, the transformation parameter-based spectral classes

were obtained only using the hyper-spectral images x ¼ #3, #4, #5. We implemented the QCC

with Q ¼ QSEM (i.e., the maximum number of classes Q may be obtained using the expectation

maximization). In our case study, the Q ¼ 5 classes: three different types of soils (included the

disturbed soil), stones and shadows (Figure 20). The spectral doublet features of quartz that

are located at 1176 and 1123 cm�1 (8.5 and 8.9 μm) are clearly identified in the spectra of the

undisturbed soils shown in Figure 21. On the other hand, the spectral features of the quartz were

suppressed in the recently disturbed soil.

Figure 22 presents the results of the QCC. In comparison to the CC method, the disturbed soil

is clearly identified in the different sequence images when using the QCC. Using the two

applied methods, the changes were clearly detected using the short temporal sequences as the

long temporal sequences.

By merging the QCC results from different sequences (Figure 22) and after applying a thresh-

old filter, the detection of the disturbed soil became significant.

8.5. Conclusions

This research found that spectral-based change detection is a valuable method for the detection

of buried IEDs under disturbed soil condition. The change detection methods (Chronochrome
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(CC)) and the class-conditional (QCC) were able to detect changes even using short temporal

sequences. The efficiency of these methods increases using pair of images from large daily

temporal differences (e.g., morning and evening). A thermal hyper-spectral sensor with very

high spectral resolution (as the TELOPS Hyper-Cam) was found to be a sensitive tool for the

detection of small changes in the upper layer of the soil that were caused by the buried small

objects.

Figure 19. Several CC change detection results.
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Figure 21. Spectra of the three detected soils using SEM.

Figure 20. SEM results using Q ¼ 5.
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9. Synthetic aperture radar (Dirk Borghys and Michal Shimoni)

9.1. Introduction

Remote sensing by synthetic aperture radar (SAR) systems provides information that is com-

plementary to information available from optical images. Moreover, in areas under risk where

rapid land-cover mapping and suspected mined area reduction are required, the advantages of

SAR offering cloud penetration and day/night acquisition are evident in comparison to optical

data.

The current chapter summarizes results obtained by using different SAR modalities for help-

ing in mined-area reduction.

All the results presented in this chapter were obtained by automatic image processing.

They could be further improved by introducing human intervention in a semi-automatic

approach.

Figure 22. The QCC results.
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9.2. Properties of SAR images

The aim of this paragraph is to provide a very brief overview of the principal properties of SAR

images. For a more detailed and rigorous explanation, the interested reader is referred to the

plethora of books, websites and online tutorials on SAR, for example, [44–48].

In SAR imaging, an electromagnetic wave is emitted towards the earth surface where it is

scattered by the elements on that surface. The energy scattered into the direction of the sensor

is then measured and converted into an image. Usually, the emitter and the receiver are located

on the same platform (airplane, satellite or UAV). This is called mono-static SAR, and in this

case, the radar backscattering is measured.

The backscattered energy depends on properties of the scattering surface (geometrical proper-

ties, dielectric constant, etc.) as well as on the characteristics of the SAR system (wavelength,

incidence angle, used polarization, imaging mode, etc.). SAR is operated in the microwave at

different frequencies (Table 5). In general, each frequency has its advantage and the longer the

wavelength, the higher the penetration depth of the SAR energy.

The geometrical properties determine the type of scattering that occurs on the surface. For a

given SAR system, the type of scattering and the dielectric constant of the scattering surface

(determined by the material type and humidity) determine the amount of backscattered

energy and thus the intensity of the image. For a given type of land cover, the type of backscat-

tering depends on the frequency of the SAR system.

In a SAR system, the emitted and received radar waves are polarized. Usually, the SAR system

emits either horizontally (H) or vertically polarized waves (V), and the receiver is able to

capture also either H or V waves, or both. This leads to four possible polarization configura-

tions denoted HH, HV, VH or VV. A fully polarimetric system (PolSAR system) can emit/

receive these four modes simultaneously. In PolSAR, the tight relation between the physical

properties of natural media and their polarimetric behaviour leads to highly descriptive results

that can be interpreted by analysing underlying scattering mechanisms [49, 50].

Different SAR images acquired from a slightly different location can, under certain conditions,

be combined into a set of interferometric couples. SAR interferometry provides information

about the 3D structure of the terrain and can be used for generating digital elevation models

(DEMs) [51]. Interferometry can also be used for detecting subtle changes by a method called

coherent change detection (CCD). A complete chapter of this book is devoted to the subject.

Band Wavelength (cm) Frequency (GHz) Main applications

X 2.4–3.8 12.5–8 Urban

C 3.8–7.5 8–4 Land cover, soil moisture and ice

S 7.5–15 4–2 Security, manmade targets

L 15–30 2–1 Forest and soil moisture

P 30–100 1–0.3 Tomography

Table 5. Wavelength/frequency bands used in SAR remote sensing.
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The combination of interferometric and polarimetric information (PolInSAR) provides information

on scattering type and 3D structure of the image objects [52, 53]. PolInSAR data provide informa-

tion about the structure and the complexity of the observed objects. When utilized concurrently,

these different capabilities allow substantial improvements in land-cover determination [54, 55].

Table 6 gives an overview of past, current and planned civilian SAR remote-sensing satellites

used for applications over land. The table shows that most satellites operate in C- or X-band, that

since 2007 metric resolution satellite SAR images are available and that several SAR systems offer

polarimetric capabilities. The column labelled ‘Min. SR’ gives the best spatial resolution available

from that satellite. Usually, this best spatial resolution is obtained only for single-band spotlight

mode images. The best obtainable spatial resolution in full-polarimetric mode is usually three

times less good. The images from some of the satellites mentioned in the table are freely available

(PALSAR, Sentinel-1). Furthermore, in an attempt to have a larger community benefit from

satellite SAR images, space agencies freely offer SAR toolboxes that include most of the relevant

processing tools and are able to process most of the available SAR satellite images [56–59].

9.3. Problem statement, dataset and region of interest

The SAR dataset used in this chapter was acquired in the frame of the SMART project [4].

SMART was dedicated to help mined area reduction by providing methods and integrated

tools to help the use of airborne and space data.

In the project, a large dataset of airborne images was acquired over four test areas in Croatia.

The flight campaign took place in August 2001 and was performed by the German Aerospace

Agency (DLR). Metric resolution multi-spectral images (Daedalus line scanner with 12 bands

in VIS-LWIR), very high resolution (5-cm) panchromatic visual images and metric resolution

Satellite Lifetime Agency Band Polarization Min. SR

ERS-1 1991–2000 ESA (EU) C VV 25 m

JERS 1992–1998 NASDA (JP) L HH 25 m

ERS-2 1995–2012 ESA (EU) C VV 25 m

RADARSAT-1 1995– CSA (CA) C HH 10 m

ENVISAT-ASAR 2002–2012 ESA (EU) C HH/HV/VV 15 m

ALOS-PALSAR 2006– JAXA (JP) L PolSAR 10 m

TerraSAR-X 2007– DLR (GE) X PolSAR 1 m

Tandem-X 2008– DLR (GE) C PolSAR 1 m

Cosmo-Skymed constellation 2007– eGEOS (IT) X PolSAR 1 m

RADARSAT-2 2008– MDA (CA) C PolSAR 1 m

Sentinel-1 2014– ESA (EU) C Dual-Pol 5 m

NovaSAR-S 2015–2022 SSTL-EADS (UK) S PolSAR 6 m

Radarsat constellation 2018 (planned) CSA (CA) C PolSAR 3 m

Table 6. Overview of civilian SAR remote-sensing satellites.
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multi-frequency SAR data from the E-SAR system of the DLR were acquired. The SAR data

consist of PolSAR data in L- and P-band as well as HH- and VV-polarized data in X- and C-

band (Table 7).

The land-cover mapping serves for ‘suspected area’ reduction and not for mine detection. The

end users defined nine land-cover classes of interest: residential areas, roads, forests, wheat

and corn fields, pastures, abandoned areas, bare soil, and rivers. These remote-sensing data

were mainly used for identifying and detecting indicators of mine presence or mine absence.

A list of such indicators was compiled in the project and the different available data

were investigated for their adequacy for detecting the defined indicators. Table 8 shows the

indicators for which SAR data were found to improve the detection capability. The table shows

Class Indicators of mine presence Methods/tools

C1 Cultivated land (A) Classification

C2 Asphalted roads (A) Classification and detection of linear features

C3 Agricultural areas that are no longer in use (P) Classification and change detection

C4 Edges of forests (P) Classification

C5 Trenches and man-made embankments (P) Detection of linear features

Interactive enhancement and extraction

C6 Soft edges of hardtop roads (P) Classification and detection of linear features

C7 Crossroads, especially crossings of main roads with tracks no

longer in use (P)

Detection of linear features, classification

C8 River banks (P) Detection of linear features, classification

C9 Power supply poles (P) Dedicated detector based on polarimetric features

C10 Hilltops and elevated plateaus (P) DEM generation SAR interferometry

Table 8. Indicators of mine presence (P) or absence (A) for which SAR data can contribute to the detection.

E-SAR parameter X-band L-band P-band

Central frequency 9.6 GHz 1.3 GHz 450 MHz

Polarization VV HH-VV-HV-VH HH-VV-HV-VH

Nr of looks 1 1 1

Spatial resolution 1.5 m 2 m 4 m

Altitude above sea level 3160 m 3160 m 3160 m

Radiometric resolution <2 dB <2 dB <2 dB

Incidence angle 50� 50� 55�

Azimuth beam width 17� 18� 30�

Elevation beam width 30� 35� 60�

Table 7. Characteristics of the E-SAR data (©DLR) acquired in the SMART project.
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that a combination of image classification and detection of linear features contributes to the

detection of most indicators. For detecting power supply poles, a dedicated detector was

developed by DLR, which exploits the specific effect of dihedral scattering on PolSAR images.

Note that this is an example where objects much smaller than the resolution cell can be

detected using SAR image processing. The relative 3D structure of the terrain can be easily

extracted from interferometric image couples [51].

The remainder of the current chapter will discuss how the different SAR modalities contribute

to increased classification accuracy for the other indicators. The research area is located in

Glinska Poljana (Croatia), which is a post-war land mine-affected zone (Figure 23). The Croa-

tian Mine Action Centre found the SAR to be the most valuable remote-sensing source due to

the high frequency of its acquisition and its independency on cloud covers. Training and

validation datasets have been constructed using the collected ground-truth data. Due to the

risk incurred in mine-suspected areas, the ground-truth survey could be applied in only a

small part of the research zone and its peripheries. Figure 23 presents the locations of the

training and the validation sets superimposed on the L-band SAR image.

Based on the confusion matrix determined using the validation set, four statistics are calcu-

lated for the validation: global Kappa coefficient (κ) [60], overall accuracy (OA), producer's

accuracy (PA) and user's accuracy (UA) [61].

Figure 23. Training and validation dataset locations superimposed on the L-band E-SAR.
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9.4. Fusion of single-channel SAR and optical data

For investigating the potential of ‘future’ satellite remote-sensing data for mine-area reduction-

related land-cover classification, the available airborne data were used for simulating these

satellite data. The Daedalus images were sub-sampled to the spectral bands of a typical optical

satellite (Pleiades). A four-channel optical image was thus simulated (B1: 0.45–0.52 µm,

B2: 0.52–0.60 µm, B3: 0.63–0.69 µm, B4: 0.76–0.90 µm). For the SAR data, VV-polarized X-band

data were used.

For the land-cover classification from the single-channel SAR data, a feature-based supervised

classification method was developed and the information available from the single-channel

X-band SAR image was augmented by combining intensity information with spatial informa-

tion. Figure 24 presents a schematic overview of the developed approach.

The introduced spatial information consisted of a combination of textural features derived

from grey level co-occurrence matrices (GLCMs) [62] and the results from a detector of bright

and dark lines [63]. The line detector was applied after speckle reduction [64]. Feature-level

fusion based on stepwise logistic regression (LR) [65] was applied to obtain the classification

map. The stepwise LR implicitly performs a feature selection for each class to be detected [66].

Figure 25 shows the speckle-reduced X-band VV-polarized SAR amplitude image of part of

the region of interest. The results of the two line detectors and of the extraction of textural

parameters are shown in Figures 26 and 27, respectively. Figure 28 shows the classification

results obtained from the SAR image. From the classification results, it appears that the

method based on only a single channel allows detecting the location of forests and edges as

well as large parts of the roads and some of the buildings. It also provides an idea of the

location of abandoned land and fields in use with vegetation; however, the distinction between

Figure 24. Processing scheme for land-cover classification from single-channel SAR data.
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them is difficult because the two classes are mixed. Nevertheless, using only the single-band

SAR image the distinction between water and radar shadows is very difficult, because both

surface types result in a very low backscattering. In Table 9, the global classification accuracy

as well as the user and producer accuracy per class is presented.

Figure 25. Speckle-reduced VV-polarized, X-band E-SAR image (©DLR).

Figure 26. Results of the dark and bright line detectors.
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For building a classification map from the optical data, a minimum distance classifier was

applied. Decision-level fusion was used for combining the classification from SAR and optical

data. Classification results obtained from the optical data and by fusion of optical and SAR are

also presented in Table 9. The table shows that while the optical image leads to better classifi-

cation results than the single-channel SAR image, the fusion of both results improves further

the classification accuracy. This is particularly the case for the class ‘abandoned land’, which is

a very important indicator for possible mine presence.

Figure 27. Images of the various textural features.

Figure 28. Classification map obtained from the single-channel X-band SAR image.
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9.5. PolSAR and PolInSAR

In the past recent years, several polarimetric decomposition methods have been developed for

various applications. Each application combines the PolSAR or PolInSAR information in order

to characterize a certain type of scattering process which was determined through comple-

mentary information as experience, physical grounds [67] or by systematic selection and

reduction process [68]. In very complex scenes, it is useful to exploit the discriminative power

offered by the combination of a great number of these features.

At RMA, we investigated the complementarity of different frequencies and the fusion of

PolSAR and PolInSAR data for land-cover classification in mine-covered areas. Several PolSAR

and PolInSAR features are extracted in the imaging process, each combining amplitude, phase

and correlation information in order to extract specific characteristics of the scene. For land-

cover classification, two levels of fusion are applied: feature and decision levels. In the feature-

level fusion, a logistic regression (LR) is used for feature selection and for fusing the selected

features by optimizing the log-likelihood function. The obtained probability images are then

combined using a soft-decision fusion method, the neural network (NN), in order to obtain the

final classification results.

9.5.1. Feature extraction

A polarimetric SAR system measures the electro-magnetic signal and its polarization state that

are backscattered from the scene. The interaction of the transmitted wave with a scattering

object transforms its polarization. Discrimination of different types of mechanisms is possible

using the polarimetric signatures that are strongly depended on the scattering process. It has

been demonstrated that the inclusion of SAR polarimetry can lead to a significant improve-

ment in the quality of the data analysis in comparison to conventional single-polarization SAR

data [69]. In our study, for describing different properties of the land-cover objects and for the

fusion processes, a total of 72 different PolSAR and PolInSAR features were extracted. Nine

PolSAR features and nine PolInSAR features are presented in Figures 29 and 30, respectively.

Class name SAR Optical Fusion

PA UA PA UA PA UA

Roads 0.47 0.41 0.86 0.28 0.86 0.30

Water 0.28 0.05 0.93 0.90 0.94 0.91

Residential areas 0.08 0.98 0.32 0.17 0.41 0.30

Abandoned land 0.66 0.78 0.74 0.82 0.81 0.89

Fields with vegetation 0.60 0.51 0.74 0.81 0.81 0.80

Trees and shrubs 0.58 0.55 0.88 0.83 0.88 0.86

Total accuracy 0.59 0.76 0.82

Table 9. Classification results obtained from SAR processing, optical image processing and fusion.
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The figures demonstrate the variation and the inherent complementarity between the different

features. For a detailed description of the used feature set the authors refer to and the refer-

ences therein, see Ref. [70].

9.5.2. Fusion methodology

In this study, four independent sources of information: L-band PolSAR, L-band PolInSAR,

P-band PolSAR and P-band PolInSAR, are considered. The image processing resulted in the

Figure 29. PolSAR features dataset extracted using different decomposition methods and by calculating the PolSAR

coherences.
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extraction of a large features set: 25 L-band PolSAR features, 25 P-band PolSAR features, 13

L-band PolInSAR features and 13 P-band PolInSAR features [70].

The end users identified nine different land-cover classes using a ground-truth survey: roads,

residential areas, wheat crop fields, corn crop fields, forests, rivers, bare soils, and abandoned

areas (no trees or shrubs). The processing of the classification found two fundamental technical

Figure 30. PolInSAR features dataset extracted using different decomposition methods and by calculating the PolInSAR

optimal coherences.
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problems. The first consists in identifying the parameters that capture the information from the

radar signals and that allow to distinguish the different classes of land cover. The second

consists in selecting a technique that fuses these features in an efficient manner that will allow

distinguishing the land-cover classes.

Figure 31 presents the selected methodological scheme. The neural network, (NN) which is a

non-linear method, is selected as a classifier because linear classifiers do not provide satisfying

results in the fusion of data from different sources [71, 72]. However, the NN cannot be applied

directly on the original 76 features because the training set should be larger than available. To

overcome this shortcoming, we separated the fusion process for two levels. In the feature-level

fusion, a logistic regression (LR) [65] is used for combining the different features extracted

from the PolSAR and the PolInSAR data. The LR is used as intelligent feature reduction

method. The LR is also a linear classifier that is applied separately on each information source

and on each of the nine classes. The results are nine probability images for each information

source. The obtained probability images are then fused using a multi-layer perceptron neural

network with one hidden layer [73, 74] to yield the final classification.

9.5.3. Results

As mentioned before, only the probability images derived by the LR using different combina-

tions of SAR features are used as input to the NN method.

The NN results per class using only L-band or only the P-band E-SAR dataset are, respectively,

presented in Tables 10 and 11. Table 10 shows that high UA and PA results using only the

L-PolSAR or only the L-PolInSAR dataset were obtained for the classes ‘forests’, ‘wheat fields’

and ‘abandoned areas’. For the other classes, due to the low PA and UA results and due to the

lack of pattern in the results, it is difficult to identify which feature set is more significant, the

PolSAR or the PolInSAR. The highest PA (98.87 and 91.10%) and UA (98.71 and 88.38%) results

are obtained for the abandoned area class using the L-band PolSAR and PolInSAR probability

datasets and the NN classifier.

High UA and PA results are obtained for the ‘abandoned area’ class by using only the

P-PolSAR or only the P-PolInSAR dataset (Table 11). For the other classes, lower UA and PA

results are obtained using P-PolInSAR probability sets than those obtained using the P-band

PolSAR probability sets. Using the NN classifier, similar trend was obtained for the ‘aban-

doned area’ class with the highest PA (99.84 and 89.16%) and UA (82.87 and 62.05%) results

and using P-band PolSAR and PolInSAR probability datasets, respectively.

The ‘pasture’ class obtained very low PA and UA results in both L-band and P-band datasets.

Analysis of the confusion matrices shows that the ‘pasture’ class was mainly confused with

bare soil. As expected, the signal of the L- and the P-frequencies penetrates the pasture areas

that are covered with very short scattered grass, as in bare soil.

A comparison between the results was obtained using single dataset (Tables 10 and 11) and

the results after fusion (Table 12) show that process using the NN significantly improves the

results of the land-cover classification.
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Figure 31. The fusion process scheme.
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The best results are derived using the ‘All-SAR’ probability datasets for seven of the nine

land-cover classes (Table 12). The highest PA and UA results were obtained for all the classes

using the fused PolSAR and PolInSAR datasets. These results emphasize again the comple-

mentarities of the different SAR frequency datasets and of the PolSAR and PolInSAR infor-

mation. The results of the ‘abandoned area’ class are the highest with PA (99.51%) and UA

(99.35%). The results for this class have a high importance for the Croatian mine action

(i.e., end users) because it considered as suspected area. Moreover, it was demonstrated that

using a pixel-wise classification based on optical data or a single SAR dataset, it is difficult to

distinguish this class. Applying the LR and multinomial logistic regression (MNLR) methods

only on the PolSAR data resulted with lower user accuracy (UA) of 80% and producer

L SAR/Land cover class L-PolSAR L-PolInSAR

PA (%) UA (%) PA (%) UA (%)

Residence 31.88 33.55 1.25 4.44

Road 6.28 7.96 24.37 24.25

River 23.92 31.82 13.49 32.89

Forest 88.00 72.33 94.58 71.67

Bare soil 41.00 50.00 67.55 85.60

Abandoned area 98.87 98.71 91.10 88.38

Wheat 87.45 55.18 94.40 77.62

Corn 30.32 16.05 43.15 36.01

Pasture 0.00 0.00 19.43 17.28

Table 10. The NN results per class using E-SAR L-Band datasets.

P SAR/Land cover class P-PolSAR P-PolInSAR

PA (%) UA (%) PA (%) UA (%)

Residence 95.62 52.85 15.94 17.11

Road 36.93 37.69 14.32 12.98

River 21.94 40.00 7.01 16.18

Forest 83.13 62.66 38.00 65.73

Bare soil 82.76 49.57 39.15 17.97

Abandoned area 99.84 82.27 89.16 62.05

Wheat 51.35 76.88 91.51 40.0

Corn 0.00 0.00 0.0 0.0

Pasture 0.26 5.88 0.0 0.0

Table 11. The NN results per class using E-SAR P-band.
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accuracy (PA) of 66% for the ‘abandoned areas’ in ‘Glinska Poljana’ [66], than the results

were presented in this study. Using the PolSAR and multi-spectral data and a Dempster-

Shafer (DS) method, the ‘abandoned areas’ are classified with PA of 84% and using a fuzzy

method with PA of 89% [25].

After the fusion process, the road and river classes are still confused. However, those classes

can be easily distinguished by a photo-interpreter. Table 13 presents the overall accuracies and

the Kappa values obtained using the NN for the land-cover classifications. The results show

that the classification accuracy improves for the complete land-cover classification, using fused

Land cover class NN classification

The best fusion set PA (%) UA (%)

Residences All-SAR 90.31 68.81

Roads All-SAR 41.84 62.67

River All-SAR 61.64 81.73

Forest All-SAR 91.60 88.08

Bare soil All-SAR 89.32 79.92

Abandoned areas All-SAR 99.51 99.35

Wheat All-SAR 99.03 97.53

Corn L-PolSAR þ L-PolInSAR 65.31 66.27

Pastures L-PolInSAR þ P-PolSAR 31.35 29.58

Table 12. The highest PA and UA results per class obtained using the NN classifier.

LR probability dataset NN

Overall accuracy (%) Kappa

L-PolSAR 52.13 0.437

P-PolSAR 59.72 0.522

LþP-PolSAR 67.48 0.618

L-PolInSAR 61.04 0.539

P-PolInSAR 37.69 0.522

LþP-PolInSAR 66.16 0.601

L-PolSAR þ L-PolInSAR 63.87 0.576

P-PolSAR þ P-PolInSAR 65.55 0.596

L-PolSAR þ P-PolInSAR 63.22 0.569

L-PolInSAR þ P-PolSAR 69.96 0.646

All-SAR 84.00 0.809

Table 13. Overall accuracy for land-cover classification obtained using the NN classifier.
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datasets from different SAR frequencies. A kappa of 0.809 and the highest accuracy (84.00%)

are obtained using the All-SAR dataset. The results emphasize again the complementarities of

the PolSAR and PolInSAR information and of data acquired in different frequencies.

Figure 32 presents the land-cover classification obtained by implementing the All-SAR dataset

and using the NN classifier. Many false alarms are present in the class ‘road’. Please note that

we did not select ‘shadow’ as class because we did not visualize this phenomenon in the

original image scene. However, common artefacts as shadow and layover are also part of the

SAR images and future improvement should include this class.

9.6. Conclusion

The results presented here show that a feature-based fusion method for classifying SAR image

data is a valuable approach. When only a single-channel SAR image is available, a rough land-

cover map can be extracted by combining the available intensity information with spatial

Figure 32. NN land-cover classification of Glinska Poljana obtained using All-SAR dataset.
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information such as line detection results and textural features. Fusion with a classification

obtained from optical images does provide a significant improvement in classification accu-

racy with respect to using optical data alone.

Features from different SAR frequencies were found to be complementary and adequate for

land-cover classification. It was also found that PolInSAR features are complementary to the

PolSAR features and essential for producing an accurate classification of complex scenes

composed of very diverse land-cover classes. Fully polarized and interferometric SAR data

proved to produce valuable remote-sensing information and can be used to obtain accurate

information for areas under danger of mine presence.

The current availability of high-resolution SAR image data from various satellites on one hand

and the SAR-processing toolboxes freely available on the other hand makes it easier to apply

an approach as described in this chapter. Nevertheless, an efficient exploitation of the full

information richness offered by SAR images and its complementarity to information from

optical data still requires acquiring a good understanding of the SAR image phenomenology.

10. Conclusion: the future of remote sensing in mine action

The information collected by remote sensing can help mine action in many other ways that

survey a suspicious area to decide where to send the clearance teams. In some mined countries,

the availability of up-to-date maps can be poor. Remote sensing can be used to create recent

maps to help the planning of mine action operations. An analysis of the relief and the land

cover can help understand the road network and decide the best route to access a given

location. Deciding which areas to clear first is often a difficult decision. Remote sensing can

provide input regarding the risk of the presence of mines or the vulnerability of local popula-

tion. In case of major disasters such as flooding, remote sensing can be used to assess the

change in the mine contamination.

For decades, airplanes and satellites were the only vectors to obtain remote-sensing data.

Drones offer now new opportunities. With the reduction of size and costs of cameras, they

change drastically the way remote sensing can be used. If the autonomy of the smaller drones

is still limited, they still allow for fast deployment, which can help reactivity of mine action

organizations.

With drones offering a good solution for small-range survey and satellite for large areas, the

question now is about the relevance of conventional aircraft. Have they still a place between

drones and satellites? U.S. Air Force is currently training more pilots of drones than pilots of

fighter aircraft. Will aircraft slowly phase out for remote sensing?
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