23 research outputs found

    Guided patch-wise nonlocal SAR despeckling

    Full text link
    We propose a new method for SAR image despeckling which leverages information drawn from co-registered optical imagery. Filtering is performed by plain patch-wise nonlocal means, operating exclusively on SAR data. However, the filtering weights are computed by taking into account also the optical guide, which is much cleaner than the SAR data, and hence more discriminative. To avoid injecting optical-domain information into the filtered image, a SAR-domain statistical test is preliminarily performed to reject right away any risky predictor. Experiments on two SAR-optical datasets prove the proposed method to suppress very effectively the speckle, preserving structural details, and without introducing visible filtering artifacts. Overall, the proposed method compares favourably with all state-of-the-art despeckling filters, and also with our own previous optical-guided filter

    Effective SAR image despeckling based on bandlet and SRAD

    Get PDF
    Despeckling of a SAR image without losing features of the image is a daring task as it is intrinsically affected by multiplicative noise called speckle. This thesis proposes a novel technique to efficiently despeckle SAR images. Using an SRAD filter, a Bandlet transform based filter and a Guided filter, the speckle noise in SAR images is removed without losing the features in it. Here a SAR image input is given parallel to both SRAD and Bandlet transform based filters. The SRAD filter despeckles the SAR image and the despeckled output image is used as a reference image for the guided filter. In the Bandlet transform based despeckling scheme, the input SAR image is first decomposed using the bandlet transform. Then the coefficients obtained are thresholded using a soft thresholding rule. All coefficients other than the low-frequency ones are so adjusted. The generalized cross-validation (GCV) technique is employed here to find the most favorable threshold for each subband. The bandlet transform is able to extract edges and fine features in the image because it finds the direction where the function gives maximum value and in the same direction it builds extended orthogonal vectors. Simple soft thresholding using an optimum threshold despeckles the input SAR image. The guided filter with the help of a reference image removes the remaining speckle from the bandlet transform output. In terms of numerical and visual quality, the proposed filtering scheme surpasses the available despeckling schemes

    Accurate Despeckling and Estimation of Polarimetric Features by Means of a Spatial Decorrelation of the Noise in Complex PolSAR Data

    Get PDF
    In this work, we extended a procedure for the spatial decorrelation of fully-developed speckle, originally developed for single-polarization SAR data, to fully-polarimetric SAR data. The spatial correlation of the noise depends on the tapering window in the Fourier domain used by the SAR processor to avoid defocusing of targets caused by Gibbs effects. Since each polarimetric channel is focused independently of the others, the noise-whitening procedure can be performed applying the decorrelation stage to each channel separately. Equivalently, the noise-whitening stage is applied to each element of the scattering matrix before any multilooking operation, either coherent or not, is performed. In order to evaluate the impact of a spatial decorrelation of the noise on the performance of polarimetric despeckling filters, we make use of simulated PolSAR data, having user-defined polarimetric features. We optionally introduce a spatial correlation of the noise in the simulated complex data by means of a 2D separable Hamming window in the Fourier domain. Then, we remove such a correlation by using the whitening procedure and compare the accuracy of both despeckling and polarimetric features estimation for the three following cases: uncorrelated, correlated, and decorrelated images. Simulation results showed a steady improvement of performance scores, most notably the equivalent number of looks (ENL), which increased after decorrelation and closely attained the value of the uncorrelated case. Besides ENL, the benefits of the noise decorrelation hold also for polarimetric features, whose estimation accuracy is diminished by the correlation. Also, the trends of simulations were confirmed by qualitative results of experiments carried out on a true Radarsat-2 image

    Multi-Objective CNN Based Algorithm for SAR Despeckling

    Full text link
    Deep learning (DL) in remote sensing has nowadays become an effective operative tool: it is largely used in applications such as change detection, image restoration, segmentation, detection and classification. With reference to synthetic aperture radar (SAR) domain the application of DL techniques is not straightforward due to non trivial interpretation of SAR images, specially caused by the presence of speckle. Several deep learning solutions for SAR despeckling have been proposed in the last few years. Most of these solutions focus on the definition of different network architectures with similar cost functions not involving SAR image properties. In this paper, a convolutional neural network (CNN) with a multi-objective cost function taking care of spatial and statistical properties of the SAR image is proposed. This is achieved by the definition of a peculiar loss function obtained by the weighted combination of three different terms. Each of this term is dedicated mainly to one of the following SAR image characteristics: spatial details, speckle statistical properties and strong scatterers identification. Their combination allows to balance these effects. Moreover, a specifically designed architecture is proposed for effectively extract distinctive features within the considered framework. Experiments on simulated and real SAR images show the accuracy of the proposed method compared to the State-of-Art despeckling algorithms, both from quantitative and qualitative point of view. The importance of considering such SAR properties in the cost function is crucial for a correct noise rejection and details preservation in different underlined scenarios, such as homogeneous, heterogeneous and extremely heterogeneous

    Effect of kernel size on Wiener and Gaussian image filtering

    Get PDF
    In this paper, the effect of the kernel size of Wiener and Gaussian filters on their image restoration qualities has been studied and analyzed. Four sizes of such kernels, namely 3x3, 5x5, 7x7 and 9x9 were simulated. Two different types of noise with zero mean and several variances have been used: Gaussian noise and speckle noise. Several image quality measuring indices have been applied in the computer simulations. In particular, mean absolute error (MAE), mean square error (MSE) and structural similarity (SSIM) index were used. Many images were tested in the simulations; however the results of three of them are shown in this paper. The results show that the Gaussian filter has a superior performance over the Wiener filter for all values of Gaussian and speckle noise variances mainly as it uses the smallest kernel size. To obtain a similar performance in Wiener filtering, a larger kernel size is required which produces much more blur in the output mage. The Wiener filter shows poor performance using the smallest kernel size (3x3) while the Gaussian filter shows the best results in such case. With the Gaussian filter being used, similar results of those obtained with low noise could be obtained in the case of high noise variance but with a higher kernel size

    Deep learning for inverse problems in remote sensing: super-resolution and SAR despeckling

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    SAR Image Edge Detection: Review and Benchmark Experiments

    Get PDF
    Edges are distinct geometric features crucial to higher level object detection and recognition in remote-sensing processing, which is a key for surveillance and gathering up-to-date geospatial intelligence. Synthetic aperture radar (SAR) is a powerful form of remote-sensing. However, edge detectors designed for optical images tend to have low performance on SAR images due to the presence of the strong speckle noise-causing false-positives (type I errors). Therefore, many researchers have proposed edge detectors that are tailored to deal with the SAR image characteristics specifically. Although these edge detectors might achieve effective results on their own evaluations, the comparisons tend to include a very limited number of (simulated) SAR images. As a result, the generalized performance of the proposed methods is not truly reflected, as real-world patterns are much more complex and diverse. From this emerges another problem, namely, a quantitative benchmark is missing in the field. Hence, it is not currently possible to fairly evaluate any edge detection method for SAR images. Thus, in this paper, we aim to close the aforementioned gaps by providing an extensive experimental evaluation for SAR images on edge detection. To that end, we propose the first benchmark on SAR image edge detection methods established by evaluating various freely available methods, including methods that are considered to be the state of the art

    Optimum Image Filters for Various Types of Noise

    Get PDF
    In this paper, the quality performance of several filters in restoration of images corrupted with various types of noise has been examined extensively. In particular, Wiener filter, Gaussian filter, median filter and averaging (mean) filter have been used to reduce Gaussian noise, speckle noise, salt and pepper noise and Poisson noise. Many images have been tested, two of which are shown in this paper. Several percentages of noise corrupting the images have been examined in the simulations. The size of the sliding window is the same in the four filters used, namely 5x5 for all the indicated noise percentages. For image quality measurement, two performance measuring indices are used: peak signal-to-noise ratio (PSNR) and structural similarity (SSIM). The simulation results show that the performance of some specific filters in reducing some types of noise are much better than others. It has been illustrated that median filter is more appropriate for eliminating salt and pepper noise. Averaging filter still works well for such type of noise, but of less performance quality than the median filter. Gaussian and Wiener filters outperform other filters in restoring mages corrupted with Poisson and speckle noise
    corecore