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Abstract 
 In this paper, the effect of the kernel size of Wiener and Gaussian filters on their image 

restoration qualities has been studied and analyzed. Four sizes of such kernels, namely 3x3, 5x5, 7x7 and 
9x9 were simulated. Two different types of noise with zero mean and several variances have been used: 
Gaussian noise and speckle noise. Several image quality measuring indices have been applied in the 
computer simulations. In particular, mean absolute error (MAE), mean square error (MSE) and structural 
similarity (SSIM) index were used. Many images were tested in the simulations; however the results of 
three of them are shown in this paper. The results show that the Gaussian filter has a superior 
performance over  the Wiener filter for all values of Gaussian and speckle noise variances mainly as it 
uses the smallest kernel size. To obtain a similar performance in Wiener filtering, a larger kernel size is 
required which produces much more blur in the output mage. The Wiener filter shows poor performance 
using the smallest kernel size (3x3) while the Gaussian filter shows the best results in such case. With the 
Gaussian filter being used, similar results of those obtained with low noise could be obtained in the case of 
high noise variance but with a higher kernel size. 
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1. Introduction 

Noise is one of the main problems that attract attention of researchers working in digital 
image processing. Images are subject to several types of noise due to many sources or 
processes such as capturing instrument, acquisition and transmission. Some examples of such 
noise are Gaussian noise, speckle noise, Poisson noise, salt and pepper noise, periodic noise 
and others. This paper is mainly focused on two types, namely Gaussian noise and speckle 
noise. Additive White Gaussian (AWG) noise is commonly used in practice since it is a 
statistical model for many real-world noise sources. It is called additive noise as it can be 
modeled by random values added to an image (signal). Specifically, every pixel in the corrupted 
(noisy) image is the sum of a true original pixel value and a random, Gaussian distributed noise 
value. The term 'white noise' is analogous with white light which has the same value of power 
for all frequencies or wavelengths. In other words, it has a flat power spectral density. The noise 
intensity at each pixel is independent of other pixels. The term Gaussian refers to the probability 
distribution function (pdf) of the noise. The probability density function of the Gaussian or normal 
distribution can be expressed mathematically as:  

 

𝑓𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(𝑥) =
1

𝜎√2𝜋
exp (−

(𝑥−�̅�)2

2𝜎2 ) ,  (1) 

 

where  �̅� and 𝜎2 are the mean and variance, respectively.  
Filtering of such kind of noise has been studied by many researchers [1-5]. In [1], an 

imaging filter for elimination of Gaussian noise is presented. The filter mechanism is mainly 
based on finding quaternion optimal weights and the non-local means filtering. In [2], the main 
concentration is on making a neural network that works for a wide range of Gaussian noise 
variances. In [3], it is shown that a prior knowledge of some statistics of the Gaussian noise 
corrupting an image can be useful in designing an optimal filter for such kind of noise. In [4], a 
filtering scheme is proposed for restoring images corrupted by Gaussian noise using local 
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statistics of the image such as local weighted mean, local weighted activity, and local maximum. 
In [5], the proposed filter for reducing Gaussian noise is based on statistical estimation theory.  
A prior knowledge of some noise statistics is essential in this filter. These noise statistics are 
commonly obtained using training data.  In contrast with the AWG noise which can be modelled 
by random values added to the pixel values of an image, speckle noise, often caused by errors 
in data transmission, can be modelled by random values multiplied by those pixel values; hence 
it is also called multiplicative noise. Speckle noise reduction is frequently used in medical 
ultrasound imaging [6-10] and radar applications [11-17]. It follows Gamma distribution whose 
probability density function can be expressed as 
 

𝑓𝑥(𝑥) = [
 𝜆𝑎

(𝑎−1)!
  𝑒−𝜆𝑥   𝑥𝑎−1] ,              (2) 

 
where 𝑎 is the shape parameter and 𝜆 is the rate parameter of the gamma distribution function. 

The mean value of this distribution is (𝑎/𝜆) and its variance is (𝑎/𝜆2). 
Image restoration rises as a necessity since a low image quality has an impact on the 

image features extraction, recognition, analysis, and the quantitative measurements and 
interpretation of these noisy images either by human or using computer assisted techniques. 
Restoration of images generally deals with restoring the true images by different imaging 
filtering schemes or algorithms. Many research methods for such restoration or denoising have 
been proposed over years including those which consist of moving a kernel over each pixel in 
the image and applying a mathematical function on this neighborhood of pixels by replacing the 
central pixel of the kernel with the computed function value. The kernel is moved along the 
image one pixel at a time until the entire image has been covered [18-29]. In this paper, the 
effect of the kernel size of two main filters, namely Gaussian filter and Wiener filter, on their 
performance evaluation is discussed and analyzed through computer simulations applied to 
several images corrupted with Gaussian noise and speckle noise.  
 
 
2. Research Method 

Analysis of the effect of increasing and decreasing the size of the sliding window of 
Gaussian and Wiener filters has been studied in this paper. Those filters have been used to 
restore images contaminated with Gaussian noise and speckle noise with different values of 
variances. The size of the sliding window, or kernel, is a kind of neighborhood processing where 
a particular mathematical function is applied to the neighborhood of each pixel in the image. The 
kernel is a filter mask of a particular shape that moves pixel by pixel over the entire image until it 
is completely covered. Each pixel in the center of the shape being used is replaced by the 
outcome of the applied particular function. Mathematically, this is equivalent to convolving the 
image with this function.  

Gaussian filtering effectively convolves the image with a 2-D Gaussian function, or 
equivalently it uses a kernel of a Gaussian shape ('bell-shape"). In the Wiener filter, the pixel 
value at the center of the mask is adaptively changed based on the value of the variance of the 
pixels under the mask. Little smoothing is performed when the variance is small and more 
smoothing is performed when the variance is large. This is equivalent to minimizing the mean 
squared error between the input and output images of the filter. For quality evaluation of those 
image filters, several performance measuring indices could be used to measure the similarity or 
closeness between the restored filtered image and the uncorrupted true image, and the 
capability of preserving image edges and details. In this paper, mean absolute error (MAE), 
mean square error (MSE) and the structural similarity (SSIM) have been used. These 
performance measuring metrics are defined as follows: 

 

𝑀𝐴𝐸 =
1

𝑀𝑁
∑  ∑ |𝐹𝑖,𝑗 − 𝑇𝑖,𝑗|𝑁

𝑗=1
𝑀
𝑖=1     (3) 

 

𝑀𝑆𝐸 =
1

𝑀𝑁
∑  ∑ (𝐹𝑖,𝑗 − 𝑇𝑖,𝑗)

2𝑁
𝑗=1

𝑀
𝑖=1   ,     (4) 

 
where 𝑀𝑆𝐸 is the mean squared error between the output filtered image (𝐹) and the input true 
image (𝑇), 𝑀𝑁 is the total number of pixels in the image, 𝐹𝑖,𝑗 is the pixel value in the 
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(𝑖, 𝑗)𝑡ℎ location of the filtered image and 𝑇𝑖,𝑗 is the pixel value in the (𝑖, 𝑗)𝑡ℎ location of the 

original true image.  
Since it has been illustrated by many researchers that MSE and MAE are inconsistent 

with the human eye perception, an alternative measuring index called the SSIM index was 
proposed to improve the images quality measurement. The SSIM index measures the similarity 
between the restored output image and the input true image, and its value is always between  
0 and 1.  
 

0 ≤ 𝑆𝑆𝐼𝑀 ≤ 1       (5) 
 

If the two images are very similar to each other, then the SSIM index is close to 1, and if 
they are very dissimilar then the SSIM index will be close to zero. Unlike MAE and MSE, the 
SSIM quality index is based on visible structures in the image. It is claimed to be an 
improvement over other traditional metrics such as MAE and MSE, which might not be 
consistent with human eye perception. The SSIM quality metric between two images  𝑥 and 𝑦 is 
a function of their luminance, contrast, and structure. The luminance is a function of the mean 
values of the intensities of these two images, the contrast is a function of their standard 
deviations, and the structure is a function of their covariance. The SSIM quality index can be 
defined as follows: 
 

 𝑆𝑆𝐼𝑀(x, y) =
(2𝜇𝑥𝜇𝑦+𝐶1)(2𝜎𝑥𝑦+𝐶2)

(𝜇𝑥
2+𝜇𝑦

2+𝐶1)(𝜎𝑥
2+𝜎𝑦

2+𝐶2)
    (6) 

 
where 𝜇𝑥 and 𝜇𝑦 are the mean values of the 𝑥 and 𝑦 images, respectively, 𝜎𝑥

2 and 𝜎𝑦
2 are their 

variances, 𝜎𝑥𝑦 is their covariance, and 𝐶1 and 𝐶2  are constants [30]. 

 
 
3. Results and Analysis 

Computer simulations in this research work were performed using MATLAB software. 
Large number of images has been examined in these simulations. However, results of three 
images are shown in this paper. These images are Lake, Elaine and Boats, all of the same size 
(512x512), and are depicted in Figure 1. In Tables 1-6, MAE (detail preservation measuring 
index), MSE and SSIM have been used as measuring quality metrics for restoration of these 
three images using Gaussian and Wiener filters with different kernel sizes: 3x3, 5x5, 7x7 and 
9x9. The higher the values of MAE and MSE the worse the performance of the restoration 
method is. On the other hand, since the SSIM index measures the similarity between two 
images, if the two images are identical, then SSIM=1, and if they are very dissimilar then the 
SSIM will be close to zero. 

Two types of noise, namely Gaussian and speckle noise with zero mean and different 
values of variance V have been used in Tables 1-3 and Tables 4-6, respectively. In all of these 
tables, and for all values of variance of Gaussian noise and speckle noise, the Gaussian filter 
has a better performance since it requires a small kernel size (3x3). To get a similar quality with 
the Wiener filter, a 7x7 kernel is required.  The Wiener filter produces poor performance for the 
3x3 kernel size (the size that produces the least blur) even for small values of noise variance in 
both Gaussian and speckle types of noise. On the other hand, the Gaussian filter shows good 
results using small kernel size for both small and high values of noise variance, and it has better 
or close results compared with that of the Wiener filter.  

Tables 1-3, show that with the Gaussian noise being used, increasing the kernel size 
improves the performance of the Wiener filter, and that is not the case with the Gaussian filter 
where increasing the kernel size does not necessarily improve the performance of the Gaussian 
filter. With speckle noise corrupting the images, increasing the kernel size does not necessarily 
improve the performance of the Wiener filter as illustrated in Tables 4-6. Except for the small 
3x3 size kernel which shows the lowest quality, the performance of Wiener filtering for all other 
kernel sizes is almost the same.  

The Gaussian filter on the other side demonstrates the best performance for the 
smallest kernel size (3x3), and the quality is almost the same if the noise variance increases 
while the smallest kernel size is still being used. It should be noted that restoration of images 
operation which results in images that appear much worse than the original ones might still be 
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satisfactory operation for some applications such as autonomous machine recognition or 
generally in applications where the main concentration is on the gross aspects of the image. 

 
 

 
 

(a) 

 
 

(b) 

 
 

(c) 
 

Figure 1. Tested images (a) lake, (b) elaine and (c) boats 
 
 

Table 1. MAE, MSE and SSIM of Restored Lake Image After Being Corrupted by Zero Mean 
Gaussian Noise of Variance V using Wiener and Gaussian Filters with Various Kernel Sizes 

 
 
 

Table 2. MAE, MSE and SSIM of Restored Elaine Image After Being Corrupted by Zero Mean 
Gaussian Noise of Variance V using Wiener and Gaussian Filters with Various Kernel Sizes 

 
 
 

Table 3. MAE, MSE and SSIM of Restored Boats Image After Being Corrupted by Zero Mean 
Gaussian Noise of variance V using Wiener and Gaussian Filters with Various Kernel Sizes 
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Table 4. MAE, MSE and SSIM of Restored Lake Image After Being Corrupted by Zero Mean 
Speckle Noise of Variance V using Wiener and Gaussian Filters with Various Kernel Sizes 

 
 
 

Table 5. MAE, MSE and SSIM of Restored Elaine Image After Being Corrupted by Zero Mean 
Speckle Noise of Variance V using Wiener and Gaussian Filters with Various Kernel Sizes 

 
 
 

Table 6. MAE, MSE and SSIM of Restored Boats Image After Being Corrupted by Zero Mean 
Speckle Noise of Variance V using Wiener and Gaussian Filters with Various Kernel Sizes 

 
 
 

4. Conclusion 
The effect of the kernel size in Wiener and Gaussian image filters on the measurements 

of their quality performance has been investigated in this paper. Three images corrupted by 
zero mean Gaussian and speckle noise with different variances have been used in the 
computer simulations. The results show that Gaussian filter proves a better performance for all 
values of noise variance for both Gaussian and speckle noise, as it requires the smallest kernel 
size (3x3). The Wiener filter produces poor performance with such kernel size (3x3), the size 
that generally results in minimal blur, even for small values of noise variances. The Gaussian 
filter shows good results using small kernel size for both small and high values of noise 
variance, and has better or comparable results relative to that of the Wiener filter.  
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