
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

SAR Image Edge Detection: Review and Benchmark Experiments

Meester, M.J.; Başlamişli, A.S.
DOI
10.1080/01431161.2022.2131480
Publication date
2022
Document Version
Final published version
Published in
International Journal of Remote Sensing
License
CC BY-NC-ND

Link to publication

Citation for published version (APA):
Meester, M. J., & Başlamişli, A. S. (2022). SAR Image Edge Detection: Review and
Benchmark Experiments. International Journal of Remote Sensing, 43(14), 5372-5438.
https://doi.org/10.1080/01431161.2022.2131480

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:24 Jan 2024

https://doi.org/10.1080/01431161.2022.2131480
https://dare.uva.nl/personal/pure/en/publications/sar-image-edge-detection-review-and-benchmark-experiments(8b3b564d-bead-4a68-9661-bc519e530dfb).html
https://doi.org/10.1080/01431161.2022.2131480


SAR image edge detection: review and benchmark 
experiments
M. J. Meestera,b** and A. S. Baslamisli a,b

aOPT/NET B.V., Bergen, The Netherlands; bComputer Vision Lab, University of Amsterdam, Amsterdam, The 
Netherlands

ABSTRACT
Edges are distinct geometric features crucial to higher level object 
detection and recognition in remote-sensing processing, which is 
a key for surveillance and gathering up-to-date geospatial intelli-
gence. Synthetic aperture radar (SAR) is a powerful form of remote- 
sensing. However, edge detectors designed for optical images tend 
to have low performance on SAR images due to the presence of the 
strong speckle noise-causing false-positives (type I errors). 
Therefore, many researchers have proposed edge detectors that 
are tailored to deal with the SAR image characteristics specifically. 
Although these edge detectors might achieve effective results on 
their own evaluations, the comparisons tend to include a very 
limited number of (simulated) SAR images. As a result, the general-
ized performance of the proposed methods is not truly reflected, as 
real-world patterns are much more complex and diverse. From this 
emerges another problem, namely, a quantitative benchmark is 
missing in the field. Hence, it is not currently possible to fairly 
evaluate any edge detection method for SAR images. Thus, in this 
paper, we aim to close the aforementioned gaps by providing an 
extensive experimental evaluation for SAR images on edge detec-
tion. To that end, we propose the first benchmark on SAR image 
edge detection methods established by evaluating various freely 
available methods, including methods that are considered to be the 
state of the art.
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1. Introduction

Remote-sensing satellite images capturing the earth’s surface enable surveillance, analysis 
of infrastructure agriculture, and natural disaster management (Sharma et al. 2008). 
Optical and synthetic aperture radar (SAR) equipment obtain the two primary forms of 
the satellite data. Among them, SAR imaging with longer wavelengths can penetrate the 
weather, making it possible to capture areas under clouds. Moreover, SAR itself actively 
sends and retrieves signals to the earth’s surface that makes it ideal for surveillance and 
for analysing the earth’s surface in areas any time of the day, even when it is dark. Thus, 
being invariant to cloud cover and daylight, SAR images are widely preferred.
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Nonetheless, to manually realize surveillance and natural disaster management is 
infeasible because human resources are expensive, and algorithms are much faster in 
detecting patterns than humans. Therefore, it is profitable to automate the monitoring 
tasks by detecting distinct geometric features like lines, edges and blobs so that only the 
important features are analysed. These features are often used as salient image regions for 
pre-segmentation for object detection and recognition in remote-sensing image proces-
sing. For example, roads can be detected by identifying lines (Chen et al. 2018), blob-like 
structures might give clues on icebergs to avoid risks in ship navigation and offshore 
installations (Soldal et al. 2019), or linear features can emphasize geological lineaments to 
analyse the formation of minerals, active faults, groundwater controls, earthquakes and 
geomorphology (Ahmadi and Pekkan 2021).

Edges form the most fundamental features of the geometric primitives. They can be 
utilized to identify more advanced geometric and semantic features such as lines, corners, 
junctions, contours and boundaries. An edge manifests itself by an abrupt change in pixel 
intensity values, often identified by a significant shift in first or second derivative. Mostly, 
a convolutional filter (kernel) approximates the gradients or second derivatives of an 
image. Applying the kernel yields edge responses and a threshold determines which 
changes are considered as true edges. The most common optical edge filters are the 
traditional Sobel, Roberts Cross and Prewitt operators (Duda and Hart 1973; Roberts 1963; 
Prewitt 1970). More advanced ones such as the Laplacian of Gaussian (LoG) or Canny, 
include a smoothing operation to prevent detecting noise as false edges (Marr and 
Hildreth 1980; Canny 1986). On the other hand, recent state-of-the-art edge detectors 
use data-driven supervised convolutional neural networks (CNNs) to learn specialized 
kernels (Xie and Tu 2015; Liu et al. 2019; He et al. 2020).

In addition, there exists various SAR-specific edge detectors that deal with the SAR- 
specific speckle noise characteristics, such as the ratio-based edge detector (RBED), the 
multiscale edge detector based on Gabor filters, and the constant false alarm rate (CFAR) 
edge detector, as illustrated in Figure 1 (Wei and Feng 2015; Xiang et al. 2017a; Schou 
et al. 2003). Although these edge detectors can achieve robust and effective results in 
their own evaluations, the comparisons tend to include only a couple of (simulated) SAR 
images. For instance, Xiang et al. (2017a) use a synthetic image corrupted with the speckle 
noise and a real TerraSAR-X image for the evaluations. Similarly, Luo et al. (2020) use 
a single-simulated synthetic image and two real Mini-SAR images. A number of commonly 
utilized examples are provided in Figure 2.

Synthetically generated images provide ground-truth edge annotations so that the 
authors calibrate the parameters of their algorithms using quantitative evaluations. The 
parameters achieving the highest performance are selected and applied to real SAR 
images to provide qualitative evaluations. Nonetheless, the quantitative evaluations and 
the parameters selection process are based only on a couple of simple images, as 
presented in Figure 2. Therefore, the generalized performance of the proposed methods 
is not truly reflected as real-world patterns are much more complex and diverse. The main 
reason behind is the lack of large-scale datasets with ground-truth edge annotations. 
There also emerges another problem that a quantitative benchmark is missing in the field. 
Thus, at the moment, it is not possible to fully evaluate a (new or existing) method. 
Moreover, there is simply no fair way to compare the results to other research since the 
same evaluation images are not utilized and mostly a small number of comparison 
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methods are evaluated. In that sense, Bachofer et al. (2016) provide the only work on the 
comparison of different combinations of speckle reduction techniques and optical edge 
detection methods. However, they evaluate four fundamental methods on only four 
images with multilooking. Thus, a comprehensive evaluation of the baseline methods is 
also missing in the field.

Therefore, in this paper, we aim to close all the aforementioned gaps. Recently, Liu 
et al. (2020) have simulated a large-scale SAR dataset called BSDS500-speckled exploiting 
an optical imagery dataset of natural scenes to train their CNN for edge detection in SAR 
images. The dataset is generated by multiplying the greyscale intensity optical images 
with a 1-look simulated speckle noise. Including different augmentations, the dataset 
includes 28; 800 training images and 200 test images. Thus, instead of using a couple of 
simple synthetic images, we propose to use the training set of the BSDS500-speckled 
(28,800 images) for parameter tuning. The detectors with the best-performing parameters 
on the training set are eventually evaluated on the test set to form a benchmark. With this 
benchmark, we provide the most extensive experimental evaluation for SAR images on 
edge detection and thereby addressing the lack of large-scale experimental reviews in the 
remote-sensing field. The review also includes the performance evaluations of a number 
of denoising algorithms. To that end, we evaluate the following edge detectors: Roberts 

Real
SAR 
image

Detected
edges 

(a) (b) (c)

Figure 1. A) Ratio-based edge detector using σhh (L-band). Credits: (Schou et al. 2003) b) RBED edge 
detector. Credits: (Wei and Feng 2015). c) Multiscale edge detector. Credits: (Xiang et al. 2017a).

Figure 2. Examples of synthetic images of simulated simple scenarios. a) Wei and Feng (2015) b) Zhan 
et al. (2013) c) Xiang et al. (2017b).
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Cross, Prewitt, Sobel, Scharr, Farid, Frei-Chen, Laplacian of Gaussian (LoG), Differences of 
Gaussians (DoG), Canny, Gabor filters, a K-means clustering-based edge detector, a 2D 
wavelet discrete transformation-based edge detector, a subpixel edge detection algo-
rithm based on partial area effect, Touzi, gradient by ratio (GR), Gaussian-Gamma-shaped 
(GSS) bi-windows, ratio of local statistics with robust inhibition augmented curvilinear 
operator (ROLSS RUSTICO), a SAR-specific Shearlet transformation-based edge detector, 
and the supervised CNN model of Liu et al. (2020). In addition, for the first time in 
literature, we explore a bundle of decision fusion methods for the task, which aims to 
combine the outputs of different algorithms. We hope that our work will serve as 
a baseline for future SAR-specific edge detection algorithms.

2. Related work

2.1. Denoising

Noise is a random variation of pixel intensities arising from the acquisition process of the 
digital images. Among different noise patterns, speckle noise gets created because of 
random interference between the coherent returns due to the differences in the surface 
within pixels (Boncelet 2009). In that sense, unlike optical images, SAR images are highly 
corrupted with speckle noise. As a result, basic edge detection methods might produce 
unsatisfactory results for radar images (Touzi et al. 1988). The main problem is that the 
speckle noise patterns may be identified as false edges. Therefore, although SAR images 
are widely appreciated thanks to their high-resolution, wide-area coverage, and weather 
and illumination invariant properties, they also bring challenges. The speckle noise 
characteristics make them exceedingly challenging to process. To that end, denoising 
algorithms aim to decrease the amount of noise while preserving important structures. 
Thus, the task is an active area of research. A number of examples are presented in 
Figure 3.

It is not possible to entirely denoise the speckled images (Singh and Shree 2016). 
Nevertheless, there are various techniques that aim to reduce the speckle. For instance, by 

Real 
SAR 
image

Denoised 
SAR 
image

(a) (b) (c)

Figure 3. A) Denoised with SAR-BM3D. Credits: (Parrilli et al. 2011). b) Denoised with soft thresholding. 
Credits: (Achim et al. 2003). c) Denoised with SAR-CNN. Credits: (Molini et al. 2020).
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combining statistically uncorrelated speckle patterns, multi-look images can be created. 
The disadvantage of this method is the decreased system resolution (Ouchi 1985). In this 
paper, we consider the more challenging 1-look images. In addition, most denoising 
algorithms only model additive noise, making them less fitting for the multiplicative 
speckle noise. A way to still use the additive denoising algorithms is to convert SAR 
images to the natural logarithm domain before applying the methods.

The two main categories for the denoising task are spatial and transform domain 
filtering. Linear and non-linear filters divide the former into two categories. The non- 
linear filters do not assume a distribution of the random noise. Transform domain filtering 
first transforms the noisy images and attempts to denoise the transformed image. 
Preserving image features, including edges and corners, is a major challenge in reducing 
noise (Jain and Tyagi 2016). Low-level denoising methods use only convolutions with 
hand-crafted filters. The median, mean and Gaussian are the most common filtering 
options and have the drawback of smearing out some of the true edges.

Here, we iterate over a number of methods that we utilize in our experiments. First of 
all, with Gaussian smoothing, a Gaussian (the normal distribution) is convolved over an 
image. It is a local operation that averages neighbourhoods according to a Gaussian 
distribution with a given standard deviation. The advantage of this filter is that blobs are 
preserved, while with a strong mean filter, blobs can blend together. It is among the most 
commonly used methods. In addition, Block-Matching and 3D Filtering (BM3D) is a block- 
matching algorithm proposed by Dabov et al. (2007). It takes a 2D block of an image and 
then finds similar blocks within the image. These similar blocks do not only have a similar 
average intensity but a comparable noise distribution. They are grouped into a 3D array. 
Then, the 3D arrays are processed with collaborative filtering. This grouping method 
reveals fine details while preserving important structures. Bilateral filtering is another 
smoothing method that preserves structures (Tomasi and Manduchi 1998). It takes the 
average of surrounding pixels, which generally becomes problematic at edges since they 
get averaged out. The variation of intensities is taken into account to prevent this. In 
addition, anisotropic diffusion takes the average of neighbourhoods, even if these neigh-
bourhoods contain edges. It aims to only smooth out pixels on the same side of an edge, 
and thus it tends to generate appealing results on the supposedly homogeneous parts 
(Perona and Malik 1990). Finally, instead of just taking a local average with a small kernel, 
non-local means denoising (NLMD) considers the image as a whole. Then, the averages 
are weighted. Similar pixels get a higher weight than non-similar pixels. It tends to 
preserve edges and other details better than local denoising algorithms (Buades et al. 
2005). On the other hand, more advanced methods utilize powerful deep-learning models 
(Zhang et al. 2017, 2018; Kim et al. 2019; Tian et al. 2020; Byun et al. 2021).

There also exists SAR-specific denoising methods. For example, SAR expansions of 
NLMD, BM3D, anisotropic diffusion, bilateral filtering are proposed (Gupta et al. 2013; 
D’Hondt et al. 2013; Zhao et al. 2014; Sica et al. 2018). Furthermore, supervised deep- 
learning methods tend to outperform classic methods. Lattari et al. (2019) present an 
encoder-decoder-based CNN for end-to-end denoising. In addition, Cozzolino et al. (2020) 
present a non-local filtering method powered by deep learning where the coefficients of 
the weighted average of neighbours are learned by a CNN. Moreover, Vitale et al. (2021) 
propose a CNN with a multi-objective loss function considering spatial and statistical 
properties of the SAR images. Nonetheless, these CNNs need annotated data to train on, 

5376 M. J. MEESTER AND A. S. BASLAMISLI



which is not always available for real SAR images. To tackle this problem, recently, Molini 
et al. (2021) introduce a self-supervised Bayesian method with similar or better perfor-
mance to the supervised training approaches. A detailed review on deep-learning tech-
niques applied to SAR image denoising task and the recent trends can be found in the 
work of Fracastoro et al. (2021).

2.2. Benchmarks datasets

Benchmark datasets are of great importance for the development of machine-learning 
algorithms. They allow for fair evaluations and comparisons between different algorithms 
using quantitative evaluation metrics. They provide overviews about the algorithms’ 
ability to discover old and also new patterns, their superior sides and also limitations, 
time and space complexities, and thus their respective strengths and weaknesses. Hence, 
performances of algorithms against state-of-the-art or other competitive models can be 
assessed. One example is the famous MNIST dataset consisting of 60,000 training images 
and 10,000 testing images of 28 x 28 pixels with human annotated examples of hand-
written digits (LeCun et al. 1998). Modern machine-learning algorithms already achieve 
around an accuracy of 99% in correctly classifying the digits. As a result, nowadays, it 
serves as a baseline as the first step for many classifiers to first test on; if the performance 
of the model is not decent, then there is little chance for it to work on more complex tasks.

Similarly, large-scale benchmark datasets have enabled computer vision research to 
make significant progress over the last years, especially with the rise of deep learning. The 
most famous example is the ImageNet project (Russakovsky et al. 2015), which is 
a benchmark in object category classification and detection, currently including more 
than 14 million images labelled into 20,000 different categories. The extraordinary per-
formance of the revolutionary deep CNN architecture AlexNet (Krizhevsky et al. 2012) on 
the benchmark marks the beginning of the deep-learning era for computer vision. In 
parallel, many famous CNN models are emerged following the benchmark to beat 
AlexNet, such as VGGNet (Simonyan and Zisserman 2015), Inception (Szegedy et al. 
2015), ResNet (He et al. 2016), DenseNet (Huang et al. 2017), Squeeze-and-Excitation 
(Hu et al. 2018) and EfficientNet (Tan and Le 2019). Other popular and large-scale 
computer vision datasets include CIFAR, Microsoft COCO, PASCAL VOC, Cityscapes and 
SUN (Krizhevsky 2009; Lin et al. 2014; Everingham et al. 2015; Cordts et al. 2016; Xiao et al. 
2016). Thanks to their success on the real world large scale benchmarks, nowadays, CNNs 
are widely preferred, from face recognition to autonomous driving, in daily life where 
computer vision is utilized.

In addition, the large-scale benchmark datasets are widely utilized for transfer learning. 
Since it is not always possible to find or collect large-scale data sources for each problem 
or use case, models trained on large-scale benchmarks are assumed to learn generic 
features, such as edges and contours, that can be transferred to different domains. 
Likewise, instead of using random weights, pre-trained model weights can be used to 
initialize deep models to accelerate the learning process. Finally, large-scale benchmarks 
can be employed for self-supervised training of proxy tasks for smart model initialization, 
such as colorization or guessing the spatial configuration for two pairs of patches as proxy 
tasks for visual understanding (Larsson et al. 2017; Doersch et al. 2015). Similar techniques 
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are also successfully applied to remote-sensing images (Tao et al. 2020; Stojnic and 
Risojevic 2021).

In parallel with the developments in digital instruments and big data, remote-sensing 
imagery becomes more and more widely available also introducing benchmark datasets 
to boost the development of new and improved algorithms. For instance, Yang and 
Newsam (2010) provide a 21 class land-use image set called UC Merced Land Use dataset, 
where each class has 100 images, for land-use classification in high-resolution overhead 
imagery. Additionally, Xia et al. (2018) produce a large-scale dataset for object detection in 
aerial images called DOTA, together with a challenge. It’s final version consists of 18 
categories spanned into 11,000 images and around 1,800,000 instances. Similarly, Li et al. 
(2020) present DIOR, a large-scale benchmark for object detection with around 23,000 
images and 190,000 instances of 20 object classes. They also evaluate several state-of-the- 
art approaches to establish a baseline. Besides, PatternNet administers 38 different 
classes, having 800 images each, for remote-sensing image retrieval and also provide 
extensive evaluation of various methods to form a baseline (Zhou et al. 2018). Moreover, 
SpaceNet provide large-scale labelled satellite imagery and competitions for automated 
building footprint extraction and road network extraction for disaster management 
scenarios (van Etten et al. 2019). Likewise, xBD dataset provides before and after event 
satellite imagery for assessing building damage for disaster recovery research, together 
with a challenge (Gupta et al. 2019). Furthermore, FloodNet dataset provides high- 
resolution unmanned aerial vehicle imagery captured after Hurricane Harvey over Texas 
and Louisiana in August 2017 (Rahnemoonfar et al. 2021). It also provides two challenges; 
image classification and semantic segmentation, and visual question answering to boost 
the developments in the field. A review on benchmarking in photogrammetry and 
remote-sensing with an overview can be found in the work of Bakula et al. (2019). 
Finally, ImageNet benchmark has been successfully utilized for remote-sensing applica-
tions as well by transfer learning. For instance, Marmanis et al. (2015) use pretrained 
ImageNet features for classifying remote-sensing data that improves the overall accuracy 
from 83.1% up to 92.4% on the UC Merced Land Use benchmark. Similarly, Salberg (2015) 
utilizes generic image features extracted from AlexNet trained on the ImageNet database 
for automatic detection of seals in remote-sensing images. All in all, from the literature, it 
can be noticed that existing remote-sensing dataset are mainly limited to high level tasks 
such as classification or semantic segmentation.

As for SAR-specific datasets, So2Sat LCZ42 provides a benchmark for global local 
climate zones classification (Zhu et al. 2020), OpenSARUrban introduces a benchmark 
for urban scene classification together with extensive baseline evaluations (Zhao et al. 
2020). They can be considered as general scene classification challenges. There also exists 
fine-grained object detection baselines for specific use cases such as ship detection 
(Huang et al. 2018; Wei et al. 2020). In addition, as part of the SpaceNet data corpus, 
MSAW presents dataset, baseline and challenge focusing on building footprint extraction 
(Shermeyer et al. 2020). Moreover, Sen1Floods11 introduces a georeferenced dataset to 
evaluate methods on flood detection. These can be considered as semantic segmentation 
benchmarks. On the other hand, there hardly exists datasets or benchmarks for low-level 
image processing tasks such as edge detection, noise reduction, contrast enhancement, 
image stitching or image sharpening. Therefore, a number of remote-sensing researchers 
have compiled their own individual reference data for the evaluations. Moreover, 
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although methods might yield robust and effective results on their reference data, the 
comparisons tend to include only a couple of competitive approaches. Therefore, 
a comprehensive evaluation of the baseline methods is also missing in the field. Thus, 
in this paper, we aim to close the aforementioned gaps by providing extensive experi-
mental evaluations for SAR images on the edge detection task to form the first benchmark 
and thereby addressing the lack of large-scale experimental reviews in the remote- 
sensing field.

3. Edge detection

One of the oldest operations in image processing and a building block for more complex 
algorithms is edge detection (Sponton and Cardelino 2015). Edges can give indications for 
boundaries and contours, and can help describe the (geometric) forms of objects in 
images. An edge reveals itself by an abrupt change in pixel intensity values. In that 
sense, for SAR images, an edge can be characterized by the boundary between two 
homogeneous regions such as the borders between two different croplands or the 
intersections between land and sea.

There are two main families of edge detection: first and second derivative based. The 
first derivative edge detection is the most commonly used. With the first derivative-based 
edge detection, an edge can be detected by a peak, whereas with the second derivative- 
based edge detection, it can be detected by a zero-crossing, see Figure 4. The computa-
tional costs of the methods that are based on the first derivatives (e.g. Sobel, Roberts 
Cross and Prewitt) are low compared to more complex edge operations. Thus, these 
detectors are at the bottom of the hierarchy, considered as low level and straightforward 
without any parameters to tune. The methods that are based on second derivatives 
usually include a smoothing step for noise reduction. Nonetheless, that also brings the 
challenge of selecting the optimum smoothing parameter. Thus, each edge detector has 
both advantages and disadvantages.

3.1. First-order derivatives

Since edges are defined by an abrupt change in pixel intensity values, first-order deriva-
tives search for the (local) maximum variations in the first derivatives of an image. The 
most common way to estimate the first derivative is by the first-order Taylor expansion 
with a small step as provided in Equations 1 and 2 as follows: 

Δx ¼
@fðx; yÞ
@x

¼
fðx þ dx; yÞ � fðx; yÞ

dx
: (1) 

Δy ¼
@fðx; yÞ
@y

¼
fðx; y þ dyÞ � fðx; yÞ

dy
: (2) 

Since digital images are discrete, the small step can be considered as 1 (pixel), when 
dx ¼ 1, which leads to Equations 3 and 4, where x and y now denote pixel coordinates. 

Δx ¼
@fðx; yÞ
@x

¼ fðx þ 1; yÞ � fðx; yÞ : (3) 
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Δy ¼
@fðx; yÞ
@y

¼ fðx; y þ 1Þ � fðx; yÞ : (4) 

To compute the discrete derivatives (i.e. finite differences), simple 1D filters (kernels) can 
be utilized: 

Gx ¼ � 1 1½ �, Gy ¼ � 1
1

� �

, 

where Gx and Gy (convolutional) filters compute gradient responses in the horizontal 
and vertical directions. Then, the gradient magnitude (G) (the edge response map) per 
pixel is calculated by Equation 5 as follows: 

G ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2

x þ G2
y

q
: (5) 

The gradient magnitude points to the direction of the most significant change in intensity. 
Then, the orientation is computed by Equation 6 as follows: 

θ ¼ tan� 1 Gy

Gx
: (6) 

f

Zero 
crossing

f' 

f''

∂
∂x

∂
∂x

Peak

Figure 4. Difference in first and second derivatives-based edge detection. f indicates the image 
intensity.
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Once the gradient magnitude is computed, a threshold is set to decide from which pixels 
of the response map to be considered as true edges. Setting the threshold to lower values 
might capture unnecessary details (e.g. noise), whereas higher values might ignore critical 
structures. Thus, an optimum threshold is desired. The standard procedure of the first 
order derivatives-based edge detection is illustrated in Figure 5.

Obviously, 1D differentiation filters do not consider diagonal edges. To achieve that 2D 
filters are required. The most commonly used 2D filters are Sobel, Roberts Cross and 
Prewitt operators (Duda and Hart 1973; Roberts 1963; Prewitt 1970).

3.1.1. Roberts cross
Instead of approximating gradients along the horizontal and vertical directions, diagonal 
directions can also be considered (i.e. 45� and 135�). To that end, Roberts (1963) offers two 
kernels to compute the gradient magnitude: 

Gx ¼ 1 0
0 � 1

� �

, Gy ¼ 0 1
� 1 0

� �

. 

Therefore, it also generates high responses to changes in diagonal directions. It is 
mostly preferred for its simplicity. Nonetheless, its small kernels make it very sensitive to 
noise. Moreover, due to the coefficients of the filters, it can only capture sharp edges.

3.1.2. Prewitt
Different from the Roberts Cross filters, Prewitt (1970) offers 3 x 3 kernels to compute the 
gradient using eight directions:  

Gx ¼
1 0 � 1
1 0 � 1
1 0 � 1

2

4

3

5, Gy ¼
1 1 1
0 0 0
� 1 � 1 � 1

2

4

3

5.  

Similar to Roberts Cross, Prewitt is mostly preferred for its simplicity. Moreover, it 
provides some robustness to noise by differentiating in one direction and averaging in 
another due to its larger filter size. Nonetheless, due to its coefficients, it is mostly suited 
for images with high contrast.

3.1.3. Sobel
Sobel filters are also 3 x 3, but they are biased towards the centre pixel by giving 
significant weight to the centre coefficients of the kernels (Duda and Hart 1973):  

Gx ¼
� 1 0 1
� 2 0 2
� 1 0 1

2

4

3

5, Gy ¼
� 1 � 2 � 1
0 0 0
1 2 1

2

4

3

5.

Figure 5. First order derivatives-based edge detection workflow.
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Therefore, averaging gives more weight to central pixel, which results in smoother 
responses than Prewitt. Similar to Prewitt, it computes edges in eight directions. In 
addition, the filters are separable such that they can be expressed as a matrix 
product of a 1D column and a 1D row vectors, which can be utilized for faster 
computations.

3.1.4. Scharr
Scharr filters are very similar to Sobel, but with different coefficients. Nonetheless, unlike 
Sobel, Scharr provides anisotropic filters that tends to achieve better rotation invariance. 
The weights are derived by optimizing the weighted mean-squared angular error in 
Fourier domain (Scharr 2000):  

Gx ¼
3 0 � 3

10 0 � 10
3 0 � 3

2

4

3

5, Gy ¼
3 10 3
0 0 0
� 3 � 10 � 3

2

4

3

5.  

3.1.5. Farid
Similar to Scharr, Farid determines the filter weights by the optimization of the 
rotation invariance of the gradient operator in the Fourier domain (Farid and 
Simoncelli 2004): 

Gx ¼

0:004128 0:027308 0:046732 0:027308 0:004128
0:010420 0:068939 0:117974 0:068939 0:010420

0:0 0:0 0:0 0:0 0:0
� 0:010420 � 0:068939 � 0:117974 � 0:068939 � 0:010420
� 0:004128 � 0:027308 � 0:046732 � 0:027308 � 0:004128

2

6
6
6
6
4

3

7
7
7
7
5
;

Gy ¼

0:004128 0:010420 0:0 � 0:010420 � 0:004128
0:027308 0:068939 0:0 � 0:068939 � 0:027308
0:046732 0:117974 0:0 � 0:117974 � 0:046732
0:027308 0:068939 0:0 � 0:068939 � 0:027308
0:004128 0:010420 0:0 � 0:010420 � 0:004128

2

6
6
6
6
4

3

7
7
7
7
5
:

Different from the previous filters, Farid’s coefficients are of float data type which 
makes it computationally more expensive. Note that we round the weights to 6 decimals 
for better presentation. Additional decimal places can be found in Python’s scikit-image 
package.1 Furthermore, Farid’s smallest filter size is 5 x 5 which is again computationally 
more demanding than the previous filters. Nonetheless, larger mask size might be 
beneficial in reducing the the effects of noise by local averaging within the neighbour-
hood, yet it might also cause more blurring. As a final remark, extended versions (i.e 5 x 5 
or 7 x 7) of the aforementioned filters also exist (Lateef 2008; Kekre and Gharge 2010; 
Bogdan et al. 2020), yet we respect the original algorithms and use them without any 
extensions.
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3.1.6. Frei-Chen
Different from the previous methods which provide horizontal and vertical filters, Frei- 
Chen method offers nine kernels that contain all of the basis vectors so that the local 
neighbourhood (i.e 3 x 3) is represented by the weighted sum of those nine basis vectors 
(Frei and Chen 1977):  

w1 ¼
1

ffiffiffi
2
p

1
0 0 0
� 1 �

ffiffiffi
2
p

� 1

2

4

3

5, w2 ¼

1 0 � 1ffiffiffi
2
p

0 �
ffiffiffi
2
p

1 0 � 1

2

4

3

5, w3 ¼
0 � 1

ffiffiffi
2
p

1 0 � 1
�

ffiffiffi
2
p

1 0

2

4

3
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2
p
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p
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3

5, w5 ¼
0 1 0
� 1 0 � 1
0 1 0

2

4

3
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2

4

3

5.  

Filters w1, w2, w3 and w4 capture the edge subspace, w5, w6, w7 and w8 capture the 
line subspace, and w9 captures the average subspace. It is computationally more expen-
sive than the previous methods utilizing 3 x 3 kernels as it has seven more kernels and 
a number of them with float data type coefficients. We exclude the averaging operation 
w9 as it does not include derivatives and combine all the responses (w1, . . . , w8) as done 
in Equation 5.

3.2. Second-order derivatives

It is also possible to reveal edges by exploiting the second-order derivatives by detecting 
zero crossings. First-order derivatives search for the peaks that are above a certain thresh-
old, whereas the second-order derivatives automatically identify the local maxima. 
Nonetheless, the first-order derivatives are more robust to noise than the second-order 
derivatives as further differentiation amplifies the noise. The most commonly 
used second-order derivative operations are Laplacian of Gaussian (LoG) and Difference 
of Gaussians (DoG) (Marr and Hildreth 1980).

3.2.1. Laplacian
One way to calculate the second derivative of an image is computing the Laplacian. Since 
the Laplacian is the divergence of a gradient, it can represent the second derivative by 
highlighting rapid intensity changes. Similar to the first-order derivatives (in Equations 1, 
2, 3 and 4), it can be represented as follows: 

Δ2f ¼
@2f
@x2 þ

@2f
@y2 : (7) 

Δ2x ¼
@2f
@x2 ¼ fðx þ 1; yÞ þ fðx � 1; yÞ � 2fðx; yÞ : (8) 
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Δ2y ¼
@2f
@y2 ¼ fðx; y þ 1Þ þ fðx; y � 1Þ � 2fðx; yÞ : (9) 

For an additional comparison between the first and second derivative filters, see 
Figure 6. To approximate the effect of the Laplacian, the following 3 x 3 discrete 
convolution kernel can be utilized by adding the vertical and horizontal derivative filters 
in Figure 6: 

L ¼

0 1 0
1 � 4 1
0 1 0

2

4

3

5:

Note that since the Laplacian utilizes a single mask, the edge orientation information is 
not available. Finally, the Laplacian operator usually is not used individually as it is more 
sensitive to noise than the first-order based methods due to the additional differentiation. 
Thus, it is a common practice to combine it with a smoothing operation.

3.2.2. Laplacian of Gaussian (LoG)
The LoG is an extension to the Laplacian filter, where the Laplace response is combined 
with a Gaussian filter. The Laplacian is good at detecting thin edges, but it is more 
sensitive to noise than the first derivative variants. To keep the false detection of edges 
to a minimum, a Gaussian filter is applied to an image, before detecting the edges with 
a Laplacian convolution. Nonetheless, the smoothing might smear out some of the sharp 
edges lowering the precision in edge localization. Thus, the smoothing parameter should 
be treated carefully. Finally, the thresholding is achieved by zero-crossing, which is the key 
feature of this algorithm. To that end, the Gaussian kernel is estimated by Equation 10, 
then taking the Laplacian of the Gaussian equation by Equation 11, LoG filter is realized in 
Equation 12 as follows: 

Gðx; y; σÞ ¼
1

2πσ2 expð
� x2 � y2

2σ2 Þ: (10) 

Δ2ðGðx; y; σÞÞ ¼
@2

@x2 Gðx; y; σÞ þ
@2

@y2 Gðx; y; σÞ: (11) 

Figure 6. Examples of directional filters. α is measured counterclockwise from the horizontal axis. 
Credits: Schowengerdt (2007).
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LoG ¼ Δ2ðGðx; y; σÞÞ ¼
1

πσ4 ð
x2 þ y2

2σ2 � 1Þ expð
� x2 � y2

2σ2 Þ; (12) 

where σ denotes the standard deviation of the Gaussian.

3.2.3. Difference of Gaussians (DoG)
The DoG takes two Gaussians with different variances of an image and calculates the 
difference. Edges are identified by the differences of the convolutions of the two Gaussian 
kernels with the image as follows: 

DoG ¼ Gσ1 � Gσ2 ¼
1
ffiffiffiffiffiffi
2π
p ð

1
σ1

expð
� x2 � y2

2σ2
1
Þ �

1
σ2

expð
� x2 � y2

2σ2
2
ÞÞ ; (13) 

where σ1 and σ2 represent the two standard deviations of the Gaussian. Before taking the 
differences, each Gaussian function is normalized so that the area under the curve is one, 
making the mean difference is zero. It basically subtracts a highly smoothed version of an 
image from the less smoothed one, acting as a band-pass filter ignoring high-frequency 
components that are often attributed to noise. Finally, the thresholding is achieved by 
zero-crossing, similar to LoG. Additionally, with particular parameter settings DoG 
becomes an approximation of the LoG. In terms of the computational complexity, there 
is no significant difference between these two approaches.

3.3. Advanced methods

In addition to the commonly used first- and second-order derivative-based filters, we also 
iterate over a number of advanced methods that use additional features or steps in their 
algorithms.

3.3.1. Canny
Canny is one of the most widely used edge detection algorithms (Canny 1986). It is 
composed of noise reduction, gradient calculation, non-maximum suppression, double 
thresholding and hysteresis. Firstly, it smooths an image with a Gaussian kernel. Secondly, 
the response is convolved with a low-level edge detector (e.g. Sobel or Roberts) to obtain 
the gradient image. Afterwards, non-maximum suppression is applied to extract thin 
edges by identifying the pixel with the maximum value in an edge. Then, by setting 
a high and a low threshold, strong and weak edges are determined. The strong edge 
pixels are labelled as final edges. In the ultimate stage, hysteresis decides which of the 
weak edges are considered as true edges by tracking the edge connections within 
a neighbourhood. Non-maximum suppression and hysteresis steps greatly contribute to 
reducing the number of false edges. Nonetheless, these steps also increase the computa-
tion time. Finally, the algorithm has three main parameters to tune (sigma for Gaussian 
smoothing and two thresholds), which makes it more demanding than the previously 
mentioned methods.

3.3.2. Gabor filters
Gabor filters are mostly used for texture analysis and feature extraction as they have been 
shown to have optimal localization both in spatial and frequency domains (Daugman 
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1985). Similar to DoG, Gabor filters act as adjustable band-pass filters. A Gabor function is 
a Gaussian function modulated with a complex sinusoidal carrier signal. To extract 
features of different shapes, orientations, and scales, it is common practice to combine 
multiple filters together in a filter-bank, as illustrated in Figure 7. This is similar to the case 
of Frei-Chen where different kernels are constructed to capture different patterns. 
Nonetheless, Gabor filters can be created with an endless amount of orientations, combi-
nations, and smoothing settings. A 2D Gabor function contains real and imaginary parts as 
described in Equations 14 and 15:

gðx; y; λ; θ; σ; γÞreal ¼ expð
� x2 � γ2y2

2σ2 Þ cosð
2πx

λ
þ φÞÞ ; (14) 

gðx; y; λ; θ; σ; γÞimaginary ¼ expð
� x2 � γ2y2

2σ2 Þ sinð
2πx

λ
þ φÞÞ ; (15) 

where for the spatial location ðx; yÞ ¼ ðx cos θþ y sin θ; � x sin θþ y cos θÞ, λ and φ denote 
the wavelength and the phase offset of the sinusoidal carrier signal, θ controls the 
orientation, and σ and γ indicate the standard deviation and the spatial aspect ratio of 
the Gaussian. Finally, the response of each convolution with a real and imaginary Gabor 
kernel is combined by accumulating the real and imaginary parts as follows: 

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðI � girealÞ
2
þ ðI � giimaginaryÞ

2
q

; (16) 

where g indicates a Gabor kernel. To create a filter bank, various Gabor kernels are created 
with different orientations and frequencies. Then, the response (R) of each kernel can be 
combined together by summing them to create a superimposed edge response map 
(gradient magnitude). Other options might include taking the maximum response per 
pixel or simply computing the average responses over all kernels.

3.3.3. K-means clustering
K-means clustering algorithm can also be utilized to split an image into a number of 
clusters based on pixel intensities to detect different regions. The number is of clusters is 
defined by the hyperparameter K . It can be particularly useful as the derivatives-based 
edge detection methods using filters are known to be sensitive to noise as they operate 
over small neighbourhoods. On the other hand, when an image is grouped into a small 
number of regions, the boundaries between the clusters are expected to reveal true 

Figure 7. Example of the real parts of the Gabor filters with different orientations and frequencies to 
capture various patterns. These filters are also used to create one of our filter banks.
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edges. For example, given an image containing only water and land pixels, and using 
K ¼ 2, the algorithm is to divide those pixel values in two distinct clusters. Then, applying 
a low-level edge detector (e.g. Sobel), the boundaries between the clusters can be 
extracted as edges. It is a suitable option for SAR images since the edges often manifest 
as boundaries between homogeneous areas.

3.3.4. 2D discrete wavelet transformation
A wavelet transformation decomposes image signals to different scales of frequency 
bands, which may be considered isotropic low-pass and high-pass components 
(Schowengerdt 2007). One level decomposition provides four different sub-bands namely 
low-low (LL), low-high (LH), high-low (HL) and high-high (HH). Using these four sub-bands, 
the original image can be reconstructed. The LL sub-band is composed of an approxima-
tion of the original image and it can be decomposed further, while the rest of the 
components are composed of the high-frequency information that are expected to 
highlight edges. Firstly, we apply the 2D discrete wavelet transformation using 
a biorthogonal wavelet. Then, the LL component is discarded as it does not contain high- 
frequency information and the rest of the components are combined into an edge 
response map similar to the previous cases as follows: 

DWT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LH2 þ HL2 þ HH2

p
: (17) 

3.3.5. Subpixel edge detection
Figure 8 illustrates the difference between the subpixel edge detection and the deriva-
tives-based methods. Since the derivatives-based edge detection methods operate on the 

Figure 8. Subpixel edge detection where edges are precisely located inside the pixels. Credits: (Trujillo- 
Pino et al. 2013).
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the discrete structure of the digital images, they characterize a pixel into a single region. 
Nonetheless, object shapes may be projected with inaccuracies or unambiguously regis-
tered during the image acquisition process which might affect the true position of an 
edge pixel. To address these issues, subpixel methods aim at recognizing the location and 
orientation of an edge within a pixel with high precision. To that end, Trujillo-Pino et al. 
(2013) propose a subpixel edge detection algorithm based on partial area effect, which 
assumes a particular discontinuity in the edge location and that pixel values are propor-
tional to the intensities and areas at both sides of an edge. It first applies a 3 x 3 averaging 
filter to smooth the input image. Then, the partial derivatives of the smoothed image are 
computed. Afterwards, a 9 x 3 window is centred on the each pixel of the partial 
derivatives to ensure that an edge crosses the window from left to right. Later, the sum 
of the right, middle and left column of the window are computed to solve three system of 
linear equations to obtain the edge features; orientation, curvature and change in 
intensity in both sides of the edge. Finally, the subpixel position is calculated by measur-
ing the vertical distance from the centre of the pixel to the edge. Edges are detected by 
a threshold that considers a minimum intensity change. If a pixel is marked as an edge by 
the algorithm, a restored subimage is generated containing a perfect edge. The process is 
applied for each pixel position and the generated subimages are combined to achieve 
one final edge map. The whole procedure can be repeated to refine the results of 
a previous iteration. It is illustrated in Figure 9. We refer the reader to the work of Trujillo- 
Pino et al. (2013) for mathematical derivations and additional details.

Figure 9. Subpixel edge detection algorithm based on partial area effect. a) Input image; b) Smoothed 
image; c) Detecting edge pixels; d) a synthetic 9×3 subimage is created from the features of each edge 
pixel; e) Subimages are combined to achieve a complete restored image. Credits: (Trujillo-Pino et al. 
2013).
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3.4. SAR-specific methods

In addition to the traditional optical methods, we analyse eight more edge detectors that 
are specifically tailored for SAR images; Touzi, gradient by ratio (GR), Gaussian-Gamma- 
shaped (GSS) bi-windows, ratio of local statistics with robust inhibition augmented curvi-
linear operator (ROLSS RUSTICO), a SAR-specific Shearlet transformation-based edge 
detector, GRHED - the supervised CNN model of Liu et al. (2020), and two different fusions 
of (i) the ratio of the averages (ROA) and the ratio of exponentially weighted averages 
(ROEWA)-based methods, and (ii) an optical and a SAR-specific method. These methods 
are designed to better handle the possible false edge artefacts due to the speckle noise.

3.4.1. Touzi
Touzi is a CFAR-based edge detector using the ratio of pixel values. It is designed to be 
more stable against the multiplicative speckle noise than the traditional edge detectors 
(Touzi et al. 1988). Therefore, instead of using differentiation, as in the case of first-order 
derivatives, it uses the ratio of the averages (ROA) of patches as the rate of false alarms is 
independent of the average local radiometry. It is computed for the four principal 
directions (0�, 45�, 90�, 135�) to capture horizontal, vertical and diagonal edges as the 
ratio of the means of the two neighbourhoods on the opposite sides of a pixel along 
a direction: 

r ¼ 1 � minf
μ1

μ2
;

μ2

μ1
g ; (18) 

where μs are the arithmetic mean values of the two halves of a given window. At a given 
pixel, r is calculated for the given directions and the maximum response corresponds to 
the edge response of that pixel. Finally, thresholding decides which pixels are true edges. 
The framework of computing the ratios is also demonstrated in Figure 10.

3.4.2. Gradient by ratio (GR)
Gradient by ratio method defines the horizontal and vertical gradient components as 
follows (Dellinger et al. 2015): 

Gh;α ¼ logðRh;αÞ ;

Gv;α ¼ logðRv;αÞ ;
(19) 

where Rs are the ratio of exponentially weighted averages (ROEWA) of the two halves of 
a given window. Different from the Touzi operator that uses straightforward averages, GR 
exponentially weights the average values by α, which also controls the smoothing of the 
image at different scales. Finally, the gradient magnitude is calculated similar to the 
previous cases as the root mean square of the directional gradients: 

GRα ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðGh;αÞ
2
þ ðGv;αÞ

2
q

: (20) 

3.4.3. Gaussian-Gamma-shaped (GSS) bi-windows
Different from the methods that use traditional rectangular bi-windows to compute the 
local statistics (e.g. Touzi), Shui and Cheng (2012) propose to utilize Gaussian-Gamma- 
shaped (GGS) bi-windows in ratio-based edge detectors to reduce the number of false 
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edge pixels near true edges. Moreover, it provides flexible parameter selection, dynamic 
spacing between two windows to capture better curvilinear structures, and favourable 
smoothness in local statistics estimations. A comparison is presented in Figure 11. The 
authors demonstrate that the rectangle window functions are not reliable 2-D smoothing 
filters causing false edges around the proximity of true edges due to the remaining 
unwanted high-frequency speckle noise residuals. To overcome the problem of detecting 
false edges from false local maxima, GGS bi-windows are utilized for the horizontal 
components as follows:

Wðx; yÞ ¼ jyjα� 1
ffiffiffiffi
2π
p

σx ΓðαÞβα expð� ð x2

2σ2
x
þ
jyj
β ÞÞ ; (21) 

where σ controls the window length, α controls the window width, β controls the spacing 
of the two windows, and ðx; yÞ denotes pixel locations. The window is Gaussian shaped at 
horizontal and Gamma shaped at vertical orientation. Then, for each pixel and an 
orientation, the ratios of the local means in the GGS bi-windows are calculated.

3.4.4. Ratio of local statistics based on RUSTICO
In order to make full use of the statistical characteristics of SAR images for the edge 
detection task, Li et al. (2022) introduce a method based on the ratio of local statistics 
(ROLSS) that is combined with the robust inhibition-augmented curvilinear operator 
(RUSTICO) which is inspired by the push-pull inhibition in visual cortex differentiating 
contrast variations (Strisciuglio et al. 2019b). It is recognized for its high robustness to 
noise and texture for the edge detection task. To compute an initial edge map, the 
method first utilizes an unweighted circle-shaped window to extract the ratio of local 
statistics (i.e. maximums of mean and standard deviation, similar to Equation 18): 

E ¼ R1 � R2 ; (22) 

where R1 and R2 are computed by the statistical ratios over the circle-shape window and 
defined as follows: 

Figure 10. Scheme of the ROA method. Credits: Dellinger et al. (2015).
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R1 ¼ maxðRmean;
1

Rmean
Þ ;

R2 ¼ maxðRstd;
1

Rstd
Þ :

(23) 

Then, the edge response map, E, is augmented with RUSTICO by detecting the contrast 
variations using a DoG filter for noise robust curvilinear structure detection. Given 
a prototype pattern (e.g. a synthetic bar) and a reference point, it is computed by 
considering the positions of the local DoG maxima around a number of concentric circles 
positioned to the reference point, as illustrated in Figure 12.

3.4.5. SAR-Shearlet
The standard wavelet transformations for the edge detection task are not robust to noise. 
Moreover, they tend to have difficulty in distinguishing close edges and have poor 
angular accuracy due to their isotropic nature. To address these limitations, shearlet 
transform is proposed, which is highly anisotropic, and defined at diverse scales, locations 
and orientations (Yi et al. 2009). It utilizes an anisotropic directional multiscale transform 
which produces a directional scale-space decomposition of images. In simple terms, given 
an image I, it is a mapping defined as follows: 

I! fψIðα; s; pÞ ; (24) 

where α denotes the scale, s denotes the orientation, p denotes the pixel location, ψ is the 
generating function of well-localized waveforms which is anisotropically scaled and 
sheared, and f denotes the shearlet transform (Labate et al. 2005). Furthermore, the 
idea is extended for SAR images for bankline detection, which can be considered as 
curvilinear structures, and also for edge detection achieving promising results (Sun et al. 
2021, 2022). To achieve that, complex shearlet transform is utilized as follows: 

ψ ¼ ψeven þ iψodd ¼ ψeven þ iHðψevenÞ ; (25) 

where ψeven denotes an even symmetric shearlet, ψodd denotes an odd symmetric shearlet, 
and Hð:Þ denotes the Hilbert transformation. After applying complex shearlet transform to 

Figure 11. Difference between (a) rectangle bi-windows and (b) GGS bi-windows at orientation π . 
Credits: Shui and Cheng (2012).
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an image, the largest absolute value among all the coefficients related to the odd 
symmetric shearlet is determined and the corresponding shearlet direction is set as the 
main direction of the edge at a pixel. Using this principle direction, the even symmetric 
shearlet coefficient of the image is computed. Finally, the probability of a pixel being an 
edge is calculated at the main direction per pixel as follows: 

~E ¼
j
PJmax

Jmin
< I;ψodd > j �

PJmax
Jmin
j< I;ψeven > j

ðJmax � Jmin þ 1Þ �maxj2fJmin;...;Jmaxgj< I;ψodd > j
; (26) 

where < :> denotes the related shearlet coefficients and j is the scale parameter. We refer 
the reader to the works of Sun et al. (2021, 2022) and Reisenhofer et al. (2016) for 
additional details and derivations.

3.4.6. GRHED
GRHED is a convolutional neural network (CNN)-based edge detector for 1-look SAR 
images (Liu et al. 2020). It utilizes the Holistically Nested Edge Detection (HED) (Xie and 
Tu 2015) model together with a special hand-crafted layer. HED is a CNN-based end-to- 
end deeply supervised edge detection framework. It is designed to learn rich hierarchical 
features by progressively refining edge maps produced as side outputs using multi-scale 
learning. The final output is a weighted fusion of those side outputs. The framework 
adopts the commonly used VGGNet model with special modifications for the task at hand. 
We refer the reader to the original work of Xie and Tu (2015) for detailed model 
architecture, parameters and training choices.

Since HED model is designed for optical images, it is not directly suitable for the SAR 
image edge detection task as illustrated by Liu et al. (2020). It has problems with the 
speckle noise characteristics, different texture patterns and bright homogeneous regions. 
To address these issues, (Liu et al. 2020) add a hand-crafted layer before the learnable 
layers of HED. To that end, GR is utilized as the hand-crafted layer that generates gradient 
future maps which are not affected by the different intensity values and only depend on 
on the ratio of the mean values. Thus, the model first takes input as a 1-look SAR image, 
then it process the image with GR to extract gradient features. Finally, the gradient 

Figure 12. (a) Circular window with 4 pixel radius, (b) prototype pattern (bar) for RUSTICO, (c) 
positions of local differences of the Gaussians’ maxima along with concentric circles. Credits: Li 
et al. (2022).
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features are processed with a set of learnable convolutional layers to generate a final 
output containing the predicted edges of the 1-look SAR input.

The model is trained in a supervised fashion using the cross entropy loss utilizing 
a large-scale dataset by simulating SAR-like noise over the optical BSDS500 dataset 
(Arbelaez et al. 2011). We will use the same dataset for our parameter selection process 
and benchmark experiments, which is to be explained later in Section 4.

3.4.7. Fusion
Finally, we explore the effect of fusion over the performance. The motivation is that each 
edge detector has both advantages and disadvantages and we want to combine the 
advantages of different features while also mitigating the possible disadvantages. To that 
end, we combine (i) SAR-specific Touzi and the best-performing optical method, Farid, 
and (ii) ROA-based Touzi and ROEWA-based GR (a) by directly combining the normalized 
gradient magnitudes (edge responses), and (b) by combining thresholded normalized 
gradient magnitudes using a voting scheme. In that sense, for the first time in literature, 
we explore a bundle of decision fusion methods for the task. Surprisingly, the effect of 
fusion for combining two different SAR-specific edge detectors has never been explored 
before.

4. Experimental setup

For the experiments, following the setup of Liu et al. (2020) as a guideline, we utilize 
a large-scale dataset by simulating SAR-like noise over the optical BSDS500 dataset 
(Arbelaez et al. 2011). Then, four different denoising algorithms are applied to the entire 
dataset as a pre-processing step to achieve the cleanest image set. Afterwards, we utilize 
a variety of edge detection methods on the best-denoised images. Finally, by iterating 
over a set of thresholds and various hyperparameters, we evaluate the performances of 
the edge detectors and establish a benchmark for future evaluations.

4.1. Approach

The fundamental scheme for the edge detection task is demonstrated in Figure 13. The 
idea is to first smooth images to reduce the effect of noise, then enhance (identify) 
important features or details by gradient magnitude computation. Later, a threshold is 
applied to identify true edges (edge detection). An extra localization step can also be 
applied by edge thinning and linking to achieve one pixel wide continuous edges (e.g. 
Canny). If an extra localization step is not already a part of an algorithm, we do not include 
it. For example, Sobel does not have a localization step, whereas Canny inherently 
includes one. For our approach, smoothing is achieved by a set of denoising algorithms 
that are to be elaborated in Section 4.3. Then, for the enhancement step, each edge 
detection method has a way of calculating the gradient magnitude as provided in 
Section 3. Finally, for the detection step, we sample 20 threshold values and search for 
the value that achieves the best F1-score performance and also report a set of quantitative 
evaluation metrics for additional insights.
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4.2. Dataset

The original Berkeley Segmentation Data Set 500 (BSDS500) contains 500 natural optical 
images, among which 300 images are reserved for training and validating (from now on 
they will be referred as the training set), and 200 images are for testing (Arbelaez et al. 
2011). It is widely used for contour and edge detection tasks for optical images as 
a benchmark. Ground truth edge maps are manually generated by human annotators. 
The number of annotations differs per image, yet each has five different annotations on 
average. Following the common practice, we consider any annotated pixel as ground 
truth for our evaluations, which results in edges that can sometimes be wider than one 
pixel, see Figure 14.

Using the training set of BSDS500, Liu et al. (2020) generate 1-look speckled data by 
multiplying the images by speckle noise patterns following the widely used Goodman 
model (Goodman 1975). The training set is further augmented by rotating images by 16 
different angles, flipping horizontally, and rescaling to 50%, 100% and 150% of their 
original sizes. The resulting speckled optical dataset, named BSDS500-speckled, contains 
28,800 images for training, and 200 images for testing and benchmarking. A number of 
images are presented in Figure 14. Using this dataset, Liu et al. (2020)train their supervised 
CNN model for edge detection on SAR images and achieve better results than the 
gradient by ratio method.

4.3. Denoising

The current literature bases the quantitative evaluations and the parameters’ selection 
process on a couple simple images, as provided in Figure 2. As a result, the generalized 
performance of the proposed methods is not truly reflected as real-world patterns are 
much more complex and diverse. The main reason behind has been the lack of large-scale 
datasets with ground-truth edge annotations. Thus, instead of using a couple of simple 
synthetic images, we propose to use the training set of the real-world BSDS500-speckled 
(28,800 images) for parameter tuning. The detectors with the best-performing parameters 
on the training set are eventually evaluated on the test set to form a benchmark. With this 
benchmark, we provide the most extensive experimental evaluation for SAR images on 
edge detection and thereby addressing the lack of large-scale experimental reviews in the 
remote-sensing field. We believe that our work will serve as a baseline for future SAR- 
specific edge detection algorithms by providing fair experimental evaluation. The dataset 
and the benchmark are available at https://github.com/readmees/SAR_edge_bench 
mark.git.

When using denoising as a pre-processing step for the edge detection task, there is 
a trade-off to consider. The more noise gets removed, the more (micro-)edges disappear 
so that some of the true edges are also smeared out. Therefore, we consider denoising 
algorithms that tend to preserve structures better. To that end, block-matching and 3D 

Figure 13. Fundamental edge detection steps.
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filtering (BM3D) (Makinen et al. 2020), bilateral filtering, anisotropic diffusion and non- 
local means denoising (NLMD) are to be evaluated. We use a bilateral filtering algorithm 
designed specifically for SAR (SARBLF) (D’Hondt et al. 2013). Both SARBLF and anisotropic 
diffusion are iterative algorithms. Thus, the noise (and with it micro-edges) is expected to 
be smoothed out more for higher number of iterations.

All the denoising algorithms are implemented in Python. BM3D implementation is 
taken from the original repository.2 SAR-BM3D proposed by Parrilli et al. (2012) provides 
a SAR version of the algorithm based on a (2007) BM3D implementation. In their work, 
they state that the homomorphic BM3D performs quite similar. Thus, we assume the 
current improved version (2020) of BM3D is also sufficient for SAR images. Additionally, 
we use the OpenCV implementation of NLMD (Bradski 2000), and anisotropic diffusion by 
MedPy library.3 Finally, SARBLF is also taken from the original repository provided by its 
authors.4

All the denoising algorithms use their default settings unless stated otherwise. For 
BM3D and NLMD, the standard deviation of the noise is assumed to be 0.5 for all 
experiments. For anisotropic diffusion and SARBLF, we experiment with different number 
of iterations. Moreover, SARBLF has two parameters; spatial scale parameter (gs) to adjust 
the spatial extent of the filter, similar to the window size, and radiometric scale parameter 
(gr) to control the amount of filtering for weighting the local averages of intensities. The 
code provided by the authors use gs ¼ 2:8 and gr ¼ 1:4, whereas in their article, they use 
gs ¼ 2:2 and gr ¼ 1:33. Thus, we evaluate both settings. Finally, for the algorithms 
assuming additive noise, images are transformed to log domain to also transform multi-
plicative speckle noise to additive noise.

For quantitative assessments, denoised images are compared against the clean images 
without any speckle (ground truth). To that end, the whole dataset of 29,000 images is 
evaluated using mean squared error (MSE) measuring per pixel reconstruction quality, 
peak signal-to-noise ratio (PSNR) measuring the noise difference in ratios, and structural 
similarity index (SSIM) measuring the similarity considering the perception of the human 

Figure 14. Sample images from the BSDS500-speckled dataset.
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visual system. Both MSE and SSIM are in the range of ½0:0; 1:0�. For MSE, 0.0 indicates that 
the predictions perfectly match the ground-truths, thus the lower the better. On the other 
hand, for SSIM, 1.0 indicates a perfect match, thus the higher the better. Similarly, higher 
PSNR values indicate better reconstruction qualities. It is in the range of ½0:0;1Þ. As 
a reference, SAR-BM3D achieves around 25.66 dB on its simulated speckle experiments.

4.4. Edge detection

For the methods that have parameters, the training set of 28,800 (denoised) images are 
utilized for parameter tuning. Then, the best-performing set of parameters are used to 
evaluate the test set of (denoised) 200 images to form the benchmark. For quantitative 
evaluations, we use the receiver operating characteristic (ROC) curve and its area under 
the curve (AUC) together with the metrics derived from confusion matrices. This metrics 
are precision (PPV), accuracy (ACC), F1-score (F1), and the Fowlkes–Mallows index (FM). 
For these metrics achieving 1 means the highest possible performance, while 0 indicates 
the lowest.

The ROC curve presents the change in true-positive rate (sensitivity or recall) against 
the false-positive rate (fall-out) by varying the threshold values. The perfect classification 
with no false negatives and no false positives generates a point in the upper left corner of 
the graph, whereas a random classification generates points along the diagonal line. 
Given that scheme, points above the diagonal indicate good classification results, while 
points below the diagonal line indicate algorithms of poor quality. Therefore, by varying 
the threshold values, the performance of a method is analysed. Different thresholds yield 
different rates so that a curve is generated. Similarly, curves forming the diagonal line 
indicate random performance. To that end, the area under the curve (AUC) is computed to 
give a summary of the ROC curve.

For the evaluations, we consider a ranking scheme: F1 > FM > PPV > ACC. Following 
the common practice, we rank F1 as the most important metric, measuring the harmonic 
mean of the precision and recall, as it takes into account how the data is distributed in the 
case of imbalanced classes i.e. sparse edge pixels vs. dense non-edge pixels. Then, FM 
measuring the geometric mean of the precision and recall follows F1. Afterwards, we 
consider PPV i.e. precision, as a standalone metric because it measures the correctly 
identified positive cases (edges) from all the predicted positive cases. Lastly, accuracy is 
considered as it is easy to interpret summarizing the per-pixel performance of the 
classification model. It has the lowest in importance as it does not consider the case of 
imbalanced classes. Finally, when there is no clear difference, we consider the guidance of 
AUC to determine the best-performing setup.

The gradient ratio (GR) images are generated with the MATLAB code provided by Liu 
et al. (2020)5 that the authors present as the baseline to compare their supervised CNN 
model. For SAR-Shearlet, we use the MATLAB code provided by its authors Sun et al. 
(2021).6 ROLSS RUSTICO consists of two parts; we implement ROLSS following the 
description of the paper of Li et al. (2022) in Python, and use the MATLAB code of the 
original RUSTICO paper to apply it on top of the ROLSS results (Strisciuglio et al. 2019).7 

Further, we utilize the MATLAB source code GSS bi-windows provided by its authors (Shui 
and Cheng 2012).8 Apart from that, all the edge detection methods are implemented 
using Python. The majority of the first-order derivatives-based edge detectors are 
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implemented with the scikit-image library (van der Walt et al. 2014). Moreover, for 
creating Gabor and DoG filters, we use the scikit-image library as well. Furthermore, the 
discrete 2D wavelet transform is based on the PyWavelets library (Lee et al. 2019). The 
K-means-based edge detection utilizes the K-means clustering algorithm of the OpenCV 
library and the boundaries are extracted with a Sobel filter. For the subpixel edge 
detection, we use a pure Python implementation that is based on the original MATLAB 
implementation of Trujillo-Pino et al. (2013).9 In addition, our LoG implementation con-
sists of applying a Gaussian blur and Laplace operator, both implemented with scikit- 
image. For convolutions, we use scipy.ndimage.convolve with default parameters. Finally, 
the Touzi edge detector is provided by Orfeo ToolBox (Grizonnet et al. 2017).

Low-level edge detectors use their fixed (default) settings. Farid, Prewitt, Roberts, 
Scharr and Sobel use the defaults of scikit-image. For Frei-Chen, we separately convolve 
the image with fw1, . . . w8g, as explained in Section 3.1.6. For the K-means-based edge 
detection, we consider K ¼ f3; 4; 5g. Once the clustering is done, we use Sobel (scikit- 
image) to detect the boundaries between different clusters as edges. For the standard 
deviation of the Gaussian of the LoG filter, we evaluate for σ ¼ f1:0; 1:4; 2:0; 2:7; 3:0g. The 
σ1 value of the DoG is composed of σ1 ¼ f1:0; 1:4; 2:0; 2:7; 3:0g. To determine σ2 values, 
ratios of 4 and 5 are evaluated for each σ1. Thus for σ1 ¼ 1, σ2 ¼ 4 and σ2 ¼ 5 are 
evaluated and so on. In addition, for the standard deviation of Canny, we evaluate for σ ¼
f0; 1:0; 1:4; 2:0; 2:7; 3:0g and experiment with upper:lower threshold ratios of 2:1 and 3:1. 
Moreover, we evaluate the subpixel edge detector for f1; 2; 3g iterations which are 
oriented for high-noise images. Finally, Gabor relies on Gaussian functions as well. To 
that end, the Gabor’s sigmas are determined by the choice of the frequency parameters 
using the default implementation of the scikit-image library. Following the setup of Wang 
et al. (2019), the parameter settings of the orientations and frequencies for a bank are 
determined as follows: 

orientationðiÞ ¼
ði � 1Þπ

O
; where i ¼ 1; 2:;O : (27) 

frequencyðiÞ ¼
0:2
ffiffiffiffiffiffiffiffi
2i� 1
p ; where i ¼ 1; 2:; S ; (28) 

where S and O are the number of scales and orientations. Using these formulations, we 
consider four different Gabor filter-banks. Firstly, GS5O8, used by Wang et al. (2019) and 
Khan et al. (2019), which represents a Gabor filter-bank with five scales (5 different 
frequencies) and eight orientations. Additionally, we evaluate GS2O3, GS3O5 and GS4O6 
which are utilized by Wang et al. (2019). The real and imaginary responses of each filter are 
combined by Equation 16. Finally, the combined responses are summed together to 
create a superimposed gradient magnitude.

Considering the SAR-specific methods, for GR, we utilize the algorithm with 
α ¼ f1; 2; 3; 4; 5; 6g. For the Touzi experiments, we sample radius values from 
f1; 2; 3; 4; 5; 6; 7; 8; 16g. In addition, for the GSS bi-windows, we evaluate for 
α ¼ f2; 3; 4g, which regulates the window width. The β handling of the spacing of the 
two windows, and σx adjusting the window length are calculated according to 
Equations 29 and 30, where we evaluate for w ¼ f7; 9g and l ¼ f6:5; 7:0g for different 
width and lengths as follows: 
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β ¼
wΓð2α � 1Þ

22α� 1ΓðαÞ2
; (29) 

σx ¼
2l þ 1
2
ffiffiffi
π
p : (30) 

For ROLSS RUSTICO, to extract the local statistics, we utilize a circular window with 
a radius of 4 pixels. Then, RUSTICO is applied over the responses of ROLSS with λ ¼
f0:5; 1; 2; 3g that regulates the size of the image region in which the noise is suppressed, 
and � ¼ f1; 1:5; 2g that is the strength of suppression. Finally, regarding SAR-Shearlet, we 
set α to 0.8 for parabolic scaling. The effective support length of the Mexican hat wavelet 
is set to f1=2; 1=7g of the width or height (whichever is smaller) of the image, and the 
effective support length of the Gaussian is set to 1/20 of the width/height (whichever is 
smaller) of the image. Using these fixed parameters, we set the shear levels to f2; 3; 4g
and use f2; 3g for scales per octave. Finally, since GRHED already uses the simulated 
BSDS500 dataset for its parameter selection process, we will not repeat the procedure and 
directly use the parameters and the model that are already calibrated on the simulated 
BSDS500 dataset, which is provided by the authors that achieves state-of-the-art results. 
We refer the reader to the work of Liu et al. (2020) for additional details.

For the fusion methods, we experiment with combining the gradient magnitudes and 
the thresholded binary edge maps from different edge detectors. To that end, the 
thresholded binary edge responses are combined by (i) single voting where at least one 
of the methods has to classify a pixel an edge and (ii) complete agreement where all the 
methods should classify a pixel an edge. Additionally, instead of combining the binary 
outputs, we combine the real-valued gradient magnitudes as averages. Both fusion 
schemes consider two different setups; one best-performing non-SAR and a SAR method, 
and two different SAR methods with combinations of equal weights.

Each edge detector takes a uint8 denoised image as input and outputs a gradient 
magnitude (edge response map). The response map is normalized with min-max normal-
ization to the range of [0, 1]. In addition, thresholds are uniformly sampled by 0.05 from 
[0, 1] to derive various quantitative evaluation metrics and provide confusion matrices for 
the ROC curves, where applicable. For the methods utilizing double thresholding, we set 
the lower threshold to 0.0 and iterate over the higher threshold. Finally, for GRHED, we set 
the threshold to 0.5516 as proposed by the authors. Although it is more granular than our 
0.05 sampling scheme and might yield better results, we respect the original implementa-
tion and directly use it as it is.

5. Evaluation

5.1. Denoising

For the task, we evaluate BM3D, SARBLF, NLMD and anisotropic diffusion on the entire 
BSDS500-speckled dataset. All 29,000 images are first multiplied with 1-look speckle noise. 
Then, we apply the denoising methods and compare the outputs with the clean non- 
speckled (ground-truth) images. Table 1 provides the averages of the metrics for the 
entire dataset, where N indicates the number of iterations.
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The results show that SARBLF (N = 3, gs = 2.2, gr = 1.33) achieves the best performance 
on all metrics. Therefore, SARBLF (N = 3, gs = 2.2, gr = 1.33) is utilized as a pre-processing 
step for enhancement over the entire dataset. The results are also consistent with the 
findings of the authors of SARBLF in terms of number of iterations and scale parameters 
(D’Hondt et al. 2013). In addition, anisotropic diffusion with 15 iterations appears as 
the second best method, whereas NLMD performs the worst.

Additionally, Figure 15 shows that the methods are able to preserve relatively 
sharp edges. BM3D and NLMD seem to create better homogeneous areas, but they 
tend to create artefacts that might be considered as false edges, especially BM3D. 
Moreover, both BM3D and NLMD appear to have low contrast and remain darker, 
even though their pixels are in the same range as anisotropic diffusion and SARBLF. 
On the other hand, SARBLF appears significantly less noisy than the anisotropic 
diffusion. SARBLF (N = 3, gs = 2.2, gr = 1.33) yields stronger edges, than SARBLF (N =  
3, gs = 2.8, gr = 1.4). Therefore, the qualitative evaluations are consistent with the 
quantitative evaluations.

5.2. Edge detection

5.2.1. First-order derivatives
The quantitative evaluation results for the first-order derivatives-based edge detectors on 
the training set are provided in Table 2.

The results show that Frei-Chen stands out with low performance on all metrics. 
On the other hand, Farid achieves the best performance on F1 and PPV, whereas 
Scharr achieves the best accuracy, and Prewitt obtains the best FM score, yet the 
differences are marginal. Farid’s success might be attributed to its rotation invar-
iance property and floating point data type coefficients that are able to capture 
finer details. On the other hand, the lowest performance of the Frei-Chen operator 
might be due to the combination of the eight different basis vectors that are each 
negatively affected by the speckle noise artefacts which are accumulated in all 
possible directions.

In addition, the ROC curves of the different methods are presented in Figure 16. It 
shows that Farid achieves the best AUC results, whereas Frei-Chen achieves the worst 

Table 1. Evaluation of various denoising methods over the entire BSDS500-speckled dataset.

Method MSE # PSNR " SSIM "

SARBLF (N=2, gs=2.2, gr=1.33) 0.0109 28.8672 0.7211

SARBLF (N=3, gs=2.2, gr=1.33) 0.0105 28.8904 0.7212
SARBLF (N=4, gs=2.2, gr=1.33) 0.0115 28.8321 0.7076

SARBLF (N=3, gs=2.8, gr=1.4) 0.0121 28.7958 0.7023
Anisotropic Diffusion (N=1) 0.0793 27.8338 0.4095

Anisotropic Diffusion (N=2) 0.0596 27.9018 0.4808
Anisotropic Diffusion (N=10) 0.0229 28.2714 0.6460

Anisotropic Diffusion (N=15) 0.0185 28.3742 0.6667
NLMD (σ=0.5) 0.0748 27.9419 0.5385
BM3D (σ=0.5) 0.0550 27.9572 0.6023
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performance, while Prewitt, Roberts, Scharr and Sobel obtain comparable results. As 
a result, ROC curve evaluations further support the quantitative evaluations that the 
Farid operator achieving the best F1, and PPV metrics emerges as the best first-order 
derivatives-based edge detection method on the dataset.

Table 2. Evaluation of the first-order derivatives-based edge detectors.

Setup ACC " F1 " PPV " FM "

Farid 0.7483 0.3581 0.3300 0.3768
Prewitt 0.7168 0.3576 0.2972 0.3823
Sobel 0.7259 0.3573 0.3024 0.3795

Scharr 0.7606 0.3563 0.3296 0.3715
Roberts 0.7530 0.3498 0.3192 0.3665

Frei-Chen 0.5540 0.3053 0.2102 0.3584

Figure 15. Qualitative evaluation results of the denoising methods.
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5.2.2. Second-order derivatives
5.2.2.1. Laplacian of Gaussian (LoG). The quantitative evaluation results for 
the second-order derivative-based LoG method with different parameters over the train-
ing set are provided in Table 3.

The results show that as the sigma increases, accuracy and PPV tend to increase, 
whereas F1 and FM scores tend to decrease. It suggests that with extra smoothing false 
positives are handled better as the accuracy increases. However, it also smears out the 
true edges thereby lowering the F1 score. Considering our ranking of the metrics, LoG 
with σ ¼ 1 having the best F1 and FM scores emerges as the best setup. Since we use the 
inherit the zero-crossing property of the second-order derivatives-based methods for the 
detection step, ROC curves and the related AUC scores are not realized.

In addition, compared against the first-order derivatives-based methods of Table 2, the 
performance of the LoG operator is quite poor. For instance, Farid with the highest F1 

Table 3. Evaluation of the different parameters for LoG.

Setup ACC " F1 " PPV " FM "

σ ¼ 1:0 0.6536 0.1894 0.1598 0.2009
σ ¼ 1:4 0.6745 0.1852 0.1632 0.1943

σ ¼ 2:0 0.6988 0.1796 0.1684 0.1866
σ ¼ 2:7 0.7225 0.1734 0.1753 0.1791
σ ¼ 3:0 0.7312 0.1708 0.1783 0.1762

Figure 16. ROC curves of the first-order derivatives-based edge detectors.
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score achieves 0.3581 and Frei-Chen with the lowest F1 score achieves 0.3053, whereas 
LoG with the highest F1 can only reach to 0.1894, which is significantly lower. The same 
pattern is also observed for PPV and FM metrics. This is in compliance with the findings of 
Bachofer et al. (2016) that LoG is not performing well on SAR images because of the low 
gradients that are due to the remaining noise negatively influencing the Gaussian filter. As 
a result, none of the evaluated LoG settings properly suits for SAR images. Nonetheless, 
we conclude that σ ¼ 1 is the best option for LoG that is to be evaluated on the test data.

5.2.2.2. Difference of Gaussians (DoG). The quantitative evaluation results for 
the second-order derivatives-based DoG method with different parameters over the 
training set are provided in Table 4.

The results show that DoG behaves similarly to LoG; as the sigma increases, accuracy 
and PPV tend to increase, while F1 and FM scores tend to decrease. Likewise, it shows that 
with extra smoothing false-positives decrease as the accuracy increases, yet it also results 
in the loss of some of the true edges. The same behaviour is also observed for the effect of 
the ratios that the higher ratios achieve higher accuracy and PPV, but lower F1 and MK 
scores. Therefore, DoG with σ1 ¼ 1:0 and σ2 ¼ 4:0 achieving the highest F1 and FM scores 
is to be evaluated on the test data.

Moreover, compared with the results of Table 3, DoG achieves better accuracy (0.7935 
vs. 0.7312) and PPV (0.2208 vs. 0.1783) scores than LoG, yet LoG obtains better F1 (0.1894 
vs. 0.1757) and FM (0.2009 vs. 0.1818) scores. In addition, compared against the first-order 
derivatives-based methods of Table 2, the performance of the DoG operator is quite poor, 
similar to the case of LoG. The results further suggests that the first-order derivatives are 
more robust to noise than the second-order derivatives as further differentiation amplifies 
the noise. Overall, the evaluations indicate low trustworthiness of the second-order 
derivatives-based operators for the task.

5.2.3. Advanced methods
5.2.3.1. Canny. The quantitative evaluation results for the advanced Canny method 
with different parameters over the training set are provided in Table 5.

The results show that for all the sigma options, the upper:lower threshold ratio of 2:1 
achieves better results on all metrics, with an exception for the σ ¼ 3 setup. It suggests 

Table 4. Evaluation of the different parameters for DoG. Ratio indicates the size ratio of the kernels.

Setup ACC " F1 " PPV " FM "

σ1 ¼ 1:0 j ratio = 4 0.7152 0.1757 0.1737 0.1818
σ1 ¼ 1:0 j ratio = 5 0.7273 0.1725 0.1783 0.1783
σ1 ¼ 1:4 j ratio = 4 0.7388 0.1690 0.1830 0.1746

σ1 ¼ 1:4 j ratio = 5 0.7495 0.1655 0.1888 0.1714
σ1 ¼ 2:0 j ratio = 4 0.7631 0.1596 0.1961 0.1663

σ1 ¼ 2:0 j ratio = 5 0.7716 0.1555 0.2027 0.1634
σ1 ¼ 2:7 j ratio = 4 0.7815 0.1486 0.2089 0.1580

σ1 ¼ 2:7 j ratio = 5 0.7882 0.1441 0.2159 0.1552
σ1 ¼ 3:0 j ratio = 4 0.7874 0.1440 0.2136 0.1547
σ1 ¼ 3:0 j ratio = 5 0.7935 0.1394 0.2208 0.1519
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that the ratio of 3:1 is more prone to wrongly classifying the weak edges as true edges. 
Similar to the case of second-order derivatives-based methods presented in Table 3 and 
Table 4, accuracy and PPV tend to increase as the smoothing factor increases, while F1 and 
FM scores deteriorate until σ ¼ 2:7, where the metrics start to fluctuate. Therefore, Canny 
with σ ¼ 1:0 and the ratios of 2:1 achieving the highest F1 and FM scores is to be 
evaluated on the test data. Finally, non-maximum suppression, double thresholding 
and hysteresis steps prevent Canny from realizing proper ROC curves. Nonetheless, the 
AUC results are in parallel with the quantitative results.

In addition, compared against the first-order derivatives-based methods of Table 2, 
Canny achieves higher accuracy which can be attributed to the additional smoothing 
step. Nonetheless, it falls behind on other scores. The reason Canny performs poorly is due 
to the fact that Canny generates one pixel wide edge maps, whereas our dataset includes 
edges wider than one pixel, which hinders the quantitative performance of Canny on this 
particular dataset. On the other hand, compared against the best parameter settings of 
the second-order derivatives-based methods of Table 3 and Table 4, Canny achieves 
significantly better accuracy and PPV scores, while being on par with F1 and FM scores. 
Therefore, Canny appears as a better option than the second-order derivatives-based 
methods for the task. As a final note, replacing its Gaussian filter with a bilateral filter 
might further improve the results (Fawwaz et al. 2018).

5.2.3.2. Gabor filters. The quantitative evaluation results for the different Gabor filter- 
banks with various scales and orientations over the training set are provided in Table 6.

It shows that for all the metrics, the results tend to improve as the number of scales and 
orientations increases, because the filter-banks are able to capture more diverse patterns. 
Further improvements might be attainable by increasing the scale and orientation cover-
age. Nonetheless, the runtime also grows significantly with the additional variations. For 
instance, it takes around 500 hours to evaluate GS5O8 over the dataset .10 Thus, we do not 
gauge additional combinations. In addition, the ROC curves for the different filter banks 
are presented in Figure 17.

It supports the metrics that increasing the number of scales and orientations further 
improves the AUC metric. Thus, the Gabor filter-bank with five scales and eight orienta-
tions (GS5O8) emerges as the best setup which is to be evaluated on the test data.

Table 5. Evaluation of Canny edge detection for different sigma options and threshold ratios.

Setup ACC " F1 " PPV " FM "

σ ¼ 1:0 j ratio = 2 0.7885 0.1829 0.2512 0.1930
σ ¼ 1:0 j ratio = 3 0.7827 0.1826 0.2409 0.1914
σ ¼ 1:4 j ratio = 2 0.7972 0.1793 0.2618 0.1913

σ ¼ 1:4 j ratio = 3 0.7920 0.1791 0.2513 0.1896
σ ¼ 2:0 j ratio = 2 0.8047 0.1736 0.2734 0.1882

σ ¼ 2:0 j ratio = 3 0.8008 0.1735 0.2637 0.1866
σ ¼ 2:7 j ratio = 2 0.8105 0.1664 0.2833 0.1839

σ ¼ 2:7 j ratio = 3 0.8079 0.1665 0.2751 0.1826
σ ¼ 3:0 j ratio = 2 0.7963 0.1632 0.2438 0.1749
σ ¼ 3:0 j ratio = 3 0.8103 0.1632 0.2792 0.1806
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In addition, compared against the first-order derivatives-based edge detection meth-
ods in Table 2, GS5O8 is superior to Frei-Chen on all metrics, and it achieves the second 
best FM scores after Prewitt. Moreover, in terms of AUC, GS5O8 obtains better results than 
Frei-Chen, Roberts and Scharr, yet its performance is not as good as Sobel, Prewitt or Farid. 
Similarly, compared with Table 4 and Table 3, GS5O8 manages to achieve better results 
than second-order derivatives-based methods on all metrics except for accuracy. Finally, 
compared against the best performing Canny of Table 5, GS5O8 achieves higher F1, FM, 
and PPV, while obtaining lower accuracy scores. Thus, for applications where attaining 
high FM levels is more important, the method might be a suitable option. Additionally, as 
stated by Xiang et al. (2017a) Gabor filters tend to provide better connectivity and 
smoothness for the SAR image edge detection task, which might be another aspect to 
consider. Nonetheless, the authors also acknowledge that the computational cost should 
also be carefully considered, especially given the performance of the Gabor filters is lower 
or similar compared against the first-order derivatives-based methods. Utilizing log-Gabor 

Table 6. Evaluation of Gabor edge detection for different scales (S) and orientations (O).

Setup ACC " F1 " PPV " FM "

S ¼ 2 j O ¼ 3 0.6208 0.3092 0.2328 0.3478

S ¼ 3 j O ¼ 5 0.6113 0.3210 0.2381 0.3650
S ¼ 4 j O ¼ 6 0.6147 0.3294 0.2443 0.3749

S ¼ 5 j O ¼ 8 0.6440 0.3404 0.2584 0.3819

Figure 17. ROC curves of the Gabor filter-banks.
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wavelets or fuzzified Gabor filter-banks might further improve the results (Nava et al. 
2011; Tadic et al. 2021).

5.2.3.3. K-means clustering. The quantitative evaluation results for the K-means clus-
tering-based edge detection method with different number of clusters over the training 
set are provided in Table 7.

The results resemble the opposite of the second-order derivatives-based evaluations 
presented in Table 3 and Table 4 in such a way that an increase in the number of clusters 
also improves F1 and FM scores, while accuracy and PPV scores tend to decrease. For 
the second-order derivatives-based methods, as the sigma (i.e. smoothing factor) 
increases, accuracy and PPV also increase since it helps removing a proportion of the 
remaining noise that is classified as false edges, yet F1 score deteriorates as the extra 
smoothing also causes some of the true edges to be smeared out. On the other hand, for 
the K-means clustering-based edge detection, as the number of clusters increases, accu-
racy and PPV scores drop, and F1 and FM scores increase. The reason behind this is that 
higher number of clusters also provide higher granularity. As a result, the number of 
clusters and the smoothing factor are negatively correlated.

In addition, Figure 18 presents the ROC curves for the different k values. It further 
supports the metrics that k ¼ 5 achieves the best AUC, whereas k ¼ 3 appears to be the 
worst. Nonetheless, the linear behaviour of the ROC curves suggests that this might not 
be a suitable approach for highly speckled SAR images. To conclude, k ¼ 5 with the best 
F1, FM and AUC scores is to be evaluated on the test data.

Compared against the first-order derivatives-based edge detection methods of Table 2, 
k ¼ 5 obtains better results than Frei-Chen on all metrics, except for FM and AUC scores, 
and its performance is not as good as any other method over all the metrics. Moreover, 
compared against the best-performing parameter settings of LoG in Table 3 and DoG in 
Table 4, k ¼ 5 outperforms both, except for the accuracy in the case of DoG, which 
suggests that K-means clustering-based edge detector is a better option than the second- 
order derivatives-based edge detection methods for the task.

Moreover, compared with Table 5, its performance is significantly better than Canny in 
terms of F1 (0.3094 vs. 0.1829) and FM (0.3329 vs. 0.1930) scores, whereas Canny’s 
accuracy is significantly superior (0.6809 vs. 0.7885) which once again shows the con-
tribution of the smoothing process. Finally, comparing k ¼ 5 against the best-performing 
Gabor filter-bank of Table 6, GS5O8 obtains better F1 (0.3094 vs. 0.3404), PPV (0.2467 vs. 
0.2584), FM (0.3329 vs. 0.3819) and AUC (0.6078 vs. 0.6724) scores, while being worse only 
on accuracy (0.6809 vs. 0.6440). To conclude, although k ¼ 5 is capable of outperforming 
the second-order derivatives-based methods, its performance is not as promising as the 
first-order derivatives-based methods and also Gabor filters. The reason might be that the 

Table 7. Evaluation of different number of clusters for K-means-based edge detection.

Setup ACC " F1 " PPV " FM "

k ¼ 3 0.7636 0.2747 0.2892 0.2835

k ¼ 4 0.7200 0.2966 0.2609 0.3108
k ¼ 5 0.6809 0.3094 0.2467 0.3329
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K-means clustering unnecessarily oversimplifies the scene reflectivity causing some of the 
true edges to fade out. Constraining the clustering process by spatial consistency or 
incorporating additional features (e.g. texture) might further improve the results (Gou 
et al. 2018; Shang et al. 2020).

5.2.3.4. 2D discrete wavelet transformation. The quantitative evaluation results for 
the 2D discrete wavelet transformation-based edge detection are provided in Table 8. 
Additionally, the AUC metric with the accompanying ROC curve is presented in Figure 19. 
Note that similar to the case of first-order derivatives-based methods, we do not evaluate 
for different hyperparameters.

Firstly, compared with the first-order derivatives-based edge detection methods in 
Table 2, it achieves similar F1 scores, it is better than Frei-Chen on all metrics, and it has 
the best FM score which indicates that the method is capable of achieving better recall 
rates. In terms of AUC, it again achieves better results than Frei-Chen and also Roberts, yet 
it is worse than the rest. Secondly, compared against the second-order derivatives-based 
edge detection methods in Table 3 and in Table 4 and the advanced Canny in Table 5, it 
achieves better results on all metrics, except for accuracy, which is due to the smoothing 
features of LoG and DoG. Similarly, compared with Table 7, it is superior to K-means 

Figure 18. ROC curves of the K-means clustering-based edge detection.

Table 8. Evaluation of 2D discrete wavelet transformation-based edge detection.

Setup ACC " F1 " PPV " FM "

2D Discrete Wavelet 0.7000 0.3557 0.2855 0.3852
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clustering-based edge detector on all metrics. On the other hand, its performance is not as 
superior as Gabor filter-banks presented in Table 6 so that it can only obtain better results 
on accuracy, while being on par with the FM scores. As a conclusion, 2D discrete wavelet 
transformation-based edge detection emerges as a promising alternative for the task. 
Additional levels of decomposition might further improve the results (Maksimovic et al. 
2019).

5.2.3.5. Subpixel edge detector. The quantitative evaluation results for the advanced 
subpixel edge detection method for different iterations over the training set are provided 
in Table 9.

The results show that the best accuracy and PPV is achieved with a single iteration, 
whereas the best F1 and FM is achieved with three iterations. The accuracy and PPV tend 
to deteriorate with additional iterations, while F1 and FM tend to improve. It means that 
the method achieves better recall with extra restoration steps. The performance appears 
to converge with three iterations, which is in line with the findings of the authors that 

Figure 19. ROC curve of the 2D Discrete Wavelet Transformation-based edge detection.

Table 9. Evaluation of different iterations for the subpixel-based edge detection method.

Setup ACC " F1 " PPV " FM "

iter ¼ 1 0.7330 0.1581 0.1701 0.1634
iter ¼ 2 0.7005 0.1754 0.1650 0.1820
iter ¼ 3 0.6963 0.1772 0.1643 0.1840
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a few iterations are sufficient Trujillo-Pino et al. (2013). As a result, the subpixel edge 
detection method with three iterations is to be evaluated on the test data.

Additionally, compared with the first-order derivatives-based edge detection methods 
in Table 2, it only achieves better results than Frei-Chen in terms of accuracy, whereas its 
performance is worse than others on all metrics. Moreover, its performance is very similar 
to the second-order derivatives-based edge detection methods provided in Table 3 and in 
Table 4. Furthermore, compared against the methods that are considered advanced, it can 
only achieve better accuracy levels than Gabor and K-means clustering-based edge 
detector, while its performance is worse than others on all metrics. It suggests that this 
method is not convenient for the task given its relatively low performance with its 
complex nature. Utilizing a moments-based subpixel edge localization method might 
achieve improved results (Renshaw and Christian, 2020). Finally, it is worth mentioning 
that the method generates thin edges, which as stated before does not well suited for our 
benchmark. Furthermore, the method generates very low-valued edge responses, mean-
ing that the most of the edge responses do not pass our second lowest threshold of 0.05. 
Using a more fine-grained thresholding scheme might further improve the results.

5.2.4. SAR-specific methods
5.2.4.1. Touzi. The quantitative evaluation results for the SAR-specific Touzi method 
with different radius values over the training set are provided in Table 10. In addition, the 
ROC curve of Touzi for different parameters are presented in Figure 20.

The results show that the best accuracy and precision are achieved with radius of 1. The 
best F1-score is achieved with radius of 4, and the radius of 16 results deviates from the 
rest. Moreover, the best Fowlkes–Mallows index is achieved with radius of 5. Since there is 
no clear difference between different setups and F1 scores differ in the fourth significant 
figure, we use the guidance of the AUC metric to decide the best-performing one. It can 
be observed that the method achieves the best AUC metric (0.7217) using radius of 6. The 
metric tends to increase until 6, then starts decreasing. Although Touzi using radius of 4 
achieves the best F1 score, we deem Touzi with radius of 6 as the best option which is to 
be evaluated on the test data, as the differences in F1 is very marginal and it achieves 
better AUC, PPV and accuracy than using 4.

In addition, compared against the first-order derivatives-based edge detection meth-
ods of Table 2, Touzi with radius of 6 obtains better F1, FM, and AUC scores which shows 

Table 10. Evaluation of different parameters for Touzi.

Setup ACC " F1 " PPV " FM "

radius ¼ 1 0.7582 0.3739 0.3366 0.3922
radius ¼ 2 0.7267 0.3788 0.3159 0.4051
radius ¼ 3 0.7515 0.3866 0.3351 0.4071

radius ¼ 4 0.7304 0.3899 0.3186 0.4162
radius ¼ 5 0.7132 0.3892 0.3067 0.4204
radius ¼ 6 0.7438 0.3877 0.3254 0.4099
radius ¼ 7 0.7319 0.3852 0.3150 0.4103

radius ¼ 8 0.7208 0.3817 0.3057 0.4094
radius ¼ 16 0.6492 0.3510 0.2562 0.3932
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the superiority of the SAR specific Touzi over the traditional optical edge detection 
methods. Nonetheless, its performance is not as good as some on accuracy and PPV, 
which suggests that Touzi has better recall rate overall. Furthermore, compared against 
the best-performing parameter settings of LoG in Table 3 and DoG in Table 4, Touzi 
outperforms both achieving scores 2 times better, except for accuracy where they obtain 
similar results. The same behaviour is also observed comparing against Canny in Table 5. 
Similarly, it has better performance than Gabor filter-banks of Table 6, K-means clustering- 
based edge detection method of Table 7 and 2D discrete wavelet transformation-based 
edge detection of Table 8 and the subpixel-based method of Table 9 on all metrics. Finally, 
the behaviour of the ROC curve further supports that this SAR-specific method is overall 
a better option than the previously evaluated methods.

5.2.4.2. Gradient by ratio (GR). The quantitative evaluation results for the SAR-specific 
GR method with different smoothing factors (α) over the training set are provided in 
Table 11.

The results show that the best accuracy is obtained by α ¼ 3, and the best precision by 
α ¼ 4. Moreover, F1 and FM scores improve as the smoothing factor increases until α ¼ 5, 
then they starts deteriorating. In addition, the ROC curve of GR for different parameters 
are presented in Figure 21. Similarly, the results tend to improve with higher smoothing 
factors, yet they converge around α ¼ 4 achieving the best AUC metric (0.7037). As 
a conclusion, GR with α ¼ 4 achieving the best F1 and AUC scores is to be used to 
evaluate the test data.

Figure 20. ROC curves of Touzi for different radius values.
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In addition, compared against the first-order derivatives-based methods of Table 2, GR 
with α ¼ 4 obtains better F1, FM and AUC scores, yet its performance is not as good as 
others on accuracy and PPV, similar to the case of Touzi. Thus, the method has a better 
recall rate than the first-order derivatives-based methods. It is also better than Frei-Chen 
on all metrics. Furthermore, compared against the best-performing parameter settings of 
LoG in Table 3 and DoG in Table 4, and also with the advanced Canny in Table 5 and the 
advanced subpixel-based edge detector in Table 9, GR with α ¼ 4 is superior on all 
metrics, except for the accuracy. Moreover, it has better performance than Gabor filter- 
banks presented in Table 6, K-means clustering-based edge detection method in Table 7 
and 2D discrete wavelet transformation-based edge detection in Table 8. However, the 
best-performing Touzi presented in Table 10 appears better than the best-performing GR 
on all metrics. Therefore, Touzi using the ratio of the averages (ROA) achieves superior 
results than GR using the ratio of exponentially weighted averages (ROEWA) over this 

Table 11. Evaluation of different parameters for GR.

Setup ACC " F1 " PPV " FM "

α ¼ 1 0.6956 0.3365 0.3007 0.3736

α ¼ 2 0.7319 0.3610 0.3198 0.3885
α ¼ 3 0.7088 0.3705 0.3039 0.4032

α ¼ 4 0.6867 0.3708 0.2893 0.4087
α ¼ 5 0.6704 0.3677 0.2790 0.4092
α ¼ 6 0.6551 0.3633 0.2699 0.4081

Figure 21. ROC curves of GR for different sigma values.
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dataset. Nonetheless, both methods obtain preferable performance over the non-SAR- 
specific methods.

5.2.4.3. Gaussian-Gamma-shaped (GSS) bi-windows. The quantitative evaluation 
results for the SAR-specific Gaussian-Gamma-shaped bi-windows method with different 
parameters for alpha controlling the window with for different width and length values 
over the training set are provided in Table 12.

The results show that the best accuracy and precision are achieved with alpha of 
4, width 7 and length 6.5. The best F1-score is achieved with alpha of 2, width 7 
and length 7. Moreover, the best Fowlkes–Mallows index is achieved with alpha of 
4, width 7 and length 7. As the width increases, F1 and FM scores tend to decrease. 
Moreover, as the length increases, F1 scores tend to increase. On the other hand, 
there is no significant difference between different setups. Therefore, GSS bi- 
windows with α ¼ 2;w ¼ 7; l ¼ 7 achieving the best F1-score is to be utilized on 
the test data. In addition, compared against the first-order derivatives-based edge 
detection methods of Table 2, GSS bi-windows with α ¼ 2;w ¼ 7; l ¼ 7 obtains 
better accuracy scores, yet its performance is not as good as others on F1 and 
FM scores, and comparable PPV scores. Furthermore, compared against the best- 
performing parameter settings of LoG in Table 3 and DoG in Table 4, and also with 
the advanced Canny in Table 5 and the advanced subpixel-based edge detector in 
Table 9, GSS achieves better accuracy and PPV, and comparable results on F1 and 
FM scores. Moreover, it has better accuracy and PPV performance than Gabor filter- 
banks presented in Table 6, K-means clustering-based edge detection method in 
Table 7 and 2D discrete wavelet transformation-based edge detection in Table 8, 
yet it has significantly worst performance on F1 and FM scores. Additionally, the 
best-performing Touzi model presented in Table 10 and the best-performing GR 
model presented in Table 11 appears superior than the best-performing GSS bi- 
windows on all metrics, except for accuracy. Therefore, Touzi and GR using rectan-
gular bi-windows achieves superior results than using Gaussian-Gamma-shaped bi- 
windows over this dataset.

Table 12. Evaluation of different parameters for the Gaussian-Gamma-shaped bi-windows.

Setup ACC " F1 " PPV " FM "

α ¼ 2jw ¼ 7:0jl ¼ 6:5 0.8109 0.1453 0.2675 0.1642
α ¼ 2jw ¼ 7:0jl ¼ 7:0 0.8111 0.1458 0.2689 0.1648
α ¼ 2jw ¼ 9:0jl ¼ 6:5 0.8150 0.1372 0.2746 0.1590

α ¼ 2jw ¼ 9:0jl ¼ 7:0 0.8149 0.1378 0.2749 0.1594
α ¼ 3jw ¼ 7:0jl ¼ 6:5 0.8084 0.1420 0.2544 0.1593

α ¼ 3jw ¼ 7:0jl ¼ 7:0 0.8086 0.1426 0.2554 0.1599
α ¼ 3jw ¼ 9:0jl ¼ 6:5 0.8147 0.1324 0.2666 0.1537

α ¼ 3jw ¼ 9:0jl ¼ 7:0 0.8144 0.1328 0.2661 0.1539
α ¼ 4jw ¼ 7:0jl ¼ 6:5 0.8199 0.1384 0.3028 0.1649
α ¼ 4jw ¼ 7:0jl ¼ 7:0 0.8197 0.1387 0.3026 0.1651
α ¼ 4jw ¼ 9:0jl ¼ 6:5 0.8156 0.1273 0.2643 0.1492
α ¼ 4jw ¼ 9:0jl ¼ 7:0 0.8154 0.1276 0.2638 0.1493
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5.2.4.4. ROLSS RUSTICO. The quantitative evaluation results for the SAR-specific ROLSS 
RUSTICO method with different noise suppression levels over the training set are pro-
vided in Table 13.

The results show that the best accuracy is realized with (� ¼ 2:0; λ ¼ 0:5), the best PPV 
is with (� ¼ 2:0; λ ¼ 2:0), and the best F1 and FM scores with (� ¼ 2:0; λ ¼ 3:0). In addi-
tion, as the size of the image region in which the noise is suppressed (λ) increases the 
results tend to improve. Moreover, as the strength of the suppression (�) increases, 
accuracy tend to decrease, whereas F1 and FM scores increase with extra suppression. 
As a conclusion, (� ¼ 2; λ ¼ 3) achieving the best F1 and FM scores is to be evaluated on 
the test data.

Furthermore, compared against the first-order derivatives-based edge detection meth-
ods of Table 2, ROLSS RUSTICO achieves comparable accuracy levels, but its performance 
is not as good on other metrics. Moreover, compared against the best-performing para-
meter settings of LoG in Table 3 and DoG in Table 4, ROLSS RUSTICO has better accuracy 
and PPV scores. In addition, compared against the advanced Gabor filters in Table 6, 
K-means clustering-based edge detection method in Table 7, 2D discrete wavelet trans-
formation-based edge detection in Table 8, and subpixel-based edge detector in Table 9 
ROLSS RUSTICO attain higher accuracy scores. On the other hand, the results presented 
for Canny in Table 5 appear superior on all metrics. Additionally, compared against the 
SAR-specific Touzi presented in Table 10 and GR presented in Table 11, ROLSS RUSTICO 
again obtains higher accuracy scores, but its performance is worse on all other metrics. 
Finally, ROLSS RUSTICO is capable of achieving better F1 and FM scores than GSS bi- 
windows presented in Table 12, yet its accuracy and PPV is lower. All in all, the perfor-
mance of ROLSS RUSTICO suggest that the method might be considered for applications 
aiming high accuracy.

5.2.4.5. SAR-Shearlet. The quantitative evaluation results for the SAR-specific SAR- 
Shearlet method with parameters over the training set are provided in Table 14.

The results show that increasing the shear levels does not have an effect over the 
results. Moreover, increasing the number of scales might negatively effect the perfor-
mance as can be observed from shear levels of 2. Shear levels with l ¼ 1=7 result in very 

Table 13. Evaluation of different parameters for ROLSS RUSTICO.

Setup ACC " F1 " PPV " FM "

� ¼ 1:0jλ ¼ 0:5 0.7718 0.1475 0.2352 0.1644
� ¼ 1:0jλ ¼ 1:0 0.7700 0.1489 0.2355 0.1658
� ¼ 1:0jλ ¼ 2:0 0.7681 0.1529 0.2366 0.1696

� ¼ 1:0jλ ¼ 3:0 0.7607 0.1607 0.2324 0.1763
� ¼ 1:5jλ ¼ 0:5 0.7727 0.1479 0.2359 0.1647

� ¼ 1:5jλ ¼ 1:0 0.7700 0.1496 0.2361 0.1665
� ¼ 1:5jλ ¼ 2:0 0.7676 0.1544 0.2370 0.1710

� ¼ 1:5jλ ¼ 3:0 0.7590 0.1634 0.2319 0.1787
� ¼ 2:0jλ ¼ 0:5 0.7736 0.1482 0.2365 0.1650
� ¼ 2:0jλ ¼ 1:0 0.7701 0.1501 0.2365 0.1671

� ¼ 2:0jλ ¼ 2:0 0.7672 0.1554 0.2373 0.1720
� ¼ 2:0jλ ¼ 3:0 0.7578 0.1649 0.2315 0.1801
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poor performance. The accuracy scores are so low that one might achieve the same 
results by classifying each pixel as an edge. On the other hand, increasing the effective 
support length of the Mexican hat wavelet to 1=2 significantly improves accuracy and PPV 
scores, while deteriorating FM scores. Similarly, a clear improvement in ROC AUC can be 
observed increasing the effective support length of the Mexican hat wavelet, as presented 
in Figure 22. To conclude, SAR-Shearlet with (Shear level ¼ 2; scales ¼ 2; l ¼ 1=2) is to be 
evaluated on the test set.

Furthermore, compared against the first-order derivatives-based edge detection meth-
ods of Table 2, SAR-Shearlet achieves better accuracy and comparable PPV levels, but its 
performance is not as good on F1 and FM scores. In addition, compared against 
the second-order derivatives based of LoG in Table 3 and DoG in Table 4, and also against 
the advanced subpixel-based edge detector in Table 9, SAR-Shearlet obtains superior 
performance on all metrics. Moreover, it achieves better accuracy and PPV scores com-
pared against the advanced Gabor filters in Table 6, K-means clustering-based edge 
detection method in Table 7 and 2D discrete wavelet transformation-based edge detec-
tion in Table 8. On the other hand, its performance is better than Canny, presented in 
Table 5, only in terms of accuracy. Finally, compared against the SAR-specific Touzi 
presented in Table 10, it has better accuracy; against GR presented in Table 11, it has 
better accuracy and PPV; against GSS bi-windows presented in Table 12, it has better F1, 
PPV and FM; and against ROLSS RUSTICO presented in Table 13, it obtains superior results 
on all metrics.

5.2.5. Fusion
5.2.5.1. Binary decision fusion. In this section, we evaluate two fundamental binary 
decision fusion methods; (a) single voting where at least one of the methods has to 
classify a pixel an edge (logical disjunction) and (b) complete agreement where all the 
methods should classify a pixel an edge (logical conjunction), to combine the final out-
puts of multiple methods into a final ensemble decision. In this setup, each detector has 
the same voting power. The thresholding for each method is realized by choosing the 
threshold that produce the highest average F1-score over the complete training set. To 
that end, we combine (i) SAR-specific Touzi and the best-performing optical method, 
Farid, and (ii) SAR-specific ROA-based Touzi and SAR-specific ROEWA-based GR to exploit 

Table 14. Evaluation of different parameters for SAR-Shearlet, where l denotes the effective support 
length of the Mexican hat wavelet.

Setup ACC " F1 " PPV " FM "

Shear level ¼ 2jscales ¼ 2jl ¼ 1=2 0.7660 0.2836 0.2960 0.2963
Shear level ¼ 2jscales ¼ 3jl ¼ 1=2 0.1595 0.2680 0.1595 0.3876
Shear level ¼ 2jscales ¼ 2jl ¼ 1=7 0.1595 0.2680 0.1595 0.3876
Shear level ¼ 2jscales ¼ 3jl ¼ 1=7 0.1595 0.2680 0.1595 0.3876
Shear level ¼ 3jscales ¼ 2jl ¼ 1=7 0.1595 0.2680 0.1595 0.3876
Shear level ¼ 3jscales ¼ 3jl ¼ 1=7 0.1595 0.2680 0.1595 0.3876
Shear level ¼ 4jscales ¼ 2jl ¼ 1=7 0.1595 0.2680 0.1595 0.3876
Shear level ¼ 4jscales ¼ 3jl ¼ 1=7 0.1595 0.2680 0.1595 0.3876
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their different features. The quantitative evaluation results for the different voting com-
binations and methods are presented in Table 15 and Table 16.

The results show that exploiting the best of the two worlds (SAR-specific and optical) 
provides significantly better accuracy (0.7438 ! 0.8104) and PPV (0.3254 ! 0.4143) 
scores using the complete agreement scheme. It achieves better results than fusing two 
SAR-specific methods. To that end, we select the complete agreement scheme fusing 
Touzi and Farid as the best-performing binary decision fusion method. Moreover, as it is 
a pixel-wise binary operation, it does not significantly affect the computational complex-
ity. Therefore, application aiming higher accuracy and PPV scores should consider this 
fusion scheme. Incorporating additional methods to the fusion process or exploring other 
fusion schemes (e.g. majority voting) might provide additional improvements.

5.2.5.2. Gradient magnitude fusion. In this section, instead of combining the binary 
outputs, we combine the real-valued gradient magnitudes. To that end, we compute the 
averages of (i) Farid and Touzi, and (ii) Touzi and GR, similar to the binary decision fusion 
experiments. The quantitative evaluation results for the gradient magnitude fusion and 
the related methods are presented in Table 17 and Table 18.

The results show that the gradient fusion of Farid and Touzi provides better F1 (0.3877 
! 0.3933), PPV (0.3254 ! 0.3313), and FM (0.4099 ! 0.4149) scores, whereas the 

combination of Touzi and GR only achieves better FM score. Therefore, similar to the case 
of the binary fusion experiments, exploiting the best of the two worlds provides better 
results, which is also confirmed by the ROC curves presented in Figure 23. To that end, we 
conclude that gradient fusion of Touzi and Farid has the superior performance which is to 

Figure 22. ROC curves of SAR-Shearlet for different parameters.
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be utilized for the test set. Incorporating a weighting scheme to adjust the contributions 
of the algorithms might further improve the results.

5.2.6. Overview of the best performing parameters
To conclude the experiments on the training set, Table 19 provides a comparison with the 
best performing parameters that are to be evaluated on the benchmark.

It reveals that the best accuracy is achieved by SAR-specific GSS bi-windows by a large 
margin. The only exception is the binary fusion of SAR-specific Touzi and traditional first- 
order derivatives-based Farid which not only achieves the best PPV score, but also obtains 
comparable accuracy levels to GSS bi-windows, which shows its superiority on handling 
the ambiguities in identifying the true positives. Moreover, the gradient fusion achieves 
the best F1 and FM scores which shows its superior performance on handling ambiguities 

Table 15. Evaluation of the fusion schemes for combining the SAR-specific Touzi and optical Farid 
methods.

Setup ACC " F1 " PPV " FM "

Single voting 0.6816 0.3739 0.2816 0.4117
Complete agreement 0.8104 0.3735 0.4143 0.3847
Touzi(r ¼ 6) 0.7438 0.3877 0.3254 0.4099

Farid 0.7483 0.3581 0.3300 0.3768

Table 16. Evaluation of the fusing schemes for combining the ROA-based Touzi and ROEWA-based GR.

Setup ACC " F1 " PPV " FM "

Single voting 0.6803 0.3793 0.2891 0.4186
Complete agreement 0.7502 0.3792 0.3259 0.4001

Touzi(r ¼ 6) 0.7438 0.3877 0.3254 0.4099
GR(α ¼ 4) 0.6867 0.3708 0.2893 0.4087

Table 17. Evaluation of the gradient magnitude fusion for the SAR-specific Touzi and non-SAR Farid 
method.

Setup ACC " F1 " PPV " FM "

Gradient Fusion 0.7481 0.3933 0.3313 0.4149
Touzi(r ¼ 6) 0.7438 0.3877 0.3254 0.4099

Farid 0.7483 0.3581 0.3300 0.3768

Table 18. Evaluation of the gradient magnitude fusion for combining the ROA-based Touzi and 
ROEWA-based GR.

Setup ACC " F1 " PPV " FM "

Gradient Fusion 0.7237 0.3854 0.3108 0.4133
Touzi(r ¼ 6) 0.7438 0.3877 0.3254 0.4099

GR(α ¼ 4) 0.6867 0.3708 0.2893 0.4087
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Figure 23. ROC curve of gradient fusion.

Table 19. Overview of the best performing methods over the training set, ranked by F1-score.

Algorithm ACC " F1 " PPV " FM "

GGS bi-windows (α ¼ 2 j w ¼ 7 j l ¼ 7) 0.8111 0.1458 0.2689 0.1648
ROLSS RUSTICO (� ¼ 2 j λ ¼ 3) 0.7578 0.1649 0.2315 0.1801

DoG(σ1 ¼ 1:0 j ratio = 4) 0.7152 0.1757 0.1737 0.1818
Subpixel (iter ¼ 3) 0.6963 0.1772 0.1643 0.1840
Canny (σ ¼ 1:0 j ratio = 2) 0.7885 0.1829 0.2512 0.1930

LoG (σ ¼ 1:0) 0.6536 0.1894 0.1598 0.2009
Shearlet ðShear level ¼ 2 j scales ¼ 2 j l ¼ 1=2Þ 0.7660 0.2836 0.2960 0.2963

Frei-Chen 0.5540 0.3053 0.2102 0.3584
K-means (k ¼ 5) 0.6809 0.3094 0.2467 0.3329

Gabor (GS5O8) 0.6440 0.3404 0.2584 0.3819
Roberts 0.7530 0.3498 0.3192 0.3665
2D Discrete Wavelet 0.7000 0.3557 0.2855 0.3852

Scharr 0.7606 0.3563 0.3296 0.3715
Sobel 0.7259 0.3573 0.3024 0.3795

Prewitt 0.7168 0.3576 0.2972 0.3823
Farid 0.7483 0.3581 0.3300 0.3768

GR (α ¼ 4) 0.6867 0.3708 0.2893 0.4087
Binary Fusion 0.8104 0.3735 0.4143 0.3847

Touzi (r ¼ 6) 0.7438 0.3877 0.3254 0.4099
Gradient Fusion 0.7481 0.3933 0.3313 0.4149
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in identifying false positives. Finally, the best performing individual methods are the SAR- 
specific methods Touzi and GR, followed by the traditional first-order derivatives-based 
Farid operator over the training set.

5.3. BSDS500-speckled benchmark

In order to provide a more comprehensive comparison and form our SAR image edge 
detection benchmark, we use the ground-truths and metrics from the original BSDS500 
benchmark. The images are first corrupted with 1-look speckles and then denoised as 
done in the previous sections. To that end, firstly, the gradient (edge response) maps of 
every edge detector are computed with the parameters determined over the training set. 
Then, these edge maps are compared to the ground-truths to form the benchmark. As 
suggested by the developers of the original BSDS500 dataset, three metrics are used to 
compare the different algorithms: ODS F1 (fixed contour threshold for 200 images), OIS F1 
(best threshold for each image), and average precision (AP). The results are provided using 
30 different threshold levels in Table 20. For each method, the threshold corresponding to 
the best ODS F1 score is also provided.

It shows that among the methods we provide, the fusion methods achieve the best 
results. Gradient fusion achieves the best ODS F1 and OIS F1, while the binary fusion of 
SAR-specific Touzi and traditional Farid with the complete agreement scheme obtains the 
best AP results. Moreover, comparing the SAR-specific algorithms, Touzi > GR > GSS bi- 

Table 20. BSDS500-speckled Benchmark. The rows are sorted by ODS F1. The best results are 
highlighted in bold, while the second best results are underlined.

Algorithm OIS (F1) ODS (F1) AP Threshold

Subpixel (iter ¼ 3) 0.3019 0.3013 0.1775 0.1290
LoG (σ ¼ 1:0) 0.3333 0.3329 0.1999 0.7097
DoG (σ1 ¼ 1:0 j ratio = 4) 0.3902 0.3899 0.2453 0.3871

GS5O8 0.4407 0.3965 0.3660 0.1613
ROLSS RUSTICO (� ¼ 2 j λ ¼ 3) 0.4194 0.4190 0.3563 0.0645

K-means (k ¼ 5) 0.5349 0.4778 0.3336 0.1936
Canny (σ ¼ 1:0 j ratio = 2) 0.4838 0.4835 0.3467 0.6774

Gradient Fusion 0.4859 0.4856 0.3517 0.0968
Shearlet ðShear level ¼ 2 j scales ¼ 2 j l ¼ 1=2Þ 0.5132 0.5022 0.4293 0.0645

2D Discrete Wavelet 0.5428 0.5303 0.5278 0.0645
Farid 0.5599 0.5303 0.4913 0.1613
GGS bi-windows (α ¼ 2 j w ¼ 7 j l ¼ 7) 0.5332 0.5329 0.3988 0.3226

Roberts 0.5470 0.5334 0.5254 0.0645
Sobel 0.5547 0.5350 0.4983 0.1290

Prewitt 0.5550 0.5353 0.4815 0.1290
Scharr 0.5525 0.5356 0.4467 0.0968

Frei-Chen 0.5481 0.5429 0.4430 0.9032
GR (α ¼ 4) 0.5807 0.5437 0.5194 0.1613
Binary Fusion 0.5583 0.5581 0.6211 0.8710

Touzi (r ¼ 6) 0.5922 0.5672 0.5437 0.2903
Gradient Fusion 0.6015 0.5820 0.5493 0.4516

GRHED(α ¼ 2; 3; 4; 5) (Liu et al. 2020) 0.6119 0.6115 0.6450 0.7419

INTERNATIONAL JOURNAL OF REMOTE SENSING 5417



windows > Shearlet > ROLSS RUSTICO ranking emerges. In addition, similar to the earlier 
experiments, subpixel-based edge detector, LoG and DoG obtain the lowest scores, while 
the first-order derivatives-based methods turn out to be very competitive baselines. 
Furthermore, advanced methods do not perform well, except for the 2D Discrete 
Wavelet method which obtains comparable results with the traditional methods. On the 
other hand, overall best results are achieved by the GRHED model, the supervised CNN 
architecture of Liu et al. (2020), on all metrics which shows the power of the supervised 
CNNs. Nonetheless, the performance gap between GRHED and the gradient fusion on OIS 
F1 and ODS F1, and GRHED and the binary fusion on AP is not major, which suggests that 
the fusion methods are promising alternatives.

5.4. BSDS500-speckled noisy benchmark

Since SAR images are highly corrupted with speckle noise and it is not possible to entirely 
denoise the speckled images, the anti-noise ability (robustness to the noise) is also an 
important factor for SAR-specific edge detectors. Moreover, image denoising can be 
a time-consuming process, and thus time critical applications might want to get rid of 
the denoising (smoothing) process and directly use the edge detectors on the noisy 
(corrupted) data. Therefore, in order to provide an even more comprehensive comparison, 
we present a second benchmark of noisy images to directly measure the performance of 
the edge detectors, without including any pre-processing step. To that end, we repeat the 
process of the previous section excluding the denoising process. As a result, the edge 
detectors are evaluated using noisy SAR images to assess their noise robustness. The 
results are provided in Table 21 with the thresholds corresponding to the best ODS F1 
score.

The experiments produce similar outcomes considering the top three performing 
methods such that GRHED > Touzi > Gradient Fusion of Touzi and Farid ranking 
emerges. GRHED achieves better results on this benchmark as it is trained on noisy inputs. 
All the single algorithms obtain similar results as the denoised benchmark evaluations 
which shows the high robustness of the algorithms to the speckle noise. The exception is 
the GGS bi-windows whose performance significantly deteriorates on the noisy bench-
mark; OIS (0.5332 ! 0.3622) −32%, ODS (0.5329 ! 0.3618) −32% and AP (0.3988 !
0.2217) −44%. It suggest that the noise handling capacity of the algorithm needs further 

Table 21. BSDS500-speckled Noisy Benchmark. The rows are sorted by ODS F1. The best results are 
highlighted in bold, while the second best results are underlined.

Algorithm OIS (F1) ODS (F1) AP Threshold

GGS bi-windows (α ¼ 2 j w ¼ 7 j l ¼ 7) 0.3622 0.3618 0.2217 0.4194
ROLSS RUSTICO (� ¼ 2 j λ ¼ 3) 0.4142 0.4137 0.3401 0.3226
Shearlet ðShear level ¼ 2 j scales ¼ 2 j l ¼ 1=2Þ 0.5130 0.4950 0.4000 0.3226

Binary Fusion 0.5403 0.5396 0.4252 0.0323
GR (α ¼ 4) 0.5893 0.5459 0.4744 0.1935

Gradient Fusion 0.5719 0.5533 0.5049 0.5806
Touzi (r ¼ 6) 0.5928 0.5703 0.5068 0.3871

GRHED (α ¼ 2; 3; 4; 5) (Liu et al. 2020) 0.6510 0.6505 0.5863 0.2903
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attention. Finally, considering the fusion methods, the binary fusion obtains similar OIS 
and ODS scores, yet AP drops significantly (−31%) on the noisy benchmark (0.6211 !
0.4252). The gradient fusion scores also deteriorate; OIS (0.6015 ! 0.5719), ODS (0.5820 
! 0.5533) and AP (0.5493 ! 0.5049), but on average the performance drop is around 

5% over all metrics. Thus, the gradient fusion method appears more robust to noise. 
Nonetheless, the results suggest that the fusion methods perform best with a denoising 
pre-processing step.

5.5. SAR image evaluations

5.5.1. Sentinel-1 Lelystad
Firstly, we consider a single look Sentinel-1 image (1024 x1536 pixels) of Lelystad, 
Flevoland, Netherlands by Dalsasso et al. (2021). It is denoised the same way as the 
BSDS500-speckled images by using SARBLF algorithm. Then, the edge detectors are 
evaluated on the denoised image with the optimal settings derived from the BSDS500- 
speckled training set. The edge responses are normalized and thresholded with the 
thresholds found optimal for the F1 score over the training set, as provided in Table 22. 
To that end, quantitative evaluation is challenging as human annotated ground truth is 
not available for this image. Nonetheless, following the setup of Liu et al. (2020), we utilize 
a pseudo ground-truth generated by Xie and Tu (2015) to provide quantitative evalua-
tions, as presented in Figure 24 and in Table 22.

The results show that the best F1 score is achieved by the traditional Scharr operator, 
while the best accuracy and precision are achieved with the supervised CNN model 

Table 22. The performances of different methods on the Sentinel-1 Lelystad, ordered by F1 score.

Algorithm ACC " F1 " PPV " FM " Threshold

ROLSS RUSTICO (� ¼ 2 j λ ¼ 3) 0.9046 0.0462 0.0504 0.0463 0.05
Subpixel 0.7265 0.1036 0.0630 0.1355 0.0
LoG (σ ¼ 1:0) 0.6987 0.1062 0.0632 0.1445 -

DoG (σ1 ¼ 1:0 j ratio = 4) 0.7749 0.1143 0.0726 0.1395 -
Shearlet ðShear level ¼ 2 j scales ¼ 2 j l ¼ 1=2Þ 0.7944 0.1710 0.1094 0.2069 0.05

GS5O8 0.9066 0.1760 0.1686 0.1762 0.2
Frei-Chen 0.6904 0.1971 0.1147 0.2836 0.45

GGS bi-windows (α ¼ 2 j w ¼ 7 j l ¼ 7) 0.9142 0.1972 0.1998 0.1972 0.15
K-means (k ¼ 5) 0.7700 0.2075 0.1275 0.2662 0.05

Canny (σ ¼ 1:0 j ratio = 2) 0.9154 0.2325 0.2287 0.2325 0.15
Wavelet 0.7814 0.2572 0.1576 0.3318 0.05
GR (α ¼ 4) 0.7972 0.2635 0.1640 0.3314 0.15

GRHED (α ¼ 2; 3; 4; 5) (Liu et al. 2020) 0.9370 0.2817 0.3681 0.2898 0.5516
Touzi (r ¼ 6) 0.8625 0.2896 0.2011 0.3226 0.3

Prewitt 0.8602 0.3034 0.2078 0.3417 0.1
Roberts 0.8791 0.3057 0.2219 0.3302 0.05

Farid 0.9184 0.3060 0.2839 0.3069 0.15
Binary Fusion 0.9260 0.3064 0.3111 0.3065 -
Sobel 0.8742 0.3101 0.2207 0.3393 0.1

Gradient Fusion 0.8822 0.3120 0.2282 0.3354 0.45
Scharr 0.8847 0.3150 0.2323 0.3371 0.1
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GRHED, and the best FM score is obtained by the traditional Prewitt. Moreover, the binary 
fusion of Touzi and Farid using the complete agreement scheme achieves the second best 
performance on accuracy and precision, whereas the traditional Sobel obtains the second 
best performance on FM score. In addition, the gradient fusion of Touzi and Farid achieves 
the second best performance on F1 score. The results are in line with the BSD500-speckled 
benchmark evaluations such that the first-order derivatives-based methods turn out to be 
very competitive baselines. On the other hand, SAR-specific ROLSS RUSTICO and Shearlet 
both have very low performances, which might suggest that the parameters of these 
algorithms are sensitive to different cases, and therefore leading to poor generalization 
performance.

In addition, Figure 25 presents the outputs of a number of methods to qualitatively 
assess their performances by evaluating the detection performances over the homoge-
neous regions such as the agricultural fields and water bodies, and the linear structures 
such as the roads and field boundaries.

The results show that the second-order derivatives-based DoG and the advanced 
subpixel-based edge detection methods completely fail generating outputs resembling 
white noise patterns. The Gabor filters (GS5O8) are confused by the large gradients 
caused by the very bright pixels, thus only the brightest pixels are recognized as edges. 
These methods appear unfit for the edge detection task on SAR images. In addition, 
Canny and K-means seem to be to rather sensitive to the speckle noise patterns over the 
land area, yet they can handle the homogeneous water bodies. 2D discrete wavelet 

Figure 24. A) Original clean Sentinel-1 Lelystad image. Credits image: Dalsasso et al. (2021) b) Pseudo 
ground-truth. Credits image: Liu et al., (2020) c) 1-look speckled image. d) Denoised 1-look image.
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Figure 25. Edge detection performances on a single look Sentinel-1 image of Lelystad.
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method can capture linear structures of the borders between the agricultural fields, yet 
the output is highly corrupted with salt-and-pepper like noise patterns and thus does not 
appear useful for derivative applications. Scharr results are similar to 2D discrete wavelet, 
but it handles the separation between homogeneous regions better, has less noise, and 
the linear structures are more differentiable.

As for the SAR-specific methods, Shearlet performs well for capturing the bankline 
structure between the land along the edge of the water body. The results are in parallel 
with the findings of Sun et al. (2021) where the authors effectively detect the bankline 
information of GF-3 SAR images by using Shearlet. Nonetheless, its performance is not as 
good over the more complex textures of the land. ROLSS RUSTICO can also capture the 
bankline, but it unnecessarily overemphasize bright pixels and has problems with edge 
connectivity. GSS bi-windows result highly resembles the Canny output which is nega-
tively affected by the speckle patterns over the land textures. Moreover, Touzi has better 
noise handling achieving superior results on the homogeneous regions, whereas GR has 
better edge connectivity that captures linear structures better. Likewise, the binary fusion 
generates cleaner homogeneous regions, but similar to the case of the Gabor filters, it has 
problems with the edge connectivity due to the large gradients of the very bright pixels. 
On the other hand, the gradient fusion is able to achieve better edge connectivity and 
better noise handling. Finally, GRHED output highly resembles the pseudo ground-truth, 
but it has problems with the edge connectivity and most of the true edges are missed 
causing a lot of false negatives which explains its relatively low F1 score. Nevertheless, its 
superior noise handling is clearly visible.

Finally, Table 23 presents the run times for the algorithms. It shows that the first-order 
derivatives-based methods are able to operate on real time. The second-order derivatives- 
based methods are approximately 50 times slower with also very low edge detection 
performance. GS5O8 and the subpixel-based edge detector not only yield insufficient 
results, but also appear to have significantly longer run times. GRHED also takes around 
a minute to process the Lelystad image on CPU, but it can be expected that its run time 
will be significantly lower on a GPU. Among other SAR-specific approaches, Touzi and GR 
process the image in less than a second, which makes them preferable together with their 
competent quantitative and qualitative performance. Similarly, GGS bi-windows is able to 
process the image in less than a second, yet it’s quantitative and qualitative performance 
are not as satisfactory as Touzi or GR. On the other hand, Shearlet takes around 13 seconds 
and ROLSS RUSTICO takes around 24 seconds to process the Lelystad image. Given their 
relatively low performance and high execution times, the scope of application of the edge 
detection task should be carefully considered before applying the edge detectors to SAR 
images.

5.5.2. TerraSAR-X Texas
Secondly, we consider a TerraSAR-X image of Texas, USA, around the Winkler County 
Sinkhole #2 near Odessa, captured with the staring spotlight mode.12 The image is 
denoised the same way as the BSDS500-speckled images and the Lelystad image, see 
Figure 26. The resolution of this image is 2360 x1500 pixels. Similar to the case of Lelystad, 
we provide qualitative performance evaluation over the homogeneous regions such as 
the sinkhole on the bottom left part of the image, the linear structures such as the roads, 
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Figure 26. A single look TerraSAR-X image of Texas, USA, around the Winkler County Sinkhole #2 near 
Odessa. Credits: © DLR e.V. 2022 and © Airbus Defence and Space GmbH 2022. a) Original noisy image. 
b) Denoised with SARBLF.

Table 23. Run times (measured in seconds) of the algorithms for SAR image evaluations.11.

Algorithm Runtime (Odessa) # Runtime (Lelystad) #

Subpixel 1459.92 538.62

GS5O8 979.05 541.69
GRHED 105.97 65.13

ROLSS RUSTICO 52.07 23.81
Shearlet 37.05 13.34

DoG 7.06 5.09
LoG 6.43 4.77

K-means 5.43 5.19
Gradient Fusion 3.29 2.01
GGS bi-windows 2.03 0.82

Canny 1.88 0.54
GR 1.80 0.81

Binary Fusion 1.68 1.26
Touzi 0.95 0.89

Frei-Chen 0.60 0.31
Farid 0.33 0.17
Wavelet 0.16 0.21

Prewitt 0.16 0.09
Sobel 0.16 0.09

Scharr 0.16 0.09
Roberts 0.13 0.07
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and the curvilinear structures such as the borders of the silos. The performances of 
a number of edge detection methods are presented in Figure 27.

The results show that, similar to the Sentinel-1 Lelystad experiments, the second-order 
derivatives-based DoG and the advanced subpixel-based edge detection methods com-
pletely fail generating outputs resembling white noise patterns. In addition to those 
methods, Canny, K-means-based edge detector and 2D discrete wavelet algorithm also 
fail to generate decent outputs for the TerraSAR-X image. Similary, the Gabor filters again 
classify mostly the brightest pixels as edges, yet this also results in correctly classifying the 
homogeneous region of the sinkhole on the bottom left part of the image as non-edge. 
Thus, the Gabor filters might be useful in these kind of cases, albeit with a long run time 
(979 seconds), see Table 23. Moreover, the first-order derivatives-based Farid’s perfor-
mance is far from satisfactory. On the other hand, SAR-specific methods perform way 
better, except for GSS bi-windows whose output resembles white noise patterns, and for 
ROLSS RUSTICO that only outputs a couple of pixels labelled as edges. The reason is that 
ROLSS RUSTICO generates very low edge responses for the image so that most of the 
pixels cannot pass our fixed threshold. In that sense, compared against their performance 
on the Sentinel-1 Lelystad image, those two methods do not appear useful for TerraSAR-X 
images. Similarly, the gradient fusion method perform relatively worse on TerraSAR-X 
images, also being more susceptible to noisy than Touzi. Shearlet is able to capture some 
of the curvilinear structures, borders and the homogeneous region of the sinkhole, yet it is 
also highly affected by the speckle noise. On the other hand, Touzi, GR and both of the 
fusion methods are able to clearly identify most of the homogeneous regions, linear 
structures such as the roads, and the curvilinear structures such as the borders of the silos 
and the borders of the surrounding terrain. Nonetheless, those methods fail to handle the 
homogeneous region of the sinkhole. Among them, Touzi achieves these results with the 
lowest run time. Furthermore, although the performance of the Farid operator alone is not 
sufficient, fusing it with the SAR-specific Touzi tend to further improve the estimations, 
especially on homogeneous regions. Moreover, the binary fusion operation only adds 
merely 0.5 seconds overhead to Touzi to obtain additional improvements, and still around 
three times cheaper than computing GR. Nevertheless, the output of GR appears relatively 
cleaner. On the other hand, the gradient fusion operation adds a significant overhead of 
over 2 seconds on top of Touzi. Finally, GRHED results are similar to the Sentinel-1 
experiments. It can also capture the linear structure of the roads, borders of the silos, 
and also the homogeneous region of the sinkhole. Nonetheless, its output appears more 
noisy than the outputs of Touzi and GR.

5.5.3. Sentinel-1 Texas with different polarizations
In this section, we conduct an experiment that considers the same area with the data 
having different polarizations to evaluate the robustness of the algorithms to different 
polarizations. To that end, we consider a Sentinel-1 image of Texas, USA, captured around 
Red Bluff Reservoir on the Pecos River near Reeves County, see Figure 28. The resolution of 
these images is 1900 x 7200 pixels. Similar to the previous cases, they are denoised with 
SARBLF algorithm, and converted to 8-bit images by min-max normalization. VH polariza-
tion has a mean of 176.31 and VV polarization has a mean of 155.06, which shows the 
different backscatter intensities of each polarization.
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Figure 27. Edge detection performances on a TerraSAR-X image of Texas, USA, around the Winkler 
County Sinkhole #2 near Odessa. Credits: © DLR e.V. 2022 and © Airbus Defence and Space GmbH 
2022.
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We apply the edge detectors to both polarizations and report a number of quantitative 
metrics to measure the overlaps. Higher overlaps indicate more robustness. The aim is to 
assess how similar the outputs are given differently polarized images. To that end, we 
provide (1) the matching pixel percentage (MPP) measuring per-pixel label consistency, 
and (2) the matching edge percentage (MEP) which measures the fraction between the 
number of matching pixels that are classified as edges in both polarizations and the 
overall total number of pixels that are classified as edges by two different polarizations in 
which if a pixel is classified as an edge by both polarizations, it is counted as one. In simple 
terms, the metrics are defined as follows: 

MPP ¼
1
n

X
ΘðVVÞ , ΘðVHÞ ; (31) 

MEP ¼
PΘ VVð Þ&Θ VHð Þ
PΘ VVð Þ k Θ VHð Þ

: (32) 

where n is the total number of pixels, Θð:Þ denotes the binary output of an edge detector, 
“, “denotes material equivalence (if and only if), “&“denotes logical conjunction, and 
“ k “denotes logical disjunction. The results are presented in Table 24.

The results show that the first-order derivatives-based methods suffer the most achiev-
ing less than 1% MEP scores. It might be expected as the gradient intensities and 
orientations tend to change as targets on the surface have distinctive polarization 
signatures. One exception is the Frei-Chen operator that achieves around 30% MEP 
score. Since the algorithm combines eight different basis vectors, it can handle different 
polarizations up to a degree. Moreover, the Gabor filter orientations concentrate on 
considerably different features given its very low score. On the other hand, SAR-specific 

Figure 28. Sentinel-1 image of Texas, USA, captured around Red Bluff Reservoir on the Pecos River 
near Reeves County with different polarizations. a) Sigma0 VH b) Sigma0 VV. Both images are 
denoised by SAR- BLF. Credits: Copernicus Sentinel data 2022.
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methods perform relatively better. GGS bi-windows achieve 23.1% MEP, ROLSS RUSTICO 
29.5%, Touzi 37.1%, GR 48.1%, GRHED 66.7% and Shearlet 74.6%. Nonetheless, GR and 
ROLSS RUSTICO have low MPP scores which might need further attention. Additionally, 
the binary fusion appears the least robust approach with an MEP score of 0.01%. On the 
other hand, the gradient fusion performs significantly better, and it outperforms several 
SAR specific methods with an MEP of 31.24%. Nonetheless, the MPP is lower than the 
binary fusion method (81.43% ! 95.32%). GRHED achieves the second best MEP, while 
also obtaining the best MPP (99.89%) which suggests that the model has a decent 
generalization capability which is one of the challenges with the supervised deep learn-
ing-based models. On the other hand, Shearlet achieves the highest consistency by 
a large margin with also very high MMP score. Thus, it appears as the most robust method 
to different polarizations.

6. Discussion and future directions

In this work, we have evaluated six different SAR-specific edge detection methods, 
namely, Touzi operator (Touzi et al. 1988), gradient by ratio (GR) (Dellinger et al. 2015), 
Gaussian-Gamma-shaped (GSS) bi-windows (Shui and Cheng 2012), a robust statistic- 
aided edge detector based on ratio of local statistics (ROLSS) that is combined with the 
robust inhibition-augmented curvilinear operator (RUSTICO) (Li et al. 2022), a Shearlet 
transformation-based method, and a supervised deep CNN model (Liu et al. 2020), thanks 
to their publicly available implementations. Nonetheless, there also exist various edge 

Table 24. Matching consistency of different algorithms over different polarizations (VV and VH) of the 
same area of 1900 by 7200 pixels (13.68 million pixels), ordered by MEP.

Algorithm Matching Edge Percentage (MEP) " Matching Pixel Percentage (MPP) "

Binary Fusion 0.01% 95.32%
Farid 0.02% 93.65%
Sobel 0.02% 97.54%

Scharr 0.03% 99.19%
Prewitt 0.03% 96.60%

Wavelet 0.06% 96.72%
Roberts 0.20% 99.43%

GS5O8 1.18% 94.65%
DoG 21.54% 70.22%
GGS bi-windows 23.08% 99.38%

Subpixel 26.03% 62.66%
LoG 26.99% 63.11%

Canny 28.98% 99.38%
ROLSS RUSTICO 29.54% 62.78%

Frei-Chen 29.88% 84.54%
Gradient Fusion 31.24% 81.43%
Touzi 37.10% 92.11%

K-means 42.07% 55.82%
GR 48.06% 67.94%

GRHED 66.69% 99.89%
Shearlet 74.64% 98.71%
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detection algorithms specifically tailored for SAR images dealing with the speckle noise 
characteristics. For instance, Xiang et al. (2017b) combine a Gabor steered ratio-based 
detector and a phase congruency model which provides a decent continuity and integrity. 
Additionally, Zhan et al. (2013) present a Bayesian edge detector for SAR images by 
exploiting a discontinuity-adaptive Markov random field and a maximum a posteriori 
estimation criterion. Furthermore, Min and Shuyuan (2005) introduce a method using 
a hybrid genetic algorithm considering the continuity, thickness and regional differences 
of edges. Moreover, Farbod et al. (2018) design an optimized fuzzy cellular automata 
algorithm, and Naumenko et al. (2012) utilize a shallow artificial neural network for the 
task. In addition, Junior et al. (2015) modify the gravitational edge detection technique 
that is inspired by the law of universal gravity for SAR imagery, and Wei and Feng (2018) 
propose an antistretch edge detector by combining an anisotropy edge detection filter 
with an isotropy one. Finally, Zhang et al. (2019) present an edge detection algorithm 
using generative adversarial networks based on symmetric difference kernels. 
Unfortunately, the code, implementation or application of the aforementioned work is 
not publicly available (yet). Therefore, we have not been able to include additional SAR 
specific edge detection methods to our evaluations. To that end, we encourage research-
ers to apply their algorithms to our benchmarks and submit their results to the bench-
mark website to provide fair and generalized comparisons.

Additionally, nowadays, with the success of deep learning algorithms on real-world 
computer vision applications, more recent works are expected to prefer deep learning 
solutions that are based on convolutional neural networks (CNNs). This is also supported 
by our benchmarks that the state-of-the-art results are mostly achieved by the CNN model 
of Liu et al. (2020). To that end, it can be projected that the future methods might involve 
auto encoders (AE), variants of generative adversarial networks (GAN), graph convolu-
tional networks (GCN), visual transformers (ViT), and also self-supervision, unsupervised 
deep learning, deep ensemble learning, and multi-task learning, which are currently 
missing in the field.

Another future direction to consider might involve utilizing optical and SAR image 
registration datasets. For example, QXS-SAROPT dataset by Huang et al. (2021) contains 
20,000 pairs of SAR-optical image patches. It provides manual annotations of the match-
ing points of the sub-region SAR-optical image pairs, which are selected as the geome-
trically invariant corner points of buildings, ships, roads, etc. One interesting future work 
could be that considering the manual annotations of the matching points in the dataset 
between SAR-optical image pairs as sparse edge ground-truths, and generating a model 
to propagate that information for the dense predictions. Similar ideas have been pro-
posed for the semantic segmentation task (e.g. Jaritz et al. 2018; Hua et al. 2022), yet it has 
never been explored for the edge detection task before.

Similarly, this work focuses edge detection only using SAR images. On the other hand, 
various fields of remote sensing tend to integrate (fuse) several types of different satellite 
resources recording numerous properties of the Earth’s surface. It is achieved by different 
sensor types measuring different portions of the electromagnetic spectrum, and also 
providing different resolutions. For instance, in the field of mineral prospectivity mapping, 
it is a common approach to combine multiple sensory information. To illustrate, Pour et al. 
(2019) utilize (1) Landsat-8, (2) ASTER, and (3) WorldView-3 multispectral remote sensing 
data for hydrothermal alteration mapping and mineral prospecting. In that sense, given 
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the availability of various remote sensing data, future research can also benefit from 
integrating different data sources such as Landsat, Sentinel-2, MODIS, ASTER, UAV, and 
LiDAR. One option might be to explore guided image filtering (He et al. 2013).

Finally, it is worth mentioning that the methods we have evaluated are based on 
certain implementations as provided in Section 4.4. Moreover, the algorithms have been 
evaluated for a wide variety of parameters. In that sense, it is not possible to cover all 
possible parameter values as there can be infinite number of options. Furthermore, each 
evaluated edge detector utilizes the denoised images generated by SARBLF as inputs 
which are not completely free of the speckle noise. Therefore, we do not claim that these 
results are the best that these algorithms can achieve, but an indication of what an 
algorithm is capable of achieving, and how the performance relates to other methods. 
Further improvements might be possible by different set of parameters, different denois-
ing algorithms, and a finer-grained or an adaptive thresholding scheme.

7. Conclusion

Our aim was to provide a benchmark for fair evaluations of edge detection methods on 
SAR images. To that end, we produced the most extensive experimental review up to date 
on the SAR image edge detection task. Since no adequate dataset with annotated edges 
for SAR images exists, and to collect a human-annotated dataset is a very time consuming 
and laborious process, we conducted our experiments on the natural optical images with 
simulated speckle noise patterns, BSDS500-speckled (Liu et al. 2020). We investigated the 
performance of a wide variety of edge detection methods (21 different methods in total). 
The best set of parameters were selected based on the quantitative evaluations over the 
BSDS500-speckled. Finally, two different benchmarks were established; one with noisy 
inputs (BSDS500-speckled-noisy) and the other with denoised inputs (BSDS500-speckled). 
Moreover, two different real world remote sensing images were visually evaluated, and 
run time comparisons were provided. Quantitative results of the applied methods on real 
SAR data were presented and an experimental analysis was provided that considers the 
same area with the data having different polarizations to evaluate the robustness of the 
algorithms to different polarizations.

BSDS500-speckled benchmark revealed that the fundamental first-order derivatives- 
based methods are still very competitive baselines for the SAR edge detection task. On the 
other hand, the second-order derivatives-based methods (LoG and DoG) did not perform 
well on SAR images because of the low gradients of the remaining speckle noise nega-
tively influencing the Gaussian filters. Furthermore, advanced methods did not perform as 
well as the first-order derivatives-based approaches which suggests that the trade-off 
between the complexity of a model and its predictive capability should be carefully 
considered. Additionally, among the SAR specific methods, conventional Touzi utilizing 
the ratio of the averages (ROA) scheme achieved better results than more commonly used 
GR utilizing the ratio of exponentially weighted averages (ROEWA) on all metrics. 
Gaussian-Gamma-shaped (GSS) bi-windows did not appear superior than the methods 
utilizing rectangular windows (Touzi and GR). Considering the non-learning-based meth-
ods, Touzi > GR > GSS bi-windows > Shearlet > ROLSS RUSTICO ranking emerged. 
Finally, the fusion approaches of combining the best of two worlds; SAR-specific Touzi and 
optical Farid appeared as promising alternatives, where the gradient fusion obtained 
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the second best OIS F1 and ODS F1, and the binary fusion obtained the second best AP 
score on the benchmark. On the other hand, the state-of-the-art results were reached by 
the supervised CNN model of Liu et al. (2020) (GRHED) on all metrics. Nonetheless, the 
performance gaps between GRHED and the gradient fusion on OIS F1 and ODS F1, and 
GRHED and the binary fusion on AP were not major.

BSDS500-speckled-noisy benchmark revealed similar outcomes where the state-of-the- 
art results were obtained by GRHED, and the second best results were obtained by Touzi. 
All the SAR-specific algorithms obtained similar results as the denoised benchmark 
evaluations which demonstrated the high robustness of the algorithms to the speckle 
noise. The exception is the GGS bi-windows whose performance significantly deterio-
rated. Finally, the binary fusion approach reached similar OIS and ODS scores, yet AP 
dropped significantly on the noisy benchmark. The gradient fusion scores also deterio-
rated but on average the drop was around 5% over all metrics. Thus, the gradient fusion 
method appeared more robust to noise. Nonetheless, the results suggest that the fusion 
methods perform best with a denoising pre-processing step.

Furthermore, quantitative evaluations results of the applied methods on real SAR data 
were provided on the Lelystad image using a pseudo ground-truth. The results showed 
that the best F1 score was achieved by the traditional Scharr operator, while the best 
accuracy and precision were obtained by the supervised CNN model GRHED, and the best 
FM score were obtained by the traditional Prewitt. Moreover, the binary fusion of Touzi 
and Farid using the complete agreement scheme achieved the second best performance 
on accuracy and precision, whereas the traditional Sobel obtained the second best 
performance on F1 and FM scores. The results further supported the benchmark evalua-
tions such that the traditional first-order derivatives-based methods were still very com-
petitive baselines. Overall, the performance of the SAR-specific methods were not 
satisfactory, except for GRHED, Touzi and GR.

In addition, qualitative evaluations of the authentic SAR images (Sentinel-1 and 
TerraSAR-X) were presented to visually assess the performance of the algorithms. The 
Sentinel-1 evaluations revealed that Touzi had better noise handling achieving superior 
results on the homogeneous regions, whereas GR had better edge connectivity that 
captures linear structures better. Shearlet performed well for capturing the bankline 
structure between the land along the edge of the water body. ROLSS RUSTICO was also 
able to capture the bankline, but it unnecessarily overemphasized bright pixels and had 
problems with edge connectivity. GSS bi-windows’s output negatively affected by the 
speckle patterns over the land textures. GRHED output highly resembled the pseudo 
ground-truth, but it had problems with the edge connectivity and most of the true edges 
were missed causing a lot of false negatives which explained its relatively low F1 score. 
Finally, in parallel with the quantitative benchmark evaluations, the second-order deriva-
tives-based methods did not perform well and the advanced methods were far from 
satisfactory. One exception was the 2D discrete wavelet method which was able to 
capture linear structures of the borders between the agricultural fields, yet its output 
was highly corrupted with salt-and-pepper like noise patterns. On the other hand, the 
TerraSAR-X evaluations revealed that SAR-specific methods performed way better, except 
for GSS bi-windows whose output resembled white noise patterns, and for ROLSS 
RUSTICO that only classified a couple of pixels as edges. In that sense, compared against 
their performance on the Sentinel-1 Lelystad image, those two methods did not appear 
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favorable for TerraSAR-X images. Similarly, the gradient fusion method performed rela-
tively worse on TerraSAR-X images. Shearlet was able to capture some of the curvilinear 
structures, borders, and homogeneous regions, yet it was also negatively affected by the 
speckle noise. On the other hand, Touzi, GR, and the binary fusion were able to clearly 
identify most of the homogeneous regions, linear structures, and curvilinear structures. 
Nonetheless, those methods failed to handle the homogeneous region of the sinkhole 
which has relatively lower pixel values. Finally, GRHED results were similar to the Sentinel- 
1 experiments. It was able to also capture the linear structure of the roads, borders of the 
silos, and also the homogeneous region of the sinkhole. Nonetheless, its output appeared 
more noisy than the outputs of Touzi and GR.

Moreover, an analysis was presented on the run time performances of the algorithms. 
As expected, the first-order derivatives-based methods were able to operate on real time. 
The second-order derivatives-based methods were approximately 50 times slower with 
also very low edge detection performance. Similarly, advanced methods appeared to 
have significantly longer run times given their complex processing chains. GRHED took 
around a minute to process the Lelystad image on CPU, but it can be expected that its run 
time might be significantly lower on a GPU. Among other SAR-specific approaches, Touzi 
and GR processed the image in less than a second, which made them preferable together 
with their competent quantitative and qualitative performance. Similarly, GGS bi- 
windows was able to process the image in less than a second, yet it’s quantitative and 
qualitative performance were not as satisfactory as Touzi or GR. On the other hand, 
Shearlet took around 13 seconds and ROLSS RUSTICO took around 24 seconds to process 
the Lelystad image. Given their relatively low performance and high execution times, the 
scope of application of the edge detection task should be carefully considered before 
applying the edge detectors to SAR images.

Besides, an analysis was provided that considers the same area of a Sentinel-1 
data having different polarizations to evaluate the robustness of the algorithms to 
different polarizations. The results showed that the first-order derivatives-based 
methods are not robust to different polarizations as they achieved less than 1% 
consistency (MEP) scores. On the other hand, SAR-specific methods performed rela-
tively better. Nonetheless, GR and ROLSS RUSTICO obtained low matching pixel 
percentage (MPP) scores which might need further attention. GRHED achieved 
the second best MEP score, while also obtaining 99.89% MPP which suggested that 
the model has a decent generalization capability which is one of the challenges with 
the supervised deep learning-based models. On the other hand, Shearlet achieved 
the highest consistency by a large margin with also very high MMP score. Thus, it 
emerged as the most robust method to different polarizations.

Finally, the edge detection performances on the benchmarks indicated a fair 
representation of the actual SAR images as the performance of the methods were 
mostly consistent with the qualitative evaluations. We encourage researchers to 
apply their algorithms to our benchmarks and submit their results to the benchmark 
website to keep track of the advancements in the field and also to provide fair 
comparisons.
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Notes

1. https://github.com/scikit-image/scikit-image/blob/main/skimage/filters/edges.py.
2. https://pypi.org/project/bm3d.
3. https://pypi.org/project/MedPy.
4. https://github.com/odhondt/ndsar.
5. https://github.com/ChenguangTelecom/GRHED.
6. https://peerj.com/articles/cs-611/#supplementary-material.
7. https://gitlab.com/nicstrisc/RUSTICO.
8. https://see.xidian.edu.cn/faculty/plshui/resources/SAR_edge_detection_matlab.rar.
9. https://github.com/gravi-toni/subpixel-edges.

10. The results are provided on Intel Xeon CPU E5–2667 v2 @ 3.30 GHz.
11. The results are provided on Intel Xeon CPU E5–2667 v2 @ 3.30 GHz.
12. Copyright note: Ó DLR e.V. 2022 and Ó Airbus Defence and Space GmbH 2022.
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