40 research outputs found

    Designing and measuring gesture using Laban Movement Analysis and Electromyogram

    Get PDF
    Movement design is typically based on evoking shapes in space. In interactive systems, user movement is often dictated by the system’s sensing capabilities. In neither of these cases are the differences across individual users or expressive variations they make accommodated. We present an exploratory study that uses Laban Movement Analysis as a framework for designing gesture, and elec- tromyogram (EMG) signals for measuring gestural output. We were interested to see if these approaches for speci- fying and measuring gesture could produce and capture a “sameness” in gesture that in terms of gross spatial move- ment may be quite different

    Exploring the Affective Loop

    Get PDF
    Research in psychology and neurology shows that both body and mind are involved when experiencing emotions (Damasio 1994, Davidson et al. 2003). People are also very physical when they try to communicate their emotions. Somewhere in between beings consciously and unconsciously aware of it ourselves, we produce both verbal and physical signs to make other people understand how we feel. Simultaneously, this production of signs involves us in a stronger personal experience of the emotions we express. Emotions are also communicated in the digital world, but there is little focus on users' personal as well as physical experience of emotions in the available digital media. In order to explore whether and how we can expand existing media, we have designed, implemented and evaluated /eMoto/, a mobile service for sending affective messages to others. With eMoto, we explicitly aim to address both cognitive and physical experiences of human emotions. Through combining affective gestures for input with affective expressions that make use of colors, shapes and animations for the background of messages, the interaction "pulls" the user into an /affective loop/. In this thesis we define what we mean by affective loop and present a user-centered design approach expressed through four design principles inspired by previous work within Human Computer Interaction (HCI) but adjusted to our purposes; /embodiment/ (Dourish 2001) as a means to address how people communicate emotions in real life, /flow/ (Csikszentmihalyi 1990) to reach a state of involvement that goes further than the current context, /ambiguity/ of the designed expressions (Gaver et al. 2003) to allow for open-ended interpretation by the end-users instead of simplistic, one-emotion one-expression pairs and /natural but designed expressions/ to address people's natural couplings between cognitively and physically experienced emotions. We also present results from an end-user study of eMoto that indicates that subjects got both physically and emotionally involved in the interaction and that the designed "openness" and ambiguity of the expressions, was appreciated and understood by our subjects. Through the user study, we identified four potential design problems that have to be tackled in order to achieve an affective loop effect; the extent to which users' /feel in control/ of the interaction, /harmony and coherence/ between cognitive and physical expressions/,/ /timing/ of expressions and feedback in a communicational setting, and effects of users' /personality/ on their emotional expressions and experiences of the interaction

    Understanding Gesture Expressivity through Muscle Sensing

    Get PDF
    Expressivity is a visceral capacity of the human body. To understand what makes a gesture expressive, we need to consider not only its spatial placement and orientation, but also its dynamics and the mechanisms enacting them. We start by defining gesture and gesture expressivity, and then present fundamental aspects of muscle activity and ways to capture information through electromyography (EMG) and mechanomyography (MMG). We present pilot studies that inspect the ability of users to control spatial and temporal variations of 2D shapes and that use muscle sensing to assess expressive information in gesture execution beyond space and time. This leads us to the design of a study that explores the notion of gesture power in terms of control and sensing. Results give insights to interaction designers to go beyond simplistic gestural interaction, towards the design of interactions that draw upon nuances of expressive gesture

    Almost Human: The Study of Physical Processes and the Performance of a Prosthetic Digital Spine

    Get PDF
    Almost Human is an investigation of interdisciplinary performance through music that looks to the self to try to further understand subjective performance practices in expression, gesture and sonic output. This text presents experimental methods of examining and creating music through kinaesthetic and electronic-assisted means within instrumental, dance and interactive works. The extraction of affective, performative and sonic properties from these works aids in unlocking the relationship between the choreographic, physical and conceptual object. The first part of the text explores and illustrates multimodal approaches to analysing, capturing, measuring and archiving the moving musician and dancer in an assortment of performative settings. It focuses on a series of works for solo cello, as well as interdisciplinary pieces which positions movement and embodied expressivity at the forefront of the discussion. The second part is dedicated to the aesthetic, conceptual and utilitarian content of a new interactive work for cellist/mover, and a prosthetic digital spine. Here, relationships are combined to showcase the permeability of the body, as well as its expressive content. The conceptual object, The Spine, serves as a generator to help expand musical and artistic possibilities. Its inclusion in the work aids in refocusing my relationship to movement and sound for creation and performance, but also aesthetically, it adds to the growing canon of experimental ventures in conceptualising expressivity. Beyond the text, the portfolio of Almost Human includes an auditory and visual chronicle of the process between the years 2012-14, which is used to assist the reader in further understanding the performative practice and findings

    Effort in gestural interactions with imaginary objects in Hindustani Dhrupad vocal music

    Get PDF
    Physical effort has often been regarded as a key factor of expressivity in music performance. Nevertheless, systematic experimental approaches to the subject have been rare. In North Indian classical (Hindustani) vocal music, singers often engage with melodic ideas during improvisation by manipulating intangible, imaginary objects with their hands, such as through stretching, pulling, pushing, throwing etc. The above observation suggests that some patterns of change in acoustic features allude to interactions that real objects through their physical properties can afford. The present study reports on the exploration of the relationships between movement and sound by accounting for the physical effort that such interactions require in the Dhrupad genre of Hindustani vocal improvisation. The work follows a mixed methodological approach, combining qualitative and quantitative methods to analyse interviews, audio-visual material and movement data. Findings indicate that despite the flexibility in the way a Dhrupad vocalist might use his/her hands while singing, there is a certain degree of consistency by which performers associate effort levels with melody and types of gestural interactions with imaginary objects. However, different schemes of cross-modal associations are revealed for the vocalists analysed, that depend on the pitch space organisation of each particular melodic mode (rāga), the mechanical requirements of voice production, the macro-structure of the ālāp improvisation and morphological cross-domain analogies. Results further suggest that a good part of the variance in both physical effort and gesture type can be explained through a small set of sound and movement features. Based on the findings, I argue that gesturing in Dhrupad singing is guided by: the know-how of humans in interacting with and exerting effort on real objects of the environment, the movement–sound relationships transmitted from teacher to student in the oral music training context and the mechanical demands of vocalisation

    Methods and Technologies for the Analysis and Interactive Use of Body Movements in Instrumental Music Performance

    Get PDF
    List of related publications: http://www.federicovisi.com/publications/A constantly growing corpus of interdisciplinary studies support the idea that music is a complex multimodal medium that is experienced not only by means of sounds but also through body movement. From this perspective, musical instruments can be seen as technological objects coupled with a repertoire of performance gestures. This repertoire is part of an ecological knowledge shared by musicians and listeners alike. It is part of the engine that guides musical experience and has a considerable expressive potential. This thesis explores technical and conceptual issues related to the analysis and creative use of music-related body movements in instrumental music performance. The complexity of this subject required an interdisciplinary approach, which includes the review of multiple theoretical accounts, quantitative and qualitative analysis of data collected in motion capture laboratories, the development and implementation of technologies for the interpretation and interactive use of motion data, and the creation of short musical pieces that actively employ the movement of the performers as an expressive musical feature. The theoretical framework is informed by embodied and enactive accounts of music cognition as well as by systematic studies of music-related movement and expressive music performance. The assumption that the movements of a musician are part of a shared knowledge is empirically explored through an experiment aimed at analysing the motion capture data of a violinist performing a selection of short musical excerpts. A group of subjects with no prior experience playing the violin is then asked to mime a performance following the audio excerpts recorded by the violinist. Motion data is recorded, analysed, and compared with the expert’s data. This is done both quantitatively through data analysis xii ïżŒas well as qualitatively by relating the motion data to other high-level features and structures of the musical excerpts. Solutions to issues regarding capturing and storing movement data and its use in real-time scenarios are proposed. For the interactive use of motion-sensing technologies in music performance, various wearable sensors have been employed, along with different approaches for mapping control data to sound synthesis and signal processing parameters. In particular, novel approaches for the extraction of meaningful features from raw sensor data and the use of machine learning techniques for mapping movement to live electronics are described. To complete the framework, an essential element of this research project is the com- position and performance of Ă©tudes that explore the creative use of body movement in instrumental music from a Practice-as-Research perspective. This works as a test bed for the proposed concepts and techniques. Mapping concepts and technologies are challenged in a scenario constrained by the use of musical instruments, and different mapping ap- proaches are implemented and compared. In addition, techniques for notating movement in the score, and the impact of interactive motion sensor systems in instrumental music practice from the performer’s perspective are discussed. Finally, the chapter concluding the part of the thesis dedicated to practical implementations describes a novel method for mapping movement data to sound synthesis. This technique is based on the analysis of multimodal motion data collected from multiple subjects and its design draws from the theoretical, analytical, and practical works described throughout the dissertation. Overall, the parts and the diverse approaches that constitute this thesis work in synergy, contributing to the ongoing discourses on the study of musical gestures and the design of interactive music systems from multiple angles
    corecore