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1 Introduction 4 

Physiological computing has gained currency in recent years as the democratization of 5 

biomedical measurement technologies has facilitated take up in interactive computing 6 

systems. Signals from the human body can be detected by a wide array of sensors and 7 

digitized, providing computational systems information on individual identification, body 8 

states, and gross and fine limb movement. These signals have rich potential to be exploited 9 

for musical interaction – be it recording performer or audience state in ambient interaction, or 10 

capturing instrumentalists’ volitional acts in gestural musical interaction. This chapter will 11 

focus on the potential of physiological interfaces to capture performer gesture to create 12 

embodied interaction with interactive music systems. The chapter is structured as follows: we 13 

begin with a brief history of the use of physiological signals in musical performance, noting 14 

the evolution of technology that has enabled the current interest. We introduce the range of 15 

physiological signals, and focus on one, the electromyogram, that reports muscle tension. We 16 

present techniques for using the EMG in music, including signal pre-processing in the form 17 

of feature extraction, and analysis in the form of machine learning. We discuss challenges of 18 

reproducibility and situate the EMG in multimodal context with other sensing modalities. We 19 

conclude by proposing gesture “power” as one low level feature that in part represents 20 

Laban’s notion of “effort” to demonstrate the potential of the EMG to capture expressive 21 

musical gesture.  22 

Human brainwaves were first measured by Berger in 1924, then sonified in the 1930s by 23 

physiologists Adrian and Mathews who translated signals measured with electrodes into 24 

audio signals to be heard through loudspeakers. In 1965, the American composer Alvin 25 

Lucier used brainwaves to activate acoustic percussion instruments in Music for Solo 26 

Performer. This work with biosignals was adopted by composers such as  Richard 27 

Teitelbaum and David Rosenboom (Brouse et al., 2005), leading to the publication of the 28 

seminal book Biosignals and the Arts: Results of Early Experiments (Rosenboom, 1976). 29 

John Cage, in his large scale work, Variations 7, performed in 1966 in New York City as part 30 
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of the Experiments in Art & Technology (E.A.T.) 9 Evenings, called for “body sounds: heart, 31 

brain, lungs, stomach.” In 1974, Manford Eaton published Bio-Music, a manifesto calling for 32 

a new biofeedback-based art in which the intentions of the composer are ‘fed directly’ to the 33 

listener (Eaton, 1974).  34 

With the arrival of early digital systems in the early 1990’s, musicians began to interface 35 

digitized biosignals with MIDI controlled synthesizers and computer music systems. The 36 

IBVA1 was created by Masahiro Kahata and was an early low-cost, portable digital EEG 37 

device for art. The BodySynth2, created by Chris Van Raalte and Ed Severinghaus was an 38 

EMG music interface that was used performance artists such as Pamela Z and Laurie 39 

Anderson. Ben Knapp and Hugh Lusted, researchers at Stanford University’s CCRMA 40 

created the BioMuse3 in 1990, a DSP based biosignal-MIDI interface that read EEG, EOG, 41 

and EMG (Knapp & Lusted, 1988). This system, and its subsequent minituarized incarnations 42 

were adopted by the two authors for a series of music concert pieces. This facilitated 43 

replication and rapid prototyping of systems that has facilitated ensembles such as the 44 

BioMuse Trio, and use of biosignals in groups to conduct audience studies (Ortiz, 2012). The 45 

increasing practicality of electronics resulted in use in media art contexts by Nagashima 46 

(Nagashima, 2003). The information sharing in DIY communities has led to the publication 47 

of designs for mechanomyogram (MMG) pickups4 that have been used as the basis for 48 

Donnarumma’s Xth Sense5 interface.  49 

Advances in materials, electronics miniaturization, and manufacturing, have resulted in a 50 

spate of consumer products that interface the human body to computing systems. These 51 

products range from forms of biofeedback to aid in personal health monitoring6, to products 52 

that exploit insight from research in affective computing7. Sophisticated multichannel, 53 

multimodal devices have been brought to market for hobbyists to control model drones by 54 

gesture, and mundane tasks such as a virtual slide presentation clicker8.  55 

                                                
1 http://www.ibva.co.uk 
2 http://www.synthzone.com/bsynth.html 
3 http://www.biocontrol.com 
4 http://www.instructables.com/id/Measure-Muscle-Sounds!-Part-1%3A-Electronic-Board/ 
5 http://www.xth.io/ 
6 http://www.mindmedia.info/ 
7 http://www.empatica.com/ 
8 http://www.myo.com/ 



 

 

As the technologies became more accessible and accurate, the artistic focus of these projects 56 

has shifted from an initial focus on biofeedback, to the notion of bio-control, to direct 57 

physiological interfacing. Biosignals have broad musical potential. They range from their use 58 

in augmenting traditional musical instrument performance, to copying existing instruments 59 

for virtual, “air” instruments, to the creation of entirely new instruments in areas of 60 

contemporary music and NIME. Free space gesture can be used to track non-instrumental 61 

gesture, such as dancing and conducting (Marrin & Picard, 1998). All these types of musical 62 

interaction can find application in music pedagogy and movement rehabilitation medicine. 63 

2 Biosignals 64 

The term biosignals is used to refer to physiological signals from living organisms, and that 65 

manifest change in electrical potential across a specific cells, tissues, or organs. Tissues, such 66 

as nerves, skeletal muscles, cardiac muscle and soft muscles, can generate electrical activity, 67 

whereas others, like the skin and the eyes, are electrically passive and manifest potential 68 

differences. The change in electrical potential offers a direct correlate of physiological 69 

activity and depends on the entity being monitored. The most common biosignals are: 70 

Galvanic Skin Response (GSR), which is the change of the skin’s electrical conductance 71 

properties caused by changes in emotional states like stress; Electrocardiogram (ECG/EKG), 72 

a measurement of the electrical activity of the heart; Electrooculogram (EOG) is the 73 

measurement of the Corneal-Retinal Potentials (CRP) across the eye; the 74 

Electroencephalogram (EEG) monitors the electrical activity caused by the firing of cortical 75 

neurons across the brain’s surface; and the Electromyogram (EMG) which is the electrical 76 

signal generated from activation and contraction of skeletal muscle fibers.  77 

2.1  The electromyogram 78 

Electromyography represents the isotonic, isometric and isokinetic muscle activity generated 79 

by motor neurons (De Luca & Van Dyk, 1975).  Isometric activity is muscle tension with no 80 

change in muscle length (such as holding up weights without movement). Isotonic activity is 81 

that where the change of muscle length and resistance is constant (push ups, curling dumb 82 

bells). Isokinetic activity is that where the speed of movement and total tension are constant 83 

but tension and length of muscle might change (fast pull-ups). 84 



 

 

Motor Unit Action Potential (MUAP) refers to the activation of motor units. Motor units are 85 

defined as the combination of a motor neuron and the muscle fibers it innervates. The MUAP 86 

therefore is the electrical firing of a motor unit. This impulse is then transmitted from the 87 

motor neuron to the muscle causing it to contract. The repetitive firing of a motor unit creates 88 

an impulse train, which allows for what we perceive as sustained muscular contraction.  89 

The main mechanisms that control the magnitude and density of the measured signal are the 90 

recruitment and firing rate of MUAPs within the measured muscle in the area under study. 91 

Individual MUAPs’ have an average amplitude of 100µV. The EMG signal that  results from 92 

the firing of individual MUAPs  is stochastic in nature, reflecting the fact that the motor units 93 

recruited in any gestures is constantly changing and has an amplitude range of +/- 5mV 94 

before further amplification. Typical frequency contents of raw EMG signals for healthy 95 

individuals ranges between 0 and 500 Hz, with dominant energy concentration in the 50-150 96 

Hz range.  97 

2.2 Signal acquisition 98 

EMG signals are measured using electrodes which are conductive probes placed on the body. 99 

When a biopotential is created by the contraction of the muscle, a differential amplifier picks 100 

up the voltage changes between the otherwise equipotential areas created by the electrodes. 101 

There are two main types of electrodes, invasive and non-invasive. Invasive electrodes are 102 

needles or thin wires that measure activity of deep muscle fibers to be able to report the 103 

activity of individual MUAPS. The placement of the electrodes is time consuming, must be 104 

carried out by healthcare professionals. This, compounded by the relative discomfort wearing 105 

them make them ill suited for musical performance practice. 106 

Non-invasive electrodes make electrical contact with muscle cells through the surface of the 107 

skin, providing surface EMG (sEMG). The most common electrodes are silver/silver chloride 108 

wet gel electrodes. These types of electrodes have the best skin impedance values and are the 109 

standard in medical practice. Altough they have been used extensively in music performance, 110 

they require preparation of the skin and are prone to noise associated with movement 111 

artefacts from the snap fasteners. 112 

Dry electrodes have become increasingly common in high end as well as low-cost consumer 113 

systems. The electrical contact with the skin via gold plated or other highly conductive metals 114 

approaches, but does not equal that of gel electrodes. However, most designs incorporate 115 



 

 

active pre-amplifiers immediately adjacent to the electrodes, making the output more robust 116 

to electromagnetic interference and preventing the accumulation of noise along the signal 117 

cable. This plus the ease of application and re-application make dry electrodes practical for 118 

the use of biosignals in interactive arts practice.  119 

Electrodes are typically placed at the middle portion of the studied muscle belly (Hermens, 120 

Freriks, Disselhorst-Klug, & Rau, 2000). The most common placement of EMG sensors for 121 

musical practice is in the forearms of the performer. This is a convenient place for the sensors 122 

as it allows finger activity to be tracked via the forearm flexor and brachioradialis muscles 123 

without an intrusive sensors, such as gloves, on the hands. Action potentials measured by 124 

electrode pairs are processed using the differential amplification measuring voltage at the two 125 

sites, subtracting the signals and amplifing the resulting difference. Any signal component 126 

that is present at both electrodes is removed through common mode rejection. When using 127 

wet electrodes, it is common practice to use an electrode placed in an unrelated area to act as 128 

a reference ground, such as the ear lobe, or joints and other bony areas where no action 129 

potentials are likely to occur. 130 

Ambient noise such as that originating in mains lines and power sources can be problematic 131 

when measuring biosignals. The alternating current (AC) frequency of mains electricity is 132 

centered around 60 Hz (Americas) or 50 Hz (Europe). A notch filter can be used to attenuate 133 

50/60Hz noise but good filter design is necessary since this overlaps with dominant energy 134 

frequency of meaningful EMG, 50-150 HZ. The body itself can be a source of artifacts – the 135 

heart is a strong muscle with a dominating EMG signal. This can interfere with EMG 136 

measurements from limbs if the differential electrical measurement takes place across the 137 

chest area.   138 

2.3 Signal processing and feature extraction 139 

The EMG signal has been compared in its richness to audio, making audio signal processing 140 

and pattern recognition techniques potentially relevant in analyzing the biosignal. The EMG 141 

is, however, ultimately not a continuous signal, but the sum of discrete neuron impulses. This 142 

results in an aperiodic, stochastic signal that poses challenges to audio-based signal and 143 

information processing. For interactive music applications to track performer state or gesture, 144 

some kind of signal analysis needs to take place. This could typically be in two stages, first 145 

feature extraction, followed by classification or mapping. 146 



 

 

Feature extraction of the EMG entails analyzing the raw signal and using signal processing to 147 

create a representation containing salient higher level information about the nature of the 148 

gestural content. In this light, and given its signal complexity approaching that of audio, it 149 

can make use of techniques not dissimilar to those used in audio signal processing for music 150 

information retrieval. However, given the aperiodic stochastic nature of the EMG signal and 151 

the distinct nature of gestural content compared to musical content, the actual relevant signal 152 

processing techniques and high level information gleaned, will differ.  153 

EMG signal features can be grouped into time domain (TD) and frequency domain (FD). 154 

Given the aperiodic nature of the EMG, there is no harmonic content for FD algorithms to 155 

extract, making them less useful for EMG analysis. The most straightforward TD feature is 156 

amplitude estimation, which reflects the level of muscle tension. This can be achieved in a 157 

number of techniques of differing sophistication. Simple amplitude estimation can be 158 

achieved as envelope following by smoothing, or low pass filtering of the raw EMG data. 159 

This can be done, for example, by taking the median of the signal over a time window, but 160 

introduces latency and lag of the length of the median window. Root Mean Square (RMS), 161 

the square root of the mean of the squares of samples in a time series, is a calculation of 162 

electrical power, and relates to constant force and non-fatiguing muscle contraction. 163 

Recursive Bayesian estimation or Bayes filter, is a probabilistic approach for estimating an 164 

unknown function over time using incoming measurements. The algorithm has been applied 165 

as a nonlinear estimator of EMG amplitude that improves the signal-to-noise ratio compared 166 

to RMS and considerably stabilizes the signal while remaining reactive to fast transients. 167 

Other TD features that show good performance are Mean Absolute Value which provides 168 

energy information of the signal; Waveform Length which provides the cumulative length of 169 

the waveform over the time segment, and is related to the complexity of the EMG signal and 170 

whose values indicate a measure of waveform amplitude, frequency and duration all within a 171 

single parameter; and Willison Amplitude as a measure of frequency information of the 172 

signal, similar in nature to the number of zero crossings and related to the firing of MUAPs 173 

and muscle contraction force.  174 

Frequency Domain features are based on statistical properties of the EMG signal’s power 175 

spectrum density. FD features are usually used to detect neural abnormalities and muscle 176 

fatigue as it is related to motor unit recruitment. The most common FD features are: Median 177 

Frequency which is the frequency at which the spectrum is divided into two regions with 178 



 

 

equal amplitude; Peak Frequency which is the frequency at which the maximum power 179 

occurs; and the Mean Frequency, also known as Spectral Centroid, the center of gravity line 180 

of the spectrum. FD features are useful for monitoring muscle fatigue as it results in a 181 

downward shift of the spectrum as fatigue increases. It has been noted that FD features 182 

perform poorly when compared to TD features for gesture classification tasks (Phinyomark et 183 

al., 2013). 184 

3 Musical mapping 185 

Musical transformation of the EMG can take place at a number of different levels. The 186 

physiological signal can be used directly as musical material in processes of sonification. The 187 

EMG can be used in a control paradigm by mapping post-processed biosignal input directly 188 

to sound synthesis parameters. The EMG data can be transformed into other discrete or 189 

continuous presentations through machine learning. 190 

3.1 Sonification 191 

A common sonification technique is audification, where the raw data stream is upsampled 192 

and fed directly to speakers or further processed by audio DSP modules.  This is a direct way 193 

of ‘listening’ to the signal itself which is characterized as a very low frequency sound with 194 

noisy timbre. Once the signal is in the audio domain, it can be treated and transformed as any 195 

other sound source.  196 

The procedure is prone to artefacts. EMG hardware systems typically sample at a frequency 197 

between 100Hz and 2kHz. When upsampling to audio sampling rates (44.1 or 48 kHz), this 198 

will generate extra samples not present in the original signal, resulting in a sample-and-hold 199 

effect where after a value will be repeated in the sound signal until a new EMG value arrives. 200 

This translates into spurious high frequency content. A low pass filter at 200Hz is useful in 201 

avoiding this problem.    202 

3.2 Mapping 203 

The raw EMG signal can be processed or subjected to feature extraction to provide lower 204 

bandwidth data for discrete musical event and continuous sound synthesis control. Event 205 

triggers can be derived from the rectified EMG amplitude. The high frequency, rapidly 206 

varying nature of the signal, however, make it prone to false or multiple triggering. Using 207 



 

 

smoothing techniques to filter transient spikes may introduce latency, causing system 208 

responsiveness to suffer. A practical solution is to use a Schmitt trigger implementation, 209 

where a hysteresis loop prevents an upward going event threshold to re-trigger until a lower, 210 

downward going threshold has been attained. 211 

The EMG is well suited for the continuous control of sound synthesis parameters. Multiple 212 

channels can be used in conjunction with one another to generate series of events whose 213 

sustaining sounds were shaped by subsequent muscle gesture. Gesture-parameter mapping 214 

strategies, such as “one-to-many” mapping, where a single sensor input it mapped to multiple 215 

synthesis parameters, or “many-to-one” where multiple sensor inputs might be combined to 216 

control a single synthesis parameter (Hunt & Wanderley, 2003), are highly relevant to using 217 

EMG in sound synthesis control. The amplitude feature, described above, is most commonly 218 

used, with different low pass, or Bayesian filters to fine tune the smoothness and 219 

responsiveness of the system. Calibration, by setting a minimum and maximum range of the 220 

signal to utilize aids in eliminating a noise floor and allows focusing on a specific amplitude 221 

range. Different response curves, from linear, to logarithmic, to exponential, can modify the 222 

input/output relationship, creating a more natural feeling mapping between the exertion of the 223 

performer and the facility of musical change. 224 

The use of multiple EMG channels in a ring formation around the upper forearm is common 225 

in myoelectric control systems and interactive performance applications. Each channel 226 

provides information related to muscle activation in the area of each electrode pair. This 227 

approach allows for the activation of opposing muscle groups to be monitored independently 228 

and creates a more expressive feature space. Wrist flexion and extension can be effectively 229 

tracked with just two channels of EMG on opposing forearm muscle groups. Four or more 230 

channels around the forearm can provide information on hand rotation.  Furthermore, it 231 

makes the possibility to analyze the relationships in activation for each signal which can give 232 

more detailed information of individual finger movements and hand gestures (Saponas et al., 233 

2009). 234 

3.3 Machine learning 235 

Beyond direct parameter mapping, the complexity of the EMG signal points to the potential 236 

for using pattern recognition methods and information analysis techniques to both gain lower 237 

level understanding of limb and sub-limb movement and elicit higher order representations of 238 



 

 

musical gesture. These representations can be continuous in nature, or discrete in the 239 

recognition performed. 240 

Regression is one way for data analysis to produce continuous interaction by modeling the 241 

relationship between a scalar dependent variable and one or more explanatory variables. It 242 

transforms one continuous data stream into another information stream. Regression is useful 243 

for dimensionality reduction of the EMG, either taking multiple streams of raw data to 244 

produce information in fewer and more pertinent parameter dimensions for sound synthesis. 245 

Discrete labels can be assigned to blocks of continuous EMG data, identifying gesture. 246 

Machine learning classification techniques have been applied to EMG signals in biomedical 247 

research for rehabilitation and basic prosthetics control applications. The requirements of 248 

these scenarios are quite distinct from musical applications. Most of these applications use 249 

classifiers like support vector machines (SVM) to distinguish between different hand 250 

positions. The task is a supervised learning task where the classifier is trained with a series of 251 

examples for subsequent linear, binary clustering.  Ultimately, classification of static 252 

positions can be thought of not as gesture recognition, but posture classification, where a 253 

static steady state EMG signal from a number of EMG channels giving signatures of different 254 

hand positions. The fact that these static positions, and therefore the classification result, are 255 

achieved at the end of a gesture mean that in musical applications, this would be experienced 256 

as a sort of latency, where the classifier reports on the gesture after it is completed.  257 

The success criteria of gesture recognition in these different application areas is driven by 258 

characteristics essential to the application. In prosthetics control, reducing error is primordial, 259 

resulting in what might seem like relatively simplistic, binary controls. In music on the other 260 

hand, the dynamic time based nature of musical performance, where musical expression 261 

arises from subtle variation of gesture, generates a completely different set of needs in terms 262 

of latency, continuity, and invariance. In music, a gesture needs to be recognized before it is 263 

finished – a nontrivial challenge. We need to recognize without suppressing variation, 264 

completely inverting the suppression of variation in canonical examples of data classification 265 

such as handwriting or speech recognition. And finally, we seek forms of continuous 266 

interaction with musical output such as sound synthesis, rather than discrete event triggering. 267 

For the first challenge, techniques of “early recognition” can be implemented. For the second, 268 

new adaptation approaches may be relevant, and for the third, regression techniques are 269 

useful. 270 



 

 

We created an early EMG gesture classifier using the K-Nearest Neighbors algorithm to train 271 

and subsequently distinguish in real time six different hand gestures using two channels of 272 

forearm EMG (A Tanaka & Fistre, 2008). Currently, we are applying recent advances in 273 

machine learning to the EMG and other physiological signals. The use of Particle Filtering 274 

techniques allows continuous reporting of recognition probability against a training set and 275 

real time tracking of gestural variation against the reference template (B. Caramiaux, 276 

Montecchio, Tanaka, & Bevilacqua, 2014). The temporal sensitivity, however, require 277 

segmentation or some external signal indicating gesture onset. 278 

4 Musical gesture 279 

The complexity of EMG data poses specific challenges and presents opportunities in live 280 

interactive performance applications. A single data stream can embody information about 281 

multiple parts of the body. A muscle group controls the movement of limbs below it: one 282 

signal from forearm muscles can contain information multiplexing the movement of five 283 

fingers. Meanwhile the EMG signal may not return to a rest state in between a sequence of 284 

gestures. One gesture may begin before the previous one ends. The EMG signal, therefore, 285 

may encapsulate information on multiple parallel, complex gesture, as well as a sequence of 286 

serial, compound gesture.  This creates the need for techniques of gesture segmentation and 287 

decomposition. In addition to distinguishing constituent gesture primitives within compound 288 

and complex gestures, fundamental challenges exist to differentiate between voluntary, 289 

involuntary, and incidental physical behavior. These qualities have a bearing on musical 290 

applications, the kind of gesture recognition techniques and sound synthesis mappings that 291 

can be applied.  292 

The feature extraction and data analysis techniques described above allow the music 293 

interaction researcher to process the richness of the EMG signal to make it more usable. 294 

However, because of the number of different muscle groups solicited for making any action, 295 

there does not exist a direct correspondence between muscle exertion and resulting limb 296 

movement. This means that there is not a direct, deterministic relationship between muscle 297 

states and gesture, making movement representation uniquely via EMG difficult. Two aspects 298 

contribute to this problem: the fact that multiple different combinations of muscle tension 299 

could result in the same gesture, and the fact that muscle tension may not result in movement 300 

at all. 301 



 

 

4.1 Gesture without movement 302 

The fact that EMG measures isotonic and isometric activity means that there is not a 303 

deterministic link between limb movement and muscle tension. Muscle tension may be 304 

exerted without corresponding limb movement. Conversely, certain gross gestures could take 305 

place with little muscle contraction. While this makes prediction of movement gesture 306 

difficult, these characteristics of the EMG signal make it uniquely suited for detecting gesture 307 

preparation. This makes the EMG an interesting sensing modality that offers complementary 308 

information to physical sensors that report on movement after it is performed. In this sense, 309 

the EMG is useful in contexts of multimodal interaction.  310 

4.2 Redundancy and ambivalence 311 

While the EMG offers these unique opportunities, these qualities can make it challenging to 312 

implement in scenarios or studies with non-specialist users. The “same” (or highly similar) 313 

gross movement can be made by invoking any number of muscle tension trajectories. This 314 

can be thought of like the multiple degrees of freedom problem found in robotics in multi-315 

joint articulation and is formalized by the neurophysiologist Nikolai Bernstein in motor 316 

control theory. This poses a distinct problem in applying the machine learning techniques 317 

described above. Different people will invoke different combinations of muscles to perform 318 

what to an observer is the same gesture. Complicating matters further, a single subject may 319 

perform the same movement with slightly different muscle tension profiles each time. This 320 

poses the problem of gesture reproducibility. Additionally, repeated performance of a given 321 

set of gestures will lead to muscle fatigue which adds further aperiodic variations to the 322 

measured signal. While FD features can be used to monitor the evolution of fatigue over 323 

time, the effects of fatigue in the signal’s amplitude are not directly correlated. 324 

We have conducted experiments that study the ability of lay users to learn and copy gestures 325 

(Baptiste Caramiaux, Donnarumma, & Tanaka, 2015). We designed gesture vocabularies that 326 

focused on different muscle groups in simple lower arm and wrist movement tasks. We 327 

provided auditory feedback that allowed the subject to monitor their gesture during 328 

execution. Later, in separate work with more complex gestures, we have observed that 329 

visualization of multiple channels of EMG signal aid the subject in replicating a gesture with 330 

sufficient muscular similarity to be successfully classified by machine learning techniques. 331 



 

 

4.3 Multimodality 332 

The ability of EMG to report on gesture without movement, alongside the degrees of freedom 333 

problem, mean that the EMG is well suited for use in context with other sensing modalities. 334 

Multimodal interaction in HCI takes advantage of the integration of different input modalities 335 

to enhance the information bandwidth with an interactive system. The EMG, reporting on the 336 

intention and preparation of a gesture provides a complementary input modality to inertial 337 

sensors or motion capture systems that report on the physical movement result of that gesture. 338 

We have used muscle sensing alongside optical motion capture and accelerometer sensing to 339 

look at this sensor complementarity in the execution of musical gesture (Donnarumma, 340 

Caramiaux, & Tanaka, 2013). We observed several different relationships between the 341 

sensing modalities: synchronicity when certain segments of the sensor data are coincident 342 

across modalities; coupling, where different modalities vary in similar ways in different 343 

articulations of the same gesture; and correlation, where the actual relationship between 344 

different sensing modalities shifts during the course of the gesture. 345 

5 Expressivity 346 

These relationships of multimodal interaction put EMG in context for providing an 347 

expressive dimension to gestural interaction in music. The complementary sensor modalities 348 

could be used in an orthogonal fashion, where the same muscle tension trajectory could mean 349 

different interactions on the music based on different gross positions detected by another 350 

sensing modality. We have explored techniques for multi-modal interaction to distinguish 351 

similar muscular gestures in different points in space (Atau Tanaka & Knapp, 2016).  352 

Biosignals can also be seen as extremely low latency information about gesture. The EMG 353 

reports a neural command that causes muscle tension, resulting in limb movement. It reflects 354 

the intention of gesture, and in this regard is at the opposite end of movement production than 355 

a sensor such as an accelerometer that reports on physical artifacts resulting from gesture. A 356 

classical sensor, then, is at the “output” of a gesture while the EMG is a signal that is the 357 

“input” to a gesture. 358 

The execution of gesture can take place in free space or with “boundary objects”. These 359 

boundaries could be objects one grasps, like a physical implement or instrument, or a surface 360 

that offers resistance to movement. Boundary objects therefore offer isotonic gestures 361 

resistance against which they may act, facilitating the adjustment of exertion. This provides a 362 



 

 

form of feedback that facilitated task performance in our study (Baptiste Caramiaux et al., 363 

2015). Through this study, we identified the abstract notion of gesture “power” which could 364 

be tracked by the EMG and detected in certain signal features of the EMG. On surface 365 

gestures, the notion of power corresponds to exertion, or effort. This creates interesting links 366 

with the concept of “effort” in Laban Movement Analysis movement (Silang Maranan et al., 367 

2014). 368 

The characteristics of the electromyogram signal make it uniquely well suited for capturing 369 

expressive musical gesture. The challenges it poses – the degrees of freedom problem, and 370 

the lack of direct link between signal and resulting movement – provide the richness in the 371 

signal that cannot be gleaned from other, physical sensors. The signal is at the very source of 372 

gestural activation, making it now just responsive, but able to report on musical intention. It 373 

is ultimately not an external observation of the physical output of musical movement, but the 374 

body’s own signal for creating musical gesture. 375 
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