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Abstract

Methods and Technologies for the Analysis and Interactive Use
of Body Movements in Instrumental Music Performance

Federico Visi

A constantly growing corpus of interdisciplinary studies support the idea that music
is a complex multimodal medium that is experienced not only by means of sounds but
also through body movement. From this perspective, musical instruments can be seen as
technological objects coupled with a repertoire of performance gestures. This repertoire
is part of an ecological knowledge shared by musicians and listeners alike. It is part of
the engine that guides musical experience and has a considerable expressive potential.

This thesis explores technical and conceptual issues related to the analysis and creative
use of music-related body movements in instrumental music performance. The complexity
of this subject required an interdisciplinary approach, which includes the review of
multiple theoretical accounts, quantitative and qualitative analysis of data collected in
motion capture laboratories, the development and implementation of technologies for
the interpretation and interactive use of motion data, and the creation of short musical
pieces that actively employ the movement of the performers as an expressive musical
feature.

The theoretical framework is informed by embodied and enactive accounts of music
cognition as well as by systematic studies of music-related movement and expressive
music performance.

The assumption that the movements of a musician are part of a shared knowledge is
empirically explored through an experiment aimed at analysing the motion capture data
of a violinist performing a selection of short musical excerpts. A group of subjects with
no prior experience playing the violin is then asked to mime a performance following
the audio excerpts recorded by the violinist. Motion data is recorded, analysed, and
compared with the expert’s data. This is done both quantitatively through data analysis
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as well as qualitatively by relating the motion data to other high-level features and
structures of the musical excerpts.

Solutions to issues regarding capturing and storing movement data and its use in
real-time scenarios are proposed. For the interactive use of motion-sensing technologies
in music performance, various wearable sensors have been employed, along with different
approaches for mapping control data to sound synthesis and signal processing parameters.
In particular, novel approaches for the extraction of meaningful features from raw sensor
data and the use of machine learning techniques for mapping movement to live electronics
are described.

To complete the framework, an essential element of this research project is the com-
position and performance of études that explore the creative use of body movement in
instrumental music from a Practice-as-Research perspective. This works as a test bed for
the proposed concepts and techniques. Mapping concepts and technologies are challenged
in a scenario constrained by the use of musical instruments, and different mapping ap-
proaches are implemented and compared. In addition, techniques for notating movement
in the score, and the impact of interactive motion sensor systems in instrumental music
practice from the performer’s perspective are discussed. Finally, the chapter concluding
the part of the thesis dedicated to practical implementations describes a novel method
for mapping movement data to sound synthesis. This technique is based on the analysis
of multimodal motion data collected from multiple subjects and its design draws from
the theoretical, analytical, and practical works described throughout the dissertation.

Overall, the parts and the diverse approaches that constitute this thesis work in
synergy, contributing to the ongoing discourses on the study of musical gestures and the
design of interactive music systems from multiple angles.
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Chapter 1

Prelude

[. . . ] the instrument glows and flashes
under the master’s hands. [. . . ] he
must be heard—and also seen; for if
Liszt played behind the screen, a
great deal of poetry would be lost.

Robert Schumann
On Music and Musicians

1.1 Introduction
Do the body movements of musicians playing an instrument affect our musical experience?
If so, can the gestures and body movements of instrumentalists be used as an expressive
feature in composition? Can this gestural knowledge aid the design of new musical
interactions? What are the conceptual and technical challenges that need to be tackled?
These are some of the questions that motivate this research project. As it can be easily
inferred, to address these questions it is necessary to operate in an interdisciplinary
scenario. As suggested by the approach adopted in systematic musicology, music is
a multifaceted phenomenon, thus transdisciplinarity is required to address important
aspects that often go beyond the boundaries of single disciplines (Leman, 2008b). Along
with systematic musicology, this dissertation will draw from the disciplinary fields of
interaction design, computer music, and areas of computer science such as digital signal
processing and machine learning.
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1.1.1 Research Context and Core Concepts

As it will be discussed more in detail in part I, the paradigm of embodied music cognition
and the study of musical gestures put forward the idea that the perception of music
is closely linked to bodily experience. Consequentially, gestures have a key role in the
process of musical meaning formation, and the ecological knowledge of the gestural
repertoire of a traditional musical instrument contributes to the formation of multimodal
embodied musical meaning.

Extensive interdisciplinary research has recently been carried out (Godøy and Leman,
2010; Gritten and King, 2006, 2011) giving rise to new paradigms for the understanding
of gesture in music. In particular, insights from research on embodied music cognition
(Leman, 2008a) inspired new viewpoints that required a rethink of the foundations of
musical gestures. Within this theoretic framework, music perception is embodied (i.e.
closely linked with bodily experience) and multimodal, in the sense that music is perceived
not only through sound but additionally with the help of both visual cues and sensations
of motion, effort and dynamics (Godøy, 2010). Hence, gestures become a core notion as
they act as a bridge between bodily movement and meaning formation. The definition of
‘gesture’ and other key concepts such as ‘movement’ will be discussed in chapter 3.

I adopted the term traditional musical instrument (henceforth TMI) to define in-
struments that have a rich idiomatic repertoire that ranges across popular music and
classical music. Examples include electric and acoustic guitar, violin, piano, electronic
keyboards, etc. I deliberately included electric and electronic instruments among these
examples because the term TMI refers to the use and repertoire of the instrument, not
to its design or technological aspects. To mention another example, in some music
scenes (e.g. hip-hop), turntables have been widely used as instruments for creating and
performing new music, and the movements that characterise turntable performance are
easily recognised by people familiar with the music genres in which they are employed
(Godøy and Leman, 2010). Therefore, in this context, turntables are TMIs, regardless of
the fact that they were not originally designed to be musical instruments. The choice of
focusing on TMI performance is motivated by the vast knowledge that listeners have of
the gestural and sound aspects of each instrument, which is learnt through experience.
For instance, most people immediately know what sound to expect when they see a
drummer hitting a snare drum with a stick. Similarly, if we hear the sound of a violin
we can easily associate the gesture of bowing to it. This can be summarised as the
ecological knowledge (Godøy, 2010) of an instrument; listeners have, and in some cases
share, a repertoire of sound-producing gestures. Different TMIs will be employed in
the analysis and practice parts of this dissertation. This was done in order to develop



1.2 Research Aims 3

concepts and techniques that are not limited to a specific instrument but can be utilised
in studies and works involving various TMIs. For instance, Periodic Quantity of Motion
(PQoM) is introduced in the study involving the violin presented in chapter 5 and is
also adopted in chapter 6, which describes a mapping approach for motion sensors and
electric guitar. Moreover, the concepts and software tools described in chapter 8 were
used with wearable sensors and saxophone for the piece ‘11 Degrees of Dependence’ (see
section 8.4) as well as for the piece ‘Tuned Constraint’ (involving an analogue synthesiser,
see section 8.5). In addition, the movement notation system adopted for the saxophone
part of ‘11 Degrees of Dependence’ can also be used with other instruments, as will be
explained in section 8.4.3.

In fact, using embodied music cognition terminology, TMIs have a rich action/gesture
repertoire that the listeners (or perceivers) can recognise during a performance. Thus,
using the instrumentalist’s gestures may have a considerable expressive potential in
performance as well as in composition, as composers would be able to draw from a
gestural palette of the instrument when writing a piece.

1.2 Research Aims
The main aims of the project are:

• To determine and discuss a multidisciplinary theoretical framework useful to
understand in which ways the musical gestures and body movements of a person
playing a traditional musical instrument can affect the musical experience of the
perceivers and contribute to the construction of musical meaning. A survey and
discussion of the relevant theories is presented in part I. This will also serve as the
theoretical foundations for the analysis and practice works described in the other
parts of the dissertation.

• To analyse the relationship between body movements and musical features in
performances with selected musical instruments using motion-capture technologies.
With the aid of the framework mentioned above, experiments aimed at analysing
the relationship between movement and other musical features were designed and
carried out. Both quantitative and qualitative methods were adopted for analysis.
This is mainly addressed in part II.

• To compose brief pieces for traditional instruments and electronics that are used
as case studies to explore the role of gestural aspects of instrument playing in
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the formation of musical meaning. Motion-sensing technologies were employed
to control electronic music parameters and mapping strategies were informed by
paradigms of embodied music cognition and multimodal meaning formation. These
pieces, along with the techniques employed for their composition and performance,
are described in part III.

• Develop tools and techniques useful for motion data analysis and music performance
involving motion-sensing devices. This is addressed both in parts II and III.

Thus, these aims lead to the formulation of the following research questions:

1.2.1 Research Questions

To what extent the movements involved in instrumental music performance
are part of a shared knowledge of musical gestures, and how do they relate
to other musical features?
This question will be addressed with the empirical experiments described in part II.
In particular, chapter 5 will explore how the instrumental gestures associated with a
traditional musical instrument (the violin) are part of an embodied knowledge shared
also by people with no previous experience playing the instrument.

If gestures and body movement play a key role in how we experience and
understand music, how can they be employed as expressive elements in
composition and performance?
This research question will be addressed mainly in part III. In particular, musical
pieces purposively composed and performed to be used as case studies will be described
in chapters 7 and 8. Additionally, the pieces make use of wearable motion-sensing
technologies, which allow to include in the performance live electronic elements that
respond to the movement of the musicians. Gestures can be mapped to digital sound
processing parameters, used to alter the timbre and other sonic features of the instrument
and to control other electronic sound sources. Thus, a third research question is raised:

Can a multimodal embodied approach to musical meaning formation that takes
into consideration the ecological knowledge of a traditional musical instru-
ment be used to inform effective mapping strategies?
Considering gesture as an active constituent of embodied musical meaning implies that
its role in an interactive music performance goes well beyond being a mere means of
control of musical parameters. New cross-disciplinary approaches may in fact help to give
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rise to new engaging musical experiences that can both raise questions and provide new
insights about musical expression and cognition. As noted by Godøy (2010), Western
musical thought has not been well equipped for thinking of the inclusion of musical
elements within the context of a gesture. Therefore, further research into gestural and
embodied aspects of music might bring about unprecedented insights and possibly lead
to the emergence of new aesthetic categories.

Regarding issues of parameter mapping for interactive music performance, preliminary
work informed by embodied cognition and functional aspects of musical gestures is
described in chapter 6. A more sophisticated system based on multimodal motion data
and involving custom software tools is instead presented in chapter 9.

1.3 Research Methods and Strategies
As previously mentioned, one of the aims of the project is to define an interdisciplinary
theoretical framework that allows for the analysis of musical gestures in instrument
performance from multiple standpoints. Along with this multi-disciplinary framework, a
combination of different methodological approaches will be adopted in order to address
different aspects of gestural musical meaning formation, including:

Quantitative analysis was carried out using data collected through multimodal
recordings of music performances. The studies described in chapters 4 and 5 focus on the
analysis of motion capture data, while chapter 9 reports on a novel method for employing
multimodal datasets to define interaction models for motion-sound interaction.

Qualitative observations integrate data analysis by situating the quantitative
measurements in a broader musical context. This allows to relate the results of the analysis
to other musical features and take into consideration elements of style, interpretation,
and articulations found in the score.

Practice-led research completes the methodological framework. Mutual influence
between research and practice in the creative arts has been widely documented and is
an established approach in academic research (Smith and Dean, 2009). Chapters 7 and
8 report on compositions used as case studies whereas chapters 6 and 9 are focused on
design approaches and parameter mapping for motion-sound interaction.

This three-fold methodology is supported by the multidisciplinary theoretic framework
discussed in part I, which is the result of a detailed review of literature concerning
embodied music cognition, enactive music cognition, ecological approaches to the study
of musical meaning, and the study of musical gestures. Mixed methods have already been
employed for investigating movement perception in music performance (Schacher et al.,
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2015). Moreover, practice has increasingly been adopted as a methodological component
in the arts (Smith and Dean, 2009), in music research (Dogantan-Dack, 2015), and more
specifically within the New Instruments for Musical Expression (NIME) community
(Green, 2016).

Figure 1.1 in the following page and section 1.4 show how the dissertation is structured
following the different components of the methodology and how these components are
interrelated.

1.4 Dissertation Overview
This dissertation is structured in three parts, reflecting the three main methodological
components:

Part I Thinking Movement in Music: Theory
The first part reviews and discusses relevant theoretical studies of music-related body

movement.
Chapter 2 presents embodied accounts of music cognition, which underpin the idea
that body movement plays a central role in the fundamental processes underlying
musical experience.

Chapter 3 presents the key notions of gesture, traditional musical instrument,
and affordance; framing their definition within the embodied cognition theoretical
framework. The different approaches for the classifications of musical gestures are
discussed, and the the idea of multiple functional components within a musical gesture
is finally put forward. The definition of traditional musical instrument, gesture, and
the categories of musical gestures are extensively used in the experiments described
in part II.

Part II Observing Movement in Music: Analysis
The second part is focused on the analysis of motion data collected through empirical

experiments. Methods and techniques for data analysis are also described and
discussed.

Chapter 4 describes an exploratory study aimed at observing how the variation of
bow strokes’ length and quantity affects the body movements of a viola player. This
is done through quantitive analysis of motion descriptors computed from motion
capture data and qualitative observations.
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Chapter 5 investigates the extent in which the movement vocabulary of violin
performance is part of the embodied knowledge of individuals with no experience in
playing the instrument. People who cannot play the violin were asked to mime a
performance along an audio excerpt recorded by an expert. They do so by using a
silent violin, specifically modified to be more accessible to neophytes. Compared
to the previous chapter, this study involves a higher number of participants and
employs more sophisticated analysis techniques, including the analysis of a novel
motion descriptors named Periodic Quantity of Motion (PQoM).

Part III Using Movement in Music: Practice
The third part is dedicated to the development and implementations of tools for actively

employing the musicians’ body movements in music composition and performance.
Hardware and software solutions are described and a series of short instrumental
compositions involving body movement are used as case studies. The design and
development of these tools and compositions have manifold implications, as they are
informed by the issues discussed in the previous parts of the dissertation but also
contribute to further the discourse on this topics.

Chapter 6 describes the implementation of gestural mapping strategies for per-
formance with a traditional musical instrument, multimodal motion sensors, and
live electronics. The approach adopted is informed by concepts of embodied music
cognition and functional aspects of musical gestures, which were discussed in part I.

Chapter 7 explores technical and conceptual issues related to the representation
and mediation of body movement in music performance through digital technology.
The chapter also reports on a case study of a musical piece where motion sensor
technologies are employed to track the movements of the musicians playing their
instruments. Motion data is then used to control the electronic parts of the piece in
real time. In light of this case study, the chapter discusses how musical instruments
can be seen as repositories of a gestural vocabulary and the score as a script that
elicits an emerging choreography. The chapter includes the definitions of motion
descriptors for IMU/MARG1 sensors, some of which were inspired by the motion
descriptors used in the experiments presented in part II.

Chapter 8 presents a collection of software tools for motion-sound interaction and
two instrumental music pieces that make use of said tools. By describing both the
technical solutions and their implementation, this chapter addresses the challenges

1Inertial Measurement Unit / Magnetic, Angular Rate and Gravity. See section 7.3.1 for more
information.
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related to the use of the body movements of the musicians as a musical feature
in composition and performance. Different hardware and software solutions, and
approaches to parameter mapping for motion-sound interaction are discussed, and a
method for integrating movement in traditional music notation is described.

Chapter 9 presents a knowledge-based, data-driven method for creating mappings
between the performance movements of a musician and sound synthesis. This is
done by using a database of multimodal motion data collected from multiple subjects
coupled with sound synthesis parameters. This dataset is used to build a topological
representation of the performance movements of the subjects. This representation is
then employed to interactively generate training data for machine learning algorithms
and define complex mappings for real-time performance. This method draws from
the theoretical concepts described in part I (especially ecological knowledge, see
section 3.3) and the data collection and analysis techniques adopted in part II.

Finally, chapter 10 concludes the dissertation by providing a summary of the
results achieved throughout the research project in relation to the research aims and
questions presented in chapter 1.





Part I

Thinking Movement in Music:
Theory





Chapter 2

Embodiment and Experiencing
Music Through Action

He had a far, far more accurate
theory about beauty than I did. He
did not tell it to me in words, but
with his gestures and his eyes, with
the music that he played on his flute,
and with that forehead of his which
emerged in the moonlight.

Yukio Mishima
The Temple of the Golden Pavilion

This chapter presents embodied accounts of music cognition, which underpin the idea
that body movement plays a central role in the fundamental processes underlying musical
experience.

2.1 Introduction
In recent years, music-related body movement has been subject to extensive inter-
disciplinary research. Contributions from several fields such as musicology, cognitive
psychology, neuroscience, and computer science have brought about new ideas and per-
spectives, giving rise to new paradigms for the study of gesture and music (Godøy and
Leman, 2010; Gritten and King, 2006, 2011). In particular, new insights from research on
embodied music cognition (Leman, 2008a) inspired new viewpoints and required a rethink



14 Embodiment and Experiencing Music Through Action

of the relationship between human body and musical experience. Within this theoretic
framework, music perception is embodied (i.e. closely linked with bodily experience) and
multimodal, in the sense that music is perceived not only through sound but also with the
help of visual cues and feelings of motion, such as kinaesthetic sensations and kinematic
images (Godøy, 2010).

2.2 Embodied Music Cognition
Embodied music cognition adopts the assumptions that stemmed from the theory of
embodiment to look into previously unexplored aspects of musical experience. The notion
of embodiment brought about a paradigm shift in cognitive science (Gibbs, 2005). By
paying particular attention to the sensorimotor patterns of action and perception of a
cognitive system situated in an environment, this approach provides a model to investigate
cognition that goes beyond the traditional dichotomy between physiology and psychology.
Traditional approaches to the study the mind often confine mental processes in brains
(Rowlands, 2010). Embodied theories on the contrary support the idea that there is
no real separation between mental processes and body, describing cognition in terms of
dynamics between agent and environment rather than computation of passively received
information (Chemero, 2009). From this perspective, perception and action become
interdependent and are conjointly carried out in sensorimotor activity. Cognition therefore
relies on mechanisms that occur outside of the skull; more specifically, the “[a]ctivity in the
nervous system is linked to high-level cognitive processes by way of embodied interaction
with culturally organized material and social worlds” (Hutchins, 2010, p. 712). Embodied
accounts put the emphasis on the role of the human body as a mediator for meaning
formation, and the central idea behind embodied music cognition is that “an intentional
level of musical interaction is established through corporeal articulations and imitations
of sensed physical information provided by the musical environment” (Leman and Maes,
2014, p. 236). In other words, at the core of the embodied music cognition paradigm there
is the assumption that gesture and corporeal imitation are fundamental constituents
of musical expressiveness (Leman, 2008a). In this context, “musical gestures can be
described in an objective way as movement of body parts, but they have an important
experiential component that is related to intentions, goals, and expressions” (Leman, 2012,
p. 5). By acting as a mediator, the body will build up a repertoire of gestures and gesture/
action consequences, or what Leman calls a gesture/action-oriented ontology (Leman,
2012, p. 5). This repertoire can be considered as a collection of movements made to
achieve a particular goal (actions) linked with the experiences and sensations resulting
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from such actions. The coupling of actions and perceived sensations forms an engine
that guides our understanding of music. Through this mechanism, the listener is able to
relate physical aspects of movement in space to expressive qualities, intentions and inner
feelings. Conversely, perceived patterns of musical expression recall previously learned
knowledge of the corresponding body movement. This continuous two-way mirroring
process allows the listener not only to attribute intentions and feelings to music but
also to predict the outcomes of actions and project them onto the music (Maes et al.,
2014). This is what Leman calls action-perception coupling system; it forms the basis of
musical intentional communication and expressiveness, which then elicits several social
phenomena such as empathy and social bonding (Leman, 2008a, 2010, 2012).

Theoretical assumptions brought forward by embodied music cognition are supported
by empirical studies showing analogies between movements evoked in listeners and those
of the performing musicians (Godøy and Leman, 2010; Leman et al., 2009a). Further
studies show that the performers’ movements contribute significantly to the perception
of expressive intention (Broughton and Stevens, 2009; Glowinski et al., 2014b; Vuoskoski
et al., 2014) and features of the melody, harmony, timbre, and rhythm are reflected in
the movements of the perceivers (Burger et al., 2013a; Küssner et al., 2014; Naveda and
Leman, 2010; Nymoen et al., 2013; Visi et al., 2016).

In particular, Godøy (2006) explores the relationship between sound and embodied
cognition further by extending the concept of objet sonore1 put forward by Schaeffer
(1966). Schaffer’s sonic objects are fragments of sound perceived holistically, typically in
the range between 0.5 and 5 seconds (Godøy et al., 2010). Perceptually salient timbral,
dynamic, and pitch-related envelopes are typically to be found within this timescale
(Schaeffer et al., 1998). Godøy (2006) hypothesises that in music perception there is
a continuous process of mentally tracing the shape of these highly significant features
of sound objects. Therefore, resting on the idea of embodied cognition, he posits that
there is a continuos mental recoding of sound into multimodal gestural-sonorous images,
or gestural-sonic objects. Nymoen et al. (2013) studied these concepts further through
experiments in which participants were asked to move their hands following perceptual
features of short sound objects and motion capture data was analysed and correlated
with a set of quantitative sound features.

1In the literature, this has been translated to English in various ways, including ‘sonic object’,
‘sonorous object’, and ‘sound object’.
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2.3 A Sense-giving Activity
Embodiment therefore has a central role in the cognitive and emotive processes necessary
to make sense of music. It plays part in an interconnected array of functions such
as affect processing, conceptualisation, tool use, and more (Leman and Maes, 2014).
The empirical studies mentioned in the previous section give proof of evidence that
there is a clear link between the perception of musical sound and human actions carried
out through body movement. However, this should not be seen as a unidirectional
phenomenon, where embodiment (i.e. being in a body) explains the fact that perceiving
music makes people move. The link between perception and action works also the other
way around: music-driven movement may facilitate the perception of music. Being
engaged in music-related body movement is not simply the outcome of perceiving music,
it is a sense-giving activity. In other words, music makes us move, but it is also by moving
to it that we actively attribute meaning to it. Classical disembodied approaches see
experiencing music as a unidirectional process, where perception and action are separated
(Fig. 2.1). Action is the output of processing information obtained through perception,

Perception Cognition Action

Environment

Disembodied Mind

Fig. 2.1 A graphical representation of a traditional cognitivist disembodied model of
cognition. Mind and environment are clearly separated and they interact through a
unidirectional process. Cognition is segregated between perception and action as in the
“sandwich” model described by Hurley (1998).
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and the processing mechanisms are handled by cognition. In contrast, from an embodied
perspective sense-giving musical activities arise from the mutual interaction between
perception and action, and the sensorimotor mechanisms activated by music have a direct
role in facilitating the perception of the music (Fig. 2.2).

Environment

Action/Perception Cycle

Body

Brain

Forward and Inverse Models

Embodied Mind

Fig. 2.2 A graphical representation of embodied cognition, freely inspired by the one
proposed by Hinton (2014).

2.4 Common Coding and Internal Models
Maes et al. (2014) further develop the idea of a close coupling between perception and
action by adopting the general framework provided by the common coding theory (Prinz,
1990, 1997). In a nutshell, common coding theory states that action representations
(underlying planning and execution of an action) and stimulus representations (underlying
the expected multi-sensory perceptual outcome of that action) are coded and stored not
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separately, but together in a common representational medium. In other words, their
representation recruits both sensory and motor areas of the brain, substantiating the
idea of close coupling between perception and action. Hommel et al. (2001) build upon
common coding, proposing a more comprehensive framework denominated Theory of
Event Coding (TEC) and thereby giving an overview of empirical evidence supporting
this theory in domains of chief importance for music cognition, such as sensorimotor
synchronisation and ideomotor action. More recently, common coding and theories have
been extended in order to account for affective states (Lavender and Hommel, 2007) and
address implications for action planning and control (Hommel, 2009).

The integration of motor and sensor representations leads to bidirectional internal
models of the relationship between the body and the external environment, with inverse
and forward components. Forward models represent an information flow from action to
perception, meaning that they allow to predict the perceived outcome of an action that
is being planned or executed. In other words, these models help make sense – through
action – of something that is being perceived. Likely, one of the most common examples
of employing forward models in music is moving to the beat to improve timing perception.
In fact, empirical studies have shown that moving improves sensitivity to temporal
intervals (Iordanescu et al., 2013; Manning and Schutz, 2013). Inverse models on the
other hand represent information flow from perception to action, meaning they allow
to predict the motor commands necessary to obtain a particular sensory state. From a
musical point of view, inverse models enable us to predict the movements required to
obtain a desired musical sound. This is obviously crucial for musical instruments playing
and confirms the idea that listening to music is a multimodal experience that includes
kinaesthetic sensations. Following these assumptions, obtaining knowledge about the
sensorimotor relationships afforded by a musical instrument and the integration of these
relationships into internal models clearly has an influence on the perceptual processes
shaping the musical mind of both the performers and the audience. The idea that
body movements may actually modulate the perception and understanding of music is
supported by empirical studies, such as those carried out by Vines et al. (2006), Vuoskoski
et al. (2014), and Broughton and Stevens (2009) to name but a few.

Within the framework described so far, playing a musical instrument can be seen as
the result of a dynamical interaction between the sensorimotor system and the constraints
and opportunities the instrument and other elements of the environment (other musicians,
audience, score, social conventions, etc.) afford. Music arises from this high-dimensional,
dynamical, mutual interaction between body, mind, and environment.
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2.5 Enactive Music Cognition
The enactive approach in the cognitive sciences (Thompson, 2007) places emphasis on
the assumption that the experience of the world is determined by the mutual interaction
between the sensorimotor capacities of an organism and the environment in which it
is situated. Action and perception are addressed as a unitary entity, thus proposing
yet another alternative to traditional cognitivist accounts. Mainstream disembodied
views represent the mind as a processor that passively receives information from a
given environment and computes internal representations. From an enactive standpoint,
cognitive systems actively participate in the generation of meaning, engaging in active,
transformational interactions (Stewart et al., 2010).

Matyja and Schiavio (2013) review the current research in enactive music cognition
and compare it to cognitivist and embodied approaches. Enactive approaches focus on
a definition of music as something pertaining to the environment in which the agents
(i.e. the organisms that experience the music through their action/perception cycle) are
embedded. This differs from cognitivist and embodied accounts as there is no commitment
to the explanatory role of mental representations. From the enactive standpoint, music
is experienced directly, without intermediate mental representations, disclosing itself
through sensorimotor patterns of action and perception. According to advocates of
enactivism, this approach is able to explain the most intimate and primal levels of human
musical involvement by focusing on the basic, pre-conceptual aspects of music cognition
(Matyja and Schiavio, 2013).

While fully endorsing the premises of an embodied approach to musical processing
with an emphasis on the role of action, Schiavio (2014) criticises certain aspects of the
embodied music cognition paradigm put forward by Leman and Maes (2014). He argues
that some of the experiments carried out by Leman and colleagues are still influenced by
classical computationalist approaches to music psychology. Schiavio refers to the series
of studies involving the guqin (a traditional Chinese zither) aimed at understanding
expressive gesturing while listening to music (Henbing and Leman, 2007; Penttinen et al.,
2006). In one of these experiments (Leman et al., 2009b), velocity patterns of a guqin
player’s movements were compared to those of individual listeners moving their arm
along with the music. In Schiavio’s view, the results obtained could still be explained
by describing an input-output mechanism that the listeners would employ to process
particular features of the music internally and eventually provide a movement output.
This would not take into consideration an important aspect of a truly embodied view
of musical sense-making, which is the fact that actions are directed towards a goal
(i.e. they are goal-directed). From an embodied view, it is the recognition of a goal
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driving the action that enables forms of pre-linguistic understanding (Gallese, 2009).
According to Schiavio (2014), research accounting for an embodied standpoint in music
cognition should be focused on specific goal-directed actions rather than on a broader
set of movement patterns. In addition to that, Schiavio advocates for a consistent
consideration of the fundamental role of the environment in embodied theories of musical
understanding, identifying it as one of the challenges that future research should try
to address. As he puts it, “music cognition is always ecologically embedded, thus not
reducible to structures inside the skin. [. . . ] [T]he system [. . . ] should be an integrated
set of embodied actions and musical environment, without positing an explicit division
between inner and outer.” (Schiavio, 2014, p. 5).

2.6 Summary and Comments
This chapter presented the main tenets of interdisciplinary theories supporting an
embodied approach to the study of musical understanding. An embodied model for
music cognition that takes into consideration action-based effects on music perception
is therefore described and compared to traditional disembodied models. In addition,
arguments put forward by proponents of enactive music cognition are also reported, in
order to broaden the discourse on embodied music cognition and indicate some of the
challenges to address in developing the embodied paradigm further.

Within the scope of this dissertation, this theoretical framework not only supplies a
conceptual apparatus for the analysis and creative use of music-related movement. It
also provides a set of motivations for developing tools aimed at facilitating the analysis
of body movement in music and its concrete use in composition and performance. In
other words, acknowledging the central role of body movement in processes underlying
musical experience both informs and drives research towards ways of employing and
understanding movement in music.

Traditional cognitivist views considered body movement performed by people experi-
encing music merely as the byproduct of internal processes involving a system of symbolic
representations. Only relatively recently, an increasing amount of studies supported by
empirical evidence has begun to unfold how the human motor system and its actions can
affect our experience of sound and music. Conceiving music as a multimodal medium is
an essential step towards musical practice that systematically includes body movement
among its expressive features.

The emphasis on situatedness and the central role of the environment put forward
by enactivist accounts may also incentivise the adoption of a research approach that
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fruitfully integrates standard experimental designs in controlled laboratory environments
with studies in ecological settings and actual musical practice.





Chapter 3

Gestures and Musical Instruments

Sometimes, finally, the meaning
aimed at cannot be achieved by the
body’s natural means; it must then
build itself an instrument, and it
projects thereby around itself a
cultural world.

Maurice Merleau-Ponty
Phenomenology of Perception, p. 169

Well, the things we do is just we play
a very powerful, high-energy type of
rock ’n’ roll. We move around
onstage a lot.

Kurt Cobain
Interview

This chapter presents the key notions of gesture, musical instrument, and affordance;
framing their definition within the embodied cognition theoretical framework presented
in chapter 2.

3.1 Movement and Gesture
Given the theoretical background introduced in chapter 2, it is useful to further unpack and
analyse key terms that will be employed throughout this dissertation such as movement
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and gesture. Interestingly, in the Oxford thesaurus these two terms are presented as
synonyms1. However, in the interdisciplinary field of music-related movement studies,
various research communities addressed the need of a clearer distinction (Jensenius et al.,
2010), especially since the word ‘gesture’ has been extensively employed across multiple
research contexts and with different semantic connotations (Jensenius, 2014).

Even though the thesaurus presents movement and gesture as synonyms, the individual
lemmas as found in the Oxford dictionary show a particularly significant distinction. The
first definition of ‘movement’2 reads “An act of moving: ‘a slight movement of the body’”,
whereas ‘gesture’3 is defined as “A movement of part of the body, especially a hand or the
head, to express an idea or meaning: ‘Alex made a gesture of apology’”. Here, the crucial
distinction is that a gesture – contrary to movement – is expected to convey meaning.
In this research context then, movement denotes physical displacement of an object in
space. The term is often used interchangeably with ‘motion’, especially in scientific or
technological settings (e.g. “motion data”). Gestures, on the other, hand also carry
meaning, which can be considered as “the mental activation of an experience” (Jensenius
et al., 2010, p. 13). Clearly this term becomes central when musical expression comes
into play and it is a core notion within the framework of embodied music cognition. The
notion of gesture has, in fact, the considerable advantage of working as a conceptual
bridge between movement and meaning, consequently bypassing the boundary between
physical world and mental experiences. This monistic (Leman, 2010) quality of gestures
clearly makes them a key concept of the embodied music cognition paradigm, as they
allow the listener to link physical aspects of movement in space to expressive qualities,
intentions, and inner feelings. Acknowledging the issues such a broad and sometimes
vague word might lead to, Jensenius et al. (2010) give a comprehensive look at the
term and its uses in music research in order to present a clearer overview. Gesture is
thereby defined from three different viewpoints: communication, control and metaphor.
Within the category of communication, the role of gestures is to convey meaning in social
interactions. The focus is on the linguistic and communicative aspects of gesture rather
than on the body movement itself. From the control viewpoint, gestures are intended as
parts of an interaction system. For example, in human-computer interaction gestures are
movements of the body carrying information that can be processed and recognised by
a motion capture system. Gestures are instead used as metaphors when they “work as
concepts that project physical movement, sound or other type of perception to cultural

1http://www.oxforddictionaries.com/us/definition/american_english-thesaurus/
movement

2http://www.oxforddictionaries.com/definition/english/movement
3http://www.oxforddictionaries.com/definition/english/gesture

http://www.oxforddictionaries.com/us/definition/american_english-thesaurus/movement
http://www.oxforddictionaries.com/us/definition/american_english-thesaurus/movement
http://www.oxforddictionaries.com/definition/english/movement
http://www.oxforddictionaries.com/definition/english/gesture
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topics” (Jensenius et al., 2010, p. 14). Here, gestures are mental images evoked from
observable actions and/or musical sound, arising from both cognitive and social processes.

Mazzola and Andreatta (2007) argue that Hugues de Saint-Victor’s medieval definition
of gesture cited by Schmitt (1990) is still one of the most adequate to this day. They
cite Katsman’s translation from Latin, which reads:

Gesture is the movement and figuration of the body’s limbs with an aim, but
also according to the measure and modality proper to the achievement of all
action and attitude. (Katsman, 2006)

Even though this definition confines it to the body’s limbs, it clearly states that gesture
is movement with an aim. This is akin to the concept of goal-directed action of the
embodied accounts described in chapter 2.

In the Human-Computer Interaction (HCI) context, Kurtenbach and Hulteen (1990)
define gesture as “a movement of the body that contains information”. In his study of
non-verbal communication, Kendon (2004, p. 15-16) suggests that gesture is “a label for
actions that have the features of manifest deliberate expressiveness” and “[h]ow [these
actions] are interpreted, however, will depend upon context”, thus acknowledging the
centrality of the environment in which actions are embedded. In their definition of gesture
informed by these accounts, Caramiaux et al. (2015b, p. 3) state that “a gesture is a
dynamic movement of the body (or part of the body) that contains information in the
sense of deliberate expression”, stressing that deliberateness differentiate gesture from
simple movement.

While initially difficult to pinpoint, the notion of gesture is a key concept in contem-
porary music research, as it provides the necessary conceptual bridge between movement
and meaning, at the core of embodied accounts of music cognition. Thus, it can be
stated that gestures are a vehicle for the construction of musical meaning. From these
definitions of gesture, it also emerges that the term should be carefully framed and
defined in order to avoid ambiguity. Throughout this dissertation, I will try to use the
word ‘gesture’ when appropriate, that is when there is an explicit involvement of meaning
and intentionality. This also applies to a more technical context, such as in chapter 9
when I will use the phrase ‘gesture templates’ to refer to couplings of motion and sound
synthesis data used as training information for a machine learning model. In other cases
where the link with meaning and intention is not immediately evident, I will opt for the
terms ‘movement’ or ‘motion’, which are considered synomyms.
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3.2 Classifications of Musical Gestures

3.2.1 Instrumental Gesture

The role of body movements in instrumental music performance has been analysed further
by looking at functional aspects of specific musical gestures. In their seminal work, Cadoz
and Wanderley (2000) review the analysis of the playing technique of the pianist Glenn
Gould carried out by Delalande (1988). In that work, Delalande proposed three levels of
gesture classification based on functional characteristics:

• Effective gesture, which is necessary for the production of sound.

• Accompanist gesture, that supports the performance of effective gestures. Cadoz
and Wanderley (2000, p. 77) note that Delalande suggests that “its function
is as related to imagination as to the effective production of the sound”, thus
implying that they contribute to the musical experience. Another term often used
interchangeably to designate these gestures is ancillary gestures (Wanderley et al.,
2005, p. 97)

• Figurative gesture, linked to a more metaphorical, symbolic definition of gesture
and thus without a direct correspondence to physical movement.

Using Delalande’s classification as a starting point, Cadoz and Wanderley (2000,
p. 78) define instrumental gesture as a subgroup of effective gesture, consisting of “the
actual instrument manipulation and playing technique” produced by what they call the
“gestural channel”. That is a channel of human communication acting as a means of
action on the physical world and – at the same time – a means of communication of
information. Action and perception are therefore inextricably coupled, similarly to the
embodied model of cognition described in section 2.3.

To further clarify the definition of instrumental gesture, Cadoz and Wanderley (2000,
p. 79) state that these gestures are characterised by physical interaction with material
objects, the ways this interaction evolves over time can be mastered by the subject, and
the instrumental gestures themselves may support communication and engender the
production of a material action. In addition, instrumental gestures are distinguished
from empty-handed gestures (e.g. conductor gestures), which are purely semiotic and do
not involve energy transfer.

In an earlier publication, Cadoz (1988) further classified instrumental gesture in three
functional subclasses:
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• excitation gesture, which provides the energy required to produce the sound and
may be either instantaneous (e.g. plucking a string, hitting a drum) or continuous
(e.g. bowing a string);

• modification gesture, involved in the modification of the instrument properties
and thus altering the sound produced by excitation gesture and may be either
parametric (e.g. fretting a stringed instrument) or structural (when the structure
of the instrument is altered, e.g. by installing a mute in a trumpet);

• selection gesture, involved in the selection of a subset of similar elements of an
instrument, such as the keys of a piano. They may be sequential (e.g. fingering an
arpeggio on a keyboard) or parallel (e.g. fingering a chord on a keyboard).

3.2.2 Functional Categories of Gestures

More recently and to better understand the function of musical gestures in perfor-
mance, Jensenius et al. (2010) expanded on the work of Delalande (1988) and Cadoz
and Wanderley (2000) identifying four functional categories; sound-producing gestures,
sound-facilitating gestures, sound-accompanying gestures and communicative gestures.

Sound-producing gestures are closely involved in the production of sound and can
be further subdivided into excitation gestures (e.g. plucking or bowing a string, hitting
a key) and modification gestures (not producing sound by themselves but affecting its
quality, e.g. operating pedals in a piano).

Sound-facilitating gestures are not directly involved in the production of sound
but provide support for sound-producing gestures in different ways, therefore influencing
the resulting sound. For example, strumming a chord on a guitar involves movement
of various parts of the arm and the joints. With the body being a complex system,
many support gestures (even if very subtle) are often necessary for a sound-producing
gesture to occur. Phrasing gestures are another type of sound-facilitating gesture, they
are closely connected to the phrases being played in the music and are an integral part
of the performance, both helping the musician to perform the piece and improving the
experience of the listeners. This is true also for entrained gestures, like tapping a foot or
moving in synchronicity with the music. These gestures help the musician to keep track
of the tempo, therefore facilitating the performance, and they may in addition support
the interplay with other musicians and enrich the experience of the listeners.

Sound-accompanying gestures are distinguished from the previous two categories
as they have no role, whether direct or indirect, in the production of sound but they
follow features of the music. The most obvious example is indeed dancing, other examples
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are tracing the contour of sonic elements and mimicking sound-producing gestures in the
air, like in so-called air instrument performances (Godøy et al., 2006a).

Communicative gestures, on the other hand, are primarily intended for communi-
cating between performers and listeners. Examples are facial expressions or lifting the
hand theatrically before strumming a chord on a guitar. While it could be said that all
gestures are to some extent communicative gestures, this category is specifically intended
for gestures whose function is chiefly communicative. In fact, it is important to underline
that gestures have usually multiple functions and do not fall exclusively into one category.

A case study employing these concepts to devise mapping strategies for a performance
involving wearable sensors and electric guitar is described in chapter 6.

3.2.3 Blurred Boundaries

As clearly specified by both Cadoz and Wanderley (2000, p. 79) and Jensenius et al.
(2010, p. 25) musical gesture categories are neither exclusive nor independent and their
boundaries are usually blurry, since in actual musical performances gestures tend to
have multiple functions. The rationale behind these categorisations is not to provide a
comprehensive taxonomy of gesture in music performance. Rather, these concepts are a
useful starting point for making sense of the role a gesture may have in a performance.

This section described a set of useful conceptual tools for addressing the main subject
of this thesis, that is body movement in instrumental music performance. In their
background investigation on mixed methodologies for studying movement perception in
music, Schacher et al. (2015) sketch out a map that includes about forty gestural classes
and subclasses proposed by key authors in the field. That is useful as a reference and
also as a snapshot showing the complexity of musical gesture analysis.

3.3 Musical Instruments, Ecological Knowledge, Af-
fordances, Constraints

3.3.1 Musical Instruments and Instrumentality

Another key concept for this dissertation is that of musical instrument. As noted by
Kvifte (2008), there are several definitions of musical instrument, since the concept is
quite difficult to define in a precise way and different research interests call for different
definitions. In fact, the entry ‘Instruments, classification of’ on Grove Music Online
avoids an explicit definition:
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‘Musical instrument’ is a self-explanatory term for an observer in his own
society; it is less easy to apply on a worldwide scale because the notion of
music itself in such a wide context escapes definition. (Wachsmann et al.,
2017)

Even though implicit, this formulation highlights an important aspect of musical instru-
ments: their “cultural embeddedness”. An object is a musical instrument because it
has undergone a process of culturalisation that makes it recognisable as such for the
member of a society. This, as implied above, ties it with definition of music itself, which
is constantly being renegotiated across times and cultures. Kvifte (2008) argues that a
more precise and explicit definition of ‘musical instrument’ is not necessarily more useful
for research purposes:

Concepts are tools for grasping the world around us, and their utility in
research is measured by their ability to let us make new and relevant questions.
If a traditional and relatively precise definition of ‘instrument’ excludes large
areas of contemporary musical practice from our field of study, we might be
better off with less precise alternatives. (Kvifte, 2008, p. 55)

Hardjowirogo (2017) revisits Hornbostel’s often cited definition, which states that
“[f]or purposes of research everything must count as a musical instrument with which
sound can be produced intentionally” (Hornbostel, 1933, p. 129). While Hornbostel’s
statement highlights sound production and intentionality as defining qualities of a musical
instrument, Hardjowirogo (2017) points out that musical instruments are not the only
things used to produce sound and, at the same time, are more than only sound-producing
devices. She then suggests that the specificity that distinguishes a musical instrument
from other sound-producing devices is expressed by the concept of instrumentality:

“[. . . ] instrumentality, or simply being a musical instrument must not be
understood as a property an object as such has or has not. Rather, it seems
to result from using something in a particular way which we think of as
instrumental. Consequently, an object is not per se a musical instrument
(ontological definition) but it becomes a musical instrument by using it as
such (utilitarian definition).”(Hardjowirogo, 2017, p. 11)

Thus, instrumentality is a dynamic concept that is not tied to an object by design, it is
rather the result of cultural negotiation. The “degree of instrumentality” is a dynamic
quality of an object, that changes depending on context and processes of culturalisation.
An object may be more or less instrumental according to various characteristics associated
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with instrumentality. Hardjowirogo (2017) compiles a preliminary list of the criteria
that presumably play a major role in the construction of instrumentality, which includes
sound production, intention, learnability, playability, cultural embeddedness, liveness
and others.

Therefore, in the context of this dissertation, a musical instrument is any object that
is used intentionally to perform music within a specific cultural environment, regardless
of whether it was originally designed to be a musical instrument or not. Different
instruments may have different degrees of instrumentality, and what is considered a
musical instrument in a specific cultural environment may not be recognised as such in
another context. Some subcategories of musical instruments relevant for this dissertation
will be discussed in section 3.3.3.

3.3.2 The Instrument as Extension of the Body

The study of musical gestures and embodied music cognition also brought about a new
understanding of the relationship between musician and musical instrument. From embod-
ied perspectives, the musical instrument is embodied in the body of the performer (Hirose,
2002) and becomes a natural extension of the musician (Nijs et al., 2009). It is therefore
part of the mediation together with the body, thus allowing a spontaneous corporeal artic-
ulation of the music, contributing to the formation and conveyance of embodied musical
meaning. According to Godøy (2003), people continuously re-enact mental simulations
of musical gestures when listening attentively to music, adding a motor-mimetic element
in music perception and cognition. Additionally, Cox formulates a similar hypothesis:
“we normally imagine (most often unconsciously) what it is like to make the sounds we
are hearing” (Cox, 2001). Moreover, there is empirical evidence that the gestures of the
instrumentalist can alter the sound perception of the listener (Schutz and Lipscomb,
2007).

Clark (2008) developed a theory of extended cognition, suggesting that artefacts serve
as scaffoldings onto which cognitive processes are offloaded. This way, the mind extends
beyond the body to include the tools, symbols, and other parts of the environment that
we deploy to make sense of and engage with the world. Magnusson (2009) claims that
musical instruments act as cognitive extensions, pointing out that “[t]echnological objects
are [. . . ] never neutral, they contain scripts that we subscribe to or reject according
to our ideological constitution.” In other words, a musical instrument is a conveyor of
knowledge and our extended mind thinks through it.
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Maes et al. (2014, p. 10) effectively delineate musical instrument playing as a dynamic
system with multiple components having different weights but no causal priority, drawing
a parallel with music listening:

In the case of musical instrument playing, music can be considered as the result
of a dynamical interaction between the musicians’ motor and sensory system,
the constraints and opportunities of the pre-composed musical notation,
the musical instruments and the social environment, and the musicians’
intentions, personality, mental states, etc. [. . . ] Similarly, music listening can
be considered as a dynamical process, in which the experience, the perception,
and the understanding of music is guided and shaped by the intrinsic dynamics
of the body, the mind, and the external environment.

With this theoretical framework in mind, it is clear that instrumentalists’ gestures
have considerable expressive potential. Gesture has been employed as an expressive
element in musical practice across different genres and styles and has also inspired the
development of several digital musical instruments (DMI) (Jensenius and Lyons, 2016;
Miranda and Wanderley, 2006). To mention some applications, the composer Roberto
Doati has written a series of pieces for guitar that make use of the gestures of the
fretting hand of the performer to control parameters of live electronics (Doati, 2004).
Maes et al. (2011) use the theory of embodied music cognition to inform a different
approach to parameter mapping and develop a human-computer interface that facilitates
gestural control over real-time digital signal processing of the singing voice. Camurri et al.
(2001) instead employ a similar theoretical framework to implement interactive artistic
applications and understand expressiveness in gestures using computational modelling.

3.3.3 Traditional Musical Instruments

I adopted the term traditional musical instrument (henceforth TMI) to define instruments
that have a rich idiomatic (Huron and Berec, 2009) repertoire and an established set of
playing techniques4. Examples include electric guitar, violin, electronic pianos, etc. As
also mentioned in chapter 1, this term refers to the use and repertoire of the instrument
rather than to its technological characteristics, and depends on cultural context. The
term ‘electronic’ is used of instruments in which the sound is generated by means of
analogue or digital circuitry, while ‘electric’ usually refers to instruments in which sound
is generated mechanically and then amplified electrically (Davies, 2017). Finally, purely

4This does not rule out the possibility of extended and unconventional techniques employed by a
minority of players.
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acoustic musical instruments do not incorporate any device for electric or electronic sound
manipulation (Libin, 2017). TMIs can be found in all of the above categories. The term
does not simply refer to the physical object. Rather, it refers to the physical object and
the established gestural repertoire related to it, the known constraints and opportunities
it affords. For example – according to the definition of TMI used in this dissertation – a
turntable as it is employed by DJs to perform scratching and other common techniques
of ‘turntablism’ (Snapper, 2004) is a traditional musical instrument. This is because it is
consistently employed in established musical practices and there is a set of techniques
shared among instrumentalists (Hansen, 2002; Sonnenfeld and Hansen, 2016), regardless
of the fact that the device itself was not originally designed to be a musical instrument.
In other words, this term takes into consideration (and it is relative to) the environment
in which the instrument is embedded.

The choice of focusing on TMI performance is motivated by the vast knowledge
that listeners have of the gestural and sound aspects of each instrument, which is
learnt through experience. For instance, most people immediately know what sound
to expect when we see a person hitting a snare drum with a drumstick. Similarly, if
we hear the sound of a violin we can easily associate the gesture of bowing to it. This
is because there is a shared ecological knowledge (Godøy, 2010) of the instrument’s
repertoire of sound-producing gestures. TMIs in fact have fairly explicit and known
affordances (Gibson, 1977) that delineate action relationships between the instrument
and the musician, inform expectations in the listeners and can be used to devise mapping
strategies for controlling electronic aspects of music performance (see chapter 6). Using
embodied music cognition terminology, instruments have a rich action/gesture repertoire
that the listeners can recognise during the performance. In fact, Nijs et al. (Nijs et al.,
2009) note that expert musicians have an extensive toolbox of movement schemes that
they can unconsciously select and perform in response to the challenges provided by the
musical environment.

Using the concepts discussed in section 3.3.1, Traditional Musical Instruments are a
category of musical instruments that have (at a certain time and within a certain cultural
context) a “high degree of instrumentality”, mainly thanks their “cultural embeddedness”,
to cite one of the criteria mentioned by Hardjowirogo (2017). Hence, similarly to the
concepts of ‘music’ and ‘musical instrument’, TMIs constitute a dynamic category that
changes over time and across cultures.
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3.3.4 Environment, Affordances, Constraints

The concept of affordance was introduced by J.J. Gibson and further codeveloped by his
wife Eleanor (Gibson, 2000).

The affordances of the environment are what it offers the animal, what it
provides or furnishes, either for good or ill. The verb to afford is found in
the dictionary, but the noun affordance is not. I have made it up. I mean by
it something that refers to both the environment and the animal in a way
that no existing term does. It implies the complementarity of the animal and
the environment. (Gibson, 1986)

Affordances can therefore be understood as properties of environmental structures that
provide opportunities for action to organisms. The complementarity Gibson mentions
refers to the fact that the physical capabilities of the organism are as important as the
properties of the object in defining an affordance. For example, a guitar affords certain
actions (e.g. fingerpicking) to humans that it does not afford to elephants. Thus, an
affordance is defined by the relationship between certain properties of an object in the
environment and the actions an agent can potentially perform.

In the past three decades, the concept of affordance has become hugely popular in
several academic environments such as cognitive psychology, design, and human-computer
interaction; thus undergoing several developments, criticisms, and refinements (Jenkins,
2008; Mcgrenere and Ho, 2000). One of the most notable developments – which adds
notions particularly useful for this dissertation – was introduced by Norman (1988, 1999).
Norman’s perceived affordances differ from the notion introduced by Gibson. They can
be dependent on the knowledge or culture of the agent whereas Gibson’s affordances exist
regardlessly of the ability of the actor to perceive them (Mcgrenere and Ho, 2000). This
implies that the actions afforded by an artefact are culturally conditioned, so a violin
might afford bowing to a member of one culture and might not afford the same action to
a member of another. In other words, there can be an ecological knowledge of musical
gestures related to an instrument that is shared by a certain group of people.

In music research, Clarke (2005) presents an approach to the study of music perception
based on principles derived from James Gibsons ecological perceptual theory. Clarke
stresses the importance of the environment and its social component in determining how
affordances are perceived: “A violin, for example, affords burning, but social factors
ensure that this is a rather remote affordance—which might only be realized in extreme
circumstances or by an individual who had no regard for (or even deliberately disdained)
the musical context which regulates its affordances.” (Clarke, 2005, p. 38). Will Gibson
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presents a study of jazz performance (Gibson, 2006), showing the relevance of social
action, embodied skills, and musical instrument affordance in the understanding of
musical practice.

Magnusson (2010) employs the concept of affordance and pairs it with the one of
constraint, claiming that while the two terms are complementary, the latter is a more
productive analytical tool for the the design of DMIs compared to the common usage of
affordance in HCI.

In part III (particularly in chapters 6 and 9), I will use constraints and affordances of
various TMIs to develop mapping strategies for DMIs. These mappings will be used in
compositions involving both TMIs and DMIs (see chapters 7 and 8). This integration
of TMIs and DMIs could be seen as a form of instrument augmentation (Miranda
and Wanderley, 2006; Newton and Marshall, 2011). However, if further developed and
integrated into regular practice, instrument augmentations could hypothetically become
part of the extended set of techniques of the instrument, similarly to how effect pedals are
now a consolidated part of the electric guitar idiomatic style. Alternatively, instrument
augmentation might also go towards building other instrumental identities, as in the
case of the magnetic resonator piano (Mcpherson and Kim, 2012). As discussed in
section 3.3.1, several factors are involved in the construction of instrumental identities,
many of which require the involvement of wider communities and the unfolding of cultural
processes. Thus, predicting how the concept of musical instrument – and therefore music
itself – will evolve as the result of contemporary practice is very challenging, but knowing
more about these cultural processes can certainly aid the design of new instruments and
inspire the composition of new music.

3.4 Summary and Comments
This chapter presented the working definitions of some concepts pivotal to this dissertation.
The notions of gesture and movement have been unpacked and analysed, showing the
centrality of a clear definition of gesture that provides the necessary conceptual bridge
between movement and meaning.

A set of categories useful for the classification of musical gestures have been presented,
with particular attention to those related to musical instrument playing. Musical instru-
ments are examined from embodied and extended cognition perspectives, pointing out an
intimate relationship between the instrument and the body of the performer and a set of
movement schemes that take part in the production of musical meaning. In addition, the
working definition of traditional musical instrument has been presented, motivating the
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choice of the term and stressing the importance of context and environment in establishing
what a traditional musical instrument is. Finally, the role of the environment is discussed
further, exploring the notion of affordance from different stances and suggesting that the
opportunities and constraints offered by a musical instrument have a distinct in role in
our ways of making sense of music.

The theoretical framework and the supporting empirical studies presented so far
substantiate the idea that body movement is not an incidental byproduct of instrumental
music practice. Rather, movement plays a role in communicating musical expression to
an audience (Broughton and Stevens, 2009) and therefore should be considered a musical
feature. This motivates the development and implementation of technologies for the use
of body movement in instrumental music performance and other musical contexts.

A system of categories is a useful tool for studying the properties of musical gestures.
However, it is worth noticing that pursuing an exhaustive taxonomy of musical gesture is
likely an impossible task. In addition, the proliferation of ambiguous terminologies might
hinder further research instead of facilitate it. As mentioned in section 3.2.3, key authors
behind the study of musical gestures specify that categories of musical gestures should not
be considered neither absolute nor exclusive, but should rather serve as pedagogical tools
and as an aid for the design of musical interactions (Cadoz and Wanderley, 2000, p. 79).
The porous quality of this categorisation becomes even more evident in performances
involving both traditional and digital musical instruments, as shown by the practical
work discussed in chapter 8. Therefore, rather than defining additional categories, future
research might go towards understanding how multiple gestural categories co-exist and
interact in concrete musical gestures.

From the experience gained working on the practical and analytical parts of this
dissertation, it is felt that a potentially fruitful way of dealing with the functional aspects
of musical gesture is to think not exclusively in terms of categories but also in terms
of components5. In other words, rather then placing gestures in categorical containers,
functional components are attributed to gestures. As noted in section 3.2.3, key authors
who proposed concepts for the classification of musical gestures stressed the fact that,
in actual performance, musical gestures often fall into multiple categories (Cadoz and
Wanderley, 2000; Jensenius et al., 2010). Thinking also in terms of components would
have the advantage of making the multifaceted functional identity of musical gesture
immediately clear, thus avoiding the risk of seeing categories as independent or exclusive
containers. This way of operating favours a system where hierarchies are inverted. Here,

5The definition of ‘component’ used here is in some ways analogous to the one employed when dealing
with vectors such as velocities and forces (themselves familiar concepts in the field of music-related
movement research): constitutive parts of a whole with individual magnitudes and directions.
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gestures are not seen as elements belonging to one ore more sets (e.g. functional categories),
but are considered as entities constituted by a number of (functional) components with
different qualities and magnitudes that can vary over time. For example, consider a cello
vibrato gesture. The iterative movements of the fretting hand on the bowed string that
modulate the pitch can certainly be considered a sound-producing/modification gesture
(see section 3.2.2). Now, imagine the dynamics and the depth of the vibrato progressively
increasing to obtain a dramatic effect. A modification component will still be part of
the gesture. In addition to that, a second communicative or theatrical (Jensenius et al.,
2010, p. 24) component might increasingly become a constitutive part of that same
vibrato gesture, depending on the intentions and style of the performer and also on other
environmental factors that may affect the expectations of the perceivers.

This approach should not be seen as substitutive of the classification systems men-
tioned so far, but rather as an additional tool for analysis that afford a fluid conceptuali-
sation of the functional roles of musical gestures. This might facilitate analytical models
where functional aspects of music-related actions vary over time, possibly providing
concepts useful for studying dynamic phenomena such as coarticulation and chunking
(Godøy et al., 2010). Moreover, this interpretation of the functional qualities of music-
related movements could also be helpful for the design of motion-based musical interfaces
and for composition and performance of music that deliberately employ movement as an
expressive feature.

The definition of Traditional Musical Instrument adopted in this dissertation is closely
related to the concept of affordance, as they both depend upon factors related to the
environment. The constraints and opportunities afforded by TMIs are consistently
(en)acted upon in musical practice, thus contributing to the creation of the idiomatic
style of the instrument. Perceived affordances offer a cognitive grasp for the musician
and other music perceivers (see chapter 5 for an empirical analysis), influencing the
expectations and understanding of what is happening musically.

To conclude the theoretical part of this dissertation with a catchphrase that gives the
gist of some of the topics discussed so far, we could say that “musical instruments are
weapons loaded with culture”.



Part II

Observing Movement in Music:
Analysis





Chapter 4

Effects of Different Bow Stroke
Styles on the Movements of a Viola
Player

Anton Giulio Bragaglia
Uomo che suona il contrabbasso (1911)

This chapter1 describes an exploratory study of different gestures and body movements
of a viola player resulting from the variation of bow strokes length and quantity. This
work also served as a pilot study for the larger-scale study described in chapter 5.

4.1 An exploratory experiment: viola bow strokes
The aim of this exploratory study is to observe how the variation of a musical feature
within the piece affects the body movements of the performer. A viola player is asked to

1This chapter is based on Visi et al. (2014a). The full peer-reviewed article can be retrieved online at
http://www.federicovisi.com/publications/.

http://www.federicovisi.com/publications/
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Fig. 4.1 Still from the video stream (left) and skeleton generated from the motion capture
data with labels of the four joints used in analysis (right).
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perform two short pieces of music four times each, every time with different directions
regarding length and quantity of bow strokes. The performances were recorded using a
multimodal recording platform that included audio, video and motion capture (MoCap)
data obtained from high-speed tracking of reflective markers placed on the body of the
performer and on the instrument. The intent is to observe how the variation of a musical
feature also affects the movement of the performer and, secondly, if there are correlations
in the way sound-producing gestures and ancillary gestures vary according to the different
bow stroke styles. Quantitative analysis focused on motion capture data, while audio
and video were used as reference. We extracted measurements of quantity of motion and
velocity of different parts of the body, the bow and the viola. Results indicate that an
increased activity in sound-producing and instrumental gestures does not always resonate
proportionally in the rest of the body and the outcome in terms of ancillary gestures
may vary across upper body and lower body. Past studies have observed gestures and
movements of string instrument players, focusing on motion features of different bow
strokes (Rasamimanana et al., 2008), the physical interaction between the player and
the instrument (Schoonderwaldt and Chen, 2009) and expressivity and interaction in
ensemble playing (Glowinski et al., 2013a). Similar studies have been carried out for
other musical instruments, such as piano (Thompson and Luck, 2011), harp (Chadefaux
et al., 2012) and clarinet (Desmet et al., 2012a).

4.1.1 Pieces and bow stroke variations

Two excerpts of two different musical pieces were chosen: a sarabande from Pièces de violes,
Livre I (1686) by Marin Marais (Fig. 4.2) and a passage from Tchaikovsky’s Barcarolle,
from The Seasons (1876, Fig. 4.3). These pieces were chosen to allow comparison of
body movements between two different styles (baroque and romantic respectively).

The viola player was asked to perform each piece in four different versions:

• as she would normally interpret it according to the score (this variation was labelled
‘Natural’ in graphs for short);

• using the full length of the bow, from tip to frog, during each bow stroke (labelled
‘Long’);

• using only the central part of the bow (about one third of the total length, labelled
‘Short’);

• by performing a bow stroke for every note, therefore increasing the total amount of
bow strokes necessary to perform the piece (labelled ‘Many’).
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Fig. 4.2 Baroque tune: excerpt from Pièces de violes, Livre I (1686) by M. Marais.

Fig. 4.3 Romantic tune: excerpt from Barcarolle, from The Seasons (1876) by P. I.
Tchaikovsky.
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4.1.2 Equipment and setup

The recording took place in an auditorium/concert hall, suitable for experiments in an
ecological setting. The musician performed on a stage where MoCap data was recorded
using Qualisys Oqus cameras. The viola player wore a suit equipped with 19 reflective
markers: 3 on the head, 4 on the shoulders, 1 on the back, 1 on the sternum, 2 on the
elbows, 2 on the wrists, 2 on the hips, 2 on the knees and 2 on the ankles. Additionally,
3 reflective markers were placed on the viola, 2 on the body and 1 on the scroll. Markers
were also placed on the frog and the tip of the bow. Overall, 24 markers were used. Along
with the MoCap data, video and audio were recorded by means of a digital videocamera
and a piezoelectric microphone placed on the viola. The multimodal stream of data was
recorded and synchronised using EyesWeb XMI2.

4.2 Data analysis and results

4.2.1 Movement feature extraction

MoCap Toolbox for MATLAB (Burger and Toiviainen, 2013) was used to extract various
kinematic features. First, the data was trimmed to the duration of each performance.
To simplify the movement analysis, the MoCap data was restructured. This was done
using joints, also called secondary markers, obtained by averaging the locations of a
subset of markers. Of the initial 24 markers, 4 joints (head, hips, scroll and bow) were
taken into account. This particular choice allows for comparison between instrumental
sound-producing gestures (bow) and ancillary sound-facilitating gestures (head, hips,
scroll). The joint of the scroll consisted of only one marker. The head joint was calculated
from the three head markers, the hips from the two markers on the left and right hip and
the bow from the markers at the tip and the frog (Fig. 4.1). Subsequently, two movement
features were extracted from the joint location data:

1. Velocity for head, hips, scroll and bow was calculated in order to measure the
activity of the different body parts. The instantaneous velocity was averaged for
each joint, in order to obtain a general value for the eight different performances.

2. The cumulative distance travelled by each joint was taken into account to measure
the quantity of motion (QoM). This gives a good indication of the total amount of
movement of each body part over the whole performance (Burger et al., 2013b).

2http://www.infomus.org/eyesweb_eng.php

http://www.infomus.org/eyesweb_eng.php
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(a) Average velocity of the bow joint. (b) Quantity of Motion of the bow joint.

Fig. 4.4 Comparison of the movement features of the bow joint between the two musical
excerpts.

(a) General velocity. (b) General Quantity of Motion.

Fig. 4.5 Comparison of the general movement features of the four joints in analysis
between the two musical excerpts.

4.2.2 Results

Velocity and quantity of motion of the bow joint indicate the most immediate outcome
that the bow stroke’s variations had for both pieces (Fig. 4.4a, 4.4b). In the ‘Romantic’
piece performance, bow velocity and QoM were much lower for the short bowing condition.
In the ‘Baroque’ piece, the long bowing condition stands out more. In general, the bow
is the most active of the four body joints for each piece in each performance, followed by
the scroll of the viola (Fig. 4.5a, 4.5b).

Since the variations only involved instructions about bowing, changes of velocity
and quantity of motion in other body parts are not directly induced by the task. For
each joint, the velocity and QoM of the ‘Natural’ bowing performance were taken as a
reference (0%) to compare against the values obtained in the other variations.
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(a) Differences of velocity. (b) Differences of Quantity of Motion.

Fig. 4.6 Comparison of the movement features of the ‘Romantic’ piece.

(a) Differences of velocity. (b) Differences of Quantity of Motion.

Fig. 4.7 Comparison of the movement features of the ‘Baroque’ piece.

The velocity and QoM graphs of the ‘Romantic’ piece performance (Fig. 4.6a, 4.6b)
appear similar, showing analogous ratios among the four different performances. The
movement and activity induced in the scroll are very similar to that in the bow, and
give even larger extremes in the long and short bowing performance. A different trend
is observed for head and hips. First of all, their overall velocity and QoM in general is
much lower than that of scroll and bow (Fig. 4.5a, 4.5b). As opposed to the scroll, the
head and hips do not increase in QoM and velocity when longer bow movements are
used. For short bow movements, the head and hips are more consistent with the scroll as
their QoM is reduced by a half and their velocity decreases even more. Overall, head
and hips are active the most in the ‘Natural’ performance variation.

The outcomes for the ‘Baroque’ piece differ to a certain extent from the ‘Romantic’
ones. Here, velocity and QoM do not change equally across the different variations
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(Fig. 4.7a, 4.7b). The QoM for the scroll increases when longer bow strokes are used,
but not as much as the value for the bow joint. On the contrary, the velocity of the
scroll more than doubles in the ‘Long’ bowing condition, as compared to the ‘Natural’
condition. When short bow strokes are used, both QoM and velocity of the scroll decrease,
but not as much as in the performance of the ‘Romantic’ piece. The head joint in the
‘Baroque’ performances follows a similar trend as in the ‘Romantic’ piece: its velocity
and QoM do not increase with longer bow strokes and decrease even more in the ‘Short’
bowing condition. On the contrary, the hips do not follow the head movement this time.
Similarly to the scroll, its QoM increases with long bow strokes and its velocity doubles,
while in the ‘Short’ bowing condition it decreases again.

When many bow strokes are used, another difference between the ‘Romantic’ and
‘Baroque’ piece can be observed. There is an increased effect on the head in the latter
whilst the scroll is more affected in the former. Moreover, many bow strokes induce
almost as much movement and velocity as longer bow strokes in the performance of the
‘Romantic’ piece, which is not the case for the ‘Baroque’ piece, where longer bow strokes
induce much more movement in other body parts as well. In contrast, the velocity and
QoM of head and hips in the ‘Romantic’ piece are reduced to less than a half in the
‘Short’ bowing variation.

In general, short bow strokes induce the least movement and activity in all the body
parts and long bow strokes induce the most QoM and velocity in bow and scroll. When
many bow strokes are used, only the activity and movement of the bow is consistently
increased in both pieces, compared to the natural performance.

4.3 Summary and Comments
This chapter described an exploratory study of different gestures and body movements
of a viola player resulting from the variation of bow strokes length and quantity. The
aim was to observe how the variation of a musical feature within the piece affects the
body movements of the performer.

The movement data shows that ancillary and instrumental gestures may shift in
analogous ways across the different bow stroke variations, but may also diverge. Similar
effects of different bow strokes are found both in the ‘Romantic’ and the ‘Baroque’
pieces. Nevertheless, some variations occur, especially in the ‘Long’ and ‘Short’ bowing
conditions. This is partially due to the musical structure and conventional musical style
of both pieces. A sarabande is a Baroque dance, which is usually performed with shorter
and lighter bow strokes to give the piece a dancing character. In the ‘Romantic’ piece,
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the performance guideline andante cantabile requires more bowing and vibrato to create
the intended sound effect. Moreover, when comparing the original scores of both pieces,
we see that in the ‘Romantic’ piece there are more notes per slur than in the Baroque
sarabande, which implies the use of more bow in the former, and less in the latter. This
explains why using short bow strokes in the ‘Romantic’ piece has more effect on scroll
and bow than using long ones and the other way around for the ‘Baroque’ piece.

What happens with the head and the hips is more ambiguous. As the QoM and
velocity increase in the ‘Long’ and ‘Many’ bowing condition, the movements made by
head and hips are reduced in comparison with the natural performance. A possible cause
for this effect could be the constraints posed by the task. By adding supplementary
directions regarding bow strokes, the performer focuses on the additional movements
required in order to accomplish the task, which may reduce spontaneous movement in
other body parts. However, a different effect is observed in the performances of the
‘Baroque’ piece. Here, the velocity and QoM of the hips increase when the performer
uses long bow strokes, and the same can be observed in the head joint when many bow
strokes are used. Again, the difference in musical style and structure could partially
explain these contradictions. The long bowing condition implies more changes in the
movements required to perform the ‘Baroque’ piece as compared to the ‘Romantic’ piece.
Even with the task constraints in mind, these changes could affect the movements of the
hips too. Still, this does not explain why this effect does not occur in the movements of
the head when long bow strokes are used. Moreover, there is increased head movement
in the ‘Baroque’ performance, but only when the performer uses many bow strokes. In
this condition however, the hips seem unaffected. A study by Glowinski et al. (2014a)
shows similar results. Three violinists performed a piece in metronomic, emphatic and
concert-like styles and movements of head, torso, forearms, hips and violin were measured.
Here, the movement amplitude of the hips was significantly different from the other body
parts. The differences between upper and lower body parts were interpreted as part of a
compensation process in which the lower body is seen as an anchoring point to enhance
stability and compensate for the higher movement activity of the upper body.

Overall, it is worth noting that increasing QoM and velocity of instrumental gestures
resonate into ancillary gestures of the rest of the body in different ways and that this
resonance may be hindered if the difficulty of the task increases. Different musical
styles may also have an effect on how movement changes across the different bow stroke
variations. It is important to note that variating the bow strokes alters the musical
outcome in terms of timing, timbre and loudness of the notes. However the main goal of
the experiment is to observe the results in terms of body movements and underline that
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variating bow articulations in the score alters not only the sound but also the corporeal
expressivity of the performer, therefore affecting the experience of the performer and the
audience on multiple levels.

In a broader perspective, the purpose behind this study was to approach possible ways
in which movement and gesture can be employed as an expressive musical feature, whether
directly determined in the score (an example in this direction is shown in section 8.4.2)
or indirectly induced by other musical features (as in the musical piece described in
section 7.4). It is not clear yet how gesture can be fully integrated with other expressive
features in composition and performance, but further research-led practice may lead
to new insight. Moreover, movement in music performance is highly idiosyncratic; it
depends on anatomical differences between players (Dahl et al., 2010) and their different
approaches to the instrument (Chadefaux et al., 2012). This preliminary work involved
only one performer, so different playing styles among different performers could not be
compared and statistical testing is clearly beyond the scope of this exploratory study.
However, consistency with other studies (Glowinski et al., 2014a) could be observed
and the adopted methodology and the focus on the relation between pre-determined
variations of musical features and resulting variations of body movement has inspired
the larger-scale analysis work described in chapter 5 and has informed the practice-led
works described in chapters 7 and 8.

Gestural idiosyncrasies may constitute interesting expressive challenges for composers,
leading them to work closely with performers in order to examine relationships between
scored musical features and body movement, and explore the expressive possibilities of
writing gesture-aware music.



Chapter 5

Analysis of Mimed Violin
Performance Movements of
Neophytes

What sculptors do is represent the
essence of gesture. What is important
in mime is attitude.

Marcel Marceau

I’ve been imitated so well I’ve heard
people copy my mistakes.

Jimi Hendrix

5.1 Introduction and Motivation
The study presented in this chapter1 investigates the extent to which the movement
vocabulary of violin performance is part of the embodied knowledge of individuals with
no experience in playing the instrument. People who cannot play the violin were asked to
mime a performance along an audio excerpt recorded by an expert. They do so by using
a silent violin, specifically modified to be more accessible to neophytes. Motion data
analyses suggest that, despite the individuality of each performance, there is a certain

1This chapter is based on Visi et al. (2016). The full peer-reviewed article can be retrieved online at
http://www.federicovisi.com/publications/.

http://www.federicovisi.com/publications/
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consistency among participants in terms of overall rhythmic resonance with the music
and movement in response to melodic phrasing. Individualities and commonalities are
then analysed using Functional Principal Component Analysis.

While the study in chapter 4 observed how variation in bow stroke styles affected the
movements of the performer, the experiment in this chapter aims at empirically exploring
the the notions of shared and ecological knowledge of the gestural repertoire of a musical
instrument (see section 3.3.3). Albeit having a somewhat different focus, this study builds
upon the methodology adopted in chapter 4. Motion data is once again collected using
marker-based motion capture, and a similar procedure based on a series of short trials is
adopted. This time though, the analysis method is more sophisticated as it involves a
higher number of participants, a novel motion descriptor that takes into account the music
tempo (Periodic Quantity of Motion), and Functional Principal Component Analysis.
The traditional musical instrument involved this time is a violin, member of the same
instrument family of the viola used in the previous study, with which it shares several
playing techniques and movement patterns. Similarly to the experiment in the previous
chapter, this study focuses on areas directly involved in sound-producing movements
(bow, right wrist) and ancillary movements (hip, head). This is motivated by the results
described in chapter 4, which suggested that there are non-obvious relationships between
the kinematic features of sound-producing and ancillary movements that may lead to
new insights into the relationship between the instrument, the body of the performer,
and the music being played.

As pointed out in chapter 3, musical instruments have a a repertoire of sound-producing
gestures that contribute to build the ecological knowledge associated to that instrument.
Hence, this shared knowledge affects one’s musical experience, by creating expectations
and guiding musical understanding. In fact, by adopting an ecological approach, musical
perception is seen as an active experience influenced by a highly-structured environment
rather than a passive, disembodied phenomenon. From this perspective “exposure to the
environment shape perceptual capacities of an individual” and “perception and actions
are inextricably bound together” (Clarke, 2005).

The goal of this study is to empirically explore the shared knowledge of the gestural
repertoire of a well-known musical instrument among people who have no previous expe-
rience in playing that particular instrument. This is done by analysing the motion data
gathered during an experiment where neophytes are asked to mime a violin performance.
The analysis focuses on several body parts and movement features, in relation to the
music and in comparison to the actual performance of an experienced violinist.
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This experiment draws its motivation from the assumption that the musician encodes
gestures in sound and the listener can decode particular aspects of them through corporeal
imitation. As Leman notes, the listener is capable of grasping music as intended moving
form and perception and understanding of musical expressiveness is based on corporeal
resonance behaviour: “Obviously the movements of the listener are not [. . . ] the same as
the movements of the player. What is more or less the same [. . . ] is the motor system
that encodes and decodes sonic forms.” (Leman, 2008a). Therefore, a more detailed
analysis of the extent of the gestural vocabulary of an instrument also among non-experts
can contribute to the understanding of musical perception and expression.

A relevant aspect of the design of this experiment is the use of an actual violin,
specifically modified to not emit any sound when bowed and to be more accessible to
people who have never used one before. Previous studies have analysed so-called “air
performances” of experts and beginners mimicking the use of various instruments (Dahl,
2014; Godøy et al., 2005). Here, the choice of using an actual instrument is motivated by
the adoption of an ecological approach, assuming that the relationship with the object
(indeed part of the aforementioned environment) and its affordances (Gibson, 2000, 1977)
may have a significant impact on the movements of the subjects. In addition, experience
using tools has also been the subject of embodied music cognition research (Leman et al.,
2010) and the concept of affordance has seen renewed interest in multidisciplinary music
research (Altavilla et al., 2013; Menin and Schiavio, 2012).

The analysis of the motion data gathered during the experiment focuses prevalently
on intermediate and high-level movement descriptors. This is motivated by ecological
perceptual theories suggesting that, when processing information, people seem to be aware
of high-level features more directly than lower-level features (Clarke, 2005). Therefore,
high-level movement features are expected to be more readily identified and shared by
the participants. Moreover, body movement and entrainment in response to music are
complex and dynamic phenomenons. Therefore, movement analysis should try to address
complex patterns from multidimensional motion data, rather than single values that
capture a particular feature of a movement segment. Amelynck et al. (2014) proposed a
new method that avoids this segmentation and takes into account the complete movement
dynamics. They analysed the spontaneous bodily responses of people to a musical stimulus
and tried to model expressiveness in terms of commonalities and individualities using
Functional Principal Component Analysis (FPCA) (Ramsay, 2006).
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5.2 The Experiment: Material and Methods

5.2.1 Participants

A total of thirteen participants took part in the study. This includes twelve neophytes (7
male, 5 female, average age: 33.4, SD of age: 9.8) and one experienced violinist (male,
aged 23), who performed and recorded the stimuli for the experiment. All participants
gave their informed consent and were free to take breaks or abandon the experiment at
any point. Ethical approval was granted by the Arts and Humanities Research Ethics
Sub-committee at the Faculty of Arts and Humanities, Plymouth University. Participants
were also asked to fill out a brief anonymous questionnaire with basic personal data and
information about their musical background.

5.2.2 Stimuli

Participants were asked to mime a violin performance using the modified violin along 5
randomly-ordered musical stimuli, which consisted of brief solo violin excerpts recorded
by the experienced violinist. Stimuli were between 8.5 and 34 seconds long and were
chosen to cover a variety of different styles and instrumental techniques.

List of Stimuli

• Antonio Vivaldi “Violin Concerto in A minor, Op 3, No 6, RV 356” (1711)

• Kaija Saariaho, “Nocturne for solo violin” (1994)

• Camille Saint-Saëns “Le Carnaval des Animaux - 10. Volière” (1886)

• Niccolò Paganini “Caprice No. 1 ‘The Arpeggio’ in E major: Andante” (1819)

• Sergei Prokofiev “Five Melodies for Violin and Piano, Op. 35bis” (1925)

This study focuses on the data collected using the first and second stimuli. The first
stimulus consists of bars 1–12 of the first movement (Allegro) of Vivaldi’s Violin Concerto
in A minor (Fig. 5.1), whereas the second one includes bars 45–48 of the Nocturne for
solo violin by Kaija Saariaho (Fig. 5.2).

5.2.3 Apparatus

Data collection was carried out at the Interdisciplinary Centre for Computer Music
Research (ICCMR), Plymouth University, United Kingdom and at fourMs - Music, Mind,
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Allegro

Violino I

4

Vl.I

8

Vl.I

Solo11

Vl.I

Fig. 5.1 Excerpt of the violin part of Vivaldi’s Violin Concerto in A minor. The audio
recording of the first twelve bars was used as stimulus for the experiment.

Fig. 5.2 Excerpt of Saariaho’s Nocturne for solo violin. The audio recording of bars 45–48
was used as stimulus for the experiment.
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Fig. 5.3 Marker locations and labels.

Motion, Machines, University of Oslo, Norway. In Plymouth, participants’ movements
were recorded using a six-camera marker-based optical motion capture system (Natural
Point Optitrack Flex 32) tracking at a frame rate of 100 Hz. A total of 33 reflective
markers were attached to each participant and to the instrument and were located as
follows3: LF head, RF head, LB head, RB head, L shoulder, R shoulder, spine (T5), LF
hip, RF hip, LB hip, RB hip, L elbow, R elbow, L wrist (radius), L wrist (ulna), R wrist
(radius), R wrist (ulna), L knee, R knee, L ankle, R ankle, L heel, R heel, L toe, R toe,
R scapula4, violin scroll, violin L upper bout, violin R upper bout, violin L lower bout,
violin R lower bout, bow tip, bow frog (see Fig. 5.3).

In Plymouth, an additional marker located on the sternum of the participants was used.
However, the data associated to that marker was eventually discarded as it contained
too many dropouts due to the frequent occlusion caused by the right arm during bowing

2http://www.optitrack.com
3L=Left; R=Right; F=Front; B=Back. A similar configuration can be found in (Burger et al., 2014).
4Used to obtain an asymmetrical marker set, useful for marker identification and tracking. Not used

for analysis.

http://www.optitrack.com
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movements. That marker was therefore not used in the subsequent recording sessions in
Oslo. The stimuli were played back through a pair of Genelec 8020C loudspeakers using
a DAW5. The audio interface also generated the SMPTE signal used for synchronising
audio, video and motion capture sources. The audio in the room was recorded by a
pair of condenser microphones placed in a XY stereo configuration as well as by a video
camera used to film the sessions.

In Oslo, the performances were recorded using a nine-camera marker-based optical
motion capture system (Qualisys Oqus 3006) using the same frame rate (100 Hz) and
marker configuration (except for the sternum marker) used in Plymouth. The feed
from a digital video camera was recorded within the Qualisys Track Manager software
alongside the motion tracking data. The stimuli were played back using the same model
of loudspeakers and the same DAW software while recording and playback of the various
sources was synchronised using a custom Max7 patch.

The participants were asked to simulate the performance using a modified violin
designed specifically for the experiment. This violin was fitted with a support system
that allowed the instrument to be safely strapped to the shoulder of the participant. This
was done in order to allow the participants – who, in most cases, had never held a violin
before – to move with more confidence without being afraid to drop the instrument. Two
thin metal plates soldered to a metal strip that follows the profile of the bridge were
mounted on the violin body above the strings (see Fig. 5.4). This add-on had a dual
purpose—it helped novices to quickly overcome the initial difficulties of holding the bow
in a correct standard playing position and it prevented contact between the strings and
the bow hair, hence making the violin silent.

5.2.4 Procedure

The expert violinist was recorded first. He performed all the selected excerpts, which
provided both the audio stimuli for the neophytes and video and motion data to use as a
benchmark for the analysis of the participant’s movements.

Each neophyte was recorded individually. For each stimulus, the participant was
asked to first listen to the audio once in order to familiarise themselves with the music
and then use the modified violin to mime a performance along the played back audio
twice. Audio, video and motion data were recorded during each trial.

5http://www.reaper.fm
6http://www.qualisys.com
7https://cycling74.com

http://www.reaper.fm
http://www.qualisys.com
https://cycling74.com
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Fig. 5.4 The modified violin used for the experiment.

5.3 Analysis of periodicity and phrasing using Mo-
capgrams and Periodic Quantity of Motion

5.3.1 Movement Data Preprocessing

The motion data was first preprocessed, labeled and exported to C3D files using Optitrack
Motive and Qualisys Track Manager. The C3D files were then loaded in MATLAB
using MoCap Toolbox (Burger and Toiviainen, 2013). The 33 markers described above
were then transformed into a set of 23 secondary markers, which in the MoCap Toolbox
framework are referred to as ‘joints’ (Burger et al., 2014; Burger and Toiviainen, 2013).
The locations of these joints are represented in Fig. 5.5. Seven joints are obtained by
calculating the centroid of two or more markers: joint 1 (head) is the midpoint of the
four head markers; joint 2 (manubrium) is the midpoint of the shoulder markers, joint 5
(left wrist) of the left ulna and radius markers, joint 8 (right wrist) of the right ulna and
radius markers, joint 9 (mid torso) of the spine and the four hip markers, joint 10 (root)
of the four hip markers, joint 11 (left hip) of the the two left hip markers, joint 15 (right
hip) of the right hip markers. On the violin, joint 20 (violin left bout) is the midpoint of
the two violin left markers whereas joint 21 (violin right bout) is the midpoint of the two
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Fig. 5.5 Joints configuration: 1=head; 2=manubrium; 3=left shoulder; 4=left elbow;
5=left wrist; 6=right shoulder; 7=right elbow; 8=right wrist; 9=mid torso; 10=root;
11=left hip; 12=left knee; 13=left ankle; 14=right toe; 15=right hip; 16=right knee;
17=right ankle; 18=right toe; 19=violin scroll; 20=violin left bout; 21=violin right bout;
22=bow tip; 23=bow frog.

right ones. The locations of the remaining joints (3, 4, 6, 7, 12, 13, 14, 16, 17, 18, 19, 22,
23) are identical to the location of the respective markers (see Fig. 5.5).

5.3.2 Comparative movement data analysis using full Mocap-
grams

By plotting Mocapgrams (Jensenius et al., 2009) (a graph in which position coordinates
of each marker are normalised and projected onto an RGB colorspace) it was possible
to do a preliminary analysis and observe recurring patterns and periodicities in the
motion data. Fig. 5.6 shows full Mocapgrams for the performances of the expert violinist
and of one of the neophytes (top left and top right graphs respectively) of Vivaldi’s
Violin Concerto excerpt (henceforth ‘first stimulus’). Regular colour patterns in the
horizontal rows corresponding to each marker suggest periodicity in certain parts of the
body and the instrument. As an example, the thinnest pattern can be observed in the
right elbow and wrist joints (labeled ‘7_R_elbow_J’ and ‘8_R_wrist_J’ respectively),
which is consistent with the pattern visible in the bow markers (‘22_bow_tip_J’ and
‘23_bow_frog_J’). This shows, expectably, a certain coherence in the movement of the
bow and the arm that holds it, as well as high frequency periodicity caused by the
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repetitive bowing movements. Similarly, it is straightforward to notice that the left toe of
the expert (‘14_L_toe_J’) changes position only three times throughout the whole take.

For the purpose of this study, Mocapgrams are useful not only to observe general
periodicity in the movement of certain parts of the body during the performance; by
providing an overall view of all the motion data, they also allow to locate movements
that affect the whole body, which are visualised by vertical stripes that go across all
the marker rows. In the first stimulus, the most evident perturbation in the motion
data of the expert can be clearly seen between sec. 23 and 25. The waveform aligned
to the graphs shows that this general shift coincides with the peak the melody reaches
at the beginning of bar 9, before concluding the phrase on the minim at the end of
the same bar. A similar, albeit slightly delayed8, general perturbation in the motion
data can be observed in the neophyte around sec. 25. This is consistent with the data
of the other participants. Fig. 5.7 shows the magnitude of the mean velocities of the
upper body joints (labelled 1 to 8 in Fig. 5.5) of all the neophytes. Right hand and
elbow are plotted separately, since they are involved in the main instrumental movement
and therefore show the highest magnitudes. As it can be seen in the graph of the first
stimulus, the mean velocities of all joints drop near sec. 25, and so do the values of the
standard deviation. This confirms what observed above for the expert and one of the
neophytes and suggests a general tendency to parse evident melodic phrases with overt
body movements. As it can be noticed from the full Mocapgrams, this phenomenon
occurs repeatedly during the neophyte’s performance and the same trend is visible in the
data of the other participants. This is consistent with findings in previous studies on
air-performance showing that beginners tend to move more than experts (Godøy et al.,
2005).

The second stimulus used is an excerpt from Kaija Saariaho’s Nocturne for solo violin
(Fig. 5.2). Compared to the first stimulus, the pulse of the piece is less steady and
distinct. Each bar begins with a left hand pizzicato (‘+’ sign in the score) and continues
with a glissando (or with two extra-metric groupings in the case of bar 48), which then
leads to a tremolo. The downbeat of each bar is clearly punctuated by the pizzicato while
the intermediate beats are more indistinct. In the mean velocities for the second stimulus
depicted in Fig. 5.7, there are sharper peaks and valleys around the bar lines. Those are
the points were the tremolo reaches its peak leading to the onset of the pizzicato gesture.
The individual Mocapgrams of the data (shown in Fig. 5.8 for the expert and one of the
neophytes) also show general perturbations around those key points, especially around

8The delay is plausibly due to the fact that the neophytes follow the audio recorded during the
expert’s performance, therefore their movements slightly lag behind the ones of the expert.
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Fig. 5.6 First stimulus (Vivaldi, score in Fig. 5.1). Full Mocapgrams and Periodic
Quantity of Motion (PQoM) estimates of the bow frog marker and the left hip joint
for the expert violinist (left) and one of the neophytes (subject 7, right) aligned to the
waveform of the audio.
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Fig. 5.7 Mean velocities of right wrist and upper body joints (labelled 1 to 6, see Fig. 5.5
for the location). The graphs on the left show the values for the first stimulus (Vivaldi,
Fig. 5.1) while those on the right show the values for the second stimulus (Saariaho,
Fig. 5.2). The red numbers and the vertical dashed lines indicate the bar number and
downbeat location.

the downbeat of bar 3 and 4. Overall, there is ostensibly a clear intention among all the
participants to interpret the musical gesture of the pizzicato with a sharp movement.
Even though the location and extent of the movement may differ from subject to subject,
those musical events are consistently mapped to similar gestural reactions.

5.3.3 Analysis of movement periodicity using Periodic Quan-
tity of Motion

Another useful descriptor used for analysing movement periodicity is Periodic Quantity of
Motion (PQoM). First introduced in (Visi et al., 2014b), this index gives an estimate of the
resonance of the movement periodicity with different rhythmic subdivisions in the music.
Inspired by the widely known Quantity of Motion (QoM) (Camurri et al., 2004b; Camurri
and Volpe, 2011), PQoM is a motion descriptor useful to observe how movement relates
to rhythmic aspects of the music. PQoM is calculated by subdividing the magnitude
vector of the 3D motion data into frequency components by using filter banks (Müller,
2007). The frequencies of the filters correspond to multiples and subdivisions of the
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Fig. 5.8 Second stimulus (Saariaho, score in Fig. 5.2). Full Mocapgrams and Periodic
Quantity of Motion (PQoM) estimates of the bow frog marker and left hip joint for the
expert violinist (left) and one of the neophytes (subject 7, right) aligned to the waveform
of the audio.
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musical rhythm of the piece. The algorithm for computing PQoM is available as an
extension of MoCap Toolbox9.

The PQoM function uses three main input parameters: window size, tempo in BPM,
and the centre frequency of each band-pass filter. These parameters are associated with
the musical content. The window size parameter is used to define the amount of time
that will be integrated to compute the quantity of motion for each frequency band. Once
tempo is defined in BPM, the centre frequencies of each band pass filter can be specified
in note values, as �, 
, ♩, ♩. , �, . . . , following the rhythmic subdivision of the music.
The PQoM function converts these note values into hertz and each frequency fc is then
used to compute the transfer function coefficients of a fourth-order bandpass digital
Butterworth filter. Then, the input signal is filtered by a zero-phase forward and reverse
digital IIR filtering algorithm (non-real-time implementation). Finally, similarly to QoM,
the filtered values for each sample are summed over a time window of length N (window
size) samples.

For optical motion capture data, each tracked point is normalised using the origin
[0, 0, 0] of the coordinate system as reference10, and a weight vector w containing the
weight coefficients for each tracked point. These coefficients determine the influence each
tracked point has on the final PQoM value. It is worth noting that it is possible to ignore
specific markers by setting the related coefficient in w to zero. Thus, PQoM can be
calculated as follows:

PQoM [t, fck
] =

t∑
n=t−N

Hfck
{(w(|x[n] − x[n − 1]|))}, (5.1)

where the x vector contains the Euclidean norms for each tracked point, and Hfck
is the

kth bandpass filter operator.
In the case of the first stimulus (Fig. 5.1), a frequency of 1.5 Hz corresponds approxi-

mately to a steady crotchet beat, while 0.75 Hz correspond to a minim beat, 3 Hz to a
quaver beat and 6 Hz to a semiquaver beat. The PQoM at a certain rhythmic subdivision
is the magnitude of the corresponding frequency component in the movement normalised
between 0 and 1. PQoM was estimated for four components until the end of the audio
stimulus (sec. 33). By using PQoM, it is possible to relate the motion periodicities
initially observed in the Mocapgrams to the actual rhythmic features of the musical
stimulus. In Fig. 5.6, PQoM graphs of the bow frog marker and one of the hip markers
are aligned to the Mocapgrams. These two markers were chosen as the former is a good

9MoCap Toolbox and the PQoM extension are freely available at https://www.jyu.fi/hum/
laitokset/musiikki/en/research/coe/materials/mocaptoolbox

10In fact, it is possible to define any point as reference, [0,0,0] is the default option.

https://www.jyu.fi/hum/laitokset/musiikki/en/research/coe/materials/mocaptoolbox
https://www.jyu.fi/hum/laitokset/musiikki/en/research/coe/materials/mocaptoolbox
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indicator of the main instrumental gesture (bowing), while the latter traces ancillary
movements occurring in the lower half of the body during the performance. As shown
in the study in chapter 4, movements in this area in some cases do not resonate evenly
with the instrumental movements in the upper body. This is noticeable here as well after
a first glance at the PQoM graphs in Fig. 5.6. Expectably, the bow frog PQoM of the
expert is generally higher. However, expert and neophyte seem to follow similar patterns
throughout their performances, with PQoM peaking around sec. 4 and 25 in the 0.75 Hz
component, between sec. 6 and 16 in the 1.5 Hz component and at sec. 26 in the 3 Hz
one. However, the two hip PQoM graphs look very different from each other, sharing
only a relative peak in the 1.5 Hz component around the minim that closes the phrase in
bar 9. In fact, the neophyte’s hip PQoM graph shows that entrainment is remarkably
more frequent and intense in that area than in the expert’s. Moreover, by aligning PQoM
graphs with Mocapgrams, it is possible to add further details to previous observations.
In correspondence with the end of the phrase described previously (bar 9, sec. 23–25),
there is a sudden shift of the PQoM index from a peak in the minim beat frequency to a
peak in the quaver beat frequency after sec. 25. This salient turning point in the melody
is therefore consistently reflected in the movement of both subjects, denoting a shared,
embodied knowledge of the expressive qualities of the music, which they express through
their instrumental gestures regardless of their expertise with the instrument.

As noted in the previous section, compared to the first stimulus, the second stimulus
(Fig. 5.2) lacks of the steady and evident allegro pulse. The excerpt used has a much
slower pace with expressive variations (the tempo indication reads “Sempre espressivo,
calmo (♩ = c.54)”). This is evident when looking at the red bar lines plotted on the
waveforms in Fig. 5.8, which denote bars of slightly different durations. Therefore, the
PQoM for several different frequency components (from 1 Hz to 13 Hz with a step of 1
Hz) was computed. The results show, expectably, an overall less pronounced movement
periodicity compared to the first stimulus. However, there are notable peaks in the
PQoM of the expert’s bow frog, especially in the 2 Hz and 4 Hz frequency components.
These peaks occur right before the downbeat of each bar, in correspondence with the
tremolo notes that lead to the pizzicato notes. Notice the alignment of these peaks of
periodicity with the vertical stripes denoting movement across the whole body in the
expert’s Mocapgram at sec. 10 and 15. These peaks in PQoM values are ostensibly
due to the faster, repetitive bow strokes necessary to perform the tremolos. A peak of
periodicity, although weaker, can be observed also in the neophyte’s bow frog marker,
towards the end of bars 2 and 4 (approximately between sec. 10 and 12 and after sec.
20). Similarly to the previous stimulus, the bow frog PQoM of the expert is generally
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higher. However, there are relative peaks around the same areas, in correspondence with
the tremolos.

The expert’s hip marker shows much weaker periodicity. Apart from some barely
noticeable peaks near in the areas leading to the downbeats of each bar (which may
denote some modest resonance with the periodicity of the bow frog during the tremolo
gestures), the PQoM values slightly increase in the low frequency component in bar 4.
On the other hand, the PQoM values of the neophyte’s hip marker are noticeably higher
throughout, confirming the tendency observed on the first stimulus. There is, again, more
entrainment in the ancillary movements of the neophyte. This supports the assumptions
made in section 5.3.2, and is yet again consistent with the findings of previous studies
(Godøy et al., 2005).

5.3.4 Periodic Quantity of Motion Correlations

In order to have a detailed overview of the significant correlations between the PQoM
values of the expert and those of the neophyte, the Pearson correlation coefficients for all
the PQoM data were computed.

As expected considering the observations made in section 5.3.3, there is little significant
correlation between the PQoM values of the second stimulus (Saariaho, score in Fig. 5.2).
This is likely due to the lack of a steady rhythmic pulse in the second musical excerpt.
However, the PQoM values of the first stimulus (Vivaldi, score in Fig. 5.1) – which
has a steady allegro pulse – show much higher correlation coefficients. The correlation
matrices in Fig. 5.9 display the Pearson correlation coefficients for the four PQoM
frequency components for the bow frog marker of all the participants, including the
expert (row/column #1). The graphs clearly suggest that there is a very strong correlation
between the PQoM values of the quarter note frequency component (1.50 Hz, top right
matrix). Row and column 1 are of particular interest, since they display high correlation
coefficients between the expert’s PQoM and those of all the neophytes. To further
investigate the hypothesis of high correlation between the expert and the neophytes’
values, I tested the statistical significance of the correlation results using a significance
threshold of p = 0.05. Table 5.1 reports the values of the correlation coefficients with the
significant ones (p < 0.05) marked in bold. The values in the column for the 1.50 Hz
frequency component (which correspond to a quarter note rhythm) are all positive and
with the relative p-values below the threshold of significance.

Regarding the left hip marker, the correlation matrices in Fig. 5.10 show much less
consistent correlation among the participants. This is compatible with the observations
made in the previous sections, which showed noticeable differences between the expert
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and the neophyte. This is confirmed by the values shown in Table 5.2: the correlation
coefficients are both positive and negative with several respective p-values above the
threshold of significance.
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Fig. 5.9 First stimulus (Vivaldi, score in Fig. 5.1), bow frog marker. PQoM correlation
matrix for each frequency component. Row/column 1 display the correlation coefficients
for the expert violinist, 2 through 13 for the neophytes.

5.3.5 Results

The preliminary comparative analysis of the motion data of the first stimulus suggests
that high-level, structural features of the music are expressed through instrumental
movements in similar ways by the subjects, regardless of their ability to play violin. In
particular, the turning point of the melodic phrase at bar 9 seems to be something that
is ‘felt’ by the subjects also in a strongly embodied way, as it impacts the movement of
the whole body and the periodicity of the instrumental movements, which shifts sharply
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Table 5.1 First stimulus (Vivaldi, score in Fig. 5.1), violin frog joint. Results of the
correlation between the PQoM of each neophyte and the PQoM of the expert (subject
#1 in the correlation matrices in 5.9). Significant correlations (p < 0.05) are marked in
bold.

Subject # 0.75 Hz 1.50 Hz 3.00 Hz 6.00 Hz
2 -0.04 0.81 0.71 0.63
3 -0.01 0.63 -0.05 0.46
4 0.58 0.73 -0.19 0.01
5 -0.14 0.72 -0.19 0.28
6 -0.66 0.71 0.31 0.57
7 0.38 0.60 0.14 -0.13
8 0.39 0.81 -0.13 0.52
9 -0.36 0.52 0.16 0.51

10 0.33 0.77 0.38 0.57
11 -0.02 0.55 0.57 0.77
12 0.31 0.91 0.40 0.51
13 0.90 0.94 0.32 0.71

Table 5.2 First stimulus (Vivaldi, score in Fig. 5.1), left hip joint. Results of the
correlation between the PQoM of each neophyte and the PQoM of the expert (subject
#1 in the correlation matrices in 5.9). Significant correlations (p < 0.05) are marked in
bold.

Subject # 0.75 Hz 1.50 Hz 3.00 Hz 6.00 Hz
2 0.58 0.42 -0.50 -0.15
3 0.66 0.55 0.51 -0.24
4 0.05 -0.76 0.48 -0.37
5 0.50 0.02 0.17 0.57
6 0.64 0.14 -0.16 -0.34
7 0.03 -0.35 0.09 -0.16
8 0.17 0.78 0.26 0.41
9 -0.01 0.49 0.19 0.14

10 0.84 0.57 0.33 0.52
11 -0.22 0.68 0.57 -0.02
12 0.60 -0.04 0.53 0.23
13 0.27 -0.21 0.31 0.70
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Fig. 5.10 First stimulus (Vivaldi, score in Fig. 5.1), left hip joint. PQoM correlation
matrix for each frequency component. Row/column 1 display the correlation coefficients
for the expert violinist, 2 through 13 for the neophytes.

from a frequency to the other. In addition to that, after the minim that closes the
phrase there is a peak in the 3 Hz PQoM of the expert and an even higher one in the
neophyte. This may suggest that the suspension created by a longer note ending a phrase
creates a stronger expectation for the following melodic part, with which the neophyte
engages also through ancillary movements, as shown by the hip PQoM graph. In fact,
all the neophytes seem to have a more pronounced full-body periodicity. This can be
hypothesised by simply looking at the vertical stripes in the Mocapgrams. However,
PQoM gives a much more precise estimate of the periodicity in relation to the musical
rhythm. Nearly all the neophytes seem to have a generally higher resonance with the
periodicity of the music at the hip compared to the expert, whose PQoM is instead higher
at the bow frog. This can be observed in both stimuli, and may lead to hypothesise
that neophytes tend to follow the pulse and the features of the music with ancillary
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movements also to compensate for the lack of expressivity of their silent instrument.
Doing so, they express the musical content of the stimulus using their full bodies.

Compatibly, the data of the second stimulus (even though musically very different
from the first one) also suggest the major structural features of the musical excerpt
are expressed through instrumental movements in similar ways. The second stimulus
shows expectably less entrainment due to its slower and more implicit rhythmic features.
However, the bar subdivision delineated by the rising tremolos and the pizzicatos are
clearly expressed by the neophytes through instrumental and body movements.

More general results from the correlation and statistical tests show strong correlation
between the periodicity of instrumental movements related to the musical rhythm of
the first stimulus. Particularly relevant is the significant correlation between the expert
and each neophyte for the quarter note PQoM of the bow frog (as shown in the second
column of Table 5.1). This suggests that this music-related motion feature is part of the
embodied knowledge shared by the participants.

On the other hand, the ancillary movements of the hips appear more individual and
idiosyncratic, showing positive correlation between some of the participants, especially in
the half note frequency component. This could be due to periodic weight shifting, which
has been previously observed in performances with other musical instruments (Wanderley
et al., 2005). However, this hypothesis would have to be further verified in a dedicated
study that also takes in consideration the motion data of other parts of the body.

5.4 Analysis of Individualities and Commonalities
Our interaction with music engages the whole body, but not all body parts show the
same behaviour (Burger et al., 2013c; Visi et al., 2014a). This analysis is focused on the
movements of the head and the right wrist. In fact, previous research has shown that
string players communicate expressive qualities of the music through head movements
(Coorevits et al., 2014; Glowinski et al., 2014b). In addition, the movements made by
the right wrist are also addressed, since it is a body part that is directly involved in
sound-producing gestures.

In this analysis, the performances of all the 12 neophytes are taken into consideration.
The first derivative (velocity) was calculated from the motion data of each subject using
a Savitsky-Golay smoothing filter with a regression window of 7 frames and the resulting
signals were set equal to the norm of the derivatives. Secondly, the speed envelope was
calculated using a moving average filter of 100 frames in the case of the Vivaldi and
150 frames in case of the Saariaho to make sure the beat of the music (1.5 Hz for the
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Vivaldi, 0.7 Hz for the Saariaho) was covered by the window and, at the same time, avoid
losing too many of the nuances of the movement. The speeds of the body movements
are then compared, as this feature is closely related to kinetic energy (Dempster and
Gaughran, 1967). To check if the data was normally distributed, a Weibull function
was fitted to the distribution of the speed values across subjects at all moments in time.
The mean speed signal of both head and wrist at each timestamp over participants was
approximately normally distributed, corresponding to a shape parameter of the fitted
Weibull distribution between 2.7 and 3.2 for both pieces.

5.4.1 Modelling head and wrist movements

The method for the analysis of expressiveness proposed by Amelynck et al. (Amelynck
et al., 2014) is based on Functional Principal Component Analysis (FPCA). FPCA allows
to describe a signal as the sum of an average signal f̄(t) with a linear combination of a
set of eigenfunctions ξk(t) (commonality). Each subject can then be represented by one
score (αi) per eigenfunction (individuality):

fi(t) = f̄(t) +
K∑

k=1
αik ξk(t) . (5.2)

This way, the dimensionality of the problem is reduced and as much variance as
possible is covered by only a small set of eigenfunctions. According to this method, the
set of eigenfunctions should explain at least 70% of the variance. For our modelling,
a correlation matrix based on the speed envelope of all subjects over time C(t1, t2)
is used as an input. An additional assumption for using FPCA is that there is a
relationship between values in C that are only a few samples apart. Therefore, the data
is decomposed in a set of Cubic B-spline basis functions. To determine a reliable number
of basis functions, the Mean Squared Error between model and signal was calculated. For
both the head and wrist, and in both stimuli, the number of basis functions could be set
to 60. A set of eigenfunctions could then be calculated by means of FPCA, using a least
square algorithm. As the human body shows complex behaviour, varimax rotation of the
functional principal component axes was applied to calculate a basis of eigenfunctions
that most economically represent each individual by a linear combination of only a few
basis functions. FPCA was performed using Ramsay’s FDA toolbox for MATLAB. His
approach (Ramsay, 2006) was followed throughout the procedure.
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5.4.2 Results

To cover more than 70% of the variability of the head in the performance of the Vi-
valdi excerpt, up to three eigenfunctions are needed, totalling 87% of the variability
and accounting for 40%, 28% and 19% respectively (Fig. 5.11). An equal amount of
eigenfunctions is needed for the wrist as 84% of the variability is covered with 40%, 15%
and 29%. This means that, with only three eigenfunctions, we can model more than
80% of the commonalities in the head and wrist movements of the neophytes miming a
violin performance following the musical stimulus. The individuality of each subject’s
performance was obtained by calculating the Functional Principal Component Score for
the three eigenvalues. The individual performance can hence be modelled by three values
indicating a positive or negative score for each eigenfunction. As few individualities were
required for the model, this suggests that music was embodied in similar ways among
the subjects.

For the head, the first eigenfunction has a positive deviation from the group’s mean
for almost the entire stimulus. This means that subjects with a positive factor on
this function will perform with higher speed than the average, nearly throughout the
whole recording. In more detail, this eigenfunction reveals something about the periodic
movement and phase of the head. Subjects scoring low on this eigenfunction will have
low velocity in the beginning of the bar, and higher velocity in the middle (bars 1, 3, 4, 7,
9, 10, 11, 12), while subjects scoring high will have their velocity peak in the beginning
of each bar. In the middle of bar 7, this is reversed and bar 8 and 9 have an opposite
velocity profile. Note that this is the moment where the repeated note sequences end and
new musical material starts. In the beginning of bar 6, the eigenfunction values are close
to the mean. The second eigenfunction has a major positive deviation from the mean
in bars 5, 6, and 7, the second half of bar 8 and bar 9, and the last two bars. This is
complementary to the first eigenfunction. The third eigenfunction has a major negative
deviation, especially in the first 4 bars and bar 8.

The first eigenfunction of the right wrist has a major positive deviation in bars 2-3,
6-7 and 10-12 and the second eigenfunction accounts for a positive offset in bars 1 and 8
in particular. Again, the third eigenfunction has a negative deviation from the group’s
mean, especially covering the variability in bars 3-6, and 8-10. Fig. 5.12 shows the
individualities for the head and wrist, clustered using k-means clustering. The number
of clusters was set to 5 for the head and 4 for the wrist, after considering the optimal
number with k-fold cross validation. These three variables are the principal component
scores, or weights for the eigenscores, which represent the performance of the individual
subject.
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Fig. 5.11 First stimulus (Vivaldi, score in Fig. 5.1). Eigenfunctions for the speed envelope
of head and right wrist movements after varimax rotation. The green line indicates a
positive offset from the group’s mean, the red line a negative offset.



72 Analysis of Mimed Violin Performance Movements of Neophytes

−1
−0.5

0
0.5

1 x 104

−5000
0

5000
10000

−5000

−4000

−3000

−2000

−1000

0

1000

2000

3000

PC1

K−means Clustering based on Component Score − Head

PC2

PC
3

−4000
−2000

0
2000

4000 −1000
0

1000
2000

3000
−3000

−2000

−1000

0

1000

2000

PC2

K−means Clustering based on Component Score − Right Wrist

PC1

PC
3

Fig. 5.12 First stimulus (Vivaldi, score in Fig. 5.1). Individualities for head and right
wrist movements, clustered using k-means clustering.

Some intervals of coherence (i.e. time intervals of equal signs) could be derived
from these results. When an eigenfunction has multiple intervals of coherence it can be
considered consistent. For the head, the first eigenfunction shows this behaviour from
the middle of bar 4 until the end of bar 5, as well as from bar 7 until the end of bar 10.
The second eigenfunction covers this for bars 5-7, 9, 11 and 12. The third eigenfunction
does not show long intervals of equal signs, except for the first bar. Coherence for the
right wrist movement is found in the first eigenfunction from bars 2-4, the middle of bars
5-7 and 11-12. The second eigenfunction reveals coherence in the first bar and from the
middle of bar 7 until the end of bar 8. From bar 3 until the beginning of bar 7 and bars
8-10 are coherent in the third eigenfunction. Thus, each eigenfunction dominates specific
time intervals in the musical structure and they are mostly complementary to each other.
The third eigenfunction of the wrist, for example, nicely reflects the repeated notes in
the music (bars 3-7) and the new musical material introduced in bars 8-9 and 10. A
similar effect can be seen in the second eigenfunction of the head. The last two bars of
the musical stimulus (bars 11-12) are also represented in two eigenfunctions (the second
eigenfunction of the head and the first of the wrist).

For the second stimulus, two eigenfunctions are sufficient to explain 70% of the
variability of the head, and with three eigenfunctions, even 88% of the variability is
covered. For the wrist, three eigenfunctions (47%, 18%, and 21% resp.) are sufficient as
well. Again, this means that we can model the behaviour of the neophytes with a limited
number of eigenfunctions, pointing at similar embodied behaviour (Fig. 5.13).

The first two eigenfunctions considered in the head are very consistent, with the
first eigenfunction showing increasing positive and decreasing negative offsets towards
the end of the excerpt. The second interval shows very distinct intervals of coherence
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that correspond to the intervals of the bar. Participants with a positive eigenvalue for
this function in general will have a lower velocity within each bar and an increase in
velocity towards the next bar, while the participants with a negative eigenvalue show
opposite behaviour. The points of convergence at the bar transitions show that the
second eigenfunction mostly accounts for individual behaviour within each bar.

The third eigenfunction reveals different timing behaviour of the participants, with
a negative offset meaning an earlier peak than a positive offset. This was validated
using cross-correlation with the maximal correlation at -0.296 seconds, showing an
interesting parallel with the typical reaction time of people in tapping tasks, which
generally lies between 200 - 300 ms (Bååth, 2015). It could be that the difference between
participants in how well they predict what will happen in the stimulus, is expressed with
this eigenfunction.

The first eigenfunction of the wrist movement in the Saariaho excerpt shows a general
positive offset. Moreover, it can be clearly observed that the difference in musical material
in the fourth bar is reflected in the movement of the wrist: there is a point of convergence
in the middle of the fourth bar, while this does not appear in the other three bars
where pitch changes appear mostly in the beginning of the bar. The second and third
eigenfunction of the wrist are very complementary in the case of the Saariaho piece,
where the second eigenfunction accounts for the variability in the beginning of the first
bar and the transitions between bars 2-3 and 3-4 and the last part of the fourth bar,
while the third eigenfunction accounts for the variability in the middle of these bars.
This last eigenfunction is very similar to the second eigenfunction of the head, though
less pronounced.

In general, it could be observed that the head is a body part that shows very clear
intervals of coherence that match well with the timing structure of the piece (whole
phrase, bars and reaction times of participants).

5.5 Summary and Comments
This chapter presented a study aimed at empirically exploring some of the theoretical
assumptions presented in chapters 2 and 3. A group of people with no experience playing
the violin were asked to mime a performance following the playback of some short
musical excerpts recorded by an experienced violinist. To do so they used a silent violin
specifically designed for the experiment. Motion capture data was recorded during every
session.
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Fig. 5.13 Second stimulus (Saariaho, score in Fig. 5.2). Eigenfunctions for the speed
envelope of head and right wrist movements after varimax rotation. The green line
indicates a positive offset from the group’s mean, the red line a negative offset.

Even though low-level features of movement appear to vary considerably in some of
the subjects, there is a certain degree of consistency among participants, especially in
response to melodic, rhythmic, and timbral features of the music. This suggests a shared
knowledge of a vocabulary of instrumental movements, which is then combined with the
idiosyncrasies of each subject. The analysis of commonalities and individualities confirms
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this, and other studies (MacRitchie et al., 2013) support the idea that musical structure
is communicated also through body movements, and idiosyncrasies contribute to express
musical meaning.

New approaches to movement analysis are in continuous development and there is an
increasing need for tools that can aid the retrieval of meaningful features in complex,
multidimensional motion data. Therefore, other approaches – like Topological Gesture
Analysis (TGA) (Naveda and Leman, 2010) – can possibly be employed in future analysis
works alongside the methods presented here. New techniques for motion data analysis
could be inspired by concepts suggested by theories of music perception and cognition,
therefore making the analysis more akin to how humans perceive and move to music.
This is indeed a challenging task since retrieving meaningful, articulated information
from motion data requires complex algorithms and technologies.

Motion data analysis has provided great detail for understanding the role of body
movement in musical expression and cognition. However, it is felt that integrating
quantitative data analysis with qualitative analysis and practice-based research may
broaden the scope of the research, allowing to test the assumptions made through the
analysis in musical contexts, outside of the sterile environment of the laboratory.





Part III

Using Movement in Music: Practice





Chapter 6

Augmenting Traditional Musical
Instruments: a Multimodal
Embodied Approach

At a certain point, there was an
attempt to take this biological fact,
these ways of mapping the process
within the body, as a way of
describing a larger aesthetic system.

Matthew Barney
Drawing Restraint Vol I 1987 – 2002

6.1 Introduction
This chapter1 describes the implementation of gestural mapping strategies for performance
with a traditional musical instrument, multimodal motion sensors, and live electronics.
The approach adopted is informed by concepts of embodied music cognition and functional
aspects of musical gestures (see chapters 2 and 3). Within this framework, gestures are
not seen as means of control subordinated to the resulting musical sounds but rather
as significant elements contributing to the formation of musical meaning similar to
auditory features. Moreover, the ecological knowledge of the gestural repertoire of the
instrument is taken into account as it defines the action-sound relationships between the

1This chapter is based on Visi et al. (2014b). The full peer-reviewed article can be retrieved online at
http://www.federicovisi.com/publications/.

http://www.federicovisi.com/publications/
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instrument and the performer, and contributes to form expectations in the perceivers.
Subsequently, mapping strategies from a case study involving electric guitar will be
illustrated, describing what motivated the choice of a multimodal motion capture system
and how different solutions have been adopted considering gestural meaning formation
as well as technical constraints.

6.1.1 Mapping

In the past two decades motion sensing technology have become more accessible and have
been increasingly employed in academic research and artistic practice. More recently,
such technologies have become pervasive, as many everyday electronic devices use motion
data for different purposes and new developments made the recognition of motion features
more precise and robust.

In musical contexts, there is a long and prolific tradition of electronic interfaces that
exploit gestures and body motion as means of control of musical parameters (Jensenius
and Lyons, 2016; Miranda and Wanderley, 2006). Adopting an effective strategy when
designing the mappings between control signals and sound parameters is crucial for
the expressiveness of the interface, being the relationship between motion features and
musical parameters often far from obvious. Mapping has in fact received increasing
academic interest (Wanderley and Malloch, 2014) and it is recognised as a critical element
in instrument and interaction design (Hunt et al., 2003). Several mapping approaches
have been adopted over the years and insights from artistic practice show that mapping
is not solely an issue of interface and control, but also a part of the compositional
process (Di Scipio, 2003; Murray-Browne et al., 2011).

6.2 The Electric Guitar as a Case Study
Given the background scenario described in chapters 2 and 3, it is clear that gestures have
a significant influence on how music is experienced, and traditional musical instruments
are a rich repository of shared gestural information. Therefore, the theoretical apparatus
of embodied music cognition (EMC) could be employed to devise effective mapping
strategies that may give a substantial contribution to both the expressiveness and the
liveness of a performance involving TMIs and live electronics. In recent years, there have
been applications of EMC within interactive multimedia environments (Camurri et al.,
2001) and singing performance (Maes et al., 2011).
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In this chapter, I describe the implementation of some gesture mapping strategies
for a performance with electric guitar and electronics. There are other documented
approaches to electric guitar augmentation using the performer’s gesture (Lähdeoja et al.,
2009) and gestural control of digital audio effects (Verfaille et al., 2006). Apart from
aspects related to control of musical parameters, this approach emphasises the fact the
gestures contribute to the formation of musical meaning, therefore the function of gestures
and their relationship with musical features are taken into consideration throughout the
implementation process.

The multimodal motion capture system adopted features sensors worn by the per-
former and a Microsoft Kinect. Flex sensors and accelerometers located on hands and
wrists of the guitarist are employed to obtain accurate data of hand movements. In
fact, sound-producing gestures of guitar playing – as with several other instruments –
usually involve hands and arms, and such gestures are the most readily noticed by an
observer (Dahl et al., 2010). Thus, obtaining more stable and detailed signals is useful to
capture the subtle movements of hands and wrists. Conjointly, the Kinect data – even at
relatively low frame rates (30 hz) or with jittery joint tracking – allows to track full-body
movements, enabling the extraction of higher-level expressive feature.

6.3 Use of wearable sensors
Flex sensors and 3-axis accelerometers are mounted on custom wristbands together
with a custom Arduino-based board equipped with an XBee wireless chip2. This sends
the sensors’ signal to a computer for signal processing and parameter mapping. The
mapping strategies for these sensors are informed by the functional categories described
by Jensenius et al. (2010). For example, the flex sensor on the left wrist is used to
monitor the activity of this articulation. In guitar playing, movements of the left wrist
act in support of the fingers operating on the fretboard. These movements are therefore
defined as sound-facilitating support gestures. Stressing the wrist articulation may cause
discomfort and alter the tone of the notes being played (Costalonga, 2009). To underline
this, the flexion sensor is mapped to a bit reduction DSP algorithm that deteriorates
the audio signal of the guitar, reflecting the uncomfortable stretching occurring on the
left-hand (Fig. 6.1). The analogue signal of the sensor is converted to OSC data, which is
then rescaled in a software dedicated to mapping3 according to how the guitarist bends
the wrist when playing comfortably or when stressing the joint. The OSC data is then

2http://www.sensestage.eu
3http://steim.org/product/junxion/

http://www.sensestage.eu
http://steim.org/product/junxion/
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Fig. 6.1 Use of wearable sensors: flex sensors placed on the wrist activated by a sound-
facilitating support gesture.

converted to MIDI and sent to a DAW4, which hosts several DSP units that process the
audio signal of the guitar. In this example, the MIDI data obtained from the flexion
sensor controls the downsample resolution of a bit reduction DSP unit. (Fig. 6.1).

The accelerometers are instead used to follow the communicative expressive ges-
tures (Jensenius et al., 2010) of the right arm that immediately follow strumming. These
movements can also be considered suffixes of the strumming gesture and are important
for its performance and perception (Godøy et al., 2010). To reinforce the meaning of
the gesture, the accelerometer is mapped to a Max5 patch that affects the timbre and
decay of the strummed chord, following the intensity of the movement. The dynamic
range of the accelerometer is relatively high, therefore the OSC data obtained from the
sensor needs to be compressed and filtered through the same mapping software used
above. (Fig. 6.2).

4http://www.ableton.com
5http://cycling74.com

http://www.ableton.com
http://cycling74.com
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Fig. 6.2 Use of wearable sensors: 3-axis accelerometer placed on the wrist activated by a
communicative expressive gesture.

6.4 Use of full-body motion analysis
Whilst wearable sensors are used to follow the subtle gestures of the upper limbs, full-body
motion analysis is employed to extract features from complex movements occurring over
longer time intervals. One measure widely used by other authors (Camurri et al., 2005;
Fenza et al., 2005) is Quantity of Motion (QoM). QoM is proportional to translational
movement and it is extracted from a global set of features evaluated over time. It gives
high values when the body is moving fast and low values when it is more stationary.
Camurri et al. (2004b), for example, implemented this feature in the EyesWeb processing
library. QoM is also useful for extracting contextual syntactic structures from musical
performance (Lesaffre et al., 2003). QoM can be estimated from the skeleton joints
tracked by a motion capture system (Fenza et al., 2005). In this case, the user can
measure QoM for specific combinations of skeleton joints.

Initially, the QoM definition presented by Camurri et al. (2005) and also by Fenza
et al. (2005) was adopted. Motion bells can be estimated in a simple but effective way by
applying a low pass filter on the QoM estimates over time. After the filtering process, it
is possible to identify the phases of the movement by analysing the shape of the curves.
This can be seen in Fig. 6.3, which illustrates the motion bell generated by a sudden
movement of the performer.
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Fig. 6.3 The dashed line shows QoM values on a movement sequence. The solid line is
the final measure after low pass filtering. The skeletons (on top) illustrate the skeleton
position at each time stamp (circle marks).

The information obtained through this simple procedure is useful to segment the
different motion phases. In fact, “gesture spotting” (Elmezain et al., 2009) is crucial for
classification accuracy of complex gesture recognition algorithms based on Hidden Markov
Models (Fink, 2008) or Dynamic Time Warping (Müller, 2007). Furthermore, offset and
onset points can be used to control musical events associated with the respective gesture.

To find new ways of using QoM in musical contexts, we6 devised a feature named
Periodic Quantity of Motion (PQoM, see section 5.3.3) that describes the quantity of
motion in relation to the periodicity of the movement. There is often sensorimotor
synchronisation between the rhythmic structure of the piece and the periodic motion of
the body (Repp and Su, 2013). PQoM allows to measure the resonance between rhythmic
subdivisions of the music and body movement.

In our case study on electric guitar, the movement of the strumming hand often plays
a periodic rhythm. For example, during a crescendo the periodic hand movement might
be performed with greater amplitude and different body parts might also be engaged
in periodic movements with the same frequency. The values describing this corporeal
resonance with the music can then be mapped to sound parameters that alter the timbre

6Periodic Quantity of Motion was developed in collaboration with Rodrigo Schramm.
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of the guitar, (such as gain, saturation, etc.). This idea can also be used with other
instruments, such as bowed strings and percussion instruments.

The PQoM estimate is obtained by decomposing the motion capture signal into
frequency components by using filter banks (Müller, 2007). For each frequency, the
process is similar to the computation of QoM, but it uses only the amplitude of that
specific component. For example, the resonance of body movements with a certain
rhythm might be used to add sampled percussive elements to the music, reinforcing
the relationship between auditory and kinematic elements of the performance. Fig. 6.4
illustrates the extraction of such features from the body motion captured by the Kinect.
In this example, the guitarist performs a periodic movement with the strumming hand.
The hand oscillates with a frequency equal to multiples or fractions of the music tempo
in BPM. In Fig. 6.4a, the lighter regions show where the movement resonates more with
the rhythm. In the same figure, the bounding boxes represent the individual movements
with distinct frequencies, detected using the threshold scheme described for the QoM
approach. The light blue, pink, dark blue, red and green colours indicate movements
corresponding to rhythms made of quavers, crotchets, minims, semibreves, and breves
respectively. Finally, Fig. 6.4b shows the motions bells for each one of the expected
frequencies, and the segments delimiting the individual movements.

The system can be further customised to follow other periodic features of the music
and to recognise specific motion patterns. It can also be used to attune the music to the
gestures of the performer, allowing for a two-way feedback between music and movement.
This allows to explore interactions based upon corporeal resonance and entrainment,
which are spontaneous phenomena that can be observed in listeners and performers (Dahl
et al., 2010; Leman, 2008a).

6.5 Summary and Comments
This chapter described an approach to the use of body motion features to augment
traditional musical instrument performance. This approach is informed by studies of
embodied music cognition and musical gestures and adopts a multimodal motion sensing
system to extract various movement features. A novel feature named Periodic Quantity
of Motion used to measure the resonance of body movement with musical rhythmic
subdivisions is introduced.

Looking at music and gesture within the framework of embodied music cognition
can radically influence the development of new expressive interaction tools. Gestures
very often appear both as body movement schemes and mental representations, bridging
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Fig. 6.4 (a) The lighter regions show where the movement resonates more with the rhythm.
The light blue, pink, dark blue, red and green bounding boxes indicate movements
corresponding to rhythms made of quavers, crotchets, minims, semibreves, and breves
respectively. (b) The plotted lines (light blue, pink, dark blue, red and green) show the
QoM related to each frequency response. The vertical stems show the starting point
(triangle) and the ending point (circle) of each periodic motion.
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body and mind (Leman, 2010). Considering gesture as an active constituent of embodied
musical meaning implies that its role in an interactive music performance goes well
beyond being a mere means of control of musical parameters. This interdisciplinary
approach can inform different mapping strategies and technical solutions. First, by
considering the function of different gestures in a performance to electronically modify
the sound of the instrument played using sensors, and then by measuring the quantity
of body motion of the performer in relation to musical rhythmic features. Working
on different layers of gestural complexity not only allows for the development of more
advanced systems but also reflects the multi-level nature of gesture within the mechanism
of musical meaning formation. Gestures are in fact experienced as elements of a nested
hierarchical structure (Leman, 2010) and taking this aspect into consideration can aid
the design of expressive musical systems. Achieving the illusion of a total, fully conscious
control is not the goal of this approach. Lähdeoja et al. (2009) explored non-direct
control using semi-conscious gestures showing how these can be used to control subtle
aspects of the music performed. This approach is also directed towards gestural aspects
of music and aims nonetheless at exploring the tight relationship between music and
body, on both a conscious and a sub-conscious level.

Focusing on a traditional musical instrument allowed to draw gestures from an existing,
well-established gestural vocabulary. However, this does not mean that the approach
cannot be extended to new digital instruments or employed to develop new interfaces.
From this perspective, acoustic instruments are seen as rich repositories of gesture-sound
couplings unmediated by mapping, which may be a useful resource to understand gestural
aspects of music and, at the same time, find new ways of musical expression.

Embodied music cognition is the subject of an ongoing interdisciplinary research and
new contributions to the understanding of important elements of its workings have been
recently published (Kilner and Lemon, 2013; Maes et al., 2014; Matyja and Schiavio,
2013). Practice may lead to new intuitions, as it did in other contexts (Smith and Dean,
2009). New cross-disciplinary approaches may in fact help to “move beyond designing
technical systems” (Waisvisz, 2006) and give rise to new engaging musical experiences
that can both raise questions and provide new insights about musical expression and
cognition.





Chapter 7

Instruments, Bodies, and Data:
Music as an Emergent Multimodal
Choreography

RULE EIGHT: Don’t try to create
and analyze at the same time.
They’re different processes.

Sister Corita Kent, popularised by
Merce Cunningham and John Cage

7.1 Overview
This chapter1 explores technical and conceptual issues related to the representation
and mediation of body movement in music performance through digital technology. In
particular, it focuses on IMU/MARG2 wearable sensors. IMU/MARG data is compared
to optical motion capture data and dedicated computable motion descriptors are proposed.
The chapter then describes an implementation of machine learning algorithms for the
use of IMU/MARG sensors in interactive music applications, reporting on how concepts
related to the topology of data informed the mapping approach. The chapter also reports
on a case study of a music performance where motion sensor technologies are employed

1This chapter is based on Visi et al. (2017). The full peer-reviewed article can be retrieved online at
http://www.federicovisi.com/publications/.

2Inertial Measurement Unit / Magnetic, Angular Rate and Gravity. IMU/MARG sensors are
sometimes marketed as 9DoF (9 Degrees of Freedom) sensors. More information about this technology
and its naming in section 7.3.1.

http://www.federicovisi.com/publications/
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to track the movements of the musicians while they play their instruments. Motion data
is used to control the electronic parts of the piece in real time. In light of this case study,
the chapter discusses how musical instruments can be seen as repositories of a gestural
vocabulary and the score as a script that elicits an emerging choreography. Signification
occurs through sound, physical movement, and digital movement data, while the body
of the performer becomes the medium at the core of a layered process of multimodal
meaning formation. Finally, it is suggested that computable motion descriptors and
machine learning techniques are useful tools for interpreting motion data in a meaningful
manner. However, qualitative insights on how human body movement is understood and
experienced are necessary to inform further development of motion capture technologies
for expressive purposes. Thus, music performance can be an effective test bed for new
modalities of human-computer interaction.

7.2 Background Scenario
In the interdisciplinary field of musicological research, the idea that music is a multimodal
phenomenon that engages body movement has given rise to a wide range of methodologies
for the study of musical gestures. On the one hand, the advent of new technologies,
such as infrared motion capture, has allowed researchers to observe human movement
in detail, extracting precise three-dimensional data and kinematic features of bodily
movement. This brought about a corpus of studies where motion analysis is based on the
computation of several low-level descriptors – or movement features – that could be linked
with musical expression (Godøy and Leman, 2010). Acceleration and velocity profiles
have shown to be useful in the study of musical timing (Burger et al., 2014; Glowinski
et al., 2013b; Goebl and Palmer, 2009; Luck and Sloboda, 2009). Quantity of Motion
(QoM) has been related to expressiveness (Thompson, 2012) and features of the bass
(Van Dyck et al., 2013), while contraction/expansion of the body can be used to estimate
expressivity and emotional states (Camurri et al., 2003). More advanced statistical
methods, such as Functional Principal Component Analysis and physical modelling have
led to mid-level descriptors, including Topological Gesture Analysis (Naveda and Leman,
2010), curvature and shape (Desmet et al., 2012b; Maes et al., 2012), and commonalities
and individualities in performance (Amelynck et al., 2014) (also described in chapter 5).

Gestures in music performance can also be described by means of high-level descriptors.
Verbal descriptions, subjective experiences, and the musician’s intentions play an impor-
tant role in our daily interaction with music. This is the way performers and audiences
naturally communicate about music. Leman (2008a) refers to these descriptions as “first
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person” perspectives on music experience, resulting in intention-based symbolic/linguistic
expressions. In the analysis of music performance, this qualitative approach has been
explored profoundly in the studies of, among others, Davidson (2007, 2012); King (2006);
Williamon and Davidson (2002). Here, musical gestures are accessed by means of verbal
descriptors, or directly perceivable movements that appear to be expressive. In that
sense, the concept of musical gesture can be useful to bridge the gap between mental and
subjective experiences of the performer/listener and the direct observable physical world.
Recent studies have made an attempt to close the gap between these two perspectives
in music performance research, by applying a performer informed analysis (Coorevits
et al., 2015; Desmet et al., 2012b). In trying to understand the relationship between the
physical aspects of movement in space and expressive qualities, intentions and feelings,
the study of musical gestures has resulted in new understandings of the relationship
between musician and musical instrument as well. The instrument then becomes a natural
extension of the musician (Nijs et al., 2013), and hence a part the mediation process
of communicating musical meaning. The development of human-computer interfaces
also exploits the expressive potential of musical gestures to enhance the interaction be-
tween digital and human environments and to create meaningful applications for musical
practice (Camurri et al., 2004c). Recently, artistic practice has also been increasingly
adopted as a complementary research method for the arts and humanities, leading to
mixed, interdisciplinary methodologies (Smith and Dean, 2009).

7.3 Capturing, Storing, and Mediating Movement
Human movement can be digitally captured and stored via different means, for purposes of
analysis, description and notation. In the context of musicological studies, movement has
been recorded throughout the years using visual media such as photography (Ortmann,
1929) and video (Davidson, 1993). More recently, motion capture has become widely
adopted as the medium of choice for quantitative studies of human motion. Even though
new technologies are emerging, marker-based optical motion capture is still regarded as
the most reliable solution for precise, high-speed tracking. Data obtained from these
systems is usually in the form of three-dimensional vectors referring to a global coordinate
system. Each sample in the data returns three-dimensional information regarding the
position of a point (marker) in space in relation to the origin of the Cartesian axes. The
origin is defined during the calibration procedure and is usually set in an arbitrary place
on the floor within the capture area.
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As Salazar Sutil (2015) points out, the term motion capture (sometimes shortened
to “MoCap”) indicates not only a technological setup but it is also used to refer to
a “technologized language of movement, involving the formalized description of move-
ment coordinates and movement data for its subsequent computational analysis and
[. . . ] processing.”. Compared to photography and film, MoCap is definitely a younger
medium. This has obvious technological implications as MoCap technologies are still
being developed and only recently have become more widely accessible to researchers
and practitioners. However, compared to visual media, it is perhaps the nature of body
movement itself that makes its mediation somehow still conceptually challenging. Salazar
Sutil (2015) points out that the conceptualisation of corporeal movement is often optically
biased, whereas sensations that are independent from sight are often neglected. The
ubiquity of visual record is certainly a factor in this process. Still, movement cannot be
entirely represented and therefore fully understood exclusively by means of visual media.
In fact, interpreting human movement objectively as displacement of body parts in a
three-dimensional space would result in a limited interpretation. Merleau-Ponty (2002)
famously points this out giving the example of typing:

The subject knows where the letters are on the typewriter as we know where
one of our limbs is, through a knowledge bred of familiarity which does not
give us a position in objective space. The movement of her fingers is not
presented to the typist as a path through space which can be described, but
merely as a certain adjustment of motility, physiognomically distinguishable
from any other. (Merleau-Ponty, 2002, p. 166)

This is possibly one of the reasons why the use of absolute position in a Cartesian
coordinate system imposes some constraints and challenges to high-level analysis of
motion data and its use for expressive applications.

In previous works, I used MoCap to carry out experiments aimed at analysing
relationships between body movements and other musical features in instrumental music
performance (Visi et al., 2014a, 2015b). For real time music applications, the use
of various wearable sensors was preferred, as they are easier to transport and use in
performance situations, whereas optical MoCap is definitely more demanding in terms of
portability and setup time. As it will be described more in detail, the raw data returned
by wearable sensors is intrinsically different from that of MoCap, and this has some
implications for how the data is eventually interpreted and used. Understanding how to
extract meaningful descriptors from such sensors is useful beyond the domain of musical
practice, since similar technologies are becoming ubiquitous and are already employed in
everyday objects such as mobile devices and game controllers.
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Previous research (Freedman and Grand, 1977; McNeill, 1996) has pointed out that
upper body movements are of particular interest when observing expressive behaviour.
In instrumental music performance, the upper limbs have a central role, since they are
often involved in the main sound-producing gestures. Moreover, in most cases, hands
and arms are the main points of contact between the body of the performer and the
instrument. Therefore, in the studies described in this chapter the sensor bands were
placed on the forearms of the performers. However, as shown in the following sections,
processing data from Inertial Measurement Units (IMU) using motion descriptors and
Machine Learning models allows us to obtain information related to full body movements,
which can be used to extract expressive movement features.

In the work described in chapter 6, I made use of fingerless gloves in order to interfere
less with the musical instrument manipulation. I progressively moved away from gloves in
order to obtain an even less obtrusive configuration. I first placed the sensor on the wrists
and eventually moved further away from the hands of the performer, on to the upper
forearm. Doing so did not reduce the amount of information about hand movements
I was able to retrieve. On the contrary, by using specifically designed descriptors and
exploiting the constraints imposed by the structure of the limbs and the interdependence
of its parts, I was able to estimate various measures describing the movement of both
hands.

During the initial stages of the research I mostly employed IMU sensors, while later
I sought to include a form of muscle sensing. This was done in order to address and
estimate body movement components beyond those strictly related to displacement in
space, such as proprioception and effort qualities.

To address some of the challenges in storing, sharing, and displaying multimodal
and motion capture data I have written a MATLAB function that allows to convert
MoCap Toolbox (Burger and Toiviainen, 2013) data structures into a format that can
be uploaded and correctly visualised in the repoVizz online repository (Mayor et al.,
2013). RepoVizz3 is a system for remote storage, browsing, annotation, and exchange
of multimodal data developed by researchers at Universitat Pompeu Fabra, Spain. The
MATLAB function, named mcrepovizz, is included in the MoCap Toolbox4 for MATLAB,
which is maintained by researchers the University of Jyväskylä, Finland.

3http://repovizz.upf.edu/
4https://www.jyu.fi/hum/laitokset/musiikki/en/research/coe/materials/mocaptoolbox

http://repovizz.upf.edu/
https://www.jyu.fi/hum/laitokset/musiikki/en/research/coe/materials/mocaptoolbox
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7.3.1 IMU/MARG Sensors and Degrees of Freedom

Inertial Measurement Units (IMU) are small, low cost, highly portable devices that
incorporate accelerometers and gyroscopes. When these devices are paired with magne-
tometers, the resulting arrays are also known as Magnetic, Angular Rate and Gravity
(MARG) sensors. These sensor arrays allow the tracking of acceleration, rotational veloc-
ity and orientation relative to the earth’s magnetic field of whatever they are attached
to. They are used extensively in aviation, robotics and Human-Computer Interaction
(HCI). Their increasing affordability and small size have made them a very common
feature of mobile and wearable devices and other consumer electronics. Recently, sensors
featuring 3D accelerometers, 3D gyroscopes, and 3D magnetometers have become the
most widely used type of IMU/MARG. They enable to estimate various motion features
including optimised three-dimensional orientation obtained by fusing together the data
from the different types of sensors. These devices are often marketed as 9DoF (9 Degrees
of Freedom) sensors, since they consist of three tri-axis sensors and thus have a total of
nine sensitive axes. However, in the context of motion tracking the label ‘9DoF’ might
be misleading. In fact, a rigid body in a tridimensional space has a total of 6 degrees of
freedom, divided in three basic translations and three basic rotations5. Thus, any possible
movement of a rigid body, no matter how complex, can be expressed as a combination
of the basic 6 degrees of freedom. Therefore, in order to avoid confusion I will use the
acronym IMU/MARG to refer to sensors comprising accelerometer, gyroscopes, and
magnetometers. I might use the acronym IMU if only the inertial sensors (accelerome-
ters and gyroscopes) are taken into consideration. The acronym ‘6DoF’ (6 Degrees of
Freedom) will instead be used when motion data actually describes both translation and
rotation movement, as in the study presented in chapter 9. Another way of referring
to IMU/MARG sensors found in biomechanics and gait analysis literature is MIMU
(Magnetic and Inertial Measurement Unit) (Bergamini et al., 2014; Trojaniello et al.,
2014). However, the acronym was previously used to indicate other sensors (Shang et al.,
2002) and therefore might result ambiguous.

Whereas the raw data obtained using marker-based optical motion capture consists
of samples of position based on a 3D Cartesian coordinate system6, the data returned
by IMU/MARG sensors is usually in the form of three three-dimensional vectors, each
one expressing acceleration, rotational velocity, and orientation respectively. The sensor

5To learn more: https://en.wikipedia.org/wiki/Six_degrees_of_freedom
6Most marker-based systems also allow to capture 6DoF data (consisting of three-dimensional position

and Euler angles) by defining rigid bodies. However, this is achieved by processing positional data of
the single markers grouped into a rigid body.

https://en.wikipedia.org/wiki/Six_degrees_of_freedom
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band adopted more recently7 returns acceleration in units of G, rotational velocity in
degrees per second, and orientation angles in radians. Orientation is estimated also
using a quaternion representation, which – unlike Euler angles – is not subject to
problematic singularities such as gimbal lock (Brunner et al., 2015). In addition to
that, the sensor band returns 8-channel electromyogram (EMG) data, which was used to
compute descriptors of muscular effort and estimate the movements of wrists and fingers.

Calculating absolute position from IMU/MARG data in real time is technically very
difficult if not unfeasible, as the operation would require double integration of acceleration
data. This would result in a considerable amount of residual error since drift would
accumulate quadratically. Moreover, it would also be relatively expensive in terms of
computation. Madgwick et al. (2011) designed computationally efficient algorithms for
compensating the residual error. These were implemented for estimating position from
IMU data recorded in situations where specific constraints could be exploited, such as
gait analysis and cyclic motion.

The data obtained from IMU/MARG sensors is therefore morphologically very
different from positional data returned by optical MoCap. The differences in the way
movement is tracked and represented by the two different technologies has implications
on how movement data is eventually interpreted and used, particularly in the context
of expressive movement tracking. High-level movement descriptors are often used to
extract features from the raw motion data that can help describing the meaning that the
movements of the subject convey. This is no trivial task, and different interdisciplinary
approaches have been adopted in the past two decades. The following section will look
at some of the motion descriptors most widely used with positional data and discuss how
they can be adapted and used with IMU data.

7.3.2 Movement Descriptors and Wearable Sensors: Under-
standing Digitised Movement Qualities

Computable descriptors of human motion are used across several disciplinary fields for
various applications ranging from kinesiology and gait analysis to HCI and gaming. Even
though human motion data analysis has become an increasingly active field, there is
still little consensus regarding which descriptors and methodologies yield meaningful
representations of human body motion.

The MoCap Toolbox (Burger and Toiviainen, 2013) provides a wide range of MAT-
LAB scripts for offline kinematic analysis and visualisation, whereas expressive feature

7Myo armband, produced by Thalmic Labs: https://www.myo.com

https://www.myo.com
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Fig. 7.1 Some of the wearable devices used. Clockwise from the bottom-left corner:
Myo armbands, Sense/Stage controllers with wristbands, Axivity WAX9 with silicone
wristband, Adafruit 9-DOF IMU Breakout, FreeIMU v0.4
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extraction and real time interaction are prominent features of the Eyesweb platform
(Camurri et al., 2007).

Going beyond traditional low level kinematic features has proven to be a challenge
especially when dealing with expressiveness, emotions, affective states, and meaning.
Larboulette and Gibet (2015) recently attempted a thorough review of computable
descriptors of human motion. This is indeed a useful endeavour, however it shows that
there is still segmentation and many procedures are either ill-defined or redundant, as
very similar concepts appear in other research literature under different names.

Most of the descriptors mentioned below were conceived using positional data. How-
ever, the principles behind their design are nonetheless useful for describing certain
movement qualities, therefore I attempted to adapt them to the data obtained form
IMU/MARG sensors. A series of abstractions were implemented using Max8, which
was chosen over other programming environments as it allowed to rapidly prototype
and test algorithms for real-time interaction and easily integrate them with other music
applications. These abstractions – along with example patches and other tools – are
included in KineToolbox9 (see section 8.3.1).

Fluidity and Jerkiness

In kinematic analysis, “jerk” is the name given to the third order derivative of movement
position, namely the variation of acceleration over time. The definition of “jerk index”
as the magnitude of the jerk averaged over the entire movement (Flash and Hogan, 1985)
was used by Pollick et al. (2001) alongside other descriptors to correlate arm movement to
basic affective states. This relates to the fluidity or smoothness of a movement – as fluid
movement tend to have even velocity therefore low values of higher-order derivatives –
and can be used to detect emotionally relevant information in movement data (Glowinski
et al., 2011). In fact, roughly speaking jerkiness could be seen as the inverse of fluidity.
Piana et al. (2016) define the fluidity index as a local kinematic feature equal to 1∫

(ji+1)dt
,

where ji is the jerk of the joint10 i. This means that higher values of jerk corresponds to
lower fluidity.

To estimate jerkiness using IMU data instead of positional data, I averaged the
derivatives of longitudinal acceleration returned by the accelerometer (ȧx, ȧy, ȧz) into
a single jerk index. In order to calculate jerk values also from rotational movements, I
averaged the second order derivatives of the angular velocities returned by the gyroscope

8https://cycling74.com/products/max/
9https://github.com/federicoVisi/KineToolbox

10A point belonging to a three-dimensional representation of a body, usually defined by positional
coordinates.

https://cycling74.com/products/max/
https://github.com/federicoVisi/KineToolbox
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(g̈x, g̈y, g̈z). The values obtained from both sensors are then combined and summed over
a time window of length N samples, as shown in equation 7.1:

IMUJerkiness(t) =
N−1∑
k=0

α1
| ˙axt−k | + | ˙ayt−k | + | ˙azt−k |

3 +

+ α2
| ¨gxt−k | + | ¨gyt−k | + | ¨gzt−k |

3 .

(7.1)

Coefficients α1 and α2 are weights that balance the data magnitudes obtained from
the accelerometer and gyroscope sensors. These coefficients can be useful to adjust
the influence of rotational and translational movement on the Jerkiness estimate. It is
worth mentioning that in real world implementations derivatives are very sensitive to
signal noise, therefore sensor data may require low-pass filtering before Jerkiness can be
computed.

From the conceptual framework of Laban Effort Elements/Qualities (Laban and
Lawrence, 1947) Jerkiness (and its counterpart Fluidity) are useful descriptors that can
aid the computational analysis of expressive movements. Laban defines four basic Effort
Factors (Flow, Weight, Time, and Space), each Factor is a continuum between polarities
described by Effort Element/Qualities. In particular, Flow is related to the continuity
and control of the movement. Its polar qualities (Free Flow and Bound Flow) have been
previously associated also to aspects of fluidity of the movement (Hackney, 2002). A
movement characterised by Free Flow Effort Quality is “fluid”, “liquid”, and “outpouring”.
On the other hand, the Bound Flow quality indicates containment, restrain, and control.
In addition to Flow, Jerkiness can be related also to the Time Effort Elements. A
movement characterised by Sustained Effort qualities is expected to have low level of
Jerkiness. On the other hand, a movement with Sudden Effort qualities (“urgent”,
“quick”, “staccato”) will have most likely a higher rate of change of acceleration and
therefore higher levels of Jerkiness.

Jerkiness and Fluidity can then contribute to the analysis and recognition of expres-
sive movement qualities, in particular in multimodal frameworks that involve multiple
descriptors and sensing modalities (Camurri and Volpe, 2011; Caramiaux et al., 2015a).
However, it is important to restate that Laban Effort Elements are qualitative “inner
attitudes” of the mover towards the Effort Factor. Using computable descriptors should
not be seen as an attempt to quantitatively measure Effort Qualities but rather as a
means to aid the design of computational models capable of discerning and recognising
different expressive movement behaviours.
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Quantity of Motion and Quantity of Rotation

Fenza et al. define Quantity of Motion (QoM) as the sum of Euclidean distances
between successive points in a time window (Fenza et al., 2005) and Glowinski et al.
included a similar measure in their expressive feature set defined “overall motion energy”
(Glowinski et al., 2011). To compute an analogous feature using IMU/MARG sensor data,
I aggregated the magnitude of the variations of the norm of the orientation quaternion
(∥q∥) and of the average acceleration over the three axes (a). The values for each frame
are once again summed over a time window of length N samples, as shown in Equation
7.2.

IMUQoM(t) =
N−1∑
k=0

β1 | ∥qt−k∥ − ∥qt−k−1∥ | +β2 | at−k − at−k−1 | . (7.2)

Similarly to Equation 7.1, β1 and β2 are weights to balance individual contributions from
distinct sensors. As with IMUJerkiness, the value of these coefficients can be changed to
adjust how rotational and translational movement affect the IMUQoM estimate. If the
value of β1 is set to zero, the accelerometer data is removed from the equation. In this
specific case, only rotational motion data is used for the computation of the descriptor.
Thus, a new motion descriptor named Quantity of Rotation can be defined as follows:

QoR(t) =
N−1∑
k=0

| ∥qt−k∥ − ∥qt−k−1∥ | . (7.3)

This descriptor can be employed to measure the amount of rotational motion of an object
or area of the body independently from translational motion. It can be used with any
rotational motion data as long as it is expressed in quaternions, therefore its use is not
limited to IMU/MARG data but can also be employed with 6DoF data obtained using
marker-based motion capture. This is further discussed and implemented chapter 9,
specifically in equation 9.2, where standard QoM and QoR computed using 6DoF motion
capture data are aggregated.

Contraction/Expansion and Symmetry

Contraction and expansion of the body can be computed in different ways, for example
by calculating the area of bounding shapes (Glowinski et al., 2011), using Contraction
Index (Fenza et al., 2005), or measuring the volume of a convex hull that encloses the
body (Hachimura et al., 2005).
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When wearing two IMU/MARG sensors on the forearm, it is possible to project the
orientation values over a hypothetical 2D plane in front of the subject and thus obtain
approximate coordinates of the points in the plane the arms are pointing to. First, the
yaw values for both arms have to be centred while the subject is pointing both arms
forward. Then, given θyaw and θpitch as the yaw and pitch angles respectively (expressed
in radians) the coordinates of the point in the plane corresponding to one arm can be
calculated as follow:

(x, y) =
(

xmax

2 + xmax θyaw

2π
,

ymax

2 + ymax 2θpitch

2π

)
. (7.4)

By calculating the Euclidean distance between the points corresponding to each arm
it is possible to estimate whether or not the arms are pointing in the same direction.
When arms are spread wide open (thus pointing at opposite directions), the distance
between the two points will be at its maximum. This way it is possible to have a value
that depends on whether arms are wide open or are resting close to the body. This value
can be used as an expressive feature, even though it is probably not as precise as the
contraction indexes obtained using optical motion capture, since the values are based on
the orientation of the arms and not on their actual position.

By comparing the coordinates we can also see if there is horizontal or vertical symmetry
between the arms, which is another useful postural feature that has been previously used
for the analysis of expressive movements (Camurri and Volpe, 2011).

7.3.3 Periodicity and Rhythmic Qualities: Periodic Quantity
of Motion from Multiple Sources

While the descriptors mentioned above could be described as spatial or spatiotemporal
features of the movement, periodicity is a purely temporal quality.

In chapter 5, I introduced Periodic Quantity of Motion (PQoM) as a means to analyse
movement periodicities in relation to musical rhythmic subdivisions. It was defined it as
follows:

PQoM [t, fck
] =

t∑
n=t−N

Hfck
{(w(|x[n] − x[n − 1]|))}, (7.5)

where fc are centre frequencies of the bandpass filters calculated following the music
tempo and its sundivisions, N is the window size in samples, Hfck

is the kth bandpass
filter operator, vector w contains the weight coefficients for each tracked point, and
vector x contains the Euclidean norms for each tracked point (for further information
about PQoM refer to section 5.3.3).
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The same equation can be used to estimate PQoM using motion data from various
sources, including IMU/MARG sensors. When combining multiple sensors, a specific
w vector of coefficients must be defined for each sensor type. For example, if using
IMU/MARG data, the coefficients in w determine the weights the data from the ac-
celerometer, gyroscope, and magnetometer have for the estimation of PQoM.

Figure 7.2 presents the PQoM values of a recorded arm movement computed using
motion capture data and the IMU/MARG data from a Myo armband. Figure 7.2a
shows the locations of the passive markers and the Myo armband. In this example, the
musician performs a periodic movement with his arm, synchronising it with the half
note rhythm (from 1 to 3 seconds) and with the quarter note rhythm (from 5 to 7.5
seconds). Figure 7.2b shows the each tracked x vectors: motion capture marker (green
line), acceleration (blue line) and orientation (red line).

Marker Accelerometer Orientation (magnetometer)

Fig. 7.2 (a) Locations of reflective markers and Myo armband. (b) Data from motion
capture (green), accelerometer (blue), and magnetometer (red) (rescaled for better
visualisation). (c) PQoM from motion capture data. (d) PQoM from accelerometer data.
(e) PQoM from orientation data (magnetometer).

The bottom part of the figure shows the PQoM measures extracted from the tracked
data. The amount of gesture periodicity over time is indicated by the light blue and
yellow regions (higher values). The PQoM estimates from the motion capture marker
(Figure 7.2c) follow a similar pattern of the PQoM extracted from the acceleration
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(Figure 7.2d) and the orientation data (Figure 7.2e). However, magnitude may differ
considerably, since each sensor measures a different kinematic feature of the movement
(e.g. acceleration, angular velocity, etc.) and thus may respond differently. Therefore,
the weight coefficients in w should be adjusted in order to balance the PQoM values
calculated from different sensor data. Such coefficients can be adjusted arbitrarily, in
order to obtain an aggregated PQoM estimate based on a mix of kinematic features or a
specific feature, depending on the purpose of the analysis.

7.3.4 Machine Learning: Mapping Postural and Sonic Topolo-
gies

Motion descriptors are useful for extracting meaningful features from the raw data and
they also allow to aggregate information relative to all the axes. This helps to move away
from a low-level movement representation constrained by the Cartesian coordinate system
and obtain motion data that is less dependant on it. A system based on orthogonal axes
is indeed a convenient way to digitise movement. However, meaningful conceptualisation
that help in interpreting the expressivity that body movement conveys may be hindered
if subordinated to a highly disciplined method of quantitative representation. In his
article about topology and data, Carlsson argues that “coordinates [. . . ] are not natural
in any sense, [. . . ] therefore we should not restrict ourselves to studying properties
of the data which depend on any particular choice of coordinates.” (Carlsson, 2009,
p. 256). Moreover, describing the characteristics of topological methods, he states that
in order to obtain knowledge about the data, qualitative information is needed, and this
has to be established before proceeding with quantitative analysis. Topology studies
intrinsic geometric properties of the objects, which do not depend on a chosen set of
coordinates and it has also been employed in the analysis of dance patterns (Naveda and
Leman, 2010). This approach provides very useful notions for interpreting movement
data generated by music performance gestures. In fact, such body movements are bound
to multimodal expressive features, which are inherently qualitative.

To put these concepts into practice, machine learning algorithms were used to define
interaction models based on different postures a musician may adopt during a performance.
This was done by asking the performer to play freely while wearing two sensors armbands.
A small number of postures (4–5) are then defined. This was done by observing recurrent
idiosyncrasies and peculiarities of the performance and discussing the qualities of the
movements with the musicians themselves, to better understand how certain movements
relate to each respective instrumental techniques and with musical features of the pieces
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performed11. Sensor data is then sampled repeatedly during each pose in order to train
a Support Vector Machine classifier. This was implemented using the ml.lib library
(Bullock and Momeni, 2015) for Max, which is itself based on the Gesture Recognition
Toolkit by Gillian (Gillian and Paradiso, 2014). Every posture is then associated with
a set of parameters of a digital sound processing engine. During the performance, the
machine learning classifier compares the incoming sensor data stream with the recorded
examples, returning the values for the probability (or likelihood) that the current posture
of the musician matches each of the defined classes. The values of the probabilities are
then used to interpolate between the parameter sets of the sound engine, which can be
used to process the sound of the instrument in real time or synthesise electronic sounds.

This practical approach resonates with the aforementioned notions of topology, since
the incoming data is not analysed quantitatively, but it is instead evaluated in terms of
proximity/distance from the predefined postures12. From this perspective, the sampled
postures themselves are topologies determined in relation to qualitative aspects of the
movement of that particular performer, thus avoiding dependency from an abstract,
artificial coordinate system. The system is instead defined by the idiosyncrasies of the
performer.

This approach has also several practical advantages compared to more traditional
sensor-to-sound parameter mapping approaches. Incoming sensor data does not need
to be rescaled to the range of the sound parameters it is mapped to. The quantitative
values of the sensor data can be in fact ignored, since the classifier probabilities are used
to interpolate multiple sound parameters. This is another advantage, since complex
mappings can be easily defined and parameter modulation is independent from any
coordinate system. Instead, the system quickly adapts to different users, and this is
desirable considering the substantially different movements required for playing differ-
ent instruments and the significant degree of idiosyncrasy that characterises musical
performance.

It is worth mentioning that in the past few years machine learning techniques have been
increasingly employed for interactive computer music performance. Notable approaches
include Fiebrink’s Wekinator (Fiebrink et al., 2009b), Caramiaux’s Gesture Variation
Follower (Caramiaux et al., 2013) and Françoise’s mapping by demonstration (Françoise
et al., 2014).

11Some early tests with different musicians: https://youtu.be/stWI43-EZGA
12This idea is reinforced by how Support Vector Machines work: “An SVM model is a representation

of the examples as points in space, mapped so that the examples of the separate categories are divided
by a clear gap that is as wide as possible. New examples are then mapped into that same space and
predicted to belong to a category based on which side of the gap they fall on.” (Bullock and Momeni,
2015, p. 4).

https://youtu.be/stWI43-EZGA
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In early tests, orientation data and an aggregate EMG descriptor for both arms were
used as inputs to train the machine learning models. Orientation was chosen as it is not
an inertial measurement therefore it can be used to describe postures. In addition to that,
EMG data allows us to consider other characteristics of the movement. As pointed out by
Salazar Sutil (2015) the perception body movement involves sensations that go beyond
displacement in space, such as interoception and proprioception. Moreover, in their
extensive work on the analysis of expressive movement, Camurri and Volpe (2011) define
gesture as a multimodal entity, citing Laban’s Theory of Effort (Laban and Lawrence,
1947) as a central source of concepts for the understanding of expressive movement.

7.4 Case Study: Kineslimina
Kineslimina is a piece for viola, electric guitar, motions sensors and live electronics that
explores the use of the musicians instrumental gestures and movements as an expressive
medium. Such gestures merge with the other musical features and become an integral
part of the score. While playing their instruments, the musicians wear an armband fitted
with IMUs, which tracks their movements and sends the motion data to a computer.
The computer then processes the movement data and sound, responding with a wide
range of dynamics: from subtle timbral alterations that follow the movements of the bow
during string changes to deeper resonances when more overt gestures are performed by
the musicians.

The title is a portmanteau of the words kinespheres and limina. The concept of
kinesphere was defined by Laban (1966) as “the space within the reach of the body”,
“that is occupied by and surrounds the body”. The kinesphere is a personal space, and
how an individual relates and pays attention to it contributes to delineate it. “Limina”
is instead the plural of “limen”, that is “threshold”, “margin”. The piece in fact aims
at pushing the boundaries of the personal spaces that surround the musicians during
the performance. The sound of the instruments is altered, and synthesised sounds are
engaged by exceeding the usual extent of instrumental movements. The score of the
piece can be seen as a script, through which a multimodal choreography emerges as
the product of learnt body schema, altered by the influence and the reactions to an
interactive system. In the ritualised context of musical performance, a non-conventional
technology (the sensors) interferes with conventional ones (the instruments), reconfiguring
the relationships between the score, the performers and their tools.

Parviainen et al. (2013b) propose an approach to interaction design that considers
choreography as the holistic, experiential continuum of human movements resulting from
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the interaction with artefacts. From this perspective, musical instruments, sensors and
movement/sound mappings can be seen as carriers of a set of pre-choreographies. The
design of these objects (whether material or not, as in the case of software) and the
environment where the interaction takes place pre-choreograph the performance of the
piece. All the movement opportunities that these objects afford form the basis for the
actual choreography that emerges as the score is enacted. A pre-existent, overarching
design that influences the movements of the kinesphere. Eventually, the movements
that shape the performance exceed what the individual kinespheres can capture. The
relations between the two musicians and between the musicians and the audience and the
dynamics that arise from these connections are what Parviainen et al. call “local-level
movements”.

As noted by Wilson (2013, p. 426), a traditional musical instrument is not a mere piece
of technology, as our relationship to it is shaped by “the way it is ‘meant’ to be played,
the canonic tradition that stands behind it as repertoire, and the normative expressive
gestures that are ‘input’ by the player and ‘output’ sonically by the instrument”. Bodily
relationships with these cultural artefacts are mediated historically and become part of a
shared knowledge. Introducing motion sensor technology in this picture adds another
layer of complexity, tightly woven to the already established gesture-sound relationships.
Figure 7.3 shows an example of how these different aspects of the piece are interrelated.
Towards the end of the piece, the score requires the viola player to repeat an arpeggiated
pattern with increasing dynamics, until a synthesiser part is heard. The part entails
repeating bow strokes, and the movement pattern is captured by the sensors placed on
the right wrist (blue line). The peaks in the acceleration data control a granular synthesis
engine that samples and alters the timbre of the instrument at each peak. At the same
time, Quantity of motion is computed (red line) and the increase of motion activity
introduces other electronic parts, until the QoM data reaches a predefined threshold
(green cross) at which point the closing synthesiser part is triggered and the musicians
can move onto the closing notes of the piece. The amount of repetitions required to
reach this point depend on the movements of the performer, which may vary according
to how different musicians interpret the score. The score engenders the instrumental
movements required to perform the piece, the movement data alters the sound of the
instrument and has also an impact on the structure of the score itself (the number of
repetitions required). This closes a feedback loop in which every part mutually influences
the other. The body of the performer is the is the medium, the locus, where this dynamic
entanglement takes place.
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Fig. 7.3 Kineslimina: scored pattern, right hand acceleration of the viola player and
Quantity of Motion. The green cross indicates when the QoM threshold is crossed and
the synthesised part that closes the piece is played back.
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This interdependency also affects how motion data are mapped to sound parameters.
Mapping sensor parameter to sounds has long been a debated topic in the HCI and
NIME research communities (Hunt et al., 2003). As also noted by Leman (2008a, p. 164),
freedom of mapping that characterise digital musical interfaces “may disturb the sense
of contact and of non-mediation”. Drawing from established vocabulary of gesture of a
traditional musical instrument and exploiting the constraints that instrumental techniques
pose on the body can result in an advantage for obtaining meaningful interactions for
expressive music performance. This approach takes advantage of the ecology (Clarke,
2005) of musical instruments in order to obtain expressive transparency in gesture-sound
mapping.

Kineslimina premiered at the Gala Concert of CMMR 2015 – the 11th International
Symposium on Computer Music Multidisciplinary Research13 (see Fig. 7.4) and was
later performed also at MuSA 2015 – Sixth International Symposium on Music/Sonic
Art14, held at the Institut für Musikwissenschaft und Musikinformatik (IMWI) in Karl-
sruhe, Germany. From the perspective of the performers15, the piece re-configured the
relationship between musician and instrument, extending expressive possibilities through
their instrumental movements tracked by the sensors. However, this also required the
performers to learn new skills and embed them in their existing instrumental techniques.
This process became evident during the rehearsals. The performers experienced an
increased awareness of the fundamental body schema of their instrument-playing, as
subtle movements created new sonic results through the motion sensors. This made them
pay renewed attention to movements they learnt in the early days of their formation as
musicians, essential parts of the vocabulary of gestures of their respective instruments.
Whilst the musicians learn and get more familiar with the sensors, the system itself
gets constantly adapted and adjusted to accommodate the needs of the performers and
better follow their performance styles. As the rehearsals go on, relationships between
body movements, instrumental gestures and sensor data are re-negotiated. This does
not just imply mere parameter adjustments and technical improvements to the sensor
system. The process elicits and entails a careful analysis of the relationship between
movements, sound and score from the privileged perspective of the performers themselves,
thus resulting in a useful contribution to research from practice-led perspective (Sullivan,
2009).

13http://cmr.soc.plymouth.ac.uk/cmmr2015/index.html
14http://zilmusic.com/musa2015/
15Esther Coorevits: viola, motion sensors, live electronics; Federico Visi: electric guitar, motions

sensors, live electronics.

http://cmr.soc.plymouth.ac.uk/cmmr2015/index.html
http://zilmusic.com/musa2015/
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The performers then progressively get to know how the mappings of movement
features to sound work, and how they can explore this unconventional technology in a
meaningful way. More than just sonifying the movements made by the performers, the
sensor system also induces the musicians to reconsider the relationship to the performance
space. Such space is where we locate the relationships between players, instruments
and audience, which encompasses a set of conventions and cultural practices that are
established and embodied in the performer. This can be compared to what Ervin Goffman
refers to as “the frame”, which is the perceptual mechanism that indicates the nature
and purpose of a behaviour, and how it is to be interpreted. It is a tool for understanding
the implicit agreement between performer and audience on the symbolic status of the
performance (Goffman, 1974). The performance space is the framework in which we
understand a performance. This frame is established through cultural practice, traditions
and conventions. From the perspective of a musician, this frame consists of the historically
established relationships that are found between players and instruments. Performance
techniques and experiencing instruments and instrumental music are habitualised through
historical practice, conventions and education. These relationships are thus part of the
embodied knowledge of the performers.

In Kineslimina, performing with reconfigured instrument/body/space relationships
has made the musicians more aware of other qualities of their movements and their
kinespheres.

Laban identified space, weight, time and flow as motion factors toward
which performers of movement can have different attitudes depending on
temperament, situation, environment and many other variables. The attitudes
toward the motion factors he called [. . . ] Effort. [. . . ] Choices are continuously
being made by all people in motion, consciously or unconsciously, to determine
what combinations of these Effort elements will best serve the purposes of
their intentness or modify their behaviour. [. . . ] Whatever the action in which
the effort combinations appear, the whole biological/psychological system is
involved. (Bartenieff and Lewis, 1980, p. 51)

Intentionality is a key aspect in the study of musical gestures, as the fact that
they are goal-directed actions is an essential quality for the understanding of their
expressive qualities (Godøy and Leman, 2010). The Effort qualities of a movement
are very much the result of this intentionality and they play an important role in the
perception and understanding of body movement. During the performances, effort
qualities and intentionality appeared amplified by the presence of the motion sensors
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Fig. 7.4 Kineslimina: performance during the Gala Concert of the 11th International
Symposium on Computer Music Multidisciplinary Research (CMMR). 16 June 2015,
Plymouth, UK. Esther Coorevits (viola, motion sensors) and Federico Visi (electric
guitar, motion sensors).

and their effect on the conventional performance gestures. This was – possibly16 – also
perceived by the audience, as the interplay between the performers and the role of their
intersubjective space was made more transparent through the augmentation of their
musical intentionality.

7.5 Summary and Discussion
In this chapter I presented techniques for interpreting motion data and discussed the
implications that arise when employing motion sensors together with traditional instru-
ments in musical practice. Movement descriptors designed to be used with IMU/MARG
data were defined and a case study of a piece for viola, electric guitar, and motion sensors
was then described, discussing the relationship between body movement, musical score,
and motion data.

16Some members of the audience have informally commented after the performances, stating that
strong interplay between the performers and engaging gestural narrative were perceived.
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7.5.1 Beyond Control

Within this context, it is clear that body movements and gestures go well beyond simply
being activators of technological objects, whether these are motion sensors or musical
instruments. Body movement is considered a key element for the formation of embodied
musical meaning (Leman, 2010), however its role as an important cog of the engine that
engenders signification and cognition is obviously not limited to the musical context.
Technological objects on the other hand have the capacity to entail gestures and store
their potential meaning. As observed above and also in chapter 3, a musical instrument
can be seen as a receptacle of gestures, of kinemes that – through a performance –
give rise to a multimodal choreography. From a wider perspective, we could say that
objects extend our selves, they are co-substantial, continuous, and co-extensive parts
of minds in action (Malafouris, 2013). Moreover, Wilson (2013, p. 430) stresses the
importance of the relationship between instrument technology and instrumentalist’s
pedagogy: “technology – what the instrument is – is inherently entangled with pedagogy,
the historically established relationships found between instrument and instrumentalist.”.
In the case study presented here, this “inherent entanglement” encompasses also the score
of the piece, which elicits the instrumental movements necessary to execute its parts and
– at the same time – it is affected by them through the use of motion descriptors. Within
this layered process of signification – situated in a cultural ecology and shaped by shared
knowledge – the body is the medium where everything takes place. This perspective is
akin to Merleau-Ponty’s phenomenological approach (Merleau-Ponty, 2002).

7.5.2 Beyond the System Used to Represent It

Once the centrality of the body and its movements in the ways we make sense of the
world is recognised, it is clear that – in an increasingly pervasive digital semiosphere –
being able to digitise movement and interpret motion data becomes of primary interest.
However, movement seems to have properties that exceed the system used to represent
it. I have discussed the limitations emerging from representing movements exclusively
through visual media, and the ubiquity of visual record is certainly a factor in this process.
However, solving this bias is one of the challenges that contemporary researchers and
practitioners have to face in order to make progress in the discourse on human movement.
The development of different computational techniques to describe the qualities of body
motion are a necessary step towards more meaningful interpretation of data generated
by human movement. However, it is also vital to consider the constraints posed by
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rigid methods of representation and move towards approaches that allow to address the
complex, non-linear phenomena that characterise expressivity.

Using inexpensive and unobtrusive devices such as IMU/MARG sensors may also
help to move the research outside of laboratories. As seen previously, ecology plays an
important role in the way we make sense of music (Clarke, 2005), similarly, being able to
study movement “in the wild” may have considerable implications, as shown in previous
studies (Woolford, 2014).

IMU/MARG sensors provide data that is morphologically very different from the one
obtained through optical motion capture. However, it is possible to obtain analogous
meaningful information if the data is correctly interpreted. In this context, using machine
learning techniques is not only a quicker method to obtain complex interaction models
that adapt to different individuals. It is also a way to study and reflect upon the
topological qualities of human movement through applied research and practice. More
sophisticated algorithms to interpret motion data can help to address its complexity,
reclaiming the centrality of the body over a rigid representation of data structures.

7.5.3 Beyond Musical Interaction

Extracting expressive movement features from IMU/MARG data can lead to many other
applications, well beyond the field of musical interaction. The ubiquity of IMU/MARG
sensors – which is a very common feature of recent mobile devices, tablets, VR gear,
game controllers, and various other wearable devices – brings about a vast number
of potential scenarios were the techniques described here can be implemented. Using
higher-level descriptors to estimate expressive qualities of body movements is a way
towards implementing dynamic HCI designs that handle gestures not only as isolated
objects of application but as part of longer experiential chains, with multiple layers of
significance. This goes beyond the traditional use-oriented approach and is akin to the
use of choreographies for interaction design proposed by Parviainen et al. (Parviainen
et al., 2013b) and Pirhonen et al. (Pirhonen, 2013), and the work on affective computing
carried out by the researchers at InfoMus/Casa Paganini (Glowinski et al., 2011; Piana
et al., 2013). Both approaches avoid limiting HCI design to goal-directed actions and
adopt a more holistic approach that take into consideration a wider ecology of human
movement. Moreover, IMU/MARG sensors coupled with sound synthesis techniques have
already found applications in the field of rehabilitation of stroke patients (Bevilacqua
et al., 2013).

In a scenario where computing is becoming ubiquitous and embodiment is considered
a fundamental factor for designing interactions with technology (Parviainen et al., 2013a),
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the implications of being able to extract meaningful information from motion data are
manifold. The study of music-related motion and the analysis of motion descriptors
certainly have applications beyond music making. As an example, Bennet et al. 2016
recently measured periodicity in the data obtained from motion sensors applied to rocking
chairs in care homes. This was done to help improve the quality of life of residents
in dementia care by creating subtle, engaging interactions that support and stimulate
memory through music and movement (Bennett et al., 2016). This is but one example of
current applications of motion data analysis in conjunction with music. As computing
gets embedded in the environment people live in, interpreting the data produced by
human activity in a meaningful way is a key issue. This is central for recent trends
in computer science, such as affective computing, calm technology, and human-centred
machine learning.

7.5.4 Music as a Test Bed

As suggested by a topological approach (Carlsson, 2009), gaining new higher-level
knowledge from motion data also requires qualitative insights. To access more complex,
structural, and subjective qualities that are more difficult to model quantitatively,
data needs to be interpreted also through qualitative methods. Intuitions arising from
qualitative approaches can contribute to the understanding of how body schema and
kinemes work in generating embodied meaning. This can successively inform more
advanced computational models able to recognise complex and meaningful qualities of
human movement.

Practice as research can address the need of qualitative insights in the interpretation
of motion data. Particularly, music can be an effective test bed, given its multi-layered
complexities and rich cultural, multimodal qualities. As other projects have previously
shown, music and performing arts can be effective test beds for new modalities of expres-
sive human-computer interaction (Camurri et al., 2004a), and practice-led approaches
have yielded technical and conceptual material useful for the development of motion
capture technologies (Norman and Blackwell, 2010). Moreover, musicians are often
early-adopters of new paradigms of interaction that eventually become mainstream (Kirn,
2013). Notable examples are gestural controllers and multi-touch technologies, which
were adopted by musicians long before they become widespread.

Practice-led approaches are also helpful for carrying out the conceptual work required
to make sense of motion data and understand the meanings it can potentially convey.
Certain artistic works seek to affirm the irreducibility of the corporeal presence whilst
simultaneously sublimating it through digital processing (Norman, 2015). This resonates
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with the rationale behind Kineslimina, and this creative tension can lead to new insights
into how movement can carry meaning across physical and digital environments. In
Kineslimina, relating motion data to a musical score has shown how multimodal qualities
of music are entangled, mutually affecting each other.

7.5.5 Future Scenarios

Future work will adopt this mixed methodology in order to address technical and
conceptual aspects related to body movement, motion data, and meaning formation.
Other machine learning algorithms will be tested in order to map instrumental gestures
to sounds synthesised by means of physical modelling. Sound synthesis techniques based
on physical modelling allow to generate sounds that resemble those of certain musical
instrument families. Working with synthesis parameters allows one to go beyond the
timbral ranges and sonic capabilities of the actual instruments while preserving timbral
resemblances to the instrument family they belong to. This poses interesting conceptual
challenges, as the recognitions of timbral qualities of musical instruments relies on a
shared knowledge. As discussed previously, the relationships between instruments and
instrumental movements is also something encoded in a shared gestural vocabulary. The
ecology around musical instruments, their timbres, and their instrumental gestures offers
a rich conceptual framework for developing meaningful cross-modal mappings between
motion data and synthesis parameters. Cross-modal relations between performance
movements and the sonic outcomes will also be inspired by the concept of Uncanny
Valley, which was previously adopted in a composition that involved tension and relaxation
structures in timbrally varied musical phrases generated by physical models (Bessell,
2011).

Music is constituted by abstract structures and performance movements in continual
interaction, entangled with technological and cultural knowledge. The concept of choreog-
raphy appropriately describes the process of multimodal signification that emerges from
the performance of a musical score. Body scheme and kineme are useful tools to gain a
better understanding of how the body is a central medium in human communication.
Movement is a modality of knowledge, therefore being able to interpret it and represent it
through technology has potentials that are difficult to imagine, but that should certainly
be further explored.





Chapter 8

Designing Tools and Composing
Constraints

[. . . ] it takes time to appreciate the
limitations of the instrument, the
boundaries of its expression, the
pushback on one’s intents.

Laetitia Sonami

In theory, there is no difference
between theory and practice. But, in
practice, there is.

Jan L. A. van de Snepscheut

8.1 Overview
This chapter presents a collection of Max1 tools for motion-sound interaction named
KineToolbox2 and two instrumental music pieces that make use of said tools. By describing
both the technical solutions and their implementation, this chapter addresses the challenge
of employing body movements of the musicians as a musical feature in composition and
performance. Different hardware and software solutions and approaches to parameter
mapping for motion-sound interaction are discussed, and a method for integrating
movement in traditional music notation is described.

1https://cycling74.com
2https://github.com/federicoVisi/KineToolbox

https://cycling74.com
https://github.com/federicoVisi/KineToolbox
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8.2 Hardware
In the two pieces described further in this chapter, Myo3 armbands were employed to
sense the movement of the instrumentalists. The choice of this off-the-shelf device came
after working with other hardware solutions.

The initial experiments described in chapter 6 were carried out using gloves cut
below the knuckles. This was done in order to leave the fingers as free as possible, since
they were supposed to be worn while playing a traditional musical instrument, thus
unobtrusiveness was desirable. As described more in detail in section 6.3, these gloves
included a wireless microcontroller, inertial sensors, and a flex sensor on the wrist (see
left section of Fig. 8.1).

Fig. 8.1 The wearable devices used: fingerless gloves with accelerometers and flex sensors
(left), wristband with IMU/MARG sensor (centre), and Myo sensor armband (right).

Optical motion capture technologies such as the RGB-D camera adopted in chapter 6
were discarded in performance situations for several reasons. Firstly, systems such as
Kinect require a minimum distance between the device and the performer, which makes
its usage more problematic with limited stage space and makes it more difficult to perform
close to the audience. Also, the presence of different musical instruments makes the

3https://www.myo.com

https://www.myo.com
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skeletal mapping algorithm behave erratically, as it is not natively trained to recognise
the musical instruments held by the performers. Other issues were encountered when
performers got very close to each other, causing temporary occlusion of some parts of the
body. Apart from these issues, wearables were preferred as they proved more reliable for
sensing small-scale movements in a performance environment, where lighting and space
may vary.

To further reduce obtrusiveness, the gloves and the flex sensors were successively
abandoned in favour of an IMU/MARG4 sensor (Adafruit 9-DOF IMU Breakout -
L3GD20H + LSM3035 mounted on the same controller and housed inside the pocket of
an elastic wrist band (see centre section of Fig. 8.1). This configuration was used for the
first version of the piece Kineslimina6, which premiered at the Gala Concert of the 11th
International Symposium on Computer Music Multidisciplinary Research (CMMR) held
at Plymouth University, Plymouth, UK, in June 2015; and was subsequently performed at
MuSA 2015 Sixth International Symposium on Music/Sonic Art: Practices and Theories
held in Karlsruhe, Germany, in July 2015 (Visi et al., 2015a).

The launch of the Myo7 armband designed by Thalmic Labs8 introduced a relatively
affordable device that combines an IMU/MARG with dry electromyogram (EMG) sensors.
As described in section 7.3.1, the device allows to sense the forearm muscular activity
through 8-channel EMG data sampled at 200 Hz. The Myo armband is worn on the
forearm, thus moving further away from the hand in order to interfere even less with the
manipulation of the musical instrument (see right section of Fig. 8.1).

Interestingly, by processing the EMG signal from selected channels it is possible to
obtain data that describe the movement of the wrist in a similar or more detailed fashion
compared to the flex sensor used in the fingerless glove. This done by splitting the EMG
channels of the Myo armband into two subgroups, one with the sensors placed on the
inner arm and one with the sensors on the outer arm. The flexor muscles used for bending
the wrist inward are located in the inner arm, whereas the extensors that are engaged
to bend the wrist outwards are located on the outer forearm. In KineToolbox (which
will be described in more detail in section 8.3.1) the sum of the absolute values of the
sensor data of two predefined groups (1, 8, 7 for the for the inner arm and 3, 4, 5 for
the outer arm, using the numbering shown in Fig. 8.2) are assigned to two specific send

4IMU/MARG stands for Inertial Measurement Unit / Magnetic, Angular Rate, and Gravity. See
section 7.3.1 to read more about this technology.

5https://www.adafruit.com/products/1714
6For more information about Kineslimina see section 7.4.
7The Myo developer kit was made available in late 2014, while the consumer version was released in

early 2015.
8https://www.thalmic.com

https://www.adafruit.com/products/1714
https://www.thalmic.com
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objects in order to easily access the values9. This allows to obtain information about the
wrist movement without flex sensors placed directly onto it. To get data describing more
specific wrist movements, these values – along other descriptors – can be used to train a
machine learning model, as it will be described in section 8.3.

Fig. 8.2 Numbering of the Myo armband EMG channels.

Even though using EMG data for tracking wrist movements requires a fair amount of
processing, this solution is much less obtrusive than using the fingerless gloves described
in chapter 6. Flex sensors have been a popular solution among new instrument builders
for several years, with notable examples such as the ‘Lady’s glove’ by Sonami (2006) and
the more recent ‘mi.mu glove’10. These sensors return a relatively stable signal without
the need of much processing, but they have several downsides. They are relatively fragile
and they need to be placed directly on the joint where the motion is taking place, which
might be problematic in situations where obtrusion needs to be avoided, such as when
playing traditional musical instruments.

EMG data also adds a sensing modality that does not depend on displacement in space
(as with motion capture or – in most cases – with inertial sensors), which constitutes
another layer of information useful for understanding gesture expressivity (Caramiaux
et al., 2015b).

9To use this default groups the Myo needs to be worn with the LED logo pointing outwards and the
USB port towards the wrist, as specified in the installation tutorial by Thalmic Labs

10http://mimugloves.com

http://mimugloves.com
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8.3 Software and Mapping Approaches
For the mappings described in chapter 6 and the first version of Kineslimina, the data from
the wearable sensors was processed and mapped using junXion11 and Max12. Developed
at STEIM (STudio for Electro-Instrumental Music) in Amsterdam by Frank Baldé,
junXion incorporates the signal processing and mapping workflows that were developed
through decades of groundbreaking practice at STEIM (Torre et al., 2016). JunXion
graphical interface (Fig. 8.3) makes it easy to define explicit (Hunt et al., 2000) one-to-one,
one-to-many, or many-to-one (Hunt and Kirk, 2000) mappings and accomplish basic
mapping tasks such as scaling and thresholding. However, junXion also enables to
programme complex, multi-layered mapping behaviours as it allows to define variables,
complex mapping functions, and logical and mathematical operations. By grouping
multiple mappings in states and using conditionals, it is also possible to alter several
mappings at the same time. Indeed, these operations can be accomplished in other
programming environments with relative ease and added flexibility. However, including
junXion among the tools employed for composing Kineslimina has proved useful also
from a research standpoint, since it concretely exposed and allowed to directly engage
with some of the mapping procedures that have emerged from years practice-based
research carried out at STEIM. As pointed out by Magnusson (2006) in his article
about screen-based musical instruments, affordances and constraints can open up for
different mental models in the musician and therefore affect compositional practice. The
constraints and opportunities that characterise junXion are a product distilled from the
practice-based research ethos promoted by STEIM researchers (Norman et al., 1998),
still influential to this day (Torre et al., 2016). Baldé and the inventor and performer
Michel Waisvisz (director of STEIM from 1981 to 2008, the year of his untimely death)
collaborated on several projects, including The Hands (Waisvisz, 1985), one of the earliest
and most influential digital musical instrument (Torre et al., 2016).

Using the terminology proposed by Van Nort et al. (2014), junXion (like other
similar mapping tools or approaches) affords a systems-oriented perspective on mapping,
which assumes that mapping is “a series of correspondences, or the out-of-time snapshot
of input/output (I/O) control potential [. . . ] represented by the classical “flowchart”
paradigm that is ubiquitous in engineering” (Van Nort et al., 2014, p. 6–7).

The software solutions successively developed in KineToolbox (see section 8.3.1)
and used for the pieces 11 Degrees of Dependence (Visi and Miranda, 2016) and Tuned
Constraint (Visi, 2016), favours instead a holistic approach akin to the functional view

11http://steim.org/product/junxion/
12https://cycling74.com

http://steim.org/product/junxion/
https://cycling74.com
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Fig. 8.3 Graphic user interface of junXion.

of mapping described by Van Nort et al. (2014). The functional point of view is
defined by “the operations that associate different sets of variables, such as between
control and sound-synthesis parameters.” (Van Nort et al., 2014, p. 7). Here, this
approach is implemented using machine learning to map a set of motion features to
sets of waveguide synthesis (Smith, 1996, 1992) parameters, thus creating implicit
mappings (Arfib et al., 2002; Hunt et al., 2000). In recent years, machine learning
techniques have been increasingly adopted for creating mappings for the design of digital
musical instruments (DMI) (Caramiaux and Tanaka, 2013, for an overview). Adopting
a holistic workflow based on machine learning allows to pay much less attention to the
actual value of synthesis and control parameters, and skip the calibration, rescaling, and
explicit mapping phases typical of systems-oriented approaches. The software used in
Kineslimina was completely rewritten to take advantage of this workflow. The piece was
performed a third time at the Peninsula Arts Contemporary Music Festival13 in February

13http://www.pacmf.co.uk

http://www.pacmf.co.uk
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2016, this time using Myo armbands and the KineToolbox patches. Even though the
piece was conceived using the older system, during rehearsals this approach proved to be
more robust and quicker to configure.

8.3.1 KineToolbox

KineToolbox14 is a collection of tools for sound interaction. It includes a set of Max
patches and abstractions to quickly implement a holistic mapping workflow using machine
learning and access various motion descriptors computed from IMU/MARG data. The
patches in the toolbox are designed to be modular and to easily share data amongst each
other.

The main input patch (fv.myofeatures2.maxpat) contains a set of abstractions useful
for parsing the raw data from the Myo sensors and extract several features such as
IMUQoM (see section 7.3.2), Jerkiness (see section 7.3.2), EMG MAV (EMG Mean Abso-
lute Value, see section 9.6.2) and others15. The algorithm that handles the Myo is built
upon the MuMYO16 patch by Nymoen et al. (2015), adding several improvements over
the original system. Firstly, the KineToolbox input patch includes various abstractions
to calculate the aforementioned features. The data from each sensor on the armband
and each extracted feature are also sent to a unique send object with a descriptive name.
This way each feature can be easily accessed in other patches, making it easier to create
a modular system that can be expanded and repurposed. Moreover, the patch allows
to parse the data coming from multiple Myo armbands using ID numbers. The main
abstraction uses changeable arguments (# sign) to parse the data of the Myo with the
corresponding ID and prepend the ID number to all the send objects, thus allowing to
easily access features of a specific Myo in other patches. Other improvements include the
possibility to centre the yaw angle of the orientation data and the substitution of all the
multislider objects used for visualisations with buttons for simple input monitoring. This
was done in order to make the patch less CPU-intensive and optimise it for performance.
Data visualisation is instead implemented in two separate patches: one to visualise all
the raw data coming from the Myo corresponding to the selected ID number and another
one to monitor specific features by typing the name of the corresponding send object in
a text box (see Fig. 8.4).

14https://github.com/federicoVisi/KineToolbox
15The patch can be easily used to extract the same features also from other IMU/MARG sensors,

provided that the acceleration, gyroscope, and orientation data is parsed correctly.
16https://github.com/krisny/MuMYO

https://github.com/federicoVisi/KineToolbox
https://github.com/krisny/MuMYO
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A separate patch implements the machine learning procedure based on Support
Vector Machines (SVM) (Burges, 1998) described in section 7.3.4. The user interface
in presentation mode allows to monitor the input features sent from the input patch,
and train the SVM classifier (part of the ml.lib library by Bullock and Momeni (2015)).
Keyboard shortcuts to advance class numbers and record sample data, and a short delay
time between the recording command and the actual data collection make the training
procedure easier, especially when holding a musical instrument during rehearsals or
before a performance. Once the model is trained and new input data is sent to the SVM,
the patch returns class numbers and probability distributions that can be used to control
sound parameters.

The functional, implicit mapping to the parameters of a flute physical model is
implemented by loading JSON files containing sets of waveguide synthesis parameters
using Max pattr system. Each set of parameters is associated to one of the classes of the
machine learning model. The values of the probability distribution are used as weights
to interpolate between the values of each parameters set, thus creating a many-to-many
functional mapping from an m-dimensional input space (defined by the selected motion
features) to an n-dimensional sound synthesis space (defined by the synthesis parameter
set)17.

Thanks to the modular design of KineToolbox, the synthesis engine could be easily
replaced with other algorithms by exposing synthesis parameters to Max pattr system.
The data from the SVM classifier can be sent to interpolate JSON files loaded in multiple
sound synthesis and signal processing patches. External synthesis and sound processing
algorithms can be also controlled in a similar fashion as long as they can communicate
with Max through Open Sound Control (OSC) or MIDI protocols.

The features extracted in the input patch can also be used for more traditional
explicit, systems-oriented mapping in conjunction with the functional approach based
on machine learning. For example, the EMG MAV value (see section 9.6.2) is explicitly
mapped to the breath pressure of the physical model, while all the other parameters are
controlled as described above.

8.4 Case study: 11 Degrees of Dependence
This section presents a composition for saxophone, electric guitar, wearable sensors, and
live electronics that makes use of the tools described in this chapter so far. The piece,
entitled 11 Degrees of Dependence, explores the relationship between the performers and

17For more information on functional mapping approaches based on interpolation see section 9.7
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Fig. 8.4 Four patches of KineToolbox in presentation mode. Clockwise from top left:
main input, Myo monitoring, features monitoring, physical model, machine learning.

their instruments, focusing on the constraints that instrumental practice imposes on
body movement and a topological interpretation of the musician’s kinesphere (Laban,
1966). The score includes symbols to notate movements, designed to be easily interpreted
by musicians familiar with standard notation.

8.4.1 Instrumentation and Design

The piece is a duet for alto or soprano sax and electric guitar tuned in Drop C18. The sax
player wears two Myo armbands using the KineToolbox patches to control the physical
model whereas the guitarist wears the same devices to control granular synthesis and an
electroacoustic resonator placed on the guitar headstock. Parameter mapping is done
using the SVM implementation in KineToolbox. The data from the lateral (pitch) and
longitudinal (roll) axes of the magnetometer are used as input to train the machine

18Open strings tuned CGCFAD from low to high.
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learning model. Four ‘postures’ are then defined for both musicians. In the case of the
sax player, these are:

• a ‘default’19 performance position (named ‘Rest’) with arms comfortably by the
side of the chest,

• gently leaning back, raising the saxophone with the elbows slightly open (named
‘Open’),

• leaning to the left with the right elbow slightly pointing outwards (named ‘Left’),

• leaning to the right with the left elbow slightly pointing outwards (named ‘Right’).

Each posture is then coupled with a set of synthesis parameters of the flute physical
model. The Rest posture is paired with a clean sound with a clear fundamental frequency,
the Open posture with a louder sound rich of breath noise, the Left posture adds overtones,
and the right posture with a flutter tongued ‘frullato’ sound. This synthesised wind
instrument sounds are designed to blend with the saxophone sound to generate a timbre
with both familiar and uncanny qualities. The pitch played by the flute model is a C1,
which is also the tonic of the piece.

The amount of noise fed into the physical model (or breath pressure) is controlled
by the sum of the EMG MAV values of both arms. This implies that the amount of
synthesised sound is constrained by the movement of the fingers operating the saxophone
keys. Notes that require more tone holes to be closed – such as low notes for example –
cause more muscular activity and thus louder sounds from the physical model. This design
choice adds a component of interdependent, semi-conscious control to the performance
creating a tighter coupling between the sounds of the saxophone and those of the flute
model.

8.4.2 Score and Structure

11 Degrees of Dependence is structured in 3 parts, each of which contains scored themes
at the beginning and the and a middle improvised section. The full score of the alto
saxophone part can be found in appendix A. The score adopts conventional notation
along with some custom symbols (printed in red) used to notate movement.

The main ideas for the piece were outlined in summer 2015, during my stay in New
York City for a collaborative project at NYU Steinhardt. The software employed in the

19The sax players were asked to stand and hold the instrument comfortably as they were playing with
no particular effort.
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Fig. 8.5 Performance of 11 Degrees of Dependence, Harvestworks, New York City, 8 May
2016. Ana García Caraballos (Alto Sax, Myo armbands) and Federico Visi (electric guitar,
Myo armbands). Full video of the performance: https://youtu.be/QtWTq15phL4.

piece was written during that period, and part of it is included in KineToolbox (see
section 8.3.1). For the composition of the piece, I was inspired by music I have discovered
while exploring New York music scene. In particular, the use of guitar harmonics and
saxophone keyclicks to form repeating rhythmic patterns was inspired by the album
Dysnomia20 (Thirsty Ear Recordings, 2013, Erased Tapes Records, 2015) by Dawn of
Midi21, a Brooklyn-based acoustic jazz trio with members from India, Morocco, and
Pakistan. In that album, Dawn of Midi employ rhythmic structures from North and West
African folk traditions and extended techniques on piano, double bass, and percussion
to create complex polyrhythmic structures. The idiosyncratic sound of Dysnomia is
sometimes reminiscent of minimal music and experimental electronic music. The scales
I used for the scored themes and the frequent use of odd time signatures were instead
inspired by some of the live performances I attended at The Stone22, which I frequently
visited while in New York. Located in the East Village, about a twenty-minute walk
from NYU Steinhardt, The Stone is a performance space dedicated to experimental and
avant-garde music. The artistic programme is curated by John Zorn in collaboration with

20https://dawnofmidi.bandcamp.com/album/dysnomia
21http://www.erasedtapes.com/artists/biography/27/Dawn+of+Midi
22http://www.thestonenyc.com

https://youtu.be/QtWTq15phL4
https://dawnofmidi.bandcamp.com/album/dysnomia
http://www.erasedtapes.com/artists/biography/27/Dawn+of+Midi
http://www.thestonenyc.com
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various other musicians (mostly associated with the avant-garde music scene) doing weekly
residencies. At the time of my stay in New York, Zorn was presenting his Bagatelles, a
series of 300 tunes which were performed at the Stone every Sunday for six months by a
different ensemble.

In 11 Degrees of Dependence, I used a minor mode with a minor second, an augmented
fourth, and a major seventh. The electric guitar parts are mostly ostinato rhythmic
patterns that frequently change time signature between 4/4, 5/8, and 6/8. When the
guitar takes the lead in section 2, the saxophone plays a percussive pattern in 5/8 using
keyclicks to accompany the guitar, thus switching roles. Movement was scored following
the melodic phrasing, in order to pair a complete movement to a phrase or a small
group of notes. This had the added benefit of making the piece easier to memorise, since
it would be impractical to use a music stand during performance. The work on body
movement was inspired by some of the concerts I have attended at The Stone, and also
by the duo performances of Colin Stetson and Sarah Neufeld. In particular, the live
rendition of the piece “The Rest of Us”23 prompt me to pay attention to the cyclical
body weight shifting movements of the musicians and the physical interplay between the
two performers.

Fig. 8.6 shows an excerpt of the score of 11 Degrees of Dependence useful to give
an example of how movement notation works in the piece. The red symbols represent
the four postures defined during the training process: the circle corresponds to the Rest
posture, the triangle to the Open posture, the arrowhead pointing left corresponds to
the Left posture, and finally the arrowhead pointing right corresponds to the Right
posture. The custom symbols used in the score were initially sketched by hand, then
drawn in Adobe Illustrator24 and saved as Scalable Vector Graphics (SVG). The SVG
files were then imported in Avid Sibelius25 as custom symbols to be easily used along
with conventional notation symbols.

While the symbols indicate at which point in time the posture should be reached, the
red lines show how the transition between the different postures should be articulated.
These lines resemble other lines commonly found in conventional music notation. A
straight line between two symbols means that the performer should start from the posture
represented by the first symbol and progressively move towards the posture represented
by the second symbol. The movement resulting from the transition between the postures
should end in correspondence with the second symbol, thus following the rhythmic

23Video of Stetson and Neufeld’s performance of “The Rest of Us” for Billboard: https://www.
youtube.com/watch?v=ZNnKemIYoWs

24http://www.adobe.com/products/illustrator.html
25http://www.avid.com/sibelius

https://www.youtube.com/watch?v=ZNnKemIYoWs
https://www.youtube.com/watch?v=ZNnKemIYoWs
http://www.adobe.com/products/illustrator.html
http://www.avid.com/sibelius
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Fig. 8.6 Section 3a of the score of 11 Degrees of Dependence, showing the same sax
phrase repeated twice with different movement articulations.

subdivision indicated in the staff. This is similar to a glissando, also notated using
straight lines between note heads. A curved line between the posture symbols works
instead analogously to a legato, meaning that the indicated posture quickly tied with
the following one. For example, in the first bar shown in Fig. 8.6 the saxophonist starts
playing the phrase from a Rest posture, progressively transitioning to a Left posture,
which is reached in correspondence with the dotted minim in the third bar. The posture
is held until the end of the note and then quickly tied to Rest posture. A sforzando under
a posture symbol denotes that the posture is forcefully accentuated. For instance, in bar
32 shown in Fig. 8.6, the player raises the saxophone higher than usual, thus generating
a louder synthesised sound due to the increased effort. The sinusoidal line between two
vertically aligned posture symbols – as in bar 28 – indicates a smooth, cyclical alternation
between the two postures for the duration of the line. This is somewhat similar to a
trill or a mordent in conventional music notation, although the speed of the alternation
can be much slower and is left to the performer’s interpretation. In the case of bars 28
and 29 of 11 Degrees of Dependence, the sax players that performed the piece tended to
perform the movement with cycles equivalent to a dotted minim, following the tactus of
the music.
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The excerpt in Fig. 8.6 includes the same saxophone phrase repeated twice, but
with different movement articulations. This shows how different gestural performances
of each repetition and different sounds generated by the physical model can create
musical variation while maintaining the same melodic material. A video showing a
rendition of this segment by Katherine Williams on soprano saxophone can be found
here: https://youtu.be/KC98tkkYse8?t=7m1s (7:01 – 7:30).

8.4.3 On Scoring Movement

Several composers included performer’s movements in their scores adopting various
techniques. Notable examples are Mauricio Kagel music-theatre work (Laskewicz, 2008)
and Karlheinz Stockhausen’s HARLEKIN for clarinet (Marczak, 2009). Kojs (2011)
discusses the notation of ‘action-based music’ grounded in ecological perception and
enactive music cognition (see chapter 3 to read more about these theoretical accounts),
noting that “A number of performers have reported to me that performing action-based
music has facilitated a better understanding of their instrument and informed their
interpretation of the standard repertoire.” (Kojs, 2011, p. 66). Unconventional music
notation has recently received a renewed research interest in academia (Battier et al.,
2015; Hoadley et al., 2016). Particularly relevant are recent works on notating the gestural
aspect of piano performance (Maestri and Antoniadis, 2015), and a custom notation
system for a DMI inspired by wind instruments and with motion sensing capabilities
(Mays and Faber, 2014). Communicating musical ideas involving both established practice
and idiosyncratic designs is also an issue that has been recently addressed by researchers
in the NIME26 community (Green, 2016).

From a research standpoint, writing and performing 11 Degrees of Dependence as
a short étude on instrumental music electronically augmented through the musicians’
movements has several implications. As discussed above, a system for notating the
performer’s movements that is sufficiently accessible to be presented to musicians familiar
with conventional notation was needed. This issue was addressed by designing a set
of symbols that work in tandem with the motion-sound mapping strategy and tools.
However, there are other implications that go beyond addressing this practical necessity.
In their article about bringing the Magnetic Resonator Piano (an electronically augmented
acoustic grand piano) to a larger community of musicians, Mcpherson and Kim (2012)
address several issues related to the development of novel instrumental techniques that
are based both on newly designed instrument augmentations and on established practice.

26International Conference on New Interfaces for Musical Expression, http://www.nime.org.

https://youtu.be/KC98tkkYse8?t=7m1s
http://www.nime.org
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Fig. 8.7 Performance of 11 Degrees of Dependence, Peninsula Arts Contemporary Music
Festival 2016, Plymouth, UK, 28 February 2016. Katherine Williams (Soprano Sax,
Myo armbands) and Federico Visi (electric guitar, Myo armbands). Full video of the
performance: https://youtu.be/KC98tkkYse8.

Rather than discussing the design and evaluation of a novel musical instrument, they
focus on how novel instrumental practices can be brought to broader musical communities,
and how this can have an impact on the design of the instruments itself. One of the main
motivations for addressing these issues is effectively summarised in a remark by Jordà
(2004, p. 326): “Many new instruments are being invented. Too little striking music is
being made with them.”. Establishing a continuing musical life for novel instrumental
practices is crucial for for their success, and notation is certainly a means to facilitate
this. To achieve this Mcpherson and Kim (2012, p. 26) recommend to “Demonstrate
uniqueness, but connect to familiar models” and “Design for the first performance; then
iterate.”

11 Degrees of Dependence was composed and notated following similar motivations
and criteria, as it is aimed at testing and further improving some of the theoretical
assumptions and technical solutions described in this dissertation. Therefore, scored
parts involving both conventional notation and body movements that can be read and
performed consistently by different musicians are a means for connecting to familiar
models, allowing for different interpretations and iterations. The piece premiered at
the Peninsula Arts Contemporary Music Festival 2016, Plymouth, UK, 2016, with Dr

https://youtu.be/KC98tkkYse8
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Katherine Williams27 on soprano sax. This approach to notating movement has proved
effective as the piece was performed by three different performers (see section 8.4.4).
In the two most recent iterations, the score was sent to the performers beforehand,
explaining the movement notations verbally via a video call. Two of the performers
reported that they found it easier to memorise the score after they began to consider the
melodic and gestural phrases as whole syntactic elements of the piece rather than two
separate streams of information running in parallel.

This notation system can also be employed with musical instruments other than the
saxophone. The fact that the symbols refer to points in the kinesphere of the musician
and not to specific instrumental gestures allows for the applications of the same concepts
to other instruments and pieces. As an example, the saxophone part of 11 Degrees
of Dependence could be transposed for violin by rewriting the notes in a key that is
appropriate for the violin range and by defining four new postures in relation to the violin
performance movements. Each of the four new postures corresponds to one of the four
symbols in the score, and the mappings with the synthesis parameters of the flute physical
model are easily defined through machine learning. Thus, the notation system is flexible
and can be employed with other instruments and in other compositions. The software
tools are conceptually paired with the movement notation system, and allow to quickly
create new mappings using the synthesis parameters defined previously, preserving the
original sonic palette of the piece while changing the performance movements involved.

8.4.4 List of Performances of 11 Degrees of Dependence

• With Katherine Williams on soprano saxophone:

– Peninsula Arts Contemporary Music Festival 2016, Plymouth, UK, 28 February
2016 (Fig. 8.7).

– Nonclassical Club Night curated by Gabriel Prokofiev, International Festival
For Artistic Innovation – iFIMPaC 2016, Leeds College of Music, Leeds, UK,
10 March 2016.

• With Ana García Caraballos on alto saxophone:

– Creative Tech Week, Harvestworks, New York, US, 8 May 2016 (Fig. 8.5).

• With Lara Jones on alto saxophone:
27Katherine Williams’ input as a performer and musicologist has been essential for the development

of the piece.
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– Music of Motion and Presence, Plymouth Art Weekender / Peninsula Arts,
The House, Plymouth University, Plymouth, UK, 25 September 2016 (with
the addition of Marco Frattini on percussion).

8.5 Further Applications: Tuned Constraint
The KineToolbox patches were also used for a piece for analogue synthesiser and Myo
armbands entitled Tuned Constraint (Visi, 2016). The piece has some characteristics
in common with 11 Degrees of Dependence as they use similar hardware and software
configurations to make use of the movement of the instrumentalist to control waveguide
synthesis parameters. Moreover, both works make use of the affordances and constraints of
the instruments to design movement-sound interactions based on a many-to-many holistic
mapping strategy. Whereas the interaction with the physical model by the saxophonist
was constrained by the instrumental gestures involved in playing the saxophone, in Tuned
Constraint the movement of the performer is instead constrained by classic modalities
of interaction involved in traditional analogue synthesis. A fully analogue synthesiser
usually affords the control of a limited number of parameters by operating knobs and
switches on its front panel. Similarly to the example of the DJ turntable mentioned
in section 3.3.3, this is arguably part of an emerging vocabulary of gestures involved
in electronic music performance that is becoming part of a shared knowledge. As also
noted by Magnusson (2010), some physical objects have easily detectable affordances –
for example a knob invites turning – and affordances and constraints can be used for
designing mappings for DMIs. The concept of constraint is also used by Mulder (2000)
for the design of virtual control surfaces for DMIs, and Gurevich et al. (2012) analyse the
role of interface constraint in facilitating the development of style and virtuosity in DMI
performance. One of the constraints of fully analogue synthesisers is that each knob is
usually hardwired to a single synthesis parameter. In other words, parameter mapping is
defined by the manufacturer and cannot be altered without modifying the instrument.

The training procedure and synthesis parameters used for the saxophonist in 11
Degrees of Dependence (see section 8.4.1) were also adopted for Tuned Constraint, this
time using different postures related to actions on the synthesiser front panel:

• both hands resting on the front panel of synthesiser,

• both hands lifted up at about the level of the head,

• turning a knob with the right hand,
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• turning a knob with the left hand.

Tuned Constraint aims at exploring the constraints that this interface paradigm
impose on the performer’s gestural behaviour, and to use such constraints as constitutive
expressive elements. The performer’s body is the site were different electronic music
interaction paradigms (the classic analogue paradigm based on knobs and switches and
the holistic mapping strategy based sensors and machine learning) are actualised and
juxtaposed. The performer’s actions emerging from this process of synergy and contrast
are integral parts of the musical experience of the audience, having an impact on liveness,
immediacy, presence, and flow of the performance.

8.5.1 List of Performances of Tuned Constraint

• Practice Research Symposium, Plymouth University, Plymouth, UK, 5 February
2016 (Fig. 8.8).

• International Metabody Forum, Brunel University / Artaud Performance Centre,
London, UK, 7 – 9 April 2016.

• ICLI 2016 – International Conference on Live Interfaces, University of Sussex, 2
July 2016 (Visi, 2016).

8.6 Summary and Comments
This chapter presented a set of software tools and hardware solutions employed to
augment instrumental performance through the body movements of the musicians. These
tools were employed in the composition and performance of two musical pieces, here used
as case studies. A set of symbols to notate movement was designed to be used within the
conventional western music notation system in order to be more accessible to musicians.

The piece 11 Degrees of Dependence was performed in several occasions by three
different sax players, showing that the notation system allows for consistent reiterations
of the piece, leaving reasonable room for the interpretation of each individual performer.
In fact, a purely unconventional graphical score was avoided in favour of an approach
that allowed a certain degree of interpretative freedom given a set of constraints. In 11
Degrees of Dependence, the improvised parts in the middle of each scored section allow
the performers to freely elaborate the melodic and gestural material of the scored parts.
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Fig. 8.8 Performance of Tuned Constraint, Practice Research Symposium, Plymouth
University, Plymouth, UK, 5 February 2016. Federico Visi (analogue synthesiser, Myo
armbands). Full video of the performance: https://youtu.be/jdVw22D3NNM.

The hardware/software system was used in two very different pieces. This shows that
the system is flexible, as it can be repurposed and was not designed to address the needs
of a single piece or performance. In fact – even though the choices in terms of hardware,
software, and notation system were made to work in synergy – the key concepts of this
holistic approach to mapping can be applied to other systems involving other hardware
solutions, machine learning algorithms, and synthesis engines. The postures used for
training the machine learning models can be interpreted as topologies of the kinesphere
of the musicians, portions of the space around them with spatial and sonic relationships
defined through the training procedure (Visi and Miranda, 2016). Moving between
each postures constantly varies the synthesis parameters, generating movement/sound
articulations. Here, a posture is defined as a point in the kinesphere towards which the
body is moved, adding goal-directedness (cf. chapter 2) and thus giving intentionality
and expressivity to the movement. From a different perspective, this resonates with
HCI accounts that see posture as static conditions and gestures as dynamic transitions
(Mulder, 1996).

The feedback from the musicians involved in the performance of 11 Degrees of
Dependence also proved very useful for improving the usability of the KineToolbox

https://youtu.be/jdVw22D3NNM
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patches and revisiting concepts subject of the theoretical and analytical parts of this
dissertation, shedding light on issues of interaction design and the role of body movement
in music performance.



Chapter 9

A Knowledge-based, Data-driven
Method for Motion-sound Mapping

There is more wisdom in your body
than in your deepest philosophy.

Friedrich Nietzsche
Thus Spoke Zarathustra

9.1 Introduction and Motivation
This chapter presents a knowledge-based, data-driven method for using data describing
action-sound couplings collected from a group of people to generate multiple complex
mappings between the performance movements of a musician and sound synthesis. This
is done by using a database of multimodal motion data collected from multiple subjects
coupled with sound synthesis parameters. A series of sound stimuli is synthesised using
the sound engine that will be used in performance. Multimodal motion data is collected by
asking each participant to listen to each sound stimulus and move as they were producing
the sound using the musical instrument they are given. Multimodal data is recorded
during each performance, paired with the synthesis parameters used for generating
the sound stimulus. The dataset created this way is then used to build a topological
representation of the performance movements of the subjects. This representation is
then employed to interactively generate training data for machine learning algorithms
and define mappings for real-time performance. To better illustrate each step of the
procedure, I describe an implementation involving clarinet, motion capture, wearable
sensor armbands, and waveguide synthesis.
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The main motivation behind this method is to make use of the music-related movement
knowledge of a group of people to define motion-sound mappings for live interaction. The
resulting mappings take advantage of the ecological knowledge of action-sound couplings
of the group of people that participated to the multimodal motion data collection.

A topological representation of the motion data aims at providing an interpretation
of what is shared and what is idiosyncratic among the participants, thus allowing to
take into account commonalities and individualities when generating the training data
for the machine learning model. The interactive method based on this representation
allows to generate training data that either preserves certain peculiarities of individual
subjects or is based on features shared by many participants. This gives more control
over the transparency and intuitiveness of the resulting movement-sound mapping. This
is particularly desirable for expressive applications such as music performance, where
idiosyncrasies and non-obvious mappings could be deliberately employed for expressive
purposes.

9.2 Background
This method is informed by several assumptions and approaches described throughout this
thesis. From a theoretical point of view, the idea of an ecological knowledge in listening
put forward by Godøy (2010) is central, particularly the assumption that studying the
relationships between gestures and sound might contribute to our knowledge of how
gestures help structure our experience of music. Moreover, Jensenius (2007) claims that
ecological knowledge about action-sound couplings guide our perception of artificially
created action-sound relationships. Thus, intuitive action-sound mappings should be
modelled after action-sound couplings that have similar properties and are part of this
ecological knowledge.

This method employs procedures and techniques for data collection and analysis typi-
cally adopted in experiments of music cognition and systematic musicology. Analogous
procedures were adopted in the experiment described in chapter 5. Relevant previous
works include the study by Godøy et al. (2006a) where they analyse video recordings of
people miming piano-playing movements while listening to musical excerpts. This was
done to explore the ability of listeners with different musical backgrounds to reproduce the
geometry of and the dynamics of movements related to piano performance. Palmer et al.
(2009) use motion capture to study performance expressivity and ancillary movements
of clarinetists and Teixeira et al. (2015) use similar techniques to evaluate the gesture
consistency of a group of clarinetists during several performances. However, in this case
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experimental procedures serve a different purpose. The main goal of this method is
to obtain data describing how a group of people associate instrumental movements to
certain musical sounds and observe shared and individual features of this movements.
This data can be seen as a snapshot of the ecological knowledge that a group of individ-
uals has of certain action-sound couplings related to the musical instrument they are
‘performing’ the given sound stimuli with. Rather than performing statistical analyses
aimed at corroborating a hypothesis or exploring recurrent patterns in music-related
movement, here the data is used for defining movement-sound interaction models that
take advantage of specific information regarding the ecological knowledge of clarinet
performance movements of a group of people. Differently from the work by Godøy et al.
(2006a), here an actual musical instrument is used also by non-experts. This is done
in order to obtain movements that are constrained by the physical affordances of the
clarinet.

One early study focused on the movements of clarinet players was carried out by
Wanderley (1999), who pointed out that ancillary gestures of the performer affect the
sound produced by the instrument and therefore should also be taken in consideration
in sound synthesis. Other studies dedicated to movement in clarinet performance
were carried out by Desmet et al. (2012b) and Caramiaux et al. (2012) among others.
Topological approaches to musical analysis include Topological Gesture Analysis by
Naveda and Leman (2010) and the use of persistent homology for the analysis of musical
score by Sethares and Budney (2014).

The work on the piece 11 Degrees of Dependence (see chapter 8) brought my attention
to several conceptual issues related to body movement in instrumental music performance
and musical meaning. This method can be seen as an extension or generalisation of the
insight on music and movement that working on that compositions has led to. However,
the purpose of this method is not to substitute interaction design choices based on
intuition with decisions informed by quantitative data. Rather, these techniques are
aimed at providing a method for interpreting and utilising movement information for
musical interaction. In fact, this approach may also be used in conjunction with other
mapping strategies. To attempt an analogy with other techniques common in electronic
music production, this method can be seen as a way of sampling movement knowledge
from a group of individuals. This information can then be manipulated and repurposed,
as it is common practice with audio samples. The size and composition of the group where
this information is sampled from can also be considered a factor that can be deliberately
manipulated by the composer. For example, one might be interested in working with
movement data collected from a small group of individuals of specific ethnicity, gender,
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age group, etc. as opposed to analyse large databases that describe movements of a vast
population.

9.3 Procedure Overview
The structure of this method is outlined in Fig. 9.1. The main steps of the procedure
are:

• Design the sound stimuli using the synthesis engine that will be employed in
performance.

• Present the sound stimuli to the group of participants, asking them to move as they
were producing the sounds with the instrument they are given. Collect multimodal
data during each performance.

• Extract features from the multimodal data and define a topological representation
of the performances.

• Select a point in the topology to generate the corresponding motion data.

• Train a machine learning model for real-time interaction with the generated data
and the synthesis parameters used for producing the sound stimulus.

In the following sections, I will describe the procedure in detail, both in general
terms and by illustrating how the method was implemented using a clarinet, a synthesis
engine based on a flute physical model, motion capture, and armbands with EMG and
IMU/MARG sensors.

9.4 Design of Sound Stimuli
The set of sound stimuli to play back to the participants during data collection is designed
by recording and editing sequences of synthesis parameters. Playing back these sequences
allow the physical model to generate the desired sound.

In this implementation, the sound stimuli were designed and synthesised using the
same physical modelling algorithm previously employed for composing and performing
the piece 11 Degrees of Dependence (see chapter 8). The flute model algorithm is based
on waveguide synthesis (Smith, 1996, 1992) and was originally designed by Bessell (2011)
and used in his piece Ophidian. Parameter sequences were deliberately designed to obtain
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Fig. 9.1 Method structure and workflow.
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some examples of various articulations that can be achieved using the flute model. It is
important to note that obtaining sounds that closely resembled a real flute was not our
goal. Rather, I aimed at obtaining sounds that preserve some timbral qualities of wind
instruments but go beyond what a conventional wind instrument can achieve in terms of
pitch, tone, and dynamics.

The sound stimuli were synthesised in Max1. Nineteen parameters of the physical
model were exposed for control, therefore each sound sequence is made up of nineteen
parameter envelopes. In order to obtain complex articulations, four sets of synthesis
parameters were stored in a JavaScript Object Notation (.json) file. Each parameter
set correspond to the values necessary to obtain a specific timbre: clean tone with clear
fundamental frequency, tone with higher breath noise, overtones, and flutter tongue. The
stimuli were created by interpolating said parameter sets over time. To do so, I used
the orientation data from the IMU/MARG sensors of two Myo2 armbands as input to a
Support Vector Machine (Burges, 1998). The SVM was trained to interpolate between
the parameter sets and obtain complex multi-parameter modulations. The audio output
of the model, all the synthesis parameters, and the interpolation ratios of the parameter
sets were recorded in separate tracks of a MuBu container (Schnell et al., 2009) and then
saved as SDIF files. Doing so allows to re-synthesise the stimuli in real time using the
parameter data and store the recorded audio for reference. Six stimuli of length between
10 and 28 seconds were eventually selected.

It is worth mentioning that any other strategy can be adopted to record the synthesis
parameters of the stimuli: from manually designing each parameter envelope with a
graphical editor to using other controllers to perform and record parameter modulations.

9.5 Multimodal Data Collection
Once the parameter sequences for the synthesis of the stimuli are defined, we can
then ask a group of people to mime a performance of each sound using a musical
instrument. Multimodal motion data is recorded during each trial. This results in
a multimodal database containing data describing the performance movements each
participant associated to each stimulus. This data aligned with the synthesis parameters
used to generate the sound, also stored in the multimodal database.

In this section I will describe the procedure and the architecture of the system I used
for collecting motion capture, IMU/MARG, and EMG data aligned with the synthesis

1https://cycling74.com
2https://www.thalmic.com

https://cycling74.com
https://www.thalmic.com


9.5 Multimodal Data Collection 141

parameters of the physical model. Following that, I will explain the motivations behind
the adoption of a multimodal approach, the marker configuration, and other design
choices aimed at addressing technical and conceptual issues.

9.5.1 Task and Data Collection Procedure

Each participant was informed about the purpose of the data collection and asked to
wear the Myo armbands and the rigid body markers as described in section 9.5.3.

The participant was then given a clarinet fitted with three reflective markers and
with the reed removed. The embouchure of the clarinet was protected with a layer of
food grade cling film, which was replaced after every individual session. This was done
for hygienic purposes and in order to allow each participant to comfortably use the
embouchure.

For each stimulus, each participant was first asked to carefully listen to the sound
and imagine the movements they would do if they were to perform that sound using
the clarinet. This listening phase could be repeated however many times the participant
wanted (in most cases two times were sufficient). The participants were allowed to
rehearse the movements while listening to the sound in order to find the movements
and actions that, in their opinion, best matched the idea of performing that sound
using the clarinet. After having sufficiently familiarised with the sound and decided the
movements, the participant is asked to mimic a performance along the sound for three
times. Participants were also instructed to perform each stimulus consistently (i.e. trying
to perform the same performance movements they devised during the listening phase the
best way they can throughout the three takes). In order to help the participant to start
the performance synchronised with the sound, each stimulus playback was introduced by
a four-beat count in at 120 bpm tempo3. During each take, all the data from the rigid
bodies motion tracking and the EMG and IMU data of the Myo armbands were recorded
in a single, multitrack MuBu container in Max. The synthesis parameters and audio of
each stimulus were also recorded in the same container synchronously, and so was the
click track the produced the count in before the stimulus. All the performances were
also filmed using a Canon DSLR.

3The stimuli do not have evident rhythmic qualities therefore this tempo value is common to all the
stimuli



142 A Knowledge-based, Data-driven Method for Motion-sound Mapping

9.5.2 Participants

Eight participants took part in the data collection phase of this project (7 male, 1 female,
aged 24-53, average age: 31, SD of age: 9.0), which took place in the ICCMR Studio at
Plymouth University in June 2016. All the participants had some musical background.
An individual recording session lasting approximately half an hour was scheduled for
each participant. During the session, the subject performed along each of the six stimuli
three times, for a total eighteen takes per participant. A stool was placed nearby the
capture area in case the participant needed to rest between takes.

It this important to point out that in this context whether the sample is representative
of a larger population is not of major concern. The aim of the study is not to obtain
statistically relevant results in order to validate a hypothesis. Rather, the goal is to
generate mappings based on how a group of people moved to mime the performance of
certain sounds. In fact, as pointed out in section 9.2, selecting a biased sample could be
done deliberately in order to obtain datasets that yield peculiar mappings.

9.5.3 Apparatus

The movement of the participants were recorded using a multimodal set-up involving
a six-camera optical motion capture system (OptiTrack Flex 3) and two Myo sensor
armbands. The motion capture system was used to track seven rigid bodies, each one
constituted by three or four reflective markers. The locations of the rigid bodies were as
follows: head, left upper arm, right upper arm, left hand, right hand, sacral wand (hips),
and clarinet (see Fig. 9.3 and section 9.5.4 for further details).

The 6 DOF data (3D position coordinates and orientation quaternions) was streamed
to Max via Open Sound Control4 protocol (OSC) using a custom MATLAB script. The
participants also worn two Myo armbands, on either forearms. The devices streamed
IMU/MARG 9DoF data and EMG data over a dedicated OSC port. The IMU data is
constituted by 3D acceleration, 3D angular velocity, and 3D orientation Euler angles.
The EMG data has eight channels per armband, which are numbered as described in
Fig. 9.2. All the data was recorded synchronously in Max as described in section 9.5.1 at
a sampling rate of 50 Hz.

The sound stimuli were re-synthesised in real time during the recording session using
the previously recorded parameters and were played back via a pair of Genelec 8020C
loudspeakers.

4http://opensoundcontrol.org/introduction-osc

http://opensoundcontrol.org/introduction-osc
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Fig. 9.2 Numbering of the EMG channels on a Myo sensor armband.

9.5.4 Rigid Bodies

In motion capture terminology, a rigid body is a geometric arrangement of three or more
markers that is defined as a single asset within a motion capture project. A rigid body
is usually designed to have unique spatial relationships between its markers. This is
to allow the system to recognise and track each rigid body as an individual labelled
trajectory. A rigid body can be used to obtain position and orientation5 relative to the
rigid body’s pivot point, whereas a single marker only returns position. The pivot point
of a rigid body is by default located on the centroid of the markers that constitute it.
However, the pivot point can also be adjusted by translating it to another location of the
rigid body.

Advantages over single markers

I decided to use only rigid bodies and avoid single markers for several reasons. First of all,
the purpose of this method is to create an interaction model for controlling a synthesis
engine in real time. Single passive reflective markers are not suitable for the purpose,
since the trajectory of a single marker would likely lose its label in case of a minor
occlusion. Rigid bodies on the contrary retain their label also in case of occlusion as long
as they are not deformed. Moreover, tracking of rigid bodies is generally more stable
and less prone to dropouts since it relies on multiple markers that can help the tracking
system in case one of the marker gets occluded (NaturalPoint Inc., 2016). Most motion

5Combined position and orientation is also known as 6 degrees of freedom (6DoF) data.
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Fig. 9.3 Multimodal configuration: locations of the rigid bodies and the Myo sensor
armbands. The clarinet was fitted with three single markers and then defined as a single
rigid body with the pivot point at the centre.

Fig. 9.4 OptiTrack rigid body and corresponding asset as visualised in OptiTrack Motive
software. The pivot point is displayed in yellow.
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capture systems are also capable of tracking so called ‘skeletons’ which are standard
marker configurations designed for tracking a full human body. Using skeletons should
minimise marker mislabeling in case of occlusion but again this solution is not suitable for
the purpose of this method, since it would require the performer to wear a full mocap suit
with a considerable number of markers attached. This could be acceptable when collecting
data in a laboratory context but would be rather unwieldy in an actual performance
situation. Moreover, when using skeletons, the marker configuration cannot be changed
and therefore there would not be sufficient flexibility for designing an interaction model
that is based on few selected body locations and movement features. Rigid bodies also
have the advantage of providing 6DoF information. While single marker trajectories
are defined by 3D positional data only, rigid body assets also carry information about
orientation.

Design

Since this project required the use of multiple unique rigid bodies, I designed and
3D-printed our own custom rigid body bases to be used along with the standard OptiTrack
hand rigid bodies. One of the main criteria for designing unique rigid bodies is to avoid
geometrical congruency with marker configurations of other rigid bodies (NaturalPoint
Inc., 2016). Also, as noted in the OptiTrack documentation (NaturalPoint Inc., 2016),
the rigid body solver benefits from having a point not on the same plane as all the other
markers. This makes the overall shape more unique and easier to track. Symmetry
should be avoided as it may cause the rigid body asset to flip during capture.

Following these directions, I designed some custom rigid body bases using a 3D
modelling software6. The size of the central rectangular base is similar to the one of
OptiTrack rigid bodies, whereas all the beams have different angles and lengths and
are not on the same plane as the base (see Fig. 9.5). The design includes six beams,
therefore different marker configurations using three to six markers can be made using
the same model. I used four retroreflective markers, whereas the standard OptiTrack
rigid bodies I used mounted three. This was done for a dual purpose: marker count
is another useful discriminant that helps the rigid body solver to recognise each rigid
body. Moreover, having a redundant marker is helpful, as the system is less likely to lose
tracking of the rigid body in case of occlusion (NaturalPoint Inc., 2016).

During tests, I noticed that our rigid bodies performed to some extent better than
the standard OptiTrack hand rigid bodies. I assume that this is due to the use of a
fourth marker and a non-planar design, which makes the markers less likely to align and

6Autodesk 123D: http://www.123dapp.com

http://www.123dapp.com
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Fig. 9.5 Custom 3D-printed rigid body

occlude each other. Another factor that might have improved the performance is the
slight distance of the reflective markers from the body and clothes of the participants,
which may have helped to keep the rigid body visible by multiple cameras. Benchmarking
the performance of these custom rigid bodies against that of the standard OptiTrack
ones is beyond the scope of this project. However, useful information about the design of
custom rigid bodies can be found in this article by Pintaric and Kaufmann (2008).

Locations

The marker configuration I adopted is constituted by seven rigid bodies, which were
located on the head, left upper arm, right upper arm, left hand, right hand, sacral
wand, and clarinet, as shown in Fig. 9.3. This configuration is deliberately focused on
upper body, arms, and hips marker locations. This was done as the purpose of this
implementation is to create an interaction model dedicated to instrumental and ancillary
movements occurring in specific regions of the performer’s body. Indeed, the method
described here can also be implemented with other marker configurations in order to
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Fig. 9.6 Placement of rigid bodies and Myo armbands for multimodal data recording.
The custom rigid bodies are on the back of the head and on the lower back.

create interaction models based on other movements, regions of the body, and motion
features.

The marker configuration adopted for the studies described in chapter 5 is based
on single markers, which are then processed offline. Using only rigid bodies has some
practical implications. For example, a common marker placement for tracking head
movements – which was adopted in chapter 5 and is also part of the standard Plug-in-Gait
marker configuration (Vicon®, 2006) – is composed by four markers placed approximately
on either temple and on the back of the head, roughly in a horizontal plane. It is common
practice then to calculate the centroid (known as ‘joint’ in motion capture terminology)
of these four markers and use the resulting data as a single ‘head’ marker. The same
four markers can also be used to calculate rotation angles around their centroid, thus
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providing 6 DoF information. A single rigid body placed on the head of a subject returns
6 DoF data as well, with the added advantage of real-time trackability. In addition, a
rigid body is less likely to generate mislabeled trajectories that need to be fixed manually
during data preprocessing. If – for specific measurement reasons – the tracking point
needs to be placed near the centre of mass of the head (i.e. inside the subject’s skull,
where the centroid of the four single markers would also be), this can be achieved by
translating the pivot point of the rigid body to the desired position. However, using many
rigid bodies at the same time may require higher computational power, since the solver
algorithm has to calculate the position and angle of the pivot point from the incoming
positional data of the rigid body markers at every frame. Moreover, rigid bodies may
be a more compact solution in certain cases, but they cannot be used for smaller-scale
applications such as finger and face tracking.

9.5.5 Multimodal Approach

In this case, tracking finger movements to determine when the clarinet keys are pressed
would be challenging, as this would require placing small adhesive markers7 on the fingers
of the subjects. An additional marker on the metacarpal would be necessary as a relative
reference, used to separate finger movements from arms and full body movements. This
would be a rather obtrusive solution with several other downsides. Tracking small finger
markers requires a higher-end – and therefore more expensive – motion capture camera
set up, with either high-resolution cameras capable of tracking smaller markers from a
distance or a higher camera count with few extra cameras placed closer to the subject
(thus reducing the actual capture volume). Rigid bodies cannot be used, thus making
it very difficult to track labeled trajectories in real time, as explained in section 9.5.4.
Moreover, applying adhesive on the hands of every participant would be time-consuming,
might feel uncomfortable, and is overall quite impractical in a performance situation.

Placing sensors on the instrument to track either keys or fingers movements would
be a cumbersome and invasive solution, which would also limit the portability of the
method and its implementation with other musical instruments and performers. Instead,
the EMG data obtained from the Myo armbands can be used to estimate hands and
fingers actions on the instrument with minor obtrusiveness and using a modality that is
not dependent on displacement in space.

7In standard motion capture applications, adhesive markers are usually employed for tracking facial
expressions. Finger tracking is often done using gloves or rings fitted with reflective markers. This
solution is excessively obtrusive for instrumental music performance as it interferes considerably with
instrument manipulation. An overview of standard motion capture markers produced by Natural Point
can be found at http://www.optitrack.com/products/motion-capture-markers/.

http://www.optitrack.com/products/motion-capture-markers/
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The action of pushing keys on a clarinet involves small-scale displacement and is one
of the main sound-modifying gesture of the clarinet’s gestural vocabulary. Therefore, it
makes sense to choose EMG data over motion capture to track finger movements on the
clarinet, regardless of the other technical issues that using finger markers would imply.

9.6 Data Processing and Distance Measure
Following the data collection phase, the content of the multimodal database is processed
and analysed. This section describes the steps necessary to represent the performance
movements for each sound stimulus as a point in a feature space. This is done by
selecting and extracting motion features from the data and adopting a distance measure
to locate each trajectory on the feature space. The distance relationships between all the
movements the participants performed in response to a single stimulus define a map: a
gestural topology of the movement reactions to that sound. This representation is useful
to understand differences and similarities between each performance in relation to the
selected features. Points clusters in regions of the feature space would indicate that a
group of participants have performed similar movements, whereas outliers might suggest
a more idiosyncratic performance.

9.6.1 Multimodal Data Preprocessing

Each take was saved as a single SDIF file containing all the data from motion capture,
sensor armbands, and physical modelling synthesis engine (sampled at 50 Hz), including
the audio information of both the stimulus and the click track (sampled at 44.1 kHz).
All the takes were then loaded in MATLAB for preprocessing. Each take was trimmed
in order to remove the data recorded during the initial count in and after the the sound
stimulus ended.

The quaternions describing the orientation of the rigid bodies were converted to Euler
angles measured in radians. The phase of all the angles was then unwrapped. This
was done in order to avoid big jumps in the data, which would affect the calculation
of derivatives and confuse machine learning algorithms if the orientation data is used
as input. Gaps in the motion capture data (which usually occur due to temporary
occlusion of the markers) were filled using cubic interpolation. All the MoCap data was
then smoothed using a Savitzky Golay smoothing FIR filter with a window length of
seven samples and a polynomial order of two in order to obtain optimal combination of
precision and smoothness as suggested by Burger et al. (2014).
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The data from the Myo sensor armbands did not require gap filling and smoothing.
The orientation data were centred at beginning of the stimulus and unwrapped as with
the Euler angles of the rigid bodies.

9.6.2 Feature Selection and Extraction

After applying the preprocessing routine to all the data, I selected the locations of the
body and the motion features on which I wanted to focus on for creating the interaction
model for real time performance. In this implementation, the features selected are the
Quantity of Motion of the clarinet rigid body and the envelope of the mean absolute
value of the right arm EMG data.

Quantity of Motion (QoM) is a motion feature widely used in the study of body
movement in music (Godøy et al., 2006b) and it is also employed for detecting affective
states and emotion (Piana et al., 2013). Fenza et al. (2005) define Quantity of Motion
(QoM) as the sum of Euclidean distances between successive points in a time window.
Quantity of Motion was computed using the following equation:

QoM(t) =
N−1∑
k=0

| ∥pt−k∥ − ∥pt−k−1∥ | (9.1)

Similarly to the version of Quantity of Motion for Inertial Measurement Units
(IMUQoM) described in chapter 7, rotation angles can also be considered in order
to obtain a descriptor that takes advantage of 6DoF information:

6DoFQoM(t) =
N−1∑
k=0

β1 | ∥qt−k∥ − ∥qt−k−1∥ | +β2 | ∥pt−k∥ − ∥pt−k−1∥ | . (9.2)

As in IMUQoM, ∥q∥ is the norm of the orientation quaternion, and β1 and β2 are
weights to balance the contributions of translational and rotational motion data8.

In either case, the values for each frame are summed over a time window of length N

samples.
In their article on the evaluation of five different features extracted from the Myo

EMG data, Arief et al. (2015) show that the EMG Mean Absolute Value (MAV) is the
best performing feature for time series analysis.

8Note that the first addend of equation 9.2 is equivalent to Quantity of Rotation (QoR), defined
previously in equation 7.3.
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The EMG feature used in this implementation is the mean of the absolute values of
all the eight EMG channels of the armband. This value can be considered an index of
the overall muscular activity in the forearm. It is calculated as follows:

MAV = 1/N
N∑

k=1
|Xk|. (9.3)

X is the vector with the EMG data and N is equals to the size of X, which in out
case is equal to 8 since the Myo has eight EMG channels.

To smoothen this feature and make it more usable for real-time interaction, I calculated
the upper envelope using shape-preserving piecewise cubic interpolation.

9.6.3 Distance Measure and Feature Space

A distance measure needs to be adopted in order to locate each performance in a
two-dimensional feature space defined by the selected features. I used Dynamic Time
Warping (DTW) to measure the distance between the feature vectors of each take. DTW
returns the smallest distance between trajectories if warped, therefore it accounts for the
fact that sequences might shift slightly forward or backward in time. It is widely used
for time series analysis and classification tasks (Salvador and Chan, 2007; Senin, 2008)
and for real-time gesture recognition (Gillian et al., 2011).

As described in section 9.5.1 above, the participants performed along each stimulus
three times. Fig. 9.7 shows the locations in the feature space of all the performances
along stimulus 5. The locations of the points were obtained by placing the mean of all
the performances at origin of the axes and using DTW to calculate the distances of
each point from the mean. In Fig. 9.7, the trials performed by the same participant
are displayed with the same colour. By connecting the respective takes and filling
the resulting triangular area we obtain a visual representation of the consistency of
each participant across the three trials. The circle inside each triangle is the centroid
obtained by averaging the locations of the three performances. Areas of the feature space
with higher concentration of points suggest shorter distances between participants and
therefore more similarity in the selected features.
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Fig. 9.7 Two-dimensional topological representation of the performances along stimulus
5. The vertices of each triangle correspond to the respective performances of each
participants. The circle inside each triangle indicates the centroid.

9.7 Topological Representation, Interpolation, and
Synthesis of Training Data

Van Nort et al. (2014) describe the topological perspectives of adopting a holistic
conceptual approach to mapping between control and sound parameters. In particular,
they focus on “functional properties related to a mapping’s geometric and topological
structure in the case of continuous, many-to-many mappings”. Rather than focusing
on the interconnections between individual parameters, a functional view of parameter
mapping is concerned with the structural properties of the set of input and output
parameters. This properties determine a mapping topology, which defines “the nature of
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the continuity, connectedness, and boundary definition in the mapping association (or
associations) between control and sound sets.” (Van Nort et al., 2014, p. 7).

Functional approaches to mapping for controlling sound synthesis parameters have
been implemented in several ways. Bowler et al. (1990) use a topological grid of points
in a N-dimensional space and simplicial interpolation. Similar topological approaches
were successively implemented in C++ by Goudeseune et al. (2001) and in Max by
Van Nort et al. (2014). Arfib et al. (2002) adopt a mapping strategy that uses high-
level parameters based on perceptual spaces to control many low-level synthesis model
parameters. Interpolating sets of parameter values in order to allow the control of a
high-dimensional sound model via a low-dimensional control space is also a key point of
the method proposed by Momeni and Wessel (2003).

A holistic, topological approach to parameter mapping using machine learning was
adopted in the pieces 11 Degrees of Dependence and Tuned Constraint described in
chapter 8. In this case, the topology defined using the distance measure described in the
previous section is used to synthesise the training data for the machine learning model
that will be used for real-time interaction. In order to represent each participant as a
single point in the feature space, the features describing the three performances along
the stimulus were averaged. The resulting time series and corresponding distances in the
feature space are exported from MATLAB and loaded in Max.

Using the radial basis function interpolation (Freed et al., 2010) Max tool RBFI,
each participant is represented as the centre of a Gaussian kernel (Momeni and Wessel,
2003) in the feature space. The largest graph on the top left corner of Fig. 9.8 shows
the Gaussian kernels obtained from the same data used to plot the triangles shown in
Fig. 9.7. Each point in this feature space corresponds to a temporal feature set obtained
by continuously interpolating between the features extracted from the performances of
the participants. This is done by using the distances from the selected point to calculate
the contribution (weight) of the feature set of each participant at that point of the feature
space. The grey sliders in the lower left of Fig. 9.8 display the weights at the cursor
position. The two graphs on the left (blue and red) show the interpolated features at the
corresponding point in the feature space selected using the cursor. In this case, the blue
graph shows the interpolated QoM of the clarinet, whilst the red graph the interpolated
envelope of the right arm EMG MAV.

From a practical point of view, this interactive display of the data allows to intuitively
create a feature set that can be used in conjunction with the synthesis parameters of the
stimulus to train a real-time interaction model. Displaying the data of each participant
as a location in a feature space has the purpose of communicating certain topological
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qualities of the data. The distance relationships between the Gaussian kernels give
higher-level information about how the participants moved to the sound that is useful for
defining the interaction. For example, placing the cursor close to a cluster with several
participants would result in training data that is closer to how the participants in that
cluster performed along the stimulus. From this perspective, clusters can be considered as
different ‘styles’ of performance movements along the same sound stimulus. Positioning
the cursor away from clusters and closer to outliers would instead result in training
data that is more idiosyncratic: representative of how a single individual reacted to and
performed along the sound stimulus. Clusters – on the other hand – suggest that a group
of participant performed the sound stimulus with a movement that has certain shared
features. Ostensibly, moving closer to a highly-populated cluster would result in training
data that would produce interaction models that are more transparent and intuitive
for the population of that cluster. Conversely, data closer to less populated areas and
outliers would instead lead to less predictable interactions. However, the characteristics
of the resulting interaction model also depends on the chosen features and the machine
learning algorithm used.

9.8 Interaction Model and Performance
The data generated by selecting a point in the feature space paired with the synthesis
parameters of the corresponding sound stimulus can then be used to train a machine
learning model for real-time interaction. Various algorithms can be adopted to do this.
Some of the established supervised learning methods that make use of multiple examples
to recognise gesture classes are based on Hidden Markov Models (HMM) (Françoise
et al., 2012; Lucchese et al., 2012) and Support Vector Machines (SVM) (Nymoen et al.,
2010; Piana et al., 2014). In particular, hybrid methods based on gesture templates
and statistical recognition are employed for real-time continuous control using a limited
number of training samples (Bevilacqua et al., 2010; Rajko et al., 2007).

Machine learning is also widely used for implementing interactive approaches to
gesture-sound mapping. Fiebrink et al. (2009a) use supervised learning to build a
training dataset from the gestures users perform along a musical score. Caramiaux et al.
(2014a) use a perception-action loop as design principle for gesture-sound mapping in
digital musical instruments. Françoise et al. (2013) employ HMM to conjointly model
control and synthesis parameters.
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Fig. 9.8 Screenshot of the user interface in Max. Each Gaussian kernel in the upper left
graph corresponds to a participant (compare with the locations of the triangles of the
respective colour in Fig. 9.7). The white cross is the cursor used to select a point in the
feature space. The grey sliders show the weights at the selected point. The two graphs
on the right side show the interpolated features corresponding to the selected point.

In this instance, I used the Max implementation of the Gesture Variation Follower
(GVF)9 by Caramiaux et al. (2014b). The training data obtained with the procedure
described in the previous section is used as a gesture template for GVF. In performance,
the two features used for analysing the movements of the participants are calculated in
real time and fed to GVF. The synthesis parameters that produced the stimulus the
participants performed along to are loaded in the physical modelling patch. During
performance, the GVF continuously outputs the temporal alignment with the gesture
template. This information is used to move through the temporal dimension of the
synthesis parameters of the sound stimulus, thus mapping the movements of the performer
to sounds generated by the physical model.

For this implementation, GVF was chosen over other algorithms also because –
by modelling the temporal information of the gesture template – it is able to detect

9https://github.com/bcaramiaux/ofxGVF

https://github.com/bcaramiaux/ofxGVF
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when the movement described in the template is performed backwards. Moreover, it
allows for continuous interaction with the physical model without having to define the
beginning and end of a gesture. These characteristics allow to obtain different sounds
and articulations by interacting with the synthesis parameter space defined by the sound
stimulus. Gesture-sound mapping can be easily redefined by repositioning the cursor
on another region of the topological representation to generate new data to train the
interaction model with. This allows to interactively explore the different mappings that
the feature space defined by the movement of the participants affords.

The sound palette can be expanded beyond what can be achieved using the parameters
of a single sound stimulus. This is done by repeating the procedure described in this and
the previous sections for the other stimuli, thus generating additional templates for GVF
paired with the synthesis parameters of the corresponding stimuli.

In performance, the amount of rigid bodies and sensor armbands worn by the performer
can be reduced to the ones that are strictly necessary for extracting the selected motion
features in real time. This results in a less cumbersome performance setup. For performing
with the two features selected in this example, only the right Myo armband and the
clarinet’s rigid body markers would be necessary. However, the data from the other rigid
bodies and sensors is not superfluous, as it can be stored and used for other compositions
based on the same instrument family and for generating other interaction models based
on other motion features and locations of the body.

9.9 Summary and Comments
I described a knowledge-based, data driven method for mapping music-related body
motion data to sound synthesis. This method uses multimodal data obtained by tracking
the movements of a group of people asked to move as they were ‘performing’ a set of
sounds using a silent musical instrument given to them. The sound stimuli are produced
using the synthesis engine that will be used for real-time performance and the synthesis
parameters paired with the multimodal motion data collected during the participants’
performances. This information is used to build a topological representation of the
performance movements in a two-dimensional feature space. This representation provides
information about shared and individual characteristics of the performances. Each point
of the feature space corresponds to a set of features that – paired with the synthesis
parameters of the corresponding sound stimulus – are used to train a machine learning
model for real-time interaction with the synthesis engine.
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This knowledge-based, data-driven approach stems from some of the assumptions
resulting from the theoretical, analytical, and practical work carried out throughout this
thesis. If movement affects our experience of music and therefore can be used as a musical
feature, movement data contains information that can aid musical composition and
performance. Considering the topic and scope of this thesis, this method was specifically
designed for instrumental music performance. However, I do not exclude that a similar
approach could be employed for creating empty-handed interactions or cross-modal
mappings involving non-musical media.

The motion features selected for the clarinet example are relatively simple. The
use of more sophisticated and higher-level features and more complex synthesis engines
could in principle lead to more complex motion-sound interactions. The same procedure
can be applied using features that involve more body locations or full-body motion
descriptors. The implementation I described is limited to two features in order to allow
for a clear representation of the performances in a two-dimensional feature space. This
was done also for the purpose of creating a simple Graphical User Interface for selecting
the areas in the feature space. Working with three or more features is also possible in
principle. However, different ways of presenting the topology of the performance data
should be adopted. A 3D representation is certainly a straightforward solution but more
complex, multidimensional relations could be represented using alternative methods such
as topological networks (Lum et al., 2013).

If using a larger dataset with many subjects, clustering algorithms can be employed
to further generalise and simplify the model. Conceptually, clusters could be seen as
different performance styles adopted by a number of individuals. Other distance measures
can also be adopted to estimate the relationships between the different performances and
unsupervised or semi-supervised training of deep networks might help to select the best
features to train the model with. Fried and Fiebrink (2013) describe implementations of
deep learning for cross-modal mapping. Future work can also go towards implementing
coarticulation between gesture templates and synthesis parameters corresponding to
different sound stimuli. Coarticulation in music has been extensively analysed by Godøy
(2014) and implementations for real-time interaction are currently being developed by
Bevilacqua et al. (2016).





Chapter 10

Postlude

Consciousness is only possible
through change; change is only
possible through movement.

Aldous Huxley
The Art of Seeing

I move, therefore I am.

Haruki Murakami
1Q84

This chapter concludes the dissertation by providing a summary of the results achieved
throughout the research project in relation to the research aims and questions presented
in chapter 1. Implications and future research perspectives are also discussed.

10.1 Summary and Contributions to Knowledge
This thesis have addressed the topic of body movements in instrumental music perfor-
mance from multiple perspectives, adopting an interdisciplinary approach and a mixed
methodology. Throughout the three main parts of the dissertation, methods techniques for
the analysis of instrumentalists’ movements and their use in composition and performance
have been discussed. More in detail, the research questions presented in section 1.2.1
have been addressed as follows.
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To what extent the movements involved in instrumental music performance
are part of a shared knowledge of musical gestures, and how do they relate
to other musical features?
This research question has been addressed from a theoretical standpoint and through
empirical analysis. The experiments described in part II were designed on the grounds of
the embodied accounts of music cognition delineated in part I.

The first exploratory experiment discussed in chapter 4 was aimed at observing
how the variation of a musical feature within the piece affects the body movements of
the performer. This initial study has shown non-obvious links between scored musical
features and body movements of a viola player. In particular, the study has shown that
ancillary movements do not always resonate with the variations of instrumental gestures.
This suggests that other factors come into play, such as the difficulty of the task. The
relationship between scored musical features and body movement was further explored in
the composition used as case study in chapter 7. This practical study has shown how the
multimodal qualities of the music mutually affect each other; the body of the performer
is the medium where this dynamic entanglement takes place.

The results of the larger-scale experiment described in chapter 5 suggest that there is
a shared knowledge of instrumental gestures shared also among people with no experience
playing the violin. These results provide empirical evidence to support some of the
theories discussed in part I, particularly the assumption that there is a shared ecological
knowledge (Godøy, 2010) of an instrument’s repertoire of sound-producing gestures (see
section 3.3.3). In addition, the analysis of motion data collected during the experiment
required the adoption and development of several motion data analysis techniques, which
were described and documented.

If gestures and body movement play a key role in how we experience and
understand music, how can they be employed as expressive elements in
composition and performance?
In light of the theoretical framework described in part I and the empirical analysis in
part II, the chapters in part III addressed this research question from several viewpoints.
Chapter 7 addressed technical and compositional challenges by defining motion descriptors
useful for expressive applications involving wearable motion-sensing devices. The solutions
adopted in a piece for viola, electric guitar, and motion sensors entitled Kineslimina are
then described and the piece is used as case study to further discuss the relationship
between body movement, musical score, and motion data. Chapter 8 presented a set of
software tools and hardware solutions employed to augment instrumental performance
through the body movements of the musicians. These tools were employed in the
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composition and performance of two musical pieces, here used as case studies. In
addition, a set of symbols to notate movement was designed to be used within the
conventional western music notation system in order to be more accessible to classically
trained musicians.

Can a multimodal embodied approach to musical meaning formation that take
into consideration the ecological knowledge of a traditional musical instru-
ment be used to inform effective mapping strategies?

Chapter 6 introduced the issue of parameter mapping in augmented instrumental
music performance and presented an approach to mapping inspired by embodied music
cognition and the studies of musical gestures. Concurrently, the chapter presented
a layered mapping strategy informed by functional aspects of musical gestures. This
strategy was implemented using various computable motion descriptors including Periodic
Quantity of Motion (PQoM), a novel feature used to measure the resonance of body
movement with musical rhythmic subdivisions.

Chapter 9 introduced a knowledge-based, data driven method for mapping music-
related body motion data to sound synthesis. This method is informed by the theoretical
assumptions presented in part I and the analysis techniques described in part II. This
interactive tool uses a multimodal dataset obtained by tracking the movements of a
group of people. The participants were asked to move as they were ‘performing’ a set of
sounds using a silent musical instrument. The sound stimuli were produced using the
same synthesis engine used in performance and the synthesis parameters were paired
with the multimodal motion data collected during the participants’ performances. This
information is used to build a topological representation of the performance movements
in a feature space. This provides information about shared and individual characteristics
of the performances and it is a way of exploring aspects of the ecological knowledge of
the instrument among the group of participants.

In order to address the research questions, the dissertation followed the broader
research aims defined in section 1.2 by:

• Contributing to the theoretical discourse delineated in part I. Strengths and limi-
tations of current theories in relation to the topic of instrumental music performance
were discussed, emphasising the centrality of the situatedness of music performance
and the key role of the environment in embodied accounts of music cognition.
Functional categorisation of musical gestures has also been reviewed, suggesting
the adoption of the concept of functional components in order to make the porous
and flexible nature of functional categories more evident and explicit.
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• Illustrating techniques and hardware/software solutions useful to analyse body
movements in instrumental music performance. Part II focused on offline data
analysis, describing the use of various motion descriptors – including Periodic
Quantity of Motion – to study the relationship between body movements and other
musical features. In addition to quantitative analysis, qualitative aspects related
to the musical score and other characteristics of the music have also been included
in the analysis.

• Composing brief pieces for traditional instruments and electronics that are used
as case studies to explore the role of gestural aspects of instrument playing in the
formation of musical meaning. These were also used as testing ground for concepts
and tools. Chapters 7 and 8 describe the development of these pieces, documenting
how conceptual and technical challenges have been addressed. Chapter 8 also
describe a system for notating body movement within conventional music notation
influenced by concepts of topology.

• Developing tools for composition and performance involving motion-sensing devices.
In addition to the solutions employed for the study in chapter 5 and the pieces in
chapters 7 and 8, chapter 9 illustrated a novel method for synthesising training
data for machine learning models and solutions for multimodal motion sensing,
including custom made 3D-printed rigid bodies for marker-based motion capture.

10.2 Implications and Future Research
Collectively, the these findings suggest that there is a shared embodied knowledge
of body movements related to instrumental music performance. Attempting to use
movement as a musical feature in composition and performance has brought to the fore
the implications of dealing with the affordances and constraints of the medium itself,
whether these are dictated by the relationship between the body of the performer and
the musical instrument or defined by the conventions of standard music notation. Some
of these constraints can certainly be eluded by designing entirely new instruments or
notation systems. However, connecting to familiar models allowed to take advantage
of the expertise of trained musicians and at the same time learn more about the role
of body movement in established practice. Moreover, exploring the shared embodied
knowledge of non-experts allowed to find out more about the musical experience of
perceivers. Combining quantitative and qualitative observations has also led to the design
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of interaction models that take into consideration the environment in which they are
situated.

Tackling the issue of creating meaningful cross-modal mappings has certainly wider
implications. As computing comes to be a key part of the semiotic environment in
which we live and paradigms such as mixed reality, pervasive computing, and calm
technology become more widespread, interpreting data generated by human movement
becomes a central issue. In these scenarios, persistent semi-conscious interactions are
increasingly common and obtaining meaningful information from high-dimensional data
is crucial for implementations human-centred machine learning. Exploring these issues in
musical contexts has made evident that body movement is a modality of knowledge and
expression, itself entangled to other modalities of human cognition. Movement carries
information that can be transduced into digital data and research has shown that the
inverse process is also viable (Lopes et al., 2015a,b).

Ultimately, the complex, multimodal qualities of music make it a remarkably effective
testbed for concepts and technologies that will eventually define how we experience the
world through movement. At the same time, wholly embracing movement as a musical
feature will significantly impact our relationship with musical expression.
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Arrangement:

Sec. 1
· Bar 1–8 two times, no movements the first time;
· Impro (16 bars);
· Bar 1-8 two times + Coda to part 2...
Sec. 2
· Guitar theme twice accompained by sax keyclicks (16 bars)
· Free Impro (adlib);
· Guitar theme twice accompained by sax keyclicks (16 bars)
Sec. 3
The time signature changes following the same pattern (four 6/8 bars; four 5/8 bars).
When you are ready, start with part 3a at the beginning of a pattern module (the first 6/8 bar), then:
· 3a two times
· Impro (32 bars, i.e. 4 full 6/8+5/8 bass patterns)
· 3b (end).

= Rest
= Open
= Left
= Right

Movement Notation

Modulate between 
the two positions

=
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In A. R. Jensenius & M. Lyons (Eds.), A NIME Reader: Fifteen years of New
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B.2 Journal Articles
• Visi, F., Coorevits, E., Schramm, R., & Miranda, E. R. (n.d.). Musical Instruments,

Body Movement, Space, and Motion Data: Music as an Emergent Multimodal
Choreography. Human Technology: An Interdisciplinary Journal on Humans in
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B.4 Compositions and Performances
• Music of Motion and Presence – for saxophone, electric guitar, percussion, and

motion sensors

– Plymouth Art Weekender / Peninsula Arts, The House, Plymouth University,
Plymouth, UK, 2016 (with Lara Jones on alto sax and Marco Frattini on
percussion).

• 11 Degrees of Dependence – for saxophone, electric guitar, and motion sensors

– Creative Tech Week, Harvestworks, New York, US, 2016 (with Ana García
Caraballos on alto sax).

– Nonclassical Club Night curated by Gabriel Prokofiev, International Festival
For Artistic Innovation – iFIMPaC 2016, Leeds College of Music, Leeds, UK,
2016 (with Dr Katherine Williams on soprano sax).

– Peninsula Arts Contemporary Music Festival 2016, Plymouth, UK, 2016 (with
Dr Katherine Williams on soprano sax).

• Tuned Constraint – for analogue synthesiser and motion sensors

– ICLI 2016 – International Conference on Live Interfaces, University of Sussex,
2016.

– International Metabody Forum, Brunel University / Artaud Performance
Centre, London, UK, 2016.

– Practice Research Symposium, Plymouth University, Plymouth, UK, 2016.

• Kineslimina – for viola, electric guitar, and motion sensors (with Esther Coorevits
on viola)

– Peninsula Arts Contemporary Music Festival 2016, Plymouth, UK, 2016

– MuSA 2015 – Sixth International Symposium on Music/Sonic Art: Practices
and Theories, Karlsruhe, Germany, 2015.

– Gala Concert of the 11th International Symposium on Computer Music
Multidisciplinary Research (CMMR), Plymouth University, Plymouth, UK,
2015.
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B.5 Talks and Seminars
• Methods and Technologies for the Analysis and Interactive Use of Body Movements

in Instrumental Music Performance, McGill University, Montreal, Canada, 2016.

• Instrumental gestures in music composition and augmented music performance, in
Music Seminars Series, Music Department, Plymouth University, Plymouth, UK,
2016.

• Gestures and Embodied Meaning in Performances with Traditional Musical Instru-
ments, in NYU MARL: Music and Audio Research Laboratory 2015–16 Talk Series,
New York, US, 2015.

• Body Movements and Embodied Meaning in Performances with Traditional Musical
Instruments, in fourMs seminars, Department of Musicology, Universitetet I Oslo,
Oslo, Norway, 2015.

• Gesture, Body Movement, Musical Experience, in ICCMR Doctoral Seminar Series,
Plymouth University, Plymouth, UK, 2014.

B.6 Workshops
• Motion and Music Workshop 2: from movement to analysis, SysMus 2016 Interna-

tional Conference of Students of Systematic Musicology, University of Jyväskylä,
Jyväskylä, Finland, 2016. In collaboration with Marc Thompson, Birgitta Burger,
Juan Ignacio Mendoza, and Esther Coorevits.

• Kinefy Workshop: movement interaction with Max and Processing, Creative Tech
Week, Harvestworks, New York, US, 2016. In collaboration with Andrew Telichan
Phillips.

• Motion and Music Workshop: processing and performing gesture motifs for com-
puter music, Symposium on Computer Music Multidisciplinary Research (CMMR),
Plymouth, UK, 2015. In collaboration with Luiz Naveda.
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