2,830 research outputs found

    FASTER: Facilitating Analysis and Synthesis Technologies for Effective Reconfiguration

    Get PDF
    The FASTER (Facilitating Analysis and Synthesis Technologies for Effective Reconfiguration) EU FP7 project, aims to ease the design and implementation of dynamically changing hardware systems. Our motivation stems from the promise reconfigurable systems hold for achieving high performance and extending product functionality and lifetime via the addition of new features that operate at hardware speed. However, designing a changing hardware system is both challenging and time-consuming. FASTER facilitates the use of reconfigurable technology by providing a complete methodology enabling designers to easily specify, analyze, implement and verify applications on platforms with general-purpose processors and acceleration modules implemented in the latest reconfigurable technology. Our tool-chain supports both coarse- and fine-grain FPGA reconfiguration, while during execution a flexible run-time system manages the reconfigurable resources. We target three applications from different domains. We explore the way each application benefits from reconfiguration, and then we asses them and the FASTER tools, in terms of performance, area consumption and accuracy of analysis

    Hardware Certification for Real-time Safety-critical Systems: State of the Art

    Get PDF
    This paper discusses issues related to the RTCA document DO-254 Design Assurance Guidance for Airborne Electronic Hardware and its consequences for hardware certification. In particular, problems related to circuits’ compliance with DO-254 in avionics and other industries are considered. Extensive literature review of the subject is given, including current views on and experiences of chip manufacturers and EDA industry with qualification of hardware design tools, including formal approaches to hardware verification. Some results of the authors’ own study on tool qualification are presented

    Enabling security checking of automotive ECUs with formal CSP models

    Get PDF

    Understanding multidimensional verification: Where functional meets non-functional

    Get PDF
    Abstract Advancements in electronic systems' design have a notable impact on design verification technologies. The recent paradigms of Internet-of-Things (IoT) and Cyber-Physical Systems (CPS) assume devices immersed in physical environments, significantly constrained in resources and expected to provide levels of security, privacy, reliability, performance and low-power features. In recent years, numerous extra-functional aspects of electronic systems were brought to the front and imply verification of hardware design models in multidimensional space along with the functional concerns of the target system. However, different from the software domain such a holistic approach remains underdeveloped. The contributions of this paper are a taxonomy for multidimensional hardware verification aspects, a state-of-the-art survey of related research works and trends enabling the multidimensional verification concept. Further, an initial approach to perform multidimensional verification based on machine learning techniques is evaluated. The importance and challenge of performing multidimensional verification is illustrated by an example case study

    AADLib, A Library of Reusable AADL Models

    Get PDF
    The SAE Architecture Analysis and Design Language is now a well-established language for the description of critical embedded systems, but also cyber-physical ones. A wide range of analysis tools is already available, either as part of the OSATE tool chain, or separate ones. A key missing elements of AADL is a set of reusable building blocks to help learning AADL concepts, but also experiment already existing tool chains on validated real-life examples. In this paper, we present AADLib, a library of reusable model elements. AADLib is build on two pillars: 1/ a set of ready-to- use examples so that practitioners can learn more about the AADL language itself, but also experiment with existing tools. Each example comes with a full description of available analysis and expected results. This helps reducing the learning curve of the language. 2/ a set of reusable model elements that cover typical building blocks of critical systems: processors, networks, devices with a high level of fidelity so that the cost to start a new project is reduced. AADLib is distributed under a Free/Open Source License to further disseminate the AADL language. As such, AADLib provides a convenient way to discover AADL concepts and tool chains, and learn about its features

    Dependable and Certifiable Real-World Systems – Issue of Software Engineering Education

    Get PDF
    Embedded software and dedicated hardware are vital elements of the modern world, from personal electronics to transportation, from communication to aerospace, from military to gaming, from medical systems to banking. Combinations of even minor hardware or software defects in a complex system may lead to violation of safety with or even without evident system failure, a major problem that the computing profession faces is the lack of a universal approach to unite the dissimilar viewpoints presented by computer science, with its discrete and mathematical underpinnings, and by computer engineering, which focuses on building real systems and considering spatial and material constraints of space, energy, and time. Modern embedded systems include both viewpoints: microprocessors running software and programmable electronic hardware created with an extensive use of software. The gap between science and engineering approaches is clearly visible in engineering education. This survey paper focuses on exploring the commonalities between building software and building hardware in an attempt to establish a new framework for rejuvenating computing education, specifically software engineering for dependable systems. We present here a perspective on software/hardware relationship, aviation system certification, role of software engineering education, and future directions in computing

    SMT-Based Bounded Model Checking of Fixed-Point Digital Controllers

    Full text link
    Digital controllers have several advantages with respect to their flexibility and design's simplicity. However, they are subject to problems that are not faced by analog controllers. In particular, these problems are related to the finite word-length implementation that might lead to overflows, limit cycles, and time constraints in fixed-point processors. This paper proposes a new method to detect design's errors in digital controllers using a state-of-the art bounded model checker based on satisfiability modulo theories. The experiments with digital controllers for a ball and beam plant demonstrate that the proposed method can be very effective in finding errors in digital controllers than other existing approaches based on traditional simulations tools

    The formal verification of generic interpreters

    Get PDF
    The task assignment 3 of the design and validation of digital flight control systems suitable for fly-by-wire applications is studied. Task 3 is associated with formal verification of embedded systems. In particular, results are presented that provide a methodological approach to microprocessor verification. A hierarchical decomposition strategy for specifying microprocessors is also presented. A theory of generic interpreters is presented that can be used to model microprocessor behavior. The generic interpreter theory abstracts away the details of instruction functionality, leaving a general model of what an interpreter does
    • …
    corecore