31,047 research outputs found

    Real-time support for high performance aircraft operation

    Get PDF
    The feasibility of real-time processing schemes using artificial neural networks (ANNs) is investigated. A rationale for digital neural nets is presented and a general processor architecture for control applications is illustrated. Research results on ANN structures for real-time applications are given. Research results on ANN algorithms for real-time control are also shown

    Navigating Diverse Datasets in the Face of Uncertainty

    Get PDF
    When exploring big volumes of data, one of the challenging aspects is their diversity of origin. Multiple files that have not yet been ingested into a database system may contain information of interest to a researcher, who must curate, understand and sieve their content before being able to extract knowledge. Performance is one of the greatest difficulties in exploring these datasets. On the one hand, examining non-indexed, unprocessed files can be inefficient. On the other hand, any processing before its understanding introduces latency and potentially un- necessary work if the chosen schema matches poorly the data. We have surveyed the state-of-the-art and, fortunately, there exist multiple proposal of solutions to handle data in-situ performantly. Another major difficulty is matching files from multiple origins since their schema and layout may not be compatible or properly documented. Most surveyed solutions overlook this problem, especially for numeric, uncertain data, as is typical in fields like astronomy. The main objective of our research is to assist data scientists during the exploration of unprocessed, numerical, raw data distributed across multiple files based solely on its intrinsic distribution. In this thesis, we first introduce the concept of Equally-Distributed Dependencies, which provides the foundations to match this kind of dataset. We propose PresQ, a novel algorithm that finds quasi-cliques on hypergraphs based on their expected statistical properties. The probabilistic approach of PresQ can be successfully exploited to mine EDD between diverse datasets when the underlying populations can be assumed to be the same. Finally, we propose a two-sample statistical test based on Self-Organizing Maps (SOM). This method can outperform, in terms of power, other classifier-based two- sample tests, being in some cases comparable to kernel-based methods, with the advantage of being interpretable. Both PresQ and the SOM-based statistical test can provide insights that drive serendipitous discoveries

    Navigating diverse datasets in the face of uncertainty

    Get PDF
    When exploring big volumes of data, one of the challenging aspects is their diversity of origin. Multiple files that have not yet been ingested into a database system may contain information of interest to a researcher, who must curate, understand and sieve their content before being able to extract knowledge. Performance is one of the greatest difficulties in exploring these datasets. On the one hand, examining non-indexed, unprocessed files can be inefficient. On the other hand, any processing before its understanding introduces latency and potentially unnecessary work if the chosen schema matches poorly the data. We have surveyed the state-of-the-art and, fortunately, there exist multiple proposal of solutions to handle data in-situ performantly. Another major difficulty is matching files from multiple origins since their schema and layout may not be compatible or properly documented. Most surveyed solutions overlook this problem, especially for numeric, uncertain data, as is typical in fields like astronomy. The main objective of our research is to assist data scientists during the exploration of unprocessed, numerical, raw data distributed across multiple files based solely on its intrinsic distribution. In this thesis, we first introduce the concept of Equally-Distributed Dependencies, which provides the foundations to match this kind of dataset. We propose PresQ, a novel algorithm that finds quasi-cliques on hypergraphs based on their expected statistical properties. The probabilistic approach of PresQ can be successfully exploited to mine EDD between diverse datasets when the underlying populations can be assumed to be the same. Finally, we propose a two-sample statistical test based on Self-Organizing Maps (SOM). This method can outperform, in terms of power, other classifier-based twosample tests, being in some cases comparable to kernel-based methods, with the advantage of being interpretable. Both PresQ and the SOM-based statistical test can provide insights that drive serendipitous discoveries.Uno de los mayores problemas del big data es el origen diverso de los datos. Un investigador puede estar interesado en agregar datos provenientes de múltiples ficheros que aún no han sido pre-procesados e insertados en un sistema de bases de datos, debiendo depurar y filtrar el contenido antes de poder extraer conocimiento. La exploración directa de estos ficheros presentará serios problemas de rendimiento: examinar archivos sin ningún tipo de preparación ni indexación puede ser ineficiente tanto en términos de lectura de datos como de tiempo de ejecución. Por otro lado, ingerirlos en un sistema de base de datos antes de entenderlos introduce latencia y trabajo potencialmente redundante si el esquema elegido no se ajusta a las consultas que se ejecutarán. Afortunadamente, nuestra revisión del estado del arte demuestra que existen múltiples soluciones posibles para explorar datos in-situ de manera efectiva. Otra gran dificultad es la gestión de archivos de diversas procedencias, ya que su esquema y disposición pueden no ser compatibles, o no estar correctamente documentados. La mayoría de las soluciones encontradas pasan por alto esta problemática, especialmente en lo referente a datos numéricos e inciertos, como, por ejemplo, aquellos relacionados con atributos físicos generados en campos como la astronomía. Nuestro objetivo principal es ayudar a los investigadores a explorar este tipo de datos sin procesamiento previo, almacenados en múltiples archivos, y empleando únicamente su distribución intrínseca. En esta tesis primero introducimos el concepto de Equally-Distributed Dependencies (EDD) (Dependencias de Igualdad de Distribución), estableciendo las bases necesarias para ser capaz de emparejar conjuntos de datos con esquemas diferentes, pero con atributos en común. Luego, presentamos PresQ, un nuevo algoritmo probabilístico de búsqueda de quasi-cliques en hiper-grafos. El enfoque estadístico de PresQ permite proyectar el problema de búsqueda de EDD en el de búsqueda de quasi-cliques. Por último, proponemos una prueba estadística basada en Self-Organizing Maps (SOM) (Mapa autoorganizado). Este método puede superar, en términos de poder estadístico, otras técnicas basadas en clasificadores, siendo en algunos casos comparable a métodos basados en kernels, con la ventaja adicional de ser interpretable. Tanto PresQ como la prueba estadística basada en SOM pueden impulsar descubrimientos serendípicos.211 página

    Machine Learning in Wireless Sensor Networks: Algorithms, Strategies, and Applications

    Get PDF
    Wireless sensor networks monitor dynamic environments that change rapidly over time. This dynamic behavior is either caused by external factors or initiated by the system designers themselves. To adapt to such conditions, sensor networks often adopt machine learning techniques to eliminate the need for unnecessary redesign. Machine learning also inspires many practical solutions that maximize resource utilization and prolong the lifespan of the network. In this paper, we present an extensive literature review over the period 2002-2013 of machine learning methods that were used to address common issues in wireless sensor networks (WSNs). The advantages and disadvantages of each proposed algorithm are evaluated against the corresponding problem. We also provide a comparative guide to aid WSN designers in developing suitable machine learning solutions for their specific application challenges.Comment: Accepted for publication in IEEE Communications Surveys and Tutorial

    Incorporating characteristics of human creativity into an evolutionary art algorithm (journal article)

    Get PDF
    A perceived limitation of evolutionary art and design algorithms is that they rely on human intervention; the artist selects the most aesthetically pleasing variants of one generation to produce the next. This paper discusses how computer generated art and design can become more creatively human-like with respect to both process and outcome. As an example of a step in this direction, we present an algorithm that overcomes the above limitation by employing an automatic fitness function. The goal is to evolve abstract portraits of Darwin, using our 2nd generation fitness function which rewards genomes that not just produce a likeness of Darwin but exhibit certain strategies characteristic of human artists. We note that in human creativity, change is less choosing amongst randomly generated variants and more capitalizing on the associative structure of a conceptual network to hone in on a vision. We discuss how to achieve this fluidity algorithmically

    Modeling and Simulation of Elementary Robot Behaviors using Associative Memories

    No full text
    International audienceToday, there are several drawbacks that impede the necessary and much needed use of robot learning techniques in real applications. First, the time needed to achieve the synthesis of any behavior is prohibitive. Second, the robot behavior during the learning phase is – by definition – bad, it may even be dangerous. Third, except within the lazy learning approach, a new behavior implies a new learning phase. We propose in this paper to use associative memories (self-organizing maps) to encode the non explicit model of the robot-world interaction sampled by the lazy memory, and then generate a robot behavior by means of situations to be achieved, i.e., points on the self-organizing maps. Any behavior can instantaneously be synthesized by the definition of a goal situation. Its performance will be minimal (not necessarily bad) and will improve by the mere repetition of the behavior

    SOVEREIGN: An Autonomous Neural System for Incrementally Learning Planned Action Sequences to Navigate Towards a Rewarded Goal

    Full text link
    How do reactive and planned behaviors interact in real time? How are sequences of such behaviors released at appropriate times during autonomous navigation to realize valued goals? Controllers for both animals and mobile robots, or animats, need reactive mechanisms for exploration, and learned plans to reach goal objects once an environment becomes familiar. The SOVEREIGN (Self-Organizing, Vision, Expectation, Recognition, Emotion, Intelligent, Goaloriented Navigation) animat model embodies these capabilities, and is tested in a 3D virtual reality environment. SOVEREIGN includes several interacting subsystems which model complementary properties of cortical What and Where processing streams and which clarify similarities between mechanisms for navigation and arm movement control. As the animat explores an environment, visual inputs are processed by networks that are sensitive to visual form and motion in the What and Where streams, respectively. Position-invariant and sizeinvariant recognition categories are learned by real-time incremental learning in the What stream. Estimates of target position relative to the animat are computed in the Where stream, and can activate approach movements toward the target. Motion cues from animat locomotion can elicit head-orienting movements to bring a new target into view. Approach and orienting movements are alternately performed during animat navigation. Cumulative estimates of each movement are derived from interacting proprioceptive and visual cues. Movement sequences are stored within a motor working memory. Sequences of visual categories are stored in a sensory working memory. These working memories trigger learning of sensory and motor sequence categories, or plans, which together control planned movements. Predictively effective chunk combinations are selectively enhanced via reinforcement learning when the animat is rewarded. Selected planning chunks effect a gradual transition from variable reactive exploratory movements to efficient goal-oriented planned movement sequences. Volitional signals gate interactions between model subsystems and the release of overt behaviors. The model can control different motor sequences under different motivational states and learns more efficient sequences to rewarded goals as exploration proceeds.Riverside Reserach Institute; Defense Advanced Research Projects Agency (N00014-92-J-4015); Air Force Office of Scientific Research (F49620-92-J-0225); National Science Foundation (IRI 90-24877, SBE-0345378); Office of Naval Research (N00014-92-J-1309, N00014-91-J-4100, N00014-01-1-0624, N00014-01-1-0624); Pacific Sierra Research (PSR 91-6075-2

    Sampling high-dimensional design spaces for analysis and optimization

    Get PDF
    corecore