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Resumen

Uno de los mayores problemas del big data es el origen diverso de los datos. Un
investigador puede estar interesado en agregar datos provenientes de múltiples ficheros
que aún no han sido pre-procesados e insertados en un sistema de bases de datos,
debiendo depurar y filtrar el contenido antes de poder extraer conocimiento.

La exploración directa de estos ficheros presentará serios problemas de rendimiento:
examinar archivos sin ningún tipo de preparación ni indexación puede ser ineficiente
tanto en términos de lectura de datos como de tiempo de ejecución. Por otro lado,
ingerirlos en un sistema de base de datos antes de entenderlos introduce latencia y tra-
bajo potencialmente redundante si el esquema elegido no se ajusta a las consultas que
se ejecutarán. Afortunadamente, nuestra revisión del estado del arte demuestra que
existen múltiples soluciones posibles para explorar datos in-situ de manera efectiva.

Otra gran dificultad es la gestión de archivos de diversas procedencias, ya que su
esquema y disposición pueden no ser compatibles, o no estar correctamente documen-
tados. La mayoría de las soluciones encontradas pasan por alto esta problemática,
especialmente en lo referente a datos numéricos e inciertos, como, por ejemplo, aque-
llos relacionados con atributos físicos generados en campos como la astronomía.

Nuestro objetivo principal es ayudar a los investigadores a explorar este tipo de datos
sin procesamiento previo, almacenados en múltiples archivos, y empleando únicamente
su distribución intrínseca.

En esta tesis primero introducimos el concepto de Equally-Distributed Dependencies
(EDD) (Dependencias de Igualdad de Distribución), estableciendo las bases necesarias
para ser capaz de emparejar conjuntos de datos con esquemas diferentes, pero con
atributos en común. Luego, presentamos PresQ, un nuevo algoritmo probabilístico de
búsqueda de quasi-cliques en hiper-grafos. El enfoque estadístico de PresQ permite
proyectar el problema de búsqueda de EDD en el de búsqueda de quasi-cliques.

Por último, proponemos una prueba estadística basada en Self-Organizing Maps
(SOM) (Mapa autoorganizado). Este método puede superar, en términos de poder es-
tadístico, otras técnicas basadas en clasificadores, siendo en algunos casos comparable
a métodos basados en kernels, con la ventaja adicional de ser interpretable.

Tanto PresQ como la prueba estadística basada en SOM pueden impulsar descubri-

mientos serendípicos.
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Abstract

When exploring big volumes of data, one of the challenging aspects is their diversity
of origin. Multiple files that have not yet been ingested into a database system may
contain information of interest to a researcher, who must curate, understand and sieve
their content before being able to extract knowledge.

Performance is one of the greatest difficulties in exploring these datasets. On the
one hand, examining non-indexed, unprocessed files can be inefficient. On the other
hand, any processing before its understanding introduces latency and potentially un-
necessary work if the chosen schema matches poorly the data. We have surveyed the
state-of-the-art and, fortunately, there exist multiple proposal of solutions to handle
data in-situ performantly.

Another major difficulty is matching files from multiple origins since their schema
and layout may not be compatible or properly documented. Most surveyed solutions
overlook this problem, especially for numeric, uncertain data, as is typical in fields
like astronomy.

The main objective of our research is to assist data scientists during the exploration
of unprocessed, numerical, raw data distributed across multiple files based solely on
its intrinsic distribution.

In this thesis, we first introduce the concept of Equally-Distributed Dependencies,
which provides the foundations to match this kind of dataset. We propose PresQ,
a novel algorithm that finds quasi-cliques on hypergraphs based on their expected
statistical properties. The probabilistic approach of PresQ can be successfully ex-
ploited to mine EDD between diverse datasets when the underlying populations can
be assumed to be the same.

Finally, we propose a two-sample statistical test based on Self-Organizing Maps
(SOM). This method can outperform, in terms of power, other classifier-based two-
sample tests, being in some cases comparable to kernel-based methods, with the
advantage of being interpretable.

Both PresQ and the SOM-based statistical test can provide insights that drive

serendipitous discoveries.
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Style reference

In this document, the following style guide is used:

Literal quotations from other authors are indented and in italics.

The name of algorithms and software products are written with Small Caps;

names of variables, filenames, etc., are displayed with a fixed-width font.

1 def code_is_inlined():
2 """
3 With a fixed-width font and syntax highlighting whenever possible
4 """
5 pass
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Chapter 1

Introduction

Nowadays, it is not uncommon for many types of users — from proficient data

scientists to enthusiasts without formal training, from finance to physics — to

dive into overwhelming data sets looking for any relevant pattern they can find.

This data may consist of files that have not yet been ingested into a database

system. The researcher must curate these files, understand and sieve their

content, and extract and communicate information. This activity is known

as data exploration, and it is an integral part of a new, data-intensive process

of doing science that can be considered a new paradigm of scientific explo-

ration, the fourth after the experimental, theoretical, and computer-simulation

paradigms [BHS09; HTT09].

Data exploration is also known as Knowledge Discovery in Databases (KDD)

because “knowledge” is the product of this process [Pia91; FPS96]. Data Mining

is sometimes used as a synonym or as an integral part, as shown in figure 1.1

[FPS96; Rei99]. The latter interpretation is preferred for this work.

The CRoss Industry Standard Process for Data Mining (CRISP-DM) [She00]

proposes a model for the data mining step, composed of six phases, shown in

figure 1.2:

Business Understanding Definition of the requirements and objectives of a

data mining project from the business (or domain) perspective.

Data Understanding Familiarization with the data collection. Domain knowl-

edge is needed to understand the data, but the original project can be

1



Figure 1.1: Knowledge Discovery in Databases (KDD).

refined as the data is best understood.

Data Preparation Attribute selection, cleaning, imputation, . . . are applied

over the raw data.

Modeling Various modeling techniques are implemented, calibrated, and as-

sessed. Different models may require different data preparation — for

instance, cleaning, imputation, or normalization.

Evaluation The proposed models need to be thoroughly reviewed to ensure

they meet the required quality and achieve the stated objectives.

Deployment The new knowledge has to be useful and actionable. Depending

on the original objectives, the model can be integrated or transformed

into an automatic system; or “simply” summarized into a report.

In this thesis, we focus on the Data Understanding phase, where the user in-

teractively explores the data, gaining insight, and generating hypotheses during

the process.

When starting the initial analysis, the data may be in a raw format: unpro-

cessed files not optimized for access. Even worse, their schema may be incon-

sistent or poorly documented, and they may originate from different sources.

These factors combined make the task of the data scientist more difficult:

2



Figure 1.2: CRoss Industry Standard Process for Data Mining (CRISP-DM).

• Ingestion into a “proper” database introduces latency. Since the data is

not well understood, any early design decision will soon become obso-

lete [Ker11]. Techniques for in-situ exploration try to overcome this diffi-

culty by allowing direct examination of the data files performantly [Idr11].

• The data may be split into multiple files [Bau12], and these files may

not follow the same schema [Ala14]. Data profiling and schema-matching

tools can be helpful for this type of problem.

Astronomy is an example of a scientific discipline with vast amounts of digitized

data readily accessible to the scientist, and, therefore, where Data Mining has

been gaining more momentum [BB10]. A considerable portion of this data is

made available by the community itself as independent files with little to no

coordination in terms of schema consistency [Pep14]. Unfortunately, existing

in-situ techniques leave out schema-matching, while the existing data profiling

approaches require either relational data from discrete domains or are restricted
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to matching based on a single attribute. This motivates our research.

1.1 Objectives

Given the problem stated above, the main objective of this thesis is:

To assist data scientists while exploring unprocessed, numerical, raw

data distributed across multiple files based solely on its intrinsic

distribution.

To make this objective attainable, we define the following sub-objectives:

1. Find existing techniques that help users to explore the data in-situ.

A survey of the literature help users by directing them to algorithms and

tools suitable for their use case.

2. Identify gaps in the coverage of the existing techniques, helping

to direct the effort of present and future research into areas that need

better coverage, widening the options available to users.

3. Design new algorithms tailored to numerical and uncertain data that

cover part of the identified gaps, putting new tools at the disposal of data

scientists.

1.2 Structure of this document

First, we described the methodology followed for this thesis in chapter 2. Chap-

ter 3 contains a systematic literature mapping of the in-situ processing of sci-

entific data. Then, chapter 4 identifies gaps in the literature regarding the

exploration of diverse numerical datasets and summarizes some initial proto-

types that remain open for further research. Chapter 5 proposes an algorithm

suitable for schema matching tailored to scientific data. Chapter 6 outlines a

statistical test based on Self-Organizing Maps (SOMs), which can bridge the
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gap between schema matching and in-situ access. Chapter 7 discusses our con-

tributions and analyses the threats to the validity of the present thesis. Finally,

chapter 8 summarizes our findings and contributions and proposes potential fu-

ture lines of work.
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Chapter 2

Methodology

For defining the methodology of our research, we follow the guidelines from Re-

searching Information Systems and Computing [Oat06], a well-regarded refer-

ence text in information systems and computing research areas. Oates describes

six fundamental aspects of research using the mnemonic ‘6P’:

Purpose A research project needs a well-defined objective to be able to define

what it means to succeed — either totally or partially.

First, a PhD thesis must increase the body of knowledge of the chosen research

area. Second, we want to contribute to the solution of an existing problem: In

our case, as discussed in chapter 1, we target the Interactive Data Exploration

(IDE) research area.

Products Oates lists five different types of contributions to the body of knowl-

edge based on an existing classification from Davis & Parker [Oat06; DP79]:

Evidence, Methodology, Analysis, Theories, and Computer-based products.

Note that improvements are also considered a contribution under this classifi-

cation.

For the current thesis, we aim to produce a new solution — which encompasses

multiple contributions such as theories and computer-based products — for

IDE, understanding as such novel algorithms and techniques. Additionally, the

literature review is also a contribution (analysis).

Process
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Figure 2.1: Model of the research process [Oat06].

Figure 2.1 shows the model of the research process. The time working at

European Organization for Nuclear Research (CERN) and the Astronomy De-

partment of the University of Geneva set up the experiences and motivations

for this research: IDE on physical measurements, which have an intrinsic un-

certainty. In chapter 1, we introduced the research questions for this thesis. In

this chapter, we define the methodology for the literature review, the research

strategy, the data generation methods, and the data analysis.

Participants The direct participants of the current research are the researcher,

the tutors, and the thesis supervisors. Journal editors and reviewers are indirect

participants.

Paradigm The paradigm is the philosophical model that frames the research.

It defines what the researcher considers the nature of reality (ontology), how the

researcher interacts with knowledge (epistemology), and how knowledge is ac-

quired (methodology). By definition, this framework can not be proven [Gub90;

GL94].

We can find different classifications of several paradigms depending on their

views on these questions. For instance, Oates and Chua [Chu86] consider three

8



2.1. LITERATURE REVIEW

branches:

• Positivism, where reality is objective and the researcher neutral.

• Interpretative, where truth is subjective and subject to the context.

• Critic research, where the social structure is the main focus.

Shull et al. [SSS08] extends this classification with a fourth paradigm: the

pragmatism. In this paradigm, knowledge is evaluated based on its utility and

is considered, in any case, approximate.

Considering our purpose and objective, and given the restricted list of partici-

pants, we follow the paradigm of pragmatism for this research project.

Presentation The main results from our research are compiled into the present

thesis and published in peer-reviewed journals. Drafts have been published in

arXiv. All the relevant source code is publicly available.

2.1 Literature review

A systematic mapping study is a process for the exploration of the situation

of a wide research area with a high level of granularity, allowing us to identify

parts of the domain that may be interesting to explore in more detail [KC07].

Because we are trying to obtain an overview of the situation of the research

on data exploration techniques and identify where additional work may be re-

quired, we decided to follow this approach, and, more specifically, the guidelines

proposed in Systematic Mapping Studies in Software Engineering [Pet07]. For

completeness, we include in figure 2.2 the diagram of the process for a system-

atic mapping study, as defined by Petersen et al. .

2.2 Research strategy

From the list of strategies previously shown in figure 2.1, we follow Design and

Creation and Experiments.
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Figure 2.2: The Systematic Mapping process.

Design and Creation is an adequate strategy since we aim for a computer-

based product. The resulting artifacts should be carefully studied, developed,

and result from a careful engineering approach. Thus, we follow Engineering

Design:

Engineering design is the systematic, intelligent generation and eval-

uation of specifications for artifacts whose form and function achieve

stated objectives and satisfy specified constraints [DB12].

Figure 2.3 summarizes the different stages for this method. We want to empha-

size that this method is inherently iterative since each step provides feedback to

the precedent stages. This work results from many such iterations: the research

plan defined the initial task: IDE of raw scientific data. We performed a sys-

tematic literature mapping to identify solution principles and possible use cases.

As a result of this literature review, we refined the initial task: data exploration

of multiple files with related raw scientific data but incomplete metadata.

Experiments Engineering Design incorporates the development of multiple

preliminary products, which need to be compared and evaluated before refining

them into the final deliverable. Thus, experiments are a central aspect of this

method.

2.3 Data generation methods

From the proposed data generation methods, we use documents, such as sci-

entific papers to obtain datasets for the experiments.

With these datasets, we run experiments and observe the results, using per-

formance metrics to compare different algorithms and their parameterizations.
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Figure 2.3: Engineering Design [DB12; PBW84].

11



2.4. DATA ANALYSIS

2.4 Data analysis

We base our comparisons on quantitative metrics: run-time, success rate,

statistical significance, etc.

2.5 Open Science

This research adheres to the Open Science principles [Pon15].

• Open Access Papers are published either on Open Access journals, or

made accessible on pre-print servers.

• Open Data The results from our experiments are uploaded to a public

server together with the source code.

• Open Reproducible Research

– Open Notebooks Notebooks used to summarize the results are

included next to the source code.

– Open Source The source code is under a permissive free software

license (MIT1).

– Reproducibility Guidelines Even if our results become inacces-

sible, the repositories include a list of the dependencies required to

replicate the environment. The procedure followed to generate our

results is documented in appendix A.

• Open Repositories All the delivered software is in GitHub, and a copy

archived in Zenodo [EO13] with an associated DOI. Papers are available

in pre-print servers such as arXiv and TechRxiv.

1https://opensource.org/licenses/MIT
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Chapter 3

Literature Review

Following the Engineering Design Process, the initial objectives need to be clar-

ified before searching for the solution principles. For this purpose, we performed

a literature review to identify the state of the art.

We summarize in this chapter the stages and results of the Systematic Mapping

of the Literature, a process described in section 2.1.

Since the Engineering Design Process is iterative and includes feedback loops, in

section 3.1, we estate the objectives of the original literature mapping. These

objectives were later refined, incorporating the results of this study. In sec-

tion 3.2, we describe our method. In section 3.3, we summarize the results of

the literature mapping. Finally, in section 3.4, we discuss the interpretation of

our findings and insights.

Two surveys were done: the first in mid-2017 and the second at the end of

2022. The results from the 2017 survey appear in the article Interactive Data

Exploration of Distributed Raw Files: A Systematic Mapping Study [APD19],

published on IEEE Access.

3.1 Overview

IDE tools target the Data Understanding phase of CRISP-DM. They have

human intuition as a core part of the process, where the user tentatively explores

the data, iterating and reformulating the queries as their knowledge and insight
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change with each iteration.

A system that can be used in such a way needs to be lightweight, adaptive

and have reasonably low response times—[Mil68] considers two seconds to be

the upper limit for the continuity of thoughts—, helping and assisting without

getting in the way of the person involved in the loop.

Because of this exploratory nature, early decisions on data structure, storage,

and indexing are inappropriate [Ker11]. They introduce latency and optimize

for a pattern that only holds for a brief period of time.

This problem can be tackled at different levels—from the physical layout on disk

to the interface interacting with the user. In 2015, Idreos [IPC15] classified

several of these solutions depending on their take on the issue. This paper

originally attracted our attention due to the potential applications in High

Energy Physics (HEP)1, although the techniques found can be of interest to

other scientific domains.

In summary, we need to satisfy three main requirements:

1. Interactive response times, as already discussed.

2. Access to raw data files. Pre-loading data in main memory is not an

option due to the data volume and because we aim for a system that

extends and does not replace the existing data management solution.

3. Ideally, distributed, since files are stored and replicated by an already

existing distributed storage system [Bau12].

The granularity of the access has to be higher than file level because scientists

normally care about datasets that are defined by the origin of the data — i.e.,

experiment and year —, and one dataset may be distributed across several files.

1This research was initiated while employed at CERN, so HEP was the original target use

case.
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3.2 Method

Idreos et al. [IPC15] propose a classification of different possible approaches to

our problem. This study provides an excellent introduction, but we wanted to

expand on it by answering three questions that were not covered by the original

paper, and we also wished to survey the subsequent evolution of the domain.

3.2.1 Research questions

RQ1. How has the research area evolved?

Given that this is an active research area, it has probably progressed since the

tutorial that we are using as a baseline. Therefore, the first question to answer

to decide how to focus future research is: How has it evolved since 2015?

RQ2. What is the maturity level of the research area?

How many complete and reliable solutions are available? Are they successfully

implemented in practice? How do they improve the users’ experience? Identify-

ing publications is not enough, we also want to assess what part of the software

life cycle they focus on.

RQ3. How far are we from a tool that solves our three requirements?

The final target of this research is to identify solutions that cover our three

requirements. Even though Idreos closed their tutorial by mentioning the im-

portance of interconnection research [IPC15], they do not provide any references

or study on this area.

3.2.2 Search strategy

For the retrieval of studies, it is necessary to clearly define how the search is

going to be performed. The 2017 survey combined three different strategies:

15



3.2. METHOD

• Set of known works obtained from [IPC15] because our RQ2 is not covered

by the original classification.

• Forward snowballing [WW02] from the known set of publications using

Google Scholar.

• For completeness, database searches to improve the coverage of our study.

Jalali and Wohlin [JW12] argue that snowballing and database searches can

lead to similar patterns, but they also agree that it is “not easy to draw any

general conclusions” about if the conclusions obtained are the same using the

two different approaches. Thus, we have opted to follow both.

The set of digital libraries consulted is:

• ACM Digital Library

• Elsevier (Science Direct)

• Springer

• IEEE Digital Library

• Wiley Online Library

• World Scientific Net

Given the fast pace at which the field moves, older papers have probably been

superseded or, if still relevant, we expect them to be already included in [IPC15].

Consequently, we have limited the scope in time to studies published from 2010

onwards.

For the 2022 update, we applied forward-snowballing from the most interesting

works identified in the 2017 survey, plus a search in ACM Digital Library.

All references obtained by any previous method were imported into the Zotero

Reference Manager. The definitive lists can be found on two public groups in

Zotero.org:

• Mid-2017 4517638/ide-in-science

• End of 2022 4966770/ide-in-science-update
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3.2.3 Study selection criteria

We based the initial screening of studies on titles, abstracts, and keywords.

In some cases, when the information provided by these fields was insufficient

to make a decision, we also considered their conclusions or read the complete

study.

We have focused here on finding primary studies related to data exploration.

The filtering was performed using the following exclusion criteria:

• Unsupported language Studies written in a language different than En-

glish, Spanish, or French

• Incomplete publication Abstract only, or presentations were excluded

• Off topic Out of the data exploration domain

• Not a primary study Secondary, tertiary and surveys

• Duplication In case of duplication or high similarity for the same set of

authors, only the most complete or the most recent one was taken into

account.

Those publications that passed the inclusion criteria were reviewed to ensure

all their fields were correct. Normally, this should have been done during the

previous stage but due to the sheer volume of publications yielded by the search

strategy, this step was postponed until the filtering was done. Because only title

and abstract were used for the filtering, this did not affect the final result.

3.2.4 Classification

Publications that pass the selection criteria were classified into two axes: data

exploration facet and research type.

Category

As mentioned in section 3.2.1, we base our study on the classification done by

Idreos et al. [IPC15], which is included for convenience in table 3.1. For more
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details, we refer the interested reader to Idreos’ tutorial.

For our purposes, we assigned one single category to each work covered In our

study, choosing the most prominent topic when more than one category could

fit.

User Interaction

Data Visualization Visual

Optimizations

Visual Tools

Exploration Interfaces Automatic

Exploration

Assisted Query

Formulation

Novel Query

Interfaces

Middleware

Interactive Performance

Optimizations

Data Prefetching Query

Approximation

Database Layer

Indexes Adaptive Indexing Time Series Flexible Engines

Data Storage Adaptive Loading Adaptive Storage Sampling

Table 3.1: Categories of Interactive Data Exploration solutions.

Research type

To answer our second research question—the maturity of the area—we follow

the classification of research approaches done by [Wie06], as our guidelines for

systematic mapping do [Pet07]. We summarize the different research types in

table 3.2.

As per this classification, we expect mature solutions that have been imple-

mented in practice to be covered by one or more Evaluation Research studies.

If, on the contrary, they are in very early stages, then the majority of the related

studies will fall into the Philosophical or Opinion categories.

3.2.5 Data extraction and visualization

At this stage, the papers were filtered and classified. We needed to summarize

the obtained data in a way that is useful to answer our research questions.

To answer RQ1, we focused on the counting of each category and their visual-

ization on a time series plot.
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Research type Description

Evaluation research Investigation of a problem or implementation in

practice.

Proposal of solution These papers propose a solution and argue for its

relevance without complete validation. A

proof-of-concept may be offered.

Validation research These papers investigate the properties of a solution

proposal that has not yet been implemented in

practice.

Philosophical papers These papers sketch a new way of looking at things,

a conceptual framework, etc.

Opinion papers These papers contain the author’s opinion.

Personal experience papers These papers should contain a list of lessons learned

by the author from his or her own experience. The

evidence can be anecdotal.

Table 3.2: Research type for the Systematic Mapping.

To answer RQ2, a bubble plot can help identify the most frequent research

type per category. In this way, we can distinguish if one area is more mature

than another. Additionally, we labeled publications including some sort of user

study, which should prove if any particular solution successfully improves the

integration of a human on the loop.

Finally, for RQ3, we flag interesting papers classified under Proposal of Solution

with the three requirements separately, if stated on their abstract or conclusions.

Additionally, while it was not in the original research questions, we extract

which publication forums are the most prominent in our results.

3.3 Results

In this section, we describe the outcome of each stage of the systematic mapping.
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3.3.1 Study selection

Table 3.3 displays the search queries that were used for each digital library.

Note that for the end-of-2022 update, only the ACM Digital Library was queried

since it indexes the most relevant journals and conferences from 2017 — see

table 3.6.

For the 2017 survey, all searches were done on May 16th, 2017, and they yielded

a total of 5,525 articles. Additionally, Idreos’ tutorial provided 47 papers, and

the forward snowballing provided 116. From this total of 5,688, only 242 —

4.25%— were accepted.

For the 2022 survey, all searches were done on the 25th of February 2023,

limiting the results to those published between the 1st of June 2017 and the

31st of December 2022. For the ACM Digital Library search, we explicitly

filtered non-primary studies, although some still were found. Due to limitations

of the search engine, only 2,000 articles were found, later reduced to 1,884 after

de-duplication2. Forward snowballing provided 584 articles, of which 452 are

articles referencing BlinkDB [Aga13]! From this total of 2,468 articles, 89 —

3.61% — were accepted.

The details are shown in table 3.4. The rather low hit ratio mostly comes

from the online searching of digital libraries because the lack of well-defined,

or univocal, keywords makes it difficult to decide what to search for. We do

not seem alone in this respect [KB13; JS07]. Even with the keywords defined,

and because we must use different search engines, there are few or no common-

alities between the way queries can be written and handled between different

archives [Bai07; Bre07].

The yield of our systematic mapping is no smaller than those of systematic

studies in other fields, which can be as low as 0.3% [Oak03].

3.3.2 Study data extraction

Table 3.5 displays the frequency of publications for each classification cluster

proposed by Idreos [IPC15]. It is worth mentioning that four papers on the

2De-duplication of the same article appearing multiple times on the search results.
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Library Scope Search

ACM Digital Library Full text ("RAW data" OR "RAW

file" OR "ROOT

file") AND (query OR

exploration)

ScienceDirect Title, abstract, keywords

(computer science)

((RAW OR ROOT) AND

(query OR exploration))

Springer Full text (computer science) ("RAW data") AND (query

OR exploration) + ("RAW

file") AND (query OR

exploration)

Wiley Online Library Abstract RAW AND query

IEEE Digital Library Abstract RAW AND query

World Scientific Net Full text (computer science) RAW AND query

Table 3.3: Queries used to obtain the first set of articles for the Systematic

Mapping.

Accepted Duplicated Not Primary Off Topic Too Old Total

2017

242 9 16 5,295 126 5,688

4.25% 0.16% 0.28% 93.09% 2.22% 100%

2022

89 1 19 2,359 0 2,468

3.61% 0.04% 0.77% 95.58% 0.00% 100%

Table 3.4: Accepted and rejected papers count.
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Database Layer did not fall into the predefined clusters, given their generic-

ity [Ker11], or as an evaluation of different techniques [Sid17; Zou15; Pal15].

Figure 3.1 displays the frequency of each major cluster against the research

type count for each one. In table 3.6, we display the publication forums where

more than one study has been published. While there are two main forums,

summing 40.18% of all the publications, most of the papers are spread out in

different conferences and journals.

It is worth noting that this table includes gray literature; that is, outside of the

formal academic publishing. While one may argue that these papers have not

yet been subject to a peer review, they are still included because gray literature

can be, and is, a useful source of knowledge for information users [Law15]. In

fact, Kitchenham et al. [KC07] recommended in their guidelines for systematic

reviews to include gray literature in searches.

Category 2017 2022

User Interaction 86 20

Assisted Query Formulation 28 2

Visual Optimizations 25 8

Novel Query Interfaces 14 2

Visualization Tools 11 7

Automatic Exploration 7 1

Exploration Interfaces 1 0

Middleware 48 43

Query Approximation 34 40

Data Prefetching 14 3

Database Layer 108 27

Adaptive Indexing 26 5

Flexible Engines 16 8

Time Series 16 3

Sampling 15 5

Adaptive Storage 14 2

Adaptive Loading 10 1

Other 11 3

Table 3.5: Frequency of Interactive Data Exploration papers by category.
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Publication 2017 2022

Journal 55 15

The VLDB Journal 11 3

IEEE Transactions on Knowledge and Data Engineering 3 1

IEEE Transactions on Visualization and Computer Graphics 3 4

International Journal of Cooperative Information Systems 3

Journal of Big Data 3

ACM Transactions on Database Systems 2 1

Future Generation Computer Systems 2

SIGMOD Record 2

Others 26 3

Conference 181 73

ACM International Conference on Management of Data 33 12

Proceedings of the VLDB Endowment 30 26

IEEE International Conference on Data Engineering 11 4

Conference on Innovative Data Systems Research 9

Database Systems for Advanced Applications 5 3

International Conference on Scientific and Statistical Database

Management

5 2

IEEE International Conference on Big Data 4 3

International Conference on Extending Database Technology 3

International Workshop on Data Management on New Hardware 3

ACM SIGMOD Symposium on Principles of Database Systems 2

Advances in Visual Computing 2

Big Data Analytics 2

Database and Expert Systems Applications 2

IEEE International Conference on Mobile Data Management 2

Intelligent Information and Database Systems 2

International Conference on Advanced Cloud and Big Data 2

Workshop on Human-In-the-Loop Data Analytics 2 1

Others 62 22

Gray literature 6 1

Table 3.6: Frequency of papers by publication forum.
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Validation
Research

Proposal of
Solution

Evaluation
Research

Philosophical
Paper

Opinion
Papers

User Interaction

Middleware

Database Layer

6 87 10 3 0

5 79 4 1 1

6 111 12 5 1

2017 - 2022

2007 - 2017

Figure 3.1: Interactive Data Exploration Layer vs Study research type.

3.4 Discussion

With these results, we now answer the three research questions in section 3.4.1.

Then, in section 3.4.2 we explain the insights we obtain from these answers.

Finally, we enumerate the threats to the validity of this study in section 3.4.3.

3.4.1 Answering the research questions

RQ1. How has the research area evolved?

Figure 3.2 displays the evolution during time of each of the three major classi-

fication clusters: user interaction, middleware and database.

Considering our search strategy, most of the results are posterior to 2012. Dif-

ferent approaches seem to be, in general, well balanced—we refer again to table

3.5—, although there is space for more works focused on exploration interfaces

and automatic exploration, which are the less frequent published approaches.

Interestingly, studies in the Middleware Layer have increase in relative popu-

larity.
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Figure 3.2: Number of papers per layer and year. The red line in 2017 separates

the original survey from the update.

RQ2. What is the maturity level of the existing solutions?

We can use the figure 3.1 to answer this question. The vast majority of papers

considered by this study—83.69%—fall within the proposal of solution research

type.

Meanwhile, evaluation and validation research are represented just by a 7.85%

and 5.14%, respectively. Only 37 documents (11.2%) include some sort of user

study: 25 for ‘User Interaction’, 5 for ‘Database Layer’, and 5 for ‘Middleware’.

Research on how different solutions —either existing or proposed— perform in

practice is lacking. This observation is true for both the original survey and

the update.

These figures are hardly surprising because they seem to have been common-

place in computer science for a long time now [Tic95; ZW97; Sjø05]. For

instance, Sjøberg et al. survey the status of controlled experiments in software

engineering, and the numbers they find are equally low, with only 113 controlled

experiments found on 5,453 papers [Sjø05].

It is hard and also out of the scope of this study to make some inferences from

these results. Tichy et al. [Tic95] mention some potential reasons and measures
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to improve this situation, namely: difficulty in performing experiments where

humans are involved, the lack of common benchmarks, or even that empirical

work is not encouraged by the journals and conferences in this area.

RQ3. How far are we from a tool that solves our three requirements?

17
7

7

51

2
71

Raw Distributed

Interactive

Figure 3.3: Venn diagram with satisfied initial requirements.

We display a Venn diagram with our three requirements in figure 3.3. We can

see there is a single study that covers the three requirements: A Distributed In-

situ Analysis Method for Large-scale Scientific Data, by D.Han et al. [HNK17].

While they mention the access over raw files and the fact that it is distributed,

they do not explicitly state anything about their interactivity. However, the

measured times for selective queries that they report are in the order of a few

seconds. Consequently, we decided to consider it to be suitable for interactive

usage.

The 2022 update yielded two additional works that target interactive access to

raw data: FlashView: An Interactive Visual Explorer for Raw Data [Pan17]

and Resource-Aware Adaptive Indexing for in Situ Visual Exploration and An-

alytics [Mar23].
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In section 3.5, we summarize the most interesting set of proposals found in our

literature mapping.

3.4.2 Study insights

Research in data exploration is very active, and there has been—and there is—

a myriad of solutions proposed. This should not come as a surprise: in 2005

Stonebraker [SC05] had already stated this was bound to happen and predicted

that there would be an increase in domain-specific tools. This would explain

why, of all the classified studies, only one tool satisfies our three prerequisites.

In general, several systems and approaches have been proposed, which could,

perhaps, be seen as building blocks. Not all combinations necessarily make

sense, but there seem to be research opportunities in this direction, depending

on the specific needs to be covered.

For instance, in our particular case, we could consider combining distributed

access over raw files, as Han [HNK17] does, but using approximate query pro-

cessing to reduce the response times.

Code generation is a popular approach for querying raw data files, and

approximation-aware code generation has been noted as a challenge yet to be

addressed [Moz17]. Another trend for Approximate Query Processing (AQP)

research is Deep Learning. As examples, we can find Recurrent Neural Net-

works [SPF22; MCS21] for predicting future queries, Long Short-Term Mem-

ory networks for learning the relationship between query elements and query

results, optimizations for querying Deep Neural Network models [Kan21], or

deep generative models for aggregate queries [Thi20].

On an orthogonal consideration, since the generation of data volume will likely

not slow down, the trend for more tools covering specific niches will probably

continue. This diversity of tools is a challenge in many respects, for example:

How do we choose the right solution? What is the cost of making the wrong

choice? What happens if the chosen tool goes unmaintained in the future and

there is no community around it? Will it be hard to maintain? Of course,

these questions are not new in software engineering, but typically there are

not many choices when deciding on traditional data storage systems, such as

27



3.4. DISCUSSION

Database Management Systems (DBMS). In the last decade, there has been

an increase in available options (relational, object-oriented, schema-less, key-

value, etc.) and, while opting for a DBMS has become harder, it has remained

rather manageable. However, looking at the results of this study, the difficulty

for users to decide will likely become more challenging.

3.4.3 Threats to validity

Search bias

The gaps identified may be covered in journals and conferences associated with

the user domain—e.g., astrophysics—, rather than with computer science and

engineering. The forward snowballing step reduces this risk because these hy-

pothetical publications would most likely cite the original proposal of solution.

Considering that our research method has allowed us to find even gray litera-

ture, we consider this risk to be low.

Filtering of articles

Given the huge number of papers that resulted from the search, a first filtering

was done just based on the title and abstract. This is a difficult challenge.

Unlike in other disciplines, sometimes abstracts do not contain enough infor-

mation about the paper, and keywords can be inconsistent between journals

and authors [Bud08; Bre07; JW12]. As recommended by [Bre07], we took into

consideration the conclusions to cover this issue.

Classification

Another concern about these classifications is the bias of the researcher’s own

interpretation [Mac05]. For instance, Jorgensen and Shepperd report on a dis-

agreement over 39% of the reviewed papers in their systematic review [JS07] due

to different interpretations of the description of each category. We have been

careful in this respect to guarantee the internal validity of the study, although

some misclassification may still exist.
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Additionally, it can be hard to identify if a solution covers or not one of the

three predefined requirements based just on a paper. They may not have been

explicitly mentioned if the authors did not consider them relevant for their

publication. Therefore, there may have been false negatives.

The present paper documents our process and the resulting publication list has

been made publicly available—see section 3.2.2—, so any interested reader can

replicate and/or validate our results.

3.5 Discussion of relevant methods

Included for completeness is a summary of each of the nine publications that

cover at least two out of the three requirements.

3.5.1 All three requirements

As already mentioned, the only solution that covers the three requirements is

documented on the paper A Distributed In-situ Analysis Method for Large-scale

Scientific Data [HNK17], classified as “adaptive loading”.

The authors build on top of SciDB [Sto11], a distributed array-based scientific

database, and focus on HDF files [HDF]. To avoid the overhead of data pre-

loading, they leverage the flexible architecture of this database engine, providing

their scan operator to read the data directly from the raw files when needed,

which needs to be adapted to the internal representation of SciDB . This

adaptation is made in two different stages: local and global mapping.

During the local mapping, they read on demand the data that matches the

filters associated to the query, adapting it to the SciDB chunk representation:

pieces of array data that are distributed together based on some policy - e.g.,

hashing, range partitioning.

At the global mapping stage, the resulting chunks are redistributed across the

storage nodes following the SciDB policies.

Although not relevant to our use case, it is worth mentioning that they also

merge small files to reduce the performance penalty of processing of them. This
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approach is interesting as it compartmentalizes well the logic required to access

the raw data from the file distribution and the query engine.

However, the paper notably misses information about the network traffic caused

by their global mapping stage since the network overhead depends on how the

actual data distribution matches SciDB expectations.

3.5.2 Distributed access to raw files

DiNoDB [Tia14] is oriented towards the interactive development of data ag-

gregation algorithms, where the user needs to quickly move between the batch

processing stage and the interactive evaluation of the quality of the results.

It is deployed with Hadoop, and it generates the auxiliary metadata using

user-defined functions executed by the reducers during the batch-processing

stage. Therefore, the metadata ends up stored together with the raw data - the

output of the reducers, and will also be replicated by the Hadoop Distributed

File System (HDFS) across the cluster. Additionally, the output data may be

cached optionally in memory - via ramfs or the filesystem cache.

For the interactive stage, on each HDFS Data Node, it is deployed an in-

stance of a customized PostgresRaw [Ala12] database, a modified version of

PostgreSQL with additional support for raw files based on positional maps

- positions of attributes within the file.

With this architecture deployment, the client 1) issues the query to each node

separately; 2) PostgresRaw uses the indices to retrieve the offsets of the

relevant records and the positional maps to find the fields within the raw file;

and 3) the client aggregates the results.

This approach gets good response times for the interactive stage, but the latency

significantly increases when the output data does not fully fit into memory.

ARMFUL (Analysis of Raw data from Multiple Files) [Sil16b], probably has

the most strict requirement set of all the analyzed papers. Its authors need to

access raw data generated during the execution of a workflow and collect their

provenance with high granularity. While other tools keep track of the data

provenance at the file level - leaving it to the user the cross-match of records
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stored in different files - they can associate related data entries contained in the

raw data files at the record level.

To do so, the authors formally define two additional workflow algebraic data

operators [Oga11], which allows to address specific records stored on a file

within a data flow: Raw Data Extraction - read, tokenize, filter, parse - and

Raw Data Indexing. These operators can be composed with the existing ones,

as Map or Filter - for instance, a user could map a list of file names to their

content and then filter records with a specific threshold, keeping track of the

provenance of the data during the process.

The indexing can rely on external tools and two implementations are provided:

one based on bitmap indexes generated by FastBit [Wu09], and another one on

positional maps, implemented following RAW’s approach [Kar14].

Since this study particularly focuses on raw data access during simulations, the

interactivity only applies to the queries made to the provenance database.

QUIS [CKJ17] is a flexible engine that provides its own query language as an

extension of SQL, a set of adapters for a variety of data sources — Comma-

separated Values (CSV), MS Excel, DBMS, etc. — and a query engine. The

SQL extensions allow the user to specify the data sources and their schema.

ArrayUDF [Don17]. User-Defined Functions (UDF) allow developers to

specify operations on single elements of a dataset: a tuple within a table or a cell

in an array. ArrayUDF extends this possibility to functions over a neighboring

range of elements, where the neighboring relationship can be flexibly specified

— i.e., not limited to a rectangular window. The system is aware of the physical

layout of the data and takes it into account when scheduling the operations

across multiple parallel processing elements in order to maximize locality.

Diraq [Lak18] integrates indexing and compression of floating point numerical

data, improving the efficiency of range queries and reducing the storage foot-

print at the same time. It does so by exploiting the IEEE floating point format,

where the leading bytes —containing sign, exponent, and most significant bits

of the mantissa— generally exhibit low cardinality and can be efficiently used

for binning. When the system is comprised of multiple systems, an index is

computed per group of cores as a well-balanced compromise between a per-core

31



3.5. DISCUSSION OF RELEVANT METHODS

and a per-cluster index.

In Distributed caching for processing raw arrays [Zha18], its authors

propose a distributed caching system aware of the necessary data locality for

performant query computation: i.e., tuples from multiple, distributed, raw files

are cached together and close to a compute node if it is likely that it will run

future queries that need that data.

PS3 (Partition Selection with Summary Statistics) [Ron20] improves the per-

formance and accuracy of AQP using summary statistics to perform weighted

sampling of the raw datasets: instead of randomly sampling the data, PS3 builds

sketches for each data partition, using them at query time to select which set

of partitions to sample maximizing the accuracy while reducing the overhead.

At initialization, the system samples a set of known, existing queries, and com-

putes some summary statistics and the contribution of each partition to the

answer. With this information, PS3 trains a model that learns which subset of

statistics best discriminates the contribution of a given partition. With this,

given a query, the system can predict how much a given partition will contribute

and will weigh it accordingly for the sampling.

3.5.3 Interactive access to raw files

FlashView: An interactive visual explorer for raw data [Pan17] is

a visualization tool that does not aim at fully replacing DBMS, but rather

at helping the user decide which data is worth loading into one. The user

needs to provide a description of the data schema, which FlashView uses to

sample the file when the first query arrives. Queries are treated hierarchically:

samples obtained for an already processed query can be used to provide a first

approximation of a new query if it is derived —i.e., additional filtering—, while

the system takes additional samples. These new samples are streamed into

the running queries following the hierarchy, building indexes as the queries are

being processed, similar to the database cracking techniques [IKM07].

Resource-aware adaptive indexing for in situ visual exploration and

analytics [Mar23] proposes two novel adaptive indexing techniques to improve

the performance for visual exploration of raw data: Categorical Exploration
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Tree (CET) for categorical attributes, and Visual Exploration Tile-Tree Index

(VETI) that combines CET and tiling based on numerical or spatial attributes.

On the first query, the file is parsed, and each tuple is assigned to a tile and in-

dexed with VETI — the attributes used for the spatial partitioning need to be

known. The categorical attributes of the tuples within a tile are indexed with a

CET. During exploration, tiles may be split or merged to improve performance.

The most interesting aspect is that to keep the index size within the allocated

resources, the indexing is treated as an optimization problem. Roughly speak-

ing, tiles and attributes are assigned an expectation of utility based on their

probability of being requested by a future query, and CET trees are assigned a

cost based on their memory requirement. Finally, there is an available budget

for building the index. The problem can finally be mapped to the Knapsack

Problem.

3.5.4 Distributed and interactive

Six out of the seven proposals are classified as “query approximation”, and the

remaining, even though labeled as “visual optimization”, relies heavily on query

approximation as well.

It would seem that to get fast responses, some compromises on precision must

be made. This makes sense intuitively as processing fewer data will reduce the

processing time at the cost of less accuracy. Additionally, some nodes may be

offline, unresponsive, or overloaded on a distributed system. The results need

to be aggregated within a reasonable deadline to keep the latency low, even if

parts of the system have not responded yet.

It is worth noting that most of these papers also match the “sampling” category,

but since sampling is just an aspect of the overall solution and their authors

normally use “query approximation” to refer to their methods, we have decided

to classify them as such.

BlinkDB [Aga13] allows users to perform SQL-like aggregation queries on

data stored on HDFS, specifying time or error constraints. First, the authors

base their system on the assumption - supported by evidence - that the col-

umn sets used for the aggregation queries are predictable, regardless of the
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actual grouping value. With this information, they perform a stratified sam-

pling [Loh09] to avoid the under-representation of rare subgroups. Finally, the

system chooses suitable samples based on the query constraints provided by

the user, profiling them at run time so it can improve the execution plan for

later queries.

ScalaR [BSC13] improves the performance of the visualization of big data

sets dynamically reducing the size of the response returned to the front-end

layer. Its authors provide an intermediate layer that consumes the queries

issued by the user and uses the statistics computed by the database back-end

to evaluate in advance the expected size of the result set. If this size is above a

given threshold, the query is rewritten to either aggregate, sample or filter the

data, generating a smaller approximate response that can be more performantly

displayed.

Although their solution is back-end agnostic, their proposed implementation

relies on SciDB [Sto11]. It quickly comes to mind that this could potentially

be integrated with the previous method by Han et al. [HNK17], resulting in a

visual exploration tool for raw data files.

The authors of DICE (Distributed and Interactive Cube Exploration) [Kam14]

attack the problem on three fronts: speculative query execution, online data

sampling, and an exploration model - faceted cube exploration - that limits the

number of possible queries, improving the efficacy of the speculative execution.

Probably, the most interesting idea from this paper is the notion of the explo-

ration being done in “sessions”: The authors do not attempt to optimize for

any possible query, but only for those that are likely to follow from the state

of the current session. Predicting a set of potential following queries is made

possible thanks to their exploration model, which restricts the possible number

of “transitions” from the current state for a session.

The predicted queries are then ranked based on their likelihood and accuracy

gain. Those most likely and providing the highest accuracy gain will be spec-

ulatively executed in advance, populating the cache. This way, when the final

query arrives, the response can be built from the content of the cache if the

predictions were successful. Otherwise, it will be scheduled to the underlying
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nodes.

For more information about “data cubes”, we refer to the DICE paper, or the

original proposal [Gra97].

AccuracyTrader [Han16] is a distributed approximate processing system

comprised of two components: one online and another offline.

First, the offline part reduces the dimensionality of the original data using Single

Value Decomposition - so it only supports numerical values. Then, it groups

similar entries using an R-Tree, where each node represents an aggregated data

point, and all nodes at the same level correspond to a “synopsis”. This tree is

flattened into an index at a level that balances the number of leaves under each

aggregated data point and the selectivity of the tree at that level. Finally, it

aggregates the data for each index entry using the original dimensions of the

indexed points and stores this aggregated data in the “synopsis”.

When a query arrives, the online part uses these “synopses” to produce an

approximate result with an accuracy estimation. It then iterates using the de-

tailed data points to improve the response accuracy until the deadline specified

by the user expires.

In the paper, the authors prove that the system scales well in terms of tail la-

tency and accuracy when the number of requests increases for a “search engine”-

like workload. However, the data has to be aggregated into the synopsis be-

forehand.

KIWI [Kim15] is a SQL front-end built on top of Hadoop that aims to provide

both batch processing and interactive analytics via approximate query process-

ing. It generates both vertical (column) and horizontal (row) samples, and

re-writes the queries to use these samples instead of the original data. How-

ever, it is hard to assess the technical soundness of this solution, since the paper

is very short - 2 pages including citations - and we have not been able to find

any later citations, nor do the authors cite other papers about the same tool.

Wang et al. [WCA15] introduce a framework based on the map-reduce paradigm.

Instead of the traditional batch processing approach where the analysis is per-

formed on big chunks of data, their system executes the analysis logic iteratively
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on samples, updating an estimator in each round until a stop condition is sat-

isfied - both the estimator and condition are provided by the user. When the

termination condition is satisfied, the remaining jobs are canceled, saving com-

puting cycles and reducing the latency. Similarly to other analyzed solutions,

they use stratified sampling to ensure good accuracy and coverage of rare cases.

The sampling is done without replacement, so in each iteration, new data points

are taken into account, improving the selectivity of the method.

Kayak [MT17] is a framework that defines its own set of primitives — insert

dataset, search dataset, outlier detection — composed of reusable tasks, etc.

— profiling, joinability computation, etc. Finally, tasks are decomposed in

atomic steps. Individual steps have an associated cost function, and they can

be executed to provide exact or approximate answers together with a confidence

value. When the user performs a query, they can specify an acceptable error

range. Knowing the system load, the target tolerance, and the estimated cost

of each individual step, Kayak can use different strategies to optimize for

confidence, time-to-first response, etc. Kayak leverages Apache Spark for

the processing of large datasets, and Metanome [Pap15] for data profiling.

3.5.5 Summary

We can see some commonalities by looking at the underlying techniques used

by the solutions described above:

First, for providing access to raw files, code generation, and positional mapping

seem to provide a good solution. Both are implemented either directly —

PostgresRaw — or used via integration with an existing implementation —

DiNoDB. Isolating the raw data access as a database operator composes well

for all studied solutions regardless of the framework of reference - workflow,

PostgreSQL or SciDB .

Second, to provide interactivity on a distributed system, the engine needs to

approximate the results using a deadline or an accuracy requirement as a stop

condition. The resiliency and the low latency are achieved by being capable of

processing only parts of the data via sampling — BlinkDB —, pre-computed

summaries — AccuracyTrader — or both. In either case, error estima-
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tion becomes an important part of the system, both internally and as part of

the interface exposed to the user. Looking at the 2022 update of the survey,

BlinkDB’s popularity — 867 citing papers on Google Scholar — indicates

steady interest and relevance of sampling techniques for AQP.

Finally, since Deep Learning excels at pattern recognition and data summa-

rization, these techniques are becoming more popular for AQP: for estimating

the answer [RRS21; Thi20], predicting future queries [SPF22; MCS21], query

optimization [Bi22], etc.

3.6 Conclusions

In this systematic mapping study, we have detailed the method that we followed

to gather and filter papers related to data exploration, searching for solutions

that tackle big data volumes stored in a distributed way and with a low latency.

This process has produced 242 papers, which we have classified according to

their approach [IPC15] on one axis and to their research type [Wie06] on an-

other.

The results suggest that plenty of solutions have been proposed by researchers.

However, there is rarely any follow-up, at least published, on their practical

implementation, be it to confirm a successful introduction to users or to evaluate

other tools already in place. Unfortunately, this is not different from the state

of other areas of the computing sciences.

We have found evidence that code generation is a well-proven approach for ac-

cessing raw data files, although most solutions have not been generalized onto a

distributed environment. Additionally, Deep Learning is becoming increasingly

popular in AQP, given its summarization and pattern identification capabilities.

Finally, and as the main takeaway, we realized that most solutions treat files

as separate, independent relations, leaving it to the end-user to work out how

they are related, an observation shared by other authors [Sil16a]. One exception

is Kayak [MT17], which integrates Metanome [Pap15] to extract metadata

useful to link relations. Nevertheless, as we will see in the next chapter, the

techniques from Metanome are not sufficient for numeric, uncertain data.
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Chapter 4

Identifying gaps

As a result of the survey presented in chapter 3, we found that most solutions

treat files as separate, independent relations. These files may not have yet been

ingested into a database system and the schema may be unfamiliar and not

adequately documented or even be composed of multiple files with heteroge-

neous schemes [Ala16; ZZ15]. We consider that Idreo’s classification misses a

category for this problem: Schema Homogenization. This new category belongs

to the Middleware layer.

In Data Mining in Astronomical Databases, Borne describes how data explo-

ration of this kind of diverse dataset is relevant since it can drive serendipitous

discoveries [Bor00]. He proposes two groups of data mining approaches in this

respect: event based and relationship based:

• Event based

– Known events / known algorithms Use physical models to locate

known phenomena of interest spatially or temporally within a large

database.

– Known events / unknown algorithms Use pattern recognition and

clustering to discover new relationships between known phenomena.

– Unknown events / known algorithms Use predictive models to pre-

dict the presence of unseen events within a large and complex database.

– Unknown events / unknown algorithms Use thresholds to identify

transient or unique events.
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• Relationship based

– Spatial Identify objects in the same location.

– Temporal Identify events occurring within the same time period.

– Coincidence In general, apply clustering techniques to identify ob-

jects that are co-located within a multidimensional space.

Borne then enumerates a list of science requirements for data mining:

• Object Cross-Identification between catalogs. Similar to the natural join

in relational algebra, but based on spatial or multidimensional co-location.

• Object Cross-Correlation comparing sets of attributes over the full set

of objects. For instance, identify remote galaxies as those that are not

present on the ultraviolet spectrum.

• Nearest-neighbor identification or, in general, application of clustering

algorithms in multidimensional spaces.

• Systematic Data Exploration via event- and relationship-based queries to

a database hoping to make serendipitous discoveries.

Following the methodology described in chapter 2, we identified an essential

problem: exploring multiple files with uncertain numerical data is a neglected

aspect in the IDE. With this insight, we returned to the clarification stage and

used Borne’s description of data exploration in astronomy to better understand

data exploration in this context.

In section 4.1, we use an existing astronomy database to expand our under-

standing of how users explore datasets. Then, in section 4.2, we refine and

concretize the objectives of the present thesis. In section 4.3, we identify solu-

tion principles from the literature. Finally, in section 4.4, we list two proposals

of solution and refer to the respective chapters that document them.
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4.1 Examining real use cases

We looked for concrete examples of queries mentioning astronomy on the 242

articles classified on the systematic literature mapping from chapter 3.

It is soon evident that the Sloan Digital Sky Survey (SDSS) [Abo18] is popular

as a test set since it is readily available and well documented [Gra02]. Further-

more, there are easily accessible sample queries [SDSa] and real ones [SDSb].

Listing 1 shows an example of how to obtain a list of queries performed by

users.

1 SELECT clientIP, seq, statement, elapsed
2 FROM SQLlog
3 WHERE yy=2018 AND mm>=10 AND rows>0 AND dbname LIKE 'BestDR14%'

Code 1: Example of how to obtain a list of queries performed by users during

the end of 2018 over the 14th data release.

In total, 25 articles (10.3%) use SDSS as a test dataset. Table 4.1 classifies

these 25 articles following the same schema as described in section 3.2.4.

Category Total SDSS %

Exploration Interfaces 34 3 8.8%

Indexes 58 5 8.6%

Storage 39 11 28.3%

Data Visualization 36 2 5.6%

Interactive Performance Optimizations 48 4 8.3%

Table 4.1: Classification of the articles that use the data from the Sloan Digital

Sky Survey.

To obtain an overview of the type of usual utilization of this database, we

processed the results from query 1. We extracted the columns, relations, and

filters usually affected by the queries. Table 4.2 shows the most frequent queried

combinations of relations.

Interestingly, introspection queries are widespread, indicating that users spend
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Tables Count Percentage

fGetNearbyObjEq, PhotoPrimary 264,785 37.62%

DBObjects† 150,458 21.37%

PhotoTag, fGetObjFromRectEq 93,094 13.23%

IndexMap† 41,265 5.86%

Galaxy, fGetNearbyObjEq 31,130 4.42%

sppParams, PhotoTag, fGetObjFromRectEq 29,805 4.23%

Table 4.2: Combination of relations most frequently queried. Tables marked

with (†) are meta-data tables (i.e., describe the schema).

a considerable time familiarizing themselves with a complex schema. This has

led to attempts at reducing this friction by methods such as context-aware

auto-completion [Kho10].

4.2 Refining objectives

We summarize here our insights after the literature survey and examination of

real use cases:

Support for data distributed across multiple files is generally neglected by in-

situ data exploration solutions [Sil16a; Ala16]. However, indexing, storage, and

interactivity are well covered, as seen in chapter 3.

Exploring the database schema itself, as the SDSS query logs suggest, is non-

negligible user activity. Our observation is consistent with an IBM study that

finds that even data architects can spend up to 70% of their time just discovering

the metadata of databases [Wu08].

Our refined question is: can we help users to navigate datasets split across

multiple files, with unknown schema, facilitating relationship-based mining?

We can rely on name matching when metadata is present, but what can be

done when it is missing, or if correspondences are not unambiguous?
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4.3 Solution principles

Our use case looks like the following: an astronomer facing several data files

containing raw astronomical measurements with little or no explanation about

their schema. These files may come from different surveys or different sets of

observations from the same region of the sky, and the user can only make the

following educated guesses:

• The populations are likely the same, or at least very similar (i.e., stars).

• A subset of the attributes is shared between the relations (i.e., brightness

on different electromagnetic bands).

• The measurements have an associated uncertainty [Sto09], either explic-

itly stated or not (i.e., random errors, instrument accuracy, floating point

precision).

To help cross-matching the files, the first intuition would be to run a sta-

tistical test between all possible pairs of columns, such as the Kolmogorov-

Smirnov [Hod58] or Wilcoxon [Wil45] tests. However, as figure 4.1 exemplifies,

this information is not enough to do a cross-match.
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Figure 4.1: Example of a 2D distribution where the pairwise matching would

not be accurate enough. Pairwise tests would tell us that A matches C and E;

and that B matches D and F . However, A,B does not match C,D.

Therefore, a solution to our research question must take multidimensionality

into account.
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To bridge this gap, we propose the concept of Equally-Distributed Dependencies

(EDDs), which is inspired by the idea of Inclusion Dependencies (INDs) from

the relational algebra:

An inclusion dependency between column A of a relation R and

column B of a relation S, written R.A ⊆ S.B, or A ⊆ B when

the relations are clear from the context, asserts that each value of

A appears in B. Similarly, for two sets of columns, X and Y , we

write R.X ⊆ S.Y , or X ⊆ Y , when each distinct combination of

values in X appears in Y [AGN15]

The definition of IND is based on set theory, which is not directly applicable to

numeric data where measures are in the real domain (e.g., spatial coordinates

or flux measurements) and usually have an associated uncertainty that may or

may not be explicitly stored.

However, this definition can be naturally reformulated in terms of equality of

distribution X
d
= Y : FX(x) = FY (x) ∀x, where FX and FY are the cumulative

distribution functions of X and Y, respectively:

Definition 1 An equally-distributed dependency between a set of columns X

from of relation R and a set of columns Y of relation S, written R.X
d
= S.Y or

X
d
= Y asserts that the values of X and Y follow the same probability distribu-

tion.

The term arity refers to the cardinality of the sets of attributes X and Y . For

instance, if |X| = 1, we talk about unary EDDs; if |X| = 2, binary or 2-EDDs;

and, in general, for |X| = n, n-ary EDDs.

Finding high arity INDs is an NP-hard problem [Kan92]. For instance, for two

sets of n attributes in R and S, there are n! different possible permutations to

check. In comparison, finding unary INDs seems a relatively simple problem,

as the worst case has complexity O(n2). Nonetheless, testing over real files may

require expensive input/output operations. Furthermore, as we will see later,

false positives at this stage can quickly make finding high arity INDs unfeasible.

This is because the search space tends to grow exponentially with the number
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of one-attribute matches, making unary INDs search time much less important

than reducing the number of false positives.

We used a published experimental evaluation of IND finding techniques [Dür19]

as a starting point for assessing how adequate existing solutions are for our

problem. The authors carried out a set of experiments with thirteen IND

algorithms, of which seven are for unary INDs, four for n-ary INDs, and two for

both types. A more recent survey confirms that this work contains the current

state-of-the-art for Inclusion Dependencies [KPN22]. It is worth mentioning

that this evaluation is based on Metanome, the library used by Kayak to

profile the datasets.

We now briefly describe the n-ary finding algorithms evaluated by the authors

and discuss their suitability for our needs.

4.3.1 n-IND finding algorithms

B N⊆A M⊆ C O⊆

AB MN⊆ AC MO⊆

D P⊆

BC NO⊆AD MP⊆ BD NP⊆

ABC MNO⊆

CD OP⊆

ABD MNP⊆ BCD NOP⊆ACD MOP⊆

ABCD MNOP⊆

Unary IND

2-IND

3-IND

4-IND

Figure 4.2: Example structure of the search space as a lattice for an initial set

of 4 unary INDs. As an illustration, if the 2-INDs surrounded by a solid line

were valid, a bottom-up traversal would only need to check the validity of the

3-INDs with a gray background since the others could not be valid.

Given two relations R and S, with attributes A and B respectively, a unary

Inclusion Dependency (uIND) exists if R.A ⊆ S.B. More generally, for two sets

of attributes X and Y , both of cardinality n, an n-ary Inclusion Dependency

(nIND) exists if every combination of values in X appears in Y [DLP02; AGN15].

Given a set U of valid uINDs, the search space for higher-arity candidates is de-
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fined by its power set and a partial order relation called specialization [DLP02]:

Definition 2 Let I1 = R[X] ⊆ S[Y ] and I2 = R′[X ′] ⊆ S ′[Y ′]. I1 specializes

I2 (denoted I1 ≺ I2) iff

1. R = R′ and S = S ′.

2. X and Y are sub-sequences of X ′ and Y ′, respectively.

We can also say that I2 generalizes I1.

Example 1 (R[AB] ⊆ S[EF ]) ≺ (R[ABC] ⊆ S[EFG]). However, R[AB] ⊆
S[DE]) ⊀ (R[ACD] ⊆ S[DFG])

This partial order enables us to structure the search space as a lattice, as

exemplified in figure 4.2. Most solutions leverage this property to explore the

search space bottom-up —from level k to k+1— or top-down —from level k to

k–1— order.

Mind [DLP02] is a bottom-up approach: it starts from a set of known, satisfied

unary INDs and builds higher arity candidates combining them. These new

candidates are then validated against the database, and those satisfied are used

for computing the next-level candidates until no more candidates are available.

Zigzag [DP03] starts with a Mind bottom-up approach up to a given arity

n ≥ 2. Then, it uses all satisfied INDs to initialize a positive border and the

non-satisfied to initialize a negative border. The set of satisfied INDs is used to

generate the set of candidates with the highest arity possible, called optimistic

border, which is then validated against the database. This is the bottom-up

part of the search. Valid candidates are directly added to the positive border.

Invalid candidates are treated depending on how many tuples are different

between relations. Those above a given threshold (too many different tuples)

are added to the negative border. Those below are top-down traversed, from

level n to n–1, validated, and then added to the positive border if they are

satisfied. The algorithm then iterates, building a new optimistic border until

it is impossible to generate new INDs. The optimistic approach can prune the
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search space aggressively when there are high-arity INDs, but when most arities

are low, Mind may perform better.

Find2 [KR03] is based on the equivalence between finding n-INDs and finding

cliques on n-uniform hypergraphs (a generalization of the concept of a graph

where each edge connects n nodes). Each unary IND corresponds to a node,

and an n-IND corresponds to an edge on an n-uniform hypergraph. Once such a

graph is built, each IND corresponds to a clique and maximal INDs correspond

to maximal cliques. They present the Hyperclique algorithm, capable of

finding maximal cliques performantly, which can be mapped back to candidate

maximal INDs. These are finally validated using database queries. As Zigzag,

Find2 starts with a bottom-up approach to look for maximal cliques (i.e.,

potential maximal INDs). The invalid ones are used to generate a new (n+1)

uniform graph. This is a stage that corresponds to the top-down traversal.

While these three algorithms were evaluated on INDs between relational datasets

and with attributes that can be directly compared (i.e., from discrete domains),

their traversal of the search space and their validation steps are well decoupled.

They can be easily adapted to the equality-of-distribution statistical tests.

Furthermore, the reference benchmark shows that Mind, Find2 and Zigzag

have a comparable run-time, sometimes even faster than the alternatives. While

Faida is generally faster, its validation strategy requires computing hashes over

the attributes and their combinations, which is inapplicable for continuous data

that can very possibly have an associated uncertainty.

From the three suitable candidates, Mind’s bottom-up approach can be per-

formant enough for relatively low arity IND relations. However, it has one sub-

stantial disadvantage: it requires an exponential number of tests, prohibitive

for higher arity INDs. Both Zigzag and Find2 overcome this limitation by

alternating between optimistic (top-down) and pessimistic (bottom-up) traver-

sals. Finally, Find2 maps the search of INDs to the search of maximal cliques.

We know that using statistical tests will introduce unavoidable false negatives,

which would translate into missing edges. A clique with missing edges is a

quasi-clique, and finding quasi-cliques, while at least as hard as finding cliques,

is doable.
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4.3.2 Foreign Key Discovery

We briefly survey this area since we consider it complementary to IND discovery.

A Foreign-Key (FK) constraint on an attribute A over a Primary-Key (PK) B

implies that all values present on A must also be present on B. Therefore, there

exists an inclusion dependency between A and B. However, the reverse is not

necessarily true. For instance, two auto-increment attributes from two different

relations may have an accidental IND with no semantic meaning.

To distinguish between accidental and meaningful INDs, Rostin et al. [Ros09]

propose to train machine learning models over a set of features extracted from

positive PK/FK relations and negative, non-meaningful INDs. However, their

proposal is limited to unary INDs.

Zhang et al. [Zha10] present an algorithm capable of handling multi-column

PK/FK relations. They define the concept of Randomness Test, which assumes

that an FK is a representative sample of a PK and, therefore, should follow a

similar distribution. They use an approximation of the Earth-Mover Distance

(EMD) —the cost of transforming one distribution into another— to measure

the similarity between PK and FK. Their algorithm ranks PK/FK candidates

by distance —closest first— and selects the top X%, where X must be chosen

to balance precision and recall.

More recently, Jian et al. [JN20] introduced an approach that identifies both

PK and FK holistically. They validate Zhang’s concept of Randomness and

propose a simplified estimator that treats each attribute separately. They do

not need the PKs to be known but require a list of INDs as input.

It is worth noting that even though the latter two publications use the idea

of the FK being a random sample of the PK, their methods use the distance

between distributions for ranking candidates [Zha10] or as a feature [JN20].

Our method is based, however, on statistical hypothesis testing1.

1While the EMD could be used as a test statistic, it would be computationally expen-

sive [HMS21].
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4.3.3 Complementarity

ReDiscover [Ala16] uses machine learning techniques, such as Support Vec-

tor Machines (SVMs), to identify matching columns between scientific tabular

data. The author defines different ways in which datasets may be related:

containment, partial containment, augmentation, completion, equality, . . . This

solution focus does not only focus on correspondences (i.e., A is a subset of B),

but it also pays attention to the semantics of the relationship (i.e., A is a se-

lection of B). Yet, this system focuses mainly on the correspondence between

individual columns, which is insufficient for spatial and coincidence associa-

tions, as they are multidimensional. We are left only with a set of pairwise

correspondences that may not be enough to cross-match tuples between files.

4.3.4 Schema Homogenization

For completeness, table 4.3 classifies these solutions under the proposed Schema

Homogenization category, expanding on the result from the literature mapping

shown in chapter 3.

Middleware

Schema

Homogenization

IND [DLP02;

DP03; Koe02]

FK [Ros09;

Zha10; JN20]

Complementarity

[Ala16]

Table 4.3: Expansion of Idreos [IPC15] classification with Schema Homogeniza-

tion.

4.4 Proposed solution

The algorithms described in section 4.3.1 require discrete data, and they often

need to be able to answer definitely whether a given IND is satisfied — i.e.,

Mind, Zigzag, Find2. While there have been proposals to enhance Find2

with approximate, heuristic methods, the data is still expected to be discrete,

and the probabilistic aspect of the validation is decoupled from the inference

of new INDs from known INDs. In the following chapter, we propose a novel
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algorithm, PresQ, that can recover multidimensional correspondences between

datasets with different, undocumented — or unknown — schemas. PresQ

relies on statistical tests to accept or discard these correspondences and takes

into account the uncertainty when inferring new INDs, generalizing the problem

of IND finding, and making it applicable to new domains.

To complement this method, chapter 6 describes a multidimensional statistical

test based on SOM offering additional interpretability. It can be used with

PresQ for studying with more details accepted or rejected correspondences,

or afterward over the merged dataset for clustering or as a pre-processing for

nearest-neighbor coincidence search [SD11].

Appendix B briefly describes the preliminary ideas that were discarded during

the phase of Embodiment Design.
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Chapter 5

Discovery of Multidimensional

Dependencies via Quasi-Cliques on

Hypergraphs

Most of the content in this chapter appears in the article PresQ: Discovery of

Multidimensional Equally-Distributed Dependencies via Quasi-Cliques on Hy-

pergraphs [APD22], published on IEEE Transactions on Emerging Topics in

Computing.

PresQ is a statistically robust algorithm for finding EDDs, as described in

definition 1.

Following the Engineering Design process, PresQ is the output of the embod-

iment design phase of the design process, and the present chapter is its docu-

mentation. In section 5.1, we list the set of rules needed to be able to define

a search space for EDDs and introduce the concepts of hypergraph and quasi-

clique. In section 5.2, we propose a novel algorithm based on quasi-cliques to

infer common equally-distributed multidimensional attributes. In section 5.3,

we show experimental results that prove that PresQ successfully finds depen-

dencies in a reasonable amount of time. Finally, in section 5.4, we compile the

conclusions and propose areas for further work.
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5.1 Definitions

5.1.1 Equally Distributed Dependencies

An Inclusion Dependency exists if all combinations of values from a given set of

attributes in one relation are contained within a set of attributes from another.

However, we will hardly ever find a strict subset relation between two attributes

in the real domain. Measurements may have associated uncertainty, and even

floating-point representation may vary (i.e. 32 vs 64 bits). It is generally a

flawed idea to compare floating-point numbers with strict equality.

Instead, we can use R.X
d
= S.Y as an approximation, meaning that the two

sets of attributes are equally distributed. This relation is, unlike the subset

relation, symmetrical.

Following the parallelism with IND finding, we say that the dataset d satisfies

the relation defined by equality of distribution d
= when a statistical test fails to

reject the null hypothesis

H0 : P (R[X]) = P (S[Y ]) (5.1)

Three inference rules can be used to derive some additional INDs from an

already known set of INDs. They are defined using sets and subsets [CFP84],

but they translate to the equality of distribution:

Reflexivity

R[X]
d
= R[X]

Permutation and projection

If R[A1, . . . , An]
d
= S[B1, . . . , Bn] then R[Ai1 , . . . , Aim ]

d
= S[Bi1 , . . . , Bim ]

for each sequence i1, . . . , im of distinct integers from {1, . . . , n}

Transitivity

R[X]
d
= S[Y ] ∧ S[Y ]

d
= T [Z] =⇒ R[X]

d
= T [Z]

The reflexivity, permutation, and transitivity rules are well-known to hold for
d
= [RW79].
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For the projection, we need to prove that if two sets of random variables

X1, . . . , Xn and Y1, . . . , Yn are equally distributed, so are any of their possi-

ble sub-sequences.

Proof 1 Let X ′ and Y ′ be the sequences X1, . . . , Xm and Y1, . . . , Ym with m <

n. Their corresponding Cumulative Distribution Function (CDF) are just the

marginal CDF:

FX1,...,Xm(x1, . . . , xm) =FX1,...,Xm,Xm+1,Xn(x1, . . . , xm, xm+1, . . . , xn)

FY1,...,Ym(y1, . . . , ym) =FY1,...,Ym,Ym+1,Yn(x1, . . . , xm, xm+1, . . . , xn)

∀(x1, . . . , xm) ∈ Rm and xi −→ ∞ ∀i > m

(5.2)

By definition 1, the right hand-side of both equations must be the same. By

transitivity,

FX1,...,Xm(x1, . . . , xm) = FY1,...,Ym(y1, . . . , ym)

=⇒ X1, . . . , Xm
d
= Y1, . . . , Ym

(5.3)

Thanks to the validity of these rules, particularly the permutation and projec-

tion, we can use the specialization relation seen in definition 2 when dealing

with distributions.

With these rules, we have defined the search space similar to the one from IND

discovery. The last requirement is a property that allows the pruning of the

search space as illustrated in figure 4.2.

Let I = R[X]
d
= S[Y ]. A dataset d satisfies I iff a statistical test fails to reject

H0 : P (R[X]) = P (S[Y ]) given a significance level α. This is denoted as d |= I.

Property 1 Given I1 ≺ I2:

1. If d |= I2, then d |= I1 (Accepting H02 implies accepting H01
1)

2. d ̸|= I1 with a probability α when d |= I2 (Rejecting H01 does not imply

the rejection of H02)

53



5.1. DEFINITIONS

This property is similar to that proposed for INDs [DLP02], with the exception

that even if d |= I2, there is a probability to falsely reject I1 bound by the

significance level α.

Example 2 If we have two sets of 10 attributes that are equally distributed,

the number of 3-dimensional projections (specializations) that must be equally

distributed will be
(
10
3

)
= 120 . If we have a significance level of α = 0.1, the

expected number of falsely rejected 3-dimensional equalities is then 12.

5.1.2 Uniform n-Hypergraphs and quasi-cliques

A hypergraph is a generalization of a graph where the edges may connect any

number of nodes. It is defined as a pair H = (V,E), with V the set of nodes

and E the set of edges. An edge e ∈ E is a set of distinct elements from V .

Definition 3 Given the hypergraph H = (V,E), H is a n-hypergraph iff all of

its edges have size n.

A clique or hyper-clique on a n-hypergraph H = (V,E) is a set of nodes V ′ ⊆ V

such that every edge defined by the permutations of distinct n nodes from V ′

exists in E [KR03].

A quasi-clique or hyper-quasiclique (sometimes named pseudo-clique) is a gen-

eralization of a clique where a given number of edges can be missing. The

exact definition can be based on the ratio of missing edges or based on the

node degrees. Another option is to combine both measures [BHB07], which is

our preferred method.

We generalize the definition of quasi-cliques to k-uniform hypergraphs :

Definition 4 Given a k-uniform hypergraph (V,E), and two parameters λ, γ ∈
[0, 1] the sub-graph H ′ = (V ′, E ′) induced by a subset V ′ ⊆ V is a (λ−γ) quasi-

clique iff:

|E ′| ≥ γ ·
(
|V ′|
k

)
(5.4)

1Strictly speaking, not rejecting H02 implies that we can not reject H01 .
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∀v ∈ V ′ : degV ′(v) ≥ λ ·
(
|V ′| − 1

k − 1

)
(5.5)

Where degV ′(v) represents the degree of v, and E ′ is a subset of E such that

∀e ∈ E ′ : e ⊆ V ′

In other words, condition 5.4 allows for some edges to be missing, while con-

dition 5.5 enforces a lower bound on the degree of each node. Intuitively, the

latter is essential to avoid quasi-cliques where most nodes are densely connected

and a handful of nodes are connected only to a few.

The hyper-clique problem is a particular case when either λ = 1 or γ = 1.

5.2 Inferring common multidimensional data

The first required step to identify multidimensional EDDs is to find a set of

unary EDDs, for which a naive approach would mean quadratic complexity.

To reduce the complexity, we propose an algorithm based on interval trees

in section 5.2.1. In section 5.2.2, we discuss the difficulties of the existing

adaptable algorithms when dealing with uncertainties. Finally, in section 5.2.3,

we propose a novel algorithm, based on quasi-cliques, which is more resilient to

both false positives and false negatives.

5.2.1 Uni-dimensional EDDs

The first required step for any of the three algorithms is to find a set of valid

unary EDDs on the datasets. i.e., attribute pairs that follow the same dis-

tribution. It can be done with the non-parametric Kolmogorov-Smirnov (KS)

two-sample test [Hod58]. More formally, for a possible pair of attributes A and

B from two different relations, the null hypothesis H0 for the KS test is A d
= B.

As for any statistical test, this null hypothesis is accepted or rejected with a

significance level α ∈ [0, 1], which is the probability of falsely rejecting H0 (false

negative).

Consider a dataset containing the relations R1, R2, . . . , Rn with a total number
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of attributes N =
∑n

i=1 |Ri|. A naive approach to finding unary EDDs requires

N − 1 statistical tests for each attribute. Since the EDD relation is symmetric

(A d
= B ⇐⇒ B

d
= A) half of the tests can be avoided, bounding the total

number of tests by the quadratic expression (N × (N − 1))/2.

We propose using an interval tree built over the complete dataset to reduce the

number of tests. The building of the tree can be performed in O(N log(N))

time, and each query done in O(log(N) +m), where m is the number of over-

lapping intervals for a given attribute. In case of N being much higher than

m, which we expect to be generally the case, the number of operations can be

thus reduced to O(N log(N)+M), where M is the total number of overlapping

pair of attributes. Note that M ≤ (N × (N − 1))/2, so the worst-case remains

quadratic.

However, the cost of the tests themselves is almost negligible when compared

to the cost of finding n-ary EDDs, which is exponential with the number of

unary EDDs. Therefore, a low significance level α for finding unary EDDs will

considerably increase the cost at later stages.

5.2.2 Multidimensional EDDs

Once we have a set of unary matches, we need to find which, if any, higher

dimensional sets of attributes are shared between each pair of relations. As

discussed in section 4.3, only three of the existing IND finding solutions are not

strongly dependent on discrete types: Mind, Zigzag, and Find2. However,

replacing the inclusion tests with statistical tests affects their behavior.

Mind traverses the search space bottom-up. Thus, for two relations with a

single multidimensional EDD with n attributes, every combination of k nodes

from k = 2 to k = n must be tested, as shown in equation 5.6.

n∑
k=0

(
n

k

)
=

n∑
k=0

n!

n!(n− k)!
(5.6)

Since statistical tests are not exact, the chances of having at least one false

rejection in the validation chain increases with the maximal EDD arity, in-

troducing discontinuities in the search space. This makes its traversal more
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difficult.

The search algorithm of Find2 is capable of finding maximal INDs with fewer

tests. As an input, it requires a set of valid unary and n-ary IND relations. A

k-uniform hypergraph G(V,E) is then constructed, where the set of accepted

unary INDs are mapped to the set of vertices V , and the set of accepted k-INDs

to the set of edges E. Given this initial hypergraph, the authors of Find2 prove

that finding higher arity INDs can be mapped to the problem of finding cliques,

since all the generalized k-ary INDs must appear as edges.

However, this is not always true for the EDD finding problem. The statistical

test will yield some false positives and some false negatives, a combination that

makes it difficult for Find2 to find the true relations. Cliques will likely be

broken due to the false rejections, and there will be spurious edges due to false

positives. Higher arity EDDs do not appear as cliques in this scenario.

Finally, Zigzag can not recover well from missing EDDs. Any rejected EDD

is added to the negative border and will not be considered any further. Addi-

tionally, some early experiments with Zigzag indicated that the combination

of false positives and false negatives makes the algorithm run close to its worst-

case complexity (factorial).

5.2.3 PresQ algorithm

As we have discussed, EDD finding does not map well to the clique-finding

problem due to missing and spurious edges caused by the statistical tests. We

propose instead an algorithm based on quasi-cliques as described in definition 4.

This approach is better suited to the uncertainties associated to hypothesis

testing.

Finding quasi-cliques seeds: Some initial experiments with Find2 showed

that, by only modifying the validation strategy to use statistical tests, the

algorithm was able to find relatively high arity EDDs regardless of the missing

edges.

The modified Find2 maps the initial set of EDDs into a graph and lets the

Hyperclique algorithm find the set of maximal cliques, then maps them back
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to EDDs and validates the inferred EDDs. Therefore, if Find2 finds high arity

EDDs is because Hyperclique finds maximal cliques close to the maximal

quasi-clique. This makes sense since, generally, a quasi-clique contains smaller

but denser sub-graphs [SDT18] and a clique is denser than a quasi-clique.

Therefore, we use a modified version of Hyperclique to search for quasi-clique

seeds, accepting a candidate if it is a quasi-clique, as per the joint definition

of equations 5.4 and 5.5. We combine both definitions since limiting only the

number of missing edges tends to accept quasi-cliques with too many vertices.

Growing the quasi-clique seeds: This is similar to KernelQC’s idea [SDT18],

but based on a quasi-clique enumeration algorithm. Given a quasi-clique seed

from the first stage, candidates are grown following a tree-shaped, depth-first

traversal [Uno10].

Let v be a node on a graph G[V ] with a degree lower or equal to the average

degree. The density (i.e. γ) of G[V \v] is no less than the density of G[V ]. In

other words, if we remove from a γ-quasi-clique a node v with a degree lower

than the average degree, the resulting graph is still at least a γ-quasi-clique.

This is consistent with the observation that a quasi-clique contains denser sub-

graphs [SDT18].

Consequently, removing the vertex with the lowest degree means that the re-

sulting quasi-clique is still a γ-quasi-clique. In the case of a tie, we can choose

the vertex by its index (or name). This node is named v∗(V ).

Finally, a quasi-clique K ′ is considered a child of another quasi-clique K if

and only if K ′\K = v∗(K ′), i.e a quasi-clique K ′ is a child of K if it has

one additional node that is the first node when sorted in ascending order by

degree and index. This defines a strict parent-to-child relationship between

quasi-cliques, which can be modeled and traversed like a tree.

The original algorithm [Uno10] is exclusively oriented towards γ-quasi-cliques,

and this traversal would include many candidates that are not λ-quasi-cliques.

To prune the search space and avoid branches that will not yield any valid

quasi-clique, at each recursion step, we compute the degree that the nodes

on K ′ should have, so that K ′ is a λ-quasi-clique. When adding a node, the

expected minimum degree may increase. By knowing this value, we can ignore
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all nodes with a degree lower than the threshold in the input graph, as no

matter how many more nodes we were to add afterward, no child candidate

would satisfy the λ threshold.

This step successfully increases the number of quasi-cliques found. However,

the number of maximal cliques is bound in general by an exponential expression

of the form Ω(a|V |/b), where a, b are two constants that depend on the rank of

the hypergraph [Tom81]. Since cliques are a particular case of quasi-cliques, we

can expect the lower bound for the maximum number of quasi-cliques also to

be exponential. Even if enumerating quasi-cliques can be done in polynomial

time per quasi-clique [Uno10], the total run-time has a worst-case exponential

complexity for dense hypergraphs. Therefore, it would be advisable to disable

this stage for datasets with attributes hard to differentiate at low dimensionality

or restrict it to the top-k seeds found.
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Figure 5.1: Simplified schematic of

PresQ.

Given datasets R and S,

(a) Candidate 1-EDDs are found ap-

plying the interval-tree as described in

section 5.2.1.

(b) Those for which the Kolmogorov-

Smirnov finds a significant difference

are discarded, and the rest are mapped

to nodes.

(c) All pairwise combinations are

tested, and those equally distributed

are (d) mapped to edges on a 2-

hypergraph. The algorithm works

with hypergraphs of any rank (e.g.,

triplets mapped to edges on a 3-

hypergraph).

(e) PresQ searches for quasi-cliques

as described in section 5.2.3.

(f) A quasi-clique of cardinality n cor-

responds to an n-EDD, which is then

validated by a statistical test. Those

rejected are decomposed to generate

the edges for a 3-hypergraph, which

are verified (c), used to build a 3-

hypergraph (d) and finally passed as

input back to (e).

The graph above displays spurious

nodes and edges (light grey, dotted)

and false negatives (missing edges be-

tween dark nodes) based on attribute

names. The full graph is not a valid

quasi-clique because the hypergeomet-

ric test on the node degree (eq. 5.8)

prunes the two nodes shown with

crosses. Three candidates of arity 8 are

generated given the constrain on the

number of edges (eq. 5.4). Two of them

are rejected by the n-dimensional sta-

tistical test and used to compute the

edges of the 3-hypergraph.
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Parameters

Before explaining how to tailor the parameterization of the quasi-clique finding

for the purpose of searching EDDs, we need to remind that, given two sets of

attributes R[X] and S[Y ], our algorithm builds on the null hypothesis H0 :

P (R[X]) = P (S[Y ]). In other words, it is based on the assumption that any

EDD candidate is valid.

Let α be the significance level chosen by the user before running the algorithm.

Let G be the initial k-uniform hypergraph and let K be a quasi-clique candi-

date. Under H0, K represents a |K|-ary EDD, and by the projection rule, all

possible edges between the nodes in K are also valid k-ary EDDs. If we run null

hypothesis tests over these k-ary specialized EDDs, by the definition of type-I

error, we can expect as many as α×
(|K|

k

)
false rejections. In other words, under

H0, we can expect a ratio of α missing edges. This is equivalent to setting the

threshold for equation 5.4 as:

γ = 1− α

Adjusting λ is less straightforward: a high threshold will reject good candidates.

A low one will accept spurious ones, triggering unnecessary tests. Even worse,

the spurious quasi-cliques tend to have a high cardinality. Once rejected, they

will cascade and cause an increase in lower-arity EDDs to be tested as much as(
n

k+1

)
, where n is the arity of the EDD candidate, and k is the current level of

the bottom-up exploration.

To solve this dilemma, we propose to use an adaptive value for λ based on

the quasi-clique being checked: under H0, there is no reason to think that any

particular subset of the edges from the clique has a higher probability of having

missing members. In other words, if a given node has an unexpected low degree,

it is most likely connected by spurious edges.

Let N be the number of edges and n the maximum degree of the nodes on

a clique with |V ′| nodes. Under this null hypothesis, the degree of the nodes

should roughly follow a hypergeometric distribution:

Pr(Degree(v) = d) =

(|E′|
d

)(
N−|E′|
n−d

)(
N
n

) , for v ∈ V ′ (5.7)
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This fact allows us to perform a statistical test and accept or reject our quasi-

clique candidate with a given significance level. Figure 5.2 shows some examples

of this distribution for a quasi-clique with 29 nodes and the critical value for

a one-tail test with α = 0.05. In other words, if the degree of a node within

a quasi-clique candidate is less than the critical value, we can reject the null

hypothesis and accept that the set of edges connecting the node are spurious.
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Figure 5.2: Distribution of the degree of the nodes under the null hypothesis

that the missing edges on the quasi-clique are due to the expected false negative

rate of the statistical test. The vertical line corresponds to the one-tail test with

α = 0.05.

In summary, as a constant number of missing edges could be considered too

restrictive [BHB07], we consider a fixed ratio to be limiting as well, and harder

to make sense of —i.e., why choose λ = 0.6 and not λ = 0.7?. We propose that

instead, replacing equation 5.5 with equation 5.8 could be a more intuitive and

flexible approach.

∀v ∈ V ′ : CDF(Degree(v)) ≥ Λ (5.8)

Where 0 ≤ Λ ≤ 1. As with γ and λ, a value of 1 would only accept regular

cliques.

The proposed parameterization for γ and Λ are internally consistent since they

are both constructed under H0.

Figure 5.1 visually summarizes the stages of PresQ algorithm, and the effects

of the parameters γ and Λ on the quasi-clique finding stage.
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In the following section, we will show that adapting Find2 clique validation

with ours is enough to improve its performance in run-time and results. The

growing step improves the efficacy (i.e. more maximal EDDs found) at the cost

of a higher run-time.

5.3 Experiments

We have implemented in Python a version of Find2 that validates candidates

with statistical tests, and the proposed PresQ. Both share most of the code,

including initialization and statistical tests. Any difference in run-time is only

because the modified version searches for quasi-cliques instead of full cliques.

We focus on comparing these algorithms for two main reasons: 1) To prove

that quasi-clique finding can outperform clique finding both in run-time and

results when the data is noisy, an advantage not necessarily exclusive to EDD

finding; 2) While INDs are targeted towards inferring foreign-key relationships

and generally of low arity, we expect EDDs to be of high arity —co-located

within a multidimensional space—, and Find2 performs well when the arity is

high [Dür19].

5.3.1 Experimental design

We have performed two different sets of experiments: one exclusively bench-

marks the quasi-clique search, while the other runs over real-world datasets.

(Quasi-) clique search

This experiment decouples the testing of the quasi-clique search from the un-

certainty associated with the data. The test accepts as parameters the rank for

the hyper-graph k, the cardinality for the clique n, the number of additional

nodes N , the fraction of missing edges α and the fraction of spurious edges β.

With these parameters, the test performs the following initialization procedure:

1. Create n nodes belonging to the clique
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2. Create N additional nodes

3. Create the set E of
(
n+N
k

)
edges connecting all nodes

4. Create the set Q of
(
n
k

)
edges belonging to the clique

5. Obtain the set of all edges not belonging to the clique C = E \Q

With these sets, and to obtain an estimation of the distribution of the target

measurement, it then repeatedly generates noisy versions of the original clique

through the following steps:

6. Remove α× |Q| random edges from the original full clique Q

7. Add β × |C| random edges from C

8. Run Find2 and PresQ over the resulting graph

The parameters α and β simulate the effect of type I and type II errors respec-

tively.

PresQ is configured with γ = 1− α and Λ = 0.05. The number of additional

nodes is fixed to half the number of nodes in the clique: N = n
2
.

This experiment measures, in a controlled manner, the capability of the algo-

rithms to find the true clique and how their run-time is affected by the number

of missing and spurious edges. Since the inputs are randomized, some will

unavoidably run with exponential complexity, the worst case for all the algo-

rithms. To avoid spending too much time on these extreme cases, the test also

accepts a timeout parameter. We describe the measurements we have taken in

table 5.1, and the different parametrizations in table 5.2.

Real-world datasets

For the statistical tests, we use a non-parametric multivariate test based on k-

Nearest Neighbors (kNN) [Hen88; Sch86], but any other multivariate test could

be used. However, regardless of the chosen test, there will always be a number

of false negatives bound by the significance level. In any case, the techniques

here discussed remain relevant.
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Table 5.1: Set of measurements taken for the quasi-clique finding problem.

Recovery ratio For each quasi-clique Q′ found, we compute the Jac-

card index for each found quasi-clique, J(Q,Q′) =

|Q ∩Q′| ÷ |Q ∪Q′|. From all the obtained values, we

report the maximum. A value of 1 signals a perfect

match.

Time Wall-clock time.

Timeouts How many runs exceeded the timeout.

Table 5.2: Combination of parameters for the quasi-clique find problem.

Rank α β Timeout (s)

2
[0.05, 0.30], step 0.05 0.0

240
0.1 [0.0− 0.8] step 0.2

3
[0.05, 0.30], step 0.05 0.0 300

0.1 [0.0− 0.8] step 0.2 1200

4
[0.05, 0.30], step 0.05 0.0 1200

0.1 [0.0− 0.8] step 0.2 3000
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The initialization stage of the test is as follows:

1. We load two separate datasets.

2. The constant columns, where every tuple has the same value —including

null— or only a handful of different values, are dropped. Faida authors

followed a similar procedure to reduce the number of columns to check

[Kru17].

3. A random sample is taken from both relations (it defaults to 200).

4. The algorithm described in section 5.2.1 is used to find a set of valid unary

EDDs.

5. All possible n-EDDs (for n ∈ {2, 3}) are generated and validated. The

tests begin at different arities in order to compare the resiliency of Find2

and PresQ for different initial conditions.

6. Valid n-EDDs are used to create the initial graph passed as input to

PresQ.

The fifth step is performed at different significance levels of α ∈ {0.05, 0.10, 0.15}
to verify how the number of missing and spurious edges affects the search algo-

rithms. Typically, Mind would generate the graph (i.e. 3-EDDs are generated

from valid 2-EDDs). Nonetheless, we start with all possible n-EDDs for simplic-

ity: it is easier to model and understand how many missing edges are expected

as a function of α.

The input for both search algorithms is, thus, identical at every run. However,

since there is an unavoidable effect of the randomization of the sampling in step

3 and the N -dimensional permutation tests, we repeated the experiment. As a

result, we are confident that the difference is significant and not due to chance.

While Find2 has no parameters beyond the initial set of EDDs, PresQ requires

a value for both γ and Λ. As we mentioned earlier, it makes sense to bind γ to

the expected number of missing edges (false negatives): γ = 1− α. For Λ, we

tested with the values 0.05 and 0.1 since lower values yield too many accidental

quasi-cliques, while higher values defeat the tolerance introduced by γ.
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Table 5.3: Set of measurements taken from individual runs.

Time Wall-clock time, without accounting for the ini-

tialization stage, as this is shared.

Number of tests Time spent looking for quasi-cliques and validat-

ing the candidates. Tests can be potentially ex-

pensive, so we measure how many statistical tests

are necessary.

EDD count Without removing non-maximal EDDs.

Maximal EDD count Removing non-maximal EDDs.

Timeouts The execution time has a time limit of 3000 sec-

onds. We report the percentage of runs that could

not finish within the allocated time window.

Highest arity The maximum EDD arity found.

To measure the efficacy (EDDs finding) and efficiency (run-time) of the algo-

rithms, we took the measurements summarized in tables 5.3 and 5.4.

Given the variability and the number of dimensions, it can be hard to assess

the quality of the results. As a general guideline, we consider:

• The higher the match ratio, the better: the highest arity EDD is poten-

tially the most interesting and selective candidate for cross-matching.

• For a similar match ratio, the lower the run-time, the better.

For a similar match ratio, a higher number of maximal EDDs is desirable.

Arguably not for the IND discovery —after all, a few good candidates may

suffice—, but it proves the capacity of finding maximal quasi-cliques.

It is important to note that some of these measures are interdependent. For

instance, if a maximal EDD with a higher arity is found, the number of EDDs

should generally decrease. Conversely, if a true, high-arity candidate is rejected,

multiple generalizations will be considered and possibly accepted, increasing

the number of unique EDDs. Similarly, finding more maximal EDDs implies

running more statistical tests, so the run-time will be worse. Ultimately, it is up

to the user to decide what is more important and parameterize the algorithm

accordingly.
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Table 5.4: Set of measurements derived over the complete set of runs.

Match ratio It is a ratio between the maximum arity of the maximal

quasi-clique found and the true maximum EDD possible

to find on each separate run. This truth is solely based

on attribute names. The algorithms can find higher arity

EDDs when the values are taken into account. This is proof

of success: the metadata would not have sufficed to capture

this trait.

Accuracy Measured as the number of total returned EDDs, divided by

the number of statistical tests executed. A ratio of 1 (best)

means that every candidate was accepted by the statistical

test, while a ratio of 0 (worst) means that all candidate

quasi-cliques were rejected. This value is also affected by

the power of the statistical test as a function of dimension-

ality.

We ran the tests disabling the limitation on the degree (Λ = 0) and the limita-

tion on the total number of edges (γ = 0). In this manner, we can evaluate if

there is any difference when using one, the other, or both.

Table 5.5: Summary of the datasets used for validation.

Dataset Tables Rows Columns 1-EDD

Mortgage/Treasury 2 1k + 1k 16 + 16 26

Ailerons/Elevators 2 14k + 17k 41 + 19 44

DC2 2 198k + 193k 39 + 33 279

AFDS 4 172× 4 8× 4 63

Waveform 2 5k + 5k 22 + 41 145

KEEL 43 43 — 41k 444 972

ChEMBLDB 79 5 — 19M 418 599

Datasets: To test the algorithms, we ran them over two pairs of relations from

the KEEL regression datasets [Alc11], the training and test catalog from the

Euclid photometric-redshift challenge [Des20], and a set of sensor measurements

from an aircraft fuel distribution system [Ghe19]. For the scalability tests, we

have used the full KEEL regression dataset, two variants from the Waveform

68



5.3. EXPERIMENTS

Database Generator [DG17; Bre84], and versions 29 and 30 of the ChEMBL

database [Gau16].

Some statistics about these datasets are summarized in table 5.5.

Mortgage / Treasury, from KEEL, contain the same data, permuted by rows

and by columns. These datasets are an example of data de-duplication.

Ailerons / Elevators, also from KEEL, share their origin (control of an F16

aircraft) but have different sets of attributes. These datasets are an example of

data fusion.

DC2 comes from a single catalog of astronomical objects split based on the sky

coordinates. The authors masked some of the attributes of the training set (i.e.,

coordinates and the target attributes red-shift). Therefore, both catalogs share

some of the attributes but from different sources. A naive one-to-one schema

matching will easily mistake these attributes for small sample sizes. In contrast,

for bigger samples, some true correspondences will be falsely rejected. These

datasets require some more resilient methods capable of working on a multidi-

mensional space. These datasets are an example of schema inference/matching

and automatic feature discovery.

Aircraft Fuel Distribution System (AFDS) comprises five different files, all shar-

ing the same schema but containing sensor measurement values for different

scenarios: one nominal, and four abnormal. Our implementations of Find2

and PresQ can process the five files at the same time.

Waveform Database Generator We use version 1, with 21 attributes, and version

2, which shares the same 21 attributes and adds 19 extra features that are

just Gaussian noise. This 21-ary EDD between the datasets goes beyond the

maximum 7-ary evaluated in previous works [Dür19]. Additionally, the number

of attributes and their distribution similarity generates many false positives at

low dimensionality, stressing the capability of processing noisy, dense, graphs.

ChEMBL Database We use versions 29 and 30 of the ChEMBL database, each

of size 20GiB. They are stored on BeeGFS, a clustered filesystem. We evaluate

the scalability with respect to the number of columns, adding tables progres-

sively. In this scenario, the overhead introduced by the sampling becomes

significant.
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The two pairs from KEEL (i.e. Mortgage/Treasury and Ailerons/Elevators)

were found running over the whole KEEL dataset initial versions of the al-

gorithms described in this paper, proving their capabilities. We report the

performance of this exercise, together with the other two scalability tests, in

section 5.3.3.

5.3.2 Environment

The tests were run on a cluster, where each node is fitted with an Intel(R)

Xeon(R) Gold 6240 CPU at 2.60GHz with 36 virtual cores, running on a stan-

dard CentOS Linux 7.9. The default memory allocation per core was 3 GB.

For the (quasi-)clique search, we submitted one job with as many tasks as

parameter combinations described in table 5.2 and 1 CPU per task, for cliques

of size 10, 20, and 30. We chose the time limit based on the measured run-time

from early test runs.

For the real dataset tests, we submitted jobs with 8 tasks and 1 CPU per

task, limited to 24 hours. The objective of concurrent runs was to increase the

number of data points since the code was not parallelized.

Finally, we executed ten randomized runs for each increment on the number of

columns for the scalability tests.

5.3.3 Results

In this section, we summarize the results of our test setup.

(Quasi-) clique search

We summarize the wall-time and recovery ratio metrics by estimating their

distribution mean and its associated standard error following the Bootstrap

method. The timeout is measured by counting how many runs fail to find a

quasi-clique within the allocated time window.

While the wall-time distribution is far from Gaussian, we consider that ran-
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domizing the input, pruning the long-running cases, and averaging the results

of a few short-running iterations is a valid usage of the algorithms. This makes

comparing the means a reasonable assessment.

Influence of spurious edges: We show in figure 5.3 the performance of the

algorithms for 3-hypergraphs and different ratios of spurious edges. The ex-

ponential worst-case complexity becomes more apparent the more connected

nodes there are. Find2 is the most affected, but at some point, PresQ per-

formance also degrades significantly and eventually also fails to finish on time.

These results confirm that spurious edges influence the run-time of these algo-

rithms very negatively [KR06].
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Figure 5.3: Recovery ratio and run-times for cliques on uniform 3-hypergraphs

for different ratios of spurious edges (β). Each data point corresponds to 15

runs.

Influence of missing edges: Figure 5.4 shows that our proposal generalizes

for hypergraphs. PresQ with the growing stage enabled, oscillates very close

to the original clique even when 30% of the edges are missing. However, the

number of timeouts increases given that the algorithm needs to traverse more

levels from the seed to the maximal quasi-clique. Interestingly, there is an

inverse correlation between the number of missing edges and run time.

Influence of correlated ratios: In a more realistic scenario — i.e., when

using statistical tests — as the number of missing edges increases, the number

of spurious edges should decrease. We have run tests with the growing stage

enabled for different parametrizations on the node degree threshold. This in-
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Figure 5.4: Recovery ratio and run-times for cliques on uniform 3-hypergraphs

for different ratios of missing edges (α). Each data point corresponds to 15

runs.

cludes a regular λ parameter with a value of 0.8 chosen based on good empirical

results we obtained during early iterations of this work. The correlation be-

tween β and α is based on the empirical statistical power of the kNN test as a

location test on k dimensions and a sample size of 100. In all cases, γ = 1− α.

Figure 5.5 summarizes the results. A hand-picked parameter of λ = 0.8 can per-

form well for some hypergraphs but quickly underperforms as the hypergraphs

become noisier. On the contrary, our proposal based on the hypergeometric

distribution remains stable. However, disabling the degree limitation performs

better for this particular setup. This makes sense since there is no correlation

between missing edges.

Real-world datasets

The initial randomized state heavily influences the proposed performance mea-

surements. Their distribution can not be assumed normal. Purely comparing

their means is not enough to assess the validity of our proposal, and we also

need an estimation of variability.

The metric of choice used to compare our measurements is the percent difference

between sample means, being its sample estimator [CT19]:
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Figure 5.5: Recovery ratio and run-times for cliques of size 20 on uniform

(2, 3, 4)-hypergraphs. In this setup, there were no timeouts. Each data point

corresponds to 5 runs.

ϕ̂ =
µ̂PresQ − µ̂Find2

µ̂Find2
(5.9)

The distribution of ϕ̂ can be estimated using bootstrapping. In this manner,

we obtain the estimated population mean and standard deviation. Finally, we

compute the 95% confidence interval µ̂ϕ ± 1.96σ̂ϕ

Figure 5.6 shows this confidence interval for match ratio, unique EDDs, number

of tests and wall time (columns) for a significance level of 0.10, against the

different datasets (rows).

The DC2 case is particularly interesting. The attributes of the datasets are

relatively numerous —compared to the others— and very similar in their dis-

tributions. A low initial significance level will generate very dense graphs, with

a few missing edges, and many spurious, which impacts the performance con-

siderably. This is a known issue of Find2 [KR06]. Increasing the significance

level reduces the number of spurious edges at the cost of missing true ones.

Consequently, the efficiency is improved at the cost of the efficacy. PresQ

allows us to increase the significance level without sacrificing much efficacy.

For the AFDS dataset, when comparing the maximum EDD arity found per pair

of files, scenarios two and three are the most similar, as seen in figure 5.7. We

can obtain this insight without even knowing what the schema nor the content

of the files are. After seeing this result, we checked the original paper from
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Figure 5.6: 95% confidence intervals for the percent difference (equation 5.9)

between Find2 and three parameterizations of PresQ for the DC2, Ailerons vs.

Elevator, and Mortgage vs. Treasury datasets. Intervals that do not intersect

the horizontal dashed line at 0% show a statistically significant result. For ratio,

higher is better. For tests and run-time, lower is better. Unique is harder to

assess since the results also depend on the statistical power of the chosen test.

Since the growing stage can generate many candidates, a low-powered test will

accept many false EDDs.
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where the dataset was obtained, verifying that, indeed, they are “two closely

related scenarios” [Ghe19]. We consider this another proof of the utility of the

proposed techniques.
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Figure 5.7: Pairwise max arity found on the AFDS dataset for each pair of

scenarios.

Table 5.6 (page 77) summarizes the overall results when we execute our tests

over the datasets Mortage vs Treasury, Ailerons vs Elevators and DC2 for

different values of γ and Λ — note that Find2 is equivalent to either of the two

parameters set to 1.0. For run-time, match ratio, and the number of unique

EDDs, we provide the first and third quartiles. The precision column shows

how many candidates are accepted by the statistical test. A value of 1 means

that all candidates were valid EDDs.

When the search algorithm looks for cliques (the first entry for each dataset),

the precision is high since almost all candidates were accepted. However, these

candidates are, on average, of lower arity. This is visible on the Match columns.

As the potential maximal arity becomes higher —e.g., DC2— the chance of

having missing edges increases, thus making the search more resource intensive.

On the other hand, in a too-permissive setup where only γ constrains the quasi-

cliques (second entry), the algorithm is too eager and accepts EDD candidates

later rejected either by the statistical test or by the limitation of not accepting

duplicated columns. The precision is low, and the search time increases as well.

Our proposed Λ parameter, based on the expectation on the number of missing

edges, is more effective at constraining the set of candidates even when used

alone (third entry). The precision increases and the run time is reduced. When
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combined with γ (fourth and fifth entries), the precision increases and fewer

tests are required.

As an illustration of this balance, let us examine in more detail the consequences

of the different Λ parameterization following the process shown in figure 5.1

when running over the DC2 dataset. The first four stages are unaffected by

this parameter:

(a) As described in section 5.2.1, an interval tree is built over the attributes

from both relations. Only overlapping ranges are compared, reducing by

27% the number of tests required.

(b) 810 KS tests need to be done. 49 pairwise combinations are considered

equally distributed (Unary Equally-Distributed Dependencies (uEDDs)).

(c) (n×(n−1))÷2 = 1176 edges are build combining all uEDDs and validated

using the kNN test. 612 edges are considered valid.

(d)The initial graph has half as many edges as the complete graph. Since we

know the ground truth, we can extract the sub-graph induced by the set of

true uEDD and find the number of missing edges to be ≈ 0.10 on average,

as we expected.

The following table exemplifies the consequences of different values of Λ — see

equation 5.8 — on the count and size of the found quasi-cliques (e) and the

number validated by the kNN test (f). Those invalid are ‘decomposed’ into

candidate 3-EDDs, validated, and used to build a 3-hypergraph (d) feedback

to stage (e) for the next iteration.

Quasicliques Valid Median size

Λ = 0.00 2385 292 19

Λ = 0.05 107 64 12

Λ = 1.002 53,053 52,291 6

For Λ = 0, the search algorithm is too greedy and accepts quasi-cliques that

are poor candidates. Too many are invalid and need to be feedback to the
2Equivalent to clique finding
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algorithm, increasing run-time. For Λ = 1, the search algorithm is too restric-

tive. Its precision is high, but it spends a long time enumerating small cliques.

Λ = 0.05 provides the right balance, improving the result and performance.

Finally, the growing stage increases the number of candidates of all arities.

This requires a more exhaustive traversal of the search space and the execution

of more tests, increasing the total run-time. While we run the growing stage

over all found seeds, this stage could be restricted only to a subset of the most

interesting seeds —e.g., highest cardinality.

Table 5.6: Summary of run-time, matching ratio (based on name), and number

of maximal quasi-cliques found accepted by the statistical test. The significance

level is α = 0.1. N corresponds to the number of randomized runs. PresQ(G)

identifies PresQ with the growing stage.

Mortgage vs Treasury

Λ γ Time (s) Match Unique Prec. N Timeouts

Q1 Q3 Q1 Q3 Q1 Q3

Find2 0.44 0.64 0.75 1.00 12 21 0.99 527 0.0%

PresQ 0.00 0.9 44.86 459.04 0.94 1.00 11 15 0.06 212 0.0%

PresQ 0.05 0.0 0.71 11.08 0.88 1.00 11 17 0.49 535 0.0%

PresQ 0.05 0.9 0.76 10.61 0.88 1.00 11 17 0.57 507 0.0%

PresQ 0.10 0.9 0.73 1.99 0.84 1.00 11 17 0.75 503 0.0%

PresQ(G) 0.05 0.9 47.10 247.39 0.88 1.00 125 262 0.22 503 0.0%

Ailerons vs Elevators

Find2 5.63 48.41 0.78 1.00 142 291 0.98 93 0.0%

PresQ 0.00 0.9 8.82 36.75 1.00 1.22 88 174 0.24 128 0.0%

PresQ 0.05 0.0 22.68 52.87 1.00 1.22 113 239 0.16 126 0.0%

PresQ 0.05 0.9 7.51 20.12 1.00 1.11 86 198 0.35 60 0.0%

PresQ 0.10 0.9 6.83 22.40 1.00 1.11 89 205 0.41 60 0.0%

PresQ(G) 0.05 0.9 57.86 674.26 1.11 1.25 321 1062 0.22 60 0.0%

DC2

Find2 74.94 805.71 0.60 0.71 73 150 0.90 53 34.0%

PresQ 0.00 0.9 681.51 1536.19 0.68 0.69 102 200 0.01 16 87.5%

PresQ 0.05 0.0 40.07 189.45 0.80 0.93 46 115 0.10 21 47.6%

PresQ 0.05 0.9 25.57 214.27 0.76 0.89 46 113 0.14 53 13.2%

PresQ 0.10 0.9 18.61 144.98 0.76 0.87 42 98 0.18 52 23.1%

PresQ(G) 0.05 0.9 458.26 1881.02 0.81 0.93 518 798 0.23 52 50.0%
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Table 5.7: Summary of run-time, matching ratio (based on name), and number

of maximal quasi-cliques found. Significance level is α = 0.1, initial arity k = 3.

Mortgage vs Treasury

Λ γ Time (s) Match Unique Prec. N Timeouts

Q1 Q3 Q1 Q3 Q1 Q3

Find2 8.75 20.54 0.75 1.00 86 144 1.00 160 16.3%

PresQ 0.00 0.9 55.00 569.01 1.00 1.00 67 102 0.17 160 0.0%

PresQ 0.05 0.9 8.43 19.45 0.81 1.00 82 126 0.99 160 0.0%

PresQ 0.10 0.9 9.04 19.60 0.81 1.00 83 130 0.99 160 0.0%

PresQ(G) 0.00 0.9 6.71 902.57 0.87 1.00 98 264 0.29 160 47.5%

PresQ(G) 0.05 0.9 36.83 358.53 0.86 1.00 204 395 0.98 160 0.6%

PresQ(G) 0.10 0.9 43.23 287.59 0.81 1.00 198 376 0.98 160 0.0%

Ailerons vs Elevators

Find2 24.66 1072.74 0.89 1.00 474 947 1.00 114 40.4%

PresQ 0.00 0.9 28.55 140.93 1.13 1.33 276 627 0.45 114 1.8%

PresQ 0.05 0.9 26.59 83.72 1.11 1.22 339 656 0.95 114 14.0%

PresQ 0.10 0.9 25.55 105.93 1.00 1.14 357 680 0.96 110 14.6%

PresQ(G) 0.00 0.9 171.81 940.15 1.19 1.33 498 1044 0.34 114 9.7%

PresQ(G) 0.05 0.9 174.88 670.84 1.13 1.29 629 1330 0.95 111 18.9%

PresQ(G) 0.10 0.9 205.63 718.51 1.12 1.29 661 1245 0.95 109 19.3%

DC2

Find2 1050.56 1050.56 1.00 1.00 560 560 0.97 83 98.8%

PresQ 0.00 0.9 599.20 599.20 0.88 0.88 830 830 0.06 32 96.9%

PresQ 0.05 0.9 207.28 2013.45 0.81 0.89 351 747 0.56 81 88.9%

PresQ 0.10 0.9 71.85 926.94 0.80 0.93 380 791 0.72 78 93.6%

PresQ(G) 0.00 0.9 32 100.0%

PresQ(G) 0.05 0.9 340.72 599.10 1.02 1.21 775 888 1.00 80 97.5%

PresQ(G) 0.10 0.9 413.58 670.53 1.00 1.13 808 947 1.00 76 97.4%

78



5.3. EXPERIMENTS

Table 5.7 (page 78) summarizes the performance measures when Find2 and

PresQ are run over an initial 3-hypergraph. The precision is considerably

higher than when starting on a 2-hypergraph. This is due to the higher power

of the statistical test at dimension 3, so fewer spurious edges are introduced.

However, the overall run-time suffers because the number of edges on a hyper-

graph is
(|V |

k

)
where |V | is the number of nodes and k the rank of the hypergraph.

Therefore, for a fixed number of nodes, the number of edges is generally higher

for hypergraphs of higher rank.

Scalability tests

For measuring the scalability of our algorithm, we executed the algorithm over

the KEEL, Waveform, and ChEMBL datasets, progressively adding columns,

measuring run-time; the number of 1, 2, and n-EDDs; and the number of

unary tests saved by the interval tree. In all cases the chosen parameterization

is α = 0.1, Λ = 0.05, γ = 1 − α and 200 samples. We set the run-time limit

at 3000 seconds. The relations and their attributes are consistently added in

alphanumeric order. The accepted 1-EDDs are used to compute all the possible

2-EDDs, while the accepted 2-EDDs define the initial edges for the n-EDD

finding. Figure 5.8 (page 81) summarizes our results.

The KEEL dataset contains 43 different relations. The interval tree saves

around 45% of the tests since many columns do not overlap. The number

of EDDs increments in ‘bursts’ when a relation that matches a previous one en-

ters the pool. This is due to the existence of high arity EDDs (16, 12, 7, and 6).

The high number of 2-EDDs makes the growing stage eventually impractical.

For the ChEMBL databases, we have used a naive random sampling that only

requires a single pass over the entire database. Even then, the reading time is

little with respect to the rest of the EDD finding algorithm. The number of

1-EDDs steadily increments as relations are added, but 2 and n-EDDs remain

relatively stable —the corresponding error bars overlap—, and so does the run-

time. The arities are lower than those from KEEL, the maximum being 6

for the tables molecule_dictionary and compound_properties. The interval

tree saves 57.9% of tests for 1-EDDs.
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Finally, while the Waveform Generator datasets are the smallest in size, it is

the dataset for which the algorithm shows the worst performance. This is due

to the maximum arity possible (up to 20) and because their attributes are hard

to distinguish — the interval tree can not save even one test. The number of

2-EDDs grows super-linearly with respect to the number of attributes, resulting

in a very dense and noisy initial graph with many possible quasi-cliques.

From these experiments, we can conclude that the algorithm scales well with

respect to the number of relations and columns and that the sampling has a

low impact even for big datasets. However, when the statistical test has low

power for the input data, the run-time significantly degrades even for moderate

input sizes since the search space is combinatorial and little pruning is possible.

In this case, the user can choose a different test or increase the sample size to

maximize the power. Figure 5.9 exemplifies the effect the sample size has on

the result set and, therefore, run-time for the complete Waveform dataset. The

power of the test is low when considering only a few attributes, and the initial

graph becomes rather dense.
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Figure 5.8: Scalability of PresQ with respect to the number of columns. The

top row corresponds to the number of EDDs with arities 1, 2, and n ≥ 3.

The middle row shows the time spent on each stage: sampling, searching, and

testing for the different arities. Note that the two n-EDDs variants are stacked

over the previous stages, displaying the total run-time. The last row shows

the percentage of runs timed out at 50 minutes. Each data point summarizes

between 10 and 13 randomized runs.
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100, and logarithmic afterward. Each data point summarizes 10 randomized

runs.
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5.4 Conclusions

Finding sets of equally-distributed dependencies between numerical datasets is

a similar problem to that of finding Inclusion Dependencies between tables in a

relational model. However, the statistical nature of tests, with their potential

uncertainties, can make their finding more complicated and considerably de-

grade the performance of existing algorithms. This problem can be mapped to

finding quasi-cliques, as the IND problem can be mapped to finding full cliques.

In this chapter, we introduced the concept of EDD, similar to the IND from

the relational domain. We proposed PresQ, a new algorithm based on the

search of maximal quasi-cliques on hyper-graphs. We proved that by limiting

the quasi-cliques by the number of missing edges and the degree of the nodes,

PresQ can successfully identify shared sets of attributes.

In general, comprehensive approaches will be needed to find very high arity

EDDs, given the complexity of the IND/EDD discovery problem. In chapter 8,

we discuss possible future research directions.

All the necessary code to reproduce our tests, our measurements, and figures,

are publicly available3.

3https://doi.org/10.5281/zenodo.6865856
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Chapter 6

Two-sample test based on

Self-Organizing Map

6.1 Introduction

A classification task can be seen as a sort of two-sample statistical test. If a

classifier trained over two samples can effectively distinguish between them with

better-than-chance performance, the classifier rejects the null hypothesis that

both samples come from the same distribution [Fri03]. While a formal statistical

test can be more suitable when the alternative hypothesis is known, machine

learning classifiers can be a good alternative when the data is complex and

abundant [Kir20; Kim21; Liu20]. Furthermore, the representation “learned” by

some classifiers can be helpful to examine how the samples differ [Fri03; LO17],

or it could be used later for other purposes, such as directly classifying future

samples.

SOM is a technique for dimensionality reduction. It is a type of neural net-

work that learns a low-dimension representation - generally 2D - of the original

high-dimensional space while maintaining the topological layout of the original

data [Koh82; Vil99]. The learned map can be directly used for unsupervised

clustering and classification tasks if the training data is labeled [UM05; Ult07].

Thus, SOMs can be used as a building block of an ML-based two-sample test,

similar to kNN or Neural Network classifiers, with the valuable addition of

producing a representation that can be visualized.
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In this chapter, we propose a multivariate statistical test based on SOMs that

shows performance comparable to other techniques based on machine learning

models and even better for medium to big sample sizes. In addition to the p

value for H0 : P = Q, the test also outputs a trained SOM model that can be

used for other tasks, such as classification or visualization. Our proposal uses

a χ2 statistic to compare the densities of both samples on the projected plane

instead of relying on a training-testing split. This allows us to fully utilize the

sample data. To our knowledge, and based on the results from three exhaustive

surveys, using Self-Organizing Maps to perform multidimensional two-sample

testing has not been proposed before [KKK98; OKK03; PHK06].

This statistical set can potentially be used with PresQ to validate high-

dimensional EDDs. The resulting projection can be used to identify objects

from multiple datasets that are co-located in the matched multidimensional

space, satisfying two of Borne’s science requirements for data mining: Object

Cross-Correlation and Nearest-neighbor identification.

In section 6.2, we introduce classifier two-sample tests and Self-Organizing Map.

Then, in section 6.3, we describe our proposal for a multidimensional non-

parametric statistical test based on SOMs. In section 6.4, we describe the ex-

perimental setup we used to validate our proposal — including the parametriza-

tion of the existing techniques evaluated as a baseline —. In section 6.5, we

present the results. Finally, in section 6.6, we compile our conclusions and

propose areas for future work.

6.2 Definitions

Classifier two-sample tests A binary classifier can be seen as a two-sample

test. If a classifier has a better-than-chance performance, it can be inferred that

the two classes do not originate from the same underlying population [Fri03].

More formally, let X = {x0, x1, . . . , xn} be a sample from P , and

Z = {z1, z2, . . . , zm} a sample from Q. A test statistic t̂ ∼ T is used to

“summarize” the difference between both samples and, depending on a pre-

established significance level α used to reject the null hypothesis H0 : P = Q if

α > P (T ≥ t̂|H0).
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When using a binary classifier for performing a statistical test, both samples

are pooled together U = {ui}n+m
i=1 = {xi}ni=1 ∪ {zi}mi=1. The samples originating

from P are labeled yi = 1, and the samples originating from Q, yi = −1.

The original proposal trains a classifier on the complete pooled sample. This

classifier is then used to score each data point, generating a set of scores for

the first sample S+ and for the second S−. The multi-dimensional comparison

is thus reduced to a regular univariate two-sample test problem [Fri03].

Another approach is to split the pooled dataset {ui}n+m
i=1 into training and

testing sets. A classifier is then trained on the former, and the accuracy is

measured for the latter. The accuracy becomes the test statistic t̂, which follows

asymptotically N(1
2
, 1
4ntest

) [LO17]. Alternatively, a permutation test can be

used [Kim21]. Two disadvantages of these kinds of tests are that they can not

use the whole sample for computing the test statistic — therefore, they are not

suitable for small datasets — and they are underpowered due to the discrete

nature of the test statistic [Ros19].

Self-Organizing Maps is an unsupervised machine-learning algorithm that

learns a projection from a high-dimension input space into a low-dimension out-

put space, generally two-dimensional, to aid visualization. The output space

is modeled as a grid of neurons — a neural map — that responds to a set of

values from the input space [Koh82]. The output model preserves the topology

of the input space: any continuous changes in the input data cause a contin-

uous change on the neural map [Vil99]. In other words, input values close in

the original high-dimensional space trigger neurons that are close in the low-

dimensional projection [Koh13].

The output space W has to be defined before the training phase. The user needs

to define the shape of the grid — square or hexagonal —, its size, and whether

the map wraps around (toroidal maps). Each neuron i from the model has an

associated weight vector with the same dimensionality as the input space, wi(t),

where t corresponds to the epoch of the training stage. The initial values wi(t0)

can be randomly assigned or based on Principal Component Analysis [Koh13].

During the training, at each epoch t, each point x from the training set — or a

batch — is mapped to its Best Matching Unit (BMU), which is just the neuron

whose weight vector is the closest given a distance metric d:
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bmu(x) = argmin
wi∈W

d(x,wi) (6.1)

Once this is done, the BMU and the weight of the neighboring neurons are

updated, so they become closer to the input data point:

wi(t+ 1) = wi(t) + αhi,b(t)(x− wb(t)) (6.2)

Where 0 ≤ α ≤ 1 is a learning factor that may or may not depend on t,

and 0 ≤ hi,b ≤ 1 is the neighborhood function, usually with a Gaussian shape

that shrinks at each epoch, such as the function shown in equation 6.3 [Vil99;

Wit17]. This process can be repeated for multiple epochs or until convergence.

hi,b(t) = exp(−||wi − wb||
δ(t)

) (6.3)

SOMs display emergent properties when the grid is large enough: they can

be directly used for clustering, classification, and other machine learning tech-

niques. These are referred as Emergent Self-Organizing Maps (ESOM) [UM05].

This combination of emergence and visualization capabilities motivates our pro-

posal of a statistical test based on SOMs: a test that rejects the null hypothesis

that two samples are equally distributed can also provide insights into how they

differ.

6.3 χ2 test on the projection over a Self-Organizing

Map

Thanks to the topology preservation of SOMs, a classifier can be trained on the

output space rather than the input space. For instance, for a kNN approach,

neurons can be labeled using the training data and a majority rule. Later,

test data can be assigned the label from its BMU. This is almost equivalent

to a kNN classifier with k = 1. Furthermore, neurons belonging to sparse

regions can be left unlabeled, so test data projected into them can be labeled

as unknown class [UM05; SD11].
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While a SOM-based classifier could be used in place of the neural or kNN

classifiers proposed originally [LO17], we propose a different approach that does

not require splitting the input data into training and testing sets, leveraging

the distribution of the data on the output space instead. The intuition behind

this is that if two samples are equally distributed on the input space, they must

be equally distributed on the output space.

More specifically, our method works as follows:

1. We train a SOM M of size (w, h) over U = X ∪ Z

2. We project X and Z separately over the SOM M

3. We compute how many points from X and how many from Z are mapped

to a given neuron ni

Ri =
∑
x∈X

[bmu(x) = i] Si =
∑
z∈Z

[bmu(z) = i] (6.4)

4. Finally, we perform a a χ2 two sample test comparing the counts for both

samples on the output space

χ2 =
w×h∑
i=1

{
(K1Ri −K2Si)

2

Ri + Si

[Ri + Si > 0]

}
(6.5)

Where K1 and K2 are two constants used to adjust for different sample sizes:

K1 =

√
|Y |
|X|

K2 =

√
|X|
|Y |

(6.6)

Note that we ignore the neurons where no objects are mapped. Under the null

hypothesis, the test statistic χ2 follows a χ2 distribution with k − c degrees of

freedom, where k is the number of cells where Ri + Si > 0, and c = 1 if the

sample sizes are equal, or c = 0 otherwise [HA93].
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As with any test based on binning, its main disadvantages are that its results

may depend on the binning (in this case, size of the SOM) and that it requires

more data points. On the other hand, since the SOM adapts to the topology of

the original data, it is less susceptible to artifacts than a simple 2D histogram

due to the binning.

As with the classifier tests, as a side effect of the test, we are left with a trained

model that can be used for (1) visualization; and (2) for big enough SOM

and samples, even for clustering [UM05]. Unlike other classifier tests, with our

proposal, the whole dataset can be used for computing the statistic [Kir20].

Additionally, thanks to the regularization terms shown in equation 6.6, it also

works with unbalanced sample sizes, an advantage over most kernel-based meth-

ods [SC21].

We implemented our proposal using Somuclu, a parallel tool for training self-

organizing maps on large data sets [Wit17]. In the following section, we describe

the experimental setup used to evaluate our proposal. Later, in section 6.5, we

report the results of our tests.

6.4 Experimental setup

6.4.1 Evaluated alternatives

We considered four different two-sample tests based on machine learning tech-

niques. All of them have in common the merging of both samples into a single

set Z, labeled with 1 if the sample comes from X or -1 if it comes from Y .

Nearest neighbor type coincidences. The assumption under H0 is that on

the neighboring area of any point, the number of samples belonging to X and

to Y should be similar, while if f ̸= g, then there will be areas with a higher

density of objects coming from one of the two sets [Hen88; Sch86].

To perform the test, consider a neighbor r of a sample zi ∈ Z. We set

Ii(r) = 1, if the label of zi and of zr match

Ii(r) = 0, otherwise
(6.7)
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The statistical test:

Tn,k =
n∑

i=0

k∑
r=0

Ii(r) (6.8)

n is the total number of samples, and k the number of neighbors considered. The

distribution of the statistic is empirically obtained by applying a permutation

test.

Classifier two-sample tests. We implemented the classifier two-sample test

as described in section 6.2 using scikit-learn [Ped11] neural classifier1, and

kNN classifier2 with their default parameterization. Table 6.1 summarizes the

differences with the original proposal. However, these differences should not

significantly affect the performance [LO17].

Parameter Revisiting. . . scikit-learn

C2ST-NN

Number of hidden layers 1 1

Number of neurons 20 100

Activation ReLU ReLU

Optimizer Adam Adam

Epochs 100 200

C2ST-kNN

k |X|/2 5

Table 6.1: Differences between our parameterization (scikit-learn defaults)

and the one used in the original proposal [LO17].

Kernel Methods are based on computing the Maximum Mean Discrepancy

(MMD) between the samples, which is the distance between their expected fea-

tures in a Reproducing Kernel Hilbert Space. In the original proposal [Gre12],

however, is computationally expensive to compute the test statistic — O(N2)

— and to approximate its distribution under H0 — O(N2) or O(N3) depending

on the method [ZGB13]. A proposed alternative, MMD-B [ZGB13], splits the

input data into blocks, computes the original, unbiased MMD statistic on each

1sklearn.neural_network.MLPClassifier
2sklearn.neighbors.KNeighborsClassifier
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block — which are i.i.d —, and averages the results. Because of the central

limit theorem, this average asymptotically follows a normal distribution. Song

et al. [SC21] propose another test statistic based on MMD-B that allows un-

balanced sample sizes and is more robust to the chosen kernel bandwidth (i.e.,

σ on a Gaussian kernel).

6.5 Results

We performed five experiments to evaluate the performance of our SOM two-

sample test proposal.

For the first three setups - Normal, DC2, and the Open University Learning

Analytics dataset - we set the significance level α = 0.1. We then measure the

run-time and empirical type I and type II error rates over 200 repeated tests

for all the evaluated tests: (1) SOM (our proposal), (2) the kNN permutation

test [Sch86], and (3) two classifier tests (kNN and Neural Network) [LO17]. To

obtain the 95% confidence interval, we used the Wilson score interval [Edw27].

These values are measured for: (1) a fixed sample size of n = m = 500 and

variable dimension; and (2) for variable sample sizes and full dimensionality.

We used a K-Best feature selection to decide the order in which dimensions are

added, from more to less informative. Therefore, increasing the dimensionality

is expected to have a diminishing return.

6.5.1 Normal distribution

Figure 6.1 shows the error rates and run-time for a location test of two mul-

tivariate Gaussian distributions with D = 1000. For the first distribution,

all dimensions have a mean of 0, while for the second distribution, the first

dimension has a mean of 1, and the rest have a mean of 0.

All tests can easily reject H0 within a reasonable run-time. For a high number of

samples, however, the kNN permutation test worsens its run-time performance,

probably due to the imbalance of the KD-Tree.

Figure 6.2 shows the same variables for a scale test of two multivariate Gaussian
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Figure 6.1: Location test for two multivariate Gaussian distributions with D =

1000.
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distributions with D = 1000 and two random co-variances matrices samples

from the Wishart distribution [SH72]. In this case, while the type I errors

are well bounded by the significance level, both algorithms based on neural

networks (C2ST-NN and SOM ) require a higher number of samples to be able

to reject H0, with respect to the other methods.
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Figure 6.2: Scale test for two multivariate Gaussian distributions with D =

1000.

Ramdas et al. [Ram15] have argued that a “fair” evaluation of the power of

multivariate non-parametric tests as the dimensionality increases is to keep the

amount of information fixed. i.e. the Kullback-Leibler Divergence (KL Diver-

gence) between both distributions should remain constant. For the location

test, this can be achieved by two multivariate Gaussians that only differ on the

first dimension, i.e. (1, 0, . . . , 0) vs (0, 0, . . . , 0).

For completeness, figure 6.3 shows the performance of the classifier two-sample

tests being evaluated under this condition. We can see that they all fail to

improve their type II error as the dimensionality increase. Finally, figure 6.4
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shows the performance of the different tests when only the scale of the first

dimension differs, as Ramdas et al. propose for a fair scale test. In this case,

it is more evident that the type II error of all tests worsens as the number of

dimensions increases.
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Figure 6.3: Fair location test for two multivariate Gaussian distributions with

D = 1000.

We consider that Ramdas et al. raise a valid point: given the same amount

of available information, additional dimensions do not help. However, for our

PresQ use case, this is an unrealistic scenario: we are discovering the matching

dimensions, and each additional feature will help discriminate whether two

samples follow the same distribution.

6.5.2 DC2 Dataset

The datasets from this challenge come from a single catalog of astronomical

objects split based on the sky coordinates [Des20].

95



6.5. RESULTS

0.0

0.1

0.2

T
yp

e
I

0.0

0.5

1.0

T
yp

e
II

102 103

Samples

0

100

200

T
im

e
(s

)

0.0

0.1

0.2

0.0

0.5

1.0

101 102 103

Dimensions

0

1

2

Normal scale (fair)

c2st knn c2st nn knn som

Figure 6.4: Fair scale test for two multivariate Gaussian distributions with

D = 1000.

96



6.5. RESULTS

We generate three different samples:

1. Samples from the full catalog

2. Samples applying a magnitude cutout (MAGVIS < 22.)

3. Samples applying a Signal-to-Noise Ratio (SNR) cutout (VIS/VISError >

10.)

Following Ramdas’ paper, in figure 6.5, we report the estimated KL Divergence

— computed using a kNN density estimation [Pér08] — between the datasets

for an increasing number of dimensions. It can be seen that the amount of

available information rapidly increases for the magnitude cutout but barely for

the SNR filter, probably because, for the latter, the means of the distributions

barely change, but their dispersion significantly does.
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(a) KL Divergence for the MAGVIS cutout.
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(b) KL Divergence for the SNR cutout.

Figure 6.5: Kullback-Leibler Divergence for the DC2 samples. The original

divergence corresponds to the original dimensionality of the dataset.

Figure 6.6 shows the measured performances for the DC2 with the magnitude

cutout. Even for a small sample size, the SOM test achieves very low type

II errors, significantly better than the tests based on classifiers. This may be

because the SOM and kNN tests can use the full sample, while the classifiers

must split the data into training and testing sets.

Figure 6.7 shows the same performance metrics for the SNR cutout. In this

case, as suggested by the KL Divergence, adding dimensions does not help any

of the tests. However, as the sample size increases, the kNN and SOM tests

97



6.5. RESULTS

0.0

0.1

0.2

T
yp

e
I

0.0

0.1

0.2

T
yp

e
II

102 103 104

Samples

0

2

4

T
im

e
(s

)

0.0

0.1

0.2

0.0

0.1

0.2

101 102

Dimensions

0.00

0.05

0.10

0.15

DC2 MAG Cutout

c2st knn c2st nn knn som

Figure 6.6: Statistical performance vs sample size (left) and dimensionality

(right).
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improve their type II error rate. Bigger sample sizes do not help the classifier-

based tests.
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Figure 6.7: Statistical performance vs sample size (left) and dimensionality

(right).

6.5.3 Open University Learning Analytics Dataset

The objective of this experiment is to prove that our proposed test can be

successfully used to contrast a hypothesis, providing an interpretable result

useful for further investigating the data.

We base our test on the Open University Learning Analytics dataset, which

contains anonymized data about student demographics [KHZ17]. Let us con-

sider the case of a researcher with the hypothesis that gender, age, and region

of origin influence a student’s economic situation, or perhaps they could be

trying to deanonymize the data.

From this dataset, we can use the Indices of Multiple Deprivations (IMD) to
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Figure 6.8: Density of samples for the general population (left), poorest segment

(center) and relative difference (right). Cells with a value of −1 do not have

any low-income students, while those with a value of 0.5 show an “excess” with

respect to the general population.

measure poverty. The null hypothesis H0 would be that a sample from the

overall population and a sample from the poorest segment are indistinguishable,

i.e., they come from the same distribution. We take all students from the lower

end of the poverty line and a sample of the same size from the general population

to test this hypothesis. We run the test using a SOM of size 20× 20. The null

hypothesis is rejected with a p-value of 0.

Unlike other statistical tests, in addition to the p-value, the researcher can

use the result of the SOM test to compare the projections of both samples.

Figure 6.8 shows the density of samples for each cell for the overall population

(left), the density of samples from the low-income students (center), and the

relative difference between both (right). The “most different” cells hint at how

they are different.

If we pick one of the cells with the most significant bias towards low-income

students, we can see it contains only young female students from the North

Western Region. In figure 6.9, we show the distribution of IMD for the overall

population (left) and for this subset (right). Indeed, the income distribution

for this demographics is heavily skewed towards the low end. We could obtain

this hindsight without prior knowledge of which attributes correlate with the

difference, only with the “hunch” that there is a relation. Thus, we prove that

our proposed test can be useful for data exploration.
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Figure 6.9: Indices of Multiple Deprivations for the general population (left)

and for young female students from the North Western Region.

6.5.4 Eye Movements Dataset

For generating this dataset, 11 subjects were shown a question and a list of ten

associated sentences, of which one was the correct answer (C), four relevant

(R), and five irrelevant (I). Their eye movement was measured for each possible

answer. The overall measurements were summarized into 22 features, together

with the appropriate label for the sentence [Sal05].

With this dataset, we aim to prove that our method can be competitive with

other start-of-the-art proposals, with the benefit of providing a trained model

useful for later purposes.

To evaluate the power of comparing different sets of measures, we replicate

Song’s set up and run 2000 times3the classifiers and SOM tests using a signif-

icance level of α = 0.001 for different sample sizes. We report their statistical

power in table 6.2. The results from Song and MMD-B are extracted from

Song’s paper [SC21].

The results show that our test has low power for small samples, but it rapidly

gains terrain compared to the classifier-based methods, being competitive even

with kernel-based techniques. The nearest-neighbors method is remarkably

efficient in all cases.

To evaluate the usefulness of the trained model obtained as part of running

3Song uses 1000 repetitions.
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I vs. C

m = n Song MMD-B KNN C2ST-KNN C2ST-NN SOM

100 0.826 0.374 0.973 0.164 0.079 0.042

200 0.998 0.850 1.000 0.565 0.349 0.947

300 1.000 0.985 1.000 0.863 0.644 1.000

400 1.000 1.000 1.000 0.968 0.882 1.000

R vs. C

m = n Song MMD-B KNN C2ST-KNN C2ST-NN SOM

100 0.670 0.236 0.845 0.062 0.023 0.007

200 0.969 0.685 0.996 0.298 0.139 0.672

300 0.999 0.941 1.000 0.558 0.314 0.987

400 1.000 0.988 1.000 0.811 0.560 1.000

Table 6.2: Empirical statistical power for the eye movement datasets. We mark

in bold the best results for each sample size.

the statistical test, we use the trained SOMs as classifiers: The neurons can

be labeled according to the training data labels mapped into their region using

a majority rule. During classification, objects can be labeled according to

the label of the neuron into which they are mapped. We performed a 50-fold

cross-validation with a sample size of n = m = 409, so each training set has

n = m ≈ 400 elements for each label.

The obtained mean accuracy where: C vs. I 72.48%; C vs. R 68.48%; I vs.

R 57.60%. Even with relatively small sample sizes, our results are comparable

with those reported on the paper from which the dataset was obtained: 65.8%

Correct vs. Incorrect (joint of Irrelevant and Relevant) [Sal05].

Finally, as an exercise on interpretability, figure 6.10 shows the value of the two

most distinct code-book dimensions. These attributes, related to the regression

(re-reading a word) show a sharp distinction that matches the distribution of

samples from the Correct and Incorrect samples quite well. This matches the

expectations from the original paper that regression features indicate high-

level cognitive processing and, therefore, correlate with conscious efforts when
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choosing a correct answer.

regressLen regressDur

Incorrect Correct

Figure 6.10: Code-book values for the two most distinct features from the Eye

dataset. Darker neurons are more sensitive to the given feature. The lines

represent the density estimation for the Correct and Incorrect samples over the

SOM. It is visible that the Incorrect category “wraps” around long regression

distances, while the Correct category correlates positively with the regression

duration.

6.5.5 Age (IMDb Faces) Dataset

The IMDb-WIKI dataset [RTV16] contains 460,723 face images extracted from

IMDb. The authors additionally provide a neural network pre-trained to predict

the age of the face cutouts. Similarly to Song’s experiments [SC21], we ran the

neural model over the IMDb faces, extracting the values from the last hidden

layer (4096 neurons) as the target multivariate distribution. We then group

the samples in age ranges and verify our proposal, comparing 500 samples
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from consecutive age groups, and repeat 500 times for each experiment. The

significance level is also set to 0.001.

Table 6.3 shows the results for the SOM test, together with the results reported

by Songet al. for their kernel-based method and for MMD-B[ZGB13]. For this

particular experiment, Song’s proposal outperforms both MMD-B and the SOM

test, although our method comes second in statistical power.

Age ranges Song MMD-B KNN SOM

15-20 vs. 20-25 1.000 1.000 1.000 1.000

20-25 vs. 25-30 1.000 0.800 0.984 0.990

25-30 vs. 30-35 0.990 0.790 0.876 0.726

30-35 vs. 35-40 1.000 0.830 0.866 0.812

35-40 vs. 40-45 0.950 0.250 0.784 0.564

40-45 vs. 45-50 0.930 0.400 0.812 0.606

Table 6.3: Statistical performances for the Age dataset.

6.5.6 PresQ results

As we mentioned in the introduction, the motivating example is the unsuper-

vised discovery of shared attributes between multiple datasets using PresQ

(chapter 5), obtaining, as a result, the list of sets of attributes and a trained

model that can be used to cross-match the datasets.

We run two examples from the PresQ paper using the proposed SOM based

test instead of the kNN statistical test. For each of the examples, we measure

the following:

Ratio of known shared attributes identified by PresQ.

Overhead Number of tests per unique Equally-Distributed Dependency found.

Time that took PresQ to finish, including the time taken for serializing the

SOM models.

Figure 6.11 reports the 95% confidence interval (µ ± 1.96σ) for the relative

differences obtained when running with SOM vs kNN. Their distribution has
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been estimated using bootstrapping. The parametrization for PresQ was Λ =

0.1, γ = 0.95, α = 0.05 and a sample size of 1000.
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Figure 6.11: Relative difference between PresQSOM and PresQkNN . Top:

DC2 dataset [Des20]. Bottom: Ailerons / Elevators datasets [Alc11].

The SOM test has a run-time penalty because it is a more complex model to

train. However, fewer tests are required for the same number of unique EDD

found. This is likely a consequence of the kNN test being slightly more prone

to reject the equality of distribution than the SOM test, as we can for instance

see in figures 6.1, 6.2.

6.6 Conclusions

As part of interactive data exploration, researchers may need to compare mul-

tiple datasets. These datasets can originate from multiple independent files or

generative models that need to be compared with reality. When these datasets

are of high dimensionality, especially if the exploration is tentative, develop-

ing tailored statistical tests can become impractical. In those cases, relying on

heuristic approaches based on machine learning techniques, as classifiers, to de-

cide whether two samples are distinguishable becomes a good alternative [Fri03;

Kim21].

However, some of these methods, like neural networks, are hard to interpret
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when rejecting the null hypothesis H0 : P = Q. In other words, they reject

that both samples originate from the same underlying distribution but do not

further assist the researcher. Other models, such as random forests, are more

interpretable [Fri03].

In section 6.3, we proposed another machine learning technique based on Self-

Organizing Maps [Koh82] that is understandable and capable of pointing the

researcher to where the differences in a multidimensional space are. After all,

SOMs were initially proposed as visualization aids. Nonetheless, they display

interesting emergent properties and can be used for clustering or classification

as well [Ult07].

In section 6.5, we proved that the power of this technique is comparable to

other machine learning techniques and even superior for medium-size datasets.

We also proved in the experiment 6.5.3 that the output could guide researchers

toward refining a hypothesis. Thus, our test can be a valuable asset to the re-

searcher’s tool-set and complementary to more formal hypothesis testing when-

ever considered necessary [Ros19].

For future work, it would be interesting to explore the possibilities of properties

of emergent Self-Organizing Maps to assist the researcher in examining the

differences. For instance, clustering could help identify whole regions that differ

rather than focusing on individual neurons.
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Chapter 7

Discussion

In section 1.1, we defined that the main objective of this thesis was to assist

users during the exploration of unprocessed, numerical, raw data distributed

across multiple files. After a systematic literature mapping, described in detail

in chapter 3, in section 4.2 we narrowed the objectives to the multiple files with

unknown, heterogeneous schemas, solely using the intrinsic data distribution.

With this objective in mind, in chapter 4 we proposed the concept of EDD,

proposed a novel algorithm, PresQ, to mine these dependencies between mul-

tiple datasets — chapter 5 —, and a two-sample, machine-learning statistical

test that can visually assist users in examining how the two samples differ —

chapter 6.

In section 7.1, we discuss the behavior, performance, and results of PresQ, a

tool for the discovery of multidimensional EDDs via Quasi-Cliques on Hyper-

graphs. In section 7.2, we argue how the proposed solutions are relevant to the

stated objectives. In section 7.3, we list the threats to the validity of this work

and what measures we have taken to minimize their impact.
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7.1 Discovery of Multidimensional Dependencies

via Quasi-Cliques on Hypergraphs

Identifying shared attributes between multiple numerical datasets is an interest-

ing problem. It combines the challenging nature of algorithms devised to find

Inclusion Dependencies, an NP-hard problem [Kan92], with the unavoidable

uncertainty of statistical methods. This uncertainty reflects as falsely rejected

EDDs and falsely accepted EDDs.

Find2 is an algorithm that maps inclusion dependencies to hyper-cliques, which

generally performs at least as well as the alternatives [Dür19]. It is loosely cou-

pled with the discrete nature of the underlying data. However, its ability —

and of most, if not all, of the existing algorithms — to find high arity EDDs will

be impaired by the number of false rejections, which a lower rejection threshold

could compensate for. Yet, this solution increases the number of false detec-

tions, which is a known factor that significantly degrades its performance, sim-

ilar to other hypergraph-based methods’ [KR06]. We experimentally confirmed

this problem in section 5.3.3.

We propose a new algorithm based on quasi-cliques, where a candidate is ac-

cepted even if some edges are missing. This algorithm has three parameters:

• The ratio of missing edges (γ).

• The tolerance on the number of missing edges connecting a node from the

quasi-clique (Λ).

• Whether to use the found quasi-clique as seeds.

We provide a generalization of this parameterization from regular 2-graphs

[BHB07] to uniform n-graphs in equations 5.4 and 5.5.

The results showed in the quasi-clique test set (section 5.3.3) demonstrate that

the seed stage of PresQ provides results close to the original cliques on uniform

n-hypergraphs. The growing stage can recover them even for a high number of

missing edges (up to 30%) at the expense of a higher run-time.
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For real datasets, the ratio of missing edges can be intuitive to configure (simply

γ = 1 − α, where α is the test significance level), but λ can be harder to in-

terpret. We propose instead an intuitive and statistically interpretable method

to dynamically adapt the threshold to the degree which is expected to follow

a hypergeometric distribution and can be adjusted based on the quasi-clique

itself, as shown in equation 5.8. Our results also prove that the degree threshold

based on the hypergeometric distribution offers comparable performance to a

hand-picked ratio λ while being more stable and predictable.

While our tests on artificial hypergraphs seem to point to the redundancy of the

parameter Λ, the results shown in the real-world test set (section 5.3.3) prove

that for real noisy graphs, the combination of both performs consistently better

than either of them separately. The γ parameter enables recovery from missing

edges and, simultaneously, Λ avoids too many false positives due to spurious

edges. Thanks to them, the efficacy can be kept even while maintaining or

increasing the significance level of the tests. This reduces the risk of decreased

performance since the density of the graphs can be kept under control.

If a more exhaustive listing of maximal quasi-cliques is required, the initial

set of quasi-cliques can be used as seeds to grow other quasi-cliques by adding

suitable vertices. The results shown in section 5.3 demonstrate that this method

is capable of finding considerably more maximal quasi-cliques (not contained in

any other found quasi-cliques) at the expense of a higher run-time. This is due

to the traversal of the search space and the validation of the EDDs represented

by the quasi-cliques.

The loss of accuracy introduced by this growing stage is minor when starting at

n = 3, which means that the statistical test could not reject most candidates.

However, most candidates were rejected for an initial n = 2. We consider this

is mostly due to the lack of power of the kNN test for low dimensions, which

introduces many spurious edges.

The overall run-time of the EDD finding algorithms is heavily influenced by

the chosen parameter values. A strict parametrization will reject most seed

candidates, and the quasi-clique search will fall into exponential complexity.

Conversely, a flexible one will be faster at finding quasi-clique candidates. Yet,

the statistical test will likely reject them, causing their decomposition into
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an exponential number of newer, smaller candidates. Generally, a balanced

parametrization based on γ and Λ is more predictable.

As a final remark, the set of accepted EDDs may contain several false positives

depending on the power of the multivariate statistical test. A second, more

detailed pass can refine this original set. For instance, we can envision a ranking

based on the previously discussed randomness [Zha10] to decide which set of

EDDs is more suitable for cross-matching the datasets.

In conclusion, PresQ successfully identifies shared sets of attributes between

multiple data files containing raw, numerical data solely based on their distri-

bution. This can guide users to cross-match datasets with unknown schemas,

but also to label attributes for which the metadata is lost as long as there is

available one dataset with properly labeled attributes.

Furthermore, PresQ can also provide insights that drive serendipitous discov-

eries. The AFDS result shown in figure 5.7 is an example of such a case: even

with a set of files of unknown schema and unknown content, we could infer a

relation between samples, which we later confirmed looking at the paper that

published the data.

7.2 Two-sample test based on Self-Organizing Map

The results shown in section 6.5 prove that the non-parametric, two-sample

SOM test described in section 6.3 generally outperforms, in terms of power,

other classifier-based two-sample tests, being in some cases comparable to

kernel-based methods. It has the added advantage of generating an inter-

pretable and usable model: for instance, the resulting SOM could be used

as the basis for a SOM-kNN combined classification model [SD11].

Like other machine-learning or kernel-based approaches, our method requires

some initial parameters, such as the SOM size, to be set by the user. From

our tests, networks of size O(100) neurons generally work well enough, but for

more precise control, the SOM size can be set to the lengths of the two largest

principal components [Koh13].

Rosenblatt et al. [Ros19] argue that provable, proper test statistics should be,
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in general, preferred over heuristic alternatives. However, our proposal is more

oriented toward exploring abundant structured data. In this case, developing

a tailored statistic for all possible combinations is not viable, and a pragmatic

approach is more suitable [Kim21].

Finally, if the null hypothesis — that both samples come from the same un-

derlying distribution — is rejected, the generated SOM model can be easily

visualized and examined in more detail. In sections 6.5.3 and 6.5.4, we demon-

strated that we can reject H0 and obtain valuable information after exploring

the learned model. This exercise would not be possible with a black-box method

such as a neural network classifier [Fri03].

As a final note, SOM maps can be generalizable to non-vectorial data — i.e.,

strings — as long as more than one ordering relation is defined [Koh82; Koh13].

Therefore, our proposed statistical test could also be used to verify whether two

sets of sequences — i.e., proteins or DNA — share their origin. Unfortunately,

since the SOM implementation on which we based our implementation only

works with real-valued dimensions [Wit17], we were not able to test this sce-

nario.

7.3 Threats to validity

We now identify the internal and external threats to the validity of our research,

and the measures we took to counteract their effect.

7.3.1 Internal validity

The PresQ results shown in the experiments described in section 5.3 could

risk being just a fluctuation, not due to an underlying algorithmic improvement.

However, the experimental design described in section 5.3.1 significantly reduces

this possibility, thanks to the randomization of the initial conditions and the

number of measurements. In any event, we made explicit the uncertainties of

our results — using 95% confidence intervals or reporting distribution quartiles.

The results summarized in table 5.6 show that, on average, the quasi-clique-
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based searching algorithm consistently performs better both in terms of run-

time and ability to find the maximal EDD. It has enough runs to make the

difference significant. It is worth mentioning that there are proposed heuris-

tics [KR03] to find higher arity EDDs, even when edges are missing, by merging

found lower-arity EDDs and testing the resulting EDD candidate. Nonethe-

less, we consider that the run-time differences are significant enough to make

the quasi-clique-based search a better approach in those cases. Even so, that

heuristic can also be applied to the output of our proposed algorithm.

We implemented Find2 and PresQ from scratch, sharing many parts of the

code — i.e., data structures, statistical tests, etc. While there is room for

optimizations, both would benefit. Since the relative differences would remain

similar, we are confident that the gains come from the algorithm rather than

its implementation.

For the proposed two-sample statistical test, the results shown in section 6.5

originate from running the tests between 200 and 2000 times, with independent

randomized samples. Again, the comparisons took into account the error in our

measurements, making it easier to assess their significance.

7.3.2 External validity

The PresQ experiments were run over four different datasets of diverse nature

and from three separate sources. The chosen statistical tests for uni- and multi-

dimensional distributions were not customized to any of them. However, a

better statistical test can be used if the underlying data distribution is more or

less known (or suspected), which may reduce, or even remove, the advantage

of the quasi-clique approach. Although it is also unlikely that the performance

would be any worse: since an entire clique is still a quasi-clique, our algorithm

can identify all of them, similar to the original Find2 algorithm.

One significant caveat of our approach is that it may not find any dependencies

if prior filtering has been applied to only one of the two relations (i.e., signal-

to-noise filtering). This is a limitation of the validation step. This issue was

also recognized on the original Find2 proposal [KR03].
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Similarly, the experiments for the two-sample statistical test based on SOM

were run over five different datasets and compared with kernel-based and machine-

learning-based alternatives. Given the performance shown by this test, we are

confident in its capabilities.
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Chapter 8

Conclusions and Future Work

In this chapter, we first summarize our research in section 8.1. Then, in sec-

tion 8.2, we enumerate the main contributions of this thesis. Finally, in sec-

tion 8.3, we suggest possible future lines of work to either improve or build

upon the contributions from the present work.

8.1 Summary

In-situ Data Exploration is an active research area that requires a multidis-

ciplinary approach: algorithms, data structures, machine learning, statistics,

data visualization, information sciences, and the domain knowledge — or busi-

ness understanding — provided by an expert.

Going back to the CRISP-DM model described in chapter 1 and shown in

figure 1.2, our initial objective was to identify gaps in the tooling available

for experts to understand data coming as a set of unprocessed and perhaps

inconsistent sets of files. These files are not optimized for access, and any early

decision on how to ingest them into a database may be counterproductive until

the dataset is better understood.

The literature survey from chapter 3 showed that solutions for visualization,

optimizations, indexing, and physical layout abound. Still, there is little to no

mention of assisting users on understanding data schema, especially when it

comes to multiple files from diverse origins or when meta-data is incomplete
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or inconsistent. In chapter 4, we confirmed that users spend a non-negligible

amount of resources just examining the data structure and layout.

The following question was: can we leverage the data distribution to assist

users in understanding the schema, on seeing how different datasets may come

together? This is particularly important when the data is numerical and un-

certain since one can not just compare tuples individually but needs to inspect

distributions. In the relational world, the IND concept comes close to the objec-

tive: parts of a relation that are contained (included) within another. However,

this modeling relies on the attributes’ discrete nature, such as name, date of

birth, etc.

In chapter 5 we propose a generalization, the EDD, that relaxes the strict

containment relation required by INDs. We then introduce PresQ, a novel al-

gorithm for EDD finding that incorporates uncertainty into its world modeling,

proving that relying on data distribution alone is feasible. Therefore, PresQ

is applicable in situations where most existing IND solutions are not: when the

data is intrinsically uncertain — measures of physical properties —, or when

the validation strategy for the inclusion is an approximate heuristic. The only

requirement is that the expectation of false negatives — i.e., significance level

for statistical tests — can be estimated.

For the experiments used to evaluate PresQ, described in 5.3, the statisti-

cal test of choice was based on kNN. While this test performs well for many

datasets, the resulting trained model can not be easily reused. In chapter 6,

we introduce a statistical test based on SOM, which provides, in addition to

a p value, a trained projection that we can later use for binning and cross-

matching both datasets using the matching set of features. The resulting SOM

is also interpretable in case of rejection, which is also helpful in tentative data

exploration.

8.2 Contributions

We summarize here the main contributions of this thesis:
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8.2.1 Survey of state of the art

Idreos et al. surveyed the state of the art of IDE up to the first half of

2015 [IPC15]. Being an active research area, we performed an exhaustive sys-

tematic literature mapping up to mid-2017. Almost 60% of the classified works

were published in 2015 and later.

By the end of 2022, we updated our survey to check on the evolution of the

research. This second round showed that sampling techniques for AQP remain

a popular and evolving area of research. Additionally, Deep Learning is be-

coming more popular in this domain thanks to its pattern recognition and data

summarization capabilities.

The results of this survey, presented in chapter 3, are a valuable update on

the state-of-the-art and contribute to the first sub-objective: finding existing

techniques that help users to explore the data in-situ.

8.2.2 New category for Interactive Data Exploration

The state of the literature at the time of our survey indicated that within

the IDE research community, querying datasets split over multiple files is often

neglected [Sil16a]. One could argue that the logical file containing a given subset

of the data is a detail that can be integrated into an existing index. This is true

as long as the data layout is similar, but this is not always the case. We proposed

a new category within the Middleware Layer : Schema Homogenization. A new

set of articles has been classified under this category in table 4.3. This new

categorization contributes to the first and second sub-objectives: identify gaps

in the coverage.

8.2.3 Definition of Equally-Distributed Dependency

In section 5.1.1, we introduced the concept of Equally-Distributed Dependency,

expanding the family of data dependencies to four types [AGN15]. We sum-

marize the classification in table 8.1. Note that EDD are always, by definition,

approximate.
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Key Discovery

ConditionalUniqueness

(Approximate)

Foreign key discovery

ConditionalInclusion Dependency

(Approximate)

Conditional
Functional Dependencies

(Approximate)

Equally-Distributed Dependency (Approximate)

Table 8.1: Classification of dependency detection tasks.

The concept of EDD uncovers possible new future research areas. Hence, it

contributes to the second sub-objective.

8.2.4 Algorithms

Querying data split across multiple files with similar schemas is another ac-

tive area of research within the Relational Algebra domain. However, existing

solutions do not work over attributes defined in the real domain.

In chapter 5 we presented PresQ, an algorithm for finding quasi-cliques on

uniform hypergraphs that can be used to find sets of attributes EDD between

datasets. PresQ is not limited to EDD finding and can potentially be of use

to other areas that have a strong combinatorial aspect, such as chemistry or

biology [Bre13].

In chapter 6, we introduced a two-sample multivariate statistical test based

on SOMs with a statistical performance comparable to tests based on machine

learning models. An additional advantage of this technique is that it outputs

an interpretable projection of the two samples. It can be used by itself or in

conjunction with PresQ.

These two contributions contribute to the third sub-objective: design new al-

gorithms tailored to numerical and uncertain data.
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8.2.5 Publications

The contributions from this thesis have been published in the following papers:

[APD19] Alejandro Alvarez-Ayllon, Manuel Palomo-Duarte, and Juan Manuel

Dodero. “Interactive Data Exploration of Distributed Raw Files: A

Systematic Mapping Study”. In: IEEE Access 7.1 (2019), pp. 10691–

10717. issn: 2169-3536. doi: 10.1109/ACCESS.2018.2882244.

[APD21] Alejandro Alvarez-Ayllon, Manuel Palomo-Duarte, and Juan-Manuel

Dodero. “Inference of common multidimensional equally-distributed

attributes”. arXiv: 2104.09809 [cs.DB]. 2021. url: https://arxiv.

org/abs/2104.09809.

[APD22a] Alejandro Alvarez-Ayllon, Manuel Palomo-Duarte, and Juan Manuel

Dodero. “PresQ: Discovery of Multidimensional Equally-Distributed

Dependencies via Quasi-Cliques on Hypergraphs”. In: IEEE Trans-

actions on Emerging Topics in Computing Special Section on Emerg-

ing Trends and Advances in Graph-based Methods and Applica-

tions (2022), pp. 1–16. issn: 2168-6750. doi: 10.1109/TETC.2022.

3198252.

[APD22b] Alejandro Alvarez-Ayllon, Manuel Palomo-Duarte, and Juan-Manuel

Dodero. “Two-sample test based on Self-Organizing Maps”. arXiv:

2212.08960 [cs.LG]. 2022. url: https://arxiv.org/abs/2212.

08960.

8.2.6 Software

The software generated and used in our tests are archived and publicly available

in Zenodo:

[Alv22a] Alejandro Alvarez-Ayllon. PresQ: Discovery of Multidimensional

Equally- Distributed Dependencies Via Quasi-Cliques on Hyper-

graph (Source). July 2022. doi: 10.5281/zenodo.6865856.

[Alv22b] Alejandro Alvarez-Ayllon. SOMA: Self-Organizing Map Analysis

(Source). Dec. 2022. doi: 10.5281/zenodo.7452720.
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8.3 Future work

Finally, we enumerate some interesting research paths that can further improve

the current state of the art, adding valuable algorithms to the tool-sets available

for data scientists:

• In chapter 5, we prove that finding quasi-cliques in hypergraphs is a suc-

cessful technique to find EDD or IND based on approximate heuristics

between relations. Therefore, a place for further research is to improve

the quasi-clique finding algorithm, either via novel algorithms or by

generalizing some of the many existing techniques [WH15].

• On the other hand, the existing algorithms based on clique and quasi-

clique search decouple the data — only used during validation – from the

candidate generation. An interesting research strategy can be making

clique and quasi-clique finding algorithms data-aware, leveraging data

features during the generation of candidates.

• Sometimes, the algorithms should not assume equality of distribution.

For instance, one of the datasets may have been filtered beforehand —

i.e., signal-to-noise, value clipping, etc. This issue affects both EDD and

IND algorithms [KR03]. Partial inclusion/equality-of-distribution

remains an open problem.

• PresQ is based on frequentist probability, which does not allow incor-

porating prior beliefs into the algorithm. i.e., a domain-expert has

no way of influencing the result based on her knowledge of the area. A

Bayesian framework could prove helpful in this respect. Furthermore, it

can also be used to perform local null hypothesis testing [Sor15], which

could help identify partial EDDs — as when a filter has been applied to

one of the datasets.

• Searching for quasi-cliques involves exponential time complexity on the

number of nodes. Thus, applying a dimensionality reduction would

reduce the total run-time and decrease the noise. Nonetheless, a compli-

cation arises because we do not know which attributes are shared.
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• Finally, multidimensional complementarity is another interesting area

for further research. For instance, a single dataset may be split between

multiple files based on the values from a given set of attributes (i.e., co-

ordinates), which may or may not overlap. Combining complementary

datasets would be a powerful addition to EDD finding.

Future research can also be directed toward novel applications of the algorithms

presented in this work, particularly in privacy-preserving data mining. For in-

stance, PresQ is designed to link multiple datasets containing noise, errors,

and uncertainty. It can be interesting to evaluate its capabilities to perform

linking (re-identification) attacks [Che09] on anonymized datasets. Addition-

ally, the results of our tests on the two-sample test based on SOM, particularly

the example shown in section 6.5.3, hint at the possibility of using this tech-

nique to achieve attribute disclosure: the attackers improve their knowledge of

a set of attributes for a given individual [Cyb16]. Should these algorithms prove

useful in performing this kind of attack, researchers could use them to guide

their efforts toward new defense models.
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Appendix A

PresQ Benchmarking Tools

The repository MatchBox1 contains the Python implementation of PresQ and

Find2 used as a reference for the performance comparison shown in chapter 5,

together with instructions to reproduce the results.

For facilitating the replicability of the results, the repository contains an

environment.yml file that allows re-creating a working Python environment

with all the requirements installed using Conda:

1 conda env create
2 conda activate matchbox

A.1 Benchmarking quasi-clique finding

benchmark-quasiclique.py compares the performances of Find2 (baseline)

and PresQ when searching for a known quasi-clique generated randomly based

on an initial parameterization: rank, cardinality, the ratio of missing edges, the

number of nodes not belonging to the quasi-clique, and the ratio of spurious

edges. The results are written to a CSV file.

The script snippet 2 shows the relevant extract used to evaluate the capacity

of PresQ to recover from missing edges, as reported in figure 5.4.

1https://github.com/ayllon/MatchBox/
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A.1. BENCHMARKING QUASI-CLIQUE FINDING

Code 2: Benchmark quasi-clique search with a set of missing ratios. The com-

ments need to be removed.

1 for alpha in 0.05 0.10 0.15 0.20 0.25 0.30; do
2 ./bin/benchmark-quasiclique.py \
3 --out "results/quasi3.csv" \ # Output CSV
4 --rank 3 \ # 3-hypergraph
5 --cardinality 10 20 30 \ # Number of nodes on the quasi-clique
6 --additional 0.5 \ # |V| * 0.5 additional nodes
7 --repeat 15 \ # Generate 15 different hypergraphs
8 --missing-edges ${alpha} \ # Remove $alpha edges from the quasi-clique
9 --extra-edges 0 \ # Do not add any spurious edge

10 --timeout 300 # Limit execution to 5 minutes
11 done

On the other hand, snippet 3 shows the call used to evaluate the capacity

of PresQ to recover from both missing and spurious edges, as reported in

figure 5.5. The set of spurious edges S contains all possible edges on the

hypergraph not belonging to the quasi-clique.

Code 3: Benchmark quasi-clique search with a set of additional edges. The

comments need to be removed.

1 for beta in 0.2 0.4 0.6 0.8; do
2 ./bin/benchmark-quasiclique.py \
3 --out "results/quasi3.csv" \ # Output CSV
4 --rank 3 \ # 3-hypergraph
5 --cardinality 10 20 30 \ # Number of nodes on the quasi-clique
6 --additional 0.5 \ # |V| * 0.5 additional nodes
7 --repeat 15 \ # Generate 15 different hypergraphs
8 --missing-edges 0.1 \ # Remove 10% of edges from the quasi-clique
9 --extra-edges ${beta} \ # Add $beta * |S| spurious edges

10 --timeout 1200 # Limit execution to 20 minutes
11 done
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A.2 Benchmarking Equally-Distributed Depen-

dency finding

benchmark.py is a script that can be used to measure the performance of

PresQ and the custom implementation of Find2 over datasets available in

any of the supported formats: Flexible Image Transport System (FITS), KEEL

.dat files, CSV, and SQLite. The script needs a minimum of two relations

and supports running multiple parameterizations of PresQ with a single invo-

cation.

The measurements are written to a set of CSV files:

Name Description

sampling.csv Sampling time

uind.csv Statistics about unary EDD

bootstrap.csv Statistics about initial edges tested and accepted

find2.csv Find2 runs

findg_{Λ}_{θ}_{grow}.csv PresQ runs with different parameterizations

{uuid[0:2]}/{uuid}/histogram.txt Histogram of the EDD arity found for run uuid

{uuid[0:2]}/{uuid}/nind.txt List of EDD found for run uuid

Note that the effective value of γ = 1 − α × θ. i.e, findg_0.05_1.00_1.csv

contains the results for a run of PresQ with Λ = 0.05, γ = 1 − 0.1 × 1 = 0.9

(for α = 0.1), and the growing stage enabled.

A.2.1 Find2 vs. PresQ

The snippet 4 shows, as an illustration, how the comparison for the datasets

Ailerons vs Elevators was executed for table 5.6. For completeness, it also

shows the parameters that kept their default values.

Code 4: Benchmark Find2 vs. PresQ over the Ailerons vs. Elevators

datasets. The comments need to be removed.
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1 ID="ailerons_$(date +%Y%m%d)"
2

3 ./bin/benchmark.py \
4 --output-dir "./results/" \ # Write the results to this directory
5 --id "${ID}" \ # Under the given folder name
6 --repeat 1000 \ # 1000 randomized runs
7 --timeout 3000 \ # With a timeout of 50 minutes for one run
8 --sample-size 200 \ # Sample size (DEFAULT)
9 -k 3 \ # Neighbors for the kNN test (DEFAULT)

10 --permutations 500 \ # Permutations for the kNN test (DEFAULT)
11 --nind-alpha 0.05 \ # Significance level for EDDs (DEFAULT)
12 --bootstrap-arity 2 \ # Rank for the initial hypergraph (DEFAULT)
13 --lambdas 0.05 0.1 \ # PresQ parameter Lambda (DEFAULT)
14 --gammas 1. \ # gamma = 1 - alpha * 1 (DEFAULT)
15 # Significance levels for initial edges/2-EDD (DEFAULT)
16 --bootstrap-alpha 0.05 0.1 0.15 \
17 "./data/keel/ailerons/ailerons.dat" \
18 "./data/keel/elevators/elevators.dat"

A.2.2 Scalability

The snippet 5 corresponds to the performance evaluation shown in figure 5.8,

where new relations are incrementally added to measure the scalability of

PresQ with respect to the number of attributes. One instance of ChemBL

contains 80 relations. Note that the script originally expected one file per

relation; thus, the SQLite back-ends abuses nomenclature for the parameter

–files.

Code 5: Benchmark performance with respect to the number of columns. The

comments need to be removed.

1 ID="chembl_$(date +%Y%m%d)"
2

3 for i in {82..160..6}; do # From 82 to 160 relations
4 ./bin/benchmark.py \
5 --output-dir "./results/" \ # Write the results to this directory
6 --id "${ID}" \ # Under the given folder name
7 --repeat 10 \ # 10 randomized runs
8 --timeout 3000 \ # With a timeout of 50 minutes for one run
9 --lambdas 0.1 \ # PresQ parameter Lambda

10 --bootstrap-alpha 0.05 \ # Significance levels for initial edges/2-EDD
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11 --no-find2 \ # Do not run Find2 in this case
12 --files $i \ # Number of relations
13 --sample-size 200 \ # Sample size (DEFAULT)
14 -k 3 \ # Neighbors for the kNN test (DEFAULT)
15 --permutations 500 \ # Permutations for the kNN test (DEFAULT)
16 --nind-alpha 0.05 \ # Significance level for EDDs (DEFAULT)
17 --bootstrap-arity 2 \ # Rank for the initial hypergraph (DEFAULT)
18 --gammas 1. \ # gamma = 1 - alpha * 1 (DEFAULT)
19 ./data/chembl/chembl_??.db
20 done
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Appendix B

Prototypes Overview

Iterating over a set of ideas is an intrinsic part of both the Engineering Design

Process and research, and some end being discarded. Nevertheless, knowing

about the discarded paths can be helpful [Con20] since they can point to either

future lines of work or dead-ends not worth pursuing.

In this appendix, we briefly describe one insight and two prototypes generated

during the development of this thesis that did not prove successful.

B.1 Types of Data Correlation

In 2017, [Kra18] proposed a novel idea: an index over a dataset is just a model.

This model takes as input a value, or a range of values, and “predicts” the phys-

ical location of the corresponding tuples. In this work, Kraska et al. propose

learned alternatives to well-known data structures often used on databases for

different access patterns: value range (typically modeled with B-trees), unique

values (hash tables), and existence queries (Bloom filters). However, Kraska

et al. trained models over a single attribute. Extending these types of models

might also be possible when multiple files exist.

Thus, based only on the data, we can learn models to predict the value of at-

tributes related to the physical layout, such as the file where a tuple is contained

and its offset. This is possible under the assumption that there are three types

of correlations or dependencies :
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• File Correlation Dependence between values and containing file.

• Offset Correlation Dependence between values and offset within the

file [Kra18].

• Tuple Correlation Dependence between the attribute values of a tuple.

Note that the first two correlations depend on the acquisition method and the

third on the measured properties. PresQ builds on the third assumption in

order to find EDDs: same set of attributes from the same population follow the

same distribution.

We now describe an attempt to leverage the first type of correlation in sec-

tion B.2, a naive indexing approach on section B.3, and an early prototype for

schema matching in section B.4.

B.2 File Correlation

Large datasets may be partitioned into multiple files to facilitate their use.

This partitioning can be done as a function of some data features: spatial

coordinates, alphanumerical order, temporal order, etc. Therefore, machine

learning techniques should be able to model (index) this partitioning without

user intervention.

As a proof-of-concept, we took two astronomical catalogs partitioned into mul-

tiple files generated by two different processes: simulation and measurement.

We can see the indexing as a “classification” task: we want to model the file

corresponding to a given data set. For the feature selection, we use Random

Forest with 100 trees. Features with higher weight are those used to partition

the data. Code 6 shows a snippet of the feature selection. We executed it over

a random sample of 5000 tuples per file. We obtained that the sky coordi-

nates — right ascension and declination — were the best features for both the

simulation and the measurement catalogs.
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1 # feat_cols contains all features except the file index
2 classifier = RandomForestClassifier(n_estimators = 100)
3 classifier.fit(train[feat_cols], train['FILE'])
4 # Contains the weight for each feature
5 classifier.feature_importances_

Code 6: Feature selection for file correlation.

Since trees are a data structure commonly used for spatial partitioning —

KD-Tree, Binary Partition Tree, R-Tree — we trained two decision trees over

both catalogs using the sky coordinates as features. We display the resulting

“learned” partitioning over the actual data distribution in figure B.1. We can

see that in the simulated catalog, the prediction is very accurate. However, the

results are suboptimal over the real-world catalog due to overlapping catalogs.

This issue could be fixed by training a binary classifier by file.

(a) Without overlap. (b) With overlap.

Figure B.1: Data sets distributed multiple files based on two spatial coordinates.

Each color corresponds to a single file.
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B.3 Offset Correlation

We work with the assumption that the data acquisition method influences the

data distribution within a file containing raw data. To validate the idea, we ob-

tain random samples from three astronomical catalogs (Cosmic Evolution Sur-

vey (Cosmos)[Lai16], SDSS[Abo18], and Kilo Degree Survey (KiDS)[Jon13]),

all extracted from the same sky region.

As for the file correlation case, the best features are sky coordinates. The

target variable is the page offset within the file, which we obtained via code 7.

Rather than training a simple regression model and predicting the exact page,

we trained models capable of predicting a page range: Quantile Regression

Forests [Mei06] and Gradient Boosting [Mas99]. The training set comprises

10% of the tuples (1% for Cosmos, given its size) and the test set 20% of the

remaining tuples.

The same test were run over a non astronomical data-set1, for which the best

features are Start_Time, End_time and Weather_Timestamp2.

1 block_size = os.statvfs("/path/to/files").f_bsize
2 row_size = np.array(table[0:1]).nbytes
3 page = (np.arange(len(table)) * row_size) // block_size

Code 7: Computation of the page offset.

Table B.1 summarizes the results of both models for the four datasets. Quantile

Regression Forests can be accurate — it predicts the correct range — but the

overhead is not negligible — it needs to read a considerable portion of the file

per prediction.

B.4 Attribute Correlation

Within a relation, we expect some attributes to be closely correlated. This

correlation is inherent to the attributes and the sampled population. Thus,
1https://www.kaggle.com/sobhanmoosavi/us-accidents
2ID is a better feature, but trivial.
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Catalog N.Pages Method Time (s) Accuracy Precision

Cosmos 78,499
QRF 16.69 94.30% 99.61% ( 306)

GB 128.07 63.30% 98.43% ( 1,236)

SDSS 1,825
QRF 6.86 95.74% 93.47% ( 119)

GB 21.28 60.73% 96.85% ( 57)

KiDS 7,773
QRF 8.62 97.37% 99.64% ( 28)

GB 41.22 62.33% 98.37% ( 127)

Accidents 261,193
QRF 127.56 84.86% 80.89% (49,926)

GB 9.13 61.00% 85.90% (36,820)

Table B.1: QR vs GBR over different datasets. Time: Training time Accuracy :

Ratio of predicted ranges that contain the queried tuple. Precision: 1 - (Average

predicted range size divided by the total file size).

two files containing samples for the same attributes from the same underlying

population should have a similar distribution.

This correlation is intrinsic to the data and independent of the physical schema

of the data — i.e., file layout or attribute names. Alternatively, two datasets

with different schemas but containing a similar subset of measures should show

the same dependencies between attributes. We can expect to use these depen-

dencies to match schemas3.

Since Bayesian networks [Pea88] model the data dependencies as a directed

acyclic graph, we can expect that graphs trained over different datasets contain-

ing the same information should contain isomorphic sub-graphs. For validating

the idea, we trained three Bayesian networks using

Pomegranate [Sch17] over the catalogs SDSS, KiDS and Cosmos. Figure B.2

shows the resulting graphs for the first two, and figure B.3 for the last.

These graphs are significantly similar for SDSS and KiDS, even on the order

of the bands. This match is less evident for Cosmos, given the different bands

in the catalog. However, the correspondence is remarkable if we consider the

physical order of the bands — shown in table B.2. However, there remain two

problems:

3This insight directed the research toward the Equally-Distributed-Dependencies.
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Firstly, most existing algorithms do not support learning Bayesian networks

over continuous features, and it is necessary to discretize them first. If this

approach is not enough, there are some proposals to train Bayesian networks

using a combination of continuous and discrete variables [LH15; CWK17].

Secondly, there needs to be more than the correspondence between nodes in the

graphs to compute the correspondence between attributes. The Bayesian net-

works may not be stable, with attributes changing relative positions or relations

being missed.

CXX_WORLD

CYY_WORLD CXY_WORLD

ALPHA_J2000 DELTA_J2000 MAG_GAAP_u

MAG_GAAP_g

MAG_GAAP_r

MAG_GAAP_i

(a) KiDS.

ra dec

psfMag_u

psfMag_g

psfMag_r

psfMag_i

psfMag_z

(b) SDSS.

Figure B.2: Two PGNs trained over two different astronomical catalogs.
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Figure B.3: Probabilistic Graphical Network trained over Cosmos.

Bands λ FWHM Filters Description

Ultraviolet

U 365 nm 66 nm u, u’, u*

Visible

G 464 nm 128 nm g’ Green

R 658 nm 138 nm r, r’, R’, Rc, Re, Rj Red

Near Infrared

I 806 nm 149 nm i, i’, Ic, Ie, Ij Infrared

Z 900 nm z, z’

Table B.2: Subset of electromagnetic bands. λ corresponds to the wavelength.
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Interactive Data Exploration

Update
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Title Year Cluster Type Ref.

A Formal Framework for Data Lakes

Based on Category Theory

2022 Flexible Engines Philosophical Paper [Guy22]

A Radviz-Based Visualization for Under-

standing Fuzzy Clustering Results

2017 Visual Tools Proposal of Solution [Zho17]

A Sampling-Based System for Approxi-

mate Big Data Analysis on Computing

Clusters

2019 Sampling Proposal of Solution [SWH19]

A Unified Correlation-Based Approach to

Sampling over Joins

2017 Sampling Proposal of Solution [KN17]

AQP++: Connecting Approximate

Query Processing with Aggregate Pre-

computation for Interactive Analytics

2018 Query Approximation Proposal of Solution [Pen18]

AQapprox: Aggregation Queries Approx-

imation with Distribution-Aware Online

Sampling

2020 Query Approximation Proposal of Solution [WWL20]

Accelerating Approximate Aggregation

Queries with Expensive Predicates

2021 Query Approximation Proposal of Solution [Kan21]

Adaptive Partitioning and Indexing for in

Situ Query Processing

2019 Adaptive Indexing Proposal of Solution [Olm19a]

Aggregate Queries on Knowledge

Graphs: Fast Approximation with

Semantic-Aware Sampling

2022 Query Approximation Proposal of Solution [Wan22]

Aggregate Query Prediction under Dy-

namic Workloads

2019 Query Approximation Proposal of Solution [SAT19]

Aperture: Fast Visualizations over Spa-

tiotemporal Datasets

2019 Visual Optimizations Proposal of Solution [BP19]

ApproxJoin: Approximate Distributed

Joins

2018 Query Approximation Proposal of Solution [Quo18]
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Title Year Cluster Type Ref.

Approximate Partition Selection for Big-

Data Workloads Using Summary Statis-

tics

2020 Query Approximation Proposal of Solution [Ron20]

Approximate Query Processing for Big

Data in Heterogeneous Databases

2020 Query Approximation Proposal of Solution [MAT20]

Approximate Query Processing for Data

Exploration Using Deep Generative Mod-

els

2020 Query Approximation Proposal of Solution [Thi20]

Approximate Selection with Guarantees

Using Proxies

2020 Query Approximation Proposal of Solution [Kan20]

Approximating Aggregated SQL Queries

with LSTM Networks

2021 Query Approximation Proposal of Solution [RRS21]

Are We Ready for Learned Cardinality

Estimation?

2021 Indexes Validation Research [Wan21]

ArrayUDF: User-defined Scientific Data

Analysis on Arrays

2017 Flexible Engines Proposal of Solution [Don17]

Babelfish: Efficient Execution of Polyglot

Queries

2022 Flexible Engines Proposal of Solution [GZM22]

Balancing Familiarity and Curiosity in

Data Exploration with Deep Reinforce-

ment Learning

2021 Automatic Exploration Proposal of Solution [Per21]

BigIN4: Instant, Interactive Insight Iden-

tification for Multi-Dimensional Big Data

2018 Query Approximation Proposal of Solution [Lin18]

BlinkML: Efficient Maximum Likelihood

Estimation with Probabilistic Guarantees

2019 Query Approximation Proposal of Solution [Par19]

Bounded Approximate Query Processing 2019 Query Approximation Proposal of Solution [Li19]

CLAP: Component-level Approximate

Processing for Low Tail Latency and High

Result Accuracy in Cloud Online Services

2017 Query Approximation Proposal of Solution [Han17]
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Coconut: A Scalable Bottom-up Ap-

proach for Building Data Series Indexes

2019 Time Series Proposal of Solution [Kon19]

Combining Aggregation and Sampling

(Nearly) Optimally for Approximate

Query Processing

2021 Query Approximation Proposal of Solution [Lia21]

Continuous Prefetch for Interactive Data

Applications

2020 Data Prefetching Proposal of Solution [Moh20]

CoopStore: Optimizing Precomputed

Summaries for Aggregation

2020 Query Approximation Proposal of Solution [GBC20]

CrossIndex: Memory-Friendly and

Session-Aware Index for Supporting

Crossfilter in Interactive Data Explo-

ration

2022 Adaptive Indexing Proposal of Solution [Xia22]

Crossing the Finish Line Faster When

Paddling the Data Lake with KAYAK

2017 Query Approximation Proposal of Solution [MT17]

DBEst: Revisiting Approximate Query

Processing Engines with Machine Learn-

ing Models

2019 Query Approximation Proposal of Solution [MT19]

Database and Caching Support for Adap-

tive Visualization of Large Sensor Data

2020 Visual Optimizations Proposal of Solution [Tan20]

DeepDB: Learn from Data, Not from

Queries!

2020 Query Approximation Proposal of Solution [Hil20]

Demonstrating the Voice-Based Explo-

ration of Large Data Sets with CiceroDB-

Zero

2020 Novel Query Interfaces Proposal of Solution [Tru20]

Demonstration of ScroogeDB: Getting

More Bang for the Buck with Determin-

istic Approximation in the Cloud

2020 Query Approximation Validation Research [JPT20]
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Distributed Caching for Processing Raw

Arrays

2018 Data Prefetching Proposal of Solution [Zha18]

EDA4SUM: Guided Exploration of Data

Summaries

2022 Assisted Query Formulation Proposal of Solution [PYA22]

Efficiently Processing Deterministic Ap-

proximate Aggregation Query on Massive

Data

2018 Query Approximation Proposal of Solution [Han18]

Evaluation of Machine Learning Algo-

rithms in Predicting the next SQL Query

from the Future

2021 Data Prefetching Proposal of Solution [MCS21]

Exploiting Machine Learning Models for

Approximate Query Processing

2022 Query Approximation Validation Research [Lee22]

Fast Data Series Indexing for In-Memory

Data

2021 Time Series Proposal of Solution [PFP21]

Filter before You Parse: Faster Analytics

on Raw Data with Sparser

2018 Flexible Engines Proposal of Solution [Pal18]

FishStore: Fast Ingestion and Indexing of

Raw Data

2019 Flexible Engines Proposal of Solution [Cha19]

FlashView: An Interactive Visual Ex-

plorer for Raw Data

2017 Visual Tools Proposal of Solution [Pan17]

Geo-Gap Tree: A Progressive Query and

Visualization Method for Massive Spatial

Data

2019 Visual Optimizations Proposal of Solution [Xio19]

Hashedcubes: Simple, Low Memory,

Real-Time Visual Exploration of Big

Data

2017 Visual Optimizations Proposal of Solution [Pah17]

Hercules against Data Series Similarity

Search

2022 Adaptive Indexing Proposal of Solution [Ech22]
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Improved Selectivity Estimation by Com-

bining Knowledge from Sampling and

Synopses

2018 Query Approximation Proposal of Solution [MMK18]

Incremental Approximate Computing 2019 Query Approximation Proposal of Solution [Quo19]

Informative Sample-Aware Proxy for

Deep Metric Learning

2022 Sampling Proposal of Solution [Li22]

Interactive Visual Graph Mining and

Learning

2018 Visual Tools Proposal of Solution [Ros18]

LAQP: Learning-based Approximate

Query Processing

2021 Query Approximation Proposal of Solution [ZW21]

LHist: Towards Learning Multi-

Dimensional Histogram for Massive

Spatial Data

2021 Query Approximation Proposal of Solution [LSC21]

Learning to Sample: Counting with Com-

plex Queries

2019 Sampling Proposal of Solution [Wal19]

Learning-Based Optimization for Online

Approximate Query Processing

2022 Query Approximation Proposal of Solution [Bi22]

Moment-Based Quantile Sketches for

Efficient High Cardinality Aggregation

Queries

2018 Query Approximation Proposal of Solution [Gan18]

Multi-Objective Fuzzy-Swarm Optimizer

for Data Partitioning

2022 Adaptive Storage Proposal of Solution [Goy22]

Navigating the Data Lake with DATA-

MARAN: Automatically Extracting

Structure from Log Datasets

2018 Flexible Engines Proposal of Solution [GHP18]

Northstar: An Interactive Data Science

System

2018 Visual Tools Proposal of Solution [Kra18]
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One Size Does Not Fit All: A Bandit-

Based Sampler Combination Framework

with Theoretical Guarantees

2022 Query Approximation Proposal of Solution [Pen22]

Optimally Leveraging Density and Local-

ity for Exploratory Browsing and Sam-

pling

2018 Indexes Proposal of Solution [Kim18]

Optimizing Performance of Aggregate

Query Processing with Histogram Data

Structure

2019 Query Approximation Proposal of Solution [YZ19]

Photon: A Fast Query Engine for Lake-

house Systems

2022 Flexible Engines Proposal of Solution [Beh22]

Plato: Approximate Analytics over Com-

pressed Time Series with Tight Determin-

istic Error Guarantees

2020 Time Series Proposal of Solution [LBP20]

Probabilistic Database Summarization

for Interactive Data Exploration

2017 Query Approximation Proposal of Solution [OBS17]

ProgressiveDB: Progressive Data Analyt-

ics as a Middleware

2019 Query Approximation Proposal of Solution [Ber19]

QUIS: In-situ Heterogeneous Data Source

Querying

2017 Flexible Engines Proposal of Solution [CKJ17]

Qd-Tree: Learning Data Layouts for Big

Data Analytics

2020 Adaptive Storage Proposal of Solution [Yan20]

Query Morphing: A Proximity-Based

Data Exploration for Query Reformula-

tion

2019 Assisted Query Formulation Proposal of Solution [PS19]

QueryVis: Logic-based Diagrams Help

Users Understand Complicated SQL

Queries Faster

2020 Visual Tools Proposal of Solution [Lev20]
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RC-Index: Diversifying Answers to

Range Queries

2018 Indexes Proposal of Solution [WMM18]

RSATree: Distribution-aware Data

Representation of Large-Scale Tabular

Datasets for Flexible Visual Query

2020 Novel Query Interfaces Proposal of Solution [Mei20]

Resource-Aware Adaptive Indexing for in

Situ Visual Exploration and Analytics

2023 Adaptive Indexing Proposal of Solution [Mar23]

STULL: Unbiased Online Sampling for

Visual Exploration of Large Spatiotempo-

ral Data

2020 Visual Optimizations Proposal of Solution [Wan20]

Salvaging Failing and Straggling Queries 2022 Query Approximation Proposal of Solution [Sun22]

Sampling for Scientific Data Analysis and

Reduction

2022 Sampling Proposal of Solution [Bis22]

Scalable in Situ Scientific Data Encoding

for Analytical Query Processing

2018 Adaptive Indexing Proposal of Solution [Lak18]

SmartCube: An Adaptive Data Manage-

ment Architecture for the Real-Time Vi-

sualization of Spatiotemporal Datasets

2020 Visual Optimizations Proposal of Solution [Liu20]

Speculative Distributed CSV Data Pars-

ing for Big Data Analytics

2019 Adaptive Loading Proposal of Solution [Ge19]

Tabula in Action: A Sampling Middle-

ware for Interactive Geospatial Visualiza-

tion Dashboards

2020 Query Approximation Proposal of Solution [YCS20]

Taster: Self-tuning, Elastic and Online

Approximate Query Processing

2019 Query Approximation Proposal of Solution [Olm19b]

TopKube: A Rank-Aware Data Cube for

Real-Time Exploration of Spatiotemporal

Data

2018 Visual Optimizations Proposal of Solution [Mir18]
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VerdictDB: Universalizing Approximate

Query Processing

2018 Query Approximation Proposal of Solution [Par18]

VisSnippets: A Web-Based System for

Impromptu Collaborative Data Explo-

ration on Large Displays

2020 Visual Tools Proposal of Solution [BRJ20]

Visualization and Analytics Tool for

Multi-Dimensional Data

2018 Visual Tools Proposal of Solution [Jes18]

Visualization of Big Spatial Data Using

Coresets for Kernel Density Estimates

2021 Visual Optimizations Proposal of Solution [Zhe21]

WFApprox: Approximate Window Func-

tions Processing

2020 Query Approximation Proposal of Solution [Lin20]

Workload Prediction for Adaptive Ap-

proximate Query Processing

2022 Query Approximation Proposal of Solution [SPF22]
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