

Sampling High-Dimensional Design Spaces for Analysis and Optimization

Bemonsteren van hoogdimensionale ontwerpruimtes voor analyse en optimalisatie

Keiichi Ito

Promotoren: prof. dr. ir. T. Dhaene, dr. ir. I. Couckuyt
Proefschrift ingediend tot het behalen van de graad van

Doctor in de ingenieurswetenschappen: computerwetenschappen

Vakgroep Informatietechnologie
Voorzitter: prof. dr. ir. D. De Zutter

Faculteit Ingenieurswetenschappen en Architectuur
Academiejaar 2016 - 2017

ISBN 978-90-8578-952-9
NUR 950, 980
Wettelijk depot: D/2016/10.500/84

Universiteit Gent

Faculteit Ingenieurswetenschappen en Architectuur

Vakgroep Informatietechnologie

Promotoren: prof. dr. ir. T. Dhaene

- Vakgroep Informatietechnologie

dr. I. Couckuyt

- Vakgroep Informatietechnologie

Leden van de examencommissie: Prof. dr. ir. Gert De Cooman (voorzitter)

-Vakgroep Elektronica en Informatiesystemen

Dr. Yann Caniou

- Noesis Solutions

Prof. dr. Dirk Deschrijver

- Vakgroep Informatietechnologie

Prof. dr. ir. Luc Dupré

- Vakgroep Elektrische energie, Systemen en Automatisering

Prof. dr. Bo Liu

- Glyndwr University

Dr. Selvakumar Ulaganathan

- Noesis Solutions

Universiteit Gent

Faculteit Ingenieurswetenschappen en Architectuur

Vakgroep Informatietechnologie

Technologiepark Zwijnaarde 15, iGent, B-9052 Gent, België

Tel.: +32 9 331 49 00

Fax.: +32 9 331 48 99

Dankwoord

I would like to sincerely thank my promotor, Prof. Tom Dhaene of Ghent Uni-

versity and Roberto d’Ippolito of Noesis Solutions for patiently supervising this

research since October 2011. In particular, the IWT Baekeland Mandate program,

which Prof. Dhaene proposed me to apply, has enabled me to get out of unemploy-

ment and do research. I have been very grateful for the arrangement. Ivo Couckuyt

and Silvia Poles, my coauthors of journal papers, have provided much support in

the writing and exposition of ideas, which I have appreciated immensely.

Joris Degroot and Selvakumar Ulaganathan have provided important support

for using the artery simulation code. Prof. Tsugukiyo Hirayama, Prof. Yoshi-

aki Hirakawa, and Tatsumi Sakurai have provided crucial support in the seaplane

research. I would like to express many thanks for all of the collaborations and

help. I have also been supported by the administrative staffs of Ghent University

and Noesis Solutions. The points of contact have been with Martine Buysse, Mu-

riel Vervaeke, Davinia Stevens, and Inge Bergers. Thanks a lot for all the helpful

support. When I was in IBCN, I had the pleasure of informal discussions with

and lunch-time companies of Krishnan Chenmmangat, Domenico Spina, Eliza-

beth Rita Samuel, Prashant Singh, and Joachim van der Herten. Thank you all for

the good times.

Finally, I would like to also express a big gratitude to my partner Megumi

Yamamoto who has supported me throughout.

Ghent, November 2016

Keiichi Ito

Table of Contents

Dankwoord i

Samenvatting xix

Summary xxiii

1 Introduction 1

1.1 Background . 1

1.2 Problem Domain . 2

1.3 Central Theme . 2

1.3.1 Ordinal Optimization . 2

1.3.2 The Lessons . 4

1.4 Thesis Organization . 4

1.5 Relevant Literature . 5

1.5.1 High-Dimensional Optimization 5

1.5.2 Surrogate Modeling . 7

1.5.2.1 Model Order Reduction 7

1.5.2.2 Ensemble Modeling 8

1.5.2.3 Distance Metrics 8

1.5.3 Adaptive Sampling . 9

1.6 Research contributions . 9

1.7 Publications . 10

1.7.1 Publications in international journals

(listed in the Science Citation Index) 10

1.7.2 Publications in international conferences

(listed in the Science Citation Index) 10

1.7.3 Publications in other international conferences 11

1.7.4 Publications in national conferences 11

References . 12

2 Self-Organizing Map Based Adaptive Sampling 17

2.1 Introduction . 18

2.2 Self-Organizing Map Based Adaptive Sampling (SOMBAS) . . . 20

2.3 Experiments . 24

2.3.1 Feasible Region Identification 24

iv

2.3.2 Engineering Application 29

2.3.3 Machine Learning Application 31

2.4 Conclusions . 35

2.5 Acknowledgments . 36

Appendices 37

2.A Test Functions . 37

2.B Parameter Setups . 38

References . 40

3 SOMBAS in Optimization 43

3.1 Introduction . 44

3.2 Method . 44

3.3 Experiments . 45

3.4 Conclusion . 53

Appendices 61

3.A Test Functions . 61

3.B Detailed Statistics of Optimization 62

3.C Parameter Setups . 64

References . 67

4 Interaction Index 69

4.1 Introduction . 70

4.2 Sobol’ Indices and High-Dimensional Model Representation (HDMR)

. 71

4.3 Computation . 72

4.4 Interactions in Reliability and Optimization 74

4.5 Interaction Indices . 75

4.6 The Basic Idea Step by Step . 76

4.7 Comparison . 78

4.8 Examples . 79

4.8.1 Illustrative Functions . 80

4.8.2 Ishigami Function . 81

4.8.3 G-Function . 83

4.8.4 Rosenbrock - Sphere Function 84

4.8.5 Artery Simulation . 85

4.9 Discussion and Outlook . 88

4.10 Conclusion . 88

Appendices 91

4.A Monte Carlo Estimation of Indices 91

4.B Sample Size for Box Plots . 92

References . 93

v

5 Adaptive Initial Step Size Selection for Simultaneous Perturbation Stochas-

tic Approximation 97

5.1 Introduction . 98

5.2 Adaptive Initial Step Sizes . 101

5.3 Comments on Convergence . 102

5.4 Computational Results . 103

5.4.1 Test Functions . 103

5.4.2 Nonlinear Dynamics Example 107

5.5 Conclusion . 109

Appendices 123

5.A Selected Results in 100 Dimensions 123

References . 129

6 Conclusion 133

6.1 General Thoughts . 133

6.2 Impact . 135

6.3 Potential Areas of Future Research 136

References . 137

A SOMBAS in Ensemble Modeling 139

A.1 Introduction . 140

A.2 Methods . 140

A.3 Results . 141

A.4 Conclusion . 143

References . 143

B HAROS-HD Project Report Summary 147

B.1 Introduction . 148

B.2 Methods . 149

B.2.1 Optimization Strategy First Prototype 150

B.2.2 Optimization Strategy Final Prototype 150

B.2.3 Graph Decomposition 153

B.2.4 Annealed Hooke & Jeeves Method for discrete parameters 155

B.3 Results . 157

B.4 Conclusion . 158

References . 159

C User’s Guide to SOMBAS 161

C.1 Objective of SOMBAS . 161

C.2 When to Use . 162

C.3 Limitations . 162

C.4 Performance Envelope . 162

C.5 Parameter Setup . 162

C.6 Description of Parameters . 163

vi

C.6.1 Number of training samples 163

C.6.2 Truncation Value L . 163

C.6.3 Map size . 163

C.6.4 Weight constant for diversity in Merit Function ρ 164

C.6.5 Selectivity Temperature T 164

C.6.6 Probability of mutation 164

C.6.7 Expansion Factor Fe and Contraction Factor Fc 164

C.6.8 Number of SOM training iterations 164

List of Figures

2.1 High level flowchart of SOMBAS. 20

2.2 Rosenbrock function: sample distribution satisfying objective con-

dition f ≤ 100. 25

2.3 Rastrigin function: sample distribution satisfying objective condi-

tion f ≤ 10. 26

2.4 Hollow Beam function: sample distribution satisfying constraints. 26

2.5 Evolution of Feasible Rate Ns/Nf of SOMBAS and DE on test

functions. 28

2.6 Diagram of planing hull cut-out. 30

2.7 Contour and scatter plot of the real part of the largest eigenvalues

of oscillation modes (negative values indicate stable modes) with

respect to lcg and vcg, both non-dimensionalized with respect to B. 30

2.8 Scatter Matrix showing distribution of feasible designs. 32

2.9 Planing stability prediction performance of Support Vector Ma-

chine using samples from SOMBAS and DE. Box plots show the

distributions of 20 independent runs at budgets of 1000, 2000, and

4000 function evaluations. 33

3.1 Distribution of fmin on 5 dimensional Rosenbrock Function af-

ter 10 (left column), 25 (middle column), and 50 (right column)

function evaluations. 48

3.2 Distribution of fmin on 50 dimensional Rosenbrock Function after

100 (left column), 250 (middle column), and 500 (right column)

function evaluations . 49

3.3 Distribution of fmin on 100 dimensional Rosenbrock Function af-

ter 200 (left column), 500 (middle column), and 1000 (right col-

umn) function evaluations. 49

3.4 Box plot showing effect of hybrid algorithm: the first 2×D func-

tion evaluations are performed with SOMBAS and then the best

sample is provided as the starting point of the CMA-ES that runs

up to the allowed maximum number of function evaluations. . . . 51

3.5 Bar charts showing minimum objective values obtained by GPEME

and SOMBAS: 20 runs of 1000 function evaluations each were

performed. 53

viii

4.1 Illustrative Functions: the distributions p(y|xi) of equations 4.23

and 4.24. 75

4.1 Ishigami Function: distributions of p(y|xi) or the marginal views . 82

4.2 Ishigami Function: box plots show the distribution of indices val-

ues of 20 runs. 82

4.3 G Function: box plots show the distribution of indices values of

20 runs. 83

4.4 Rosenbrock - Sphere Function: box plots show the distribution of

indices values of 20 runs. 84

4.5 The diagram of an artery model with blood flowing in from left

with prescribed time-dependent velocities and flowing out at the

right with the Windkessel model pressure. The segments (eight in

the figure), the radius r, the wall thickness h and the length l are

shown. The prescribed inlet flow rate is given by u0(t) = 0.23 +

0.21 sin
(

2π t
tb

)

+0.11 cos
(

4π
(

t
tb
− 0.2

))

+0.07 cos
(

6π
(

t
tb
− 0.2

))

,

where tb is the pulse period. 86

4.6 Artery fluid-structure simulation for model calibration of 19 elas-

ticity parameters (i ∈ {1, · · · , 19}) and a downstream compliance

parameter (the capacitance, i = 20): box plots show the distribu-

tion of index values of 20 runs. 87

5.1 Objective value minimization using gradient descent (one vari-

able): if gradient g is positive at θk then move to θk+1 < θk, if

gradient g is negative then move to θk+1 > θk 99

5.1 Initial parameter change δθ̂0min
and distribution of responses after

2000 function evaluations for “Rosenbrock”. 110

5.2 Initial parameter change δθ̂0min
and distribution of responses after

2000 function evaluations for “Sphere”. 111

5.3 Initial parameter change δθ̂0min and distribution of responses after

2000 function evaluations for “Schwefel”. 112

5.4 Initial parameter change δθ̂0min and distribution of responses after

2000 function evaluations for “Rastrigin”. 113

5.5 Initial parameter change δθ̂0min
and distribution of responses after

2000 function evaluations for “Skewed Quartic”. 114

5.6 Initial parameter change δθ̂0min
and distribution of responses after

2000 function evaluations for “Griewank”. 115

5.7 Initial parameter change δθ̂0min
and distribution of responses after

2000 function evaluations for “Ackley”. 116

5.8 Initial parameter change δθ̂0min
and distribution of responses after

2000 function evaluations for “Manevich”. 117

5.9 Initial parameter change δθ̂0min
and distribution of responses after

2000 function evaluations for “Ellipsoid”. 118

5.10 Initial parameter change δθ̂0min and distribution of responses after

2000 function evaluations for “Rotated Ellipsoid”. 119

ix

5.11 Effect of choice of c to the final response of “Sphere” with Gaus-

sian noise of σ = 0.1 after 2000 function evaluations. 120

5.12 Effect of choice of the reduction factor of a to the responses after

2000 function evaluations. 120

5.13 Initial parameter change δθ̂0min
and distribution of L4000 (after

8000 function evaluations) . 121

5.14 State evolution of the target and identified Lorenz attractor, t = 0
to 20 . 121

5.15 Distribution of the parameters identified by A SPSA and SPSA . . 122

5.A.1Initial parameter change δθ̂0min
and distribution of responses after

2000 function evaluations for “Rosenbrock”. 124

5.A.2Initial parameter change δθ̂0min
and distribution of responses after

2000 function evaluations for “Sphere”. 125

5.A.3Initial parameter change δθ̂0min
and distribution of responses after

2000 function evaluations for “Schwefel”. 126

5.A.4Initial parameter change δθ̂0min
and distribution of responses after

2000 function evaluations for “Rastrigin”. 127

5.A.5Initial parameter change δθ̂0min and distribution of responses after

2000 function evaluations for “Skewed Quartic”. 128

6.1 A performance triangle model: given a set of problems to be solved,

an algorithm can be considered to possess a combination of three

performances (scalability to high-dimensional problems, efficiency

in reaching (a target value or a rank of) a solution, and accuracy

of the solution) of which two can be improved by sacrificing the

remaining performance. 134

A.1 Function representations with an ensemble of surrogate models . . 142

A.2 Sequential search for minimum response sampling from a noisy

function. The true function f is indicated in red. 144

A.3 Estimation of the solution of minimum f after 10 noisy measure-

ments. 145

B.1 Overview of the general strategy (the orange boxes show candidate

algorithms) . 149

B.2 Overview of the first prototype (the green box indicate the EWIS

definition parsing) . 151

B.3 Overview of the final prototype (H&J+ denotes Annealed Hooke

& Jeeves) . 151

B.4 Examples of A) Degree centrality; B) Closeness centrality; C) Be-

tweenness centrality; D) Eigenvector centrality 154

B.5 Visual representation of the graph generated from the analysis of

the 48 Harness case . 156

B.6 One-at-a-Time move of Hooke & Jeeves Method of a three vari-

able problem . 156

x

B.7 Outline of Annealed Hooke & Jeeves Method 157

List of Tables

2.1 Average Nearest Neighbor Distances and Space Filling Measures

of Sampled Points by SOMBAS and DE. 27

2.2 Hypothesis test of shift in F1 score distributions in Fig. 2.9 among

different sampling methods (p-values shown in the bracket) 34

2.3 Hypothesis test of shift in F1 score distributions in Fig. 2.9 among

different sampling budgets (p-values shown in the bracket) 34

2.4 Hypothesis test of shift in the feasible rate Ns/Nf distributions in

Fig. 2.9 among different sampling budgets (p-values shown in the

bracket) . 35

2.B.1 Parameters setups for DE for the three test functions in Table 2.1 . 38

2.B.2 Parameters setups for SOMBAS for the three test functions in Ta-

ble 2.1 . 38

2.B.3 Parameters setups for DE for Fig. 2.5 39

2.B.4 Parameters setups for SOMBAS for Fig. 2.5 39

2.B.5 Parameters setups for DE for Fig. 2.9 39

2.B.6 Parameters setups for SOMBAS for Fig. 2.9 39

3.1 Optimization results of 30 dimensional functions after 2,000, 20,000,

and 200,000 function evaluations (average of 20 runs). The mean

of minimum objectives obtained in 20 runs is shown under f̃min

and the standard deviation of the minimum objectives is shown in

the brackets. Entries with “n.a.” indicate that optimizations have

already converged. 46

3.2 Effect of a large number of training samples for SOMBAS and

population size for DE (900) in optimization of 30-dimensional

functions for relatively small number of function evaluations (2000)

(average of 20 runs). The mean of minimum objectives obtained

in 20 runs is shown under f̃min and the standard deviation of the

minimum objectives is shown in the brackets. 47

3.3 Summary of 20 minimization runs for 5 test functions at 3 dif-

ferent dimensions and 3 different settings of maximum number of

function evaluations. “All” is the combined statistics of the five

benchmark functions. 55

xii

3.4 Summary of 20 runs of minimizing 5 functions at 3 different di-

mensions and 3 different settings of maximum number of function

evaluations. 56

3.5 Time costs of optimization of the five functions at 100 dimensions

and 1000 function evaluations. Statistics of 20 runs. CPU: Intel

Core 2 Duo 3.16 GHz. 57

3.6 Summary of SOMBAS with different number of training samples

minimizing 5 test functions at 3 different dimensions and 3 differ-

ent settings for maximum number of function evaluations. 57

3.7 Summary of SOMBAS with different selectivity T minimizing 5

test functions at 3 different dimensions and 3 different settings for

maximum number of function evaluations. 57

3.8 Summary of SOMBAS with different Mutation Probability min-

imizing 5 test functions at 3 different dimensions and 3 different

settings for maximum number of function evaluations 58

3.9 Summary of SOMBAS with different Merit Weight ρ performing

5 test function at 3 different dimensions and 3 different settings for

maximum number of function evaluations. 58

3.10 Summary of an effect of hybrid algorithm “Hybrid”: the first 2×D
function evaluations are performed with SOMBAS and then the

best sample is provided as the starting point of the CMA-ES that

runs up to the allowed maximum number of function evaluations

(5,10, or 20)×D. 58

3.11 Comparing SOMBAS to a state-of-the-art optimization method for

expensive objective function optimization. Statistics of 20 runs. . . 59

3.B.1 Statistic of the optimization result of the five functions 63

3.C.1 Parameters setups for DE for the five test functions in Table 3.1 . . 65

3.C.2 Parameters setups for SOMBAS for the five test functions in Ta-

ble 3.1 . 65

3.C.3 Parameters setups for SOMBAS for the five test functions in Ta-

ble 3.3 and 3.4 . 66

4.1 Initial two samples . 76

4.2 x1 fixed at 1 . 77

4.3 x1 fixed at 3 . 77

4.4 Variances of y1 and y2 at x1 = 1, 3 77

4.1 First order interaction indices for the Illustrative Functions 80

4.2 STi − Si for the Illustrative Functions 80

4.3 Parameter values used in the artery model 86

5.1 Statistics of identified Lorenz Attractor parameters by 20 SPSA

runs at δθ̂0min
= 10 . 108

5.2 Statistics of identified Lorenz Attractor parameters by 20 A SPSA

runs at δθ̂0min = 100 . 108

xiii

A.1 Estimates of coefficients . 142

B.1 Results of benchmark (best obtained) 158

List of Acronyms

B

BESTCOM Belgian Network on Stochastic Modelling, Analysis,

Design and Optimization of Communication Systems

BFGS Broyden Fletcher Goldfarb Shanno

B-WISE Bayesian Regression Modeling With Interactions and

Smooth Effec

D

DOE Design of Experiments

E

EGO Efficient Global Optimization

EWIS Electrical Wiring Interconnection System

F

FDSA Finite Difference Stochastic Approximation

FR Fletcher-Reeves

G

GA Genetic Algorithm

GP Gaussian Process

xvi

H

HAROS-HD Hybrid Adaptive Robust Optimization Strategy for EWIS

High-Dimensional Systems

HDMR High Dimensional Model Representation

I

IBBT Interdisciplinary Institute for Broadband Technology

IBCN Internet Based Communication Networks and Services

research group

IWT Institute for the Promotion of Innovation Through Sci-

ence and Technology

L

LLE Local Linear Embedding

L-BFGS Limited-Memory BFGS

P

PCA Principal Component Analysis

PR Polak-Riviere

PSO Particle Swarm Optimization

S

SOM Self-Organizing Map

SOMBAS Self-Organizing Map Based Adaptive Sampling

SPSA Simultaneous Perturbation Stochastic

SQP Sequential Quadratic Programming

SVM Support Vector Machines

Samenvatting

– Summary in Dutch –

De basisveronderstelling van deze thesis is dat numerieke simulaties in de meeste

ingenieursproblemen onzekerheden met zich meebrengen omwille van de onder-

liggende fysiche modellen, ontbrekende variabelen of numerieke fouten. Meer

nog, de rekenkost van de objectieven kan duur uitvallen en het aantal variabelen

in deze functies kan groot zijn (hoog-dimensioneel). Zeer vaak zijn de simula-

ties niet compleet of hebben ze vanaf het begin niet voldoende betrouwbaarheid.

Anderzijds streven de meeste onderzoeken in optimalisatie, meta-heuristieken en

surrogaatmodellen ernaar om de nauwkeurigheid van hun oplossing te verbeteren

door het minimum van een functie te vinden. Dit kan in een zeker opzicht een

overbodige of buitensporige zoektocht zijn, gezien vanuit het standpunt van de

ontwerper.

Het idee is dus om de nauwkeurigheid te vervangen door iets waardevols

voor ontwerpingenieurs, die al dan niet de hoogwaardige simulaties van het pro-

bleem tot hun beschikking hebben. In eerste instantie stel ik een methode voor

die zoekt naar diverse oplossingen die voldoen aan zekere criteria met betrekking

tot de objectieven en die goed schaalbaar is naar hoog-dimensionele problemen:

SOMBAS (Self-Organizing Maps Based Adaptive Sampling). Vervolgens stel ik

een methode voor die interacties kan ontdekken tussen ontwerpvariabelen, hier-

bij gebruikmakend van minder functie-evaluaties (vergeleken met de methode die

gebruikt maakt van de totale gevoeligheid en Sobol index), Interaction Indices

(interactie-indices). Tenslotte stel ik een aanpassing van een bestaande stochasti-

sche optimalisatiemethode voor, die het gemakkelijker maakt om de methode op te

zetten en het hiermee gepaarde vallen en opstaan vermindert of zelfs totaal uitsluit,

A SPSA (Adaptive Initial Step Simultaneous Perturbation Stochastic Approxima-

tion).

SOMBAS kan aanzien worden als een steekproefmethode (Design of Experi-

ments) die rekening houdt met de waarde van de resultaten, of als een optimalisatie

algoritme dat zoekt naar diversiteit als de waarde van het objectief onder een be-

paalde drempelwaarde ligt. Bij ingenieursontwerpproblemen worden vaak in een

vroeg stadium reeds een aantal mogelijks concurrentiele ontwerpen voorgesteld.

Het doel van deze methode is om te helpen bij zo’n proces door bij benadering een

set van reele ontwerpvariabelen te identificeren die leiden tot de gewenste resulta-

ten van een functie of van een computersimulatie. De voorgestelde methode steunt

zich niet op geparametriseerde statistische verdelingen, en kan steekproeven ne-

xx SAMENVATTING

men van multi-modale en niet-convexe verdelingen. Voorts levert de voorgestelde

verdienste-functie (merit function) ruimtevullende eigenschappen door de voor-

keur te geven aan nieuwe punten die verder weg liggen van de reeds bestaande

punten. De resultaten tonen aan dat met dit nieuwe adaptieve steekproefalgoritme

op een efficiente manier meerdere haalbare oplossingen kunnen bekomen wor-

den. Onze vernieuwende bijdrage is het herhaaldelijk gebruik van de SOM (zelf-

organiserende kaarten) bij het aanleren van de dichtheid om haalbare of goede

ontwerpen te identificeren, en het toont een zeer snelle toename in de verhouding

tussen het aantal haalbare oplossingen en het totale aantal functie-evaluaties. Een

toepasssingsvoorbeeld op het ontwerp van een planerende romp (zoals bijvoor-

beeld gebruikt in motorboten en watervliegtuigen) toont de verdiensten aan van

de aanpak met regio’s van haalbare oplossingen vergeleken met huidige trends en

ontwerpregels. Bovendien speelden de goed verdeelde punten van de voorgestelde

methode een belangrijke rol in de verbetering van de voorspellingsperformantie

van een classificatieprobleem aangepakt met SVM (Support Vector Machines -

ondersteuningsvector machines).

SOMBAS leert en voegt nieuwe steekproefelementen toe in gebieden waar de

resultaten gunstig zijn, en laat hierbij de dichtheid van deze punten progressief

toenemen in deze regio’s. Voor de geteste functies heeft de voorgestelde methode

zijn concurrentiele voordelen getoond ten opzichte van twee evolutionaire algorit-

mes en het nieuwste van het nieuwste evolutionair algoritme bijgestaan door een

surrogaatmodel, waarbij het aantal ontwerpdimensies aangroeide van 20 tot 100.

Resultaten tonen aan dat aanpak waarbij dichtheden geleerd worden, een efficient

alternatief kan zijn voor de gebruikelijke aanpak met surrogaatmodellen.

Interaction Index (interactie index) is een middel om een gevoeligheidsanalyse

te doen, dat nuttig kan zijn bij het opdelen van de originele hoog-dimensionele ont-

werpruimte van een objectief functie in een aantal functies met laag-dimensionele

ontwerpruimtes. De bijdrage is in het gebruik van heteroscedasticiteit van mar-

ginale verdelingen in het opmenten van interacties. De berekening verloopt zeer

gelijkaardig aan die van de eerste-orde gevoeligheidsindices in de brute Sobol aan-

pak. De voorgestelde interactie index kan het relatieve belang kwantificeren van de

interagerende ontwerpvariabelen. Bovendien kan de detectie van (niet-)interactie

voor doorlichting gedaan worden met slechts 4n+ 2 functie evaluaties, waarbij n
het aantal ontwerpvariabelen voorstelt.

A SPSA lost de moeilijkheid op om de initiele stapgrootte te bepalen voor

SPSA (Simultaneous Perturbation Stochastic Approximation). Als de stapgrootte

te groot is, is het mogelijk dat de schatting van de oplossing niet convergeert. De

voorgestelde methode met adaptieve stapgrootte verkleint automatisch de initiele

stapgrootte van de SPSA zodat de vermindering van de functiewaarde van het ob-

jectief op een betrouwbaardere manier gebeurt. Tien wiskundige functies met elk

3 verschillende verstoringsniveaus zijn gebruikt om de doeltreffendheid van het

voorgestelde idee empirisch aan te tonen. Een voorbeeld over het schatten van de

ontwerpparameters van een niet-lineair dynamisch systeem is ook bijgevoegd.

In bijlage worden twee toepassingen van SOMBAS beschreven. Een daarvan

gaat over het gebruik van SOMBAS in een ensemble van surrogaatmodellen (en-

SUMMARY IN DUTCH xxi

semble modeling). We tonen een manier aan om niet-lineaire regressie te doen

zonder hierbij gebruik te maken van de kleinste-kwadraten fout. A priori wordt

een zeker storingsniveau verondersteld op de bemonsterde data, en een set van re-

gressiemodellen wordt berekend om de “gemiddelde”representatie af te leiden en

de daarbij horende variantie. Initiele resultaten tonen aan dat de aanpak om diver-

siteit op te zoeken verschillende surrogaatmodellen kan laten passen op data met

storing, in plaats van plaats van gebruik te maken van de gebruikelijke kleinste-

kwadraten methode.

Het andere toepassingsvoorbeeld gaat over het gebruik van SOMBAS in een

hybride optimalisatie algoritme voor het massale verminderen van gebruikte elek-

trische kabels in een vliegtuig. Een hoog-dimensionele optimalisatie van discrete

ontwerpvariabelen is aangepakt gebruikt makend van een hybride oplossing van

verschillende methodes, waaronder een opsplitsing van het probleem gebaseerd

op grafen. Het doel was om een optimalisatiemethode te ontwikkelen die snel,

nauwkeurig (in het identificeren van de beste oplossing) en schaalbaar (tot een

hoog-dimensioneel probleem) is. De gelijktijdige verbetering van de nauwkeurig-

heid (om een lager gewicht te vinden), de snelheid (een kleiner aantal functie-

evaluaties) en de schaalbaarheid naar hoog-dimensionele problemen moet nog

worden aangetoond.

Tenslotte wordt een algemene heuristiek gesuggereerd voor het verfijnen van

de performantie van de methode: er lijkt een afweging te bestaan tussen nauw-

keurigheid, snelheid en schaalbaarheid voor het oplossen van een gegeven set van

problemen met een gegeven rekenbudget. Twee van deze drie kunnen gelijktij-

dig verbeterd worden ten koste van het verslechteren van de derde. Een bijko-

mende performantie dimensie “algemeenheid”zou kunnen toegevoegd worden aan

deze afweging, die de toepasbaarheid van een methode opmeet voor verschillende

soorten problemen. In dit geval zouden alle drie performantie maatstaven, zijnde

nauwkeurigheid, snelheid en schaalbaarheid, gelijktijdig kunnen verbeterd worden

tegen de kost van verminderde algemeenheid (i.e. een kleinere set van toepasbare

problemen). Dit wil zeggen dat men een meer gespecialiseerde methode gaat ont-

wikkelen die de gemeenschappelijkheid van een meer specifieke set van problemen

gaat uitbuiten waarop de methode toepasbaar is.

Summary

The basic assumption of this thesis is that, in most engineering design problems,

numerical simulations entail uncertainties because of the physics, missing vari-

ables, or numerical errors. Furthermore, the computational cost of objective func-

tions can be expensive and the number of input variables of these functions may

be large (high-dimensional). Very often, the simulations are not complete or of

high-fidelity from the beginning. On the other hand, most research efforts in op-

timization, metaheuristics, and surrogate modeling methods strive to enhance the

accuracy of their solution through finding the minimum of a function. This can be,

in a sense, an unnecessary or an excessive pursuit from the standpoint of a design

practitioner.

Thus, the idea is to exchange the accuracy with something valuable for de-

sign engineers who may or may not have the high-fidelity simulation of the prob-

lem. Firstly, I propose a method to search for diverse solution satisfying certain

objective criteria and that scales well to high-dimensional problems (SOMBAS:

Self-Organizing Map Based Adaptive Sampling). Then, I propose a method to

detect interactions between design variables at a fewer number of function eval-

uations than the method using total sensitivity and Sobol Index (Interaction In-

dices). Finally, I propose a modification of an existing stochastic approximation

optimization method that makes it easier to set up, reducing or even eliminating

the trial-and-error runs (A SPSA: Adaptive Initial Step Simultaneous Perturbation

Stochastic Approximation).

SOMBAS can be thought of as a Design of Experiments method that takes

output values into account or an optimization algorithm that seeks diversity if the

objective value is under a given threshold. In engineering design, a set of poten-

tially competitive designs is conceived in the early part of the design process. The

purpose of this method is to help such a process by approximate identification of

a set of inputs of real variables that return desired responses from a function or a

computer simulation. The proposed method does not rely on parameterized dis-

tributions, and can sample from multi-modal and non-convex distributions. Fur-

thermore, the proposed merit function provides infill characteristics by favoring

sampling points that lay farther from existing points. The results indicate that mul-

tiple feasible solutions can be efficiently obtained by the new adaptive sampling

algorithm. The iterative use of the SOM in density learning to identify feasible

or good designs is our new contribution and it shows a very rapid increase in the

number of feasible solutions to the total number of function evaluation ratio. Ap-

plication examples to planing hull designs (such as in powerboats and seaplanes)

xxiv SUMMARY

indicate the merits of the feasible region approach to observing trends and design

rules. Additionally, the well-distributed sampling points of the proposed method

played favorable effect in improving the prediction performance of a classification

problem learned by a Support Vector Machine.

SOMBAS learns and adds new samples in the domains where output values are

favorable, progressively increasing the density of sample points in these regions.

For the functions tested, the proposed method has shown competitive advantages

over two evolutionary algorithms and one state-of-the-art surrogate model assisted

evolutionary algorithm as the input variable dimensionality grew from 20 to 100.

Results show that the density learning approach can be an effective alternative to

the conventional surrogate model learning approach.

Interaction Index is a sensitivity analysis tool that can be useful in decom-

posing the original high-dimensional input space of an objective function into a

set of functions with low-dimensional input spaces. The contribution is in the

use of heteroscedasticity of marginal distributions in the measurement of interac-

tions. The computation is very similar to first-order sensitivity indices by Sobol’

in brute-force approach that computes averages of output values from Monte Carlo

samples at every value (level) of input variables. The proposed interaction index

can quantify the relative importance of interacting input variables. Furthermore,

detection of (non-)interaction for screening can be done with as few as 4n + 2
function evaluations, where n is the number of input variables.

A SPSA solves the difficulty of setting up the initial step sizes for the Simulta-

neous Perturbation Stochastic Approximation (SPSA). If the step size is too large,

the solution estimate may fail to converge. The proposed adaptive stepping method

automatically reduces the initial step size of the SPSA so that reduction of the ob-

jective function value occurs more reliably. Ten mathematical functions each with

three different noise levels were used to empirically show the effectiveness of the

proposed idea. A parameter estimation example of a nonlinear dynamic system is

also included.

In appendices, two applications of SOMBAS is described. One is SOMBAS in

ensemble modeling. We show a way of non-linear regression without resorting to

the least-square-error. A certain noise level is a priori assumed on the sampled data

output, and a set of regression models are drawn to infer an average representation

and accompanying variance. It shows proof-of-concept results on the diversity-

seeking approach to fit multiple surrogates to noisy data instead of the usual least-

square-error fit.

The other is the use of SOMBAS in a hybrid optimization algorithm for mass

reduction of an electrical wire system in aircraft. A high-dimensional optimization

of discrete input variables is tackled using hybrids of methods including a graph-

based problem decomposition. The objective was to create an optimization method

that was fast, accurate (in identifying the best solution), and scalable (to a high-

dimensional problem). Negative results were obtained at the time of reporting.

Finally, an overall heuristic for refining methodology performances is sug-

gested: there seems to be a trade-off between accuracy, speed, and scalability for

solving a given set of problems with a given computational budget. Two out of

SUMMARY xxv

these three can be improved at the expense of the remaining one. An additional

performance dimension generality could be added to this trade-off, measuring a

method’s applicability to different kinds of problems. In this case, all three perfor-

mance measures namely accuracy, speed, and scalability could be simultaneously

improved at the expense of reduced generality (i.e. a smaller set of applicable prob-

lems). That is, one designs a more specialized method exploiting the commonality

of a more specific set of problems that the method applies to.

1
Introduction

“Festina lente. (Make haste slowly.)”

–Author unknown

1.1 Background

The motivation behind the research presented in this thesis is that in engineer-

ing design environments, optimization often fails to give satisfactory results or

even unusable results. The reasons are the following. The simulation workflow

that defines the input design variables and returns the objective value is not per-

fect. There are numerical and modeling errors [1]. On top of that, optimization

is seldom holistic, i.e., there are factors that are not considered in generating the

objective value [2, 3].

Complex engineering problems use high fidelity simulation models and expen-

sive experiments. However, ever increasing competition imposes time and budget

constraints on the development of new products. Therefore, we want to infer the

maximum of information from a limited number of simulation runs and still obtain

competitive solutions and products.

We should remember that we never achieve 100% accurate simulation or ex-

periments [4] and if they are high fidelity, they are expensive. Furthermore, as

the computational power increases, problems keep scaling towards a higher num-

ber of design parameters and data size. Such high-dimensional problems abound

in designing of complex systems such as aircraft, car, and network systems such

2 CHAPTER 1

as smart grids for electrical power generation and distribution to name a few. In

multidisciplinary settings, high-dimensional and time-consuming simulations are

very likely. However, to the author’s experience most design optimization and

surrogate modeling literature shows cases of less than 20 design parameters or

high-dimensional problems optimized or modeled with a large number of function

evaluations. In practice, optimization is mostly applied at a component level or in

a simplified system. There seems to be an unfilled gap for practical optimization

and analysis methods that deal with high-dimensional and expensive functions.

The practical approach of engineering design is that quantitative accuracy of

predicted output is not always of primary importance but relative merits between

different designs are. Very often a “competitive” solution is enough instead of the

best possible solution. This is especially true if the problem is multiobjective or

highly constrained. This is also a practical way to mitigate the risk of the unknown

or the known-but-not-considered. The power of engineering is in approximation.

The objective is to devise practical sampling (or optimization) and analysis meth-

ods in the face of uncertainty and inaccuracy.

1.2 Problem Domain

We deal with the problem of analyzing the real variable input and output relation-

ships of simulation codes. We consider a vector of input variables and a scalar

output in order to look for inputs that satisfy certain conditions in the output (i.e.

optimization, surrogate modeling, and design of experiments) or quantify the effect

of input variables (interaction) on the output (i.e. sensitivity analysis). We assume

a situation in which the evaluation of such functions (e.g. simulation codes) are

expensive and only a limited number trials can be made. The number of input

variables can be relatively large (up to 100).

1.3 Central Theme

The central theme of this thesis is about “relaxing”. Instead of looking for a single

instance, relaxed methods typically look for a set, an interval, or a density distri-

bution or tolerates such variance for approximations. Another form of relaxation

is the adaptive nature of a method handling different situations. In short, we trade

preciseness or accuracy with some kind of efficiency or reduction of cost. The

inspiration came from the probabilistic argument of Ordinal Optimization [5].

1.3.1 Ordinal Optimization

Ordinal Optimization proposed by Ho et al. [6] employs a different paradigm opti-

mization where one seeks to identify a subset of good designs based on the order-

INTRODUCTION 3

ing of alternative designs which can be determined based on a very rough or cheap

simulation models. Lau and Ho [7] describe the high probability that the selected

subset actually contains good designs.

Define a good enough set G as a subset consisting of the top n % in the design

space Θ. This subset is the truly good ones that we seek to identify. On the

other hand, define the selected subset S as a subset of Θ in which the members

are picked out by the designer using certain evaluation scheme (be it by some

simulation, past experience, or fortune telling) but without the knowledge of their

true performances. The objective of Ordinal Optimization is to match G and S up

to at least a certain level. They refer to this degree matching as “alignment level”.

Ordinal Optimization is based on two principles. (i) The order is much easier

to determine than the actual value – It is easier to determine if A > B than to

determine A−B =?, (ii) Softening the goal makes a hard problem easier. Instead

of asking for the best, let us settle for the good enough with high probability. To

make this point clearer, Ho et al. [5] show the following simple calculations. If we

can sample uniformly in Θ, the probability that one of the N samples falls in the

top n-percent of Θ is

P = 1− Prob{all N samples not in the top n-percent of Θ} (1.1)

= 1−
(

1− n

100

)N

. (1.2)

For N = 1000 and n = 5, we have (1−5/100)1000 ≃ 5.29×10−23, which makes

P ≃ 1. Now, let us define

g = |G| (1.3)

s = |S|, (1.4)

where | · | gives the number of elements of the set. Suppose we blindly pick the

elements of Θ to form S, then the probability that S and G shares no common

element is given by

Prob [|S ∩G| = 0] =

(

N−g
s

)

(

N
s

) . (1.5)

Thus, the probability that at least one of the selected samples S is indeed a member

of the good enough samples G is

Prob [|S ∩G| ≥ 1] = 1− Prob [|S ∩G| = 0] (1.6)

= 1−
(

N−g
s

)

(

N
s

) (1.7)

= 1−
(N−g)!

s!(N−g−s)!

N !
s!(N−s)!

(1.8)

= 1− (N − g)(N − g − 1) · · · (N − g − s+ 1)

(N)(N − 1) · · · (N − s+ 1)
.(1.9)

4 CHAPTER 1

Since
N − g − i

N − i
≤ N − g

N
= 1− g

N

for all i = 0, 1, . . . , s− 1, we have

Prob [|S ∩G| ≥ 1] ≥ 1−
(

1− g

N

)s

. (1.10)

Furthermore, 1− x ≤ e−x holds for all x, so we have

Prob [|S ∩G| ≥ 1] ≥ 1− e−
gs
N . (1.11)

Thus, the probability of correctly identifying at least one good enough candidate

approaches exponentially to one with increasing size of S and G. This is the result

for the blind picking case. Yet, for s = g = 50 and N = 1000, the probability of

identifying at least one good enough (top 5 %) solution in the randomly picked set

S is at least 91.8 %. If some inference can be made to the expected performances

to the N samples, no matter how crude, the chances could be even better than what

we just obtained.

1.3.2 The Lessons

The above claim contains some remarkable insight. Although the argument was

based on sets with a finite number of elements, relaxing the objective from finding

the “best” to a few of top few % has enabled an exponential convergence rate with

a random selection process. Furthermore, the above argument did not mention

the design variables, whose number could be high, but only a finite set of alterna-

tive designs sampled uniformly from the design space. Unlike an early stopping

of optimization which normally does not have control over the level of the relax-

ation, ordinal optimization can control it by specifying the probability of finding

the desired number of elements of the desired level of performance. This has a

few additional lessons to take away beside the obvious benefit of relaxing the tar-

get requirement. At a more abstract level, we have the following: 1) Changing

objectives. There could be other measures that can be exploited easily that in turn

helps in improving a more difficult measure that we were after. 2) Eliminating

needs. We may be seeking something unnecessarily. The lessons are reflected in

the following chapters.

1.4 Thesis Organization

In Chapter 2, we will relax the target from finding the best to finding a diverse

solution set that satisfies certain objective criteria. It uses Self-Organizing Maps to

create a discrete set of sampling points which roughly corresponds to the samples

INTRODUCTION 5

from the density (or probability distribution) of good points in the design space.

The proposed algorithm Self-Organizing Maps Based Adaptive Sampling (SOM-

BAS) was tested on three mathematical functions and an engineering problem to

see its space-filling characteristics and scalability.

In Chapter 3, we take a look at the optimization characteristics of SOMBAS.

Seven test functions were solved at three different number of dimensions and three

different function evaluation budgets. The results of minimization were compared

with three different algorithms which share similar design aspects as those of

SOMBAS.

In Chapter 4, we propose a new index which tells the degree of interaction

among input variables in generating the variance in the output. Traditionally,

global sensitivity analysis requires a lot of function evaluations to obtain accu-

rate values, e.g., using Monte Carlo Integrations. The proposed method relaxes

the need for accurate integration by measuring heteroscedasticity instead of the

difference between total sensitivity and first order sensitivity. Four mathematical

functions and one engineering example are analyzed and compared with the clas-

sical method of evaluating interactions.

In Chapter 5, we relax the need to find a good initial setting for an optimization

algorithm called Simultaneous Perturbation Stochastic Approximation (SPSA).

Ten mathematical functions and a parameter estimation problem are used to com-

pare the performance of the classical SPSA and the proposed adaptive initial step

SPSA.

Lastly, appendix chapters describe supplementary materials. In Appendix A,

we describe briefly a case of relaxing the need to find the best-fit surrogate model

using SOMBAS to fit a set of surrogate models. Then show an example of look-

ing for a minimum response solution from a set of noisy measurements. In Ap-

pendix B, an industrial application case is summarized in which hybrid methods

attempts to achieve an uncompromising performance improvement over the exist-

ing optimization method in terms of minimum objective value found and a number

of function evaluations.

1.5 Relevant Literature

This section is a survey of relevant research and school of thoughts that formed the

foundation of this thesis.

1.5.1 High-Dimensional Optimization

This subsection describes research specifically targeting optimization of high-dimensional

problems.

6 CHAPTER 1

Fletcher-Reeves (FR) [8] and Polak-Riviere (PR) [9] are two non-linear conju-

gate gradient methods developed in the sixties. They require no matrix inversion,

only three vector information besides the input vector (i.e. current gradient, up-

dated gradient, and updated search direction) are stored in each iteration, and are

linearly convergent. FR has a weakness such as once deterioration in search direc-

tion happens the subsequent iterations become very slow. PR, on the other hand,

may not be monotonically decreasing. In [10], some variants of FR and PR are

described that mitigate the shortcomings.

Limited-Memory Quasi-Newton Method (L-BFGS) maintains compact approx-

imations of Hessian matrices [10]. Instead of storing full dense Hessian matrices,

they save only a few vectors of length equal to the number of input parameters.

The number of vectors stored can be specified by the user. For the constrained

problems, Sequential Quadratic Programming (SQP) using L-BFGS has also been

investigated by employing the same limited-memory formulation to the Hessian of

the Lagrangian function [11].

The non-linear conjugate gradient and Limited-Memory Quasi-Newton require

information of the gradient of objective functions. If they are not obtainable

cheaply or the objective functions are noisy, the application of these gradient based

methods may not be feasible. The following methods are designed to avoid this

problem.

Pattern-Search Methods choose a finite set of search directions at each iter-

ation and evaluate objective function at a given step length along each of these

directions. This is a search over a grid which can be modified at each iteration. If

a point with significant improvement in objective value is found, it is adopted as

a new center point from which a new set of search directions is determined. The

number of function evaluations can be saved, at given iteration, by not computing

all the directions once a point at which substantial improvement occurs is found.

Torczon and Trosset [12] do not recommend using Pattern-Search to high dimen-

sional problems. However, the method is robust against noisy and non-smooth

functions [13] and could potentially be useful if combined with surrogate mod-

els. Local convergence of Pattern-Search Methods is slower compared to gradient

based methods. On the other hand, Pattern-Search Methods are good at locating a

general region of a stationary point from any given starting point [12].

Cooperative Co-evolution decomposes the original problem into sub-components

of lower orders, and solves these sub-components separately. Then a process called

co-adaptation (co-evolution) is performed so as to take into account the interaction

between the input parameters. In [14], the parameters are grouped randomly to

sub-components in each iteration.

In Simultaneous Perturbation Stochastic Approximation (SPSA), the initial de-

sign parameter vector θ of p-dimensions is perturbed simultaneously in every di-

mension i.e., by adding and subtracting. a perturbation vector ∆ of p-dimensions,

INTRODUCTION 7

thus obtaining an estimate of the gradient. Unlike the traditional finite differenc-

ing approach, it only takes two function evaluation to obtain the estimate of the

gradient. Yet, the number of iteration needed for convergence to the optimum is

said to be more or less the same with Finite-Difference Stochastic Approximation

(FDSA) [15], which in essence is an approximate Steepest-Descent Method that

uses finite-differencing to approximate the partial derivatives along each of the p

parameters. Thus, the number of function evaluation of SPSA is p-fold smaller

compared to FDSA [16]. An extension to this method exists to include second-

order (Hessian) effects to accelerate convergence [17, 18].

1.5.2 Surrogate Modeling

This subsection describes surrogate modeling addressing the challenges of con-

structing a representation of the computationally expensive model from sparse

samples i.e. fighting the “curse of dimensionality”.

1.5.2.1 Model Order Reduction

The most straightforward way of fighting the curse is to reduce the model to a

simpler model requiring fewer state variables or parameters.

Screening is a process of identifying influential parameters to the objectives

among all the parameters in consideration. Under the mild interaction assumption

one can employ Fractional Factorial design [19] for this purpose. Morris [20]

proposed a one-at-a-time method which provides qualitative sensitivity analysis

at a cost proportional to the number of random replicates times the number of

dimensions, where number of random replicates tend to be modest (say 4 to 10).

Kernel PCA is a non-linear version of Principal Component Analysis (PCA). It

transforms the input parameter space into a nonlinear feature space (kernel space)

and performs PCA in this space. PCA is a coordinate transformation method that

aligns its axes to the direction of largest variance [21].

High-Dimensional Model Representation (HDMR) is a method to represent a

function with a sum of a set of functions of increasing dimensions [22, 23]. This

lets us decompose a function into elementary effects (i.e. sum of functions de-

pending on one input parameter) and interaction effects (sum of function depend-

ing on 2 or greater number of parameters). Practical engineering experience tells

us that elementary effects and low-order interaction are usually enough to capture

the characteristics of the input - output relations engineers want to model. This

idea of representing the original function with a set of lower dimension functions

is also used in B-WISE model in [24].

In a very high dimensional space, any two random vectors tend to become

close to orthogonal (if you take the inner product of two large random vectors with

the mean value at zero, it tends to zero). Fast Jonson-Lindenstrauss Transform

8 CHAPTER 1

[25] takes this property to project the original high dimensional vectors to a small

number of random vectors.

1.5.2.2 Ensemble Modeling

Ensemble Modeling fits multiple surrogate models to a given set of input-output

data. Committee Machines [26] show some approaches regarding this task: Av-

eraging, Bagging, Boosting, and Mixture of Experts. The benefit of ensemble

modeling is that by using multiple models one can cancel out errors of the indi-

vidual models. Also, each individual may specialize in different sub-domains of

the input space so that local accuracy is improved. Ensemble modeling has been

used in evolving population of surrogate models to find an “optimal” surrogate

model [27].

Model Averaging is a process of taking output from multiple models (one can

fit different surrogate models to the same set of data) and taking a (weighted)

average of them.

In Bagging, K data points are sampled from the original data set of size K with

replacement. It is repeated M times and obtain M different data sets. These data

sets are used to train M different models, the output of which can be averaged.

In Boosting, committee members are trained sequentially, and the training of

particular committee member is dependent on the training and performance of

previously trained members. This is essentially fitting surrogates on the error of

previously fit models.

Mixture of Experts is a system in which each surrogate models (neural net-

works) are responsible for modeling different regions in input space.

Multifidelity Modeling in which expensive simulation model is combined with

cheaper (often semi-empirical) model to alleviate the computational burden is an-

other form of Ensemble Modeling. A successful implementation of this type is

Space Mapping [28]. It performs a mathematical mapping between the spaces of

parameters of two different models, which maps the fine model parameter space to

the coarse model parameter space such that the responses of the coarse model ad-

just for the responses of the fine model within some local modeling region around

the optimal coarse model solution.

1.5.2.3 Distance Metrics

The basic building component of most surrogate models is in the determination

of distance between two samples. According to Denison [29], the Euclidean dis-

tance typically employed in low dimensional space becomes ineffective in a high-

dimensional space.

Fractional Order Distance Metrics is a way to mitigate this curse of dimen-

sionality. While the Euclidian distance is computed as “square-root of sum-of-

INTRODUCTION 9

squares”, often denoted as l2-norm. One can replace the 2 with a fraction or

a real variable p such as lp with p < 1. Although p < 1 violates the mathe-

matical definition of metrics (does not satisfy triangular inequality), Aggarwal et

al. [30] reported that, in high-dimensional space, this improved the performance

of nearest-neighbor classification algorithm compared to that using the Euclidean

distance. Flexer and Schnitzer [31] proposed a method to determine an appropriate

lp-norm from a given dataset for nearest-neighbor classification.

1.5.3 Adaptive Sampling

Adaptive sampling techniques combine the idea of the design of experiment and

optimization. It sequentially determines the next sampling point in the input space

based on some performance information based on the output from the original

function, the output from the surrogate model, or the combination of both.

Efficient Global Optimization (EGO) [32] uses Kriging as the surrogate model.

Since Kriging provides a measure of uncertainty in its predicted output, it is pos-

sible to calculate, given input parameters, how much probability exists in finding

a better point than what has been found so far. EGO searches the input space that

would give the maximum expected improvement (first moment of probability of

improvement) on the Kriging model.

Torczon’s Merit Function [33] subtracts a distance measure from the surrogate

model’s output. The distance measure is the distance between the current point

and the nearest sample in the database defining the surrogate model. Thus, opti-

mizing on merit function avoids sampling at points too close to previously sampled

points. This should provide a balance between exploration and exploitation similar

to EGO.

Local Linear Approximation - Voronoi (LOLA-Voronoi) [34] takes half of its

sampling uniformly in the input space and the remaining half from where the gra-

dient of the response is steep. The gradient is estimated using existing samples in

the database of the surrogate model. Since it performs denser sampling where the

objective function exhibit high non-linearity, the accuracy of the surrogate model

is improved compared to a surrogate model fit on uniform sampling with the same

number of samples.

1.6 Research contributions

1. A new merit function that performs both optimization and space-filling task

(Ch. 2).

2. A new algorithm that adaptively samples from a population density (Ch. 2).

10 CHAPTER 1

3. A new index that shows whether an input variable change has an additive

effect in the output variance or if it has an interaction with other input vari-

ables (Ch. 4).

4. A new adaptive algorithm that facilitates the setup of Simultaneous Pertur-

bation Stochastic Approximation (Ch. 5).

1.7 Publications

The results obtained during this Ph.D. research are published in scientific journals

and presented at a series of international conferences. The following list provides

an overview of the publications during my Ph.D. research.

1.7.1 Publications in international journals

(listed in the Science Citation Index 1)

1. Keiichi Ito, Ivo Couckuyt, Roberto d’Ippolito, Tom Dhaene. De-

sign Space Exploration using Self-Organizing Map Based Adaptive

Sampling. Published in Journal of Applied Soft Computing, DOI:

10.1016/j.asoc.2016.02.036, Vol. 43, pp. 337 - 346, June 2016.

2. Keiichi Ito, Ivo Couckuyt, Silvia Poles, Tom Dhaene. Variance-based inter-

action index measuring heteroscedasticity . Published in Computer Physics

Communications, DOI: 10.1016/j.cpc.2016.02.032, Vol. 203, pp. 152 - 161,

June 2016.

3. Keiichi Ito, Tom Dhaene. Adaptive initial step size selection for Simulta-

neous Perturbation Stochastic Approximation . Published in SpringerPlus,

DOI: 10.1186/s40064-016-1823-3, Vol. 5, No. 1, pp.1 - 18, February 2016.

4. Keiichi Ito, Yoshiaki Hirakawa, Tsugukiyo Hirayama, Tatsumi Sakurai,

Tom Dhaene. Longitudinal Stability Augmentation of Seaplanes in Plan-

ing . Published in AIAA Journal of Aircraft, DOI: 10.2514/1.C033588, Vol.

53, No. 5, pp. 1332 - 1342, September 2016.

1.7.2 Publications in international conferences

(listed in the Science Citation Index 2)

None.

1The publications listed are recognized as ‘A1 publications’, according to the following definition

used by Ghent University: A1 publications are articles listed in the Science Citation Index, the Social

Science Citation Index or the Arts and Humanities Citation Index of the ISI Web of Science, restricted

to contributions listed as article, review, letter, note or proceedings paper.
2The publications listed are recognized as ‘P1 publications’, according to the following definition

used by Ghent University: P1 publications are proceedings listed in the Conference Proceedings Ci-

INTRODUCTION 11

1.7.3 Publications in other international conferences

1. Keiichi Ito, Tom Dhaene, Naji El Masri, Roberto d’Ippolito, Joost Van de

Peer. Self-Organizing Map Based Adaptive Sampling. Published in pro-

ceedings of 5th International Conference on Experiments/Process/System

Modeling/Simulation/Optimization (5th IC-EpsMsO, Athens, Greece, July

3 - 6, 2013), Vol II, pp. 504 - 513, 2013, ISBN:978-618-80527-2-7 or 978-

618-80527-0-3.

2. Keiichi Ito, Yoshiaki Hirakawa, Tsugukiyo Hirayama, Tatsumi Sakurai,

Tom Dhaene. Longitudinal Stability Augmentation of Seaplanes in Plan-

ing. Published in proceedings of AIAA Modeling and Simulation Technolo-

gies Conference (Aviation 2015, Dallas, Texas, June 22 - 26, 2015), DOI:

10.2514/6.2015-2498.

1.7.4 Publications in national conferences

None.

tation Index - Science or Conference Proceedings Citation Index - Social Science and Humanities of

the ISI Web of Science, restricted to contributions listed as article, review, letter, note or proceedings

paper, except for publications that are classified as A1.

12 CHAPTER 1

References

[1] Y. Tenne. A computational intelligence algorithm for simulation-driven op-

timization problems. Advances in Engineering Software, 47:62 – 71, 2012.

[2] T. Ulrich and L. Thiele. Maximizing Population Diversity in Single-objective

Optimization. In Proceedings of the 13th Annual Conference on Genetic

and Evolutionary Computation, GECCO ’11, pages 641–648, New York,

NY, USA, 2011. ACM. Available from: http://doi.acm.org/10.1145/2001576.

2001665, doi:10.1145/2001576.2001665.

[3] A. A. Taflanidis and J. L. Beck. An efficient framework for opti-

mal robust stochastic system design using stochastic simulation. Com-

puter Methods in Applied Mechanics and Engineering, 198(1):88 – 101,

2008. Computational Methods in Optimization Considering Uncertain-

ties. Available from: http://www.sciencedirect.com/science/article/pii/

S0045782508001461, doi:http://dx.doi.org/10.1016/j.cma.2008.03.029.

[4] T. Oden, R. Moser, and O. Ghattas. Computer Predictions with Quantified

Uncertainty, Part I. SIAM News, 43(9):1, November 2010.

[5] Y.-C. Ho, Q.-C. Zhao, and Q.-S. Jia. Ordinal Optimization: Soft Optimization

for Hard Problems. Springer Science+Bussiness Media, 2007.

[6] Y. C. Ho, R. S. Sreenivas, and P. Vakili. Ordinal Optimization of DEDS,

1996.

[7] E. Lau and Y. Ho. Universal Alignment Probabilities and Subset Selection

for Ordinal Optimization. J. Optimization Theory and Applications, 93:455–

489, 1997.

[8] R. Fletcher and C. M. Reeves. Function minimization by conjugate gradients.

The Computer Journal, 7(2):149–154, February 1964. Available from: http:

//dx.doi.org/10.1093/comjnl/7.2.149, doi:10.1093/comjnl/7.2.149.

[9] E. Polak and G. Ribière. Note sur la convergence de méthodes de directions

conjugées. Revue Française d’Informatique et de Recherche Opérationnelle,

16:35 – 43, 1969.

[10] J. Nocedal and S. J. Wright. Numerical Optimization, 2nd. Ed. Springer

Science + Business Media, 2006.

[11] P. E. Gill, W. Murray, and M. A. Saunders. SNOPT: An SQP Algorithm for

Large-Scale Constrained Optimization. SIAM Review, 47(1):99 – 131, 2005.

INTRODUCTION 13

[12] V. Torczon and M. W. Trosset. From Evolutionary Operation to Parallel Di-

rect Search: Pattern Search Algorithms for Numerical Optimization. Com-

puting Science and Statistics, 29:396–401, 1998.

[13] T. G. Kolda, R. M. Lewis, and V. Torczon. Optimization by Direct Search:

New Perspectives on Some Classical and Modern Methods. SIAM Review,

45(3):385 – 482, 2003.

[14] Z. Yang, K. Tang, and X. Yao. Large scale Evolutionary Optimization Using

Cooperative Coevolution. Information Sciences, 178:2985 – 2999, 2008.

[15] J. Kiefer and J. Wolfowitz. Stochastic Estimation of the Maximum of a Re-

gression Function. Annals of Mathematical Statistics, 23:452–466, Septem-

ber 1952.

[16] J. C. Spall. An Overview of the Simultaneous Perturbation Method for Ef-

ficient Optimization. Johns Hopkins APL Technical Digest, 19(4):482–492,

1998.

[17] J. C. Spall. Adaptive Stochastic Approximation by the Simultaneous Per-

turbation Method. Transactions on Automatic Control, 45(10):1839–1853,

October 2000.

[18] X. Zhu and J. C. Spall. A modified second-order SPSA optimization algo-

rithm for finite samples. International Journal of Adaptive Control and Signal

Processing, 16:397–409, 2002.

[19] R. H. Myers and D. C. Montgomery. Response Surface Methodology: Pro-

cess and Product in Optimization Using Designed Experiments. John Wiley

& Sons, Inc., New York, NY, USA, 1st edition, 1995.

[20] M. D. Morris. Factorial sampling plans for preliminary computational ex-

periments. Technometrics, 33:161 – 174, 1991.

[21] S. Marsland. Machine Learning: An Algorithmic Introduction. CRC Press,

New Jersey, USA, 2009.

[22] I. M. Sobol. Global sensitivity indices for nonlinear mathematical models

and their Monte Carlo estimates. Mathematics and Computers in Simulation,

55:271–280, 2001.

[23] H. Rabitz and O. Aliş. General foundations of high-dimensional model

representations. Journal of Mathematical Chemistry, 25:197–233, 1999.

10.1023/A:1019188517934. Available from: http://dx.doi.org/10.1023/A:

1019188517934.

14 CHAPTER 1

[24] P. Gustafson. Bayesian Regression Modeling with Interaction and Smooth

Effects. Journal of the American Statistical Association, 95(451):795 – 806,

September 2000.

[25] N. Ailon and B. Chazelle. Faster Dimension Reduction. Communications of

the ACM, 53(2):97 – 104, February 2010.

[26] V. Tresp. Committee Machines. In Y. H. Hu and J.-N. Hwang, editors, Hand-

book for Neural Network Signal Processing. CRC Press, 2001.

[27] I. Couckuyt, F. D. Turck, T. Dhaene, and D. Gorissen. Automatic Surrogate

Model Type Selection During the Optimization of Expensive Black-Box Prob-

lems. In Proceedings of the 2011 Winter Simulation Conference, pages 4274

– 4284, 2011.

[28] J. W. Bandler, M. Biernacki, and S. H. Chen. Space Mapping Technique for

Electromagnetic Optimization. IEEE Transaction on Microwave Theory and

Techniques, 42(12):2536 – 2544, December 1994.

[29] D. Denison, C. Holmes, B. Mallick, and A. Smith. Bayesian Methods for

Nonlinear Classification and Regression. Wiley Series in Probability and

Statistics. John Wiley & Sons, 2002. Available from: http://books.google.be/

books?id=SIlDWySNuXgC.

[30] C. Aggarwal, A. Hinneburg, and D. Keim. On the surprising behavior of

distance metrics in high dimensional space. Database Theory - ICDT 2001,

Lecture Note in Computer Science, 1973:420–434, 2001.

[31] A. Flexer and D. Schnitzer. Choosing lp norms in high-dimensional spaces

based on hub analysis. Neurocomputing, 169:281 – 287, 2015. Learning

for Visual Semantic Understanding in Big DataESANN 2014Industrial Data

Processing and AnalysisSelected papers from the 22nd European Sympo-

sium on Artificial Neural Networks, Computational Intelligence and Machine

Learning (ESANN 2014)Selected papers from the 11th World Congress

on Intelligent Control and Automation (WCICA2014). Available from:

http://www.sciencedirect.com/science/article/pii/S0925231215004336,

doi:http://dx.doi.org/10.1016/j.neucom.2014.11.084.

[32] D. R. Jones, M. Schonlau, and W. J. Welch. Efficient Global Optimiza-

tion of Expensive Black-Box Functions. Journal of Global Optimization,

13(4):455–492, December 1998. Available from: http://dx.doi.org/10.1023/

A:1008306431147, doi:10.1023/A:1008306431147.

[33] V. Torczon and M. W. Trosset. Using approximations to accelerate engi-

neering design optimization. Technical report, Institute for Computer Appli-

cations in Science and Engineering (ICASE), 1998.

INTRODUCTION 15

[34] K. Crombecq, D. Gorissen, D. Deschrijver, and T. Dhaene. A novel hybrid

sequential design strategy for global surrogate modeling of computer exper-

iments. SIAM Journal on Scientific Computing, 33(4):1948–1974, 2011.

Available from: http://dx.doi.org/10.1137/090761811.

2
Self-Organizing Map Based Adaptive

Sampling

⋆ ⋆ ⋆

K. Ito, I. Couckuyt, R. d’Ippolito, T. Dhaene.

“ Design Space Exploration using Self-Organizing Map Based
Adaptive Sampling ”.

Published in Applied Soft Computing, DOI 10.1016/j.asoc.2016.02.036, vol.

43, pp. 337 - 346, June 2016.

⋆ ⋆ ⋆

In engineering design, a set of potentially competitive designs is conceived

in the early part of the design process. The purpose of this research is to help

such a process by investigating algorithm that enables approximate identification

of a set of inputs of real variables that return desired responses from a function

or a computer simulation. We explore sequential or adaptive sampling methods

based on Self-Organizing Maps (SOM). The proposed method does not rely on

parametrized distributions, and can sample from multi-modal and non-convex dis-

tributions. Furthermore, the proposed merit function provides infill characteristics

by favoring sampling points that lay farther from existing points. The results indi-

cate that multiple feasible solutions can be efficiently obtained by the new adaptive

18 CHAPTER 2

sampling algorithm. The iterative use of the SOM in density learning to identify

feasible or good designs is our new contribution and it shows a very rapid increase

in number of feasible solutions to total number of function evaluation ratio. Ap-

plication examples to planing hull designs (such as in powerboats and seaplanes)

indicate the merits of the feasible region approach to observe trends and design

rules. Additionally, the well distributed sampling points of the proposed method

played favorable effect in improving the prediction performance of a classification

problem learned by Support Vector Machine.

2.1 Introduction

In today’s engineering, it is common practice to use computer simulations to un-

derstand the behavior of complex systems and optimize their parameters to obtain

satisfactory designs before building actual physical prototypes. The goal of an en-

gineer is not only to optimize the systems, but also to understand what makes a

design good. Engineers may also need to deal with simulation models that may

not represent all the effects necessary to make a right decision. The question -

particularly in the early stage of the design process - is often not about finding the

best parameter values, but establishing what parameter values would generate a

satisfactory design. At a more pragmatic simulation level, engineers often confine

the simulation runs to parameter settings for which results are trustworthy [1]. For

example, a simulation may crash or its solution may not converge. Such informa-

tion may not be available until the simulation is running. Furthermore, there are

widespread incentives to reduce the number of simulation runs since high fidelity

simulations often require a lot of time and computational resources as evidenced

in the research of surrogate model based optimization [2–4] and multifidelity op-

timization [5, 6] methods. Our research is motivated by situations in which effi-

cient identification of diverse designs satisfying minimum specifications and un-

derstanding about the problem are more important than finding an accurate single

optimal solution.

We propose a new adaptive sampling algorithm that uses a Self-Organizing

Map (SOM) [7, 8] to perform importance sampling: Self-Organizing Map Based

Adaptive Sampling (SOMBAS). The fundamental idea is an algorithm that learns

to select new samples in the region of interest, using the density learning mech-

anism in SOM. It is similar to Monte Carlo Optimization methods such as Prob-

ability Collectives [9] and Cross-Entropy Methods [10] or Subset Optimization

methods [11, 12]. However, we do not use parameterized probability density func-

tions to represent solutions. Instead, SOM is used to obtain a set of solutions

as represented by the weight vectors in each cell of the map. SOM represents a

densely sampled region as a larger area on the map than a sparsely sampled region.

Therefore, a weight vector can be considered as being analogous to an instance

SELF-ORGANIZING MAP BASED ADAPTIVE SAMPLING 19

of a random vector drawn from a probability density distribution. Furthermore,

these vectors are mutated to improve diversity. The training set can be iteratively

enriched with, or replaced by, new samples that exhibit desirable responses (or

objective values). SOM is retrained in each iteration with the updated training set.

To enhance uniform sampling in the region of interest, a new merit function is also

proposed. The flowchart of SOMBAS is shown in Fig. 2.1.

The idea of using the weight vectors as candidate solutions can also be seen

in [13]. They train SOM from a set of experiments and look for a best candidate

solution from the SOM weight vector. The chosen weight vectors are taken as rep-

resenting an average solution in their respective neighborhoods of good solutions.

However, their method does not entail further sampling, and does not have the

density learning notion. Our new method substantially extends the idea by making

the search process adaptive (i.e. iterates to further explore good solutions).

A preliminary version of SOMBAS was presented in [14]. Current work inves-

tigates the scalability of SOMBAS to high-dimensional problems and application

to a conceptual design example giving extra insights of the parameters on the re-

sults.

SOMBAS does not entail any modification of SOM just as in [15]. Therefore,

different implementations of SOM or other density learning algorithms can be

used instead. It focuses on interesting regions of the input space by modifying

the sample densities. While Kita et al. use SOM to do clustering (niching), we

use SOM to generate new samples according to the density of its training samples.

Their paper shows its advantage in multimodal functions and relative weakness in

non-separable unimodal functions. Our algorithm, on the other hand, shows no

such tendency.

[16] and [17] have proposed a sequential sampling approach that samples uni-

formly from the region of interest specified by upper and lower bounds on the

output. They extended the Efficient Global Optimization (EGO) [18] and used

prediction variances to determine new sampling points that would likely produce

an output in the desired range and away from existing samples. The fundamental

difference between their work and this paper is that we do not fit interpolating sur-

rogate models that require optimization of the surrogate model hyperparameters.

In SOMBAS, no optimality on SOM training is imposed and a user can specify the

number of training iterations. Our novelty is in the application of SOM in adaptive

sampling scheme. This enables us to sample from distributions without the need to

parametrize them. Furthermore, SOM is scalable to high-dimensional input space.

[19] and [20] have proposed algorithms with identical objectives as SOMBAS.

They propose diversity measures in their evolutionary algorithms and explicitly

optimize for this measures. However, their methods involve multidimensional in-

tegrations or matrix inversions that would make the algorithms difficult to apply

in high-dimensional problems. In SOMBAS, diversity is kept by a simple merit

20 CHAPTER 2

Figure 2.1 High level flowchart of SOMBAS.

Input:
objective function,

upper and lower bounds of variables,
setup algorithm’s parameters

Train SOM

Select weight vectors from SOM

Compute objective values of selected weight vectors

Update Training Set

Stop condition met?

Store all sampled points

Output:
training set,
sampled set

Design of Experiment or Random Sampling

Yes

No

Mutate selected weight vectors

function that takes the distance to the nearest-neighbor into account and a mutation

algorithm.

2.2 Self-Organizing Map Based Adaptive Sampling

(SOMBAS)

We use Self-Organizing Maps’(SOM) weight vectors as a representation of a sam-

ple distribution. Typically, SOM is represented as a two-dimensional array of cells

(be it hexagonal or square shaped). Each of these cells has a weight vector associ-

ated with it. In this work, the weight vector is a set of continuous design variables

that represents an instance of a possible new solution. We initially assign random

SELF-ORGANIZING MAP BASED ADAPTIVE SAMPLING 21

numbers to the vector elements. Then, the weight vectors are learned from a given

set of training samples. The trained weight vectors can be considered to be a finite

sample representation of the training sample distribution. The weight vectors wj

are updated using the following equation for a given training sample t.

wj(k + 1) = wj(k) + hcj(k) [t(k)−wj(k)] , (2.1)

where j is a spatial index that identifies the cells in SOM, k is the training iteration

index, hcj is a neighborhood function that depends on the distance between wc

and wj on the map where wc is the closest weight vector to the training sample

t(k) in the Euclidean sense. The neighborhood function decreases as the distance

between the cells becomes far apart on the map. Thus, given a training sample

and the closest matching weight vector, the farther cells on the map receive less

influence of the weight update. The shape and magnitude of hcj(k) are changed

as k increases in such a way that the second term (the weight update term) on the

right-hand side of equation (2.1) reduces the radius and magnitude of influence.

Algorithm 1 shows a high-level description of the Self-Organizing Map Based

Adaptive Sampling. In each iteration, the trained Self-Organizing Map (SOM) pro-

duces new solution candidates and their corresponding objective values. Weight

vector selection is based on these estimated values. Perturbations are applied to

these selected vectors, and their objective values are computed, replacing the es-

timated values. Updating of the training set is performed and a subset of these

selected samples are included in the training set to train the SOM of next iteration.

Algorithm 1 SOM BASED ADAPTIVE SAMPLING

1: Generate N samples to create initial training set

2: while Termination condition not met do

3: Train SOM using the normalized training set

4: for all cells satisfying SELECTION CONDITION do

5: Perturb the weight vectors of the selected cells according to MUTATION

6: end for

7: Un-normalize the perturbed samples

8: Evaluate true output of the perturbed and unperturbed samples

9: UPDATE TRAINING SET

10: end while

The probability of a weight vector being selected depends on how close its

objective value estimate is to the known smallest value. Note that the objective

values in the weight vectors of SOM are estimates. The selection condition is

r < exp

(

ymin − ŷ

T

)

, (2.2)

22 CHAPTER 2

where 0 ≤ r < 1 is a random number drawn from a uniform distribution, ymin is

the smallest output in the training sample, and ŷ is the estimated objective value

from the weight vector. The temperature 0.01 ≤ T ≤ 10 defines how selective

the condition is and a smaller value of T results in fewer new samples added to

the training data set. The pseudocode of this selection condition is given in Algo-

rithm 2.

Algorithm 2 SELECTION CONDITION

1: Let ymin be the smallest output in the training set X , ŷ be output from a cell

weight vector, and T be the selectivity parameter (or Temperature)

2: Generate a uniform random number 0 ≤ r < 1 and check the following:

3: if r < exp
(

ymin−ŷ
T

)

then

4: Corresponding weight vector is selected

5: end if

We consider a case in which we seek to minimize an objective value y below

certain threshold L. Below this threshold, diversity of solutions is sought. In this

paper, we will call such a search as feasible region identification or feasible region

search. One idea is to use a merit function similar to those described in [21]. One

could give a better chance of being selected to points (i.e. cell weight vector) that

are distant from existing training samples regardless of y value. To achieve this,

we propose the following formula for the merit function.

F = max(L, y)− ρmin(‖s− ti‖2), i = 1, 2, · · · , N (2.3)

where s is the input vector for which F needs to be minimized, ti is a set of target

samples from which minimum distance to the input vector s is calculated, N is

the number of such target vectors, and ρ is a weight constant. Unlike Torczon’s

merit function, our merit function incorporates a “truncation” value L below which

only the separation from other target vectors ti matters. To minimize this merit

function, one needs y < L and maximize the distance to the nearest target vector

min(‖s− ti‖2). In our case, target vectors are the training set and the input vector

s is the selected weight vector from SOM. The algorithm to replace the output with

this merit function is described in Algorithm 3. If ŷ is greater than the threshold

L, both ŷ and the new weight vector’s distance from the training set are taken

into account. If ŷ is less than L, then the distance to the nearest training vector

is the only term affecting the objective value and smaller F is obtained when the

weight vector’s distance to the nearest neighbor is larger. The ρ in equation 2.3 is

a positive weighing constant

Mutation, as described in Algorithm 4, is applied to the selected weight vec-

tors. We use the weight vectors as the centers of multivariate Gaussian distribu-

tions. The covariance matrix is obtained from the selected weight vectors. We use

SELF-ORGANIZING MAP BASED ADAPTIVE SAMPLING 23

Algorithm 3 MERIT FUNCTION

1: Let L denote the value below which objective or output y is considered to be

“good enough”, s denote a weight vector (xT , ŷ) from SOM, and ti=1,2,...,N

denote the training samples

2: if Trunc is specified then

3: Normalize L (s, and ti are already normalized)

4: ŷ ← max(L, ŷ)− ρmin(‖s− ti‖2)
5: Normalize ŷ
6: end if

7: Use this ŷ in SELECTION CONDITION

an idea similar to CMA-ES [22] to update the covariance matrices. The covariance

matrix in the current iteration is combined with the covariance matrix computed

in the previous iteration: 0.2C + 0.8Cold. This is to avoid adapting too quickly to

a local minimum. On top of that, we multiply a factor which is different whether

the previous iteration produced a new minimum or not. If the previous iteration

achieved a new minimum, we apply an expansion factor Fe, to which we assign a

real value larger than 1. On the other hand, if the previous iteration did not pro-

duce a new minimum, we multiply a contraction factor Fc, to which we assign a

real value between 0 and 1. The covariance matrix is the same for all the selected

weight vectors. Each weight vector is perturbed by sampling from the multivariate

Gaussian distribution. Mutation is very important to avoid premature convergence

in SOMBAS.

Algorithm 4 MUTATION

1: Let Fc be contraction factor and Fe be expansion factor

2: Let Pm be mutation probability

3: Given training samples, compute covariance matrix C, and let the covariance

matrix from previous iteration be Cold
4: if current ymin < previous ymin then

5: C = Fe (0.2C + 0.8Cold)
6: else

7: C = Fc (0.2C + 0.8Cold)
8: end if

9: For each selected sample, perturb it by sampling from multivariate normal

distribution with center at the selected sample with covariance C.

10: Replace a parameter in the selected vectors with the mutated one at probability

of Pm

After the perturbation of new samples, the training set is updated. Algorithm 5

and Algorithm 6 are two such methods. Algorithm 5 has a faster convergence but

24 CHAPTER 2

Algorithm 5 UPDATE TRAINING SET 1

1: Add the perturbed samples to the training set

2: if Training set sample size larger than maximum sample size then

3: Sort the training set with respect to output value

4: Remove the worst samples to make the training sample size equal to maxi-

mum sample size

5: end if

Algorithm 6 UPDATE TRAINING SET 2

1: for all perturbed weight vectors’ response yp do

2: Randomly pick one of the training sample, and obtain its response yt
3: Obtain dp, the nearest neighbor distance of perturbed sample to sampled

points thus far and dt the nearest neighbor distance of the training sample

to sampled points thus far

4: if max(L, yp) = max(L, yt) and dp > dt then

5: Replace the training sample with the perturbed weight vector

6: else if yp < yt then

7: Replace the training sample with the perturbed weight vector

8: end if

9: end for

is more prone to lose diversity in the training set prematurely compared to Al-

gorithm 6. In the latter method, if max(L, y) of the new perturbed sample and

that of the randomly selected training sample are the same, the replacement of

the selected training sample takes place only if the new perturbed sample has a

larger distance to its nearest neighbor than the distance of the training sample to

its nearest neighbor. Otherwise, the new perturbed sample replaces the training

sample when the new sample has a smaller objective value. The nearest neigh-

bors are searched among all the sampled points. In the next section, we will use

Algorithm 6.

2.3 Experiments

2.3.1 Feasible Region Identification

In this subsection, we consider a constraint satisfaction problem in which there is

a constraint on the objective (to be below a certain threshold value) but one would

like to know what inputs would satisfy this condition. Ideally, one would like

to have as much variety as possible in the collection of inputs that we obtain as

solutions.

The analysis and evaluation of the results are not straightforward because we

SELF-ORGANIZING MAP BASED ADAPTIVE SAMPLING 25

Figure 2.2 Rosenbrock function: sample distribution satisfying objective condi-

tion f ≤ 100.

(a) SOMBAS

− 10 − 5 0 5 10

x1

− 10

− 5

0

5

10

x
2

(b) Differential Evolution

− 10 − 5 0 5 10

x1

− 10

− 5

0

5

10

x
2

do not have established performance measures. [23] and [19] show some possibil-

ities, but they do not scale well to high-dimensional problems or can cause numer-

ical problems in matrix inversion. We first resort to visual cues, and then propose

some performance measures.

We use the two dimensional Rosenbrock function for non-convex region iden-

tification, the two dimensional Rastrigin function for discrete region identification,

and the Hollow Beam [24, p. 35] problem with two design variables for feasible

region with sharp corners. Then we look into 30 and 100 dimensional Rosenbrock

and Rastrigin functions to see the scalability of SOMBAS to high-dimensional

problems.

SOMBAS is compared with Differential Evolution (DE). DE learns from the

distribution of its population to choose the next sampling points. It does not rely

on any parameterized model of the distribution, but the difference vectors adapt

to the objective function landscape. [25, pp. 44 - 47] called this property contour

matching and described it as one of the advantages of DE. Furthermore, it is not

restricted to low dimensional problems as in [19]. Therefore, DE is suited for

the identification of the input regions of the functions described above. The pur-

pose of the comparison is to elucidate differences between the two algorithms that

have similar characteristics, but serve different purposes, namely optimization and

feasible region identification.

In Fig. 2.2 through Fig. 2.4, we visualized different types of feasible domains

and the sampling (shown in cross) inside them. The contour plots show the bound-

aries of the domains.

SOMBAS was able to produce a fairly uniform infill of samples in the 2D

input domain for the functions tested. Since DE also has distribution learning

characteristics, it did very well in the feasible domain infill task.

To base feasible region identification on a more statistical ground, we repeated

26 CHAPTER 2

Figure 2.3 Rastrigin function: sample distribution satisfying objective condition

f ≤ 10.

(a) SOMBAS

− 4 − 2 0 2 4

x1

− 4

− 2

0

2

4

x
2

(b) Differential Evolution

− 4 − 2 0 2 4

x1

− 4

− 2

0

2

4

x
2

Figure 2.4 Hollow Beam function: sample distribution satisfying constraints.

(a) SOMBAS

0 1 2 3 4 5

x1

0.00

0.05

0.10

0.15

0.20

0.25

0.30

x
2

(b) Differential Evolution

0 1 2 3 4 5

x1

0.00

0.05

0.10

0.15

0.20

0.25

0.30

x
2

SELF-ORGANIZING MAP BASED ADAPTIVE SAMPLING 27

Table 2.1 Average Nearest Neighbor Distances and Space Filling Measures of

Sampled Points by SOMBAS and DE.

Function Algorithm
˜̃
d σ̃d Ñs Ñf

Ñs

Ñf

˜̃
d× Ñs

l̃

Ñf

Rosenbrock
SOMBAS 1.14 0.84 207 786 0.27 227 0.30
DE 1.37 1.11 158 689 0.23 213 0.31

Rastrigin
SOMBAS 0.38 0.28 146 1136 0.13 53.3 0.05
DE 0.41 0.31 180 989 0.18 70.4 0.07

Hollow Beam
SOMBAS 0.17 0.11 138 342 0.40 23.1 0.07

DE 0.20 0.13 112 395 0.28 21.8 0.06

the sampling task for each of the three equations 20 times. We terminated the

sampling when all the training sample achieved the objective value f ≤ L, where

L = 100 for Rosenbrock, L = 10 for Rastrigin, and L = 0 for Hollow Beam.

Table 2.1 shows the results. Here,
˜̃
d is the average distance of nearest neighbors.

The tilde on top of the symbol signifies averaging and the nearest neighbor has

two tildes corresponding to the average in the feasible domain and an average

of 20 runs. The Ñf is the average number of function evaluations, Ñs is the

average number of samples in the feasible domain, σ̃d is the average standard

deviation of distances to the nearest neighbors. We also define the feasible rate

Ñs/Ñf , coverage length l̃ =
˜̃
d × Ñs and coverage rate l̃/Ñf . The feasible rate

gives the ratio of the number of feasible samples meeting the truncation value

L to the total number of function evaluations. Higher the better. The coverage

length gives the efficiency of infill. Higher the better. However, since
˜̃
d is scale

dependent, the relative importance of having small Ns but large
˜̃
d or large Ns

but small
˜̃
d will be different from problem to problem. The coverage length is

meaningful only when we compare different methods on the same feasible domain

identification problem. The coverage rate is defined as the coverage length per

function evaluation. The larger the value the better, and it is also scale-dependent.

For these two dimensional examples, DE and SOMBAS did not show marked

difference in performance. SOMBAS showed some advantage in feasible rate for

Hollow Beam and DE showed some advantage in Rastrigin in terms of coverage

length.

In higher dimensional problems, it is often the case that there is no feasible

solution in the beginning. The algorithm has to search and fill the feasible region.

Fig. 2.5 shows the histories of feasible rates with respect to number of function

evaluations Nf . The criteria of feasibility were set to f ≤ 20 × D for Rastrigin

function and f ≤ 5000 × D for Rosenbrock function. Both DE and SOMBAS

were run 20 times. SOMBAS shows very rapid gains in the feasible rate Ns/Nf

28 CHAPTER 2

Figure 2.5 Evolution of Feasible Rate Ns/Nf of SOMBAS and DE on test func-

tions.

(a) Rastrigin 30 dimensions, feasible solution as

f ≤ 600

0 500 1000 1500 2000 2500 3000 3500
Number of function evaluations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fe
a
si
b
le
 R
a
te
 N

s/
N
f

SOMBAS
DE

(b) Rastrigin 100 dimensions, feasible solution as

f ≤ 2000

0 500 1000 1500 2000 2500 3000 3500
Number of function evaluations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Fe
a
si

b
le

 R
a
te

 N
s/

N
f

SOMBAS
DE

(c) Rosenbrock 30 dimensions, feasible solution as

f ≤ 150000

0 500 1000 1500 2000 2500 3000 3500
Number of function evaluations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fe
a
si
b
le
 R
a
te
 N

s/
N
f

SOMBAS
DE

(d) Rosenbrock 100 dimensions, feasible solution as

f ≤ 500000

0 500 1000 1500 2000 2500 3000 3500
Number of function evaluations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Fe
a
si

b
le

 R
a
te

 N
s/

N
f

SOMBAS
DE

compared to DE. Moreover, with the feasibility condition set above, the number

of function evaluations to reach a given feasible rate (below 0.6) is about the same

for both 30-dimensional functions and 100-dimensional functions. However, this

is not the case with DE. For DE, the number of function evaluations necessary to

reach a given feasible rate seems to be proportional to the number of dimensions.

The wiggles on the evolution curves of SOMBAS show that some portion of the

sampled points is infeasible and its proportion varies from iteration to iteration and

eventually stagnates around certain values of feasible rate Ns/Nf . On the other

hand, DE is an optimization algorithm and it keeps searching for lower objective

values. Thus, the wiggles (not visible in the plot) disappear once the populations

are well within the feasible domain. This, in turn, indicates that for DE the feasible

rate Ns/Nf can eventually reach higher rate than SOMBAS as the number of

function evaluations is increased.

SELF-ORGANIZING MAP BASED ADAPTIVE SAMPLING 29

2.3.2 Engineering Application

In this subsection, we present an application example of SOMBAS using a sim-

ulation code for stability analysis of planing crafts [26–28]. This example uses

SOMBAS in a very simplified simulation based design task. A boat or a seaplane

is in a planing condition when it is traveling on water and most of the lifting force

of the water comes from hydrodynamic pressure exerted on its hull, buoyancy

playing minor to negligible role in its steady state equilibrium. In such condition,

the craft may be subject to a dangerous longitudinal oscillation mode called por-

poising. Porpoising is a coupled oscillatory motion between heaving and pitching

that can manifest when seaplanes and power boats are traveling on water at planing

speed. This motion, once manifested, is often unstable and can pose a significant

risk to the safe operation of these vehicles.

We numerically simulated a 1/3 scale towed tank model as reported in [26].

The model was a catamaran, so we employed the half body representation for sim-

plicity. The model was parameterized as a two or seven variable design problem.

The dynamic stability was computed using small perturbation analysis as presented

in Faltinsen’s book [27, chap. 9]. The two degrees of freedom dynamics - pitching

and heaving - were thus represented as a couple of second order differential equa-

tions with respect to time. Then, we use a state-space formulation to represent this

dynamical system as a system of first order differential equations,

ẋ = Kx, (2.4)

where x = [η̇3, η̇5, η3, η5]
T and η3 is a displacement upward and η5 is a pitch-up

rotation. The dot above denotes time derivative. The K is a 4× 4 matrix and con-

tains information about the inertia, damping, and force reactions. By computing

the eigenvalues of this matrix we obtain the stability of this dynamical system. If

one of the eigenvalues has positive real part, it means the system has an unstable

oscillation mode.

In this example, we try to seek a stable design at a given planing speed by

varying the design variables. For the two-design-variable case, we use the longi-

tudinal distance of CG along the keel line lcg measured from the step or transom,

and vertical distance of CG from the keel line vcg. For the seven-design-variable

case we use beam length B, deadrise angle β (in degrees), pitching moment of

inertia I55,thrust line distance f from CG (positive when pitch-up moment re-

sults) and thrust line angle with respect to keel line (positive upwards) ǫ. Fig. 2.6

shows a diagram describing the design variables except the inertial variable I55.

For each design, a trim position needs to be calculated by an iterative root finding

process and then Ks are determined via semi-empirical equations based on the

trim position. Thus, the mapping from design variables to maximum eigenvalues

is non-linear and non-analytical involving loops and branching in the algorithm of

the function. This is a typical situation in engineering applications.

30 CHAPTER 2

Figure 2.6 Diagram of planing hull cut-out.

B

l_cg
vcg

CG

Water Line

L_K

L_C
Spray Root

Side View

Bottom View

Rear View

β

f

ε Thrust Line

τ

Figure 2.7 Contour and scatter plot of the real part of the largest eigenvalues of

oscillation modes (negative values indicate stable modes) with respect to lcg and

vcg, both non-dimensionalized with respect to B.

0 1 2 3 4 5 6 7

lcg/ B

0

1

2

3

4

5

6

7

v
cg
/
B

-0.300

-0
.2

4
0

-0
.2

4
0

-0
.1

8
0

-0
.1

8
0

-0
.1

8
0

-0
.1

2
0

-0
.1

2
0

-0
.1

2
0

-0
.0

6
0

-0
.0

6
0

0
.0

0
0 0

.0
0
0

0
.0

6
0

0
.0

6
0

0
.1

2
0

0
.1

2
0

0
.1

8
0

0
.1

8
0

0.240

Feasible Sapmled Points

Final Training Samples

SELF-ORGANIZING MAP BASED ADAPTIVE SAMPLING 31

Fig. 2.7 shows a contour plot of the largest real part of non-dimensionalized

eigenvalues with respect to lcg and vcg along with sampled points by SOMBAS in

two-design-variable case. SOMBAS was set to search feasible designs by setting

L = 0 in our merit function. That is, if the largest eigenvalue was less than 0, the

design was considered stable and thus satisfactory. The sampled points that satisfy

L < 0 are shown along with the final location of the training samples for SOM.

One can see that there is an interval of lcg that produces unstable designs. There

is also a large domain that is stable. A small portion of the design space near the

transom or very small value of lcg generates stable designs, and most seaplanes

have this configuration to facilitate the pitch up at the moment of take off.

Fig. 2.8a shows a scatter plot matrix of the seven design variable case. The

matrix shows a series of two-dimensional projection plots of the seven design vari-

ables. The dots indicate that sampled designs satisfy the stability condition set by

the value given in L. In other words, any blank region on the map suggests that no

design satisfying the stability criteria has been sampled, which implies that such

region is an unfeasible domain. The lower triangular cells show the absolute values

of correlation coefficients calculated from the sample points satisfying the stability

criteria L = 0. Again, it clearly shows the unstable “band” for lcg at the top row

of the scatter plot matrix. Other parameters do not show clear unfeasible regions.

Further restriction was applied by setting L = −0.3 and the results are shown in

Fig. 2.8b. It shows some interesting trend. For example, vcg tends to lower value

as the eigenvalue becomes more negative. On the other hand, the beam length

B tends to larger values as the eigenvalue becomes more negative. In the current

setup, the deadrise angle β shows a positive correlation with f . Likewise, lcg and

B show a positive correlation.

2.3.3 Machine Learning Application

We continue with the above example, but this time, would like to fit a classifier

on top of the sampled points. If a classifier is constructed, a new point’s feasibil-

ity can be predicted without evaluating the original (possibly expensive) function.

The planing stability example in the previous subsection can be considered as a bi-

nary classification problem once enough number of design points are sampled. We

employed Support Vector Machine (SVM) [29, 30] to learn the classification prob-

lem from the points sampled by SOMBAS, DE, and random sampling. The SVM

can be used to learn the boundary separating the stable and unstable design from

a given set of sampled points and can give a prediction whether a new instance of

design is stable or not.

We run the seven-design-variable case searching for solutions with maximum

eigenvalues of oscillation modes less than −0.3 for a given number of simula-

tion budget, namely 1000, 2000, and 4000. Let us call the designs satisfying this

32 CHAPTER 2

Figure 2.8 Scatter Matrix showing distribution of feasible designs.

(a) Maximum eigenvalues of oscillation modes

less than 0, (Nf = 170, Ns = 132)

l_cg

0.0 1.0 0 5 15 −0.10 0.05 −0.35 −0.15

0.
0

1.
0

0.
0

1.
0

0.12 vcg

0.026 0.10 B

0.
18

0.
24

0
5

15

0.15 0.0063 0.082 beta_deg

0.16 0.056 0.039 0.14 I55
4

6
8

−
0.

10
0.

05

0.33 0.22 0.079 0.13 0.056 f

0.25 0.069 0.16 0.28 0.042 0.35 epsilon

−
0.

04
0.

02

0.0 1.0

−
0.

35
−

0.
15 0.21 0.22

0.18 0.24

0.21 0.077

4 6 8

0.10 0.27

−0.04 0.02

0.099 max_eig

(b) Maximum eigenvalues of oscillation modes

less than −0.3, (Nf = 442, Ns = 123)

l_cg

0.0 0.6 1.2 0 5 15 −0.10 0.05 −0.40 −0.34

0.
8

1.
0

1.
2

0.
0

0.
6

1.
2

0.33 vcg

0.52 0.033 B

0.
19

0.
22

0.
25

0
5

15

0.26 0.032 0.22 beta_deg

0.53 0.06 0.46 0.26 I55

4
6

8

−
0.

10
0.

05

0.16 0.0036 0.16 0.61 0.33 f

0.03 0.011 0.24 0.38 0.099 0.30 epsilon

−
0.

04
0.

02

0.8 1.0 1.2

−
0.

40
−

0.
34

0.15 0.50

0.19 0.22 0.25

0.29 0.11

4 6 8

0.28 0.085

−0.04 0.02

0.10 max_eig

condition as stable designs. A test set with 2000 designs randomly sampled from

the domain is prepared to evaluate the performance of the SVM classifiers. For

performance measure, we use the F1 score, which is defined as follows.

F1 = 2 · P ·R
P +R

, (2.5)

where, in our case, the precision P is the proportion of stable designs (according

to the simulation) among all designs predicted as stable (by a classifier) in the test

set, and the recall R is the proportion of designs correctly predicted as stable (by a

classifier) among all the stable designs in the test set (according to the simulation).

In this measure, too liberal (e.g., P ≃ 0, R ≃ 1) or too conservative (e.g., P ≃ 1,

R ≃ 0) classifiers get low score values. F1 = 1 means perfect prediction.

In the top row of Fig. 2.9, we have shown the distribution of F1 obtained by

fitting Support Vector Machines (SVM) to the sampled points from SOMBAS, DE,

and random sampling. The box plots of F1 was computed from 20 independent

runs of each of the three sampling methods. The figures 2.9a, 2.9b, and 2.9c show

the results of different function evaluation budgets of the planing craft simulation,

1000, 2000, and 4000 respectively. In the bottom row of Fig. 2.9, we have the box

plots of feasibility rates Ns/Nf of the three sampling methods at corresponding

sampling budgets.

In Fig. 2.9, we observe two trends. The first trend is that the F1 scores for

SVM on SOMBAS and random samples increases as sampling budget increases

from 1000 to 4000 while the improvement of SVM on DE is rather small if any

and the first and the third quartile of the F1 scores remain between 0.7 and 0.8. The

second trend is that, contrary to the F1 scores, the feasible rates Ns/Nf for DE

SELF-ORGANIZING MAP BASED ADAPTIVE SAMPLING 33

Figure 2.9 Planing stability prediction performance of Support Vector Machine

using samples from SOMBAS and DE. Box plots show the distributions of 20

independent runs at budgets of 1000, 2000, and 4000 function evaluations.

(a) (b) (c)

(d) (e) (f)

increases from around 0.5 to around 0.7 while those for SOMBAS increases very

little staying around 0.3 and those for random sampling stays practically constant

at 0.07.

These two trends are due to the fact that DE is minimum seeking and SOM-

BAS and random sampling are space filling. Since SOMBAS searches and fills out

the feasible region, the feasible rates reached higher values than those of random

sampling. On the other hand, being space filling in the feasible domain, SOM-

BAS inevitably keeps sampling also from the infeasible domain, because when

the mutation happens one does not know if the perturbed points will lie inside the

feasible domain. This causes the stagnation of the feasible rate Ns/Nf , but it is

beneficial for a classification model as evidenced by superior F1 scores in Fig. 2.9b

and in Fig. 2.9c. In principle, the F1 score of SVM using random sampling should

eventually catch up with that of SOMBAS as the number of sampled points is in-

creased. On the other hand, DE (or any optimization method) keeps searching for

the smaller response and the sampling concentrates around the points with mini-

mal responses. Since this trend does not help in defining the boundary between

feasible and infeasible, the F1 score stagnates after a certain number of function

evaluations, but the feasible rate Ns/Nf will keep increasing if the minimum is in

the interior of the feasible domain.

Table 2.2 to Table 2.4 summarize the results of the significance of differences

in F1 score and feasible rate Ns/Nf distributions among different sampling meth-

ods and sampling budgets in Fig. 2.9. Wilcoxon Rank Sum Test was used. In

34 CHAPTER 2

Table 2.2 Hypothesis test of shift in F1 score distributions in Fig. 2.9 among dif-

ferent sampling methods (p-values shown in the bracket)

Sampling Methods 1000 eval. 2000 eval. 4000 eval.

SOMBAS vs. DE Null(0.841) Alt.(3.407e− 07) Alt.(1.451e− 11)
SOMBAS vs. Random Alt.(3.926e− 05) Alt.(1.281e− 06) Alt.(1.233e− 07)
DE vs. Random Alt.(1.831e− 05) Null(0.2852) Alt.(1.917e− 05)

Table 2.3 Hypothesis test of shift in F1 score distributions in Fig. 2.9 among dif-

ferent sampling budgets (p-values shown in the bracket)

No. Function Evaluations SOMBAS DE Random

1000 vs. 2000 Alt.(1.407e− 09) Null(0.1555) Alt.(2.952e− 07)
2000 vs. 4000 Alt.(1.061e− 07) Null(0.3104) Alt.(1.407e− 05)
1000 vs. 4000 Alt.(1.451e− 11) Alt.(0.03264) Alt.(6.786e− 08)

this test, the parametric distributions of two random variables are not assumed and

sample size of the two variables can be different. It tests whether the distribution

of the two random variables, say X and Y, are the same after a translation of size

k. That is,

P (X < x) = P (Y < x+ k) (2.6)

for all x. The null hypothesis is k = 0 and the alternative hypothesis is k 6= 0.

The hypothesis tests in Table 2.2 support (at 0.05 significance level) that the

shifts in distributions of F1 scores exist between SVM obtained from SOMBAS

and DE in Fig. 2.9b and in Fig. 2.9c. The improvement of F1 scores of random

sampling based SVM relative to F1 scores of DE based SVM (from Fig. 2.9a to

Fig. 2.9c) is also supported by the significance test.

Table 2.3 summarizes whether F1 score distributions in Fig. 2.9 differ between

sampling budgets 1000, 2000, and 4000 function evaluations. For SOMBAS and

random sampling, the shifts in the distributions were detected. On the other hand,

the null hypothesis was not rejected for DE when the budget was increased from

1000 to 2000 and from 2000 to 4000, although between 1000 and 4000 the alter-

native hypothesis of k 6= 0 was supported. This supports the observation that the

increase in F1 score of SVM using samples from DE is not as rapid as those of the

remaining two sampling methods.

Table 2.4 shows whether the shift in the distribution of the feasible rate Ns/Nf

exists between different sampling budgets. For SOMBAS null hypothesis was kept

between 2000 and 4000 function evaluations. For random sampling, no shifts in

the distributions were detected among the three sampling budgets. On the other

hand, shifts were supported for all the three comparisons for DE. This supports

SELF-ORGANIZING MAP BASED ADAPTIVE SAMPLING 35

Table 2.4 Hypothesis test of shift in the feasible rate Ns/Nf distributions in

Fig. 2.9 among different sampling budgets (p-values shown in the bracket)

No. Function Evaluations SOMBAS DE Random

1000 vs. 2000 Alt.(0.01674) Alt.(6.767e− 08) Null(0.6259)
2000 vs. 4000 Null(0.6017) Alt.(1.427e− 07) Null(0.1675)
1000 vs. 4000 Alt.(0.04018) Alt.(6.767e− 08) Null(0.8497)

along with Fig. 2.9 that DE’s feasible rate Ns/Nf kept increasing when the sam-

pling budget increased. On the other hand, the feasible rate for SOMBAS stagnated

and that of the random sample showed no shift in distribution (which was expected

from the law of large numbers).

2.4 Conclusions

SOMBAS is able to select samples in the design space below a given threshold

value, and in addition, it is able to do so in a space-filling way. Our approach to

feasible region identification is different from binary classification methods in Ma-

chine Learning. Classification methods require both positive and negative samples

from the outset of the learning iteration. SOMBAS, on the other hand, will search

for feasible regions, even if all of the initial training samples were unfeasible.

SOMBAS’ efficient acquisition of feasible solutions in higher dimensions,

namely for the 30 and 100-dimensional Rastrigin function and Rosenbrock func-

tion, was shown to be superior to DE. It can be argued that feasible region iden-

tification becomes identical to optimization when the feasible region becomes in-

finitesimally small. For example, we could set f ≤ 10−6 as the feasible region in

the 30-dimensional Rastrigin function. In this case, DE would be a better choice.

Further research is needed to understand the relationship between accurately find-

ing an optimum point and efficiently identifying a feasible region.

In the engineering example, we identified input values that generate satisfac-

tory designs. By looking at multiple solutions, it enabled the extraction of design

knowledge regarding how the design parameters interact under certain stability

criteria. This is a significant advantage with respect to standard optimization tech-

niques.

In the application SOMBAS in Machine Learning example, in which Support

Vector Machine was used to learn a binary classification model from the sampled

data, the accuracy of prediction improved as the number of samples increased and

the number of feasible samples for a given function evaluation budget was substan-

tially higher than the random sampling. On the other hand, DE achieved a steady

36 CHAPTER 2

increase in the proportion of number feasible samples (feasible rate Ns/Nf) while

the accuracy of prediction (F1 score) stagnated as the number of data increased.

It would be beneficial to investigate the merit of applying SOMBAS to different

Machine Learning tasks and methods.

2.5 Acknowledgments

Keiichi Ito has been funded by the Institute for the Promotion of Innovation through

Science and Technology (IWT) through the Baekeland Mandate program. Ivo

Couckuyt is a post-doctoral research fellow of the Research Foundation Flanders

(FWO). This research has also been funded by the Interuniversity Attraction Poles

Programme BESTCOM initiated by the Belgian Science Policy Office.

Appendix

2.A Test Functions

In the following, we describe the test functions used in this paper. The θ∗ denotes

the globally optimum solution vector, and f(θ∗) its response value. The D denotes

the number of dimensions. The upper and lower bounds of θ s are by default

−10 ≤ θj ≤ 10 where θ = [θ0, θ1, . . . , θD−1]
T .

Rosenbrock

f(θ) =

D−2
∑

j=0

(

100(θj+1 − θ2j)
2 + (θj − 1)2

)

, (2.7)

j = 0, 1, . . . , D − 1, D > 1,

f(θ∗) = 0, θ∗j = 1.

Rastrigin

f(θ) =
D−1
∑

j=0

(

θ2j − 10 cos(2πθj) + 10
)

, (2.8)

j = 0, 1, . . . , D − 1,

f(θ∗) = 0, θ∗j = 0.

Hollow Beam

Let

w = 88.9θ0θ1 − 17.8,

g1 = 0.0885− θ0θ1,

g2 = 0.994− θ0,

g3 = 0.05− θ1.

If g1 > 0 or g2 > 0 or g3 > 0,

f(θ) = max(0, g1) + max(0, g2) + max(0, g3), (2.9)

else,

f(θ) = w. (2.10)

38 CHAPTER 2

Table 2.B.1 Parameters setups for DE for the three test functions in Table 2.1

Function NP CR F
Rosenbrock 45 0.9 0.5

Rastrigin 35 0.2 0.8
Hollow Beam 30 0.65 0.75

Table 2.B.2 Parameters setups for SOMBAS for the three test functions in Ta-

ble 2.1

Function L ρ NT SOM size T Pmutation Fe Fc

Rosenbrock 100 2.0 45 6× 6 0.5 1.0 2.0 0.5
Rastrigin 10 2.0 35 6× 6 0.5 1.0 2.0 0.5

Hollow Beam 0 2.0 30 6× 6 0.5 1.0 2.0 0.5

For this problem, the objective is to find θ = [θ1, θ2]
T such that f(θ) < 0. The

lower and upper bounds of θs for this problem are 0 < θ0 ≤ 5, 0 < θ1 ≤ 0.3.

2.B Parameter Setups

In the following tables, column name NP signifies number of population in DE

and NT signifies number of training samples for Self-Organizing Maps in SOM-

BAS. F and CR are scale factor and cross-over probability as typically defined for

the classical DE [25, pp. 38,39]. The number of iteration for the Self-Organizing

Map was set between 10 and 40 with no appreciable effect on the results whether

one set the number to 10 or 40. The parameter setups of DE and SOMBAS for the

feasible region identification in Table 2.1 are given in Table 2.B.1 and Table 2.B.2

respectively.

For SOMBAS, the parameters were set up such that the number of feasible

solutions Nf would be more or less the same as those of DE.

Fig. 2.5 was created with with the setups described in Table 2.B.3 for DE and

Table 2.B.4 for SOMBAS. In the engineering example of planing craft stability, we

setup SOMBAS as L = 0, or − 0.3, ρ = 0.1, NT = 36, SOM size = 6× 6, T =

1, Pmutation = 1, Fe = 2.0, Fc = 0.75.

The subsequent results of SVM classification problem were obtained using

SVC function in “scikit-learn” module [29] with Radial Basis Function (RBF)

kernel, penalty parameter C = 10000 and kernel coefficient γ = 0.5. The DE

and SOMBAS parameters for the Machine Learning problem shown in Fig. 2.9

are given in Table 2.B.5 and Table 2.B.6 respectively. The random sampling was

done using a uniform random number generator in Python.

SELF-ORGANIZING MAP BASED ADAPTIVE SAMPLING 39

Table 2.B.3 Parameters setups for DE for Fig. 2.5

Function NP CR F
Rosenbrock 35 0.9 0.5

Rastrigin 35 0.2 0.8

Table 2.B.4 Parameters setups for SOMBAS for Fig. 2.5

Function L ρ NT SOM size T Pmutation Fe Fc

Rosenbrock 5000×D 1.0 35 6× 6 1 1.0 1.2 0.15
Rastrigin 20×D 1.0 35 6× 6 1 1.0 2.0 0.15

Table 2.B.5 Parameters setups for DE for Fig. 2.9

Function NP CR F
Planing Craft 40 1.0 0.75

Table 2.B.6 Parameters setups for SOMBAS for Fig. 2.9

Function L ρ NT SOM size T Pmutation Fe Fc

Planing Craft −0.3 0.2 40 5× 5 4 1.0 1.2 1.0

40 CHAPTER 2

References

[1] Y. Tenne. A computational intelligence algorithm for simulation-driven op-

timization problems. Advances in Engineering Software, 47:62 – 71, 2012.

[2] A. J. Keane and P. B. Nair. Computational Approach for Aerospace Design.

John Wiley & Sons, 2005.

[3] I. Couckuyt, F. D. Turck, T. Dhaene, and D. Gorissen. Automatic Surrogate

Model Type Selection During the Optimization of Expensive Black-Box Prob-

lems. In Proceedings of the 2011 Winter Simulation Conference, pages 4274

– 4284, 2011.

[4] B. Liu, Q. Zhang, and G. G. E. Gielen. A Gaussian Process Surrogate Model

Assisted Evolutionary Algorithm for Medium Scale Expensive Optimization

Problems. IEEE Transaction on Evolutionary Computation, 18(2):180 – 192,

April 2014. doi:10.1109/TEVC.2013.2248012.

[5] S. Koziel and L. Leifsson. Surrogate-Based Aerodynamic Shape Optimiza-

tion by Variable-Resolution Models. AIAA Journal, 51(1):94 – 106, 2013.

doi:10.2514/1.J051583.

[6] N. Courrier, P.-A. Boucard, and B. Soulier. The use of partially converged

simulations in building surrogate models. Advances in Engineering Soft-

ware, 67:186–197, 2014.

[7] J. Kangas and T. Kohonen. Developments and applications of the self-

organizing map and related algorithms. Mathematics and Computers in Sim-

ulation, 41:3 – 12, 1996.

[8] T. Kohonen. Essentials of the Self-organizing Map. Neural Networks, 37:52–

65, January 2013. Available from: http://dx.doi.org/10.1016/j.neunet.2012.

09.018, doi:10.1016/j.neunet.2012.09.018.

[9] D. Rajnarayan, D. Wolpert, and I. Kroo. Optimization Under Uncertainty Us-

ing Probability Collectives. In 11th AIAA/ISSMO Multidisciplinary Anal-

ysis and Optimisation Conference, Portsmouth, Virginia, 6 - 8 September

2006.

[10] D. P. Kroese, S. Porotsky, and R. Y. Rubinstein. The Cross-Entropy Method

for Continuous Multi-Extremal Optimization. Methodology and Computing

in Applied Probability, 8:383 – 407, 2006.

[11] A. A. Taflanidis and J. L. Beck. An efficient framework for opti-

mal robust stochastic system design using stochastic simulation. Com-

puter Methods in Applied Mechanics and Engineering, 198(1):88 – 101,

SELF-ORGANIZING MAP BASED ADAPTIVE SAMPLING 41

2008. Computational Methods in Optimization Considering Uncertain-

ties. Available from: http://www.sciencedirect.com/science/article/pii/

S0045782508001461, doi:http://dx.doi.org/10.1016/j.cma.2008.03.029.

[12] A. Taflanidis and J. Beck. Stochastic Subset Optimization for

optimal reliability problems. Probabilistic Engineering Me-

chanics, 23(2 - 3):324 – 338, 2008. 5th International Confer-

ence on Computational Stochastic Mechanics. Available from:

http://www.sciencedirect.com/science/article/pii/S0266892007000501,

doi:http://dx.doi.org/10.1016/j.probengmech.2007.12.011.

[13] M. Liukkonen, E. Havia, H. Leinonen, and Y. Hiltunen. Quality-oriented

optimization of wave soldering process by using self-organizing maps.

Applied Soft Computing, 11(1):214 – 220, 2011. Available from:

http://www.sciencedirect.com/science/article/pii/S1568494609002245,

doi:http://dx.doi.org/10.1016/j.asoc.2009.11.011.

[14] K. Ito, T. Dhaene, N. E. Masri, R. d’Ippolito, and J. V. de Peer. Self-

Organizing Map Based Adaptive Sampling. In Proceedings of 5th In-

ternational Conference on Experiments/Process/System Modeling/Simula-

tion/Optimization (5th IC-EpsMsO), volume II, pages 504 – 513, Athens,

Greece, July 3 - 6 2013. ISBN:978-618-80527-2-7 or 978-618-80527-0-3.

[15] E. Kita, S. Kan, and Z. Fei. Investigation of self-organizing map for genetic

algorithm. Advances in Engineering Software, 41:148 – 153, 2010.

[16] I. Couckuyt, J. Aernouts, D. Deschrijver, F. Turck, and T. Dhaene. Identifica-

tion of quasi-optimal regions in the design space using surrogate modeling.

Engineering with Computers, 29(2):127–138, 2013. Available from: http:

//dx.doi.org/10.1007/s00366-011-0249-3, doi:10.1007/s00366-011-0249-3.

[17] D. Gorissen, K. Crombecq, I. Couckuyt, T. Dhaene, and P. Demeester. A

Surrogate Modeling and Adaptive Sampling Toolbox for Computer Based

Design. Journal of Machine Learning Research, 11:2051 – 2055, July 2010.

[18] D. R. Jones, M. Schonlau, and W. J. Welch. Efficient Global Optimiza-

tion of Expensive Black-Box Functions. Journal of Global Optimization,

13(4):455–492, December 1998. Available from: http://dx.doi.org/10.1023/

A:1008306431147, doi:10.1023/A:1008306431147.

[19] M. Emmerich, A. H. Deutz, and J. Kruisselbrink. On Quality Indicators for

Black-Box Level Set Approximation. In EVOLVE- A Bridge between Prob-

ability, Set Oriented Numerics and Evolutionary Computation, volume 447

of Studies in Computational Intelligence, pages 157–185. Springer Berlin

Heidelberg, 2013.

42 CHAPTER 2

[20] T. Ulrich and L. Thiele. Maximizing Population Diversity in Single-objective

Optimization. In Proceedings of the 13th Annual Conference on Genetic

and Evolutionary Computation, GECCO ’11, pages 641–648, New York,

NY, USA, 2011. ACM. Available from: http://doi.acm.org/10.1145/2001576.

2001665, doi:10.1145/2001576.2001665.

[21] V. Torczon and M. W. Trosset. Using approximations to accelerate engi-

neering design optimization. Technical report, Institute for Computer Appli-

cations in Science and Engineering (ICASE), 1998.

[22] N. Hansen and A. Ostemeier. Adapting Arbitrary Normal Mutation Distri-

butions in Evolution Strategies: The Covariance Matrix Adaptation. In Pro-

ceedings of the 1996 IEEE Conference on Evolutionary Computation, pages

312 – 317, 1996.

[23] A. R. Solow and S. Polasky. Measuring biological diversity. Environmental

and Ecological Statistics, 1(2):95–103, 1994. Available from: http://dx.doi.

org/10.1007/BF02426650, doi:10.1007/BF02426650.

[24] P. Y. Papalambros and D. J. Wilde. Principle of Optimal Design. Cambridge

University Press, 2000.

[25] K. Price, R. M. Storn, and J. A. Lampinen. Differential Evolution: APractical

Approach to Global Optimization. Springer, 2005.

[26] Y. Hirakawa, T. Takayama, A. Kosaki, H. Kikuchi, T. Hirayama, and T. Saku-

rai. Model Experiment of a Suppression-System for Wave Impact and Por-

poising Phenomena. Conference Proceedings of The Japan Society of Naval

Architects and Ocean Engineers (in Japanese), 3:239–242, 2006.

[27] O. M. Faltinsen. Hydrodynamics of High-Speed Marine Vehicles. Cambridge

University Press, 2005.

[28] K. Ito, Y. Hirakawa, T. Hirayama, T. Sakurai, and T. Dhaene. Longitudinal

Stability Augmentation of Seaplanes in Planing. In Proceedings of AIAA

Modeling and Simulation Technologies Conference (Aviation 2015), Dallas,

Texas, June 22 - 26 2015. AIAA.

[29] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,

M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,

D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Ma-

chine Learning in Python. Journal of Machine Learning Research, 12:2825–

2830, 2011.

[30] V. N. Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag,

2nd edition, 1995.

3
SOMBAS in Optimization

⋆ ⋆ ⋆

K. Ito, I. Couckuyt, and T. Dhaene.

“Optimization of High-Dimensional Expensive Problems Using
Self-Organizing Map Based Adaptive Sampling”.

To be submitted

⋆ ⋆ ⋆

Surrogate model based optimization is an effective way of minimizing an objec-

tive of expensive functions. The drawback of this approach is that it is not scalable

to large input dimensions. We approach this problem using the density learning

characteristics of Self-Organizing Maps. The proposed algorithm learns and adds

new samples in the domains where outputs are favorable, progressively increasing

the density of sample points in these regions. For the functions tested, the proposed

method has shown competitive advantages over two evolutionary algorithms and

one state-of-the-art surrogate model assisted evolutionary algorithm as the input

variable dimensionality grew from 20 to 100. Our results show that our density

learning approach can be an effective alternative to the conventional surrogate

model learning approach.

44 CHAPTER 3

3.1 Introduction

Increasingly complex computational models are being used in engineering. These

models often require a large number of variables to be tuned in design optimiza-

tion. Moreover, high-fidelity simulation models take longer to compute which

limits the number of runs that can be performed in a reasonable amount of time.

These situations pose a challenging situation for the optimization tasks. Surrogate

model based optimization methods [1–4] has been a major way to tackle these ex-

pensive objective functions but the management of surrogate models remained a

challenge when the input variables were large. Liu et al. [4] tackled this challenge

by incorporating a dimension reduction (Sammon Mapping) before the Gaussian

Process surrogate modeling to mitigate the so-called “curse of dimensionality”.

Differential Evolution was used for optimization. A similar approach but without

using surrogate models was taken by Boschetti [5]. He reduced the input space

dimension using a Local Linear Embedding (LLE) and employed Genetic Algo-

rithm (GA) or Particle Swarm Optimization (PSO) for optimization. Surrogate

models and dimension reductions are two ways of optimizing either expensive

(i.e. a small number of function evaluations) or high-dimensional problems. How-

ever, optimization methods for expensive and high-dimensional functions are rare

to the authors’ knowledge.

3.2 Method

We tackle the problem of optimizing expensive functions with high-dimensional

input space. We consider a situation in which it is desired to reduce the objective

value as much as possible in a limited number of function evaluation. We will

approach the problem not by using surrogate models that interpolate the data points

but by learning the region inside the input space where a small output is likely

to result, that is, by density learning. We use the Self-Organizing Map Based

Adaptive Sampling (SOMBAS) [6, 7] to do this. We set the “truncation” value L in

SOMBAS to the known optimal value of well-known test function and investigate

how much it reduces the objective value in a given number of function evaluation

budget. The truncation value L is a parameter that you can set up for SOMBAS

to let the algorithm search for diversity (i.e. maximize distance to nearest sampled

points instead of minimizing the objective value) when the objective values are

below the value given in L.

Note that in SOMBAS, the learning of interesting input region is done using

Self-Organizing Map (SOM). The learning cost of SOM increases linearly with re-

spect to the number of dimensions and O(NT ·NC) with respect to the number of

sample points, where NT is the number of training samples and NC is the number

of cells (or weight vectors) in SOM. Both NT and NC can be set by the user at

SOMBAS IN OPTIMIZATION 45

a convenient size (typically in the order of 10 or 100) and training SOM does not

entail any inversion of matrices. Furthermore, the density learning with SOM does

not have to be accurate and a small number of iterations (typically in the order

of 10) of batch learning suffices. The cost for the training sample updating in a

feasible region search is at most O(NT ·Nf), where Nf is the number of function

evaluation performed up to the iteration in question. However, in optimization, the

cost of the training sample updating is O(NT ·NC) because the nearest neighbor

distances d are not calculated (i.e., objective values are not below the truncation

value L). The inversion of the covariance matrix in multivariate Gaussian per-

turbations performed on the candidate samples scale as O(D3), where D is the

number of dimensions. However, the inversion is performed only once per itera-

tion and SOMBAS has been tested to work with D of up to 1000. The inversion

cost of the covariance matrix is negligible up to this number of dimensions. In this

work, we deal with D of up to 100 to see how the optimization performance scales

with respect to D under a limited number of function evaluation budget.

3.3 Experiments

We take two steps. In the first step, we look at the convergence characteristics of

SOMBAS. In the second step, we focus on optimization under very limited func-

tion evaluation budgets and at different numbers of input dimensions. To inves-

tigate the optimization capability of SOMBAS, We used the following functions:

Rosenbrock, Rasgtrigin, Rotated Ellipsoid, Ackley, Manevich, Griewank, and El-

lipsoid. These functions are described in 3.A.

The result is compared with those of the popular Differential Evolution (DE) in

the first step, and with DE, Evolution Strategy (ES), and Gaussian Process Surro-

gate Model Assisted Evolutionary Algorithm for Medium-Scale Computationally

Expensive Optimization Problems (GPEME) [4] in the second step. For DE and

ES, we employed the classical DE1 (or DE/rand/1/bin) as described in [8, 9] and

Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [10]. These two al-

gorithms are well documented and readily available [11, 12]. The stopping criteria

for the benchmark functions were the best solution reaching the objective value

below 1.0 × 10−6, or a maximum number of function evaluations reached, or the

difference between the worst sample and the best sample in the solution set be-

comes less than 1.0× 10−6. We will call this the “gap tolerance”. The solution set

refers to the training set in SOMBAS and the population in DE.

Optimization was run multiple times and average value of the number of func-

tion evaluations Ñf and average minimum objective value reached f̃min were

computed. The global minima of the seven functions are 0 and the corresponding

input values are xi = 1, i = 1, · · · , D for Rosenbrock and Manevich and xi = 0

for the remaining three functions. The D denotes the number of dimensions.

46 CHAPTER 3

For the 30 dimensional problems (D = 30) shown in Table 3.1, the number of

training samples in SOMBAS and the population sizes of DE were set to be equal,

between 20 and 45, depending on the function to be minimized. We review the

performance of optimization methods at three different numbers of function eval-

uations: 2,000, 20,000 and 200,000. Since both SOMBAS and DE have multiple

solutions computed at each iteration, the actual numbers of function evaluations

are always larger than the stopping conditions. Table 3.1 summarizes the mean of

minimum function values reached and mean number of function evaluations per-

formed. For 2,000 and 20,000 function evaluation runs, the numbers are average

of 20 runs and for the 200,000 they are the average of 5 runs. Upper and lower

bounds of inputs to the test functions were set to −10 and 10 respectively.

Table 3.1 Optimization results of 30 dimensional functions after 2,000, 20,000,

and 200,000 function evaluations (average of 20 runs). The mean of minimum

objectives obtained in 20 runs is shown under f̃min and the standard deviation of

the minimum objectives is shown in the brackets. Entries with “n.a.” indicate that

optimizations have already converged.

SOMBAS DE

Function Ñf f̃min(Std.) Ñf f̃min(Std.)

Rosenbrock 2019 193(15.2) 2025 4.25e+ 05(1.81e+ 05)
Rastrigin 2013 189(18.9) 2030 293(23.1)

Rotated Ellipsoid 2003 63.5(19.4) 2010 418(62.3)
Ackley 2005 4.08(0.373) 2020 6.12(0.371)

Manevich 2014 0.0177(0.0161) 2010 0.101(0.0319)
Rosenbrock 20018 59.4(18.80) 20025 683(351)

Rastrigin 20014 48.1(50.9) 20020 76.8(9.44)
Rotated Ellipsoid 20012 5.55(2.50) 20010 18.3(7.43)

Ackley 17691 1.48(1.05) 20020 0.000373(6.25e− 05)
Manevich 14310 1.45e− 06(1.86e− 06) 13163 9.41e− 07(5.28e− 08)

Rosenbrock 190155 3.12(2.58) 200025 7.21(1.26)
Rastrigin 63723 18.7(4.38) 115031 8.97e− 07(9.52e− 08)

Rotated Ellipsoid 200011 0.000399(0.000561) 152358 9.65e− 07(3.77e− 08)
Ackley n.a. n.a. 31104 9.60e− 07(1.54e− 08)

Manevich n.a. n.a. n.a. n.a.

In Table 3.1, we observe that the Ackley and the Manevich functions converge

prematurely for SOMBAS while the Manevich function converges successfully in

about 13,000 function evaluations for DE. It also shows that by 200,000 function

evaluations DE has minimized the function values below the 1.0× 10−6 threshold

except for the Rosenbrock function. For SOMBAS, Rastrigin converged to local

optima and the Rotated Ellipsoid function has not converged at 200,011 evalua-

tions. Roughly speaking, DE seems to be more accurate when we have function

evaluation counts of over 200,000. On the other hand, the minimum objective val-

ues achieved by SOMBAS seems to be smaller compared to those of DE when the

numbers of function evaluations are less than 20,000.

SOMBAS IN OPTIMIZATION 47

Since the above results were obtained with the number of training samples of

SOMBAS equal or similar to the population sizes of DE that were found in [8,

9], we performed optimization runs with a larger number of training samples and

population size. In particular, we modified the number of function evaluations to

2000 and the number of training samples of SOMBAS and the population size of

DE to 900 while all the remaining parameters were kept the same. Results are

shown in Table 3.2. It clearly shows that the minimum function values found by

SOMBAS are substantially better than those found by DE. Also, compared to the

function values attained in Table 3.1, DE has shown greater increases in function

values compared to the increases for SOMBAS.

Table 3.2 Effect of a large number of training samples for SOMBAS and popula-

tion size for DE (900) in optimization of 30-dimensional functions for relatively

small number of function evaluations (2000) (average of 20 runs). The mean of

minimum objectives obtained in 20 runs is shown under f̃min and the standard

deviation of the minimum objectives is shown in the brackets.

SOMBAS DE

Function Ñf f̃min(Std.) Ñf f̃min(Std.)

Rosenbrock 2283 201(4.08) 2700 1.33e+ 06(2.36e+ 05)
Rastrigin 2083 219(15.4) 2700 732(37.8)

Rotated Ellipsoid 2379 11.9(16.1) 2700 533(73.2)
Ackley 2353 2.38(0.270) 2700 12.5(0.284)

Manevich 2196 0.0982(0.0282) 2700 3.41(0.979)

In the second step of this subsection, we focused on the optimization scenario

with a very limited function evaluation budget. Here, different numbers of dimen-

sions as well as numbers function evaluations were investigated. On the same five

functions investigated so far, optimizations were performed in 5, 50, and 100 di-

mensions with function evaluation budgets of 2, 5, and 10 times the number of

dimensions. At each combination of dimension and function evaluation budget,

20 optimization runs were performed for statistical robustness. We also applied

Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES) [10] besides DE

for comparison. Again, upper and lower bounds of inputs to the test functions were

set to −10 and 10 respectively.

Table 3.3 summarizes statistics organized with respect to the five functions

and the three optimization methods. It shows the combined statistics of minimum

function responses attained in the given number of dimensions and function eval-

uations. The rows for function “All” indicate the statistics of all five function

responses combined. We see that for the five functions, each with nine different

combinations of dimensions and number of function evaluation budget, SOMBAS

48 CHAPTER 3

attained on average the minimum response among the three optimization methods.

With Rosenbrock, an order of magnitude smaller mean-minimum response was

achieved compared to the other two. Similarly, roughly two times smaller mean

minimum response was achieved with Rastrigin. In Table 3.3, the number of train-

ing samples of SOMBAS was fixed to 10 and the Self-Organizing Map size was

also fixed to 5× 5 cells in the rectangular cell arrangement. Further details on the

setup of algorithm parameters of both DE and SOMBAS can be found in 3.C.

Fig. 3.1 to Fig. 3.3 show the empirical cumulative distributions and box plots

of minimum response achieved by the three methods for the Rosenbrock function.

SOMBAS reached about an order of magnitude smaller values compared to DE

and CMA-ES on 50 and 100 dimensional Rosenbrock functions when the func-

tion evaluation budget was 2 × D. At a larger number of function evaluations

(> 10 ×D), the advantage starts to fade away. In five dimensions, the difference

between the three methods is small regardless of the function evaluation budgets.

The other four benchmark functions also show similar trends. The average of

minimum function value found f̃min in each of nine different combination of di-

mensions D and numbers of function evaluations m ×D is listed in Table 3.B.1.

The m is a multiplication factor to D to obtain the number of function evaluations

at which iteration of the optimization is stopped.

Figure 3.1 Distribution of fmin on 5 dimensional Rosenbrock Function after 10

(left column), 25 (middle column), and 50 (right column) function evaluations.

(a)

102 103 104 105 106

Objective Values

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m
u
la
ti
v
e
 D
is
tr
ib
u
ti
o
n

Rosenbrock, 5 dim., 10 eval., 20 runs

CMA-ES
DE
SOMBAS

(b)

102 103 104 105 106

Objective Values

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m
u
la
ti
v
e
 D
is
tr
ib
u
ti
o
n

Rosenbrock, 5 dim., 25 eval., 20 runs

CMA-ES
DE
SOMBAS

(c)

102 103 104 105

Objective Values

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m
u
la
ti
v
e
 D
is
tr
ib
u
ti
o
n

Rosenbrock, 5 dim., 50 eval., 20 runs

CMA-ES
DE
SOMBAS

(d)

SOMBAS DE CMA-ES
102

103

104

105

106

O
b
je
ct
iv
e
 V
a
lu
e

Rosenbrock, 5 dim., 10 eval., 20 runs

(e)

SOMBAS DE CMA-ES
102

103

104

105

106

O
b
je
ct
iv
e
 V
a
lu
e

Rosenbrock, 5 dim., 25 eval., 20 runs

(f)

SOMBAS DE CMA-ES
102

103

104

105

O
b
je

ct
iv

e
 V

a
lu

e

Rosenbrock, 5 dim., 50 eval., 20 runs

In Table 3.4, summary statistics of the same experiments as in Table 3.3 (and

Table 3.B.1 in Appendix) are shown with respect to different dimensionality of

the problems. In this table, the results of the five test functions at three differ-

SOMBAS IN OPTIMIZATION 49

Figure 3.2 Distribution of fmin on 50 dimensional Rosenbrock Function after 100

(left column), 250 (middle column), and 500 (right column) function evaluations

(a)

104 105 106 107

Objective Values

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m
u
la
ti
v
e
 D
is
tr
ib
u
ti
o
n

Rosenbrock, 50 dim., 100 eval., 20 runs

CMA-ES
DE
SOMBAS

(b)

104 105 106 107

Objective Values

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m
u
la
ti
v
e
 D
is
tr
ib
u
ti
o
n

Rosenbrock, 50 dim., 250 eval., 20 runs

CMA-ES
DE
SOMBAS

(c)

104 105 106 107

Objective Values

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m
u
la
ti
v
e
 D
is
tr
ib
u
ti
o
n

Rosenbrock, 50 dim., 500 eval., 20 runs

CMA-ES
DE
SOMBAS

(d)

SOMBAS DE CMA-ES
104

105

106

107

O
b
je
ct
iv
e
 V
a
lu
e

Rosenbrock, 50 dim., 100 eval., 20 runs

(e)

SOMBAS DE CMA-ES
104

105

106

107

O
b
je
ct
iv
e
 V
a
lu
e

Rosenbrock, 50 dim., 250 eval., 20 runs

(f)

SOMBAS DE CMA-ES
104

105

106

107

O
b
je
ct
iv
e
 V
a
lu
e

Rosenbrock, 50 dim., 500 eval., 20 runs

Figure 3.3 Distribution of fmin on 100 dimensional Rosenbrock Function after

200 (left column), 500 (middle column), and 1000 (right column) function evalu-

ations.

(a)

105 106 107 108

Objective Values

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m
u
la
ti
v
e
 D
is
tr
ib
u
ti
o
n

Rosenbrock, 100 dim., 200 eval., 20 runs

CMA-ES
DE
SOMBAS

(b)

105 106 107

Objective Values

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m
u
la
ti
v
e
 D
is
tr
ib
u
ti
o
n

Rosenbrock, 100 dim., 500 eval., 20 runs

CMA-ES
DE
SOMBAS

(c)

105 106 107

Objective Values

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m
u
la
ti
v
e
 D
is
tr
ib
u
ti
o
n

Rosenbrock, 100 dim., 1000 eval., 20 runs

CMA-ES
DE
SOMBAS

(d)

SOMBAS DE CMA-ES
105

106

107

108

O
b
je
ct
iv
e
 V
a
lu
e

Rosenbrock, 100 dim., 200 eval., 20 runs

(e)

SOMBAS DE CMA-ES
105

106

107

O
b
je

ct
iv

e
 V

a
lu

e

Rosenbrock, 100 dim., 500 eval., 20 runs

(f)

SOMBAS DE CMA-ES
105

106

107

O
b
je

ct
iv

e
 V

a
lu

e

Rosenbrock, 100 dim., 1000 eval., 20 runs

ent m (numbers of function evaluations) are combined. The average minimum

reached by SOMBAS at 50-dimensional problems and 100-dimensional problems

50 CHAPTER 3

are 10 times smaller than those reached by DE or CMA-ES. For five-dimensional

problems, the average minimum of SOMBAS is about 3/4 of DE and about 1/4 of

CMA-ES.

The differences in time costs of the optimizations of the five functions by

SOMBAS, DE, and CMA-ES can be seen in Table 3.5. The time required to com-

plete the optimization of each of the 100-dimensional problems with 1000 function

evaluations was measured. Table 3.5 shows the statistics of 20 runs of optimization

per function. The algorithm parameters are the same as the Table 3.3 and Table 3.4.

We observe that SOMBAS takes the longest among the three methods. However,

for most engineering optimization applications in which a function evaluation can

take hours, the time costs shown in the table are insignificant and the number of

function evaluations would be a more significant performance measure.

In Table 3.3 and Table 3.4, the number of training samples in SOMBAS has

been kept constant. In Table 3.6 we compare two kinds of setup for SOMBAS.

The first one is the setup used in the previous two tables (3.3 and 3.4) with fixed

training size and SOM size. The second set up is with varying training size and

SOM size according to the dimensionality of the problem. In this setup, we let

the number of training samples be equal to the dimensionality D of the problem.

The SOM size is also adapted accordingly: ⌊
√
D⌋ × ⌊

√
D⌋, where ⌊ ⌋ is the

floor function. The functions, their dimensionality and function evaluation budgets

are the same as Table 3.3 and Table 3.4. The dimensionality adapted setup gave

another 10 fold decrease in the average minimum function value reached compared

to what we had in Table 3.3 and Table 3.4. We have tried only one variant here, but

further investigation on how to choose the right number of training samples and

SOM dimensions could be interesting.

We now look into some more algorithm parameter sensitivities of SOMBAS

but the functions and other setup remains the same as Table 3.3. Selectivity pa-

rameter T (Table 3.7), mutation probability Pm (Table 3.8), and weight constant ρ

in the merit function (Table 3.9) were considered.

Larger values of T produce smaller minimum function values on average as

observed in Table 3.7. If T ≫ 4 there is no selection and essentially all weight

vectors from SOM are evaluated to get the responses of the objective function and

become candidates for new training samples. Therefore, all the “selection” takes

place at training sample update. If T ≪ 1, on the other hand, most of the weight

vectors from SOM do not survive the selection process and only a few are actually

evaluated with the objective function. This, in principle, sounds more economical

than the former case, but it relies heavily on the response estimate of the SOM, and

it also risks losing diversity very quickly. This table shows that, for optimization,

it is better to set T sufficiently large, e.g. T ≈ 4.

In Table 3.8 we see that mutation does not alter the optimization performance

in a significant way. To have Pm < 1.0 means that some of the elements of the

SOMBAS IN OPTIMIZATION 51

weight vector may remain unperturbed. If this probability is set to be very low, it

resembles a coordinate search around each of the training samples. If it is set to

1, it is similar to sampling from kernel density functions in which training sample

represents the centers of multi-variate Gaussian distribution. This table suggests

that Pm is not a critical parameter in optimization search when the number of

function evaluations is small compared to what is needed for convergence, but

further investigation may be necessary by taking statistics with respect to different

kinds of objective functions, such as separability and multi-modality and different

function evaluation budgets.

The ρ does not show significant effect on optimization either. As observed in

Table 3.9, the average minimum achieved for both ρ = 2 and ρ = 0.01 are about

the same. If ρ ≫ 1, it becomes similar to Maximin Sampling in which the objec-

tive is to maximize the minimum distance to the training samples [13]. Probably

the concentration of training samples around small responses that happens as a

result of the training sample updating is far more significant than the diversifica-

tion pressure provided by the ρ. There may be some refinement opportunity in the

implementation of the merit function.

Figure 3.4 Box plot showing effect of hybrid algorithm: the first 2 ×D function

evaluations are performed with SOMBAS and then the best sample is provided as

the starting point of the CMA-ES that runs up to the allowed maximum number of

function evaluations.

(a) 100 dim. 500 eval.

SOMBAS CMA-ES Hybrid
105

106

107

O
b
je

ct
iv

e
 V

a
lu

e

Rosenbrock, 100 dim., 500 eval., 20 runs

(b) 100 dim. 1000 eval.

SOMBAS CMA-ES Hybrid
105

106

107

O
b
je

ct
iv

e
 V

a
lu

e

Rosenbrock, 100 dim., 1000 eval., 20 runs

(c) 100 dim. 2000 eval.

SOMBAS CMA-ES Hybrid
103

104

105

106

O
b
je
ct
iv
e
 V
a
lu
e

Rosenbrock, 100 dim., 2000 eval., 20 runs

In optimization tasks with input dimensions D > 20, it is probably a good idea

to use SOMBAS at an early stage, particularly if the problems’ input parameters

are of higher dimensions. In our experiments, this means the first m×D samples

where m is an integer between 1 and 10 and D is the number of dimensions and

taking values such as D = 30, 50, or100. This enables the identification of good

starting points for a more accurate optimization algorithms such as DE and CMA-

ES for further refinement of the solutions. Table 3.10 shows an example of such

idea. Here we implemented a simple hybrid algorithm “Hybrid”. This algorithm

uses SOMBAS for the first 2 × D function evaluations. Then, the best solution

found is used as a starting point for CMA-ES. In the table, summary statistics

are shown for the same functions at the same dimensions as before. The function

52 CHAPTER 3

evaluation budget was set to 5, 10, and 20 times the number of dimensions D

instead of 2, 5, and 10 in the previous tables. The summary statistics suggest

that “Hybrid” shows superior performance compared to SOMBAS or CMA-ES

alone. Figure 3.4 shows the box plots indicating the spread of fmin achieved for

Rosenbrock at 100 dimensions at the three evaluation budgets. We observe that

Hybrid attains fast reduction of responses at 500 function evaluations in par with

SOMBAS. At 2000 function evaluations, CMA-ES and Hybrid are almost even.

Thus, for this example, if the number of function evaluations is larger than 2000,

there would be no reason to use Hybrid. However, if the cost of a single function

evaluation is large, there is value in obtaining good solutions from the early stage of

the optimization. Figure 3.4 also explains why Hybrid shows the best performance

in Table 3.10. It is because the mean is the result from three budgets 5×D, 10×D,

and 20×D function evaluations. SOMBAS lags behind considerably in 20×D.

CMA-ES is slow in 5 × D. Hybrid, although may or may not be the best in any

of these budgets, is always close to the objective values obtained by the better

performing one of the remaining two algorithms. Thus on average, is the best by

not being the worst performing algorithm. Thus, Hybrid gave us the “minimum

regret” option of the three.

In Table 3.11and in its bar chart representation, Figure 3.5, we compare SOM-

BAS and Gaussian Process Surrogate Model Assisted Evolutionary Algorithm for

Medium-Scale Computationally Expensive Optimization Problems (GPEME) [4].

GPEME is a surrogate model assisted optimization method that employs Sam-

mon mapping to map the original design space to a lower dimensional space. The

Gaussian Process modeling [14] of the objective function is done on the lower-

dimensional input space.

The test functions employed are different from the previous experiments in

order to compare with the results in the publication. The upper and lower bounds

of the input variables are, thus, matched to those described in the paper [4]. The

number function evaluations were also set to 1000 and 20 independent runs were

performed for each function optimizations as described in the paper [4]. Figure 3.5

shows, in bar chart, the results of optimizing the four functions in three different

dimensions namely, 20, 30, and 50 dimensions summarized in Table 3.11. The

height of the bar indicates the minimum value achieved at the end of 1000 function

evaluations, and the whiskers indicate its standard deviation of the 20 runs. We

can see that up to 30 dimensions, GPEME can be more accurate than SOMBAS

whereas in 50 dimensions SOMBAS reached far lower values in all four objective

functions. DE results are also listed in Table 3.11. The values of DE are different

from what is given in the paper [4] because we have used different setups for DE

parameters.

SOMBAS IN OPTIMIZATION 53

Figure 3.5 Bar charts showing minimum objective values obtained by GPEME

and SOMBAS: 20 runs of 1000 function evaluations each were performed.

(a) Ellipsoid

Ellipsoid 20D Ellipsoid 30D Ellipsoid 50D
−50

0

50

100

150

200

250

300

350

O
b
je

ct
iv

e
 V

a
lu

e

0.0 0.1

221.1

3.1 7.6
19.1

Minimum Reached in 1000 Evaluations

GPEME
SOMBAS

(b) Rosenbrock

Rosenbrock 20D Rosenbrock 30D Rosenbrock 50D
0

50

100

150

200

250

300

350

O
b
je
ct
iv
e
 V
a
lu
e

22.4

46.2

258.3

24.3
35.8

60.7

Minimum Reached in 1000 Evaluations

GPEME
SOMBAS

(c) Ackley

Ackley 20D Ackley 30D Ackley 50D
−2

0

2

4

6

8

10

12

14

16

O
b
je

ct
iv

e
 V

a
lu

e

0.2

3.0

13.2

4.9 4.7 4.5

Minimum Reached in 1000 Evaluations

GPEME
SOMBAS

(d) Griewank

Griewank 20D Griewank 30D Griewank 50D
−10

0

10

20

30

40

50

O
b
je

ct
iv

e
 V

a
lu

e

0.0 1.0

36.6

2.1 2.8 3.5

Minimum Reached in 1000 Evaluations

GPEME
SOMBAS

3.4 Conclusion

In optimization tasks, SOMBAS has shown a rapid reduction of objective function

values at a relatively small number of function evaluations and high numbers of

input dimensions, say in the number of function evaluations less than ten times the

number of input dimensions and the number of dimensions being between 30 and

100. In particular, SOMBAS has shown fast reduction of objective values (with-

out resorting to surrogate modeling of the objective function) when compared with

DE, CMA-ES, and GPEME in limited function evaluation budgets. The compu-

tational experiments have shown that this was most prominent when the number

of function value evaluations were limited, such as 2 × D, with D = 50. As

the number function evaluations increased or the number of dimensions of the

inputs gets smaller, the relative advantage fades away as more accurate methods

such as CMA-ES, GPEME becomes more efficient. Density learning and adaptive

sampling can be an efficient method to deal with high-dimensional and expensive

54 CHAPTER 3

objective functions.

In future work, it would be beneficial to test on even higher dimensional prob-

lems with inputs in the order of 1000 dimensions and higher.

S
O

M
B

A
S

IN
O

P
T

IM
IZ

A
T

IO
N

5
5

T
a

b
le

3
.3

S
u

m
m

ary
o

f
2

0
m

in
im

izatio
n

ru
n

s
fo

r
5

test
fu

n
ctio

n
s

at
3

d
ifferen

t

d
im

en
sio

n
s

an
d

3
d

ifferen
t

settin
g

s
o

f
m

ax
im

u
m

n
u

m
b

er
o

f
fu

n
ctio

n
ev

alu
atio

n
s.

“A
ll”

is
th

e
co

m
b

in
ed

statistics
o

f
th

e
fi

v
e

b
en

ch
m

ark
fu

n
ctio

n
s.

Function Methods N f̃min St. Dev. Min Max

SOMBAS 900 49,031.200 138,932.200 0.311 926,876.000

All DE 900 561,146.400 1,653,569.000 0.239 9,943,861.000

CMA-ES 900 554,937.200 2,038,124.000 0.351 16,586,288.000

SOMBAS 180 242,465.200 223,384.400 311.851 926,876.000

Rosenbrock DE 180 2,801,761.000 2,724,343.000 255.317 9,943,861.000

CMA-ES 180 2,770,141.000 3,833,323.000 100.565 16,586,288.000

SOMBAS 180 618.578 476.474 24.862 1,477.860

Rastrigin DE 180 1,412.729 1,138.204 23.125 3,446.527

CMA-ES 180 1,203.552 1,020.696 31.790 3,469.831

SOMBAS 180 2,060.542 2,503.437 1.524 10,500.050

Rot. Ellip. DE 180 2,540.826 2,587.632 7.910 9,833.558

CMA-ES 180 3,323.752 3,504.440 1.608 16,548.950

SOMBAS 180 7.779 1.119 3.626 11.553

Ackley DE 180 11.617 1.677 6.984 14.069

CMA-ES 180 10.849 2.700 4.930 15.773

SOMBAS 180 3.972 3.545 0.311 20.053

Manevich DE 180 5.408 3.792 0.239 16.856

CMA-ES 180 6.263 9.317 0.351 91.240

5
6

C
H

A
P

T
E

R
3

T
a

b
le

3
.4

S
u

m
m

ary
o

f
2

0
ru

n
s

o
f

m
in

im
izin

g
5

fu
n

ctio
n

s
at

3
d

ifferen
t
d

im
en

sio
n

s

an
d

3
d

ifferen
t

settin
g

s
o

f
m

ax
im

u
m

n
u

m
b

er
o

f
fu

n
ctio

n
ev

alu
atio

n
s.

Dim. Methods N f̃min St. Dev. Min Max

SOMBAS 300 2,893.125 9,579.070 0.605 74,336.480

5 DE 300 3,630.300 9,474.233 2.323 61,622.490

CMA-ES 300 12,396.820 64,659.340 0.537 589,876.300

SOMBAS 300 45,950.500 99,895.630 0.311 490,143.000

50 DE 300 552,548.200 1,189,206.000 0.996 4,989,037.000

CMA-ES 300 443,619.500 1,235,422.000 0.414 6,532,953.000

SOMBAS 300 98,249.990 208,299.500 0.395 926,876.000

100 DE 300 1,127,261.000 2,484,626.000 0.239 9,943,861.000

CMA-ES 300 1,208,795.000 3,197,257.000 0.351 16,586,288.000

SOMBAS IN OPTIMIZATION 57

Table 3.5 Time costs of optimization of the five functions at 100 dimensions and

1000 function evaluations. Statistics of 20 runs. CPU: Intel Core 2 Duo 3.16 GHz.

Method Function Mean (sec.) St. Dev. (sec.) Median (sec.)

SOMBAS Rosenbrock 8.467 0.126 8.469
DE Rosenbrock 0.302 0.007 0.297

CMA-ES Rosenbrock 0.918 0.098 0.891

SOMBAS Rastrigin 9.378 0.079 9.375
DE Rastrigin 0.958 0.007 0.953

CMA-ES Rastrigin 1.801 0.086 1.781

SOMBAS Rot. Ellip. 11.080 0.139 11.031
DE Rot. Ellip. 3.072 0.008 3.078

CMA-ES Rot. Ellip. 3.648 0.070 3.625

SOMBAS Ackley 9.836 0.480 9.812
DE Ackley 0.878 0.034 0.890

CMA-ES Ackley 1.399 0.335 1.422

SOMBAS Manevich 8.994 0.351 8.860
DE Manevich 0.432 0.008 0.437

CMA-ES Manevich 1.366 0.121 1.304

Table 3.6 Summary of SOMBAS with different number of training samples mini-

mizing 5 test functions at 3 different dimensions and 3 different settings for maxi-

mum number of function evaluations.

Train. Samp. N f̃min St. Dev. Min Max

Fixed to 10 900 45,777.970 129,870.800 0.285 963,875.900

Equal to D 900 4,792.621 19,410.150 0.093 357,146.100

Table 3.7 Summary of SOMBAS with different selectivity T minimizing 5 test

functions at 3 different dimensions and 3 different settings for maximum number

of function evaluations.

Selectivity N f̃min St. Dev. Min Max

Low, T = 4.0 900 4,591.983 16,695.700 0.105 208,590.500

High, T = 0.5 900 7,178.841 30,777.100 0.060 489,114.600

58 CHAPTER 3

Table 3.8 Summary of SOMBAS with different Mutation Probability minimizing

5 test functions at 3 different dimensions and 3 different settings for maximum

number of function evaluations

Mutation Prob. N f̃min St. Dev. Min Max

1.0 900 4,874.758 18,699.480 0.109 306,843.900

0.25 900 5,094.691 23,469.330 0.164 387,932.800

Table 3.9 Summary of SOMBAS with different Merit Weight ρ performing 5 test

function at 3 different dimensions and 3 different settings for maximum number

of function evaluations.

ρ N f̃min St. Dev. Min Max

2 900 4,023.054 13,481.460 0.114 208,199.800

0.01 900 4,384.766 19,332.080 0.097 470,756.700

Table 3.10 Summary of an effect of hybrid algorithm “Hybrid”: the first 2 × D
function evaluations are performed with SOMBAS and then the best sample is

provided as the starting point of the CMA-ES that runs up to the allowed maximum

number of function evaluations (5,10, or 20)×D.

Methods N f̃min St. Dev. Min Max

SOMBAS 900 45,092.970 128,860.000 0.311 952,357.800

CMA-ES 900 180,432.600 793,864.900 0.297 6,440,175.000

Hybrid 900 30,461.020 103,880.300 0.227 722,556.700

S
O

M
B

A
S

IN
O

P
T

IM
IZ

A
T

IO
N

5
9

T
a

b
le

3
.1

1
C

o
m

p
arin

g
S

O
M

B
A

S
to

a
state-o

f-th
e-art

o
p

tim
izatio

n
m

eth
o

d
fo

r
ex

-

p
en

siv
e

o
b

jectiv
e

fu
n

ctio
n

o
p

tim
izatio

n
.

S
tatistics

o
f

2
0

ru
n

s.
DE GPEME SOMBAS

Function f̃min St. Dev. f̃min St. Dev. f̃min St. Dev.

Ellipsoid 20D 80.471201 20.8733580 1.30E-05 2.18E-05 3.118508 0.9714572

Ellipsoid 30D 377.501744 69.1929920 0.0762 0.0401 7.55524 1.6964039

Ellipsoid 50D 1635.988263 243.5844059 221.0774 81.6123 19.131114 4.1030721

Rosenbrock 20D 1269.905151 206.4475974 22.4287 18.7946 24.298632 1.8222784

Rosenbrock 30D 2925.170609 510.1286707 46.1773 25.5199 35.836207 1.9172995

Rosenbrock 50D 7587.404909 806.0995888 258.2787 80.1877 60.722905 2.6847508

Ackley 20D 12.885580 1.0100859 0.199 0.5771 4.905016 0.4359553

Ackley 30D 16.180565 0.6248096 3.0105 0.925 4.745343 0.3114214

Ackley 50D 18.095235 0.3721917 13.2327 1.5846 4.50843 0.2508913

Griewank 20D 83.901426 13.8013613 0.0307 0.0682 2.149197 0.3456406

Griewank 30D 193.039613 34.8963740 0.9969 0.108 2.824373 0.6443779

Griewank 50D 488.303479 44.7642325 36.6459 13.1755 3.497098 0.609253

60 CHAPTER 3

Appendix

3.A Test Functions

In the following, we describe the test functions used in this paper. The θ∗ denotes

the globally optimum solution vector, and f(θ∗) its response value. The D denotes

the number of dimensions. The upper and lower bounds of θ s are by default

−10 ≤ θj ≤ 10 where θ = [θ0, θ1, . . . , θD−1]
T .

Rosenbrock

f(θ) =

D−2
∑

j=0

(

100(θj+1 − θ2j)
2 + (θj − 1)2

)

, (3.1)

j = 0, 1, . . . , D − 1, D > 1,

f(θ∗) = 0, θ∗j = 1.

Rastrigin

f(θ) =

D−1
∑

j=0

(

θ2j − 10 cos(2πθj) + 10
)

, (3.2)

j = 0, 1, . . . , D − 1,

f(θ∗) = 0, θ∗j = 0.

Rotated Ellipsoid

f(θ) =
D−1
∑

i=0





i
∑

j=0

θ2j





2

, (3.3)

j = 0, 1, . . . , D − 1,

f(θ∗) = 0, θ∗j = 0.

62 CHAPTER 3

Ackley

f(θ) = −20 exp



−0.2

√

√

√

√

1

D

D−1
∑

j=0

θ2j





− exp





1

D

D−1
∑

j=0

cos(2πθj)





+20− exp(1), (3.4)

j = 0, 1, . . . , D − 1,

f(θ∗) = 0, θ∗j = 0.

Manevich

f(θ) =

D−1
∑

j=0

[

(1− θj)
2
/2j
]

, (3.5)

j = 0, 1, . . . , D − 1,

f(θ∗) = 0, θ∗j = 1.

Griewank

f(θ) = 1 +

D−1
∑

i=0

θ2i
4000

−
D−1
∏

i=0

cos(
θi√
i
), (3.6)

i = 0, 1, . . . , D − 1,

f(θ∗) = 0, θ∗i = 0.

Ellipsoid

f(θ) =
D−1
∑

i=0

iθ2i , (3.7)

i = 0, 1, . . . , D − 1,

f(θ∗) = 0, θ∗i = 0.

3.B Detailed Statistics of Optimization

Table 3.B.1 shows the statistics of optimizing the five function N (=20) times at
three different number of function evaluation setting and 3 different dimensions
D. Table 3.B.1 is the detailed version of Table 3.3 and Table 3.4. Each row
corresponds to a particular combination of algorithm, function, function dimension
and number of function evaluation setting. The settings for the number of function
evaluations can be obtained by computing m × D. When the total number of
function evaluation exceeds m × D the iteration is stopped. So the actual total

SOMBAS IN OPTIMIZATION 63

number of function evaluation will be slightly larger than m × D but on average
smaller than m × D + NP or m × D + NT where NT is number of training
samples in SOMBAS and NP is number of population in DE and CMA-ES. The

numbers after the algorithm names are simply for indexing purposes. The f̃min
denotes the average of minimum objective value found.

Table 3.B.1: Statistic of the optimization result of the five functions

Function D m N f̃min sd median min max

SOMBAS1 Ackley 5 2 20 7.65 1.72 7.84 4.71 10.84

SOMBAS2 Manevich 5 2 20 8.96 5.67 7.27 1.26 20.05

SOMBAS3 Rastrigin 5 2 20 64.74 13.35 62.91 41.01 93.03

SOMBAS4 Rosenbrock 5 2 20 18569.84 24378.93 9879.17 311.85 74336.48

SOMBAS5 Rotated Ellipsoid 5 2 20 23.69 15.72 18.10 7.58 62.01

SOMBAS6 Ackley 50 2 20 8.17 0.54 8.27 7.08 9.20

SOMBAS7 Manevich 50 2 20 2.50 1.27 2.37 0.55 4.89

SOMBAS8 Rastrigin 50 2 20 629.14 69.02 635.36 481.50 744.80

SOMBAS9 Rosenbrock 50 2 20 245174.52 85930.43 233640.35 96604.97 460465.71

SOMBAS10 Rotated Ellipsoid 50 2 20 1404.76 788.39 1236.69 420.87 2883.94

SOMBAS11 Ackley 100 2 20 8.06 0.52 8.04 7.09 9.05

SOMBAS12 Manevich 100 2 20 2.75 2.01 1.92 0.90 9.44

SOMBAS13 Rastrigin 100 2 20 1262.76 83.83 1252.91 1145.86 1477.86

SOMBAS14 Rosenbrock 100 2 20 516668.16 153260.73 476799.87 257858.17 891665.11

SOMBAS15 Rotated Ellipsoid 100 2 20 5146.12 2053.19 4863.28 2137.07 8979.88

SOMBAS16 Ackley 5 5 20 8.12 1.90 8.08 5.33 11.55

SOMBAS17 Manevich 5 5 20 5.86 3.63 5.86 0.82 15.86

SOMBAS18 Rastrigin 5 5 20 58.34 14.65 55.36 30.86 90.00

SOMBAS19 Rosenbrock 5 5 20 18142.54 13937.96 16373.71 1244.82 48682.00

SOMBAS20 Rotated Ellipsoid 5 5 20 26.96 13.48 27.06 5.13 56.19

SOMBAS21 Ackley 50 5 20 7.82 0.39 7.81 7.19 8.52

SOMBAS22 Manevich 50 5 20 3.33 2.29 2.91 0.31 7.96

SOMBAS23 Rastrigin 50 5 20 592.01 41.84 590.35 511.41 665.38

SOMBAS24 Rosenbrock 50 5 20 216663.34 88879.12 202004.43 72135.10 490143.00

SOMBAS25 Rotated Ellipsoid 50 5 20 1184.16 792.58 1022.01 400.63 3642.19

SOMBAS26 Ackley 100 5 20 7.94 0.47 8.01 7.20 8.70

SOMBAS27 Manevich 100 5 20 2.45 1.14 2.43 0.77 5.00

SOMBAS28 Rastrigin 100 5 20 1203.89 70.94 1205.79 1095.80 1350.49

SOMBAS29 Rosenbrock 100 5 20 481002.08 197394.08 441589.43 216456.31 926876.04

SOMBAS30 Rotated Ellipsoid 100 5 20 5813.78 2617.17 5630.58 1364.07 10500.05

SOMBAS31 Ackley 5 10 20 6.41 1.24 6.38 3.63 8.45

SOMBAS32 Manevich 5 10 20 4.96 3.28 3.61 0.60 13.97

SOMBAS33 Rastrigin 5 10 20 46.37 8.45 47.17 24.86 62.84

SOMBAS34 Rosenbrock 5 10 20 6406.99 5904.64 5146.50 456.96 17388.16

SOMBAS35 Rotated Ellipsoid 5 10 20 15.44 11.46 11.94 1.52 45.86

SOMBAS36 Ackley 50 10 20 7.87 0.40 7.88 7.23 8.75

SOMBAS37 Manevich 50 10 20 2.27 1.58 1.63 0.55 6.36

SOMBAS38 Rastrigin 50 10 20 553.07 53.34 551.38 478.11 680.64

SOMBAS39 Rosenbrock 50 10 20 221899.16 102804.65 191273.56 73392.04 450433.35

SOMBAS40 Rotated Ellipsoid 50 10 20 1125.41 668.67 1119.62 322.03 3287.19

SOMBAS41 Ackley 100 10 20 7.97 0.41 7.95 7.30 8.67

SOMBAS42 Manevich 100 10 20 2.67 2.27 1.84 0.40 10.61

SOMBAS43 Rastrigin 100 10 20 1156.89 105.86 1150.45 937.48 1343.55

SOMBAS44 Rosenbrock 100 10 20 457659.74 166298.66 421045.39 248017.41 820097.62

SOMBAS45 Rotated Ellipsoid 100 10 20 3804.56 1710.20 3348.31 1642.06 7382.68

DE1 Ackley 5 2 20 9.83 1.64 10.00 6.98 13.00

DE2 Manevich 5 2 20 8.11 4.45 6.93 2.32 16.86

DE3 Rastrigin 5 2 20 75.01 26.30 80.93 23.12 104.34

DE4 Rosenbrock 5 2 20 15431.40 14411.08 12656.79 650.90 61622.49

DE5 Rotated Ellipsoid 5 2 20 29.67 13.60 26.82 7.91 54.04

DE6 Ackley 50 2 20 13.63 0.26 13.69 13.21 14.07

DE7 Manevich 50 2 20 8.88 3.24 8.60 2.38 14.91

DE8 Rastrigin 50 2 20 1597.66 90.08 1624.37 1435.55 1731.01

DE9 Rosenbrock 50 2 20 3749176.09 636617.95 3847948.36 2561727.10 4989037.00

DE10 Rotated Ellipsoid 50 2 20 2433.63 658.71 2178.34 1614.18 4125.06

DE11 Ackley 100 2 20 13.63 0.18 13.65 13.14 13.88

DE12 Manevich 100 2 20 6.45 2.96 6.36 1.51 13.98

DE13 Rastrigin 100 2 20 3226.87 119.53 3242.54 2844.17 3446.53

DE14 Rosenbrock 100 2 20 8326549.17 1313243.16 8594077.60 4892880.62 9943861.32

DE15 Rotated Ellipsoid 100 2 20 7388.87 1308.02 7155.51 4964.50 9833.56

DE16 Ackley 5 5 20 10.37 1.52 10.29 7.64 12.90

DE17 Manevich 5 5 20 7.19 3.31 6.55 2.48 14.31

DE18 Rastrigin 5 5 20 72.22 16.21 75.29 38.13 102.62

DE19 Rosenbrock 5 5 20 22962.32 14958.30 18179.80 255.32 58442.46

DE20 Rotated Ellipsoid 5 5 20 30.09 14.72 32.20 10.25 59.46

DE21 Ackley 50 5 20 12.63 0.30 12.68 12.07 13.31

DE22 Manevich 50 5 20 4.45 1.77 4.25 1.90 8.20

DE23 Rastrigin 50 5 20 1364.31 60.01 1368.45 1256.04 1467.90

DE24 Rosenbrock 50 5 20 2644198.37 709142.42 2835509.13 948411.36 3987364.62

DE25 Rotated Ellipsoid 50 5 20 1752.92 306.97 1716.48 1290.13 2378.15

DE26 Ackley 100 5 20 12.46 0.21 12.48 11.91 12.88

DE27 Manevich 100 5 20 2.37 1.00 2.13 0.97 5.51

DE28 Rastrigin 100 5 20 2794.39 78.34 2805.26 2599.25 2896.06

DE29 Rosenbrock 100 5 20 5304925.42 1128370.47 5190736.04 2826552.39 7151082.44

DE30 Rotated Ellipsoid 100 5 20 5484.56 976.99 5382.92 3665.70 7443.04

64 CHAPTER 3

Table 3.B.1: (continued)

Function D m N f̃min sd median min max

DE31 Ackley 5 10 20 9.63 1.12 9.50 7.92 11.94

DE32 Manevich 5 10 20 7.64 3.12 6.02 4.43 15.04

DE33 Rastrigin 5 10 20 77.10 12.97 75.01 49.06 100.93

DE34 Rosenbrock 5 10 20 15689.69 11153.08 12379.21 1476.81 37246.29

DE35 Rotated Ellipsoid 5 10 20 34.22 12.83 34.53 10.97 54.99

DE36 Ackley 50 10 20 11.25 0.29 11.30 10.33 11.62

DE37 Manevich 50 10 20 2.78 0.99 2.73 1.00 5.77

DE38 Rastrigin 50 10 20 1157.32 67.95 1141.15 1041.36 1301.12

DE39 Rosenbrock 50 10 20 1885117.10 520682.45 1946726.37 646065.77 2410599.40

DE40 Rotated Ellipsoid 50 10 20 1371.31 257.24 1351.32 877.29 1920.03

DE41 Ackley 100 10 20 11.12 0.24 11.17 10.74 11.55

DE42 Manevich 100 10 20 0.80 0.26 0.75 0.24 1.29

DE43 Rastrigin 100 10 20 2349.69 95.45 2366.29 2193.52 2494.73

DE44 Rosenbrock 100 10 20 3251801.22 693314.95 3189301.44 1532889.32 4259556.24

DE45 Rotated Ellipsoid 100 10 20 4342.15 742.59 4247.66 2695.27 5845.17

CMA.ES1 Ackley 5 2 20 10.39 2.58 10.76 5.67 14.20

CMA.ES2 Manevich 5 2 20 21.52 19.94 15.36 6.19 91.24

CMA.ES3 Rastrigin 5 2 20 132.06 47.43 136.15 44.86 246.73

CMA.ES4 Rosenbrock 5 2 20 123442.65 182490.42 24886.76 2303.90 589876.31

CMA.ES5 Rotated Ellipsoid 5 2 20 84.88 95.18 63.38 7.97 435.41

CMA.ES6 Ackley 50 2 20 13.02 0.77 13.09 11.75 14.69

CMA.ES7 Manevich 50 2 20 5.91 2.91 5.60 1.63 13.35

CMA.ES8 Rastrigin 50 2 20 1456.48 197.41 1485.03 993.13 1769.37

CMA.ES9 Rosenbrock 50 2 20 4403283.64 1397692.69 4421958.02 2106134.26 6532952.66

CMA.ES10 Rotated Ellipsoid 50 2 20 3058.67 957.80 2887.86 1306.61 5718.68

CMA.ES11 Ackley 100 2 20 13.84 0.51 13.95 12.44 14.62

CMA.ES12 Manevich 100 2 20 4.44 1.71 4.43 1.71 7.62

CMA.ES13 Rastrigin 100 2 20 3072.23 218.97 3083.54 2601.79 3469.83

CMA.ES14 Rosenbrock 100 2 20 11835024.56 2090781.70 10875301.53 9149150.08 16586288.40

CMA.ES15 Rotated Ellipsoid 100 2 20 9476.02 2495.04 9599.46 6035.41 16548.95

CMA.ES16 Ackley 5 5 20 8.76 2.29 8.19 4.93 12.89

CMA.ES17 Manevich 5 5 20 9.20 7.54 7.46 1.10 31.68

CMA.ES18 Rastrigin 5 5 20 68.52 26.47 64.92 33.96 134.47

CMA.ES19 Rosenbrock 5 5 20 55409.95 124781.09 12762.14 100.57 549938.57

CMA.ES20 Rotated Ellipsoid 5 5 20 52.94 27.24 57.10 7.16 101.39

CMA.ES21 Ackley 50 5 20 12.01 1.42 11.80 10.15 15.64

CMA.ES22 Manevich 50 5 20 3.83 1.77 3.44 1.34 8.73

CMA.ES23 Rastrigin 50 5 20 1149.72 124.46 1142.14 903.57 1452.32

CMA.ES24 Rosenbrock 50 5 20 1951639.70 805122.15 1859109.56 817644.54 3824926.85

CMA.ES25 Rotated Ellipsoid 50 5 20 2217.37 626.52 2110.28 1398.10 3766.36

CMA.ES26 Ackley 100 5 20 12.58 0.97 12.70 11.17 15.54

CMA.ES27 Manevich 100 5 20 2.81 1.20 2.80 0.35 6.05

CMA.ES28 Rastrigin 100 5 20 2363.10 275.19 2299.74 1807.79 2836.49

CMA.ES29 Rosenbrock 100 5 20 5187494.11 1483994.33 4906044.22 2581357.39 7727621.83

CMA.ES30 Rotated Ellipsoid 100 5 20 7722.19 1723.09 7508.26 5226.76 11372.76

CMA.ES31 Ackley 5 10 20 6.95 1.39 6.66 5.05 9.94

CMA.ES32 Manevich 5 10 20 4.99 5.19 4.27 0.54 25.26

CMA.ES33 Rastrigin 5 10 20 54.91 18.19 52.50 31.79 102.71

CMA.ES34 Rosenbrock 5 10 20 6615.80 5334.96 6411.34 604.94 19590.35

CMA.ES35 Rotated Ellipsoid 5 10 20 28.79 21.82 23.48 1.61 76.78

CMA.ES36 Ackley 50 10 20 9.89 2.46 9.22 7.72 15.77

CMA.ES37 Manevich 50 10 20 2.04 0.71 1.98 0.41 3.14

CMA.ES38 Rastrigin 50 10 20 796.13 92.50 793.57 627.70 987.57

CMA.ES39 Rosenbrock 50 10 20 289019.59 132309.11 274963.66 99319.73 672945.96

CMA.ES40 Rotated Ellipsoid 50 10 20 1624.61 238.10 1627.01 1054.15 2013.40

CMA.ES41 Ackley 100 10 20 10.21 1.96 9.67 7.78 15.53

CMA.ES42 Manevich 100 10 20 1.63 0.68 1.52 0.59 3.36

CMA.ES43 Rastrigin 100 10 20 1738.82 183.92 1741.80 1384.45 2256.79

CMA.ES44 Rosenbrock 100 10 20 1079342.62 611708.11 897874.92 472041.35 2514209.69

CMA.ES45 Rotated Ellipsoid 100 10 20 5648.31 1049.50 5593.88 3606.10 7472.06

3.C Parameter Setups

This section describes the parameter settings of Differential Evolution (DE) and

Self-Organizing Map Based Adaptive Sampling (SOMBAS) used in generating the

results in this paper. The parameter settings are by no means optimal, but it is given

here for reproducibility and describing some reasoning that went behind it. In the

following tables, column name NP signifies a number of population in DE and

NT signifies a number of training samples for Self-Organizing Maps in SOMBAS.

F and CR are scale factor and cross-over probability as typically defined for the

classical DE [9, pp. 38,39]. The number of iteration for the Self-Organizing Map

SOMBAS IN OPTIMIZATION 65

was set between 10 and 40 with no appreciable effect on the results whether one

set the number to 10 or 40. It is found during the trial runs of SOMBAS of the

five functions in 30 dimensions that 1 < Fe ≤ 10 and 0.01 < Fc ≤ 1 have

a minor impact on the performance of the optimization. In the feasible region

identification, small Fc ≃ 0.1 improves feasible rate Ns/Nf . In this paper, we did

not investigate the effect of Fe and Fc closely, but they merit further investigation

in the future.

Table 3.C.1 summarizes the settings for DE in the Table 3.1. For the set up

of Table 3.C.1,we have consulted section 3.4.1 of [9]. The NP for Rosenbrock,

Rotated Ellipsoid and Manevich was set manually by several trial runs. The CRs

are set high at 0.9 if a test function is non-separable and 0.2 if it is separable. The

F s were set to 0.5 for all the functions for fast reduction of objective values. The

same setting was kept for DE in Table 3.3 and on.

Table 3.C.1 Parameters setups for DE for the five test functions in Table 3.1

Function NP CR F
Rosenbrock 45 0.9 0.5

Rastrigin 35 0.2 0.5
Rotated Ellipsoid 30 0.9 0.5

Ackley 20 0.2 0.5
Manevich 30 0.2 0.5

In the optimization of 30 dimensional functions, NT in SOMBAS was set

equal to NP in DE. This is partly because we didn’t know the best algorithm

parameter setting for SOMBAS and good setting was known for Ackley, Rastrigin

and Rosenbrock from [9]. However, we modified the DE setting for Rosenbrock

slightly from what is given in the book, CR = 0.9, F = 0.8, NP = 60 to the

values seen in Table 3.C.1. From the trial runs we found that our setting gave

smaller objective values. Table 3.C.2shows the complete setup.

Table 3.C.2 Parameters setups for SOMBAS for the five test functions in Table 3.1

Function L ρ NT SOM size T Pmutation Fe Fc

Rosenbrock None 2.0 45 7× 7 1.0 1.0 2.0 1.0
Rastrigin None 1.0 35 6× 6 1.0 1.0 1.5 1.0

Rot. Ellip. None 2.0 30 5× 5 1.0 1.0 1.1 1.0
Ackley None 1.0 20 4× 4 1.0 1.0 1.5 1.0

Manevich None 2.0 30 6× 6 1.0 1.0 2.0 1.0

Table 3.C.3 shows the parameter set up for SOMBAS in Table 3.3. Given our

empirical knowledge from the two 30 dimensional tests in Table 3.1 and 3.2, NT

66 CHAPTER 3

was set to a small number, 10 for faster calculation and T to a generous value 4.0

to compensate for the small NT . The setting was the same for all five functions.

The CMA-ES parameter that we touched to produce the results in Table 3.3 was the

Table 3.C.3 Parameters setups for SOMBAS for the five test functions in Table 3.3

and 3.4

L ρ NT SOM size T Pmutation Fe Fc

None 0.01 10 5× 5 4.0 0.25 1.5 1.0

initial sigma of the diagonal covariance matrix. We used σ0 = 5.0. The population

was automatically determined by the algorithm as 4 + ⌊3 log(D)⌋.

SOMBAS IN OPTIMIZATION 67

References

[1] A. J. Keane and P. B. Nair. Computational Approach for Aerospace Design.

John Wiley & Sons, 2005.

[2] I. Couckuyt, F. D. Turck, T. Dhaene, and D. Gorissen. Automatic Surrogate

Model Type Selection During the Optimization of Expensive Black-Box Prob-

lems. In Proceedings of the 2011 Winter Simulation Conference, pages 4274

– 4284, 2011.

[3] D. R. Jones, M. Schonlau, and W. J. Welch. Efficient Global Optimiza-

tion of Expensive Black-Box Functions. Journal of Global Optimization,

13(4):455–492, December 1998. Available from: http://dx.doi.org/10.1023/

A:1008306431147, doi:10.1023/A:1008306431147.

[4] B. Liu, Q. Zhang, and G. G. E. Gielen. A Gaussian Process Surrogate Model

Assisted Evolutionary Algorithm for Medium Scale Expensive Optimization

Problems. IEEE Transaction on Evolutionary Computation, 18(2):180 – 192,

April 2014. doi:10.1109/TEVC.2013.2248012.

[5] F. Boschetti. A local linear embedding module for evolutionary computa-

tion optimization. Journal of Heuristics, 14(1):95–116, 2008. Available

from: http://dx.doi.org/10.1007/s10732-007-9030-6, doi:10.1007/s10732-

007-9030-6.

[6] K. Ito, T. Dhaene, N. E. Masri, R. d’Ippolito, and J. V. de Peer. Self-

Organizing Map Based Adaptive Sampling. In Proceedings of 5th In-

ternational Conference on Experiments/Process/System Modeling/Simula-

tion/Optimization (5th IC-EpsMsO), volume II, pages 504 – 513, Athens,

Greece, July 3 - 6 2013. ISBN:978-618-80527-2-7 or 978-618-80527-0-3.

[7] K. Ito, I. Couckuyt, R. d’Ippolito, and T. Dhaene. Design Space

Exploration using Self-Organizing Map Based Adaptive Sampling.

Applied Soft Computing, 43:337 – 346, 2016. Available from:

http://www.sciencedirect.com/science/article/pii/S1568494616300874,

doi:http://dx.doi.org/10.1016/j.asoc.2016.02.036.

[8] R. Storn and K. Price. Differential Evolution - A simple and efficient adaptive

scheme for global optimization over continuous spaces. Technical Report

TR-95-012, International Computer Science Institute, 1947 Center Street,

Berkeley, CA 94704, USA, 1995.

[9] K. Price, R. M. Storn, and J. A. Lampinen. Differential Evolution: APractical

Approach to Global Optimization. Springer, 2005.

68 CHAPTER 3

[10] N. Hansen and A. Ostemeier. Adapting Arbitrary Normal Mutation Distri-

butions in Evolution Strategies: The Covariance Matrix Adaptation. In Pro-

ceedings of the 1996 IEEE Conference on Evolutionary Computation, pages

312 – 317, 1996.

[11] R. M. Storn. Differential Evolution Homepage, 2014. Available from: http:

//www1.icsi.berkeley.edu/∼storn/code.html.

[12] N. Hansen. The CMA Evolution Strategy, January 2014. Available from:

https://www.lri.fr/∼hansen/cmaesintro.html.

[13] M. Johnson, L. Moore, and D. Ylvisaker. Minimax and maximin distance

designs. Journal of Statistical Planning and Inference, 26:131 – 148, 1990.

[14] J. Sacks, W. J. Welch, T. J. Mitchell, and H. P. Wynn. Design and Analysis

of Computer Experiments. Statistical Science, 4(4):409 – 435, 1989.

4
Interaction Index

⋆ ⋆ ⋆

K. Ito, I. Couckuyt, S. Poles, T. Dhaene.

“ Variance-Based Interaction Index Measuring Heteroscedastic-
ity ”.

Published in Computer Physics Communications, DOI 10.1016/j.cpc.2016.02.032,

vol. 203, pp. 152 - 161, June 2016.

⋆ ⋆ ⋆

This work is motivated by the need to deal with models with high-dimensional

input spaces of real variables. One way to tackle high-dimensional problems is to

identify interaction or non-interaction among input parameters. We propose a new

variance-based sensitivity interaction index that can detect and quantify interac-

tions among the input variables of mathematical functions and computer simula-

tions. The computation is very similar to first-order sensitivity indices by Sobol’.

The proposed interaction index can quantify the relative importance of input vari-

ables in interaction. Furthermore, detection of non-interaction for screening can

be done with as low as 4n+2 function evaluations, where n is the number of input

variables. Using the interaction indices based on heteroscedasticity, the original

function may be decomposed into a set of lower dimensional functions which may

then be analyzed separately.

70 CHAPTER 4

4.1 Introduction

In today’s engineering, computer simulations are widely used to understand the

behavior of complex systems and to optimize their input variables to obtain sat-

isfactory designs before actual physical prototypes are built. The simulators are

usually black-box or too complex to render a mathematical approach feasible.

Sensitivity analysis enables us to understand how the changes in input variables

affect the variance of the output.

As a part of the sensitivity analysis, identifying interacting and additive-effect

variables is important in design optimization and engineering analysis of black

box models. Two input variables are said to interact if their effect on the output

cannot be expressed as a sum of their single effects. If the variable is additive (non-

interacting), that variable can be treated independently from other variables. Then,

we can separate our effort between the analysis of the interacting part which is

often the more subtle and difficult part, and the analysis of the additive effect part.

In this study, we will treat a methodology to detect and quantify this interaction of

input variables to deterministic black-box models.

A widely recognized way of quantifying interaction is by calculating the dif-

ference between total effect indices and first order sensitivity indices in variance-

based global sensitivity analysis [1–3]. In practice, the effectiveness of this method

hinges on the accuracy of the sensitivity indices, which may demand a very high

number of Monte Carlo sampling.

On the other hand, there are one-at-a-time methods often used for screening

important variables by estimating average partial derivative magnitudes of the out-

puts obtained from factor levels (i.e., sampling on grid points) or as perturbations

of Monte Carlo samples [4–7]. In these methods, interaction effects are not dis-

tinguished from non-linear effects of a particular input variable [4, 5, 7] or it is

computed in a factorial design manner [6] with a preferred number of factors, for

example 3,6,10,15,...

We propose an approach to decompose a high-dimensional problem into a set

of lower dimensional problems via novel interaction indices which use the het-

eroscedasticity of marginal distributions. Heteroscedasticity refers to the circum-

stance in which the variability of a variable is unequal across the range of values

of a second variable (a factor) that predicts it. Calculation of these interaction

indices is a simple extension to Sobol indices [8] and gives information about par-

ticular variable(s) being non-interacting or interacting with other variables. The

method uses Monte Carlo integration, but is very robust against loss of accuracy

even when the number of random samples is modest. Due to this property, the

proposed method can be used for both quantification and screening of interaction

among input variables depending on the computational budget.

In the following discussions, E() denotes the expectation or the average value

INTERACTION INDEX 71

of the variable inside the bracket. Likewise, V () denotes the variance. Sometimes,

we put a subscript below V to clarify the source of the variance. We also employ

an indexing convention −i to denote “all other indices except i ”. For example,

V
x
−i

(y|xi)

means variance of y given xi (so the variance of y comes from the variance of

sources other than xi, thus V
x
−i

).

4.2 Sobol’ Indices and High-Dimensional Model Rep-

resentation (HDMR)

Consider a deterministic model

y = f (x)

where x = (x1, x2, . . . , xn) is a vector of n input variables and y is the model

output. f(x) can be decomposed into a form referred to as the high-dimensional

model representation.

f (x) = f0 +
∑

i

fi (xi) +
∑

i<j

fij (xi, xj)

+
∑

i<j<k

fijk (xi, xj , xk) + . . . (4.1)

This decomposition of the function is not unique as the lower order can be selected

arbitrarily and the highest order term can be written as the difference between f(x)

and the lower order terms. However, if the average of each of the term in the sum-

mands of the right hand side of equation (4.1) is set to zero (e.g.,
∫

fi(xi)dxi = 0)

and f0 is set to be a constant, the expression is proven to be unique [8]. The terms

are given as follows:

f0 = E (y) (4.2)

fi (xi) = E (y|xi)− f0 (4.3)

fij (xi, xj) = E (y|xi, xj)− fi (xi)

−fj (xj)− f0 (4.4)

fijk (xi, xj , xk) = E (y|xi, xj , xk)− fij (xi, xj)

−fik (xi, xk)− fjk (xj , xk)

−fi(xi)− fj(xj)− fk(xk)

−f0. (4.5)

72 CHAPTER 4

The first order sensitivity index for variable xi is given by

Si =
V
xi

[E (y|xi)]

V (y)
, (4.6)

and if we calculated the indices to the highest order, we have

n
∑

i=1

Si +

n
∑

i=1

n
∑

j=i+1

Sij + . . .+ S1...n = 1. (4.7)

The Si∈{1,2,...,n} are called first-order Sobol’ indices or sensitivity indices [2, 9].

The total effect index [1] includes interaction effects in addition to the first-

order sensitivity indices, and can be defined as

STi = 1− S−i, (4.8)

where S−i signifies the sum of all the sensitivity indices except those that include

variances due to xi. For example, if i ∈ {1, 2, 3}, the total effect index of x1 is

ST1 = S1 + S12 + S13 + S123

= 1− S2 − S3 − S23. (4.9)

The total effect index defined in equation (4.8) is useful in variable screening.

Variables with STi ≃ 0 can be held constant at an arbitrary value within its lower

and upper bounds since it means that the variable’s value does not contribute to the

variance in the output1. The first order sensitivity indices in equation (4.6) alone

cannot be used for this purpose if there is a significant amount of interactions

among the variables.

4.3 Computation

We now formulate a way to compute the first order sensitivity indices. It is also

assumed that the function f(x) is square integrable in x ∈ Ω where Ω is a n-

dimensional domain of integration of real variables. Uniform distributions are

assumed on the inputs, and inputs are uncorrelated with each other. The total

variance is therefore

D = V
x

(f (x))

=
1

V

∫

x∈Ω

f2 (x) dx− f2
0 , (4.10)

1Strictly speaking, this holds only to a probability [8, Theorem 2].

INTERACTION INDEX 73

where V =
∫

x∈Ω
dx and dx = dx1dx2 . . . dxn. The average of f (x) is given by

f0 =
1

V

∫

x∈Ω

f (x) dx.

The multidimensional integral of equation (4.10) can be computed using Monte

Carlo integration. Similarly,

fi (xi) =
1

V−i

∫

x∈Ω
−i

f (x1, x2, . . . , xn) dx−i − f0, (4.11)

where dx−i = dx1dx2 . . . dxi−1dxi+1 . . . dxn, Ω−i is the domain of integration

with xi fixed, and

V−i =

∫

x∈Ω
−i

dx−i.

We also define V (y|xi) for later use in our discussion,

V
x
−i

(y|xi) =

1

V−i

∫

x∈Ω
−i

f2 (x1, x2, . . . , xn) dx−i − f2
0 . (4.12)

This is the variance of y when xi is fixed at a certain value. Again, in equations

(4.11) and (4.12), the integrations are performed using the Monte Carlo method,

but this time xi is held constant. By fixing xi at various values, we can conduct

the next integration to obtain V [E (y|xi)].

Di = V
xi

[E (y|xi)] = V
xi

(fi (xi)) =
1

Vi

∫

xi∈Ωi

f2
i (xi) dxi (4.13)

where Ωi is the domain of integration for xi, and Vi is the domain interval length

of xi. Then,

Si =
Di

D
. (4.14)

The computation of fi(xi) at different values of xi to calculate Di in equa-

tion (4.13) is a brute-force approach. It requires m × (n × l + 1) function evalu-

ations, where m is the number of Monte Carlo samples, n is the number of input

variables, and l is the number of different xi values that are used to compute equa-

tion (4.13). There is a more efficient method in which all Si and STi are calculated

in m × (n + 2) function evaluations [10] provided that all input variables’ distri-

butions are independent.

Note that estimators have been recently developed to extend [10] to the case of

correlated and dependent inputs [11–15].

74 CHAPTER 4

4.4 Interactions in Reliability and Optimization

In the process of optimization, for example, minimizing y by judicious choice of

xi, one would also be interested in the variance of y given xi, V (y|xi) or more

generally, the distribution of y given xi. Let us denote such distribution (or proba-

bility density function) as p(y|xi). This information can easily be obtained during

the calculation of the first order Sobol’ Indices. This information can be used in

three ways. First, it tells you for what value of xi one could possibly have the

smallest y. Second, it tells you if xi has any interaction with other variables. Fi-

nally, it tells you what value of xi would satisfy certain reliability criteria. That is,

one could draw a threshold value for y beyond which these variances should not

exceed.

If some or all of the xi contain uncertainties such that their intervals cannot

be reduced beyond a certain level, the resulting p(y|xi)s will represent the uncer-

tainties in the output due to the uncertainties in these xi. For reliability purposes,

one may also be interested in max(y|xi) which is the maximum y (that occurred

in Monte Carlo simulations) given xi.

Figure 4.1 shows an example of representing p(y|xi) as box plots. The exam-

ple shows the spreads of two outputs yo, o ∈ {1, 2} i.e. p(yo|xi) in vertical axes

with respect to three input variables x1, x2, and x3. We see by visual inspection

that y1 is composed of purely additive effects from x1, x2 and x3 because all the

spreads of p(y1|x1), p(y|x2) and p(y|x3) as shown by the box sizes are constant

across different values of x1, x2 and x3, respectively (i.e. Homoscedastic behav-

ior). If xi produces an additive effect in the output, it should only cause a shift in

the mean of p(y|xi) according to equation (4.1).

On the other hand, x2 and x3 have interactions in y2 because the spreads of

p(y2|x2) and p(y2|x3) are not constant. If the output is determined only by the

three inputs, we can conclude that x2 and x3 interact with each other in y2. The

quadratic effect x1 to y2 is additive since the p(y2|x1) stays constant. If a variable

does not interact, it can be treated independently, with other variables fixed or vice

versa, without any loss of information.

In the above example, the marginal spread of an output p(y|xi) was expressed

as box plots as one would get from the brute-force approach, but the marginal

scatter plot of y vs. xi as one would obtain from the efficient computations [10]

can also be informative for the three purposes above.

INTERACTION INDEX 75

Figure 4.1 Illustrative Functions: the distributions p(y|xi) of equations 4.23

and 4.24.

(a) Additive (Homoscedastic)

−1
.0
0

−0
.8
9

−0
.7
9

−0
.6
8

−0
.5
8

−0
.4
7

−0
.3
7

−0
.2
6

−0
.1
6

−0
.0
5

0
.0
5

0
.1
6

0
.2
6

0
.3
7

0
.4
7

0
.5
8

0
.6
8

0
.7
9

0
.8
9

1
.0
0

x1

−8

−6

−4

−2

0

2

4

6

8

y
1

(b) Additive (Homoscedastic)

−1
.0
0

−0
.8
9

−0
.7
9

−0
.6
8

−0
.5
8

−0
.4
7

−0
.3
7

−0
.2
6

−0
.1
6

−0
.0
5

0
.0
5

0
.1
6

0
.2
6

0
.3
7

0
.4
7

0
.5
8

0
.6
8

0
.7
9

0
.8
9

1
.0
0

x2

−8

−6

−4

−2

0

2

4

6

8

y
1

(c) Additive (Homoscedastic)

−1
.0
0

−0
.8
9

−0
.7
9

−0
.6
8

−0
.5
8

−0
.4
7

−0
.3
7

−0
.2
6

−0
.1
6

−0
.0
5

0
.0
5

0
.1
6

0
.2
6

0
.3
7

0
.4
7

0
.5
8

0
.6
8

0
.7
9

0
.8
9

1
.0
0

x3

−8

−6

−4

−2

0

2

4

6

8

y
1

(d) Additive (Homoscedastic)

−1
.0
0

−0
.8
9

−0
.7
9

−0
.6
8

−0
.5
8

−0
.4
7

−0
.3
7

−0
.2
6

−0
.1
6

−0
.0
5

0
.0
5

0
.1
6

0
.2
6

0
.3
7

0
.4
7

0
.5
8

0
.6
8

0
.7
9

0
.8
9

1
.0
0

x1

−2

−1

0

1

2

3

y
2

(e) Interacting (Heteroscedastic)

−1
.0
0

−0
.8
9

−0
.7
9

−0
.6
8

−0
.5
8

−0
.4
7

−0
.3
7

−0
.2
6

−0
.1
6

−0
.0
5

0
.0
5

0
.1
6

0
.2
6

0
.3
7

0
.4
7

0
.5
8

0
.6
8

0
.7
9

0
.8
9

1
.0
0

x2

−2

−1

0

1

2

3

y
2

(f) Interacting (Heteroscedastic)

−1
.0
0

−0
.8
9

−0
.7
9

−0
.6
8

−0
.5
8

−0
.4
7

−0
.3
7

−0
.2
6

−0
.1
6

−0
.0
5

0
.0
5

0
.1
6

0
.2
6

0
.3
7

0
.4
7

0
.5
8

0
.6
8

0
.7
9

0
.8
9

1
.0
0

x3

−2

−1

0

1

2

3

y
2

4.5 Interaction Indices

In order to quantify the interaction of input variables, we propose the following

interaction index,

I2i =

V
xi

[

V
x
−i

(y|xi)

]

V 2(y)
, (4.15)

or its square root form,

Ii =

√

V
xi

[

V
x
−i

(y|xi)

]

V (y)
, (4.16)

where we can compute V
x
−i

(y|xi) from equation (4.12). We can then set a thresh-

old ǫ below which we say that the input xi does not have significant interaction

with other input variables and thus can be treated independently. Note that the

interaction index Ii is domain dependent. Even if the underlying function is the

same, different Ω produce different values of Ii in general. For example, two input

variables xi and xj , with i 6= j, may be interacting if varied substantially but may

be non-interacting if varied by a small amount around certain points. The ǫ is typ-

ically very small near the arithmetic precision. Mathematically speaking, Ii = 0

for non-interacting input xi and Ii > 0 for interacting xi.

76 CHAPTER 4

We can extend this concept to detect two and higher dimensional subproblems.

I2ij =
V [V (y|xi, xj)]

V 2(y)
, (4.17)

I2ijk =
V [V (y|xi, xj , xk)]

V 2(y)
, (4.18)

. . .

The indices Iij can be interpreted as follows. Let i and j be the indices

whose input variable has shown to have interaction with other input variables:

Ii > ǫ, Ij > ǫ, and i < j. Then, 0 ≤ Iij ≤ ǫ means that input combinations spec-

ified by xi and xj produce an additive effect to the output y. This means that there

is no higher order interaction for this particular pair of input variables xi and xj .

In the HDMR expression in equation (4.1), it means that a term fij(xi, xj) is not

zero. On the other hand, Iij > ǫ implies second or higher order interactions exist

with some other input variables. For Iijk and higher follows the same argument.

4.6 The Basic Idea Step by Step

To clarify the idea of using heteroscedasticity in detecting (non-)interactions, let

us consider the following two equations

y1 = x1 + x2, (4.19)

y2 = x1 · x2. (4.20)

We will carry out the brute-force calculation of

V
xi

[

V
x
−i

(y|xi)

]

step by step. The calculation will be done with m = 2 and l = 2.

Let us start with the (contrived) two sample points given in Table 4.1. In Ta-

Table 4.1 Initial two samples

x1 x2 y1 y2

1 2 3 2

3 4 7 12

ble 4.2, the sample points were replaced with x1 = 1 and in Table 4.3 with x1 = 3.

From Table 4.2 and Table 4.3 we can calculate V
x
−1

(y1|x1) and V
x
−1

(y2|x1) at the

two x1 locations, namely 1 and 3. These are tabulated in Table 4.4. Note that for

y1, its values were simply shifted by 2 if you compare Table 4.2 and Table 4.3.

Thus, in Table 4.4, V
x
−1

(y1|x1) are identical at both x1 = 1 and at x1 = 3. This is

INTERACTION INDEX 77

Table 4.2 x1 fixed at 1

x1 x2 y1 y2

1 2 3 2

1 4 5 4

Table 4.3 x1 fixed at 3

x1 x2 y1 y2

3 2 5 6

3 4 7 12

because the x−1 (x2 in this case) values were identical in both tables and x1 is an

additive contribution for y1. For y2, the multiplicative contribution of x1 renders

different V
x
−1

(y2|x1) between x1 = 1 and x1 = 3 as observed in Table 4.4. With

this heteroscedasticity, we say that x1 and x2 are interacting.

Thus, from Table 4.4 we compute

V
x1

[

V
x
−1

(y1|x1)

]

= 0, (4.21)

V
x1

[

V
x
−1

(y2|x1)

]

= 16. (4.22)

The same procedure can be repeated for x2.

The column change at xi leaves other columns x−i unchanged (as observed in

Table 4.2 and Table 4.3), thus if xi contribution to an output y is additive, V (y|xi)

remains unchanged throughout the different values in xi. This suggests that for

screening purposes, we can let the Monte Carlo samples very low, and in the exam-

ple above we had m = 2, the minimum to compute a variance. Of course, at such

low number, we cannot hope to have an accurate V (y|xi) because the distribution

p(y|xi) will not be represented adequately. However, if xi is non-interacting,

V
xi

[

V
x
−i

(y|xi)

]

should give zero to an arithmetic precision. As m is increased, V (y|xi) becomes

accurate and a quantitative ordering of interaction among different input variables

becomes possible. Furthermore, this “variance of variance” is never negative due

to its sum-of-squares computations.

Table 4.4 Variances of y1 and y2 at x1 = 1, 3

x1 V
x
−1

(y1|x1) V
x
−1

(y2|x1)

1 1 1

3 1 9

78 CHAPTER 4

The normalizing factor 1/V (y) in equation (4.16) is rather arbitrary, one could

have equally applied, for example,

1

∑n
i=1 V

xi

[

V
x
−i

(y|xi)

]

to mimic probability measures. However, in our opinion, this would not add much

to the intuitive appeal and we have opted for the simpler expression.

A physical interpretation of Ii is as follows. Consider a Dirac delta function

δ(xi − a), which is a distribution of xi and has a probability mass of 1 at xi = a

and zero anywhere else. The interaction index Ii shows the sensitivity (variance) of

V
x
−i

(y|xi) with respect to a when the original uniform distribution of xi is replaced

by δ(xi − a), a ∈ Ωi. Here, Ωi is simply a real closed interval between upper

and lower bounds of xi. If you need to know which input variable xi, if made

deterministic, would make the uncertainty in the output y most different depending

on its input value a, the indices can be useful.

One may wonder, given a dataset of unknown input distributions, if Ii = 0

would imply that the covariance between xi and another xj with j 6= i would also

be zero. However, this is not necessarily the case. An easy counter example is

letting x2 ∼ N(x1, 1) in equation (4.19). That is, x2 are drawn from a normal

distribution with mean x1 with a constant standard deviation σ = 1. In this case,

Cov(x1, x2) > 0 but Ii = 0.

4.7 Comparison

It is also possible to evaluate interaction via the total effect indices and first order

Sobol indices, STi − Si. However, there are some important differences between

Ii and STi − Si.

First, STi − Si gives the variance in expected values of output y due to xi

that are not due to the first-order terms of equation (4.3) but by the second-order

terms of equation (4.4) or higher. So it is a combined effect of more than one

input variables to obtain the average output, for example E(y|xi, xj). Fixing xi

and xj with different combinations of values generates V [E(y|xi, xj)] to obtain

Sij . In contrast, Ii is a “first-order” index. Fixing xi at various values generates

various V (y|xi) to obtain V [V (y|xi)]. For example, consider again Figure 4.1.

From Figure 4.1e and Figure 4.1f one would guess I2 < I3 because by visual

inspection, the difference in variance given a specific value in xi is greater for

V (y2|x3) than V (y2|x2). STi − Si does not give information about the relative

importance between xi and xj in driving the variance of y2. On the other hand, Ii
does not distinguish the additive effect and the interaction effect of a single input

INTERACTION INDEX 79

variable. If xi interacts, it does not by itself give any indication of the elementary

effect that it may have as in Si.

Second, the detection of non-interaction Ii = 0 is not sensitive to the accu-

racy of V (y|xi). As long as V (y|xi) is computed with the same samples in x−i,

V (y|xi) remains constant throughout different values of xi if xi gives only an ad-

ditive effect to the output. In other words, if we have a matrix with m rows of

Monte Carlo samples with n columns corresponding to the number of input vari-

ables and replace column i with a value for xi, and compute the corresponding

outputs to obtain V (y|xi), this variance is identical regardless of the value of xi

when variable xi is not interacting with other input variables. Thus, Ii should show

zero to arithmetic precision if xi does not interact with other variables. If the typi-

cal output variance V (y|xi) is in the order of 100, non-interaction would typically

produce V [V (y|xi)] ≃ 10−16 when computations are done in double precision.

On the other hand, STi − Si is subject to the Monte Carlo integration inaccuracy.

For first order sensitivity calculations, m is typically in the order of 1000 or

above and l is typically 50 or above in our experience. However, for screening

purposes Ii can be computed with m and l as low as 2 giving 4n + 2 function

evaluations. We need two samples to compute the output variances at two different

values of an input variable and check that the variances of the two output values

do not change with respect to the values of the input variable.

Lastly, for quantitative uses, the computation of Ii does not require any further

function evaluation (i.e., computation of response y) beyond what is required for

the computation of first order Sobol indices Si in brute-force approach. Computing

STi in brute-force approach is often infeasible (requiring computation of up to

n − 1 order Sobol indices), but efficient ways exist [10]. Furthermore, surrogate

modeling techniques that facilitate the acquisition of Si and STi exist such as

using Polynomial Chaos Expansions [16–18]. We expect that there are shortcuts

to economize the computation of Ii as well. This is an open research topic and

future work.

4.8 Examples

In this section, five functions will be analyzed using the proposed interaction in-

dices and the conventional method of using the difference between total effects

and first order sensitivity indices of Sobol’. The inputs will be assumed to be ran-

dom variables with uniform distributions between upper and lower bounds. The

numerical results and plots were obtained using a 32-bit version of Python 2.7.5,

Numpy 1.8.0, Scipy 0.13.2, and Matplotlib 1.3.1.

The STi−Si is calculated using the methods described in 4.A. The Ii is calcu-

lated using the “brute-force” approach. In both STi − Si and Ii, uniform random

sampling is used for Monte Carlo integrations.

80 CHAPTER 4

4.8.1 Illustrative Functions

Consider the following simple example.

y1 = x1 + 2x2 + 4x3 (4.23)

y2 = x2
1 − x2 + x2x3 (4.24)

where −1 < x1, x2, x3 ≤ 1. Figure 4.1 shows marginal distributions as box

plots. For these plots, Monte Carlo sampling was performed using the brute-force

approach with m = 200 and l = 20.

The interaction indices are shown in Table 4.1. The zero entries in Table 4.1

Table 4.1 First order interaction indices for the Illustrative Functions

y1 y2
I21 0.000 0.000

I22 0.000 0.036

I23 0.000 0.573

indicate that corresponding variables do not interact with other variables. For y2,

x1 is non-interacting, but x2 and x3 are interacting.

Table 4.2 shows the result of calculating STi − Si with m = 30200. The

column for y1 and the entry for x1 under the column for y2 show zeros if we round

to the second decimal place. For the y2 column, the entry for x2 and x3 show the

Table 4.2 STi − Si for the Illustrative Functions

y1 y2
ST1 − S1 0.00 0.00

ST2 − S2 0.00 0.21

ST3 − S3 0.00 0.21

interaction. Equations (4.25) to (4.27) show the expressions of STi − Si for y2.

The reason that

ST2 − S2 = ST3 − S3

in Table 4.2 can be understood from equations (4.26) and (4.27).

ST1 − S1 = S12 + S13 + S123 = 0, (4.25)

ST2 − S2 = S12 + S23 + S123 = S23, (4.26)

ST3 − S3 = S13 + S23 + S123 = S23, (4.27)

because S12 = S13 = S123 = 0. The difference between Table 4.1 and Table 4.2

illustrates the difference between the two methods of detecting interactions and

INTERACTION INDEX 81

non-interactions. The reason for I2 < I3 in Table 4.1 can be understood by factor-

ing equation (4.24) as in equation (4.28),

y2 = x2
1 + x2 · (−1 + x3). (4.28)

For the given upper and lower bounds of x2 and x3, we have−2 < −1+x3 ≤
0 and −1 < x2 ≤ 1. Thus, if we sample x2 and x3 uniformly between -1 and 1,

we have the following. If we let x2 = 1 or − 1, then we get the largest V (y2|x2)

with

V [x2 · (−1 + x3)|x2 = ±1] = 1

3
. (4.29)

On the other hand, if we let x3 = −1, then

V [x2 · (−1 + x3)|x3 = −1] = 4

3
, (4.30)

and V (y2|x3) is largest. Furthermore,

V [x2 · (−1 + x3)|x2 = 0] = 0, (4.31)

V [x2 · (−1 + x3)|x3 = 1] = 0. (4.32)

Thus,
I23
I22

=
V [V (y2|x3)]

V [V (y2|x2)]
=

42

12
= 16, (4.33)

which confirms Table 4.1.

4.8.2 Ishigami Function

Ishigami function [19, 20] is a three-variable function with an interaction between

two of its input variables.

y1 = sinx1 + a sin2 x2 + bx4
3 sinx1 (4.34)

where −π < x1, x2, x3 < π. In this paper, we set a = 7 and b = 0.1.

Figure 4.1 confirms visually that x1 and x3 are the interacting variables with

their heteroscedastic behaviors. Figure 4.2 shows the distribution of values of

ST i − Si and Ii of 20 independent runs for the function (4.B). As stated before,

STi − Si is calculated with m × (n + 2), and Ii with m × (n × l + 1) function

evaluations. Three different settings are tried out with different values for m and

n. The difference in the values of m between the two methods is to make two

methods perform about the same number of function evaluations.

As can be observed in Figure 4.2a to Figure 4.2c, ST i − Si loses accuracy

as m becomes smaller. At a low number of m such as in Figure 4.2c, it would

be impossible to detect interactions happening between x1 and x3 or the additive

82 CHAPTER 4

Figure 4.1 Ishigami Function: distributions of p(y|xi) or the marginal views

(a) Interacting (Heteroscedastic)

−3
.1
4

−2
.8
1

−2
.4
8

−2
.1
5

−1
.8
2

−1
.4
9

−1
.1
6

−0
.8
3

−0
.5
0

−0
.1
7

0
.1
7

0
.5
0

0
.8
3

1
.1
6

1
.4
9

1
.8
2

2
.1
5

2
.4
8

2
.8
1

3
.1
4

x1

−10

−5

0

5

10

15

20

y
1

(b) Additive (Homoscedastic)

−3
.1
4

−2
.8
1

−2
.4
8

−2
.1
5

−1
.8
2

−1
.4
9

−1
.1
6

−0
.8
3

−0
.5
0

−0
.1
7

0
.1
7

0
.5
0

0
.8
3

1
.1
6

1
.4
9

1
.8
2

2
.1
5

2
.4
8

2
.8
1

3
.1
4

x2

−10

−5

0

5

10

15

20

y
1

(c) Interacting (Heteroscedastic)

−3
.1
4

−2
.8
1

−2
.4
8

−2
.1
5

−1
.8
2

−1
.4
9

−1
.1
6

−0
.8
3

−0
.5
0

−0
.1
7

0
.1
7

0
.5
0

0
.8
3

1
.1
6

1
.4
9

1
.8
2

2
.1
5

2
.4
8

2
.8
1

3
.1
4

x3

−15

−10

−5

0

5

10

15

20

y
1

Figure 4.2 Ishigami Function: box plots show the distribution of indices values of

20 runs.

(a) m = 2440

1 2 3

i

−0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

S
T
i
−

S
i

(b) m = 244

1 2 3

i

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

S
T
i
−

S
i

(c) m = 3

1 2 3

i

−4

−2

0

2

4

6

8

10

S
T
i
−

S
i

(d) m = 200, l = 20

1 2 3

i

10
−17

10
−15

10
−13

10
−11

10
−9

10
−7

10
−5

10
−3

10
−1

10
1

I i

(e) m = 20, l = 20

1 2 3

i

10
−17

10
−15

10
−13

10
−11

10
−9

10
−7

10
−5

10
−3

10
−1

10
1

I i

(f) m = 2, l = 2

1 2 3

i

10
−17

10
−15

10
−13

10
−11

10
−9

10
−7

10
−5

10
−3

10
−1
10

1

10
3

I i

INTERACTION INDEX 83

Figure 4.3 G Function: box plots show the distribution of indices values of 20

runs.

(a) m = 32200

1 2 3 4 5 6 7 8

i

−0.02

0.00

0.02

0.04

0.06

0.08

0.10

S
T
i
−

S
i

(b) m = 322

1 2 3 4 5 6 7 8

i

−0.1

0.0

0.1

0.2

0.3

S
T
i
−

S
i

(c) m = 4

1 2 3 4 5 6 7 8

i

−2.0
−1.5
−1.0
−0.5
0.0

0.5

1.0

1.5

2.0

2.5

S
T
i
−

S
i

(d) m = 2000, l = 20

1 2 3 4 5 6 7 8

i

10
−17

10
−15

10
−13

10
−11

10
−9

10
−7

10
−5

10
−3

10
−1
10

1

I i

(e) m = 20, l = 20

1 2 3 4 5 6 7 8

i

10
−17

10
−15

10
−13

10
−11

10
−9

10
−7

10
−5

10
−3

10
−1
10

1

I i

(f) m = 2, l = 2

1 2 3 4 5 6 7 8

i

10
−17

10
−15

10
−13

10
−11

10
−9

10
−7

10
−5

10
−3

10
−1
10

1

I i

effect of x2. On the other hand, for Ii as in Figure 4.2d to Figure 4.2f, even though

their values become less accurate as m is decreased, the non-interaction of x2 can

clearly be detected by setting a threshold ǫ, for example ǫ = 10−9. We also see the

relative importance of x3 compared to x2 in Figure 4.2d and Figure 4.2e in terms

of variance of distribution p(y|xi) or V
xi

[V
x
−i

(y|xi)].

4.8.3 G-Function

Sobol’s G-function [10, 21, 22] is a test function for which global sensitivity can

be controlled via its parameters. We use an eight-dimensional setting described

in [22].

y1 =

n
∏

i=1

gi(xi) (4.35)

where

gi(xi) =
|4xi − 2|+ ai

1 + ai
, 0 ≤ xi < 1, (4.36)

with n = 8, and {ai} = {0, 1, 4.5, 9, 99, 99, 99, 99}. For xi with ai = 0, the

variable is very important. On the other hand, if ai = 99, xi’s effect is negligible,

but still interacting with other variables.

In Figure 4.3, we see that Ii cannot reliably quantify relative importance of

each variable when m is very low as observed in Figure 4.3f. However, we can

still see that all the variables from x1 to x8 that they are all interacting since

84 CHAPTER 4

Figure 4.4 Rosenbrock - Sphere Function: box plots show the distribution of in-

dices values of 20 runs.

(a) m = 33500

1 2 3 4 5 6 7 8 9 10

i

−0.015
−0.010
−0.005
0.000

0.005

0.010

0.015

0.020

0.025

0.030

S
T
i
−

S
i

(b) m = 335

1 2 3 4 5 6 7 8 9 10

i

−0.20
−0.15
−0.10
−0.05
0.00

0.05

0.10

0.15

0.20

0.25

S
T
i
−

S
i

(c) m = 4

1 2 3 4 5 6 7 8 9 10

i

−3

−2

−1

0

1

2

3

4

S
T
i
−

S
i

(d) m = 2000, l = 20

1 2 3 4 5 6 7 8 9 10

i

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

I i

(e) m = 20, l = 20

1 2 3 4 5 6 7 8 9 10

i

10
−17

10
−15

10
−13

10
−11

10
−9

10
−7

10
−5

10
−3

10
−1

I i

(f) m = 2, l = 2

1 2 3 4 5 6 7 8 9 10

i

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

I i

Ii > 10−6 ≫ 10−16. On the other hand, Figure 4.3c shows that STi − Si is

too unreliable at this number of samples.

4.8.4 Rosenbrock - Sphere Function

This function is simply a combination of two famous functions. We set the first

five dimensions to be the inputs to the Rosenbrock function and the remaining five

to be the inputs to the sphere function.

y1 =

⌊n/2⌋−1
∑

i=1

[

100(xi+1 − x2
i)

2 + (1− xi)
2
]

+1000
n
∑

i=⌊n/2⌋+1

x2
i (4.37)

where −10 ≤ xi ≤ 10, and n = 10.

For this function, x6 to x10 have no interactions while the first five variables

have interactions. We see in Figure 4.4a that STi − Si cannot provide a reliable

quantitative information about interaction, even at fairly high number of function

evaluations: 33500 × (10 + 2) = 402000. The small interaction values make it

difficult to be detected under Monte Carlo integration accuracy. On the other hand,

Figure 4.4d to Figure 4.4f show that, for Ii, non-interacting variables remained dis-

cernible, even if the accuracy of indices deteriorated (as evidenced by the increase

in the spread of box plots).

INTERACTION INDEX 85

4.8.5 Artery Simulation

In this example, we investigate an application of our method to a physics-based

problem of parameter identification. The simulation code we use was developed

by [23]. This code has recently been used as an example problem for Gradient

Enhanced Kriging [24] since the function exposes the gradient as well as the ob-

jective value. For our purpose, we will ignore the gradients and treat it as a scalar

function with vector input consisting of the parameters we want to identify.

The code simulates the hemodynamics of the arterial system as one-dimensional

fluid-structure interaction problem. Figure 4.5 shows a schematic of an axisym-

metric model of the artery system along with its boundary conditions. The mod-

eled blood flow in an artery is the unsteady flow of an incompressible, inviscid

fluid, in a straight, flexible tube. The flow rate at the inlet is prescribed as a function

of time. The outlet has velocity extrapolated using the velocities of the last two seg-

ments and relates to the output pressure using the Windkessel model [25, 26]. The

Windkessel model represents the hemodynamics of the circulation downstream.

Its dynamics is expressed using an electrical circuit analogy. A so-called general-

ized string model is applied to the structure. This is a linear elasticity theory for a

thin cylindrical tube with membrane deformations [27, 28].

In this exercise, the inputs xi are the modulus of elasticities of the artery at

n − 1 segments and the value of capacitance of the downstream boundary condi-

tion, totaling n input variables. We let n = 20. The output y is the sum of squared

error between the simulated values and reference values (a priori obtained by the

same simulation code in this example) of the radii of the artery at these segments.

The sum y is over all time steps and all artery segments. This sum y is normalized

so that it will not exceed 1. Exact match in time histories of radii between the given

reference values and the simulation would give zero in the output. In a real situ-

ation, the reference values of radii would come from non-invasive measurements

such as from ultrasound imagery.

Thus, the function we are analyzing can be expressed as

y = f(T,x),

where T is the matrix containing reference values of the radii of all n−1 segments

for all timesteps, and x is the vector containing input variables xi. The T is given,

and we sample x to see whether its elements interact to obtain the output y. We

pretend that we do not know the input x that generated the reference time histories

of the radii T, but have a rough idea to form the domain of the function. Specif-

ically we create a ± 50% interval around nominal values E0 and C0 (Table 4.3).

We investigate how the input variables interact to produce (the sum of errors in)

the output. The inputs xi are scaled to take values between -1 and 1 such as the

86 CHAPTER 4

following.

Ei = E0

(

1 +
1

2
xi

)

, i ∈ {1, · · · , n− 1}, (4.38)

C = C0

(

1 +
1

2
xn

)

, (4.39)

where Ei is the modulus of elasticity of n− 1 artery segments and C is the capac-

itance in the Windkessel model representing the compliance of the arterial system.

Table 4.3 show the parameter values used in the artery model.

Figure 4.5 The diagram of an artery model with blood flowing in from left

with prescribed time-dependent velocities and flowing out at the right with the

Windkessel model pressure. The segments (eight in the figure), the radius r,

the wall thickness h and the length l are shown. The prescribed inlet flow rate

is given by u0(t) = 0.23 + 0.21 sin
(

2π t
tb

)

+ 0.11 cos
(

4π
(

t
tb
− 0.2

))

+

0.07 cos
(

6π
(

t
tb
− 0.2

))

, where tb is the pulse period.

C Rd

Rp
h

l
r

Table 4.3 Parameter values used in the artery model

r0 3× 10−3 m E0 4× 105 Pa

h 3× 10−4 m C0 6.35× 10−10 m3/Pa

l 0.126 m Rd 1.768× 109 Pa s/m3

tb 1 s Rp 2.834× 108 Pa s/m3

The results of computations of STi − Si and Ii are shown in Figure 4.6. The

computation time to obtain Figure 4.6a and Figure 4.6c combined was 233412

seconds or approximately 65 hours on a laptop computer with Intel Core2 Duo 2.8

GHz CPU and 4.0 GB RAM. For the computation of Figure 4.6b and Figure 4.6d

combined, the elapsed time was 2552 seconds or about 43 minutes on the same

computer.

For this problem, one would expect that all parameters have interactions. How-

ever, STi − Si values in Figure 4.6a and Figure 4.6b were not consistent enough

INTERACTION INDEX 87

Figure 4.6 Artery fluid-structure simulation for model calibration of 19 elastic-

ity parameters (i ∈ {1, · · · , 19}) and a downstream compliance parameter (the

capacitance, i = 20): box plots show the distribution of index values of 20 runs.

(a) m = 365

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

i

−0.10
−0.05
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

S
T
i
−

S
i

(b) m = 4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

i

−4

−2

0

2

4

6

8

S
T
i
−

S
i

(c) m = 20, l = 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

i

10
−2

10
−1

10
0

I i

(d) m = 2, l = 2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

i

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

I i

throughout the 20 runs to show the interactions of elasticities of the arteries, with

many of the indices showing below zero values. On the other hand, we obtained

Ii > 10−6 ≫ 10−16 in Figure 4.6c and Figure 4.6d and one would be able to

confirm the interactions.

The capacitance or the compliance parameter C (at i = 20) gave markedly

higher values for both STi − Si and Ii in Figure 4.6a and Figure 4.6c. This can

be understood from the fact that the parameter is part of the downstream boundary

condition affecting the time histories of radii of all the 19 upstream segments. In

either case, the spread of the boxes indicates that the numbers of m in Figure 4.6a

and Figure 4.6c were not large enough to show the relative importance of interac-

tions among the elasticities of the artery segments. The same holds for smaller m.

With Figure 4.6b and Figure 4.6d, neither STi − Si nor Ii were able to capture

reliably the salient importance of the capacitance parameter (i = 20).

88 CHAPTER 4

4.9 Discussion and Outlook

As can be seen in Figure 4.2 and Figure 4.3, Ii and STi−Si do not necessarily give

a consistent ranking of importance (i.e., importance ordering of interacting input

variables differ between the two methods). This is due to the fact that the indices

evaluate the interaction in different ways as explained in Section 4.6 and 4.7. In

Ii, it quantifies how sensitive the output variance is if we fix xi to a value “a”

rather than another value “b”, for example. On the other hand, STi−Si quantifies

the uncertainty in output remaining after subtracting the main effect uncertainty.

Therefore, if the parameter xi is uncertain by nature the more relevant interaction

measure would be STi − Si. However, if we can turn xi into a deterministic

variable and we can choose its value, Ii can give an appropriate measure. The

implication of this difference merits further studying.

In practical situations in which the calculation of y given an input vector x

is expensive, the computation of variance based sensitivity indices and quantita-

tive interaction analysis of input variables may be prohibitive due to the number

of model evaluations needed to do the Monte Carlo integration. In such cases,

fitting surrogate models to the dataset computed by the original model may be

useful. Surrogate models [29, 30] are approximations to the original function and

are much cheaper to compute than the original model. It is usually fitted to a finite

number of input-output data obtained from the original model (usually a complex

simulation model). Kriging and Radial Basis Functions are some of the popular

surrogate models performing interpolations.

There are also regression methods based on HDMR [31–33]. The basis func-

tions in these are polynomials. The representations are usually truncated at second

order or so, thus ignoring higher order terms and interactions. Let us denote the

output produced by the surrogate model as ŷ. We can compute the indices based on

ŷ’s. However, information about interactions may be inaccurate due to the approx-

imate nature of the surrogate model. Furthermore, interpolating surrogate models

are usually not very scalable to high-dimensional problems. Our proposed method

could be applied to the high-fidelity model for screening purposes, and potentially

for determining what interaction terms to include in HDMR based regressions.

The same method could then be applied for quantitative purposes in the reduced

problem (possibly on a surrogate model). Further research would be beneficial to

see the actual merit of this approach.

4.10 Conclusion

The interaction index exposes each variable’s importance in influencing the vari-

ance in the output through interaction. Its accuracy does not directly depend on the

accuracy of the Monte Carlo integration, but on the change in the sample marginal

INTERACTION INDEX 89

distribution or heteroscedasticity. The examples showed its robustness in detecting

and quantifying interactions among input variables. This is expected to be useful

in (robust) optimization and surrogate modeling typical in engineering analysis

and design. Further application to industrial problems is needed to understand

the effectiveness of the proposed index. Also, further research would be useful to

exploit the concept described in this paper to develop a surrogate model assisted

optimization algorithm that is scalable to high-dimensional problems.

Acknowledgments

Keiichi Ito has been funded by the Institute for the Promotion of Innovation through

Science and Technology (IWT) through the Baekeland Mandate program. Ivo

Couckuyt is a post-doctoral research fellow of FWO-Vlaanderen. This research

has also been funded by the Interuniversity Attraction Poles Programme BEST-

COM initiated by the Belgian Science Policy Office.

90 CHAPTER 4

Appendix

4.A Monte Carlo Estimation of Indices

In the following, we give the Monte Carlo estimation of the indices. The method

for Ii follows the so called “brute-force” method that would entail a double loop in

a computer code. We consider an n-dimensional unit hypercube domain for nota-

tional brevity. Let A and B be two matrices with uniform random value elements

between 0 and 1. The two matrices have the size of m rows and n columns. Let

j and i be row and column indices, respectively. The notation AB
(i) means that

all columns are from A except column i which is from B. For total variance of

output y, we can use

D ≃ 1

2m− 1

2m
∑

j=1

f(C)2j − f2
0C (4.40)

where C is the concatenated matrix of A and B with 2m rows and n columns and

f0C is the mean of f(C)j , or alternatively:

DA ≃ 1

m− 1

m
∑

j=1

f(A)2j − f2
0A , (4.41)

DB ≃ 1

m− 1

m
∑

j=1

f(B)2j − f2
0B , (4.42)

DAB ≃ 1

2m− 1

2m
∑

j=1

f(C)2j

− 1

m− 1

m
∑

j=1

f(A)jf(B)j , (4.43)

where f0A and f0B are the mean of f(A)j and f(B)j , respectively. In our calcu-

lation of Si and STi, we used equation (4.40). The best-practice [10] recommends

to compute the Di in equation (4.13) as in the following.

Di ≃
1

m− 1

m
∑

j=1

f(B)j

(

f(AB
(i))j − f(A)j

)

(4.44)

92 CHAPTER 4

Thus, first-order sensitivity index is

Si =
Di

D
.

For total effects,

STi ≃
1

2D(m− 1)

m
∑

j=1

(

f(A)j − f(AB
(i))j

)2

. (4.45)

Let k be the index of l levels of xi. We designate kth level of xi as xik and

matrix A with ith column replaced by element xik as A
(i)
xik . Then, interaction

indices can be computed from

V
xi

[

V
x
−i

(y|xi)

]

≃ 1

l − 1

l
∑

k=1





1

m− 1

m
∑

j=1

f(A(i)
xik

)2j − f2
oA





2

− µ2

V (f(A
(i)
xi

))
(4.46)

where µ
V (f(A

(i)
xi

))
is the average variance of f(A

(i)
xi) when xi is varied through l

levels. Then, I2i can be obtained by dividing the result from equation (4.46) by

D2
A.

4.B Sample Size for Box Plots

Our objective in the box plots was not to support any significance tests, but to

show qualitatively the problems that may arise. The number of independent runs

was not determined on statistically rigorous grounds, but by the desire to keep the

computational costs to an easily manageable level. There seems to be no theoret-

ical foundation of how large the sample size for box plots should be, except that

it should be at least 5 [34]. There is no universally agreed method of computing

the box boundaries. We employ the Tukey-Style box plots as implemented in the

Python module Matplotlib, in which the whiskers extend up to 1.5 times the Inter

Quartile Range. The choice of 20 independent runs of STi−Si and Ii estimations

to generate the box plots in Figure 4.2, 4.3, 4.4, and 4.6 was determined taking

into account the guidelines given by [34] and [35].

INTERACTION INDEX 93

References

[1] T. Homma and A. Saltelli. Importance Measures in Global Sensitivity Anal-

ysis of Nonlinear Models. Reliability Engineering and System Safety, 52:1 –

17, 1996.

[2] I. M. Sobol’. Global sensitivity indices for nonlinear mathematical models

and their Monte Carlo estimates. Mathematics and Computers in Simulation,

55:271–280, 2001.

[3] A. Saltelli. Making Best Use of Model Evaluations to Compute Sensitivity

Indices. Computer Physics Communications, 145:280 – 297, 2002.

[4] M. D. Morris. Factorial Sampling Plans for Preliminary Computational Ex-

periments. Technometrics, 33(2):pp. 161–174, 1991.

[5] F. Campolongo, A. Saltelli, and J. Cariboni. From screening to quantitative

sensitivity analysis. A unified approach. Computer Physics Communications,

182(4):978 – 988, 2011. doi:http://dx.doi.org/10.1016/j.cpc.2010.12.039.

[6] A. Saltelli, F. Campolongo, and J. Cariboni. Screening important inputs in

models with strong interaction properties. Reliability Engineering & Sys-

tem Safety, 94(7):1149 – 1155, 2009. Special Issue on Sensitivity Analysis.

doi:http://dx.doi.org/10.1016/j.ress.2008.10.007.

[7] S. Kucherenko, M. Rodriguez-Fernandez, C. Pantelides, and N. Shah. Monte

Carlo evaluation of derivative-based global sensitivity measures. Reliability

Engineering & System Safety, 94(7):1135 – 1148, 2009. Special Issue on

Sensitivity Analysis. doi:http://dx.doi.org/10.1016/j.ress.2008.05.006.

[8] I. M. Sobol’. Sensitivity Estimates for Nonlinear Mathematical Models.

Mathematical Modeling and Computational Experiment, 1(4):407 – 414,

1993.

[9] K. Chan, A. Saltelli, and S. Tarantola. Sensitivity Analysis of Model Output:

Variance-Based Methods Make the Difference. In Proceedings of the 1997

Winter Simulation Conference, pages 261–268, 1997.

[10] A. Saltelli, P. Annoni, I. Azzini, F. Campolongo, M. Ratto, and S. Tarantola.

Variance based sensitivity analysis of model output. Design and estimator for

the total sensitivity index. Computer Physics Communications, 181(2):259 –

270, 2010. doi:http://dx.doi.org/10.1016/j.cpc.2009.09.018.

[11] T. A. Mara, S. Tarantola, and P. Annoni. Non-parametric meth-

ods for global sensitivity analysis of model output with depen-

dent inputs. Environmental Modelling & Software, 72:173 – 183,

94 CHAPTER 4

2015. Available from: http://www.sciencedirect.com/science/article/pii/

S1364815215300153, doi:http://dx.doi.org/10.1016/j.envsoft.2015.07.010.

[12] T. A. Mara and S. Tarantola. Variance-based sensitivity indices for

models with dependent inputs. Reliability Engineering & System

Safety, 107:115 – 121, 2012. {SAMO} 2010. Available from:

http://www.sciencedirect.com/science/article/pii/S0951832011001724,

doi:http://dx.doi.org/10.1016/j.ress.2011.08.008.

[13] S. Kucherenko, S. Tarantola, and P. Annoni. Estimation of global

sensitivity indices for models with dependent variables. Computer

Physics Communications, 183(4):937 – 946, 2012. Available from:

http://www.sciencedirect.com/science/article/pii/S0010465511004085,

doi:http://dx.doi.org/10.1016/j.cpc.2011.12.020.

[14] E. Borgonovo. A new uncertainty importance measure. Reliability Engineer-

ing & System Safety, 92(6):771–784, 2007.

[15] E. Borgonovo, W. Castaings, and S. Tarantola. Moment independent im-

portance measures: new results and analytical test cases. Risk Analysis,

31(3):404–428, 2011.

[16] B. Sudret. Global sensitivity analysis using polynomial chaos ex-

pansions. Reliability Engineering & System Safety, 93(7):964 –

979, 2008. Bayesian Networks in Dependability. Available from:

http://www.sciencedirect.com/science/article/pii/S0951832007001329,

doi:http://dx.doi.org/10.1016/j.ress.2007.04.002.

[17] R. Pulch, E. J. W. ter Maten, and F. Augustin. Sensitivity anal-

ysis and model order reduction for random linear dynamical sys-

tems. Mathematics and Computers in Simulation, 111:80 – 95,

2015. Available from: http://www.sciencedirect.com/science/article/pii/

S037847541500004X, doi:http://dx.doi.org/10.1016/j.matcom.2015.01.003.

[18] G. T. Buzzard and D. Xiu. Variance-Based Global Sensitivity Analysis via

Sparse-Grid Interpolation and Cubature. Communications in Computational

Physics, 9(3):542 – 567, March 2011.

[19] T. Ishigami and T. Homma. An importance quantification technique in un-

certainty analysis for computer models. In Uncertainty Modeling and Anal-

ysis, 1990. Proceedings., First International Symposium on, pages 398–403.

IEEE, Dec 3 - 5 1990. doi:10.1109/ISUMA.1990.151285.

[20] I. Sobol’ and Y. Levitan. On the use of variance reducing multipliers in

Monte Carlo computations of a global sensitivity index. Computer Physics

INTERACTION INDEX 95

Communications, 117:52 – 61, 1999. doi:http://dx.doi.org/10.1016/S0010-

4655(98)00156-8.

[21] I. Sobol, S. Tarantola, D. Gatelli, S. Kucherenko, and W. Mauntz. Estimating

the approximation error when fixing unessential factors in global sensitiv-

ity analysis. Reliability Engineering & System Safety, 92(7):957–960, July

2007. doi:http://dx.doi.org/10.1016/j.ress.2006.07.001.

[22] D. Gatelli, S. Kucherenko, M. Ratto, and S. Tarantola. Calculating first-order

sensitivity measures: A benchmark of some recent methodologies. Reliability

Engineering & System Safety, 94(7):1212 – 1219, 2009. Special Issue on

Sensitivity Analysis. doi:http://dx.doi.org/10.1016/j.ress.2008.03.028.

[23] J. Degroote, M. Hojjat, E. Stavropoulou, R. W uchner, and K.-U. Blet-

zinger. Partitioned solution of an unsteady adjoint for strongly cou-

pled fluid-structure interactions and application to parameter identifica-

tion of a one-dimensional problem. Structural and Multidisciplinary Op-

timization, 47(1):77–94, 2013. Available from: http://dx.doi.org/10.1007/

s00158-012-0808-2, doi:10.1007/s00158-012-0808-2.

[24] S. Ulaganathan, I. Couckuyt, T. Dhaene, J. Degroote, and E. Laermans.

Performance study of gradient-enhanced Kriging. Engineering with Com-

puters, pages 1–20, 2015. Available from: http://dx.doi.org/10.1007/

s00366-015-0397-y, doi:10.1007/s00366-015-0397-y.

[25] I. E. Vignon-Clementel, C. Figueroa, K. Jansen, and C. Taylor. Outflow

boundary conditions for 3D simulations of non-periodic blood flow and pres-

sure fields in deformable arteries. Computer methods in biomechanics and

biomedical engineering, 13(5):625–640, 2010.

[26] N. Westerhof, J.-W. Lankhaar, and B. E. Westerhof. The arterial windkessel.

Medical & biological engineering & computing, 47(2):131–141, 2009.

[27] J.-F. Gerbeau and M. Vidrascu. A quasi-Newton algorithm based on

a reduced model for fluid-structure interaction problems in blood flows.

ESAIM: Mathematical Modelling and Numerical Analysis-Modélisation

Mathématique et Analyse Numérique, 37(4):631–647, 2003.

[28] A. Quarteroni, M. Tuveri, and A. Veneziani. Computational vascular fluid

dynamics: problems, models and methods. Computing and Visualization in

Science, 2(4):163–197, 2000.

[29] A. J. Keane and P. B. Nair. Computational Approaches for Aerospace Design:

The Pursuit of Excellence. John Wiley & Sons, 2005.

96 CHAPTER 4

[30] D. Gorissen, K. Crombecq, I. Couckuyt, T. Dhaene, and P. Demeester. A

Surrogate Modeling and Adaptive Sampling Toolbox for Computer Based

Design. Journal of Machine Learning Research, 11:2051 – 2055, July 2010.

[31] H. Rabitz and O. F. Aliş. General foundations of high-dimensional model

representations. Journal of Mathematical Chemistry, 25(2-3):197–233, 1999.

doi:10.1023/A:1019188517934.

[32] G. Li, S. W. Wang, H. Rabitz, S. Wang, and P. Jaffe. Global uncer-

tainty assessments by high dimensional model representations (HDMR).

Chemical Engineering Science, 57(21):4445–4460, 2002. Available from:

http://dx.doi.org/10.1016/S0009-2509(02)00417-7, doi:10.1016/S0009-

2509(02)00417-7.

[33] G. Li, H. Rabitz, J. Hu, Z. Chen, and Y. Ju. Regularized random-sampling

high dimensional model representation (RS-HDMR). Journal of Mathemati-

cal Chemistry, 43(3):1207–1232, 2008. Available from: http://dx.doi.org/10.

1007/s10910-007-9250-x, doi:10.1007/s10910-007-9250-x.

[34] M. Krzywinski and N. Altman. Points of Significance: Visualizing sam-

ples with box plots. Nature Methods, 11:119 – 120, January 2014.

doi:doi:10.1038/nmeth.2813.

[35] Minitab Express Support. Interpret the key results for boxplot. Webpage, Oct

2015. Available from: http://support.minitab.com/en-us/minitab-express/

1/help-and-how-to/basic-statistics/graphs/boxplot/interpret-the-results/

key-results/.

5
Adaptive Initial Step Size Selection for

Simultaneous Perturbation Stochastic

Approximation

⋆ ⋆ ⋆

K. Ito, T. Dhaene.

“ Adaptive Initial Step Size Selection for Simultaneous Pertur-
bation Stochastic Approximation ”.

Published in SpringerPlus, DOI 10.1186/s40064-016-1823-3, vol. 5, no. 1, pp.

1 - 18, 2016.

⋆ ⋆ ⋆

A difficulty in using Simultaneous Perturbation Stochastic Approximation (SPSA)

is its performance sensitivity to the step sizes chosen at the initial stage of the it-

eration. If the step size is too large, the solution estimate may fail to converge.

The proposed adaptive stepping method automatically reduces the initial step size

of the SPSA so that reduction of the objective function value occurs more reli-

ably. Ten mathematical functions each with three different noise levels were used

to empirically show the effectiveness of the proposed idea. A parameter estimation

example of a nonlinear dynamical system is also included.

98 CHAPTER 5

5.1 Introduction

Simultaneous Perturbation Stochastic Approximation (SPSA) [1] is an optimiza-

tion algorithm that uses only objective function measurements in the search of

solutions. Applications of SPSA include model-free predictive control [2–4], sig-

nal timing for vehicle timing control [5], air traffic network [6], and marine vessel

traffic management [7]. More applications are mentioned in the introductory arti-

cle by Spall [8]. SPSA has been used successfully in many optimization problems

that have high-dimensional input parameter space and the objective value is not

deterministic [9].

In this optimization method, the initial design parameter vector θ of D-dimensions

is perturbed simultaneously in every dimension, i.e. by adding and subtracting a

perturbation vector ∆ of D-dimensions, thus obtaining an estimate of the gradi-

ent vector g. Unlike the traditional finite differencing approach, it only takes two

function evaluations to obtain the estimate of the gradient. Yet, the number of it-

eration needed for convergence to the optimum is said to be more or less the same

with Finite-Difference Stochastic Approximation (FDSA) [10], which in essence

is an approximate steepest-descent method that uses finite-differencing to approx-

imate the partial derivatives along each of the D parameters. Thus, the number of

function evaluations of SPSA is D-fold smaller compared to FDSA [8]. An exten-

sion to this method exists to include second-order (Hessian) effects to accelerate

convergence [11–13]. However, we will not treat this enhancement here.

The problem solved by SPSA in this work can be formulated as following.

min
θ∈Θ

f(θ), (5.1)

where f(θ) is the objective function and θ is a D-dimensional vector of parameters.

We assume that each element in the vector θ is a real number and has upper and

lower bounds that defines the Cartesian product domain Θ. The SPSA and FDSA

procedures are in the general recursive form:

θ̂k+1 = θ̂k − akĝk(θ̂k), (5.2)

where ĝk(θ̂k) is the estimate of the gradient vector g(θ̂) at iteration k based on

the measurements of the objective function. The ak is the step size at iteration

k. Equation (5.2) is analogous to the gradient descent algorithm in nonlinear pro-

gramming, in which gk is the gradient of the objective function ∇f(θ̂k). The

difference is that in equation (5.2), ĝk represent gradients stochastically and the

effect of the noise or deviation from the true gradient is expected to cancel out as

the iteration count k increases. The step sizes ak are normally prescribed in SPSA

and FDSA as a function of k just like the Simulated-Annealing’s [14] cooling

schedule. This is because these methods do not assume deterministic responses

in the measurements of the objective function values. Thus, unlike the nonlinear

ADAPTIVE INITIAL STEP SIZE SELECTION FOR SPSA 99

Figure 5.1 Objective value minimization using gradient descent (one variable): if

gradient g is positive at θk then move to θk+1 < θk, if gradient g is negative then

move to θk+1 > θk

θ

y

Decrease θIncrease θ
g > 0g < 0

programming counterparts, adaptation of step sizes based on gradients and amount

of descent achieved (such as in the line search) is usually not done in the stochas-

tic approximation optimization methods. The rationale of the equation (5.2) is

intuitively depicted in Figure 5.1 for one variable case.

Under appropriate conditions, the iteration in equation (5.2) will converge to

the optimum θ∗ in some stochastic sense [15, 16, p. 183]. The hat symbol indi-

cates an “estimate”. Thus, θ̂k denotes the estimate of the optimum θ∗ at iteration

k. Let y(·) denote a measurement of the objective function f(·) at parameter value

denoted by “ · ” and ck be some small positive number. The measurements are

assumed to contain some noise, i.e. y(·) = f(·) + noise. In SPSA, the ith com-

ponent ĝki(θ̂k) of the gradient vector ĝk(θ̂k) is formed from a ratio involving the

individual components in the perturbation vector and the difference in the two cor-

responding measurements. For two-sided simultaneous perturbations, we have

ĝki(θ̂k) =
y(θ̂k + ck∆k)− y(θ̂k − ck∆k)

2ck∆ki
, (5.3)

where the D-dimensional random perturbation vector

∆k = (∆k0,∆k1, . . . ,∆k(D−1))
T , (5.4)

follows a specific statistical distribution criterion. Here, i is the parameter index. A

simple choice for each component of ∆k is to use Bernoulli±1 distribution, which

is essentially a random switching between +1 and -1. The Bernoulli distribution is

proven to be an optimal distribution for the simultaneous perturbation [17]. Note

also that in the equation (5.3), we do not evaluate y(θ̂k). The recursive equation

(5.2) proceeds with only the responses from the two perturbed inputs y(θ̂k+ck∆k)

and y(θ̂k − ck∆k).

The choice of ak and ck is critical to the performance of SPSA and suggested

100 CHAPTER 5

values can be found in [18]. At given iteration k:

ak =
a

(A+ k + 1)α
, (5.5)

ck =
c

(k + 1)γ
, (5.6)

where

α = 0.602

γ = 0.101

c ≃ standard deviation of measurement noise

A ≤ 10% of maximum number of iterations

a = δθ̂0min

(A+ 1)α

|ĝ0i(θ̂0)|
k = iteration index starting with 0

δθ̂0min = smallest initial change desired in a parameter

The setting for α and γ above are not optimal in the asymptotic sense, but are

adapted to finite iteration settings satisfying convergence conditions [16, p. 162-

164]. In practice, one of the drawbacks of SPSA is that one has to find good

values for a and c, as both affect the performance of the algorithm [16, pp. 165-

166] [19–23]. However, for c, we have a tangible measure, which is the output

measurement error [18], to select a proper value up front. If the function response

is noiseless, c is usually not a critical parameter. On the other hand, a is more

problematic, because no clear measure exists. It is possible to work with δθ̂0min

instead of a, but a priori assignment of its value is still non-trivial if little is known

about the function that we are trying to optimize.

A larger value of a generally produces better results compared to a smaller

value of a. This is because in finite-sample setting, larger a allows the algorithm

to move in bigger steps towards the solution. However, this also increases the

chance that the optimization diverges to a worse solution than the starting point.

Very often, the user of SPSA has to find as big a as possible that would not cause

divergence.

To avoid divergence, an adaptation called “blocking” exists [18, 22] in which

the objective values at θ̂k is evaluated in addition to the two perturbations. If the

new objective function value is “significantly worse” than the current objective

function value, the updating of θ̂k does not happen. The extra function evaluation

at each iteration increases the cost of iteration by 33 %. In addition, a problem

dependent threshold parameter to block the θ̂k update needs to be set up by the

user.

Another way to mitigate divergence is to modify the gradient approximation

ĝk by “scaling” and “averaging” [24, 25]. However, the methods proposed in the

ADAPTIVE INITIAL STEP SIZE SELECTION FOR SPSA 101

literature require set up of additional threshold parameters critical to their perfor-

mance. Furthermore, their methods require additional gradient estimations per

iteration.

Stochastic Gradient Descent (SGD) methods use noisy information of the gra-

dient of the objective functions. On the other hand, Stochastic Approximation

methods such as FDSA and SPSA only uses measurement of noisy objective val-

ues. Therefore, adaptive determination of step sizes based on (approximate) gra-

dients and inverse Hessians in SGD literature (such as in [26, 27]) may not be

directly applicable to or feasible in SPSA. Convergence conditions also differ be-

tween the two. Although this does not exclude the possibility of successful import

of ideas from SGD literature, in this work, we will not delve into this direction.

This work provides a solution to determine the appropriate values of a by in-

troducing an adaptive scheme as discussed in section 5.2. It does not require any

additional objective function evaluations per iteration nor extra problem dependent

parameters to set up.

5.2 Adaptive Initial Step Sizes

To remedy the sensitivity to a, we propose an adaptive stepping algorithm. At the

end of each iteration k, we perform the adjustment described in Algorithm 7.

Algorithm 7 Adaptive Initial Step

1: if min{y(θ̂k + ck∆k), y(θ̂k − ck∆k)} − y(θ̂0) ≥ 0 then

2: θ̂k+1 = θ̂b, where θ̂b gives the best y so far

3: a← 0.5a
4: end if

The condition requires that at least one of the two parameter perturbations pro-

duce a better (smaller) measurement of the objective function than that of initial

guess of parameters θ̂0 to proceed without modifying a. Therefore, at each iter-

ation k, the smaller of the two measurements of the objective function values of

perturbed parameters is compared to that of the initial value at iteration k = 0. If

the measurements of the objective values of the perturbed parameters are larger, θ̂k
is reset to θb, which is the point that gave the minimum in the history of iteration

and a is reduced to half of its previous value. A pseudocode of the proposed SPSA

with the adaptive initial step is shown in Algorithm 8. The difference between the

standard SPSA and our SPSA is in line 10.

102 CHAPTER 5

Algorithm 8 Pseudocode of the Proposed Algorithm

1: Initialize a and c (or set δθ̂0min
≃ min (upper bound− lower bound), and

c ≃ std of response noise). Set maximum number of iterations maxiter.

2: Obtain initial measurement y(θ̂0), and let θb = θ̂0.

3: for k = 0 to maxiter do

4: Compute ∆k and ck.

5: Evaluate y(θ̂k + ck∆k) and y(θ̂k − ck∆k).

6: Record the input parameter vector as θ̂b if better minimum in y is obtained.

7: Compute ĝki(θ̂k).
8: Compute ak.

9: θ̂k+1 = θ̂k − akĝk(θ̂k).
10: Perform Algorithm 7.

11: end for

5.3 Comments on Convergence

Currently available theories of stochastic algorithms are almost all based on asymp-

totic properties with k →∞, and SPSA is no exception. For given conditions [16,

p. 183], SPSA is proven to converge to a local optima almost surely. However,

under limited function evaluation budget, we frequently encounter situations in

which SPSA returns worse solution than the initial i.e. divergence. The method

we propose is a practical remedy conceived in a finite k setting. We will show, in

the next section, its effectiveness empirically via numerical experiments with k in

the order of 103.

For θ̂k to converge to the optimal solution θ∗ in infinite steps, the following

conditions are required for ak and ck [1]: ak, ck > 0 for all k; ak, ck → 0 as k →
∞;
∑∞

k=0 ak =∞, and
∑∞

k=0

(

ak

ck

)2

<∞. With Algorithm 7,
∑∞

k=0 ak =∞ is

not guaranteed. For example, if the reduction of a happens in every iteration k, the

sum is convergent. In practice, the numbers of function evaluations are finite, and

reductions of a are expected to happen only a limited number of times. Therefore,

this violation is expected to pose little problem.

The intention of the proposed method is not to modify the asymptotic conver-

gence rate of the original SPSA algorithm [16, p.p. 186 - 188]. The adaptive step

takes place only if it is suspected that the objective value has become larger than

at the starting point θ̂0. The probability of Algorithm 7 taking place is expected

to go to zero under reasonable signal-to-noise ratio as f(θ̂k) decreases. The worst

situation that can happen is that the every perturbation ck∆k produces worsen-

ing moves and no improvement is obtained compared to the starting point θ0. In

section 5.4, we will confirm empirically what we have described about the conver-

ADAPTIVE INITIAL STEP SIZE SELECTION FOR SPSA 103

gence in finite k settings (k ∼ 103).

Another reason to take the objective value at the starting point as the threshold

value to judge divergence is that if we update this value with y(θ̂k), where k >

0, we may risk picking a point that is too low due to the noise incurred in the

measurement y. This in turn inhibits further improvement of θ̂k for lower objective

values.

In the following section, the smallest output of mathematical functions will be

sought using the standard SPSA and our adaptive initial stepping SPSA. This will

show the sensitivity of the function value in the final iteration to the initial step

size δθ̂0min
and so the sensitivity to a, and how the adaptive initial stepping sub-

stantially mitigates the difficulty to find the proper initial perturbation magnitude.

5.4 Computational Results

In this section, we will compare the original SPSA and our modified SPSA as

described in Algorithm 8 using 10 analytical test functions and a parameter esti-

mation example of a nonlinear dynamic system.

5.4.1 Test Functions

To see the effect of the new adaptive stepping algorithm in SPSA, the minimum

points of ten different mathematical test functions were sought. Except for Griewank

function, the following conditions were applied. The functions’ responses were

minimized from arbitrary starting points θ̂0 ∈ [−2, 2]D (D-dimensional product

space with lower bound -2 and upper bound 2). If θ̂k = [θ̂k0, θ̂k1, · · · , θ̂ki, · · · , θ̂k(D−1)]
T

exceeded [−10, 10] in any of its D dimensions, that parameter was replaced by

-10 if it was less than -10 or was replaced by 10 if it was larger than 10. For

Griewank function, it was randomly started from θ̂0 ∈ [−120, 120]D. If θ̂k ex-

ceeded [−600, 600] in any of its D dimensions, that parameter was replaced by

-600 if it was less than -600 or was replaced by 600 if it was larger than 600. For

all ten functions, the iteration was stopped when 2000 evaluations of the objective

function were reached. For convenience, we will label our proposed algorithm as

“A SPSA” and the standard SPSA as “SPSA”.

The optimizations for each of the ten objective functions were started from 20

different starting points. After the 2000 iterations, the distributions of objective

values were plotted with respect to δθ̂0min
. Eleven different values of δθ̂0min be-

tween 1.0×10−4 and 1.0×101 (up to 1.0×102 for Griewank) were used to make

the plot. The dimensions of the functions were set to be 20, i.e. D = 20.

The definitions of the ten functions are given in the following. The Rosenbrock

104 CHAPTER 5

function is described as

f(θ) =

D−2
∑

i=0

(

100(θi+1 − θ2i)
2 + (θi − 1)2

)

, (5.7)

i = 0, 1, . . . , D − 1, D > 1,

f(θ∗) = 0, θ∗i = 1.

The Sphere function is described as

f(θ) =

D−1
∑

i=0

θ2i , (5.8)

i = 0, 1, . . . , D − 1,

f(θ∗) = 0, θ∗i = 0.

The Schwefel function is described as

f(θ) =

D−1
∑

j=0

(

j
∑

i=0

θi

)2

, (5.9)

i = 0, 1, . . . , D − 1,

f(θ∗) = 0, θ∗i = 0.

The Rastrigin function is described as

f(θ) =
D−1
∑

i=0

(

θ2i − 10 cos(2πθi) + 10
)

, (5.10)

i = 0, 1, . . . , D − 1,

f(θ∗) = 0, θ∗i = 0.

The Skewed Quartic function [16, ex. 6.6] is described as

f(θ) = (Bθ)TBθ + 0.1

D−1
∑

i=0

(Bθ)3i + 0.01
D−1
∑

i=0

(Bθ)4i , (5.11)

i = 0, 1, . . . , D − 1,

f(θ∗) = 0, θ∗i = 0.

where the matrix B in the Skewed Quartic function is a square matrix with upper

triangular elements set to 1 and the lower triangular elements set to zero. The

Griewank function is described as

f(θ) = 1 +

D−1
∑

i=0

θ2i
4000

−
D−1
∏

i=0

cos(
θi√
i
), (5.12)

i = 0, 1, . . . , D − 1,

f(θ∗) = 0, θ∗i = 0.

ADAPTIVE INITIAL STEP SIZE SELECTION FOR SPSA 105

The Ackley function is described as

f(θ) = −20 exp



−0.2

√

√

√

√

1

D

D−1
∑

i=0

θ2i





− exp

(

1

D

D−1
∑

i=0

cos(2πθi)

)

+20− exp(1), (5.13)

i = 0, 1, . . . , D − 1,

f(θ∗) = 0, θ∗i = 0.

The Manevich function is described as

f(θ) =

D−1
∑

i=0

[

(1− θi)
2
/2j
]

, (5.14)

i = 0, 1, . . . , D − 1,

f(θ∗) = 0, θ∗i = 1.

The Ellipsoid function is described as

f(θ) =

D−1
∑

i=0

iθ2i , (5.15)

i = 0, 1, . . . , D − 1,

f(θ∗) = 0, θ∗i = 0.

The Rotated Ellipsoid function is described as

f(θ) =

D−1
∑

i=0





i
∑

j=0

θ2j





2

, (5.16)

i = 0, 1, . . . , D − 1,

f(θ∗) = 0, θ∗i = 0.

Each of Figure 5.A.1 to Figure 5.10 show three different cases of noisy mea-

surements of the outputs. The subfigures (a) have no noise added, subfigures (b)

and (c) have Gaussian noise added to the true output with standard deviation σ of

0.1 and 1.0 respectively. In all the three noise levels of the ten functions, c = 0.2

was used.

A general trend observed from the figures is that when the initial step size is

large, the original SPSA tends to diverge to big objective values. The SPSA with

the proposed initial step size reduction, on the other hand, effectively mitigates this

106 CHAPTER 5

divergence problem producing smaller objective values in general as the (a priori)

initial step size is increased. This is because if the two function evaluations in

the iteration are not smaller than the starting point value f(θ̂0), the algorithm will

reduce the step size (by halving a) and restart at θ̂b, which is the point that gave the

smallest output in the history of iterations. However, note that the iteration index

k in ak and ck is not reinitialized. For the ten functions tested, A SPSA achieved

its best performance when δθ̂0min
was close to 10 or 100 for Griewank function.

This indicates that one can simply set the minimum perturbation δθ̂0min
close to

the magnitude of the difference between upper and lower bound of the parameter

in consideration. This may not be a guarantee for the best results but doing so does

not cause the optimization to diverge to large responses and the results achieved

are not substantially worse than the cases with best settings for a.

As mentioned earlier, the value for c is important when the measurements of

y contain noise. Figure 5.11 shows how the choice of c affects the outcome of

optimizations. The figure shows the case of the 20 dimensional Sphere Function

with Gaussian noise having standard deviation σ = 0.1. Among the three values

of c, namely 0.01, 0.1 and 1.0, c = σ = 0.1 gave the best results for A SPSA.

At c = 1.0, however, A SPSA showed little improvement in the objective value

regardless of δθ̂0min magnitude. This is caused by a becoming prematurely too

small in the divergent early iterations. On the other hand, the standard SPSA

showed a good reduction at log10(δθ̂0min
) = −2.0, and −1.5. at both c = 0.1 and

1.0. This implies that for A SPSA, a range of values of good c can be narrower than

that of the standard SPSA. On the other hand, the choice of δθ̂0min
(and therefore

a) is much easier for A SPSA. We can, for example, let δθ̂0min ≃ min(U − L),

where min(U − L) is the minimum difference between upper and lower bounds

of the domain of parameter vector θ. In practice, it is better to scale all the input

dimensions to fall in similar or equal intervals.

Figure 5.12 shows the results of optimizing the Rosenbrock and Rastrigin func-

tions using three different values of multiplication factor of a: 0.1, 0.5, and 0.9.

The difference in multiplication factor does not change the general trend that larger

δθ̂0min
produces better results and that divergence does not occur. One could tune

the value of the multiplication factor, but the default value of 0.5 that we showed

in the Algorithm 7 generally produces satisfactory results compared to other val-

ues of multiplication factors between 0 and 1. The Figure 5.12 (b) also shows

that δθ̂0min
≃ min(U − L) may not be an optimal setting since smaller value

δθ̂0min
≃ 10−1.5 is shown to produce better optimization results when the reduc-

tion rate is slow at 0.9. This implies that in a bumpy (highly multimodal) function

like Rastrigin, the slow decrease in a can adversely affect the minimization of the

objective value by a large number of resets to θb. The opposite is true with Rosen-

brock function in (a), in which the slow reduction factor 0.9 gave the best result at

δθ̂0min ≃ 101.

ADAPTIVE INITIAL STEP SIZE SELECTION FOR SPSA 107

For all the mathematical functions tested in this work, optimization using

SPSA diverges almost surely if the δθ̂0min is large. However, A SPSA and SPSA

give closely matching results when the initial step sizes are relatively small (i.e.,

the left hand side of the plots in Figure 5.A.1 to Figure 5.10). This is because,

in cases that divergence does not happen, the adaptation of a does not take place

in A SPSA and therefore SPSA and A SPSA have identical behavior. This is a

confirmation that Algorithm 7 does not alter, in any significant way, the finite sam-

ple convergence characteristics of the original SPSA when the divergence does not

manifest.

5.4.2 Nonlinear Dynamics Example

We consider a parameter estimation problem with Lorenz attractor. Its nonlinear

dynamics is described as

dx1

dt
= s(x2 − x1), (5.17)

dx2

dt
= x1(r − x3)− x2, (5.18)

dx3

dt
= x1x2 − bx1. (5.19)

We seek to identify the system parameters θ = [s, r, b] by minimizing the one-

time-step-ahead prediction error Lk of the state xk+1 given the current state xk =

[xk1, xk2, xk3]
T . We use fourth-order Runge-Kutta method to obtain xk+1.

Let us denote x̂k+1 as one-time-step-ahead prediction given by the estimated

system with parameters θ̂k but based on xk which was obtained with the true sys-

tem parameters. Then, we can define the prediction error as

Lk(xk, θ̂k) = [xk+1 − x̂k+1]
T · [xk+1 − x̂k+1]. (5.20)

Thus, the optimization to be solved is

min
θ∈Θ

Lk(xk, θ). (5.21)

The index k above is the same as the index k in the SPSA algorithms. So the SPSA

iteration proceeds along with the time steps of the dynamic system to compute Lk.

We set the true parameters to be θ = [10, 28, 8/3] and pretend to not to know

them. We set the time increment to be ∆t = 0.005 and simulate from t = 0

to 20, obtaining target state xk with k = 0, 1, 2, . . . , 4000. We let δθ̂0min
∈

{0.001, 0.01, 1, 10, 100, 1000} and at each value of δθ̂0min
we run both A SPSA

and SPSA 20 times.

For this problem, we set the parameter space as three-dimensional product

space Θ = [0, 500]3. The initial state is x0 = [2, 3, 4]T . The initial guess (starting

point) of the parameter set θ̂0 is a random pick from Θ.

108 CHAPTER 5

Figure 5.13 show the box plots of final Lk when started from different values

of δθ̂0min . The smallest median of final Lk is obtained at δθ̂0min = 10 for SPSA

and δθ̂0min
= 100 and 1000 for A SPSA. The best medians of final Lk obtained

for A SPSA (5.62× 10−15) is smaller compared to that of SPSA (3.10× 10−13).

However, both SPSA and A SPSA had some runs that did not converge to the

above mentioned near-zero Lk values even at these δθ̂0min
.

Again, for A SPSA, the best setting were obtained when δθ̂0min was set to large

values near the order of magnitude of the distance between upper and lower bound

of the domain, while for SPSA, the best δθ̂0min
was at an interior value between

10−3 and 103.

Figure 5.14 shows the trajectory of the reference Lorenz attractor and the sim-

ulation of the Lorenz attractor whose system parameters s, r, and b were success-

fully identified by A SPSA. The time t is run from 0 to 20 starting from the same

initial condition used in the identification. The figure shows excellent match.

Figure 5.15 shows the box plots of parameters estimated by A SPSA and SPSA

starting at their best δθ̂0min settings. The corresponding statistics are shown in

Table 5.1 and Table 5.2. The boxes appear collapsed as single horizontal lines

at medians since the spaces between first quartiles and third quartiles are very

narrow. Some non-converging cases are visible as dots on the figure. The figure

and the tables show that the parameter estimates are more consistent from run to

run in A SPSA than that of SPSA as A SPSA has narrower first and third quartile

differences.

Table 5.1 Statistics of identified Lorenz Attractor parameters by 20 SPSA runs at

δθ̂0min
= 10

method s r b Pred. Err. L4000

1 A SPSA: 0 Min. : 0.00 Min. : 8.017 Min. :0.000 Min. : 0.0000

2 SPSA :20 1st Qu.: 10.00 1st Qu.: 28.000 1st Qu.:2.642 1st Qu.: 0.0000

3 Median : 10.00 Median : 28.000 Median :2.667 Median : 0.0000

4 Mean : 55.94 Mean : 45.534 Mean :2.311 Mean : 1.3645

5 3rd Qu.: 11.11 3rd Qu.: 36.817 3rd Qu.:2.667 3rd Qu.: 0.1017

6 Max. :477.04 Max. :328.504 Max. :3.261 Max. :19.6773

Table 5.2 Statistics of identified Lorenz Attractor parameters by 20 A SPSA runs

at δθ̂0min
= 100

method s r b Pred. Err. L4000

1 A SPSA:20 Min. : 0.000 Min. : 0.000 Min. : 0.0000 Min. : 0.0000

2 SPSA : 0 1st Qu.: 10.000 1st Qu.: 28.000 1st Qu.: 2.6667 1st Qu.: 0.0000

3 Median : 10.000 Median : 28.000 Median : 2.6667 Median : 0.0000

4 Mean : 68.069 Mean : 31.816 Mean : 24.8487 Mean : 1.2328

5 3rd Qu.: 10.000 3rd Qu.: 28.000 3rd Qu.: 2.6667 3rd Qu.: 0.0000

6 Max. :500.000 Max. :156.811 Max. :438.8246 Max. :15.6654

ADAPTIVE INITIAL STEP SIZE SELECTION FOR SPSA 109

5.5 Conclusion

With the adaptive initial step algorithm, one can avoid divergence in SPSA it-

erations. Moreover, with a large initial step size, the SPSA algorithm with the

adaptive initial step algorithm was able to find equal or better solutions compared

to the original SPSA for all the ten mathematical function minimization problems

that we have tested. In the nonlinear dynamics example, the new algorithm was

able to find system parameters more precisely. The proposed method may not

eliminate the need of tuning the parameters of SPSA algorithms, but it facilitates

the process by eliminating the risk of solution divergence and reducing the trial-

and-error effort. Further testing of the algorithm with different test functions, noise

distributions, and industrial use-cases would be beneficial. The improvement pro-

posed in this work is expected to be valuable when the objective functions are

costly to evaluate or if the algorithm is employed inside another algorithm such as

machine learning or target tracking, for manual tuning of the parameters would be

cumbersome in such cases. As a future work, it would be beneficial to investigate

under what conditions the probability of the proposed adaptation (i.e. going into

if-branch in Algorithm 7) happening tends to zero as iteration k tends to infinity.

Acknowledgements

The authors would like to thank James C. Spall for constructive comments on the

proposed method. Keiichi Ito has been funded by the Institute for the Promotion of

Innovation through Science and Technology (IWT) through the Baekeland Man-

date program. This research has also been funded by the Interuniversity Attraction

Poles Programme BESTCOM initiated by the Belgian Science Policy Office.

110 CHAPTER 5

Figure 5.1 Initial parameter change δθ̂0min and distribution of responses after 2000

function evaluations for “Rosenbrock”.
(a) No noise

1e+02

1e+04

1e+06

−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1
log10(Magnitude of initial parameter change)

V
al

ue

method

A_SPSA

SPSA

(b) σ = 0.10

1e+02

1e+04

1e+06

−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1
log10(Magnitude of initial parameter change)

V
al

ue

method

A_SPSA

SPSA

(c) σ = 1.0

1e+02

1e+04

1e+06

−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1
log10(Magnitude of initial parameter change)

V
al

ue

method

A_SPSA

SPSA

ADAPTIVE INITIAL STEP SIZE SELECTION FOR SPSA 111

Figure 5.2 Initial parameter change δθ̂0min and distribution of responses after 2000

function evaluations for “Sphere”.

(a) No noise

1e−16

1e−10

1e−04

1e+02

−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1
log10(Magnitude of initial parameter change)

V
al

ue

method

A_SPSA

SPSA

(b) σ = 0.10

1e−02

1e+00

1e+02

−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1
log10(Magnitude of initial parameter change)

V
al

ue

method

A_SPSA

SPSA

(c) σ = 1.0

1e−01

1e+01

1e+03

−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1
log10(Magnitude of initial parameter change)

V
al

ue

method

A_SPSA

SPSA

112 CHAPTER 5

Figure 5.3 Initial parameter change δθ̂0min and distribution of responses after 2000

function evaluations for “Schwefel”.
(a) No noise

1e+01

1e+03

1e+05

−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1
log10(Magnitude of initial parameter change)

V
al

ue

method

A_SPSA

SPSA

(b) σ = 0.10

1e+01

1e+03

1e+05

−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1
log10(Magnitude of initial parameter change)

V
al

ue

method

A_SPSA

SPSA

(c) σ = 1.0

1e+01

1e+03

1e+05

−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1
log10(Magnitude of initial parameter change)

V
al

ue

method

A_SPSA

SPSA

ADAPTIVE INITIAL STEP SIZE SELECTION FOR SPSA 113

Figure 5.4 Initial parameter change δθ̂0min and distribution of responses after 2000

function evaluations for “Rastrigin”.

(a) No noise

100

1000

−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1
log10(Magnitude of initial parameter change)

V
al

ue

method

A_SPSA

SPSA

(b) σ = 0.10

100

1000

−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1
log10(Magnitude of initial parameter change)

V
al

ue

method

A_SPSA

SPSA

(c) σ = 1.0

100

1000

−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1
log10(Magnitude of initial parameter change)

V
al

ue

method

A_SPSA

SPSA

114 CHAPTER 5

Figure 5.5 Initial parameter change δθ̂0min and distribution of responses after 2000

function evaluations for “Skewed Quartic”.

(a) No noise

1e−02

1e+00

1e+02

−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1
log10(Magnitude of initial parameter change)

V
al

ue

method

A_SPSA

SPSA

(b) σ = 0.10

0.1

10.0

−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1
log10(Magnitude of initial parameter change)

V
al

ue

method

A_SPSA

SPSA

(c) σ = 1.0

0.1

10.0

−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1
log10(Magnitude of initial parameter change)

V
al

ue

method

A_SPSA

SPSA

ADAPTIVE INITIAL STEP SIZE SELECTION FOR SPSA 115

Figure 5.6 Initial parameter change δθ̂0min and distribution of responses after 2000

function evaluations for “Griewank”.
(a) No noise

10

1000

−4 −3.4 −2.8 −2.2 −1.6 −1 −0.4 0.2 0.8 1.4 2
log10(Magnitude of initial parameter change)

V
al

ue

method

A_SPSA

SPSA

(b) σ = 0.10

10

100

1000

−4 −3.4 −2.8 −2.2 −1.6 −1 −0.4 0.2 0.8 1.4 2
log10(Magnitude of initial parameter change)

V
al

ue

method

A_SPSA

SPSA

(c) σ = 1.0

10

100

1000

−4 −3.4 −2.8 −2.2 −1.6 −1 −0.4 0.2 0.8 1.4 2
log10(Magnitude of initial parameter change)

V
al

ue

method

A_SPSA

SPSA

116 CHAPTER 5

Figure 5.7 Initial parameter change δθ̂0min and distribution of responses after 2000

function evaluations for “Ackley”.

(a) No noise

1

10

−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1
log10(Magnitude of initial parameter change)

V
al

ue

method

A_SPSA

SPSA

(b) σ = 0.10

1

10

−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1
log10(Magnitude of initial parameter change)

V
al

ue

method

A_SPSA

SPSA

(c) σ = 1.0

10

−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1
log10(Magnitude of initial parameter change)

V
al

ue

method

A_SPSA

SPSA

ADAPTIVE INITIAL STEP SIZE SELECTION FOR SPSA 117

Figure 5.8 Initial parameter change δθ̂0min and distribution of responses after 2000

function evaluations for “Manevich”.
(a) No noise

0.1

10.0

−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1
log10(Magnitude of initial parameter change)

V
al

ue

method

A_SPSA

SPSA

(b) σ = 0.10

1e−03

1e−01

1e+01

−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1
log10(Magnitude of initial parameter change)

V
al

ue

method

A_SPSA

SPSA

(c) σ = 1.0

0.1

10.0

−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1
log10(Magnitude of initial parameter change)

V
al

ue

method

A_SPSA

SPSA

118 CHAPTER 5

Figure 5.9 Initial parameter change δθ̂0min and distribution of responses after 2000

function evaluations for “Ellipsoid”.

(a) No noise

1e−04

1e−01

1e+02

−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1
log10(Magnitude of initial parameter change)

V
al

ue

method

A_SPSA

SPSA

(b) σ = 0.10

1e−02

1e+00

1e+02

1e+04

−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1
log10(Magnitude of initial parameter change)

V
al

ue

method

A_SPSA

SPSA

(c) σ = 1.0

1

100

10000

−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1
log10(Magnitude of initial parameter change)

V
al

ue

method

A_SPSA

SPSA

ADAPTIVE INITIAL STEP SIZE SELECTION FOR SPSA 119

Figure 5.10 Initial parameter change δθ̂0min and distribution of responses after

2000 function evaluations for “Rotated Ellipsoid”.

(a) No noise

1e+01

1e+03

1e+05

−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1
log10(Magnitude of initial parameter change)

V
al

ue

method

A_SPSA

SPSA

(b) σ = 0.10

1e+01

1e+03

1e+05

−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1
log10(Magnitude of initial parameter change)

V
al

ue

method

A_SPSA

SPSA

(c) σ = 1.0

1

100

10000

−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1
log10(Magnitude of initial parameter change)

V
al

ue

method

A_SPSA

SPSA

120 CHAPTER 5

Figure 5.11 Effect of choice of c to the final response of “Sphere” with Gaussian

noise of σ = 0.1 after 2000 function evaluations.

(a) c = 0.01

10

1000

−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1
log10(Magnitude of initial parameter change)

V
al

ue

method

A_SPSA

SPSA

(b) c = 0.10

1e−02

1e+00

1e+02

−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1
log10(Magnitude of initial parameter change)

V
al

ue

method

A_SPSA

SPSA

(c) c = 1.00

1e−01

1e+01

1e+03

−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1
log10(Magnitude of initial parameter change)

V
al

ue

method

A_SPSA

SPSA

Figure 5.12 Effect of choice of the reduction factor of a to the responses after

2000 function evaluations.

(a) Rosenbrock (no noise)

100

10000

−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1
log10(Magnitude of initial parameter change)

V
al

ue

Reduction
factor

0.1

0.5

0.9

(b) Rastrigin (no noise)

10

100

−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1
log10(Magnitude of initial parameter change)

V
al

ue

Reduction
factor

0.1

0.5

0.9

ADAPTIVE INITIAL STEP SIZE SELECTION FOR SPSA 121

Figure 5.13 Initial parameter change δθ̂0min and distribution of L4000 (after 8000

function evaluations)

1e−11

1e−06

1e−01

−3 −2 −1 0 1 2 3
log10(Magnitude of initial parameter change)

E
rr

or

method

A_SPSA

SPSA

Figure 5.14 State evolution of the target and identified Lorenz attractor, t = 0 to

20

x

−20−15−10 −5 0 5 10 15 20

y

−30
−20

−10
0

10
20

30

z

0

10

20

30

40

50

Target
Learned

122 CHAPTER 5

Figure 5.15 Distribution of the parameters identified by A SPSA and SPSA

(a) A SPSA with δθ̂0min = 100

A_SPSA

0

100

200

300

400

500

s r b
Parameters

V
al

ue

(b) SPSA with δθ̂0min = 10

SPSA

0

100

200

300

400

500

s r b
Parameters

V
al

ue

Appendix

5.A Selected Results in 100 Dimensions

In this section, we show results of optimizing five test functions in 100 dimensions

using A SPSA and SPSA. The general observation remain the same as discussed

in section 5.4. A SPSA effectively eliminates divergence when the initial pertur-

bation is large.

124 CHAPTER 5

Figure 5.A.1 Initial parameter change δθ̂0min
and distribution of responses after

2000 function evaluations for “Rosenbrock”.
(a) No noise

1e+04

1e+06

1e+08

−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1
log10(Magnitude of initial parameter change)

V
al

ue

method

A_SPSA

SPSA

(b) σ = 0.10

1e+04

1e+06

1e+08

−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1
log10(Magnitude of initial parameter change)

V
al

ue

method

A_SPSA

SPSA

(c) σ = 1.0

1e+04

1e+06

1e+08

−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1
log10(Magnitude of initial parameter change)

V
al

ue

method

A_SPSA

SPSA

ADAPTIVE INITIAL STEP SIZE SELECTION FOR SPSA 125

Figure 5.A.2 Initial parameter change δθ̂0min and distribution of responses after

2000 function evaluations for “Sphere”.

(a) No noise

1e−01

1e+01

1e+03

−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1
log10(Magnitude of initial parameter change)

V
al

ue

method

A_SPSA

SPSA

(b) σ = 0.10

1e−01

1e+01

1e+03

−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1
log10(Magnitude of initial parameter change)

V
al

ue

method

A_SPSA

SPSA

(c) σ = 1.0

10

1000

−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1
log10(Magnitude of initial parameter change)

V
al

ue

method

A_SPSA

SPSA

126 CHAPTER 5

Figure 5.A.3 Initial parameter change δθ̂0min
and distribution of responses after

2000 function evaluations for “Schwefel”.
(a) No noise

1e+03

1e+05

−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1
log10(Magnitude of initial parameter change)

V
al

ue

method

A_SPSA

SPSA

(b) σ = 0.10

1e+03

1e+05

−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1
log10(Magnitude of initial parameter change)

V
al

ue

method

A_SPSA

SPSA

(c) σ = 1.0

1e+03

1e+05

−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1
log10(Magnitude of initial parameter change)

V
al

ue

method

A_SPSA

SPSA

ADAPTIVE INITIAL STEP SIZE SELECTION FOR SPSA 127

Figure 5.A.4 Initial parameter change δθ̂0min and distribution of responses after

2000 function evaluations for “Rastrigin”.

(a) No noise

100

1000

10000

−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1
log10(Magnitude of initial parameter change)

V
al

ue

method

A_SPSA

SPSA

(b) σ = 0.10

100

1000

10000

−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1
log10(Magnitude of initial parameter change)

V
al

ue

method

A_SPSA

SPSA

(c) σ = 1.0

100

1000

10000

−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1
log10(Magnitude of initial parameter change)

V
al

ue

method

A_SPSA

SPSA

128 CHAPTER 5

Figure 5.A.5 Initial parameter change δθ̂0min
and distribution of responses after

2000 function evaluations for “Skewed Quartic”.

(a) No noise

0.1

10.0

−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1
log10(Magnitude of initial parameter change)

V
al

ue

method

A_SPSA

SPSA

(b) σ = 0.10

0.1

10.0

−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1
log10(Magnitude of initial parameter change)

V
al

ue

method

A_SPSA

SPSA

(c) σ = 1.0

1

100

−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1
log10(Magnitude of initial parameter change)

V
al

ue

method

A_SPSA

SPSA

ADAPTIVE INITIAL STEP SIZE SELECTION FOR SPSA 129

References

[1] J. C. Spall. Multivariate Stochastic Approximation Using a Simultaneous

Perturbation Gradient Approximation. IEEE Transactions on Automatic

Control, 37(3):332 – 341, March 1992.

[2] N. Dong and Z. Chen. A novel ADP based model-free predictive control.

Nonlinear Dynamics, 69(1-2):89–97, 2012. Available from: http://dx.doi.

org/10.1007/s11071-011-0248-3, doi:10.1007/s11071-011-0248-3.

[3] N. Dong and Z. Chen. A novel data based control method based upon neural

network and simultaneous perturbation stochastic approximation. Nonlinear

Dynamics, 67(2):957–963, 2012. Available from: http://dx.doi.org/10.1007/

s11071-011-0039-x, doi:10.1007/s11071-011-0039-x.

[4] H.-S. Ko, K. Y. Lee, and H.-C. Kim. A Simultaneous Perturbation Stochastic

Approximation (SPSA)-Based Model Approximation and its Application for

Power System Stabilizers. International Journal of Control, Automation, and

Systems, 6(4):506–514, August 2008.

[5] J. C. Spall and D. C. Chin. Traffic-Responsive Signal Timing for System-Wide

Traffic Control. Transportation Research, 5(Part C):153–163, 1997.

[6] N. L. Kleinman, S. D. Hill, and V. A. Ilenda. SPSA/SIMMOD Optimization of

Air Traffic Delay Cost. In Proceedings of the American Control Conference,

pages 1121–1125, Albuquerque, New Mexico, USA, 4-6 June 1997.

[7] R. Burnett. Application of Stochastic Optimization to Collision Avoidance. In

Proceedings of the American Control Conference, pages 2789–2794, Boston,

Massachusetts, USA, 29 June-2 July 2004.

[8] J. C. Spall. An Overview of the Simultaneous Perturbation Method for Ef-

ficient Optimization. Johns Hopkins APL Technical Digest, 19(4):482–492,

1998.

[9] Simultaneous Perturbation Stochastic Approximation: A method for System

Optimization. http://www.jhuapl.edu/SPSA/index.html.

[10] J. Kiefer and J. Wolfowitz. Stochastic Estimation of the Maximum of a Re-

gression Function. Annals of Mathematical Statistics, 23:452–466, Septem-

ber 1952.

[11] J. C. Spall. Adaptive Stochastic Approximation by the Simultaneous Per-

turbation Method. Transactions on Automatic Control, 45(10):1839–1853,

October 2000.

130 CHAPTER 5

[12] J. C. Spall. Feedback and Weighting Mechanisms for Improving Jacobian Es-

timates in the Adaptive Simultaneous Perturbation Algorithm. IEEE Trans-

actions on Automatic Control, 54(6):12161229, 2009.

[13] X. Zhu and J. C. Spall. A modified second-order SPSA optimization algo-

rithm for finite samples. International Journal of Adaptive Control and Signal

Processing, 16:397–409, 2002.

[14] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by Simulated

Annealing. Science, 220(4598):671 – 680, May 13 1983.

[15] S. Finck and H.-G. Beyer. Performance analysis of the simultaneous

perturbation stochastic approximation algorithm on the noisy sphere

model. Theoretical Computer Science, 419:50 – 72, 2012. Available from:

http://www.sciencedirect.com/science/article/pii/S0304397511009340,

doi:http://dx.doi.org/10.1016/j.tcs.2011.11.015.

[16] J. C. Spall. Introduction to Stochastic Search and Optimization, Estimation,

Simulation and Control. Wiley-Interscience, 2003.

[17] P. Sadegh and J. C. Spall. Optimal Random Perturbations for Stochastic Ap-

proximation Using a Simultaneous Perturbation Gradient Approximation. In

Proceedings of the American Control Conference, pages 3582–3586, Albu-

querque, NM, USA, 4-6 June 1997.

[18] J. C. Spall. Implementation of the Simultaneous Perturbation Algorithm for

Stochastic Optimization. IEEE Transactions on Aerospace and Electronic

Systems, 34(3):817–823, July 1998.

[19] M. U. Altaf, A. W. Heemink, M. Verlaan, and I. Hoteit. Simultaneous Per-

turbation Stochastic Approximation for Tidal Models. Ocean Dynamics,

61:1093 – 1105, 2011.

[20] X. Shen, M. Yao, W. Jia, and D. Yuan. Adaptive complementary filter

using fuzzy logic and simultaneous perturbation stochastic approximation

algorithm. Measurement, 45(5):1257 – 1265, 2012. Available from:

http://www.sciencedirect.com/science/article/pii/S0263224112000267,

doi:http://dx.doi.org/10.1016/j.measurement.2012.01.011.

[21] M. Radac, R. Precup, E. Petriu, and S. Preitl. Application of IFT and SPSA to

Servo System Control. IEEE Transactions on Neural Networks, 22(12):2363–

2375, Dec 2011. doi:10.1109/TNN.2011.2173804.

[22] D. Easterling, L. Watson, M. Madigan, B. Castle, and M. Trosset. Paral-

lel deterministic and stochastic global minimization of functions with very

ADAPTIVE INITIAL STEP SIZE SELECTION FOR SPSA 131

many minima. Computational Optimization and Applications, 57(2):469 –

492, 2014. Available from: http://dx.doi.org/10.1007/s10589-013-9592-1,

doi:10.1007/s10589-013-9592-1.

[23] A. Taflanidis and J. Beck. Stochastic Subset Optimization for

optimal reliability problems. Probabilistic Engineering Me-

chanics, 23(2 - 3):324 – 338, 2008. 5th International Confer-

ence on Computational Stochastic Mechanics. Available from:

http://www.sciencedirect.com/science/article/pii/S0266892007000501,

doi:http://dx.doi.org/10.1016/j.probengmech.2007.12.011.

[24] S. Andradóttir. A Scaled Stochastic Approximation Algo-

rithm. Management Science, 42(4):475–498, 1996. Available

from: http://pubsonline.informs.org/doi/abs/10.1287/mnsc.42.4.475,

arXiv:http://pubsonline.informs.org/doi/pdf/10.1287/mnsc.42.4.475,

doi:10.1287/mnsc.42.4.475.

[25] Z. Xu and X. Wu. A new hybrid stochastic approximation algorithm. Opti-

mization Letters, 7(3):593–606, 2013. Available from: http://dx.doi.org/10.

1007/s11590-012-0443-2, doi:10.1007/s11590-012-0443-2.

[26] M. D. Zeiler. ADADELTA: An Adaptive Learning Rate Method.

arXiv:1212.5701v1, [cs.LG], 2012. Available from: http://arxiv.org/abs/

1212.5701.

[27] L. Bottou. Large-scale machine learning with stochastic gradient descent.

In Proceedings of COMPSTAT’2010, pages 177–186. Springer, 2010.

6
Conclusion

6.1 General Thoughts

Ordinal optimization already trades accuracy in favor of efficiency. I would like

to suggest the scalability as a third trade-off. I would like to propose an empir-

ical rule summarized in Figure 6.1. Given a finite computational resource and

a specific kind of problem to solve, there seems to be a trade-off of three perfor-

mances in computational methods, namely 1) accuracy (or precision), 2) efficiency

(or convergence rate), and 3) scalability to higher dimensions. In multi-objective

optimization language, these three objectives are said to form a Pareto-Front.

For example, in optimization, if an algorithm is very accurate in finding the

minimum and does so in a relatively small number of function evaluations, this

method is unlikely to be scalable to high-dimensional problems. On the other

hand, if a method is able to scale to large dimensions and be efficient in attaining

a relaxed objective, accuracy or precision of the objective has been compromised.

If one needs to solve a high-dimensional problem with very accurate final results,

then one needs to expect a large number of function evaluations. For most prob-

lems, the number of dimensions is not a controllable variable. Therefore, the job

of an engineer is to employ an approximation to get the solution just right within

a budget.

In our case, SOMBAS traded accuracy of finding the best with the efficiency

of finding the feasible or reducing objective in a very limited number of function

evaluations in a high-dimensional space (evidence shown up to 100 dimensions).

134 CHAPTER 6

Figure 6.1 A performance triangle model: given a set of problems to be solved,

an algorithm can be considered to possess a combination of three performances

(scalability to high-dimensional problems, efficiency in reaching (a target value or

a rank of) a solution, and accuracy of the solution) of which two can be improved

by sacrificing the remaining performance.

It showed its effectiveness in finding feasible solutions in high-dimensions with

a limited number of function evaluations when compared to DE and CMA-ES. It

works on the same philosophy as Ordinal Optimization but in a real-number space.

Interaction indices using brute-force calculation showed that by relaxing the

need for accurate Monte Carlo integration, one could obtain an index that is ef-

ficient in detecting interaction and robust in its quantification, which returns zero

to arithmetic precision if the effect of an input variable is additive in the output

variance. It is interesting that the time-consuming brute-force approach benefits

both the efficiency in screening and the precision in quantitative evaluation of in-

teractions. For screening, it is possible to scale to higher dimensions, whereas for

quantitative evaluation, it is yet limiting. This is an example of changing the ob-

jective (from Total Sensitivity to Heteroscedasticity) that brings a different level

of accuracy and speed for detecting and quantifying interaction, but the trade-off

relations of Figure 6.1 still holds.

The adaptive initial step SPSA relaxed or completely eliminated the need for

proper tuning of the algorithm to avoid divergence in the limited number of func-

tion evaluations. However, this also entails the risk of being stuck at the starting

point without any improvement.

In the HAROS-HD report summarized in Appendix B, two hybrid optimiza-

tion strategies were proposed to improve on all three measures: accuracy, speed,

and scalability. At the moment of the reporting, however, it did not show evidence

CONCLUSION 135

that it improved on the reference optimization method in terms of minimum objec-

tive value found. Since there is still room for improvement by tuning the algorithm

parameters, there is a chance that the proposed algorithm improves over the refer-

ence methods by reaching a smaller minimum in the same computational budget.

If the heuristic is valid, the tuning probably will bring the performance only on

par with the reference method at a similar number of function evaluations, but not

much further.

However, it is worth investigating if the new hybrid methods have been faster

than the reference method in reaching fairly good solutions on par with values in

practice. Furthermore, the new method provides a decomposition of the problem

to a set of lower dimensional problems as well as identifying feasible regions in the

form of hypercubes (sets of upper and lower bounds of input parameters). These

are added value not obtainable by routine application of traditional optimization

algorithm which only finds a single solution. Further investigation and reporting

on these aspects need to be done.

Another performance measure generality could be added to Figure 6.1. That

way, we may be able to improve on the remaining three simultaneously. We can

say that most methods pursue any of the other three performances by specializing

(compromising generality) to deal with a specific kind of problem or by exploiting

specific information pertaining to the problem to be solved. If the generality is to

be fixed, the trade-off between accuracy, speed, and scalability seems inevitable.

6.2 Impact

SOMBAS contributes to a new way of performing feasible region search and op-

timization. The method enables an efficient reduction in objective values in a

limited number of function evaluations when the function has a large number of

input variables (up to 100 has been investigated). Unlike surrogate model assisted

methods, it is not subject to the exponential growth in the number of samples to

adequately model the original function. The density learning approach using SOM

has lower complexity than surrogate modeling techniques that typically require in-

verting a matrix to fit an interpolating function. The density representation need

not be accurate and learning algorithm of SOM is numerically very robust. The

merit function used in SOMBAS enables space filling characteristics in the feasible

region and this function could also be used in different optimization algorithms.

The new interaction index enables a robust detection of non-additive (interact-

ing) effects of input variables on the output. The detection is not subject to Monte

Carlo integration accuracy enabling the application to weak interaction cases as

well as strong ones with as low as 4D + 2 function evaluations, where D is the

number of input variables. If a variable is non-interacting, the proposed computa-

tion of its interaction index returns zero to arithmetic precision. The same method

136 CHAPTER 6

can be used to rank the importance of the interaction of each variable at a larger

number of samples, but it is subject to the Monte Carlo integration accuracy.

SPSA is robust against noisy functions and requires only two function eval-

uations per iteration to estimate gradients irrespective of input dimensions. The

proposed adaptive initial step size for SPSA effectively avoids divergence of so-

lutions to larger objective values often encountered when using the method. This

reduces the trial error runs to set up an appropriate initial perturbation step size

and facilitates its integration with other algorithms.

6.3 Potential Areas of Future Research

SOMBAS and its merit function formulations can be applied inside many other al-

gorithms, and some are described in the appendices. Creating variations of SOM-

BAS merit investigation. In particular, the fundamental idea of adaptive density

learning could be an effective approach to high-dimensional and expensive func-

tion optimization. In SOMBAS, vicinity information on the Self-Organizing Map

has not been used in its search algorithms. This information could be used to

perform a more refined search. The human judgment could also take part in the

iterations using the SOM as an interface. Furthermore, the simultaneous improve-

ment of accuracy (finding smaller mass), speed (fewer number of function evalu-

ations), and scalability to high-dimensional problems is yet to be demonstrated in

HAROS-HD project.

The interaction index will probably benefit by looking into a more efficient

way of computing them (albeit less accurate). Further investigation of its nature

and theoretical difference from the other interaction measures are needed. Fur-

thermore, an interaction index that allows correlated inputs would be very useful.

The indices could be applied as part of a new kind of optimization method that

would learn and exploit interaction and sensitivity information during its iterations.

For example, a combination with Monte Carlo Optimization methods such as the

Cross-Entropy Method [1] and Probability Collectives [2] would be interesting.

The adaptive initial step reduction approach could be applied to other stochas-

tic approximation methods. There is also potential to further refine the method by

also allowing it to adaptively enlarge the step size.

CONCLUSION 137

References

[1] D. P. Kroese, S. Porotsky, and R. Y. Rubinstein. The Cross-Entropy Method

for Continuous Multi-Extremal Optimization. Methodology and Computing

in Applied Probability, 8:383 – 407, 2006.

[2] D. Rajnarayan, D. Wolpert, and I. Kroo. Optimization Under Uncertainty Us-

ing Probability Collectives. In 11th AIAA/ISSMO Multidisciplinary Analysis

and Optimisation Conference, Portsmouth, Virginia, 6 - 8 September 2006.

A
SOMBAS in Ensemble Modeling

In this appendix, we show a way of non-linear regression without resorting to the

least-square-error. A certain noise level is apriori assumed on the sampled data

output, and a set of regression models are drawn to infer an “average” represen-

tation and accompanying variance.

⋆ ⋆ ⋆

K. Ito, I. Couckuyt, and T. Dhaene.

“Ensemble Modeling for Minimization of Noisy Expensive Func-
tions: Preliminary Results”.

⋆ ⋆ ⋆

This chapter shows preliminary results for fitting multiple surrogates to a noisy

function and sampling new points based on the values returned by these surro-

gates. For simplicity and illustration purposes, we show a case where the function

depends on only to one variable but the measurement of the responses are noisy.

140 APPENDIX A

A.1 Introduction

There are situations in which one would like to estimate a function underlying a

set of noisy observations. There are also times when one needs to find the best

input values to a system whose response are not deterministic. Furthermore, the

cost of observations/experiment may be expensive and large sample size cannot be

obtained. The proposed algorithm addresses these kind of situations. The objec-

tive in this situation is not to fit interpolating surrogate models but rather to avoid

over-fitting. We assume that we know the responses are noisy (e.g. expected mea-

surement error) but we do not know the underlying function. If we are just trying

to find a set of likely parameter values of the underlying function, it is identical to

filtering or parameter estimation. If we are trying to minimize the expected value

of the responses, we are dealing with stochastic optimization. In both cases, this

document addresses them using multiple surrogates and adaptively sampling from

them to generate new points. The novelty here is that we do not aim at the least-

square error. Instead, we set a threshold error tolerance. Then, an algorithm tries

to find surrogate models that achieve prediction errors of the sampled points be-

low this threshold. The diversity of surrogates is expected to automatically cancel

out the variance component to avoid overfitting, even though we do not know the

complexity (e.g. polynomial order) of the underlying function. We use statisti-

cal information of responses to adaptively sample new points for the purpose of

narrowing down parameter estimate uncertainties or inferring an optimal point (an

input that generates the minimum average of responses).

A.2 Methods

We use Self-Organizing Map Based Adaptive Sampling (SOMBAS) [1] to fit the

ensemble of models. Each cell of SOM represents a set of parameters for a surro-

gate model. Thus, the SOM represents the ensemble of surrogate models. SOM-

BAS will guide the weight vectors in the SOM to satisfy a certain threshold error

level provided by the user.

We conduct two kinds of experiments. In the first one, we fit an ensemble

of polynomial functions of order five (six unknown parameters) to model a tar-

get function of second order (defined by three parameters). The measurements,

however, are contaminated by Gaussian noise of average zero and known standard

deviation σ. The polynomial parameters (coefficients) can assume values between

-100 and 100. The objective is to estimate the three parameters. The domain of

the polynomial is set to −5 ≤ x < 5.

The second experiment is the estimation of the minimum of the target function.

Again the measurements of the responses are contaminated by a Gaussian noise.

The new points are sampled one at a time, starting from a random pick of the first

SOMBAS IN ENSEMBLE MODELING 141

point from the target function domain, −5 ≤ x < 5, sequentially adding a new

point xk where minimum of the target function is expected, taking into account the

uncertainty of the estimate of the minmum through the variance of the ensemble

of the surrogate functions (Eq. A.5).

In both of the experiments, the target or the true function is

f = 6− 5x+ x2, (A.1)

and the optimal point is x∗ = 2.5, f∗ = −0.25. The measurement of the target is

given by

y = f + s, (A.2)

where s ∼ N(0, σ). The threshold L (i.e. the tolerance of error for the fit surro-

gates) used in SOMBAS is set as the following.

Lm,σ = m · σ2 (A.3)

where m is the number of points to which the surrogate models are fit. The objec-

tive to be minimized in the selection phase in SOMBAS is, thus,

Fj = max

(

Lk,σ,

k
∑

i=1

(yi − f̂j)
2

)

− dk(wj) (A.4)

where k is the iteration index, j is the SOM cell index, f̂j is the response estimated

in jth cell in SOM, and dk(wj) is the distance to the nearest training weight vector

for the jth cell’s weight vector. In the first experiment, k = m. That is, m training

samples (or input-output pairs) are used to calculate the objective values Fj for

each cell j. In the second experiment, a new training sample is added sequentially,

thus k = 1, 2, 3, . . . ,m. Here, m is the total number of iterations one would like

to perform (or the number of training samples one would like to add sequentially)

to estimate the minimum of the unknown target function f .

A.3 Results

In the first experiment (Figure A.1), twenty points are sampled from the noisy

function y and a set of 64 surrogates are fit by running SOMBAS. The noise level

is set to σ = 10. The threshold is set to L = 20 × 102 = 2000. Figure A.1a

shows the results of the different representations of the ensemble as a single func-

tion. The dots are the 20 noisy samples. The True line shows the plot of f . The

Mean of Sample line shows the line drawn by mean of final SOM weight vectors

from SOMBAS. The Least Square line indicates the conventional least-square er-

ror fit. The Mean of entire feasible sample line indicates the line drawn by the

mean weight vector computed from all the feasible weight vectors in the history

142 APPENDIX A

Figure A.1 Function representations with an ensemble of surrogate models

(a) Polynomials fit to 20 points of data

6 4 2 0 2 4 6
10

0

10

20

30

40

50

60

Training
True
Mean of Sample
Least Square
Mean of entire feasible sample
Median of ensemble polynomial

(b) Ensemble of polynomials fit to the 20 points

of data

6 4 2 0 2 4 6
20

10

0

10

20

30

40

50

60

70

Table A.1 Estimates of coefficients

Coeff. of Term: constant 1st 2nd 3rd 4th 5th

True 6 -5 1 0 0 0

Best 6.295 -3.744 0.5901 -0.2428 0.01203 0.01047

Mean 5.593 -4.388 0.8827 -0.1294 -0.002774 0.006636

Std. 3.991 2.779 0.8407 0.4024 0.02762 0.01199

of SOMBAS iterations. The Median of ensemble polynomial line shows the curve

of the median of the responses from all the feasible weight vectors in the history

of SOMBAS. In Figure A.1b, we plot the entire ensemble of curves with feasible

errors sampled by SOMBAS.

Table ?? shows the estimates of coefficients of f . These are taken from the

final SOM weight vectors. True gives the coefficients of target function f . Best

gives the coefficients with the least errors among the SOM weight vectors i.e. the

shortest Euclidean distance to the true coefficients. Mean is the average of the

SOM weight vectors, and Std. is the standard deviation from the mean of the

SOM weight vectors. The true coefficients lie within one standard deviation from

the mean.

In the second experiment, we search for the input x giving minimum of f from

the noisy measurements y. We do this by sequentially sampling one point at a

time. The first point is drawn from a uniform random distribution covering the

domain −5 ≤ x < 5. The subsequent points are determined by searching

x = argmin

(

E[f̂j(x)]−
√

V [f̂j(x)]

)

(A.5)

where E[f̂j(x)] is the mean of the ensemble of responses at a query point x con-

structed from the entire history of SOMBAS iterations and V [f̂j(x)] is the variance

SOMBAS IN ENSEMBLE MODELING 143

of the ensemble responses to the same query point x. The search of x for equa-

tion A.5 is performed by running Differential Evolution (DE). Once the DE finds

the solution based on the ensemble model responses, a measurement of the noisy

function is made at the point and is used in the training of the ensemble model

(using SOMBAS) in the following iteration. This process is repeated for speci-

fied number of times. Here we will conduct a sampling of ten points. In Figure

A.2, we see how this sequential sampling progressively samples from the domain

where the output variance is large and the mean response is low. The true function

is shown in red for reference. The algorithm does not have any knowledge of it

except that the user has specified a parameter space for a polynomial of order five.

Figure A.3a shows the kernel density distribution of the sampled x. Figure

A.3b shows corresponding distribution of x in box plot. Figure A.3c shows the

distribution of responses from the ensemble surrogate models at the median of

sampled x.

A.4 Conclusion

The first experiment of fitting the ensemble to a set of points show that the toler-

ance satisfaction approach using SOMBAS can get a fairly close regression models

as that obtained by the least-square error method. The second experiment took ad-

vantage of the fact that there are variations in the ensemble models. The sequential

sampling approach seems to both explore the large variance region and exploit the

low average response region to successively close-in on the minimum response

solution even in the presence of noise in the measurements of outputs.

References

[1] Keiichi Ito, Ivo Couckuyt, Roberto d’Ippolito, and Tom Dhaene. Design space

exploration using self-organizing map based adaptive sampling. Applied Soft

Computing, 43:337 – 346, 2016.

144 APPENDIX A

Figure A.2 Sequential search for minimum response sampling from a noisy func-

tion. The true function f is indicated in red.

(a) Iteration 1

6 4 2 0 2 4 6
300000

200000

100000

0

100000

200000

300000

(b) Iteration 2

6 4 2 0 2 4 6
30000

20000

10000

0

10000

20000

30000

40000

(c) Iteration 3

6 4 2 0 2 4 6
200

100

0

100

200

300

400

(d) Iteration 4

6 4 2 0 2 4 6
500

400

300

200

100

0

100

200

300

400

(e) Iteration 5

6 4 2 0 2 4 6
150

100

50

0

50

100

150

(f) Iteration 6

6 4 2 0 2 4 6
40

20

0

20

40

60

80

(g) Iteration 7

6 4 2 0 2 4 6
40

20

0

20

40

60

80

(h) Iteration 8

6 4 2 0 2 4 6
40

20

0

20

40

60

80

(i) Iteration 9

6 4 2 0 2 4 6
20

0

20

40

60

80

(j) Iteration 10

6 4 2 0 2 4 6
10

0

10

20

30

40

50

60

70

80

SOMBAS IN ENSEMBLE MODELING 145

Figure A.3 Estimation of the solution of minimum f after 10 noisy measurements.

(a) Kernel density estimation of

the sampled solution x

6 4 2 0 2 4 6
x

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0.11

P
ro

b
a
b
ili

ty
 D

e
n
si

ty

(b) Box plot of the sampled so-

lution x

6 4 2 0 2 4 6

x

(c) Box plot of ensemble output

f̂i at the median of the sampled

solution x.

y
6

4

2

0

2

4

6

8

146 APPENDIX A

B
HAROS-HD Project Report Summary

In this appendix, a high-dimensional optimization of discrete input variables is

tackled using hybrids of methods. The objective was to create an optimization

method that was fast, accurate (in identifying the best solution), and scalable (to a

high-dimensional problem). This chapter summarizes the reports submitted to the

European Commission.

⋆ ⋆ ⋆

Project management and reporting: Roberto d’Ippolito
Hybrid strategy and workflow: Massimo D’Auria
Graph decomposition: Silvia Poles
SOMBAS and Annealed Hooke and Jeeves: Keiichi Ito

“Hybrid Adaptive Robust Optimization Strategy for EWIS High
Dimensional Systems”.

European Project, FP7-JTI, project reference: 619198.

⋆ ⋆ ⋆

148 APPENDIX B

B.1 Introduction

Solving the problem of complexity might be one of the major goals of the 21st cen-

tury: in the engineering field, this is translated into the high number of parameters

to take into consideration, as development projects are getting bigger and often too

complex to be grasped entirely by one single person. In particular, complexity in

modern aircraft is increasing significantly. They incorporate more electric systems

than before since other subsystems that used to be pneumatic or hydraulic are be-

ing replaced by electric ones. As a consequence, the wire harnesses that are used

to connect those systems to each other must also convey more signals and power.

Electrical systems are used for flight control, sensors, engine control, flight

management, communication, in-flight entertainment and many more systems.

Connecting the electrical power sources and consumers throughout the aircraft

is done by the Electrical Wiring Interconnection System (EWIS). The EWIS is the

entire collection of electrical wiring (conductors), connectors, bus bars, shielding,

sleeves, pressure seals, brackets, etc. in the aircraft. The entire wiring system is

produced in modular components (for manufacturing and production purposes),

so-called wire harnesses in which wires are bundled. At the final assembly, those

wire harnesses are integrated by attaching all the connectors. For manufacturing

and assembly reasons, production breaks are used. The electrical cables linking

sources and loads pass through several harnesses. These cables are sized for the

current they have to carry, with respect to some thermal and voltage drop con-

straints. As such, the cable gauge sizing problem is a multi-physics problem. An

electrical link between a source and a load can have several cables with different

gauges, allowing mass optimization. Thermal and electrical aspects are to be taken

into account in the first place, but other types of constraints exist (e.g. connectors’

properties, electromagnetic environment created by the current return network, the

structure of the aircraft, the fuselage, and the couplings that may occur between all

these elements) thus increasing the number of total variables and constraints of the

design problem. Given the large amount of design variables and input/output con-

straints that describe the design space of real gauge sizing problems, the challenge

of optimizing such system is considered to be a high-dimensional, non-linear and

discrete/continuous problem.

The goal of this project is to link the unique state-of-the-art surrogate mod-

elling technologies available at Noesis to develop new surrogate-based optimiza-

tion techniques and software solutions suitable to solve large-scale optimization

problems. The resulting hybrid, adaptive and robust optimization strategy will al-

low optimization of high dimensional systems (HAROS-HD, Hybrid Adaptive Ro-

bust Optimization Strategy for High Dimensional systems) by means of the smart

adoption of model order reduction techniques coupled with surrogate models.

This report summarizes the result of optimizing cable gauges that come in a

HAROS-HD 149

Figure B.1 Overview of the general strategy (the orange boxes show candidate

algorithms)

discrete set of sizes to minimize the total mass of the cables in EWIS. The discrete

variables are ordered. That is, the values that each of the input variables can be set

only to predefined values, but they can be sorted from smallest to largest just like

standardized thicknesses of metal sheets. Two new hybrid optimization strategies

are proposed and their best solutions are compared with reference solutions, which

are best solutions found using an in-house code developed by an EWIS company.

B.2 Methods

The HAROS-HD concept originated from engineering design situations in which

accuracy of the optimized result is as important as the efficient identification of the

“good input space” (also called “feasibility region”). Based on this consideration,

the HAROS-HD challenge has been addressed by developing a different approach

based on the pre-conditioning of the optimization problem with machine learning

algorithms applied to engineering cases. As such, the effort is shifted from the

optimization challenge to the “feature discovery” process, where engineering fea-

tures of the design and solution spaces are “discovered” and exploited to perform

a much faster and tailored optimization process. The overall implementation logic

is illustrated in Figure B.1. Two prototypes have been implemented out of this

general scheme and are described in the next two subsections. Then, the graph

decomposition and Annealed Hooke & Jeeves method that are used in the opti-

mization strategy are described.

150 APPENDIX B

B.2.1 Optimization Strategy First Prototype

In this scheme (Figure B.2), it is possible to recognize the key steps of the general

analysis approach described in Figure B.1. In particular:

1. The problem conversion is the first step being performed. This step converts

the current definition of the wire harness problem in the Labinal format into

a correctly formulated wire harness optimization problem. This converted

problem is fully representative of all the inputs, outputs, objectives, and con-

straints needed to formulate a complete and consistent optimization problem

2. The second step is performed by using SOMBAS. SOMBAS performs two

sub-steps in its formulation:

(a) A dimensionality reduction: in this sub-step the overall design space is

’projected’ into a bidimensional space represented in terms of a self-

organizing map (SOM). This SOM is trained to identify specific areas

of the SOMBAS objective function.

(b) A feasible region identification: this sub-step is directly related to the

dimensionality reduction. In fact, the identification of the feasible re-

gion is performed on the trained SOM and allows the adaptive sam-

pling approach of SOMBAS to focus attention in areas that are more

promising in terms of feasibility. This step is repeated a number of

times till a certain predefined amount of samples is computed. Nor-

mally this amount allows the iteration of the SOMBAS algorithm for

about 5-6 times, which has proven to be sufficient for adequate con-

vergence.

3. The third step is performed by using the Annealed Hooke & Jeeves (H&J).

H&J is started from the best feasible point that SOMBAS could identify.

However, this point may be biased by the vicinity of a local optimal config-

uration. For this reason, the H&J algorithm has been made robust with re-

spect to local optimal configurations and considers also non-optimal search

paths so to identify new possible optimal points.

B.2.2 Optimization Strategy Final Prototype

The final prototype made a significant step further in the complexity of the strategy

and has implemented a more sophisticated set of strategies. An overview of the

final prototype is here shown in Figure B.3.

In this scheme, it is possible to recognize how the key steps of the first approach

described in Figure B.2 have been significantly extended. In particular:

1. The problem conversion is still the first step being performed.

HAROS-HD 151

Figure B.2 Overview of the first prototype (the green box indicate the EWIS defi-

nition parsing)

Figure B.3 Overview of the final prototype (H&J+ denotes Annealed Hooke &

Jeeves)

152 APPENDIX B

2. The second step is the graph analysis and decomposition. In this step, the

overall structure of the wire harness problem is analyzed so to identify nodes

that have different degrees of importance (or centrality) in the wire harness

optimization problem. Details of the model reduction technique based on

graph decomposition methods are given in subsection B.2.3. The outcomes

of this step are a set of clusters of cables that partition the original problem

in sub-problems of different size and importance so that the subsystems and

clusters identified can be then optimized and analyzed further. In this case,

2 different sets are identified: subsystems and clusters. Subsystems here

are sets of very few cables (max 8 cables) that are not connected to the rest

of the wire harnesses. These are essentially cables that can be optimized

separately without approximation. Clusters are, on the other hand, sets of

many cables that share a similar range of importance in terms of centrality.

These are analysed with the feasible region identification approach.

3. The third step optimizes the subsystems. The subsystems are optimized by

using short and focused Hook and Jeeves runs because the identification of a

feasible region is not a complex problem and can be sorted out directly with

H&J.

4. The fourth step is performed by using different SOMBAS processes, one

for each cluster. This step is repeated a number of times till a certain pre-

defined amount of samples is computed. Normally this amount allows the

iteration of the SOMBAS algorithm for about 5-6 times, which has proven

to be sufficient for adequate convergence. Once this phase is completed,

there will be a number of feasible regions equal to the number of identified

clusters. These feasible regions have been computed on dimensional parti-

tions of the whole system and need to be aggregated to identify the overall

feasible region.

5. The fifth step is to aggregate the different feasible regions by running a

shorter (in terms of simulations) SOMBAS procedure, but higher in terms

of dimensions. Here the overall system is reassembled (except for the sub-

systems) and the different feasible regions are first intersected and then ex-

panded to match the real global feasible region, taking into account all the

interactions between the different clusters that have been neglected in step

4.

6. The sixth step is then to perform the Annealed Hooke & Jeeves (H&J) on

the overall feasible region. H&J is started from the best feasible point that

SOMBAS could identify on the global feasible region.

The procedure above has been run on 5 test cases. All the use cases have been

provided by Labinal with one objective only (Total Mass).

HAROS-HD 153

B.2.3 Graph Decomposition

Graph theory is used to model the electrical wire harness networks mapping nodes

with cables and edges with thermal and electric constraints. This formulation is

used to perform an analysis of the centrality of certain cables with respect to the

overall network and to identify the subsets of the overall graph that contribute

more to the objectives and the constraints handling. Once these subsets are iden-

tified based on their specific centrality index, then a clustering process groups all

nodes with the same importance together and identify the subsystems that may be

used for graph decomposition in sub graphs loosely coupled together. We have

considered 4 centrality indexes. Only 2 of them were eventually used: Degree

Centrality and Eigenvector Centrality. Wikipedia gives a brief description of each

of the four centrality:

• Degree centrality: degree centrality, which is defined as the number of links

incident upon a node (i.e., the number of ties that a node has). The degree

can be interpreted in terms of the immediate risk of a node for catching

whatever is flowing through the network.

• Closeness centrality: In connected graphs there is a natural distance metric

between all pairs of nodes, defined by the length of their shortest paths. The

farness of a node x is defined as the sum of its distances from all other nodes,

and its closeness was defined by Bavelas as the reciprocal of the farness.

Thus, the more central a node is the lower its total distance from all other

nodes.

• Betweenness centrality: Betweenness centrality quantifies the number of

times a node acts as a bridge along the shortest path between two other

nodes.

• Eigenvector centrality: Eigenvector centrality is a measure of the influence

of a node in a network. It assigns relative scores to all nodes in the network

based on the concept that connections to high-scoring nodes contribute more

to the score of the node in question than equal connections to low-scoring

nodes. That is, connections to nodes with many edges are more valuable

than connections to nodes with few edges.

For the HAROS-HD context, once the nodes’ centrality are assessed, a clus-

tering approach is used on the nodes using the centrality measure. The objective

is to cluster nodes that are more central and optimize them first. The rationale is

that the system can be partitioned in subsystems of decreasing centrality value,

thus optimizing first the more central nodes and then the less central ones. For this

purpose, the K-Means algorithm is used. The K-Means algorithm is a clustering

method that is popular because of its speed and scalability. K-Means is an iterative

154 APPENDIX B

Figure B.4 Examples of A) Degree centrality; B) Closeness centrality; C) Be-

tweenness centrality; D) Eigenvector centrality

HAROS-HD 155

process of moving the centers of the clusters, or the centroids, to the mean position

of their constituent points, and re-assigning instances to their closest clusters. The

K is a hyperparameter that specifies the number of clusters that should be created;

K-Means automatically assigns observations to clusters but cannot determine the

appropriate number of clusters. K must be a positive integer that is less than the

number of instances in the training set. Sometimes, the number of clusters is spec-

ified by the clustering problem’s context. That is, the value of K is derived from

the problem’s context. In the HAROS-HD case, the number of centroids will be

estimated using the elbow method.

The elbow method plots the value of the cost function produced by different

values of K. As K increases, the average distortion will decrease; each cluster will

have fewer constituent instances, and the instances will be closer to their respective

centroids. However, the improvements to the average distortion will decline as K

increases. The value of K at which the improvement to the distortion declines the

most is called the elbow. The outcome of the graph decomposition procedure will

then be a set of K subsystems, each of them sharing similar levels of centrality, that

can be optimized separately assuming that the interactions between subsystems are

small enough to affect the major part of the optimization problem. This hypothesis

will be removed in the tuning phase of the strategy (see Figure B.1) and the system

will be re-assembled and a small final optimization loop will be run to correct the

neglected interactions between the subsystems.

In Figure B.5, the graph generated by the analysis of the 48 harnesses case is

rendered, highlighting the different aspects of the graph itself, the connections and

the potential clusters based on the different centrality measures.

B.2.4 Annealed Hooke & Jeeves Method for discrete parame-

ters

Hooke & Jeeves method [1] was originally conceived as a direct search method

in the real variable input space. Thus, it is a continuous variable optimization

method that does not rely on gradient information. In the current implementation,

the method is modified to work in a discrete variable input space assuming that

the discrete values are ordered such as in integers and ASME standard aluminum

plate thicknesses.

Given a starting point, the algorithm will perturb each of the problem variables

one at a time (Figure B.6). Since in our case the variables are discrete it simply

changes the variable to the neighboring options of the ordered set. The perturbation

direction is randomly chosen with a 50% chance to pick a larger value and a 50%

chance to pick a smaller value. If the current value of the variable is at the upper or

lower bound, it has a 50% chance to move to the adjacent interior value or a 50%

chance to move to two steps interior value. In any case, if the perturbation results

156 APPENDIX B

Figure B.5 Visual representation of the graph generated from the analysis of the

48 Harness case

in a smaller objective value, that move is accepted and kept at that value and the

algorithm moves to the next variable. If the move produces larger objective value,

the perturbation is accepted with a certain probability. If rejected, the variable will

assume the original value and the algorithm will move to the next variable. Once

all the variables are perturbed, a vector move is performed. The vector move is a

simultaneous perturbation in the direction accepted in the last perturbation of each

variable. Figure B.7 gives the outline of the Annealed Hooke & Jeeves Algorithm.

Unlike the original implementation in which each newly accepted point has to

be a strict reduction in the objective value, our implementation allows an increase

of the objective value in a Simulated Annealing [2] way. That is, at the beginning

of the search such move has a good probability that gets accepted but as the itera-

tion proceeds the probability of accepting worsening move becomes progressively

more unlikely.

Figure B.6 One-at-a-Time move of Hooke & Jeeves Method of a three variable

problem

HAROS-HD 157

Figure B.7 Outline of Annealed Hooke & Jeeves Method

B.3 Results

As it can be noted from Table B.1, the HAROS-HD strategy is performing slightly

better than the internal Labinal optimization approach (the reference results) in the

9 and 25 cables test cases (smaller ones) while it is close to the Labinal optimiza-

tion approach for the other cases, with a slightly increasing difference in total mass

(i.e. HAROS-HD is slightly higher in terms of total mass with respect to the inter-

nal Labinal methodology). The current results show also that the second version

of the prototype is not yet performing better than the first one. This is because the

internal tuning parameters of the different algorithms were not yet optimized to the

point to exploit completely the synergic effect of the methodologies described in

Figure B.3. This set of not yet optimized parameters does not actually depend on

the specific problem but rather to the mechanism used by the different algorithms

to pass information to each other in a efficient way. In particular, work will need

to be done as future plans for:

• Tuning of the SOMBAS parameters for the subsystem feasible region

• Tuning of the SOMBAS parameters for the overall feasible region

• Tuning of the Annealed H&J parameters for the final optimization

• Tuning of the amount of total samples that are assigned to the different

phases of the analysis (subsystem feasible region, overall feasible region

refinement, final optimization) so that each algorithm can maximize its effi-

ciency The key benefits that the second HAROS prototype has delivered and

consolidated can be summarized as:

• The HAROS-HD optimization is fully flexible: the strategy does not change

depending on the problem size, but it adapts at runtime.

158 APPENDIX B

Table B.1 Results of benchmark (best obtained)

Number of Number of Practice Reference First Proto. Final Proto.

Cables Constraints Kg. Kg. Kg. Kg.

9 134 4.28 4.01 3.96 3.93

25 924 9.40 7.86 7.78 7.74

80 3725 28.90 23.53 24.47 28.31

153 5871 23.79 18.12 18.90 20.78

441 10084 107.30 80.32 83.76 93.52

• The addition of more constraints is fully supported and no changes in the

strategy are needed as long as the conversion properly defines a well-posed

optimization problem. As such, the introduction of other kinds of constraints

apart from the thermal and voltage drop ones does not require any change in

the strategy itself.

• Parallel calculations have been performed, thus speeding up the calculation

time with currently 16 parallel processes for the SOMBAS algorithm. The

H&J algorithm cannot be parallelized due to its specific formulation.

• Much more information about the system and its subsystems has been gained

in the second prototype versus the first. This information can be used for

further optimization, constraint, and sensitivity analysis. Moreover, data

mining algorithms can also be used as a future extension.

B.4 Conclusion

HAROS-HD optimization strategy has been implemented, deployed and success-

fully tested, providing promising results in terms of performance with respect to

standard optimization algorithms and current design practice. The results so far

achieved demonstrate the effectiveness of the methodologies described and their

applicability to all the use cases defined for this project. As future work, the mar-

gins of improvement that can be achieved relate mainly to:

• Addition of more constraints types (electromagnetic, other)

• Addition of more objectives

– E.g. cost functions

• Use of adaptive constraints handling to gain more efficiency

• Perform multi-level, multi-disciplinary optimization

– Within the larger design process

HAROS-HD 159

– With sub workflows

– With other disciplines, solvers,...

References

[1] R. Hooke and T. A. Jeeves. “ Direct Search” Solution of Numer-

ical and Statistical Problems. Journal of the ACM, 8(2):212–229,

April 1961. Available from: http://doi.acm.org/10.1145/321062.321069,

doi:10.1145/321062.321069.

[2] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by Simulated

Annealing. Science, 220(4598):671 – 680, May 13 1983.

C
User’s Guide to SOMBAS

⋆ ⋆ ⋆

Keiichi Ito

⋆ ⋆ ⋆

This chapter is intended to inform the user of SOMBAS about when to use it as

well as an effective initial set up and the meaning of its parameters.

C.1 Objective of SOMBAS

SOMBAS is an acronym of Self-Organizing Map Based Adaptive Sampling method.

Given a threshold value in the objective, it tries to find as diverse a set of solution as

possible satisfying the threshold as the upper bound of the objective value (feasi-

ble region search). Otherwise, it is a good method to reduce the objective function

value of a high-dimensional input space within a very limited number of function

evaluations (optimization).

162 APPENDIX C

C.2 When to Use

1. Your simulation or objective function is not accurate, thus you want an ap-

proximate solution.

2. You are looking for a working set of input parameters for your simulation

satisfying some threshold or tolerance.

3. Your budget for the number of function evaluations is tight and the number

of input parameters is large.

4. You do not want the best according to the objective function, but you want

diverse solutions satisfying the upper bound on the objective value.

C.3 Limitations

SOMBAS was designed to work with real input variables. Ordered dicrete vari-

ables (e.g. integer) can be handled by implementing appropriate mappings (e.g.

rounding to nearest integers). Objective value must be a scalar (single objective).

Constraints other than the truncation value L (described below) can be handled

through a penalty function method.

C.4 Performance Envelope

Let D be the number of dimensions in the input space, and f : RD → R (D

dimensional real number input, one dimensional real number output) be the objec-

tive function. SOMBAS is likely to show advantages compared to other methods

in the following situations.

1. 20 . D . 100. It is confirmed to work up to D ≃ 1000.

2. In optimization, it is advantageous to use SOMBAS when the maximum

number of function evaluations is limited, M . 10D. For feasible region

search, larger the maximum number of function evaluations the better.

3. The objective function f does not have to be continuous or smooth. It can

contain noise that varies at each function call, i.e. the function does not have

to be deterministic.

C.5 Parameter Setup

The following description should not be taken as definitive, but as generally “ade-

quate” setup. The right set up of number of training samples and map size is most

USER’S GUIDE TO SOMBAS 163

important. Next comes the selectivity temperature and weight constant for diver-

sity in Merit Function. The following four points are problem dependent and need

to be set by the user. The other parameters (explained in the next section) can be

left at default values for the first run.

• Number of training samples ⌊0.2M⌋ . N . ⌊0.7M⌋, where M is maxi-

mum number of function evaluations.

• Map size ⌊
√
0.1N⌋ . n . ⌊

√
2N⌋, and a good first shot would be ⌊

√
N⌋.

• Maximum number of function evaluations D . M . 10D for optimization.

If M is larger than this, other methods may be more interesting depending

on the problem at hand. If desired, one can perform for example 10D evalu-

ations using SOMBAS and after that switch to other optimization methods.

• Set the truncation value L appropriately. It should be the objective function

value that the user would be happy to achieve. For example a value con-

sidered competitive on the market or a suboptimal but for sure achievable

value. If L is not achievable, it is equivalent to performing optimization.

C.6 Description of Parameters

C.6.1 Number of training samples

Self-Organizing Map (SOM) is trained using the training samples. Then SOMBAS

decides on the next sampling points based on the trained SOM. The samples are

randomly distributed at first, but are replaced by more competitive ones as iteration

number increases. Number of training samples is equivalent to population size in

evolutionary algorithms.

C.6.2 Truncation Value L

It is the value at which the objective values are truncated. Below this value, no

matter how smaller the objective value is, it is always treated equal to the truncation

value. Then, SOMBAS tries to find new samples that have larger nearest neighbor

distance from sampled points in the history (Summary) than those for the current

training samples.

C.6.3 Map size

Size of SOM. SOM in SOMBAS is two dimensional and square shaped. Map

size refers to the number of cells in one dimension. The number of cells on the

map is therefore square of the map size. In many cases, better performance is

164 APPENDIX C

obtained when the number of cells is larger than the number of training samples.

For example, if you have a number of training samples as 100, a good map size to

try would be anything between 4 and 15 according to the previous section.

C.6.4 Weight constant for diversity in Merit Function ρ

SOMBAS uses a merit function F = max(L, ŷ)−ρmind, where L is the truncation

value, ŷ is the output estimate of a query point w, and mind is the distance of the

nearest training sample from the query point. The weight constant for diversityρ

controls the importance of the distance to the nearest training sample. Usually, it

is not a critical parameter and can be left at the default value of 2.

C.6.5 Selectivity Temperature T

This is the same parameter as the temperature in Simulated Annealing (SA). All

the SOM weight vectors are assigned a merit value according to the Merit Function

F . Setting the selectivity temperature T low, will only select a small number of

weight vectors of SOM as the candidate for the new training samples. In general,

1 . T . 4 for optimization and 0.05 . T . 1 for feasible region search, but

more experiments are needed to confirm this.

C.6.6 Probability of mutation

This is the probability that a weight vector selected as a new training sample can-

didate gets perturbed. So a probability 0.5 means that among all the selected can-

didates, half of them is perturbed by a random vector. It is also possibble to apply

the probability by dimensions. For example a probability of 0.5 in this case means

that about 50% of the candidate’s input variables gets perturbed. As a default, 1

works fine in most cases.

C.6.7 Expansion Factor Fe and Contraction Factor Fc

These two parameters control the magnitude of mutation. They are factors that are

multiplied to the covariance matrix of the mutation vector generated from Gaussian

multivariate distribution. Expansion factor is applied when in the previous iteration

a new minimum is found. Otherwise the contraction factor is applied. Typical

values for Fe are 1.1 ∼ 2.0 and for Fc are 0.5 ∼ 1.0. In many cases, Fe = 2.0 and

Fc = 0.5 work fine.

C.6.8 Number of SOM training iterations

SOM’s weight vectors need to be trained before subset of them get selected as

candidates for new training samples. This number specifies how many iterations

USER’S GUIDE TO SOMBAS 165

to perform on the SOM training. The default value 40 is usually a good number.

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

