40 research outputs found

    Minkowski Sum Construction and other Applications of Arrangements of Geodesic Arcs on the Sphere

    Full text link
    We present two exact implementations of efficient output-sensitive algorithms that compute Minkowski sums of two convex polyhedra in 3D. We do not assume general position. Namely, we handle degenerate input, and produce exact results. We provide a tight bound on the exact maximum complexity of Minkowski sums of polytopes in 3D in terms of the number of facets of the summand polytopes. The algorithms employ variants of a data structure that represents arrangements embedded on two-dimensional parametric surfaces in 3D, and they make use of many operations applied to arrangements in these representations. We have developed software components that support the arrangement data-structure variants and the operations applied to them. These software components are generic, as they can be instantiated with any number type. However, our algorithms require only (exact) rational arithmetic. These software components together with exact rational-arithmetic enable a robust, efficient, and elegant implementation of the Minkowski-sum constructions and the related applications. These software components are provided through a package of the Computational Geometry Algorithm Library (CGAL) called Arrangement_on_surface_2. We also present exact implementations of other applications that exploit arrangements of arcs of great circles embedded on the sphere. We use them as basic blocks in an exact implementation of an efficient algorithm that partitions an assembly of polyhedra in 3D with two hands using infinite translations. This application distinctly shows the importance of exact computation, as imprecise computation might result with dismissal of valid partitioning-motions.Comment: A Ph.D. thesis carried out at the Tel-Aviv university. 134 pages long. The advisor was Prof. Dan Halperi

    Robust and Efficient Delaunay triangulations of points on or close to a sphere

    Get PDF
    We propose two approaches for computing the Delaunay triangulation of points on a sphere, or of rounded points close to a sphere, both based on the classic incremental algorithm initially designed for the plane. The space of circles gives the mathematical background for this work. We implemented the two approaches in a fully robust way, building upon existing generic algorithms provided by the cgal library. The effciency and scalability of the method is shown by benchmarks

    Robust and Efficient Delaunay Triangulations of Points on Or Close to a Sphere

    Get PDF
    International audienceWe propose two ways to compute the Delaunay triangulation of points on a sphere, or of rounded points close to a sphere, both based on the classic incremental algorithm initially designed for the plane. We use the so-called space of circles as mathematical background for this work. We present a fully robust implementation built upon existing generic algorithms provided by the Cgal library. The efficiency of the implementation is established by benchmarks

    Computing the exact arrangement of circles on a sphere, with applications in structural biology

    Get PDF
    revision de la version de Decembre 2006Given a collection of circles on a sphere, we adapt the Bentley-Ottmann algorithm to the spherical setting to compute the {\em exact} arrangement of the circles. The algorithm consists of sweeping the sphere with a meridian, which is non trivial because of the degenerate cases and the algebraic specification of event points. From an algorithmic perspective, and with respect to general sweep-line algorithms, we investigate a strategy maintaining a linear size event queue. (The algebraic aspects involved in the development of the predicates involved in our algorithm are reported in a companion paper.) From an implementation perspective, we present the first effective arrangement calculation dealing with general circles on a sphere in an exact fashion, as exactness incurs a mere factor of two with respect to calculations performed using {\em double} floating point numbers on generic examples. In particular, we stress the importance of maintaining a linear size queue, in conjunction with arithmetic filter failures. From an application perspective, we present an application in structural biology. Given a collection of atomic balls, we adapt the sweep-line algorithm to report all balls covering a given face of the spherical arrangement on a given atom. This calculation is used to define molecular surface related quantities going beyond the classical exposed and buried solvent accessible surface areas. Spectacular differences w.r.t. traditional observations on protein - protein and protein - drug complexes are also reported

    A geometric knowledge-based coarse-grained scoring potential for structure prediction evaluation

    Get PDF
    International audienceKnowledge-based protein folding potentials have proven successful in the recent years. Based on statistics of observed interatomic distances, they generally encode pairwise contact information. In this study we present a method that derives multi-body contact potentials from measurements of surface areas using coarse-grained protein models. The measurements are made using a newly implemented geometric construction: the arrangement of circles on a sphere. This construction allows the definition of residue covering areas which are used as parameters to build functions able to distinguish native structures from decoys. These functions, encoding up to 5-body contacts are evaluated on a reference set of 66 structures and its 45000 decoys, and also on the often used lattice ssfit set from the decoys'R us database. We show that the most relevant information for discrimination resides in 2- and 3-body contacts. The potentials we have obtained can be used for evaluation of putative structural models; they could also lead to different types of structure refinement techniques that use multi-body interactions

    Greedy Geometric Optimization Algorithms for Collection of Balls

    Get PDF
    Modeling 3D objects with balls is routine for two reasons: on the one hand, the medial axis transform allows representing a solid object as a union of medial balls; on the other hand, selected shapes, and molecules in particular, are naturally represented by collections of balls. Yet, the problem of choosing which balls are best suited to approximate a given shape is a non trivial one. This paper addresses two problems in this realm. The first one, conformational diversity selection, consists of choosing kk molecular conformations amidst nn, so as to maximize the geometric diversity of the kk conformers. The second one, inner approximation, consists of approximating a molecule of nn balls with kk balls. On the theoretical side, we demonstrate that for both problems, a geometric generalization of max kk-cover applies, with weights depending on the cells of a surface or volumetric arrangement. Tackling these problems with greedy strategies, it is shown that the 11/e1-1/e bound known in combinatorial optimization applies in some cases but not all. On the applied side, we present a robust and effective implementation of the greedy algorithm for the inner approximation problem, which incorporates the calculation of the exact Delaunay triangulation of a points whose coordinates are degree two algebraic number, of the medial axis of a union of balls, and of a certified estimate of the volume of a union of balls. In particular, we show that the inner approximation of complex molecules yields accurate coarse-grain models with a number of balls 100 times smaller than the number of atoms, a key requirement to simulate crowded protein environments.Les boules jouent un rôle central en modélisation géométrique pour deux raisons: d'une part la transformée associée à l'axe médian permet de représenter un objet solide comme une union in nie de boules; d'autre part, certaines formes, et les modèles moléculaires de van der Waals en particulier, sont dé nies par une union de boules. Néanmoins, la question de savoir quel ensemble de boules utiliser pour approximer une forme est non trivial, de telle sorte que ce travail aborde deux problèmes liés. Pour les présenter, par conformation moléculaire, nous entendons un modèle dé ni par un ensemble ni de boules. La premier problème, ou selection de diversité géométrique, consiste à choisir k conformations moléculaires parmi n, de façon à maximiser la diversité de l'ensemble choisi. Le second, ou approximation par défaut, consiste à approximer une molécule de n boules par k < n boules. Du point de vue théorique, nous montrons que les deux problèmes peuvent être traités avec une variante géométrique de max k-cover, les poids dépendant de la géométrie d'un arrangement surfacique ou volumique de sphères. La résolution de ces problèmes par un algorithme glouton permet d'avoir un facteur d'approximation borné inférieurement par 1 1=e dans certains cas. D'un point de vue appliqué, nous présentons une implémentation robuste de l'algorithme glouton pour l'approximation par défaut, laquelle incorpore (i) le calcul exact d'une triangulation de Delaunay dont les points ont des coordonnées qui sont des nombres algébriques de degré deux, (ii) le calcul exact de l'axe médian d'une union de boules, et (iii) une approximation certi ée du volume d'une union de boules. En particulier, nous montrons que des approximations précises de modèles moléculaires peuvent être obtenues en utilisant un nombre de boules 100 fois inférieur au nombre d'atomes, une propriété particulièrement séduisante pour la simulation d'environnement protéique dense

    Boolean operations on 3D selective Nef complexes : data structure, algorithms, optimized implementation, experiments and applications

    Get PDF
    Nef polyhedra in d-dimensional space are the closure of half-spaces under boolean set operations. Consequently, they can represent non-manifold situations, open and closed sets, mixed-dimensional complexes, and they are closed under all boolean and topological operations, such as complement and boundary. The generality of Nef complexes is essential for some applications. In this thesis, we present a new data structure for the boundary representation of three-dimensional Nef polyhedra and efficient algorithms for boolean operations. We use exact arithmetic to avoid well known problems with floating-point arithmetic and handle all degeneracies. Furthermore, we present important optimizations for the algorithms, and evaluate this optimized implementation with extensive experiments. The experiments supplement the theoretical runtime analysisNef-Polyeder sind d-dimensionale Punktmengen, die durch eine endliche Anzahl boolescher Operationen über Halbräumen generiert werden. Sie sind abgeschlossen hinsichtlich boolescher und topologischer Operationen. Als Konsequenz daraus können sie nicht-mannigfaltige Situationen, offene und geschlossene Mengen und gemischt-dimensionale Komplexe darstellen. Die Allgemeinheit von Nef-Komplexen ist unentbehrlich für einige Anwendungen. In dieser Doktorarbeit stellen wir eine neue Datenstruktur vor, die eine Randdarstellung von dreidimensionalen Nef-polyedern und Algorithmen für boolesche Operationen realisiert. Wir benutzen exakte Arithmetik um die bekannten Probleme mit Gleitkommaarithmetik und Degeneriertheiten zu vermeiden. Außerdem präsentieren wir wichtige Optimierungen der Algorithmen und bewerten die optimierte Implementierung an Hand umfassender Experimente. Weitere Experimente belegen die theoretische Laufzeitanalyse und vergleichen unsere Implementation mit dem kommerziellen CAD kernel ACIS. ACIS is meistens bis zu sechs mal schneller, aber es gibt auch Beispiele bei denen ACIS scheitert. Nef-Polyeder können bei einer Vielzahl von Anwendungen eingesetzt werden. Wir präsentieren einfache Implementationen zweier Anwendungen - von der visuellen Hülle und von der Minkowski-Summe zwei abgeschlossener Nef-Polyeder

    IST Austria Thesis

    Get PDF
    We describe arrangements of three-dimensional spheres from a geometrical and topological point of view. Real data (fitting this setup) often consist of soft spheres which show certain degree of deformation while strongly packing against each other. In this context, we answer the following questions: If we model a soft packing of spheres by hard spheres that are allowed to overlap, can we measure the volume in the overlapped areas? Can we be more specific about the overlap volume, i.e. quantify how much volume is there covered exactly twice, three times, or k times? What would be a good optimization criteria that rule the arrangement of soft spheres while making a good use of the available space? Fixing a particular criterion, what would be the optimal sphere configuration? The first result of this thesis are short formulas for the computation of volumes covered by at least k of the balls. The formulas exploit information contained in the order-k Voronoi diagrams and its closely related Level-k complex. The used complexes lead to a natural generalization into poset diagrams, a theoretical formalism that contains the order-k and degree-k diagrams as special cases. In parallel, we define different criteria to determine what could be considered an optimal arrangement from a geometrical point of view. Fixing a criterion, we find optimal soft packing configurations in 2D and 3D where the ball centers lie on a lattice. As a last step, we use tools from computational topology on real physical data, to show the potentials of higher-order diagrams in the description of melting crystals. The results of the experiments leaves us with an open window to apply the theories developed in this thesis in real applications
    corecore