
Boolean Operations on
3D Selective Nef Complexes:

Data Structure, Algorithms, Optimized
Implementation, Experiments, and Applications

Dissertation
zur Erlangung des Grades

des Doktors der Ingenieurswissenschaften (Dr.-Ing.)
der Naturwissenschaftlich-Technischen Fakultäten

der Universität des Saarlandes

von

Peter Hachenberger

Saarbrücken 2006

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Acronym

https://core.ac.uk/display/196651364?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Datum des Kolloqiums: 1. Dezember 2006

Dekan der Naturwissenschaftlich-Technischen Fakultät I:
Prof. Dr. Thorsten Herfet

Vorsitzender des Prüfungsausschusses:
Prof. Dr.-Ing. Gerhard Weikum

Gutachter:
Dr. Lutz Kettner
Prof. Dr. Kurt Mehlhorn

Promovierter akademischer Mitarbeiter:
Dr. Rene Beier

Danksagung

An dieser Stelle möchte ich all denjenigen danken, die zum Entstehen dieser Arbeit
beigetragen haben. An erster Stelle möchte ich mich bei meinem Betreuer Lutz
Kettner bedanken für die Unterstützung, die konstruktive Zusammenarbeit und für
alles was ich von ihm gelernt habe.

Ich danke Prof. Kurt Mehlhorn für die produktive und herzliche Atmosphäre
in seiner Arbeitsgruppe am Max-Planck-Institut für Informatik. Ich habe mich am
Max-Planck-Institut immer sehr wohl gefühlt und werde gerne Gelgenheiten nut-
zen wieder vorbeizuschauen.

Weiterhin danke ich denjenigen, die mir geholfen haben meinen Weg zurück
zur universitären Laufbahn zu finden. Hier sind vor allem mein Vater Hans-
Joachim Hachenberger und mein ehemaliger Arbeitskollege Frank Buschmann zu
nennen.

Ein Dank gilt auch Daniel Bobbert, Andreas Meyer und JoachimReichel, den
fleissigen Korrekturlesern dieser Doktorarbeit, sowie Alantha Newman, Liz und
Seth Pettie, die mir bei Fragen zur englischen Sprache geholfen haben.

Zu guter letzt danke ich allen die mir in den letzten dreieinhalb Jahren mit Rat
und Tat zur Seite standen. Dies sind unter anderem Arno Eigenwillig, Stefan Funke,
Joachim Giesen, Martin Kutz, Uli Meyer, Ralph Osbild und Joachim Ziegler.

Kurzzusammenfassung

Nef-Polyeder sindd-dimensionale Punktmengen, die durch eine endliche Anzahl
boolescher Operationen über Halbräumen generiert werden. Sie sind abgeschlos-
sen hinsichtlich boolescher und topologischer Operationen. Als Konsequenz dar-
aus können sie nicht-mannigfaltige Situationen, offene und geschlossene Men-
gen und gemischt-dimensionale Komplexe darstellen. Die Allgemeinheit von Nef-
Komplexen ist unentbehrlich für einige Anwendungen.

In dieser Doktorarbeit stellen wir eine neue Datenstrukturvor, die eine Rand-
darstellung von dreidimensionalen Nef-polyedern und Algorithmen für boolesche
Operationen realisiert. Wir benutzen exakte Arithmetik umdie bekannten Pro-
bleme mit Gleitkommaarithmetik und Degeneriertheiten zu vermeiden. Außerdem
präsentieren wir wichtige Optimierungen der Algorithmenund bewerten die opti-
mierte Implementierung an Hand umfassender Experimente. Weitere Experimente
belegen die theoretische Laufzeitanalyse und vergleichenunsere Implementation
mit dem kommerziellen CAD kernel ACIS. ACIS is meistens bis zu sechs mal
schneller, aber es gibt auch Beispiele bei denen ACIS scheitert.

Nef-Polyeder können bei einer Vielzahl von Anwendungen eingesetzt werden.
Wir präsentieren einfache Implementationen zweier Anwendungen – von der visu-
ellen Hülle und von der Minkowski-Summe zwei abgeschlossener Nef-Polyeder.

Abstract

Nef polyhedra ind-dimensional space are the closure of half-spaces under boolean
set operations. Consequently, they can represent non-manifold situations, open and
closed sets, mixed-dimensional complexes, and they are closed under all boolean
and topological operations, such as complement and boundary. The generality of
Nef complexes is essential for some applications.

In this thesis, we present a new data structure for the boundary representation
of three-dimensional Nef polyhedra and efficient algorithms for boolean opera-
tions. We use exact arithmetic to avoid well known problems with floating-point
arithmetic and handle all degeneracies. Furthermore, we present important opti-
mizations for the algorithms, and evaluate this optimized implementation with ex-
tensive experiments. The experiments supplement the theoretical runtime analysis

and illustrate the effectiveness of our optimizations. We compare our implementa-
tion with the ACIS CAD kernel. ACIS is mostly faster, by a factor up to six. There
are examples on which ACIS fails.

Nef polyhedra can be used in many a variety of applications. We present simple
implementations of the visual hull, and of the Minkowski sumof two closed Nef
polyhedra.

Zusammenfassung

Nef-Polyeder sindd-dimensionale Punktmengen, die durch eine endliche An-
zahl boolescher Operationen über Halbräumen generiert werden. Sie sind abge-
schlossen hinsichtlich boolescher und topologischer Operationen. Infolgedessen
können sie nicht-mannigfaltige Situationen, offene und geschlossene Mengen und
gemischt-dimensionale Komplexe darstellen. Nef-Polyeder wurden zuerst von W.
Nef in seinem wegweisenden Buch über Polyeder von 1978 eingeführt. Die Allge-
meinheit von Nef-Komplexen ist unentbehrlich für einige Anwendungen.

Unsere Implementation von dreidimensionalen Nef-Polyedern wurde im De-
zember 2004 als Open Source als Teil der Computational Geometry Algorithm
Library (CGAL) Release 3.1 herausgegeben und stößt seitdem auf großes Interes-
se. Unser wichtigstes Herausstellungsmerkmal ist die Verwendung exakter Arith-
metik, mit deren Hilfe wir robuste Operationen und die Behandlung aller Dege-
neriertheiten realisieren konnten. Wir unterstützen dieKonstruktion mannigfalti-
ger Körper gegeben im OFF Dateiformat, boolesche Operationen (Vereinigung,
Schnitt, Komplement, Differenz, symmetrische Differenz), topologische Operatio-
nen (Innenraum, Rand, Abschluss, Regularisierung), starre affine Transformatio-
nen und Rotationen durch rationale Rotationsmatrizen.

Nef-Polyeder mit beschränktem Rand können eindeutig durch eine Repräsen-
tation der lokalen Umgebungen ihrer Knoten dargestellt werden. Wir nutzen diese
Eigenschaft, indem wir die lokale Umgebung eines Knotens durch ein auf der Ku-
geloberfläche eingebettetes zweidimensionales Nef-Polyeder repräsentieren. Die
Darstellung eines dreidimensionalen Nef-Polyeders allein durch die Knoten und
ihrer lokalen Umgebungen ist ausreichend, aber weder bequem noch effizient zu
handhaben. Aus diesem Grund berechnen wir zusätzlich die folgenden Inziden-
zen: Kanten, Facettenzyklen, die Verschachtelung der Facettenzyklen, Zusammen-
hangskomponenten und die Verschachtelung der Zusammenhangskomponenten.
Alle Knoten, Kanten, Facetten und Volumen tragen eine Mengenzugehörigkeits-
Markierung. Damit unterscheiden wir zur Punktmenge gehörige Objekte von rein
begrenzenden Objekten. Durch einen Reduktionsmechanismus erweitern wir un-
sere Repräsentation auf allgemeine dreidimensionale Nef-Polyeder. Wir schneiden
ins Unendliche laufende Kanten und Facetten an einem hinreichend großen, um-
schließenden, achsenparallelen Würfel ab. Dadurch entsteht ein Nef-Polyeder mit
beschränktem Rand, welches wir wie oben beschrieben darstellen.

Um die wichtigsten Teilroutinen unserer binären Operationen über Nef-
Polyedern zu beschleunigen, benutzen wir heuristische Suchdatenstrukturen. Mit

der Hilfe eines kd-Baumes berechnen wir den ersten Schnittpunkt eines Strahls
mit dem Rand eines Nef-Polyeders und die Lage eines Punktes im Verhältnis zu
einem Nef-Polyeder. Weiterhin schneiden wir die minimal umschließenden Boxen
von Kanten und Facetten zweier Polyeder, um schnell eine kleine Obermenge aller
Schnitte zwischen Kanten und Facetten der zwei Polyeder zu identifizieren.

Wir haben unsere Implementation an Hand umfassender Experimente getes-
tet. Die Experimente untersuchen das Laufzeitverhalten unserer binären Operatio-
nen in speziellen Situationen. Dabei interessieren uns sowohl generische Situatio-
nen, wie z.B. die Subtraktion eines kleinen und simplen Objekts von einem großen
und komplexen Objekt, als auch Situationen, die eine besonders schlechte Laufzeit
der wichtigsten Teilschritte unseres Algorithmus bewirken. Außerdem bestätigen
wir an Hand dieser Experimente auch die theoretisch berechnete Komplexität der
binären Operationen und ihrer wichtigsten Teilschritte.Eine weitere Gruppe von
Experimenten belegt den Nutzen von wichtigen Optimierungen. Die letzte Grup-
pe unserer durchgeführten Experimente vergleicht unsereImplementation mit dem
kommerziellen CAD Kernel ACIS R13. Die beiden Systeme sind recht unterschied-
lich, da beide über Fähigkeiten verfügen, die dem anderen fehlen. Während ACIS

zusätzlich mit gekrümmten Objekten umgehen kann, verwendet es andererseits die
auf dem Markt übliche Gleitkommaarithmetik und ist somit nicht robust. Die Er-
gebnisse zeigen, dass ACIS R13 im Allgemeinen bis zu sieben mal schneller ist. In
manchen Szenarien ist ACIS jedoch langsamer oder schlägt sogar fehl.

Nef-Polyeder können bei einer Vielzahl von Anwendungen eingesetzt werden.
Wir präsentieren einfache Implementierungen zweier Anwendungen – von der vi-
suellen Hülle und von der Minkowski-Summe zwei abgeschlossener Nef-Polyeder.
Die Implementierung der visuellen Hülle konnte schnell und ohne große Schwie-
rigkeiten durchgeführt werden. Sie ist robust und umfassend, aber noch zu lang-
sam für viele Anwendungen – vor allem für Echtzeitanwendungen. Minkowski-
Summen können zur Bewegungsplanung von Robotern eingesetzt werden, die
sich ausschließlich durch Translation fortbewegen. Eine exakte Berechnung der
Minkowski-Summe ist von großem Interesse, wenn der Robotersich durch eine
enge Passage bewegen soll, also durch eine Passage, die genauso breit ist wie er
selbst. Unsere Implementation ist die erste exakte Implementation der Minkowski-
Summe auf nicht-konvexen dreidimensionalen Polyedern. Andererseits können wir
noch nicht die Minkowski-Summe nicht-geschlossenen Polyeder berechnen, und
somit noch nicht mit engen Passagen umgehen.

Contents

1 Introduction 1

1.1 Motivation . 2

1.2 Previous Work . 6

1.3 Relation to Preceding Work . 8

1.4 CGAL — A Generic Software Library 9

1.5 Outline . 12

2 Nef’s Theory of Polyhedra 15

3 Representation schemes 19

3.1 Sphere Maps . 20

3.2 Selective Nef Complex . 21

3.3 Infimaximal Box - A Reduction to Finitely Bounded Polyhedra . . 23

4 Boolean and Topological Operations 29

4.1 Map Overlay on the Sphere . 30

4.1.1 A Segment Sweep Algorithm. 31

4.1.2 A Generic Framework. 32

4.1.3 Overlay of Two Planar Nef polyhedra. 35

4.1.4 Segment Sweep on the Sphere. 39

4.2 Selection . 42

4.3 Simplification on the Sphere . 42

4.4 Candidate Sphere Maps . 45

i

CONTENTS

4.5 Simplifying the Selective Nef Complex 45

4.6 Synthesizing the SNC . 46

4.6.1 Pairing up Halfedges. 47

4.6.2 Creation of Facet Cycles. 49

4.6.3 Creation of Facets. 51

4.6.4 Creation of Volumes. 51

4.7 Unary Operations . 54

5 Search Data Structures 55

5.1 Kd-tree . 55

5.2 Fast Box Intersection . 58

5.2.1 Segment Trees. 59

5.2.2 Streaming. 61

5.2.3 Scanning. 61

5.2.4 The Hybrid Algorithm. 63

6 Additional Functionality 65

6.1 Constructors, Input and Output 65

6.2 Transformation . 68

6.3 Visualization . 69

7 Complexity 71

7.1 Kd-Tree . 72

7.2 Box-Intersection Algorithm . 73

7.3 Total Complexity . 73

8 Software Design 77

ii

CONTENTS

9 Algorithm Engineering 83

9.1 Optimizations . 84

9.1.1 Ray shooting and Point Location 85

9.1.2 Intersection . 86

9.1.3 Half-sphere Sweep . 88

9.1.4 Plane Sweep . 91

9.2 General Runtime Behavior . 92

9.2.1 Balanced Binary Operations 92

9.2.2 Binary Operation with Quadratic Result 93

9.2.3 A Complex Object Minus a Simple Object 95

9.3 Runtime Behavior in Complex Situations 96

9.3.1 Complex Facet . 97

9.3.2 Complex Sphere Map 98

9.3.3 Kd-tree Construction and Queries 99

9.4 Comparison with ACIS . 103

9.4.1 Balanced Binary Operations 103

9.4.2 Floating-Point versus Exact Arithmetic 104

9.4.3 A Complex Object Minus a Simple Object 106

9.5 Growth of Coordinate Representation 107

9.6 Résumé . 111

9.6.1 Further Improvement on Point Location and Ray Shooting 111

9.6.2 Modification Operations 113

9.6.3 Exact Geometric Computing 113

10 Applications for Nef polyhedra 117

10.1 Visual Hull . 117

10.2 Minkowski Sum of Two Nef polyhedra 119

10.2.1 The Minkowski sum of convex polyhedra 121

10.2.2 The Vertical Decomposition of a 3D Nef polyhedron. . .. 123

10.2.3 Uniting a Set of 3D Polyhedra 130

10.2.4 Limitations and Future Work 132

iii

CONTENTS

11 Conclusion 133

11.1 Results . 133

11.2 Future work . 134

Bibliography 134

iv

Chapter 1

Introduction

In this dissertation we consider a data structure for Nef polyhedra in three-dimen-
sional space and algorithms for Boolean operations on them.Nef polyhedra were
introduced by Walter Nef in his seminal book on polyhedra from 1978 [Nef78].
They are defined as a finite number of set intersection and set complement oper-
ations on half-spaces. In consequence, they are closed under Boolean and topo-
logical operations. Furthermore, they can represent non-manifold situations, open
and closed boundaries, and mixed-dimensional features. Asan example, the in-
tersection of the six half-spaces defined byx≤ 0.5, x≥ −0.5, y≤ 0.5, y≥ −0.5,
z≤ 0.5, andz≥ −0.5 forms the unit cube. Figure 1.1 shows a more complex ex-
ample with non-manifold situations, selected and unselected boundary parts, and
lower dimensional features.

Polyhedron modelers are useful tools for solving various problems in solid
modeling, computer graphics, and computational geometry.The solid modeling
community spent much effort on theoretical foundations andimplementations of
polyhedron modelers. Nef’s approach to modeling polyhedrais mathematically
well-founded and clean. No other approach is as general and comprehensive as
Nef’s. Still, nobody provided an implementation of his concept, yet. Most of
the research on polyhedra was done more than twenty years ago. At that time,
it probably was an obvious choice to implement models of a lesser generality and
therefore a lesser complexity than Nef polyhedra. Nowadays, polyhedron modelers
are still limited in their generality and the research is more interested in methods for
modeling higher-order surfaces. Nevertheless, we argue inSection 1.1 that there is
a need for a more powerful polyhedron implementation.

In this thesis, we describe data structures capable of modeling 3D Nef poly-
hedra completely. Also we provide algorithms for performing Boolean and topo-
logical operations on Nef polyhedra. What is more, all our algorithms and data

1

CHAPTER 1. INTRODUCTION

Figure 1.1: A Nef polyhedron with non-manifold edges, a dangling facet, two
isolated vertices, and an unselected boundary in the tunnel.

structures work with exact arithmetic instead of floating-point arithmetic. Exact
arithmetic is often regarded as slow. We compare our implementation with the
ACIS CAD kernel and demonstrate the power and cost of exact arithmetic in near-
degenerate situations. As far as we know our implementationis the only polyhe-
dron modeler on the market that uses exact arithmetic.

In December 2004, our implementation was released as Open Source soft-
ware in the Computation Geometry Algorithm Library (CGAL) release 3.1. It
supports the construction of Nef polyhedra from half-spaces and manifold solids,
Boolean operations (union, intersection, complement, difference, symmetric dif-
ference), topological operations (interior, closure, boundary), rotation by rational
rotation matrices (arbitrary rotation angles are approximated up to a specified tol-
erance [CDR92]), translation and scaling.

In order to demonstrate the opportunities of our polyhedronmodeler, we also
examine and solve two applications: the computation of the visual hull from a set
of two-dimensional shapes, and the Minkowski sum of two Nef polyhedra.

1.1 Motivation

Most of the professional polyhedron modelers serve as a kernel for computer-aided
design applications. They share two problems: completeness and exactness. Our
implementation of Nef polyhedra deals with these problems.Nef polyhedra are

2

1.1. MOTIVATION

M

Q

Figure 1.2: The width of the cutterM is equal to the width of the cavity inQ. The
boundary of the region of legal placements is shown in bold. It is an unbounded
polygon with a dangling edge.

more complete than any other polyhedron model; they can model non-manifold
solids, unbounded solids, lower dimensional features, andinfinite boundaries. Ad-
ditionally we use exact arithmetic instead of floating-point arithmetic. These fea-
tures are often regarded as unnecessary. We disagree.

Nef polyhedra are the smallest family of solids containing the half-spaces and
being closed under Boolean operations. Without a doubt, a closed modeling space
is desirable. We want to discuss two subsets of Nef polyhedrawhich also provide
a closed modeling space: Regularized sets and finitely bounded Nef polyhedra.
As described above, regularized sets are closed under regularized set operations,
but Middleditch [Mid94] argues that we need more than regularized set operations.
We need to concurrently model objects of different dimensionality, or objects with
open and closed boundaries. One of his examples occurs in machine tooling. We
may want to generate a polyhedronQ by a cutting toolM, as shown in Figure 1.2.
When the tool is placed at a pointp in the plane, all points inp+M are removed.
The set of legal placements forM is called theconfiguration spaceof M. It is
defined as the setC = {p; (p+M)∩Q= /0}. The setC may contain lower di-
mensional features. In the context of robot motion planninga lower dimensional
feature in the configuration space is referred to as atight passage. In order to iden-
tify and handle tight passages, it is necessary to allow openan closed polyhedra.
If M andQ are both modeled as closed sets,C cannot contain lower dimensional
features, i.e., tight passages cannot be identified. Then again, if either of the two

3

CHAPTER 1. INTRODUCTION

is open, thenC will be closed. See [Hal02] for the case of planar configuration
spaces.

Our implementation can be used in two modes. It can either represent the full
modeling space of 3D Nef polyhedra, or the user may decide to limit the modeling
space to a specific subclass of 3D Nef polyhedra because of efficiency reasons. In
order to describe this subclass, we introduce the notion of finitely and infinitely
bounded Nef polyhedra. Usually, polyhedra are classified asbounded and un-
bounded, i.e., a polyhedron either has a finite or an infinite volume. We need a
slightly different classification. Since our data structures are a boundary repre-
sentation of Nef polyhedra, we are more concerned whether the boundary itself is
bounded, and not whether the complete polyhedron is bounded. As an example,
neglecting selection marks a cube and its complement have the same boundary rep-
resentation, although the cube is bounded and its complement is not. Therefore, we
denote a polyhedron asfinitely bounded, if each bounding edge has a finite length,
and each bounding facet covers a finite surface area. Otherwise, it is denoted as
infinitely bounded. Note that finitely bounded polyhedra either have no boundary
or a finite boundary; they can be both, bounded or unbounded. Finitely bounded
Nef polyhedra are a subset of Nef polyhedra, but are also closed under Boolean
and topological operations.

We do not know any other polyhedron modeler that supports infinitely bounded
polyhedra. For most applications it suffices to only have finitely bounded polyhe-
dra available. Furthermore, offering the whole modeling space of Nef polyhedra is
more complicated and therefore less efficient. Still, infinitely bounded Nef poly-
hedra are meaningful for some applications. As an example, one of CGAL’s evalu-
ators uses infinitely bounded Nef polyhedra to create three-dimensional Voronoi
diagrams. The resulting polyhedron reasonably approximates the requirements
of a specific space partition needed by the evaluator. We offer both: the limited
modeling space of finitely bounded Nef polyhedra for fast applications that do not
necessarily need infinite boundaries, and the full modelingspace as an alternative.
Both modes use the same data structures and algorithms. The user decides about
the modeling space by providing a proper template argument at compile time. The
mechanism is explained in Section 3.3.

The lack of exactness caused by floating-point arithmetic isa well known prob-
lem. The robustness example shown in Figures 1.3 and 1.4 illustrates the problems
nicely. We intersect two equal cubes, where the second is rotated by a small angle
α around each coordinate axis. The first picture shows the result for α being five
degrees. Neglecting minor deviations, the result looks like a cube. We can see
three vertices in the upper front corner lying very close to each other. Also we can
see diagonals on each side indicating the non-planarity of the sides. Ifα decreases

4

1.1. MOTIVATION

Figure 1.3: A robustness example
showing the intersection of 2 cubes
where one is rotated by five degrees
around each coordinate axis.

Figure 1.4: As Figure 1.3 but with 0.01
degree rotations. Vertices are not sep-
arable in the drawing, but the edges il-
lustrate the solution.

continuously, the three vertices in the front corner move closer together and the
sides become nearer to coplanar. Using floating-point arithmetic, it is not possible
for small angles to distinguish the three vertices, and to decide whether the sides
are coplanar or not. Exactness becomes crucial for many predicates. For example,
we may want to perform point location queries. With floating-point arithmetic it is
often impossible to get a correct solution if the queried point lies near to or even
on a line or plane.

Yap gives an elaborate discussion about exact computation in computational
geometry [Yap97]. He defines the termexact computationas a computation that

1. represents the underlying mathematical objects in an exact manner, and

2. in the course of computation, never makes an error in its decision.

One goal of his discussion is to “study the inherent tradeoffs between speed
and precision, between fixed-precision and exact computation.” Amongst others,
he names the following advantages of exact computation:

• Arithmetic robustness is a non-issue.

5

CHAPTER 1. INTRODUCTION

• Classical geometric concepts and algorithms are often formulated in ex-
act terms. Providing exact computation preserves those concepts and algo-
rithms. Using fixed-precision arithmetic with these concepts and algorithms
can lead to major robustness problems or extensive workarounds.

• A major technique for handling degeneracies is symbolic perturbation. This
method is only meaningful with exact computation.

The main disadvantage of exact computation is its lack of speed compared
to fixed-precision arithmetic. Reflecting on approaches by Fortune and Van Wyk
[FW93], and by Karasick, Lieber and Nackman [KLN91], Yap thinks that with
careful work, exact geometric primitives should be at most ten times slower than
their floating-point counterparts.

Test series have confirmed the robustness issues arising in geometric algo-
rithms. In [KMP+04] the authors show that rounding errors in basic geometric
predicates can lead to severe errors in geometric applications like the computation
of the convex hull. Still, exact computation is unpopular inmany areas. In addi-
tion, the floating-point community enjoys a huge infrastructural support that helps
to manifest its predominance. Yap [Yap97] names robust algorithms for perform-
ing Boolean operations on solids as “fundamental in the fieldof solid modeling.”
Yet, exact solid modelers are non-existent. We will show, that our exact solid mod-
eler can compete with professional CAD kernels. In comparison with the ACIS

CAD kernel, we achieve a significantly better result than thefactor ten demanded
by Yap.

1.2 Previous Work

Data structures for solids and algorithms for Boolean operations on geometric mod-
els are among the fundamental problems in solid modeling, computer aided design,
and computational geometry [Hof89, Män88, RR, HSW01, For97]. In their sem-
inal work, Nef and, later, Bieri and Nef [Nef78, BN88] developed the theory of
Nef polyhedra. Dobrindt, Mehlhorn, and Yvinec [DMY93] consider Nef polyhe-
dra in three-space and give anO((n+m+s) log(n+m)) algorithm for intersecting
a general Nef polyhedron with a convex one; heren andmare the sizes of the input
polyhedra ands is the size of the output. The idea of the sphere map is introduced
in their paper (under the name local graph). They do not discuss implementation
details. Seel [See01a, See01b] gives a detailed study of planar Nef polyhedra. Our
implementation is based on his work. We closely investigatehis contribution in the
following section.

6

1.2. PREVIOUS WORK

In the following, we shortly introduce other approaches to non-manifold geo-
metric modeling, and identify the major differences to our approach:

Rossignac and O’Connor describe modeling by so-calledselective geometric
complexes. The underlying geometry is based on algebraic varieties. The corre-
sponding point sets are stored in selective cellular complexes. Each cell is de-
scribed by its underlying extent, and by a subset of cells of the complex that con-
stitute its boundary. The non-manifold situations that occur are modeled via the
incidence links between cells of different dimension. The incidence structure of
the cellular complex is stored in a hierarchical but otherwise unordered way. No
implementation details are given.

Weiler’s radial-edge data structure [Wei88] and Karasick’s star-edge boundary
representation [Kar89] are centered around the non-manifold situation at edges.
Both present ideas about how to incorporate the topologicalknowledge of non-
manifold situations at vertices; their solutions, however, do not completely cover
all incidences [GCP90]. If a vertex is incident to multiple volumes, their repre-
sentation does not store data that resolves the nesting structure of their shells. The
missing data must be computed from geometric information ifneeded. Gursoz,
Choi and Prinz [GCP90] extend the ideas of Weiler and Karasick and center the
design of their non-manifold modeling structure around vertices. They introduce a
cellular complex that subdivides space and that models the topological neighbor-
hood of vertices. The topology is described by a spatial subdivision of an arbi-
trarily small neighborhood of the vertex. Their approach gives thereby a complete
description of the topological neighborhood of a vertex.

Fortune’s approach [For97] centers around plane equationsand uses symbolic
perturbation of the planes’ distances to the origin to eliminate non-manifold situ-
ations and lower-dimensional faces. Here, a two-manifold representation is suffi-
cient. The perturbed polyhedron still contains the degeneracies, now in the form of
zero-volume solids, zero-length edges, etc. Depending on the application, special
post-processing of the polyhedron might be necessary, for example, to avoid mesh-
ing a zero-volume solid. Post-processing is not discussed in the paper and it is not
clear how expensive it would be. The direction of the perturbation, i.e., towards or
away from the origin, can be used to model open and closed sets.

We improve the structure of Gursoz et al. with respect to storage requirements
and provide a more concrete description with respect to the work of Dobrindt et
al. as well as a first implementation. Our structure providesmaximal topological
information and is centered around the local view of vertices of Nef polyhedra. We
detect and handle all degenerate situations explicitly, which is a must given the gen-
erality of our modeling space. The clever structure of our algorithms helps to avoid

7

CHAPTER 1. INTRODUCTION

the combinatorial explosion of special case handling. We use exact arithmetic to
achieve correctness and robustness.

The fact that we can quite naturally handle all degeneracies, including non-
manifold structures, as well as unbounded objects and always produce the correct
mathematical result differentiates us from other approaches. Previous approaches
using exact arithmetic [AR94, BR96, BMP94, For97, KKM97] work in a less gen-
eral modeling space, some unable to handle non-manifold objects and none able to
handle unbounded objects.

1.3 Relation to Preceding Work

Following [BN88], Nef polyhedra can be represented by modeling the local neigh-
borhood of its vertices. Later, Dobrindt, Mehlhorn and Yvinec [DMY93] proposed
to realize the local neighborhood of a vertex by a symbolic intersection of the poly-
hedron with anε-sphere around the vertex. The resulting surface is a planarNef
polyhedron embedded on the sphere. We follow this approach with our implemen-
tation.

Our work on Nef polyhedra in three-dimensional space is based upon the
work of Michael Seel. First, Michael Seel implemented planar Nef polyhe-
dra [See01a, See01b]. His implementation was released as part of CGAL 2.3 in
August 2001. Then he started to implement three-dimensional Nef polyhedra, too.
As an intermediate step, he adopted his implementation of planar Nef polyhedra
for spherical surfaces. In the context of three-dimensional Nef polyhedra, this code
can be reused for the representation of a so calledsphere map, i.e., anε-sphere in-
tersecting the polyhedron around the vertex, together withthe vertex in its center,
and the label of the vertex. With most of the functionality ofthe spherical Nef
polyhedra completed, and a good deal of the three-dimensional version realized,
Michael Seel quit his academic work and went to industry. Afterwards, Miguel
Granados, who visited the Max-Planck-Institut for half a year, continued Michael
Seel’s work during his stay.

I took over the package in August 2002. At this time, the basicfunctionality
of two-dimensional Nef polyhedra embedded on the sphere andthree-dimensional
Nef polyhedra was complete, but had some major bugs. Also, ray shooting, point
location and intersection finding were implemented by trivial brute-force solutions.
As a first step, I created a running version by correcting the main bugs. This first
running version worked with finitely bounded polyhedra only. We applied the
technique of infimaximal boxes to remove this restriction. In contrast to Seel’s
implementation of planar Nef polyhedra, it is possible to choose between the full

8

1.4. CGAL — A GENERIC SOFTWARE LIBRARY

modeling space or to limit it to finitely bounded Nef polyhedra at compile time.
For infinitely bounded Nef polyhedra, we use an infimaximal box, which implies
using linear polynomials as coordinates. Exchanging the linear polynomials with
constants limits the modeling space to finitely bounded polyhedra, but improves
the performance significantly.

Then we completed the functionality by adding transformations for arbitrary
Nef polyhedra. Rotations of inifinitely bounded polyhedra are especially compli-
cated for our approach. We discuss this problems extensively in Section 6.2.

Having a complete functionality, we accomplished two further goals. First, we
turned our implementation into a proper CGAL package. This includes a compre-
hensive test suite and a documentation. Furthermore, we refactored large parts of
the code. Michael Seel did not reuse the code of the Nef polyhedra embedded
on the sphere, but duplicated and adapted it. We consolidated the code for better
maintainability. As a consequence it is now possible to obtain a sphere map as a
two-dimensional Nef polyhedron embedded on the sphere, i.e., each algorithm cre-
ated for Nef polyhedra embedded on the sphere also works on sphere maps without
special adaptation.

As a second step, we optimized our implementation for efficiency. On a sec-
ond visit Miguel Granados implemented a kd-tree to speed up ray shooting and
point location. Another student, Andreas Meyer, implemented fast box intersec-
tion as described in [ZE02]. Andreas Meyer’s work was supervised by Lutz Ket-
tner, Miguel Granados’ work was supervised by Lutz Kettner and me. Here, our
test suite helped us to identify and remove errors early. Additionally, I performed a
great number of experiments and benchmarks to find and removethe main bottle-
necks. As a result we can compete with professional softwarefor Computer-Aided
Design.

With the packages for spherical Nef polyhedra and three-dimensional Nef poly-
hedra completed, we implemented applications based upon them. We have al-
ready realized an algorithm for the computation of visual hulls, and intend to solve
Minkowski sums on arbitrary Nef polyhedra. As a first step of the Minkowski sum,
we implemented the Minkowski sum on convex polyhedra.

1.4 CGAL — A Generic Software Library

Nef polyhedra in three-dimensional space were released as apackage of the Com-
putational Geometry Algorithm Library (CGAL) [CGA, FGK+00] in December
2004. CGAL is a collaborative effort of several sites in Europe and Israel. The goal

9

CHAPTER 1. INTRODUCTION

is to make the most important of the solutions and methods developed in compu-
tational geometry available to users in industry and academia in a C++ software
library.

CGAL is designed as a C++ library. Following the generic programming
paradigm, CGAL is particularly efficient and flexible. Here is one definitionof
the generic programming paradigm [JLM00]:

Generic programming is a sub-discipline of computer science that
deals with finding abstract representations of efficient algorithms, data
structures, and other software concepts, and with their systematic or-
ganization. The goal of generic programming is to express algorithms
and data structures in a broadly adaptable, inter-operableform that
allows their direct use in software construction. Key ideasinclude:

• Expressing algorithms with minimal assumptions about dataab-
stractions, and vice versa, thus making them as inter-operable as
possible.

• Lifting of a concrete algorithm to as general a level as possible
without losing efficiency; i.e., the most abstract form suchthat
when specialized back to the concrete case the result is justas
efficient as the original algorithm.

• When the result of lifting is not general enough to cover all uses
of an algorithm, additionally providing a more general form, but
ensuring that the most efficient specialized form is automatically
chosen when applicable.

• Providing more than one generic algorithm for the same purpose
and at the same level of abstraction, when none dominates the
others in efficiency for all inputs. This introduces the necessity
to provide sufficiently precise characterizations of the domain for
which each algorithm is the most efficient.

The generic programming paradigm is realized in C++ byclass templatesand
function templates. Templates are incompletely specified components, i.e., some
types are only identified by formal placeholders, thetemplate arguments. The com-
piler generates a separate translation of the code for each instantiation of a template
argument. The requirements that are needed to obtain a correct instantiation of a
template argument are not defined explicitly. Syntactical requirements are defined
by calls on instantiations of the templated type. Surely theassigned type must also

10

1.4. CGAL — A GENERIC SOFTWARE LIBRARY

meet the semantical requirements as intended - and hopefully well specified - by
the developer. Note that an actual type must only fulfill the requirements of the
actually called functions. This enables the design of classtemplates with optional
functionality.

The main advantage of generic programming lies in its flexibility. In contrast to
object-oriented programming, polymorphism is available without the restrictions
of inheritance. Not relying on inheritance implies benefitsin efficiency, because
inheritance requires extra memory and call indirections for virtual functions.

In the overall design of CGAL two major layers can be identified, the layer of
algorithms and data structures and the geometric-kernel layer. The concept of a ge-
ometric kernel comprises all basic geometric data types andalgorithms abstracted
from number types and the choice whether to use Cartesian or homogeneous co-
ordinates. Thereby it bundles several concepts into one large unit. As a result, the
geometric kernel concept can be used with any CGAL algorithm.

CGAL provides further concept bundles for specific problems. This concept
is denoted as atraits class. The notion of traits classes has evolved in the recent
years in the domain of software libraries. Originally, the concept of traits classes
[Mye95] was developed to associate related types, constants, and functions to built-
in types. This is achieved by specialization of a general traits template.

For the access of geometry and incidence objects, CGAL usesiterators, which
are a generalization of pointers. Iterators decouple the storage of data from its
usage. Programmers may use different data structures, but use them in a uniform
manner without even knowing the data structure. An iteratoris a concept that spec-
ifies a set of requirements. A type is an iterator if it satisfies those requirements. In
this sense, a pointer to an element of an array is an iterator.

Iterators are often used to defineiterator ranges. Two iteratorsf irst and last
define a valid iterator range[f irst, last), if both point to an element in the same
data structure, and the elements of the data structure are ordered in such a way,
that last is a successor element off irst. Then, the iterator range refers to the
iterators f irst, f irst + 1, . . . , last− 1, as well as to the elements∗ f irst,∗(f irst +
1), . . . ,∗(last−1). The iteratorlast is not part of the range, but indicates the end
of the range. This way, even empty ranges can uniformly be represented.

The standard template library (STL) defines five iterator concepts: input it-
erator, output iterator, forward iterator, bidirectionaliterator, and random access
iterator. Each of these concepts defines a subset of the pointer functionality typi-
cally needed for the access of a data structure. An input iterator allows to read from
a data structure in consecutive order, an output iterator overwrites the elements in
consecutive order, a forward iterator has read and write access to a data structure,

11

CHAPTER 1. INTRODUCTION

but can only process its elements in consecutive order, while a bidirectional itera-
tor can additionally process them in reverse order. Finally, a random access iterator
has the full flexibility of a pointer, which also includes pointer arithmetic.

CGAL defines two additional iterator concepts. A handle, also know as triv-
ial iterator, does not support an iteration over the data structure. It only points to
some element that can be accessed for reading and writing. The circulator concept
extends the iterator concept for iteration on circular datastructures. Analogous to
iterators, CGAL defines multiple circulator concepts: forward circulator,bidirec-
tional circulator, and random access circulator.

1.5 Outline

The organization of the remaining chapters is as follows:

• In Chapter 2 we repeat Nef’s definitions of polyhedra, their faces, and their
incidence structure.

• In Chapter 3 we introduce the three basic concepts that we usefor the repre-
sentation of 3D Nef polyhedra. Sphere maps model the local neighborhood
of vertices. With a sphere map for each vertex, we can model a finitely
bounded Nef polyhedra. The selective Nef complex adds further incidences
for a more convenient and faster usage. With the infimaximal box we reduce
infinitely bounded Nef polyhedra to finitely bounded Nef polyhedra.

• In Chapter 4 we put down Boolean and topological operations on three-
dimensional Nef polyhedra to Boolean and topological operations on two-
dimensional Nef polyhedra embedded on the sphere. Also we describe the
construction of the selective Nef complex.

• During Boolean operations we use fast box intersection in order to find all
edge–edge and edge–facet intersections, and we use a kd-tree for efficient
ray shooting and point location. We describe those two search structures in
Chapter 5.

• Chapter 6 shortly introduces the remaining functionality provided by our
implementation.

• Chapter 7 discusses the worst-case and expected average-case runtime of our
algorithms.

12

1.5. OUTLINE

• In Chapter 8 we describe the design of our two software packages
Nef polyhedron 3 andNef polyhedron S2.

• In Chapter 9 we investigate the performance of our implementation and the
means used to guarantee its efficiency. We perform several test series in or-
der to examine the runtime behavior of binary operations andtheir major
subroutines. With the results of the experiments, we motivate several opti-
mizations and confirm their benefit. Also, we compare our implementation
to the professional CAD-kernel ACIS.

• In Chapter 10 we present basic implementations of two applications: the
computation of the visual hull from a set of two-dimensionalshapes, and the
Minkowski sum of two Nef polyhedra.

• Chapter 11 summarizes the main results and discusses opportunities for fu-
ture research based upon 3D Nef polyhedra.

13

CHAPTER 1. INTRODUCTION

14

Chapter 2

Nef’s Theory of Polyhedra

Partitions of three-space into cells are a common theme of solid modeling and
computational geometry. The two major representation schemes were developed
in the solid modeling community, which is the older of the twocommunities. Those
schemes are:constructive solid geometry(CSG) andboundary representations(B-
rep). Both have inherent strengths and weaknesses, see [Hof89] for a detailed
discussion.

In CSG, a solid is represented as a set-theoretic Boolean combination of primi-
tive solid objects, such as blocks, prisms, cylinders, or tori. The Boolean operations
are not computed explicitly. Instead, objects are represented implicitly with a tree
structure; leaves represent primitive objects and interior nodes represent Boolean
operations or rigid motions, e.g., translation and rotation. Algorithms on such a
CSG-tree first identify properties of the primitive objectsand propagate the results
using the tree structure.

A B-rep describes a solid by the incidence structure and the geometric prop-
erties of its boundary. Surfaces are oriented to decide between the interior and
exterior of a solid.

The class of representable objects in a CSG is usually limited by the choice
of the primitive solids. A B-rep is usually limited by the choice for the geometry
of the supporting curves for edges and the supporting surfaces for surface patches,
and, in addition, the connectivity structure that is allowed. In particular, a B-rep
is not always closed under Boolean set operations. As an example, the class of
orientable two-manifold objects is a popular and well understood class of surfaces
commonly used for B-reps. They can be represented and manipulated efficiently,
the data structures are compact in storage size, and many algorithms are simple. On
the other hand, this object class is not closed under Booleanset operations. The

15

CHAPTER 2. NEF’S THEORY OF POLYHEDRA

object in Figure 1.1 can be generated by applying Boolean setoperations on several
cubes. Cubes are orientable two-manifold object, but the object in Figure 1.1 is
not a two-manifold. The vertices bounding the tunnel, or theedge connecting the
“roof” with the cube are non-manifold situations.

Because manifolds are not closed under Boolean operations,Requicha pro-
posedregularized set operations[KM76, Req80]. A set isregular, if it equals the
closure of its interior. A regularized set operation is defined as the standard set
operation followed by a regularization of the result, i.e.,after the standard set oper-
ation, the closure and the interior operation are consecutively applied to the result.
Regularized sets are closed under regularized set operations. As they exclude lower
dimensional features and the boundary belongs to the point set, they are considered
to reflect the nature of physical solids closely.

Nef took a different approach. Instead of finding new kinds ofoperations to es-
tablish a closed modeling space, he adapted the definition ofpolyhedra. His sem-
inal book from 1978 provided clean mathematical definitionsfor d-dimensional
polyhedra [Nef78]. Some basic notions of polyhedra, like the notion of a face,
where properly defined for the first time. The new theory includes some very nice
properties. For instance, each face of a polyhedron is a polyhedron itself.

We repeat a few definitions and facts about Nef polyhedra [Nef78] that we need
for our data structures and algorithms. The definitions are presented for arbitrary
dimensions, but in the sequel we restrict ourselves to threedimensions.

Definition 2.1 (Nef polyhedron). A Nef-polyhedronin dimensiond is a point set
P⊆ R

d generated from a finite number of open half-spaces by set complement and
set intersection operations.

Set union (∪), difference (\), and symmetric difference (∆) can be reduced to
set intersection (∩) and set complement (!) as follows:

P1∪P2 = !(!P1∩!P2)

P1\P2 = P1∩!P2

P1∆P2 = (P1\P2)∪ (P2\P1) = !(!(P1∩!P2)∩!(P2∩!P1))

Set complement changes between open and closed half-spaces, thus the topo-
logical operationsboundary, interior, exterior, closureandregularizationare also
in the modeling space of Nef polyhedra. In what follows, we refer to Nef polyhedra
whenever we say polyhedra.

A face of a polyhedron is defined as an equivalence class oflocal pyramidsthat
are a characterization of the local space around a point.

16

6
vv

1

2
v

5
v

4
v

3
v

f
1

5
e

4
e

3
e

2
e

1
e 2

f

3
e

Figure 2.1: Planar example of a Nef
polyhedron. The shaded region, bold
edges and black nodes are part of
the polyhedron, thin edges and white
nodes are not.

5
e

6
vv

1 2
v

5
v

4
v

3
v

f
1 4

e
3

e
2

e
1

e
2

f

Figure 2.2: Sketches of the local pyra-
mids of the planar Nef polyhedron ex-
ample. The local pyramids are indi-
cated as shaded in the relative neigh-
borhood in a small disc.

Definition 2.2 (Local pyramid). A point setK ⊆ R
d is called acone with apex0,

if K = R
+K (i.e., ∀p ∈ K,∀λ > 0 : λ p ∈ K) and it is called acone with apex x,

x∈ R
d, if K = x+R

+(K −x). A coneK is called apyramid if K is a polyhedron.

Now let P∈ R
d be a polyhedron andx∈ R

d. There is a neighborhoodU0(x)
of x such that the pyramidQ := x+R

+((P∩U(x))− x) is the same for all neigh-
borhoodsU(x) ⊆ U0(x). Q is called thelocal pyramidof P in x and denoted by
PyrP(x).

Definition 2.3 (Face). Let P ∈ R
d be a polyhedron andx,y ∈ R

d be two points.
We define an equivalence relationx ∼ y iff PyrP(x) = PyrP(y). The equivalence
classes of∼ are thefacesof P. The dimension of a faces is the dimension of its
affine hull, dims := dimaffs.

In other words, aface sof P is a maximal non-empty subset ofR
d such that all

of its points have the same local pyramidQ denoted by PyrP(s). This definition of
a face partitionsRd into faces of different dimension. A faces is either a subset of
P, or disjoint fromP. We use this later in our data structure and store a selection
mark in each face indicating its set membership.

Example 2.4. We illustrate the definitions with an example in the plane. Given the
closed half-spaces

h1 : y≥ 0, h2 : x−y≥ 0, h3 : x+y≤ 3, h4 : x−y≥ 1, h5 : x+y≤ 2,

we define our polyhedronP := (h1 ∩ h2 ∩ h3)− (h4 ∩ h5). Figure 2.1 illustrates
the polyhedron with its partially closed and partially openboundary, i.e., vertex
v4,v5,v6, and edgese4 ande5 are not part ofP. The local pyramids for the faces

17

CHAPTER 2. NEF’S THEORY OF POLYHEDRA

are PyrP(f1) = /0 and PyrP(f2) = R
2. Examples for the local pyramids of edges are

the closed half-spaceh2 for the edgee1, PyrP(e1) = h2, and the open half-space that
is the complement ofh4 for the edgee5, PyrP(e5) = {(x,y)|x− y < 1}. The edge
e3 consists actually of two disconnected parts, both with the same local pyramid
PyrP(e3) = h1. However, as explained later, in our data structure, we willrepresent
the two connected components of the edgee3 separately. Figure 2.2 illustrates all
local pyramids for this example.

Faces do not have to be connected. There are only two full-dimensional faces
possible, one whose local pyramid is the spaceR

d itself and the other with the
empty set as a local pyramid. All lower-dimensional faces form the boundary
of the polyhedron. As usual, we call zero-dimensional facesverticesand one-
dimensional facesedges. In the case of polyhedra in space we call two-dimensional
facesfacetsand the full-dimensional facesvolumes. Faces arerelative opensets,
e.g., an edge does not contain its end-vertices. The incidence relationship of faces
in a Nef polyhedron is defined as follows:

Definition 2.5 (Incidence relation). In a polyhedronP, a faces is incident to a
facet iff s⊂ clost. This defines a partial ordering≺ such thats≺ t iff s is incident
to t.

Bieri and Nef also proposed several data structures for storing Nef polyhedra in
arbitrary dimensions. In theWürzburg structure[BN88], named after the workshop
location where it was first presented, all faces are stored inthe form of their local
pyramids. The Würzburg structure is complete, but not convenient, since it misses
the explicit representation of incidences between faces. They must be computed
if needed. In theextended Ẅurzburg structurethese incidences are additionally
stored. On the other hand, the Würzburg structure stores redundant information.
It suffices to store only the local pyramids of the minimal elements in the inci-
dence relation≺, which is realized by thereduced Ẅurzburg structure[Bie96].
For bounded polyhedra all minimal elements are vertices.

18

Chapter 3

Representation schemes

Either Würzburg structure supports Boolean operations onNef polyhedra, neither
of them does so in an efficient way. The reason is that Würzburg structures do
not store enough information about the structure of the faces. For example, the
extended Würzburg structure, which provides more information than the other two,
records the facets incident to an edge, but it does not recordthe cyclic ordering of
the edges around a facet.

Our data structures build upon the ideas of the reduced and the extended
Würzburg structure. Like in the reduced Würzburg structure we want to represent
only the local pyramids of the smallest elements of the incidence structure. But we
also want to add the complete incidence structure and even further structural data
to allow a convenient and efficient usage of our data structure.

We represent the local pyramid of a vertex by a planar Nef polyhedron em-
bedded on a sphere. Together with the position of the vertex and a set-selection
mark for the vertex, we call this structure the sphere map of the vertex. For finitely
bounded Nef polyhedra, the sphere maps for all vertices are asufficient represen-
tation, because the smallest elements of the incidence structure are only vertices.
In the incidence structure of infinitely bounded polyhedra,edges and facets can
also become the smallest elements. Applying the concept of infimaximal frames
reduces the representation of arbitrary Nef polyhedra to finitely bounded Nef poly-
hedra, and therefore allows a simple, uniform representation with sphere maps.
In addition to the sphere maps, we explicitly represent edges, facets and volumes
together with their incidences, a set-selection mark, and further structural infor-
mation. The final structure is a selective cell complex of thethree-dimensional
space.

19

CHAPTER 3. REPRESENTATION SCHEMES

Figure 3.1: An example of a sphere map. The dark regions indicate selected sfaces.

3.1 Sphere Maps

We represent the local pyramid of a vertex by conceptually intersecting the local
neighborhood of a vertex with anε-sphere. This intersection forms a subdivision of
the sphere (Figure 3.1) which we represent by a map. Amapis a bidirected edge-
paired graph, i.e., every edgee= (v,w) has a reversal edgee′ = (w,v), and there
exists a bijective mappingtwin such thattwin(e) = e′ andtwin(e′) = e. Together
with a set-selection mark for each item, the map forms a two-dimensional Nef
polyhedron embedded on the sphere. We add a set-selection mark for the vertex
and call the resulting structure thesphere mapof the vertex. Sphere maps were
introduced in [DMY93].

We use the prefixsto distinguish the elements of the sphere map from the three-
dimensional elements. Ansvertexcorresponds to an edge intersecting the sphere.
An sedgecorresponds to a facet intersecting the sphere. Geometrically an sedge
forms a great arc that is part of the great circle in which the supporting plane of the
facet intersects the sphere. When there is a single facet intersecting the sphere in a
great circle, we get ansloopgoing around the sphere without any incident vertex.
There is at most onesloopper vertex because a secondsloopwould intersect the
first. Ansfacecorresponds to a volume. This representation extends the planar Nef
polyhedron representation [See01a].

As incidence structure of the sphere maps, we adapt and extend the halfedge
data structure provided by CGAL [Ket99]. For each sedge we store two oppositely
orientedshalfedges. The opposite of an shalfedge is denoted as itstwin. Each
svertex stores a cyclic list of its outgoing shalfedges in counterclockwise order.

Figure 3.2 depicts the relationship between an shalfedge and its incident
shalfedges, svertices, and sfaces on a sphere map. An shalfedge is an oriented

20

3.2. SELECTIVE NEF COMPLEX

incident sfacene
xt

sh
al

fe
dg

e
opposite shalfedge

p
re

vio
u
s

sh
a
lfe

d
g
e

shalfedgeincident svertex

shalfloopopposite
shalflo

op

incident sface

Figure 3.2: Incidences of shalfedges and shalfloops on a sphere map.

sedge between two svertices. It is always paired with an shalfedge pointing in the
opposite direction.

Note that sphere maps are capable to represent the local pyramid of every loca-
tion in the three-dimensional space with respect to some Nefpolyhedron. Thus, in
addition to the locations of vertices, it can also representlocations on an edge, on
a facet, or in a volume, no matter whether this volume is the interior of the poly-
hedron or the outer volume. For our data structure we only need sphere maps to
represent the local pyramid of vertices, but during binary operations we also need
sphere maps of other locations as an intermediate representation (see Section 4.4).

3.2 Selective Nef Complex

Having sphere maps for all vertices of a polyhedron is a sufficient but not easy
accessible representation of finitely bounded Nef polyhedra. We enrich the data
structure with more explicit representations of all the faces and incidences between
them. We also depart slightly from the definition of faces in aNef polyhedron; we
represent the connected components of a face individually and do not implement
additional bookkeeping to recover the original faces (e.g., all edges on a common
supporting line with the same local pyramid) as this is not needed in our algorithms.
We discuss features in the increasing order of dimension; see also Figure 3.3:

Edges: We store two oppositely oriented halfedges for each edge andlink them
by pointers from each halfedge to its opposite. Such a halfedge can be iden-
tified with ansvertexin a sphere map; it remains to link onesvertexwith the
corresponding oppositesvertexin the other sphere map.

21

CHAPTER 3. REPRESENTATION SCHEMES

edge−use

opposite edge−use

vertex

sphere map

svertex
se

dg
e

oriented edge

sphere map

vertex

edge−use

svertex

svertex

svertex

sedge

oriented facet

Figure 3.3: A selective Nef complex: We show one facet with two vertices, their
sphere maps, the connecting edges, and both oriented facets. Shells and volumes
are omitted.

Edge-uses:An edge can have many incident facets (non-manifold situation). We
introduce two oppositely oriented edge-uses for each incident facet; one for
each orientation of the facet. An edge-use points to its corresponding ori-
ented edge and to its oriented facet. We can uniquely identify each edge use
with anshalfedge, or, in the special case, also with anshalfloop.

Facets: We store oriented halffacets as boundary cycles of orientededge-uses. We
have a distinguished outer boundary cycle and several (or maybe none) inner
boundary cycles representing holes in the facet. Boundary cycles are linked
in one direction. We can access the other traversal direction when we switch
to the oppositely oriented halffacet, i.e., by using the opposite edge-use.

Shells: The volume boundary decomposes into different connected components,
the shells. They consist of a connected set of facets, edges, and vertices
incident to this volume. Facets around an edge form a radial order that is
captured in the radial order ofsedgesaround ansvertexin the sphere map.
Using this information, we can traverse a shell completely starting at an ar-
bitrary entry element with a graph search.

Volumes: A volume is defined by a set of shells, one outer shell containing the

22

3.3. INFIMAXIMAL BOX - A REDUCTION TO FINITELY BOUNDED
POLYHEDRA

volume and several (or maybe none) inner shells excluding voids from the
volume.

The point sets defined by the vertices, edges, facets, and volumes of a polyhe-
dron form a cell complex of the three-dimensional space, i.e., a subdivision ofR3

into 0, 1, 2, and 3-dimensional relative open sets. The notion of a cell complex
is closely related to the notion of an arrangement. While a cell complex is purely
topological, an arrangement is a cell complex that is induced by a set of geometric
objects. Hence, we can also denote our data structure as an arrangement induced
by a set of half-spaces.

For each cell of our cell complex, i.e., for each vertex, edge, facet and volume,
we store a label. This label can be of an arbitrary type. To model Nef polyhedra,
the labels are set-selection marks. A selected face indicate a point set that is part of
the polyhedron, while an unselected face indicates a point set that is excluded, e.g.,
the outer volume or a facet that is only bounding the polyhedron, but is not a part
of it. We call the resulting data structureselective Nef complex, SNCfor short.

3.3 Infimaximal Box - A Reduction to Finitely Bounded
Polyhedra

Nef polyhedra can be represented by the local pyramids of theminimal elements in
the incidence relation≺ defined in Definition 2.5. For finitely bounded polyhedra
those minimal elements are only vertices, but for infinitelybounded polyhedra this
property does not hold. For example, the sole minimal element of a polyhedron
representing a line, is an edge. In this section, we present areduction from arbitrary
to finitely bounded polyhedra. Applying the reduction, all minimal elements of
the incidence structure are vertices. Hence, representingthe local pyramids of all
vertices by a sphere map becomes a sufficient representationof infinitely bounded
Nef polyhedra, too.

As a reduction, we adapt infimaximal frames as presented in [MS03] for three-
dimensional Nef polyhedra. Seel has already applied this approach for planar Nef
polyhedra [See01a, See01b]. In three-dimensional space, the infimaximal boxis a
bounding volume of size[−R,+R]3 whereR represents a sufficiently large value
to enclose all vertices of the polyhedron. The value ofR is left unspecified as an
infimaximal number, i.e., a number that is finite but larger than the value of any
concrete real number. Clipping lines, rays, and planes at the infimaximal box leads
to points and segments on the box, i.e., polyhedra become finitely bounded. As a
result, we are left with only vertices as minimal elements of≺.

23

CHAPTER 3. REPRESENTATION SCHEMES

Figure 3.4: The half-space defined by the plane 3x+5y+7z+9 = 0 clipped at the
infimaximal box. For visualization,R is set to a suitable finite value.

Mehlhorn and Seel argue that interpretingRas an infimaximal number instead
of setting it to a large concrete number has several advantages, in particular in-
creased efficiency and convenience [MS03]. Using a large concrete number re-
quires the computation of a sufficiently large value for eachperformed operation.
Then all rays and lines must explicitly be clipped at a frame of the computed size.
Furthermore, a single point with large coordinates forces the usage of a large frame.
In consequence, the endpoints of clipped rays and lines havevery large coordi-
nates, too. Large coordinates are a major efficiency problemof exact arithmetic.
In Particular, floating-point filters are most effective when point coordinates are
small [BFS98, FW96, MN94].

For projective geometry, Mehlhorn and Seel show that a planesweep for seg-
ments cannot be generalized to inputs containing rays and lines [MS03]. We did
not examine the applicability of projective geometry to ourthree-dimensional pro-
cedure, but it needs special treatment of rays, lines, and facets and shells bounded
by rays and lines. This special treatment is not necessary with an infimaximal box.
Instead, we can develop our algorithms and data structures uniformly for finitely
bounded and arbitrary polyhedra.

We denote the points on the box asframe pointsor non-standard points(com-
pared to the regularstandard pointsinside the box). The coordinates of such points
areRor−R for at least one coordinate axis, and linear functionsf (R) for the other

24

3.3. INFIMAXIMAL BOX - A REDUCTION TO FINITELY BOUNDED
POLYHEDRA

coordinates. We use linear polynomials overR as coordinate representation for
standard points as well as for non-standard points, thus unifying the two kinds of
points in one representation, theextended points. In Lemma 3.1, we show that this
representation is always sufficient, even in iterated constructions.

Analogous to non-standard and extended points, we can definenon-standard
segments, extended segments, non-standard planesand extended planes. Non-
standard segments have at least one non-standard point as endpoint. They arise
from clipping standard planes at the infimaximal box. Non-standard planes only
occur as the supporting planes of the sides of the infimaximalbox. Extended seg-
ments and planes are the unified representation of standard and non-standard seg-
ments and planes, respectively.

It is easy to compute predicates involving extended points.In fact, all predi-
cates in our algorithms resolve to the sign evaluation of polynomial expressions in
point coordinates. With the coordinates represented as polynomials inR, this leads
to polynomials inRwhose leading coefficient determines their signs.

We will also construct new points and segments. The coordinates of such points
are defined as polynomial expressions of previously constructed coordinates. For-
tunately, the coordinate polynomials stay linear even in iterated constructions.

Lemma 3.1. The coordinate representation of extended points in three-
dimensional Nef polyhedra is always a polynomial in R with a degree of at most
one. This also holds for iterated constructions where new planes are formed from
constructed (standard) intersection points.

Proof. We show the second part of the Lemma first: In iterated constructions, the
expression for computing new points, e.g., from intersecting planes and/or edges,
is a rational expression where it is not obvious that it must simplify to a linear
polynomial. On the other hand, the constructed point is either a standard point
or the intersection of two extended segments. An extended segment results from
clipping a facet supported by a standard plane at the infimaximal box. Hence, the
intersection point of two extended segments results from clipping the intersection
line of two facets at the infimaximal box. As a result, it is a non-standard point,
i.e., it has a representation with coefficients linear inR. The rational expression
must be equal to that representation and thus simplify.

We prove the first part of the Lemma: Frame points in a three-dimensional Nef
polyhedron result from lines and rays clipped at the infimaximal box. Consider a
line l defined by

25

CHAPTER 3. REPRESENTATION SCHEMES

l :

x1

y1

z1

λ +

x0

y0

z0

 .

In the following, we list the endpointsp1 and p2 of l for every assignment
of the valuesxi, yi , zi , i = 0,1. Because the infimaximal box is symmetric in all
three dimensions, there are many symmetric cases in the listing of the endpoints.
Without loss of generality we assume that|x1| ≥ |y1| ≥ |z1| and distinguish the
following cases:

• |x1| > |y1|
p1 = (R, R−x0

x1
y1 +y0,

R−x0
x1

z1 +z0), p2 = (−R, −R−x0
x1

y1 +y0,
−R−x0

x1
z1 +z0)

• |x1| = |y1|, |x1| > |z1|, without loss of generalityy1
x1

= 1

– x0−y0 > 0

p1 = (R,R− x0 + y0,
R−x0

x1
z1 + z0), p2 = (−R+ x0− y0,−R, −R−y0

y1
z1 +

z0)

– x0−y0 < 0

p1 = (−R,−R− x0+ y0,
−R−x0

x1
z1 + z0), p2 = (R+ x0− y0,R, R−y0

y1
z1 +

z0)

– x0 = y0

p1 = (R,R, −R−x0
x1

z1 +z0), p2 = (−R,−R, R−x0
x1

z1 +z0)

• |x1| = |y1| = |z1|
We omit a detailed and straight forward discussion of the 28 sub-cases, here.

We now prove in detail that the listed endpoints for the case|x1| > |y1| are cor-
rect. The proof of the other cases works analogously. We can verify, that the points
(R,R− x0 + y0,

R−x0
x1

z1 + z0) and(−R+ x0− y0,−R, −R−y0
y1

z1 + z0) lie on l . Also,
we can see that they lie on the supporting planes of the sides of the infimaximal
box in positive and negativex-direction, respectively. It is left to show that the
point does not lie outside of the infimaximal box. They are on the boundary of the
infimaximal box, if

26

3.3. INFIMAXIMAL BOX - A REDUCTION TO FINITELY BOUNDED
POLYHEDRA

|(±R−x0)
y1

x1
+y0| ≤ R (3.1)

|(±R−x0)
z1

x1
+z0| ≤ R (3.2)

With C = − y1
x1

x0 +y0, inequality 3.1 can be rewritten as follows:

|±R
y1

x1
+C| ≤ R

⇐ |y1

x1
|R+ |C| ≤ R

⇔ |y1

x1
|R−R ≤ |C|

⇔ (|y1

x1
|−1)R ≤ |C|

The final inequality is true, since we have an arbitrary largenegative value on
the left side, which is smaller than any constant valueC. Inequality 3.2 follows
analogously. Consequently, the given points are correct endpoints ofl .

At compile time, we provide two modes for the work with Nef polyhedra, i.e.,
working with standard or extended geometry. The first template parameter of our
main classNef polyhedron 3 is used for specifying the underlying geometry. For
this purpose we provide twoextended kernels, namelyExtended homogeneous

andExtended cartesian. They differ from the standard CGAL kernels in using
polynomials for representing coordinates. Extended kernels can represent extended
points and segments and can therefore handle the full modeling space of Nef poly-
hedra.

We also offer the parameterization ofNef polyhedron 3 with a standard
CGAL kernel. A standard kernel restricts the modeling space to finitely bounded
Nef polyhedra. Still, the modeling space is closed under Boolean and topological
operations. Standard kernels are considerably faster thanextended kernels.

Note that we follow a different strategy than Seel’s implementation of planar
Nef polyhedra [MS03]. To date, planar Nef polyhedra only work with extended
kernels, while the user is restricted only to work on standard geometry. Geometry is
accessed by special functions, which interpret frame points as standard rays. Edges
that completely lie on the infimaximal square—the two-dimensional equivalent of
the infimaximal box—can be identified, but can not be accessedin any other way.

27

CHAPTER 3. REPRESENTATION SCHEMES

We offer the use of extended and standard kernels. Points, segments, and planes
on the infimaximal box can be identified by special functions,too, but are not
interpreted as standard geometry in any way.

28

Chapter 4

Boolean and Topological
Operations

Following Rossignac and O’Conner [RO89], Boolean operations on planar Nef
polyhedra work in three steps—overlay, selection, and simplification. The overlay
step computes the conventional planar map overlay of the input polyhedra with a
sweep-line algorithm [MN99, section 10.7]. The overlay is acombined arrange-
ment of the two input polyhedra. For each facefo in the overlay there is a facefi
in each of the input polyhedra, such thatfo ⊆ fi . We call fi thesupport fo. The se-
lection step computes the mark of each face in the overlay by applying the Boolean
expression on the marks of the corresponding supports. Thiscan be generalized to
arbitrary functions on label sets. Finally, the simplification step cleans up the data
structure and removes redundant representations. This scheme has already been
used by Michael Seel on Nef polyhedra in the plane. We adopt itfor planar Nef
polyhedra embedded on the sphere.

The Boolean operations on spherical Nef polyhedra provide abasis for the
Boolean operations on three-dimensional Nef polyhedra. Aswe pointed out in
Chapter 3, as a representation scheme for Nef polyhedra in the three-dimensional
space, it suffices to compute the sphere maps of the vertices.This can be done by
Boolean operations on sphere maps, which are either provided by the input polyhe-
dra, or are computed on the fly. Having the sphere maps of the result polyhedron,
we synthesize a selective Nef complex. Our method may generate redundant sphere
maps. We erase them in another simplification step.

The steps are described in detail in the following sections for the case of binary
operations. Afterwards we discuss the differences for unary operations.

29

CHAPTER 4. BOOLEAN AND TOPOLOGICAL OPERATIONS

A1

A2 O(A1,A2)

Figure 4.1: Two arrangementsA1 (solid edges) andA2 (dashed edges), and their
overlayO(A1,A2).

4.1 Map Overlay on the Sphere

As the first step of a binary operation on spherical Nef polyhedra, we compute the
overlay of the two input sphere maps. The overlay of two subdivisionsS1 andS2

is defined as the subdivisionO(S1,S2) such that there is a facef in O(S1,S2) if
and only if there are facesf1 in S1 and f2 in S2 such thatf is a maximal connected
subset off1∩ f2. The facesf1 and f2 are called the support off1∩ f2 [dBvKOS97].

We are interested in the overlay of two planar arrangements of segments.
Adapting our definition from Section 3.2, a planar arrangement of segmentsA(S) is
a subdivision of the plane into 0, 1, and 2-dimensional relative open sets, induced
by set of segmentsS. Figure 4.1 illustrates the notion of an overlay for two planar
arrangementsA1 andA2. Their overlayO(A1,A2) is the arrangement induced by
the edges fromA1 andA2. Likewise, the overlay of two arrangements of the sphere
are induced by the edges and loops of the arrangements.

For planar Nef polyhedra, Seel realized the overlay of planar arrangements
with the segment sweep algorithm by Bentley and Ottmann [BO79]. His imple-
mentation builds upon the solution described in the LEDA book [MN99], which
includes the handling of all degeneracies, but is further generalized for flexible us-
age [See01b]. As a result, we could adopt his implementationfor the overlay of
two sphere maps.

In this section, we first give a short introduction to the segment sweep al-
gorithm. Afterwards, we investigate the design of Seel’s implementation of the
segment sweep algorithm, and show how to compute an overlay of two planar ar-
rangements with the help of a segment sweep algorithm. Finally, we adopted Seel’s
implementation for computing an overlay of two sphere maps.

30

4.1. MAP OVERLAY ON THE SPHERE

l

Figure 4.2: The name sweep stems from the image of sweeping a line l over the
plane, starting from a position beyond all geometric items.A sweep line algorithm
successively constructs the arrangement of the geometric items. As an invariant,
the arrangement is always complete up to the current position of l .

4.1.1 A Segment Sweep Algorithm.

Given a set of segments in the planeS, a segment sweepalgorithm computes the
arrangement of the plane induced by the segments. The name sweep stems from
the image of sweeping a linel over the plane, starting from a position beyond all
segments. During the sweep, the algorithm keeps track of thestructure induced by
the swept segments and creates the arrangement (see Figure 4.2). Instead of a real
line, we sweep an imaginary line and maintain the set of segments intersecting it.
The set of intersecting segments is called thestatusof the sweep line. The status
changes every time the sweep line reaches an event point, i.e., an endpoint of a
segment or the intersection of at least two segments. In addition to the update of
the status, each event point triggers an update of the arrangement. As the main
invariant of the algorithm, the arrangement is always complete up to the current
event point.

The algorithm described in the LEDA book [MN99] suggests to realize the seg-
ment sweep algorithm in the following way. The progressing of the sweep line
is realized by a lexicographically sorted list containing the event points. Conse-
quently, the sweep line is vertical and sweeps from left to right; if two event points
have the samex-coordinate, the point with the lowery-coordinate is processed first.
This list is denoted as thex-structure. At the beginning, thex-structure is initial-

31

CHAPTER 4. BOOLEAN AND TOPOLOGICAL OPERATIONS

ized with all endpoints of the segments inS. The intersection points are added
successively during the sweep. Like thex-structure, the status is also represented
by a sorted list. Because the segments in that list are sortedby they-coordinate of
their intersection point with the sweep line, it is denoted as they-structure.

Seel follows the approach described in the LEDA book. Details, including the
handling of degeneracies can be found in Seel’s PhD thesis [See01b] and in the
LEDA book [MN99].

4.1.2 A Generic Framework.

The LEDA segment sweep algorithm

void SWEEP SEGMENTS(const list<SEGMENT>& S, GRAPH<POINT,SEGMENT>& G)

constructs the LEDA graphG, which represents the arrangement induced by the list
of LEDA segmentsS. The graphG stores the incidence structure, the coordinates
of each vertex and the supporting segment of each edge. LEDA provides two ver-
sions of the algorithm; one works with homogeneous coordinates represented by
arbitrary precision integers, the other works with Cartesian coordinates represented
by doubles.

Seel generalized the LEDA approach. His generic sweep framework includes
two layers of abstraction. The first layer models the basic process flow of a sweep
line algorithm, and delegates all basic operations to a traits class. It consists of
a templated classgeneric sweep with a single routinesweep(). The routine
sweep() is shown in Figure 4.3.

The classSegment overlay traits, which is the second layer of the
generic sweep framework, is a traits class for the classgeneric sweep. This
means that it realizes some specific task that can be accomplished by a sweep
line algorithm by implementing the functions delegated by the first layer. In
particular, it realizes the overlay of two planar arrangements of segments.
The interface of the classSegment overlay traits also includes three tem-
plate parameters, which allow an adaptation to diverse incidence structures
and geometries. Seel defined the requirements of the templates parameters
by the conceptsSegmentOverlayGeometry 2, SegmentOverlayInput, and
SegmentOverlayOutput.

The SegmentOverlayGeometry 2 concept defines the geometric require-
ments of the algorithm. With this concept, we are not restricted to use specific
points, segments or number types. It is designed for affine planar geometry, but we
will see later in this section that it also works well with other geometric models.

32

4.1. MAP OVERLAY ON THE SPHERE

void sweep() {

traits.initialize_structures();

traits.check_invariants();

post_init_hook(traits);

while (traits.event_exists()) {

pre_event_hook(traits);

traits.process_event();

post_event_hook(traits);

traits.check_invariants();

traits.procede_to_next_event();

}

traits.complete_structures();

traits.check_final();

post_completion_hook(traits);

}

Figure 4.3: The first layer of Michael Seel’s generic sweep framework. The main
routinesweep() structures the sweep into an initialization, a loop processing the
events, and the completion of the output data structures. Additionally, it provides
for the checking of invariants and for animation via a hook mechanism. The im-
plementation of these steps is delegated to a traits class.

The geometric kernels of CGAL each provide a point and segment type, such that
each of the kernels together with CGAL’s global functions works as a model of the
SegmentOverlayGeometry 2 concept without adaptation.

The SegmentOverlayGeometry 2 concept asks for a segment and a point
type, further on denoted asSegment 2 andPoint 2, together with the following
functions and predicates:

Segment 2 construct segment (Point 2 p1, Point 2 p2)
Constructs a segment with endpointsp1andp2.

Point 2 source (Segment 2 s)
Returns the source point of segments.

Point 2 target (Segment 2 s)
Returns the target point of segments.

bool is degenerate (Segment 2 s)
Decides whether both endpoints of segmentsare the same.

int compare xy (Point 2 p1, Point 2 p2)
Compares pointsp1 andp2 lexicographically.

33

CHAPTER 4. BOOLEAN AND TOPOLOGICAL OPERATIONS

int orientation (Segment 2 s, Point 2 p)
Decides whetherp lies on the linel through the endpoints ofs (return value
0), or whether it lies on the right or left side ofl (return value -1 or 1,
respectively).

Point 2 intersection (Segment 2 s1, Segment 2 s2)
Returns the intersection point of the segmentss1ands2.

TheSegmentOverlayInput concept asks for an iterator type, which is used
for passing the input segments to the segment sweep as an iterator range of
Segment 2 objects. This way, the segment sweep becomes decoupled fromthe
task of storing the input segments.

Finally, theSegmentOverlayOutput concept defines the requirements of a
planar map as a generic output data structure. Many common data structures like
the Halfedge Data Structure or the Directed Cyclic Edge Listcan be adapted as
a model of theSegmentOverlayOutput concept. Besides creating the incidence
structure, the concept is designed to associate each edge with its supporting input
segment, as well as each vertex with the edge lying directly below it. With the first
association it is possible to propagate data linked with thesegments to the output
structure. If the output structure comprises multiple connected components, the
second association can be used to resolve their nesting structure.

The concept requires handle types for vertices and halfedges in the output struc-
ture, in addition to a point and an iterator type that must be the same as in the
SegmentOverlayGeometry 2 and theSegmentOverlayInput concepts. Also,
three types of functions are defined. The first set of functions are used to construct
the output structure.

Vertex handle new vertex (Point 2 p)
returns a new vertex created at pointp.

Edge handle new halfedge pair at source(Vertex handle v)
returns a newly created edge inserted before the first edge inthe adjacency
list of v. Creates also a reversal edge whose target isv.

void link as target and append (Edge handle e, Vertex handle v)
completes the halfedge pair between the source ofe andv by makingv the
target ofeand appending the reversal ofe to the adjacency list ofv.

After the construction of an edge, each segment supporting the edge is identi-
fied. The sweep-line algorithm calls the functionsupporting segment for each

34

4.1. MAP OVERLAY ON THE SPHERE

of these segments, and thereby indicates them as the edge’s support. There are also
four functions which indicate the support of newly created vertices. Each of them
implies a different relation between the location of the newvertex and its support-
ing segment. The segment may start or end at the location, or pass through it. The
fourth option is a trivial segment supporting the vertex.

void supporting segment (Edge handle e, Iterator it)
Indicates∗it as a supporting segment of the edgee.

void starting segment (Vertex handle v, Iterator it)
Indicates∗it as a supporting segment of the vertexv that starts at the location
of v.

void passing segment (Vertex handle v, Iterator it)
Indicates∗it as a supporting segment of the vertexv that passes through the
location ofv.

void ending segment (Vertex handle v, Iterator it)
Indicates∗it as a supporting segment of the vertexv that ends at the location
of v.

void trivial segment (Vertex handle v, Iterator it)
Indicates∗it as a trivial segment supporting the vertexv.

Finally, for every newly created vertex the functionhalfedge below reports
the edge that lies directly below the new vertex, i.e., it returns the first edge hit by a
ray shot from the vertex in negativey-direction. With the help of this information,
it is possible to resolve the nesting structure of face cycles, as we will see later in
this chapter.

void halfedge below (Vertex handle v, Edge handle e)
Reports the edgee lying directly below vertexv.

4.1.3 Overlay of Two Planar Nef polyhedra.

The sweep yields the 1-skeleton of the common arrangement oftwo planar ar-
rangements and additional information to complete the overlay. A 1-skeletonof an
arrangement only includes the 0 and 1-dimensional objects in the arrangement, i.e.,
of vertices and edges. At this point, our arrangement does not include the faces. If

35

CHAPTER 4. BOOLEAN AND TOPOLOGICAL OPERATIONS

the arrangement is represented by a halfedge data structure, as we do it for planar
Nef polyhedra and Nef polyhedra embedded on the sphere, the representation in-
cludes items for vertices and edges together with proper incidences, but the items
for the faces are yet missing. Therefore, we need to create face items and deter-
mine the boundary cycles of each face. To complete the overlay, we additionally
determine the supports of each item in the overlay. With the help of the supports,
we can access additional information stored with a face.

The sweep provides the following properties and informations for the comple-
tion of the overlay:

• The embedding of the 1-skeleton isorder-preserving, i.e., for any vertex, the
counterclockwise order of the outgoing edges agrees with the cyclic order of
the adjacency list. As a result, the edges naturally form face cycles which
agree with the faces of the embedding. They can be traversed easily by
means of the twin relation and the order of the adjacency lists.

• For every vertexv we know the halfedgeeb lying directly below the vertex,
i.e.,eb is the first edge hit by a ray shot fromv in −y direction.

• In case of a support by a vertex or an edge, the supported object knows its
unique support from each each of the input arrangements. A vertex always
supports a vertex. An edge can support multiple vertices andedges.

First, we create face items. Such a face item point to each of its boundary
cycles. Faces are bound by at least one boundary cycle. We distinguish between
outer and inner face cycles. Each face—except for the outer face—is enclosed
by exactly one outer face cycle, which is a counterclockwiseoriented cycle of
halfedges. The outer face has no outer face cycle. Inner facecycles bound the
holes in a face. There are trivial inner face cycles, which consist of a single isolated
vertex, and there are clockwise oriented cycles of edges. Inorder to decide whether
a cycle of halfedges is an outer or inner face cycle, we check the orientation of the
cycle at its lexicographically smallest vertex. A left turnindicates an outer, a right
turn an inner face cycle (see Figure 4.4). The opposite of a halfedge usually is a
halfedge of some other face cycle. Then, the two cycles boundtwo adjacent or two
nested faces. If the two faces are adjacent, both cycles are outer cycles; if the faces
are nested, one of them is an inner cycle of the outer face, andthe other is the outer
cycle of an inner face. In degenerate situations, the opposite halfedge belongs to
the same cycle, i.e., both halfedges are incident to the sameface.

Figure 4.4 shows a face with two holes, where one of the holes includes two
separate faces. All halfedge pairs bound an inner and an outer cycle, except for the

36

4.1. MAP OVERLAY ON THE SPHERE

��

��
��
��
��

��

����

��
��
��
��

�
�
�
�

��

��
��
��
��

��
��
��
��

�
�
�
�

����

��

��
��
��
��

��

����

��

��

��

�
�
�
�

��

��

����

right turn

left turn

e3

v1

e2

v0 e0

e1

v2

f1

f3

f0

f2

Figure 4.4: The orientation at the lexicographically smallest vertex in a face cycle
shows whether the cycle is enclosing a face or is bounding a hole cut into the face.
In the former case the cycle makes a left turn at that vertex, in the latter case it
makes a right turn. The nesting of face cycles is resolved by recursively shooting a
ray from the lexicographically smallest vertex of an inner face cycle until an outer
cycle is found.

halfedge pair(e2,e3), which bounds two different inner cycles. Because there are
no lower dimensional features, there is no halfedge pair whose halfedges belong to
the same cycle.

In order to create and link all face items properly, we start with the creation of
the face item for the outer face. Then, we check each face cycle whether it is an
outer or an inner cycle. If we identify an outer cycle that is not linked to a face item,
we create a new face item and link it properly with the outer cycle. If we identify
an inner cyclefc, and it is not already linked to the face item of the facef incident
to fc, we obtain the proper face item from some other face cyclefclinked incident
to f that is already linked to a face item. The search for the face cycle fclinked,
is guided by the information provided by the sweep, i.e., we use the knowledge
about the halfedge that lies below a vertex. We obtain the halfedgeeb below the
lexicographically smallest vertex offc. eb is part of another face cyclefc′ incident
to f . If fc′ has already been processed,fc′ is already linked tof . Thus, we can
obtain f ’s face item and linkfc to it. If fc′ is an unprocessed outer face cycle,
we create a new face item and link it withfc properly. If fc′ is an unprocessed
inner face cycle, we proceed recursively fromfc′. The recursion must end, since
the smallest vertex of the current face cycle becomes smaller with each recursion.
Incidentally, the recursion will encounter an outer face cycle, or an inner face cycle
whose smallest vertex has no halfedge below. In the former case, the final face

37

CHAPTER 4. BOOLEAN AND TOPOLOGICAL OPERATIONS

cycle encloses all face cycles found during the recursive search; in the latter case,
all found cycles are incident to the outer face.

In Figure 4.4, there are four outer cycles. Therefore, we must create four facet
items f0, f1, f2, and f3,. Additionally there are three inner cycles, whose smallest
vertex isv0, v1, andv2, respectively. Supposing there already are face items for the
outer cycles, the linking of the inner cycles works as follows: We arbitrarily start
from the inner face cycle with the smallest vertexv2. From the orientation atv2 we
can see that the cycle performs a right turn and therefore indeed is an inner cycle.
The halfedge-below relation gives us the edgee1, which also belongs to an inner
cycle as we can conclude from the orientation at vertexv1. The halfedge belowv1

is e0. The facet cycle that containse0 is an outer cycle, since the cycle performs a
left turn at vertexv0. As a result, we can determine the face itemf0 from that outer
cycle and link two encountered inner cycles as holes off0. There is no halfedge
below the vertexv0. Thus, the inner face cycle that containsv0 is linked as a hole
of the outer face.

Having created and linked all face items, we identify the support of each item
in the overlay. The sweep already provided all supports by vertices and edges. It
remains to determine the supports by faces. We proceed in a sweep fashion, i.e., we
handle the items in lexicographic order, and always finalizethe support up to the
current event point. The event points are the vertices of thecombined arrangement.
We maintain the invariant that at any event point, the support has already been
computed for all svertices, shalfedges, and sfaces that have been swept at least
partially. We start with the support of the outer face to fulfill the invariant at the
first event point. Its support are the outer faces of the inputs arrangements.

At each event point, we first obtain the support of the vertexv at that position.
Either it is supported by a vertex or edge, then we already know the support, or it
is supported by a face. We obtain a face supportingv as the face incident to the
halfedge belowv.

The outgoing halfedges that lead to lexicographically smaller vertices have al-
ready been handled. The other so-calledforward halfedgese1, . . . ,en constitute a
single consecutive sequence of the adjacency list ofv. They are incident to the
faces f1, . . . , fn. Because of the invariant, we already know the supports offn and
the facef0, which is the face incident to the twin ofe1. We identify the supports in
the ordere1, f1,e2, . . . , fn−1,en. Knowing the support offi , we first check whether
ei+1 is supported by an edge. If it is not supported by an edge,ei+1 and fi+1 are
supported by the same face asfi . If it is supported by an edgees, the support of
fi+1 is the face incident toes. As a result, we have deduced the support ofv and its
incident edges and faces.

38

4.1. MAP OVERLAY ON THE SPHERE

O(A,B)BA

f0

f1f2

f3

e1

e2

e3

v

f0f1

f
0

f
1

f
2

e0

e
0

e
1

v

A

A

A

A

A
A

B B

B

Figure 4.5: The face supports in an overlayO(A,B) are determined in a sweep-
line fashion. The vertices are processed in lexicographical order. As an invariant,
the face supports are identified up to the current vertex. Processing a vertexv, the
face supports of its outgoing forward edges and their incident faces are deduced in
counterclockwise order.

The method is illustrated in Figure 4.5 by an example overlayO(A,B). Looking
at the supports from subdivisionA, the invariant guarantees that the support off0
by f A

0 is already known. Sincee1 is not supported by an edge inA, f A
0 also supports

e1 and f1. e2 is supported byeA
1 . As a consequence,f2 is supported by the incident

face ofeA
1 , i.e., by f A

1 . The supports ofe3 and f3 are known. Looking at the supports
from B, the support off0 by f B

0 is known. Ase1 is supported byeB
0 , f1 is supported

by f B
1 , which is the face incident toeB

1 . Also e2, f2 ande3 are supported byf B
1 ,

since both edges are not supported by an edge.

Moving on to the next event point, we can easily see that all items below the
sweep line, and all edges and faces crossing the sweep line are incident to some
event point that has already been processed. Thus, the invariant holds.

4.1.4 Segment Sweep on the Sphere.

In order to adopt the segment sweep for the sphere, we have to resolve geo-
metric and topological differences. Most important is the choice of a proper
sweep line together with its progression. The sweep line must be a continu-
ous curve, which continuously progresses over the sphere visiting every point
exactly once. The order in which the points on the sphere are swept, is deter-
mined by thecompare xy function, which is part of some class that implements
theSegmentOverlayGeometry 2 concept. This function must resemble a proper
sweep line, and we want it to be fast, i.e., we do not want to normalize vector co-
ordinates or use sine and cosine functions. As sweep line we use a half-circle that
is fixed at its endpoints and rotates around the sphere. It is convenient to use the
two intersection points of a coordinate axis with the sphereas the fixed endpoints

39

CHAPTER 4. BOOLEAN AND TOPOLOGICAL OPERATIONS

of the sweep line. We choose the intersection points with they-axis. To realize
such a sweep line, thecompare xy function sorts points on the sphere by three-
dimensional orientation tests. The orientation test decides whether a point lies on
the left or on the right side of the sweep line. If two points lie on the same sweep
line, we determine their relative position on the sweep line. For this purpose, we
obtain the orientation of the second point with respect to a segment passing the first
point orthogonal to the sweep line. The sweep line fulfills the stated requirements
except for one. The two endpoints of the sweep line are swept in any position of
the sweep line. We handle those endpoints separately; one ofthem is ranked by
compare xy as the smallest, and the other as the largest point of all. This way,
they are processed once, as the first and last event point.

Problems arise from the cyclic nature of the sweep line. There is no natural
beginning or ending position of the sweep line movement. Each initial sweep line
might already intersect several segments. Therefore, it isnot possible to state that
the arrangement has completely been constructed for the swept area. Also, the
three-dimensional orientation predicate is only suitablefor half-sphere geometry.
Using it in thecompare xy function as described above, it compares two points
with respect to a full great circle instead of a half-circle.Also, the predicate has no
means for deciding whether a point is lying before or after the initial sweep line.

Furthermore, we have to deal with loops and with the ambiguities that
occur when we define a spherical segment by its two endpoints.Handling
loops requires an extended incidence structure which is notsupported by the
Segment overlay traits. Constructing a segment on the sphere from two
points as part of a great circle, there are always at least twopossibilities (except for
the trivial case). If the points are not opposite to each other, they define a distinct
great circle, but the segment could go either way around the sphere. If the end-
points are opposite to each other, they do not even define a distinct great circle. As
theSegmentOverlayGeometry 2 concept does not allow additional information
for the construction of a segment besides the two endpoints,we cannot determin-
istically construct the correct segment.

Because of these problems, we want to perform overlays on half-spheres rather
than on a full sphere. On a half-sphere, there are no loops andno edges longer
than a half-circle. Only the problems of handling half-circles remains open. We
proceed as follows: We cut each segment at thexy-plane. Then we add an equator
in thexy-plane by connecting the cut segments. Finally, we get rid ofthe remaining
half-circles by cutting them in two halves. Figure 4.6 illustrates this process.

The two half-spheres can be swept separately. After the overlay of both halves
have been completed—we discuss the overlay below—the half-spheres are re-
joined. Note that redundant equator edges must be removed twice. First, the

40

4.1. MAP OVERLAY ON THE SPHERE

upper
halfsphere

lower
halfsphere

Figure 4.6: On the left side, a sphere map with an sloop is prepared for the half-
sphere sweep: Equator edges are inserted and long sedges arecut into two halves.
On the right side, the two half-spheres are shown separatelyand in detail for better
illustration. Both are projected into thez= 0 plane and are viewed from the top.

sweep-line algorithm creates halfedge pairs for each equator edge on both half-
spheres. Therefore, each equator halfedge exists twice andwe have to erase one
half of them during the rejoin. Second, most of the equator edges are redundant,
but some of them might be necessary. We remove them later during the simpli-
fication process. For this purpose, we assign proper marks toeach equator edge.
The mark of a newly inserted equator edge coincides with the mark of the face that
is divided by that edge. If it is still redundant after the sweep, the marks of the
divided face and the equator edge will still be equal. As a result, the simplification
step can remove the edge as we will see in Section 4.3.

The identification of the support in the half-sphere overlayincludes one major
difference to the planar version: a half-sphere has no outersface. Instead, there
are the sfaces of the other half-sphere that border on the sfaces of the currently
processed half-spherehs. Looking at the full sphere, the sface that is incident to
the twin of the first forward shalfedge outgoing from the smallest svertexvs in hs
can be used as a replacement for the outer sface. We obtain thesupport of this sface
by a point location query on the input sphere maps at the location of vs. Either the
query directly returns an sface, or we obtain the proper sface from the incidence
structure of the returned item.

41

CHAPTER 4. BOOLEAN AND TOPOLOGICAL OPERATIONS

4.2 Selection

The overlay of two planar (or spherical) Nef polyhedra yields their combined ar-
ragement and the support of each vertex, halfedge, and face.No matter which
boolean operation is applied on the planar polyhedra, theircombined arrangement
is sufficient for the representation of the result polyhedron. We obtain the correct
mark of an itemi in the combined arrangement by applying the boolean operation
upon the marks ofi’s supports.

As a default, each item carries a set-selection mark of typebool. As an al-
ternative, other labels can be used. The replacement label type needs to define
at least one of the functionsoperator&&, operator||, andoperator-, which
are used by the selection step to combine the labels. With boolean labels, these
function are pre-defined as expected, and therefore realizethe union, intersection,
difference operation, respectively. The symmetric difference naturally combines
the functionsoperator&&, operator||, andoperator!. It can also be useful to
replace theoperator!, because it is also used in the negation operation.

In Section 10.2, we present an example for the use of different labels in the
computation of the Minkowski sum of two convex polyhedra.

4.3 Simplification on the Sphere

According to Nef’s theory [Nef78, Bie95], a face is a maximalset of points with
the same local pyramid. As we pointed out in Chapter 2, we represent the con-
nected components of each face separately. This representation is unique. During
the overlay step, we compute a combined arrangement of multiple polyhedra. Inde-
pendent of the concrete Boolean operation, this arrangement is suitable for repre-
senting the resulting Nef polyhedron. As a consequence, dependent on the concrete
Boolean operation, items may be redundant. The uniqueness of the representation
is restored by a simplification step, which identifies and erases all redundant items.
In Figure 4.7 we see the combined arrangementO(S,T) of a squareSand a triangle
T. In the arrangementO(S,T), the triangle is subdivided into an upper and a lower
part. In the difference between the square and the triangle the items of the lower
part redundantly subdivides the outer face and therefore can be joined with it; in a
union the top part redundantly subdivides the only face of the resulting polyhedron.

An item is redundant, if it is either surrounded by some higher-dimensional
item, or separates two higher-dimensional items lying in a common hyper-plane.
In both cases, the relevant items have the same mark. For example, we can erase a
vertex lying on a face with the same mark. Surely this cannot be done, if there are

42

4.3. SIMPLIFICATION ON THE SPHERE

O(S,T) S\T S∪T

Figure 4.7: The combined arrangement of a squareSand a triangleT, the arrange-
ment of their differenceS\T, and the arrangement of their unionS∪T.

2.

e2

e e1

1. 3.

f1 f2

f

v v

Figure 4.8: Basic situations that trigger a simplification.

edges incident to the vertex. Then we first have to find out whether those edges are
redundant, too.

For planar polyhedra there are three basic situations (see Figure 4.8) that trigger
a simplification:

1. An edgee, which separates two facesf1 and f2. e, f1 and f2 have the same
marks. f1 and f2 can be equal, i.e.,e is surrounded by same face with the
same mark.⇒ Deletee. Unite f1 and f2 if necessary.

2. A vertexv, which separates two collinear edgese1 ande2. v, e1 ande2 have
the same marks.⇒ Deletev. Unitee1 ande2.

3. A vertexv without incident edges, which lies in a face with the same mark.
⇒ Deletev.

To clean up the structure completely and efficiently, we firstcheck all edges
for situation 1. As a result, no vertex can have redundant incident edges when
checked for isolation in the next step. Afterwards, all vertices can then be checked
for situations 2 and 3 simultaneously.

43

CHAPTER 4. BOOLEAN AND TOPOLOGICAL OPERATIONS

C P O(C,P)

Figure 4.9: A cubeC, a prismP, and their combined arrangementO(C,P). The
combined arrangement of multiple polyhedra exactly holds the vertices which may
occur in the result of a Boolean operation on them. Which of these vertices are
finally needed depends on the specific operation.

For the merge operation of faces in situation 1, we cannot afford to maintain
an updated status of the face objects after every single simplification, as this would
imply the repeatedly iteration of face cycles. We avoid a quadratic runtime by using
a union–find data structure [CLR90]. Thus, situation 1 is handled as follows: While
the separating edge is deleted directly, and the outer face cycle is concatenated
properly, the face objects together with the mutual incidence with their boundary
cycle objects remain untouched. Instead, the union–find data structure keeps track
of the united faces. After all occurrences of situation 1 have been handled this way,
the update of the face objects and their associated incidence pointers can be done
in linear time.

The adaptation for sphere maps is simple. Identifying the situations needs
incidence informations only, except for the collinearity test in situation 2. We
adapt to spherical geometry by checking if the two sedges lieon the same great
circle, instead. Additionally, we have to deal with sloops.They can be handled
analogously to sedges in situation 1, i.e., if an sloop redundantly separates two
faces, we can erase the sloop and unite the faces. But since wehave not erased
the redundant equator sedges before the simplification step, sloops are still cut into
several sedges. On the other hand, the simplification routine might unite several
sedges to an sloop. The conversion of an sedge with identicalend points into an
sloop is trivial.

44

4.4. CANDIDATE SPHERE MAPS

4.4 Candidate Sphere Maps

The set of vertices in a polyhedronPres resulting from ann-ary Boolean operation
b on polyhedraP1, . . . ,Pn is a subset of the vertices in the combined arrangement
of P1, . . . ,Pn. They are either located at the position of a vertex in any of thePi ’s, or
at an intersection ofPi andPj . For binary operations we must consider edge–edge
and edge–facet intersections. These locations are the locations of the vertices in
the overlay of thePis (see Figure 4.9).

As for the binary operations on two-dimensional Nef polyhedra, not the com-
plete combined arrangement is needed for representing the result. We determine
the sphere maps for all vertex locations of combined arrangement, first. Those
sphere maps are a sufficient representation of the result polyhedron, but may in-
clude redundant sphere maps. We identify the redundant sphere maps and erase
them. In contrast to our approach of binary operations on thetwo-dimensional Nef
polyhedra, the overlay is not computed. Instead, the polyhedron can directly be
synthesized from the sphere maps that remain after the simplification.

The sphere map ofPres at locationl is calculated by applyingb on the sphere
maps representing the local neighborhood ofl in each of the polyhedraPi. We
already have sphere maps at locationl in all Pis that have a vertex atl . For all
otherPis, the locationl lies on an edge, on a facet, or in a volume. Remember
that sphere maps can represent the local pyramid of every location in the three-
dimensional space with respect to some given Nef polyhedron, not only the local
pyramids of vertices. Thus, we can compute proper sphere maps for l on the fly,
if it is necessary. In case of a volume, the sphere map that represents locationl
consists of a single sface with the same mark as the volume. Ifl lies on a facet, the
sphere map has two sfaces separated by an sloop. The marks aretaken from the
facet and the incident volumes. In case ofl lying on an edge, the sphere map has
two opposite svertices with an sedge connecting them for each facet incident to the
edge. The marks are taken from the edge, the incident facets and volumes.

4.5 Simplifying the Selective Nef Complex

Given two polyhedronP andQ, we created a set a sphere maps that is sufficient
to represent the result polyhedron of a Boolean operation performed onP andQ
in the previous step. In particular, we created sphere maps for all vertex locations
of the combined arrangement ofP andQ. The set of these vertex locations is a
superset of the vertex locations in the result polyhedron. Depending on the specific
Boolean operation, some of the vertices occur in the result,and some do not. In

45

CHAPTER 4. BOOLEAN AND TOPOLOGICAL OPERATIONS

O(C,P) C\P C∪P

Figure 4.10: The combined arrangementO(C,P) of a cubeC and a prismP, and
the arrangements ofC\P andC∪P. In the difference operation, two vertices ofP
are absorbed by facets, and two others by edges ofC. In the union operation, the
final two vertices ofP get absorbed in the outer volume.

the latter case, the sphere maps represents a location on an edge, on a facet, or in
a volume. This happens when for example the vertex of one input polyhedron is
absorbed by an edge, facet, or volume of the other polyhedron. These sphere maps
are redundant and will be erased in this step.

As an example, Figure 4.10 shows the combined arrangementO(C,P) of a
cubeC and a prismP, together with the arrangements ofC\P andC∪P. The latter
two arrangements include all vertices ofO(C,P). In C\P, the two lower vertices
of P have been absorbed into the outer volume. InC∪P, the two left vertices of
P have been absorbed into the volume ofC, and the two upper vertices ofP have
become a part of the boundary ofC.

As discussed in Section 4.4, sphere maps that represent a position on an edge,
on a facet, or in a volume, have special structure. Thus, it iseasy to identify them.
Once such a redundant sphere map is identified, it can simply be deleted together
with all its items. Since the SNC has not been synthesized yet, the sphere maps
are not linked by any pointers. They are only implicitly linked by their geometric
properties, which will later help us to perform the synthesis.

4.6 Synthesizing the SNC

Given the sphere maps of a particular polyhedron, it is stillcomplex to solve inter-
esting geometric queries on the polyhedron. For instance, it is very complicated to
solve a point location query, because there are no edge, facet, or volume items that
could be returned. As a result, a user must first define these object.

46

4.6. SYNTHESIZING THE SNC

Providing the SNC is a necessity not only because of convenience but also
because of efficiency reasons. Determining edges, facets, facet cycles, shells or
volumes on demand can increase the complexity of algorithmsperformed on a
polyhedron essentially. As an example, without precomputation the identification
of the opposite endpoint of some edge needs at least time linear in the size of the
polyhedron.

The selective Nef complex complements the information provided by the
sphere maps. In this section, we describe how to synthesize the selective Nef com-
plex. The synthesis works in order of increasing dimension.

4.6.1 Pairing up Halfedges.

Interpreting an svertex as a halfedge in a three-dimensional polyhedron, the center
vertex of the sphere map becomes the source vertex of the halfedge. The direction
of the halfedge is the direction from the center vertex to thesvertex. A halfedge has
a unique supporting line, which is defined by the position of its source vertex and
its direction. Edges are identified by two svertices directly opposite to each other,
i.e., they have the same supporting line, they are oppositely oriented, and there is
no other vertex lying on the same supporting line between them.

We create halfedge pairs as follows: First, we compute a normalized line rep-
resentation for each halfedge, and group halfedges that lieon the same supporting
line in a common list. Then we sort each list such that consecutive halfedges can
be linked as halfedge pairs.

To group halfedges with the same supporting line, we use normalized Plücker
coordinates of the line [Sto91]. The Plücker coordinates of a line l can be deter-
mined from two distinct pointsp andq on l . For a halfedge with source vertex at
locationsand directionv, we setp= sandq= s+v. The Plücker coordinates are a
sixtupel, which represent the line defined byp andq uniquely up to a multiplicative
factor. It is computed as follows:

p.x()∗q.y()− p.y()∗q.x(),
p.x()∗q.z()− p.z()∗q.x(),
p.y()∗q.z()− p.z()∗q.y(),

p.x()−q.x(),
p.y()−q.y(),
p.z()−q.z()

p.hx()∗q.hy()− p.hy()∗q.hx(),
p.hx()∗q.hz()− p.hz()∗q.hx(),
p.hy()∗q.hz()− p.hz()∗q.hy(),

p.hx()∗q.hw()− p.hw()∗q.hx(),
p.hy()∗q.hw()− p.hw()∗q.hy(),
p.hz()∗q.hw()− p.hw()∗q.hz()

Cartesian coordinates homogeneous coordinates

47

CHAPTER 4. BOOLEAN AND TOPOLOGICAL OPERATIONS

(1,0,1) (2,0,1) (3,0,1)

source vertex direction

Pl(0,1,0,1,0,0)

(1,0,1) (1,0,0)
(2,0,1) (−1,0,0)
(2,0,1) (1,0,0)
(3,0,1) (−1,0,0)

Pl(2,1,0,1,0,0)

(1,2,1) (1,0,0)
(2,2,1) (−1,0,0)
(2,2,1) (1,0,0)
(3,2,1) (−1,0,0)

Figure 4.11: Symmetric Difference of two axis-aligned cubes with corners at
(0,0,0), (2,2,2), and(1,0,1), (3,0,3): The table lists the position of the source
vertex and the direction of the halfedges with the supporting linesPl(0,1,0,1,0,0)
andPl(2,1,0,1,0,0). The halfedges are lexicographically sorted by the location
of their source vertices. The direction breaks the tie.

Since we want to group all halfedges with the same supportingline in a com-
mon list, we need to normalize the Plücker coordinates. Forhomogeneous coor-
dinates we achieve normalization by division with the common greatest divisor of
all six Plücker coordinates and negate them if the first coordinate is negative; for
Cartesian coordinates we divide all by the first Plücker coordinate.

Since the source vertices of twin halfedges must lie next to each other on their
supporting line, we sort the lists lexicographically. The lexicographic order always
coincides with the order of points on their common supporting line. There can be
two oppositely oriented halfedgese+ ande− with the same source vertex lying on
the same supporting line. Because of the lexicographic order, the twin halfedge of
e−, the one pointing in a direction of lexicographic smaller points, is sorted directly
beforee− ande+. The twin halfedge ofe+ is sorted directly after them. Thus, we
break the tie by sortinge− beforee+.

The method is illustrated by Figure 4.11. For a polyhedron constructed by
the symmetric difference of two cubes, it shows two of the lists of halfedges with
common Plücker coordinates. Each halfedge is identified bythe homogeneous
coordinates of its source vertex and its direction. The vertices (1,0,1), (2,0,1),
and(3,0,1) lie on a common supporting line with normalized Plücker coordinates
Pl(0,1,0,1,0,0). Consequently, those are the normalized Plücker coordinates of
the four halfedges connecting these vertices. There are twohalfedges with source

48

4.6. SYNTHESIZING THE SNC

e

edge-use(e)

Figure 4.12: The shalfedge representing the edge-use of edge e= (v1,v2) in half-
facet f is the shalfedge in the sphere map aroundv1 that lies in the supporting plane
that is oppositely oriented tof and whose target svertex ise.

vertex(2,0,1). The halfedge with direction(−1,0,0) points into a direction with
lexicographically smaller points, and is therefore sortedbefore the one with direc-
tion (1,0,0). The first and second halfedge of the list are paired as a halfedge pair.
So are the third and the fourth.

In case of extended points we proceed the same way. For supporting lines
that do not lie completely on the infimaximal box, the normalized Plücker co-
ordinates of the frame points are the same as for the non-frame points. For the
lines lying completely on the infimaximal box, we get normalized Plücker coor-
dinates whose three leading coordinates are each either zero, or a polynomials
in R of degree one. The other three coordinates are constants. Asan example,
the edge from(−R,−R,R) to (R,0,R) has the normalized Plücker coordinates
Pl(R,−2R,−R,−2,−1,0). To sort the vertex coordinates of frame points, we use
the notion ofRas an infimaximal number, i.e., a number greater than any other.

4.6.2 Creation of Facet Cycles.

Facets are bounded by at least one boundary cycle. The outer cycle is obligatory
and consists of edges. Inner cycles border holes. They either consist of a single
vertex or of a cycle of edges. Since edges and vertices may occur in multiple facet
cycles, we regard facet cycles as cycles of edge-uses ratherthan edges. Instead
of introducing additional items for the edge-uses, we associate the edge-use of
halfedgee= (v1,v2) in halffacet f with the shalfedgese, such thatsehas the same
oriented supporting plane asf and is part of the sphere map ofv1 (see Figure 4.12).

49

CHAPTER 4. BOOLEAN AND TOPOLOGICAL OPERATIONS

(1,0,2)

e

incident shalfedges of
sv sv’s twin

se0 : −z= 0 se′0 : z= 0
se1 : x = 0 se′1 : x = 0
se2 : z= 0 se′2 : −z= 0
se3 : −x = 0 se′3 : −x = 0

prev(se0) = twin(se′0) prev(se′0) = twin(se0)
prev(se1) = twin(se′3) prev(se′3) = twin(se1)
prev(se2) = twin(se′2) prev(se′2) = twin(se2)
prev(se3) = twin(se′1) prev(se′1) = twin(se3)

Figure 4.13: Symmetric Difference of two axis-aligned cubes with corners at
(0,0,0), (2,2,2), and(1,0,1), (3,0,3): The table lists the shalfedges incident to
the shalfedge paire = (sv, twin(sv)), i.e., the svertex with source vertex(1,0,2)
and direction(0,1,0), and its twin. The shalfedges are denoted by their supporting
planes in the the sphere’s coordinate system and are listed in counter-clockwise
order. The new previous pointers are listed below the table.The next pointers link
in the opposite direction.

A boundary cycle consisting of a single vertex is regarded asa trivial edge-use. We
associate the trivial edge-use of vertexv on facetf with the shalfloop on the sphere
map ofv that has the same oriented supporting plane asf .

We link shalfedges to previous–next pairs, such that a boundary cycle of
halfedgese1, · · · ,en is represented by a cycle of shalfedgese1, · · · ,sen, wheresei

represents the edge-use ofei . For this purpose, we form facet cycles by linking
together sedges that are incident to twin shalfedges and liein the same supporting
plane. To identify the previous–next pairs for all shalfedges adjacent to svertex
sv, we first search the adjacency list ofsv’s twin for an shalfedgese2 lying on the
oppositely oriented supporting plane than the first shalfedgese1 outgoing fromsv.
The shalfedgesse1 andse2 lie on oppositely oriented facet cycles passing along
the same edges and vertices. In one of these two facet cycles the twin ofse1 is the
predecessor ofse2; in the other facet cycle the twin ofse2 is the predecessor ofse1.
We link them as previous–next pairs, accordingly. We use thecounter-clockwise
order of the shalfedges outgoing fromsvand its twin to link together the remain-
ing sedges adjacent tosv. In this fashion we create all previous–next pairs, and
consequently also form all facet cycles.

In Figure 4.13, we look at the svertexsvwith source vertex(1,0,2) and direc-

50

4.6. SYNTHESIZING THE SNC

tion (0,1,0). It’s twin svertex has source vertex(1,2,2) and direction(0,−1,0).
The table lists the supporting planes of the outgoing shalfedges of both svertices in
counter-clockwise order. Remember that in a sphere map the plane equalities are
given with respect to the center of the sphere. The first outgoing shalfedge ofsvlies
in the plane−z= 0. We therefore match it with the outgoing shalfedge ofsv’s twin
that lies in planez= 0. Traversingsv’s adjacency list in counter-clockwise order
and the adjacent list ofsv’s twin in clockwise order simultaneously, we obtain all
the previous–next pairs.

4.6.3 Creation of Facets.

To resolve the nesting relationship of the boundary cycles of a halffacet, we can
reuse the planar sweep line algorithm from Michael Seel [See01b]. From the dis-
cussion of the overlay in Section 4.1, we know that we only need the information
which edge lies below each of the vertices to resolve the nesting relationship. Since
we also do not need the sweep to create an output graph, most ofthe functions im-
plementing theSegmentOverlayOutput concept are empty.

Our boundary cycles consist of shalfedges and shalfloops. For the sweep we
reinterpret them as edge-uses, i.e., each shalfedgese is understood as the use of
the halfedge fromse’s center vertex to the center vertex of its successor shalfedge.
Thus, for each shalfedge in a boundary cycle we create a segment between the lo-
cations of those vertices as an input for the sweep; for each shalfloop in a boundary
cycle, we create the trivial segment of its center vertex.

With the sweep, we can process all halffacets lying in the same supporting
plane at once. Also, we can conclude the nesting structure ofa halffacet from its
already processed twin. Consequently, it suffices to sort all shalfedges by their
normalized oriented plane equation and perform one sweep per positively-oriented
supporting plane.

4.6.4 Creation of Volumes.

Shells are identified with a graph traversal. As halffacets together with the
shalfedges and shalfloops in their boundary cycles belong toexactly one shell,
we can traverse facet and sface cycles to obtain further elements of the same shell.
Starting at any sface or halffacet this method yields all items of the shell if there is
no edge whose removal divides the shell into two separate parts. This situation is
handled by traversing from an isolated svertex to its twin svertex.

Looking at our example with the symmetric difference of two cubes, we tra-
verse the outer shell starting from the outer sfacesf at vertex(0,0,0) as follows.

51

CHAPTER 4. BOOLEAN AND TOPOLOGICAL OPERATIONS

class Smallest_vertex_visitor {

bool first;

Vertex_const_handle v_min;

public:

Shell_explorer() : first(true) {}

void visit(Vertex_const_handle v) {

if(first ||

CGAL::lexicographically_xyz_smaller(v->point(),

v_min->point())) {

v_min = v;

first=false;

}

}

void visit(Halfedge_const_handle e) {}

void visit(Halffacet_const_handle f) {}

void visit(SHalfedge_const_handle se) {}

void visit(SHalfloop_const_handle sl) {}

void visit(SFace_const_handle sf) {}

Vertex_const_handle get_result() { return v_min; }

};

Vertex_const_handle get_smallest_vertex(const Nef_polyhedron& N,

Shell_entry_const_iterator it) {

Smallest_vertex_visitor S;

N.visit_shell_objects(SFace_const_handle(it),S);

return S.get_result();

}

Figure 4.14: The class Smallest vertex visitor implements a
Shell visitor, which obtains the smallest vertex of a shell. The function
get smallest vertex starts the shell exploration and forwards the result.

52

4.6. SYNTHESIZING THE SNC

We first traverse the only sface cycle ofsf and find the three outwards oriented
halffacets adjacent to vertex(0,0,0). Traversing the boundary cycles of these half-
facets yields the proper sfaces of the vertices(0,2,0), (0,2,2), (0,0,2), (2,0,0),
(2,2,0), (0,0,2), (1,0,2), (1,0,1), and(2,0,1). Going on obviously yields the
remaining sfaces and halffacets of the shell.

The traversal is implemented using the visitor pattern [GHJV95], i.e., we offer
a functionvisit shell objectswhich traverses the shell and reports each found
item to a givenShell visitor. TheShell visitor concept specifies six visit
functions for reporting the six item types that constitute shells: vertex, halfedge,
halffacet, shalfedge, shalfloop, and sface. This way, we decouple the traversal of
the shell from operations performed on the items. Figure 4.14 illustrates the usage
of visit shell objects by an example function that calculates the lexicograph-
ically smallest vertex of a shell.

Similar to facet cycles, we distinguish between outer and inner shells. Each
volume, except for the outermost, is enclosed by the so-called outer shell. In a
volume, there can be an arbitrary number of inner shells bounding holes in the
volume. To identify whether a shellS is an outer or inner shell, we locate the
spherical point with direction(−1,0,0) on the sphere map of the lexicographically
smallest vertexvs in S. If the query returns an svertex or and shalfedge,S is an
inner shell, because the found svertex or shalfedge indicates the existence of a
vertex smaller thanvs on the adjacent outer shell. If the query returns an sface,
we check whether the sface belongs toS. If it belongs toS, S is an outer shell.
Otherwise, it is an inner shell.

The resolving of the nesting structure is similar to the resolving of facet cycles
in the planar overlay. The idea is to move from shell to shell until we find a shellSe

that encloses the shellSs we started from.Se also encloses all other shells we came
across in our walk fromSs to Se. To direct our walk, we determine the shell below
the smallest vertex of the current shell by a ray shooting query in −xdirection. As a
consequence, the smallest vertex of the successor shell is always lexicographically
smaller than the smallest vertex of the current shell. Thus,the walk will eventually
find an enclosing shell, or no more further shell. In the latter case, all shells found
during the walk are not enclosed by any shell.

The set-selection mark of a volume can be obtained from an arbitrary sface of
any shell bounding the volume. We take it from the smallest vertex of the enclosing
shell. This concludes the assembly of the selective Nef complex.

53

CHAPTER 4. BOOLEAN AND TOPOLOGICAL OPERATIONS

4.7 Unary Operations

Because the result of a unary operation is always a simplification of the input, i.e.,
the latter one can be obtained from the first by uniting and deleting items, we want
to copy and simplify the input rather than constructing a newpolyhedron from its
sphere maps. Thus, we realize a unary function by applying the selection function
on the sphere map items and on the SNC items. With the new marks, the SNC
already represents the result, but potentially with redundant sphere maps, edges,
facets, and volumes. We identify and simplify the followingsituations in the listed
order:

1. Identify redundant facetf that separates two volumesc1 andc2, with f , c1,
andc2 having the same marks.c1 andc2 may be equal, iff is surrounded by
the volume.
⇒ Delete f . Unitec1 andc2 if necessary.

2. Identify redundant edgee that separates two facetsf1 and f2, with e, f1 and
f2 having the same marks.f1 and f2 can be equal, ife is surrounded by the
facet.
⇒ Deletee. Unite f1 and f2 if necessary.

3. Identify redundant vertexv that separates two collinear edgese1 ande2. v,
e1 ande2 have the same marks.
⇒ Deletev. Unitee1 ande2.

4. Identify redundant vertexv without incident edges that lies in a facet with
the same mark.
⇒ Deletev.

5. Identify redundant vertexv without incident edges and facets that lies in a
volume with the same mark.
⇒ Deletev.

Similar to the simplification on the sphere as described in Section 4.5, updating
the SNC with every single simplification can lead to a quadratic runtime. When we
delete a sphere map isolated on a facetf , we have to delete the corresponding facet
cycle entry stored withf . When we delete a sphere map isolated in a volumec, we
have to delete the corresponding shell entry stored withc. Again, we use a union-
find data structure [CLR90] to efficiently update the pointers. Separate union-find
structures are needed for the merge of volumes, facets, and sfaces.

54

Chapter 5

Search Data Structures

The main bottlenecks of our first implementation were point location, ray shoot-
ing and intersection finding. We implemented each task as a trivial brute force
algorithm. With these algorithms, each point location, rayshooting and intersec-
tion query has complexity linear in the size of the queried polyhedron in the worst
case. Summing up all queries during a binary operation, we spentO(nm) time for
point location queries, wheren and m is the complexity of the input polyhedra,
andO(k2) time for the ray shooting queries, wherek is the complexity of the re-
sult polyhedron. To get rid of these bottlenecks, we implemented two search data
structures: a kd-tree and fast box intersection. We describe the concepts in the
following sections. A detailed discussion of the runtime and space complexity is
given in Chapter 7. We confirm the efficiency of both structures by experiments in
Section 9.3.

5.1 Kd-tree

As the last step of the synthesis, we resolve the nesting structure of the shells. We
do this by shooting a ray from the lexicographically smallest vertex of each shell
in negativex-direction and obtain the boundary item that is hit first by the ray. A
brute force algorithm tests each boundary item for intersection with the ray and
reports the item intersecting it first. The combined complexity of testing a ray for
intersection with all vertices, edges and facets of a polyhedron is linear in the size
of the polyhedron.

During the binary operation, we calculate the sphere maps ofthe result poly-
hedron. For this purpose, we deduce a set of candidate locations of vertices in the

55

CHAPTER 5. SEARCH DATA STRUCTURES

result polyhedron, and then obtain a sphere map for each of these locations in both
input polyhedron. We can easily determine the sphere map of alocationl from the
item that is located atl . We do not know the item atl , but we can identify it by a
point location query. The brute force method solves point location by testing first
whetherl is on a vertex, is part of the relative interior of an edge or facet, or lies in
a volume. In the latter case, we obtain the volume from the incidence relations of
the item hit first by a ray shot froml in an arbitrary direction. The complexity is
essentially the same as for a ray shooting query.

Both query types can be solved more efficiently with the help of a kd-tree. A
kd-tree correlates with a decomposition of the space into full-dimensional regions.
It stores the information which items can be found (at least partly) in each of the
regions.

Having a kd-tree we need not consider all items in each ray shooting and each
point location query. In a ray shooting query, it suffices to consider the items of
the regions intersected by the ray. Furthermore, the kd-tree provides a rough order
of the items along the ray. Since we search for the first hit, weneed not check all
items of the regions intersected by the ray. After the first intersection, it suffices
to test the remaining items of the currently inspected region. In a point location
query, we only consider items close to the queried location,i.e., only items of a the
region which contains the queried location. Miguel Granados implemented a kd-
tree, which efficiently solves both query types on three-dimensional Nef polyhedra.

p

SrightSleft

A Binary Space Partitioning(BSP) is a
spatial subdivision of a k-dimensional space
D into disjoint regions. Given a set of ge-
ometric objectsS, D is iteratively split by
hyper-planes into subregions until each sub-
region only contains a constant-sized subset
of S. During the subdivision aBSP treeis
created as follows: We start by splittingS
at hyper-planep into subsetsSle f t andSright .
Objects intersectingp are put into both sub-
sets. The hyper-planep is stored with a new
node, which becomes the root node of the kd-
tree. The children of the root are the BSP
trees ofSle f t andSright with respect to the sub-
regions ofD to the left and to the right ofp. The recursion ends with constant-sized
sets of objects, which are stored as the leaf nodes of the tree.

The structure of the BSP tree correlates to the subdivision process. In detail,
each noden of the BSP tree correlates to some subregionrn of D, such that each

56

5.1. KD-TREE

p3,p4

p5,p7

e3,f0

p0,p3

e0,e1

f0

p2,p4

p6,e2

f0

p1,p2

e0,e2

f0

p7,p10

p11,e7

p11,p13

p14,e7

p8,p9 p9,p12

p13,e4,

e5,e6

f1

sp0

sp1 sp2

sp3 sp4 sp5 sp6

p0

e0
f0

f1

e1

e2

e3

e4
e6

e5

e7

p1

p2

p3

p4

p5

p6

p7

p8

p9

p12

p13

p10

p11

p14

sp6sp3

sp1

sp4

sp2 sp5sp0

Figure 5.1: Two-dimensional kd-tree.

object that lies in or crossesrn is stored in a leaf node of the subtree rooted atn.
With the help of the splitting planes stored in the interior nodes, it is easy to obtain
the object in the same region as some query point, or in the same regions that are
crossed by a query edge, ray, or plane.

A kd-treeis an axis-aligned version of the BSP tree, i.e., the splitting planes are
orthogonal to the coordinate axes in alternating order [Ben75, Sam90a, Sam90b].
As an example, Figure 5.1 shows a two-dimensional kd-tree. In the following
discussion we concentrate on three-dimensional kd-trees.

To solve a point location query using a kd-tree, we only need to consider the
objects in one leaf node, i.e., we consider the objects that at least partially lie in the
same regionr l as the query locationl . Restricted to a constant number of objects,
we proceed similar to the brute force method. We check whether any of the objects
hasl in its relative interior. Otherwisel must be in the interior of a volume. To
identify the volumes, we shoot a ray to the nearest vertex in the region—we will
see later that there is at least one vertex in each region—andsearch for the first
intersection of the ray with any object in the region. As the ray connects two points
in a convex region, every object intersecting the ray between the two points must
also lie inr l .

For a ray shooting query, we have to consider the objects in every region
crossed by the ray. We examine the regions in the order the raytraverses them.
If we find an intersection, we only have to test the remaining objects of the current

57

CHAPTER 5. SEARCH DATA STRUCTURES

region. Objects in upcoming regions are irrelevant, as theycan only intersect the
ray in some point that lies farer away from the source of the ray than the intersec-
tion already found.

During the construction of the kd-tree, there are differentstrategies for find-
ing the splitting planes. For our purposes, we want to optimize the point-location
queries rather than the ray-shooting queries. In a binary operation, one ray shooting
query is posed per shell. In comparison, one point location query is posed per input
vertex, per edge–edge, and per edge–facet intersection. Asa result, ray shooting
queries only consume a negligible amount of time compared tothe time consumed
by point location queries, which we will confirm in Section 9.3.

In our situation, a simple strategy for finding splitting planes applies well. To
determine a splitting plane orthogonal to thex-axis for a set of objectsS, we com-
pute the median vertexvm of the vertices inSwith respect to thex-axis. Then, the
splitting plane is the unique plane orthogonal to thex-axis withvm in its interior.
Finding splitting planes orthogonal to they and z-axis works analogously. The
division process terminates when a region contains at most two vertices. Conse-
quently, the tree is limited to logarithmic depth, but we arenot guaranteed to have
only a constant number of edges and facets stored in the leafs.

The performance of both query types depends on the shape of the facets. A
large facet with many vertices on the boundary may cross mostor even all of the
regions and thus are stored in most of the leafs. As a consequence, each point loca-
tion query has to test for intersection with that facet. In another bad scenario many
constant-sized facets each intersect most of the regions, such that the combined
number of objects in the leafs of the kd-tree is quadratic compared to the complex-
ity of the polyhedron. On the other side, we expect well-shaped facets most of
the times, and as a result constant-sized leafs that allow efficient queries. We dis-
cuss the complexity of the kd-tree and its operations in the worst-case and under
assumption of well-shaped polyhedra in Chapter 7. Also, we examine worst-case
examples for the performance of the kd-tree in Section 9.3, and we discuss po-
tential improvements of the kd-tree in order to handle bad scenarios as described
above in Section 9.6.

5.2 Fast Box Intersection

To find all edge–edge and edge–facet intersections efficiently, we chose to imple-
ment fast box intersection as described in [ZE02]. This section summarizes their
approach. Andreas Meyer conducted the implementation as a separate CGAL pack-
age.

58

5.2. FAST BOX INTERSECTION

Given two sets ofn and m geometric objects, it is our goal to find all pair-
wise intersections between objects from different sets. The trivial method is the
test of all pairs. The algorithm performsn ·m intersection tests. The idea of box
intersection is to put axis-aligned bounding boxes around each object and find the
intersecting boxes. If two boxes intersect, we check whether the objects intersect,
too. Replacing the intersection test of complicated objects by testing boxes can
be much faster, especially since it suffices to use floating-point arithmetic for the
coordinates of the bounding boxes. However, the biggest benefit is gained by using
sophisticated algorithms for finding all pairwise intersecting boxes. In most do-
mains of interest, the number of pairwise intersecting boxes k is in O(n+m). Fast
box intersection needsO((n+m) log3(m+n)+k) time andO(n+m) space to find
all those boxes.

We use the following two properties of axis-aligned boxes tofind intersecting
box pairs efficiently:

Property 1 Boxes intersect if and only if they intersect in each dimension inde-
pendently.

Property 2 Two intervals intersect if and only if one contains the low endpoint of
the respective other.

If we test for the intersection of two axis-aligned boxes, Property 1 allows us
to reduce this three-dimensional problem to three one-dimensional problems. The
problem of deciding whether a given point lies in a given interval is known as
the stabbing problem. With Property 2, it suffices to solve at most two stabbing
problems for each of the three dimension. Instead of considering one box pair after
the other, we rather applybatched stabbing, i.e., given points and intervals, we
report for each point all intervals that contain it. Hence, we can find all intersecting
boxes by applying batched stabbing six times. In each dimension, we test the lower
endpoints of one set for intersection with the intervals of the respective other. Both
sets are once considered as points and once as intervals.

In the following we describe several data structures and algorithms used for
finding pairwise intersecting boxes bybatched stabbingefficiently. At the end of
the section we show how these techniques work together in a hybrid algorithm.

5.2.1 Segment Trees.

Figure 5.2 demonstrates the structure and the usage of segment trees. The segment
tree is a balanced binary search tree. Each node represents asubinterval of the

59

CHAPTER 5. SEARCH DATA STRUCTURES

(-∞,∞]

(-∞,4] (4,∞]

(-∞,2] (2,4) (4,6] (6,∞]

(1,2](-∞,1] (3,4](2,3] (5,6](4,5] (7,∞](6,7]

(-∞,∞]

(-∞,4] (4,∞]

(-∞,2]

(1,2](-∞,1]

(4,6](2,4] (6,∞]

E

D

A,E A

B,D

C C,E

D,E

B,F

1 2 3 4 5 6 7

A B

C

D

E F

1

2

3

4

5

6

7

8

9

Primary Segment Tree

(Dimension x)

Secondry Segment Tree

(Dimension y for Boxes D and E)

Figure 5.2: 2-level segment tree for a set of boxes in the plane.

number line, such that each level spans the whole number lineand child nodes
partition the interval of their common parent. In our example, the number line is
partitioned by the endpoints of the given segments. The treeis then created as
a balanced binary tree based on the intervals of the number line. The tree needs
O(nlogn) space and can be constructed inO(nlogn) time.

The nodes of a segment tree store those segments that span thenode’s interval
but not that of its parent. As a result, each segment is storedin at most 2log2 n
nodes. Posing a single stabbing query, we visit all nodes whose interval contains
the query point and report the stored segments. Note that each reported segment
contains the point and no segment is reported twice. The query takesO(logn+k)
time, wherek denotes the number of reported segments.

To use segment trees, we only consider the extent of a box in dimensiondi .
This way, we reduce both sets of boxes to sets of segments in dimensiondi . Now,
we find all pairwise intersections in dimensiondi of two sets of boxes as follows:

1. Build a segment tree for the first set of segments and query it with the left
endpoints of the segments in the second set.

2. Build a segment tree for the second set of segments and query it with the left
endpoints of the segments in the first set.

60

5.2. FAST BOX INTERSECTION

So far, we only have solved a one-dimensional problem. If we also want to
resolve the other two dimensions, we can build secondary andtertiary trees. Sec-
ondary trees are built for each node of the primary tree. We reduce the boxes stored
in a node to segments in the second dimension and build a segment tree from the
resulting segments. From the boxes stored in the nodes of thesecondary trees we
then create tertiary trees. This approach usesO(nlog3 n) space and finds all inter-
secting boxes inO((n+m) log3(n+m)+k) time.

5.2.2 Streaming.

The space requirements of multi-level segment trees are unsatisfactory. By apply-
ing thestreamingtechnique [EO85] linear space requirements become sufficient.
The solution is to perform all queries to the multi-level tree simultaneously. As
a result, the tree is only traversed once in post-order and need not to be stored in
memory. Each node is generated on demand and erased afterwards. Therefore only
theO(n+m) space for the boxes is needed. This technique is called streaming.

5.2.3 Scanning.

Segment trees are efficient but complex. Consequently, theyhave high hidden
constants. Scanning is a much simpler method, which is faster for one-dimensional
and small problems.

Given a set ofn pointsP and a set ofm segmentsS, we first sort both sets—
the intervals are sorted by their low endpoints. Then we search for the first ver-
tex p lying on the first segments. From p onward we report all points until we
find any that does not lie ons. We proceed the same way with the next seg-
ments′, but begin our search for the first point ons′ with p. The algorithm has
running timeO(nlogn+ mlogm+ k′). Neglecting the time for sorting, it runs in
O(n+m+k′). For the one-dimensional case, the algorithm is very fast, but for the
three-dimensional case, we have to check for allk′ intersections found in the first
dimension whether they also intersect in the second and third dimension.k′ can be
much bigger than the number of intersecting boxesk. The experiments in [ZE02]
show that scanning is slightly faster for up to 200000 boxes.However, a hybrid al-
gorithm combining streamed segment trees with scanning is essentially faster than
both.

61

CHAPTER 5. SEARCH DATA STRUCTURES

Algorithm 1 Hybrid algorithm for fast box intersection.
1: procedure HYBRID(S,P,lo,hi,d)
2: if S= /0 orP = /0 orhi < lo then
3: return
4: end if

5: if d=1 then one way scan(S,P,0)
6: end if

7: if |S| < c or |P| < c then modified two way scan(S,P,d)
8: end if

9: Sm = {i ∈ S|[lo,hi) ⊆ i}
10: hybrid(Sm,P,−∞,+∞,d−1)
11: hybrid(P,Sm,−∞,+∞,d−1)

12: mi =approxmedian(P)

13: Pl = {p∈ P|p < mi}
14: Sl = {i ∈ S−Sm|i ∩ [lo,mi) 6= /0}
15: hybrid(Sl ,Pl ,lo,mi,d)

16: Pr = {p∈ P|p≥ mi}
17: Sr = {i ∈ S−Sm|i ∩ [mi,hi) 6= /0}
18: hybrid(Sr ,Pr ,mi,hi,d)
19: end procedure

62

5.2. FAST BOX INTERSECTION

5.2.4 The Hybrid Algorithm.

Algorithm 1 combines the methods and data structures described above. The func-
tion HYBRID computes all pairwise intersections of twod-dimensional boxesSand
P, with the restriction, that in dimensiond the boxes ofS are only considered as
segments, and the boxes ofP are only considered as points. In the course of the
execution ofHYBRID, subsets ofSandP are considered in both ways, butSandP
themselves are not reinterpreted. For this reason, the function needs to be called
twice. As an example, we use the following calls to compute all pairwise intersec-
tions of two sets of three-dimensional boxesB1 andB2:

HYBRID(B1,B2,−∞,+∞,3)

HYBRID(B2,B1,−∞,+∞,3)

Neglecting the lines 2–8, the algorithm streams a multi-level segment tree.
There are two types of recursions, which are used in such a way, that the each
invocation ofHYBRID uniquely correlates to a node of the segment tree. The recur-
sive calls in lines 10 and 11 trigger the construction of the next tree level for those
intervalsSm that completely cover the currently considered interval[lo,hi), but do
not cover the interval considered in the parent node. One of these two calls consid-
ersSm as a set of segments andP as a set of points, while the other call considers
them the other way. The recursive call in lines 15 and 18 create the two child nodes
of the current node. For this purpose, the setsSandP, and the interval[lo,hi) are
split atmi into two halves, wheremi is an approximation of median of the points
in P.

There are three situations that stop the streaming of the segment tree and there-
fore terminate the recursion. Line 3 interupts when there isnothing left to process,
i.e., either of the setsSandP is empty, or the considered interval is empty. Lines 5
and 7 replace some part of the segment tree by scanning. In detail, line 5 triggers
a one-way scan as described above as a replacement for the final level of the tree,
and line 7 prunes the tree for small-sized problems and exerts a two-way scan in-
stead. The two-way scan processes two one-way scans at once,i.e., it alternatingly
considers the elements of both sets as points and segments. Each turn the smallest
unprocessed segments from both sets is processed. Ifs is in the first set, the second
set is viewed as points, and vice versa. Both scanning routines can finally discover
and report those boxes that intersect in all dimensions.

63

CHAPTER 5. SEARCH DATA STRUCTURES

64

Chapter 6

Additional Functionality

The data structures and the Boolean and topological operations are the core of our
implementation of Nef polyhedra in three-dimensional space. In this chapter we
present the remaining functionality provided by our CGAL package.

6.1 Constructors, Input and Output

The classNef polyhedron 3 provides three constructors. The first one creates
a polyhedron that comprises a single volume. The constructor has a Boolean pa-
rameter that decides whether it creates the empty set or a polyhedron covering the
whole three-space.

The second constructor creates an open or closed half-space. Its first parameter
is a plane, which defines the boundary of the half-space. The orthogonal vector
of the plane points to the outside. The second parameter decides whether the half-
space is open or closed. Since infinitely bounded polyhedra can only be handled by
extended kernels, this constructor is not provided in combination with a standard
kernel.

Finally, we provide a constructor for manifold solids. The solid is passed as
an instance of the CGAL classPolyhedron 3. This class comes with an input
operator for the Object File Format (OFF), with file extension .off, which is also
understood by GeomView [Phi96]. OFF files represent surfaces as a set of facets.
Each facet is a list of indices pointing into a set of vertices. Vertices are rep-
resented as coordinate triples.Polyhedron 3 restricts the format to orientable
two-manifold solids with or without borders. Isolated edges and vertices are not
allowed. Therefore, the smallest representable surface isa triangle; the smallest

65

CHAPTER 6. ADDITIONAL FUNCTIONALITY

Figure 6.1: The polyhedron on the left side can be represented as aPolyhedron 3

and as aNef polyhedron 3. In the latter case, the simplification routine unites
coplanar facets. As a result, the front side becomes one facet with a hole. Hence,
the polyhedron cannot be converted fromNef polyhedron 3 to Polyhedron 3.

representable surface without borders is a tetrahedron. WeconvertPolyhedron 3

into Nef polyhedron 3 only if the surface can be turned into a manifold solid.
Because of this, the constructor ofNef polyhedron 3 only accepts polyhedral
surfaces without boundary. The surface then is converted into a closed solid by
marking the surface and the volume enclosed by the surface.

A Nef polyhedron 3 can also be converted back into aPolyhedron 3, if
each shell comprises a two-manifold surface whose facets donot have holes.
The function is simple is provided as a means to check whether the con-
version is allowed. Polyhedron 3 again provides output operators for writ-
ing the formats OFF, OpenInventor (.iv) [Wer94], VRML 1.0 and 2.0 (.wrl)
[BPP95, VRM96, HW96], and Wavefront Advanced Visualizer object format
(.obj).

Note, that it is not guaranteed that conversions are reversible. Obviously, the
conversion fromNef polyhedron 3 to Polyhedron 3 is more general than its
reverse counterpart, as it allows the handling of multiple surfaces. Likewise not
all conversions fromPolyhedron 3 to Nef polyhedron 3 are reversible. The
reason lies in the unique representation of our data structures. As an example, Fig-
ure 6.1 shows a cube with a hole in the middle, represented by atriangulated mesh.
The mesh is two-manifold and therefore can be converted to a Nef polyhedron. At
the end of the conversion the SNC is simplified. As a part of thesimplification
process coplanar facets are united. In the example, all sides of the cube are copla-
nar. Thus, the triangles of each side are united and become a single facet. For

66

6.1. CONSTRUCTORS, INPUT AND OUTPUT

two sides this process results in a facet with a hole. SincePolyhedron 3 does
not allow facets with holes, we cannot support a conversion.To fix this problem,
the facets with holes must either be decomposed into smallerfacets without holes,
or additional data for reconstructing the original facets must be stored. The latter
procedure is in general too costly in relation to its benefit to be supported auto-
matically. The former one is planned for future releases, but cannot guarantee a
one-to-one reconstruction of the original surface.

Nef polyhedron 3 is also equipped with an input and an output operator for
a proprietary file format. The file format includes the complete incidence structure,
the geometric data, and the labels of each item. Because the output of the geometry
and the labels is delegated to the respective output operators, the output depends
upon the actual types of the geometric kernel and the labels.Thus, it is only possi-
ble to read a file, if the current geometric kernel and the current label type coincide
with the types used during the creation of that file.

Looking at the output format of the geometric primitives, the output depends
on the choice between homogeneous and Cartesian kernel, andon the used number
type. Since extended kernels are realized by wrapping a polynomial class around
the given number type, i.e., their real number type is not thegiven one but a poly-
nomial with coefficients of that number type, this proposition also holds for the
extended kernels. There is one exception to this behavior. The input and output
operator bridge the difference between standard and extended kernels if a Nef poly-
hedron is finitely bounded. Using an extended kernel, the input operator can read a
file based on standard geometry. Likewise, the output file of afinitely bounded Nef
polyhedron is always formatted as though standard geometrywas used, no matter
if the used kernel is a standard or an extended kernel. If an extended kernel is used,
the coordinates are converted from constants to constant polynomials and the items
comprising the infimaximal box are added during the load operation of a file that
contains a finitely bounded polyhedron. If a finitely boundedpolyhedron is written,
the coordinates are converted in the opposite direction andthe infimaximal box is
removed.

As a supplementary feature, the output operator can create astandardized out-
put. Nef polyhedra imply the nice property that they can always be represented
uniquely. As a consequence, it is possible to compare two Nefpolyhedra for equal-
ity by a standardized output. Another way to perform the comparison is by a sym-
metric difference. The symmetric difference of two polyhedra equals the empty
point set, if and only if the two polyhedra are equal. For our test suite, the first
method is particularly useful, because using a standardized output is faster than
performing a binary operation. Also, we can check the resultof a binary operation
without performing another.

67

CHAPTER 6. ADDITIONAL FUNCTIONALITY

6.2 Transformation

We support the following transformations on 3D Nef polyhedra: translations, scal-
ings, and rotations by rational rotation matrices. Translations and scalings can be
solved easily. It is sufficient to apply the transformation matrix to the points stored
with the vertices, the planes stored with facets, and the splitting plane of the kd-
tree. The geometry stored with the items in the sphere maps does not change,
because the geometry of the items in a sphere map always relates to the coordinate
system of the respective sphere.

Rotations are more complex for three reasons. First, the geometry of the sphere
maps changes, too. Second, the kd-tree has to be recomputed,because the splitting
planes would not be parallel to the coordinate planes after the rotation. Finally, a
rotation changes the intersection of the polyhedron with the infimaximal box and
must be recomputed. We start by computing the segments of intersection between
the infimaximal box and the facets that intersect the infimaximal box. Then, we
construct proper sphere maps for the endpoints of the segments. Since there is
only one standard line that supports such an endpoint, the sphere maps have a
certain structure. Still, they can be arbitrary large, because multiple facets may
intersect the endpoint. When we have all sphere maps, we recompute the selective
Nef complex, which also includes the recomputation of the kd-tree. Consequently,
rotations are expensive operations, especially when an extended kernel is used.

α runtime [s] α runtime [s]
10−1 0.01 10−4 4.47
10−2 0.04 10−5 44.89
10−3 0.43 10−6 450.56

Table 6.1: Runtime of the CGAL functionrational rotation approximation

to compute an exact rotation for the approximated angleα in degrees with the
tolerance set to α

10000.

Another problem with rotations is the computation of rotation matrices. Since
sinα and cosα are irrational numbers in general, there currently is no practical
possibility to perform a rotation of exactlyα degrees. One solution is to ap-
proximate both values by rationals. But in addition to rotating by an approx-
imation of the specified angle, the method often has another side effect. Ap-
proximating sinα and cosα separately usually introduces a scaling or a shear-
ing of the rotated objects, if sin2(α) + cos2(α) 6= 1. CGAL provides a function
rational rotation approximation, which returns exact values for sin(α ′)
and cos(α ′) such that sin2(α ′)+cos2(α ′) = 1 and|α −α ′| < ε for a small speci-

68

6.3. VISUALIZATION

Figure 6.2: QT widgets for visualization of 3D Nef polyhedra and sphere maps.

fied ε > 0. The implementation offered by CGAL is based on Farey sequences as
described in [CDR92]. It is division free but slower than thealgorithm described
in [CDR92]. The runtime for finding such an exact rotation matrix amounts to a
non-negligible fraction for smallε , as can be seen in Table 6.1. The computations
were performed on a computer with a 846 MHz Pentium III laptopwith 256 MB
RAM.

6.3 Visualization

We provide visualization via QT [Tro, BS04]—a cross-platform application de-
velopment framework best known for its support of graphicaluser interfaces. In
particular, we offer QT widgets for visualization of 3D Nef polyhedra and of 2D
Nef polyhedra embedded on the sphere. The latter can also be used for sphere
maps. Using the mouse and modifier keys, a visualized 3D Nef polyhedron can
be translated in each direction, rotated and scaled. For spherical Nef polyhedra
rotation and scaling is sufficient. Additional functionality is offered via context
menus, such as different viewing modes or the displaying coordinate axes. Using
inheritance, users can derive new classes from the widgets in order to include their
own functionality. Figure 6.2 shows a snapshot of both widgets.

69

CHAPTER 6. ADDITIONAL FUNCTIONALITY

70

Chapter 7

Complexity

Amongst others, the complexity of most of our functions are essentially determined
by the complexity of the point location, the ray shooting, and the intersection tests.
Since we realized those subroutines with heuristic search data structures, the worst-
case complexity deviates strongly from the expected runtime behavior. For this
reason, we give two analyses of each of the two search structures. In addition to
the worst-case analysis, we also give an analysis of the complexity expected under
a number of heuristic assumptions in Section 7.1 and 7.2. In Section 7.3 we include
the complexities of the heuristic search data structures into the total complexity of
the major functions provided by our package.

Note that although we speak of expected runtime, we do not perform an
average-case analysis. Usually in computer science, the terms expected runtime
and average-case runtime refer to an analysis of the runtimethat considers all in-
puts and the probability of their occurence. Such an analysis seems misplaced for
an algorithm that operates on complex geometric objects. Itis unclear how we can
argue about all possible Nef polyhedra and the likelihood oftheir occurence. In-
stead, we argue that polyhedra used in pratical applications are often well-shaped.
As a result, we can exclude extreme situtations and can therefore expect a better
runtime than in the worst-case.

Let the total complexity of a Nef polyhedron be the number of vertices, edges,
and sedges. Obviously, the number of all other items is not larger by more than
a constant factor: Every sface is bounded by at least three shalfedges or one
shalfloop, while there is one vertex for each sloop. Each facet is bounded by mul-
tiple shalfedges, and each volume (except for the outer volume) is bounded by at
least one shell, which consists of multiple vertices, edges, and facets.

71

CHAPTER 7. COMPLEXITY

operation worst-case runtime expected runtime
kd-tree construction O(n2) O(nlogn)

point location (single query) O(n) O(logn)
ray shooting (single query) O(n 3

√
nlogn) O(3

√
nlogn)

box-intersection O(n2) O(nlog3(n)+s)

Table 7.1: Worst-case and expected complexity of box-intersection and kd-tree
based operations, wheren denotes the input complexity, ands denotes the number
of pairwise intersecting boxes found during box-intersection.

7.1 Kd-Tree

We chose to implement a kd-tree for the ray-shooting and the point-location
queries [Ben75, Hav00]. During the construction of the kd-tree we use the vertex
set as a criterion for finding proper splitting planes; we split the vertex set along
alternating axes at its median vertex. The recursive subdivision ends when at most
two vertices are left, which guarantees logarithmic depth.In the leafs, we store all
vertices, edges and facets that intersect the corresponding region. Consequently,
long edges and large facets can be stored in up toO(n) leafs, and there might exist
leafs withO(n) items. The tight worst-case space bound isΘ(n2).

Large facets may be cut by each splitting plane. In the worst-case, testing for
the intersection of a facet with a splitting plane needs timelinear in the size of the
facet. Thus, constructing a kd-tree from an object with a linear sized facet that
intersects all splitting planes implies linear time at eachinner node of the kd-tree.
The tight worst-case runtime of the kd-tree construction isΘ(n2).

As explained earlier, we restrict ourselves to ray shootingin vertical direction.
To be more precise, we only shoot rays parallel to the x-axis in negative direction.
Hence, a ray intersects at mostO(3

√
n) kd-tree regions. However, each region can

storeO(n) items, and we need logarithmic search time for locating a neighboring
region in our walk through the kd-tree. In total, we get a worst case runtime of
O(n 3

√
nlogn) for vertical ray shooting.

For point-location queries, we find the containing region inO(logn), but migh-
bibliothekt be forced to check againstO(n) items in that region.

Of course we use the kd-tree since we expect it to perform muchbetter in prac-
tice. The usual heuristic assumption is a well-shaped geometry with the following
consequences: Each edge or facet is stored in a constant number of regions and
each region contains only a constant number of items. It suffices if these assump-
tions hold in an amortized sense, such that we get a linear storage size of the tree

72

7.2. BOX-INTERSECTION ALGORITHM

operation worst-case runtime expected runtime
construction of half-space O(1)

construction from
orientable two-manifold

O(n2) O(nlogn)

complement O(n)

boundary, interior,
closure, regularization

O(n2) O(nlogn)

translation, scaling O(n)
rotation O(n2) O(nlogn)

Table 7.2: Worst-case and expected complexity of unary operations, wheren de-
notes the complexity of the polyhedron. See Table 7.3 for thebinary operations.
The expected runtime is given under the heuristic assumptions described in Sec-
tion 7.1 and 7.2.

with O(nlogn) construction time, an efficient ray-shooting query inO(3
√

nlogn)
time, and an efficient point-location query inO(logn) time. Both, the worst-case
and the expected runtimes of all kd-tree related algorithmsare summarized in Ta-
ble 7.1. We study them experimentally in Section 9.2 and Section 9.3.

7.2 Box-Intersection Algorithm

We use the fast box-intersection algorithm described as streamed segment tree
in [ZE02] to compute the edge-edge and edge-facet intersections. It runs in
O(nlog3(n)+s) time, wheren is the total number of boxes of both input sequences
ands is the output complexity, i.e., the number of pairwise intersecting boxes. As
a heuristic, the box-intersection algorithm assumes that bounding boxes approxi-
mate edges and facets well. If they do not,s can become as bad asO(n2), even
though the edge–edge and edge–facet intersections might not reach that worst case
themselves. However, we expects to be close to the true output complexity of the
edge–edge and edge–facet intersection problem.

7.3 Total Complexity

Given the sphere map representation for a polyhedron of complexity n, the synthe-
sis of the SNC is dominated by sorting the Plücker coordinates, the plane sweep
for the facet cycles and the shell classification. The lattertask is solved by shooting
a ray to identify the nesting relationship of the shells, so here we account also for

73

CHAPTER 7. COMPLEXITY

operation worst-case runtime expected runtime
point location (total) O(nm) O(nlogm+mlogn)

box intersection O(nm) O((n+m) log3(n+m)+k)
sphere sweeps O((n+m+k) log(n+m))

synthesizing edges O(k logk)
plane sweeps O(k logk)

kd-tree construction O(k2) O(k logk)
ray shooting (total) O(k2 3

√
k logk) O(c 3

√
k logk)

O((n+m+k) log(n+m)

+nm+k2 3
√

k logk)
O((n+m) log3(n+m)+

k log(n+m)+c 3
√

k logk)
binary operation

Table 7.3: Worst-case and expected complexity of the major subroutines of the
binary operation, wheren and m denote the complexity of the input objects,k
is the complexity of the result object, andc is the number of shells in the result
object. The expected runtime is given under the heuristic assumptions described in
Section 7.1 and 7.2.

the construction of the kd-tree. The synthesis runs in expectedO(c 3
√

n· logn) time,
wherec is the number of shells in the result polyhedron. If there aremostO(n

2
3)

many shells in the result polyhedron, the expected runtime drops toO(nlogn).
This is also the cost for constructing a polyhedron from an orientable two-manifold
solid.

Given a polyhedron of complexityn, the complement runs in linear time. The
topological operationsclosure, boundary, interior, exterior, andregularizationre-
quire a simplification step and run inO(n ·α(n)) worst-case time, whereα(n)
denotes the inverse Ackermann function from the union-find structures in the sim-
plification algorithm. However, we need to update the kd-tree afterwards, either the
expectedO(nlogn) time or theO(n2) worst-case time. The affine transformations
translation, scaling, androtation also run in linear time. A kd-tree reconstruction
is needed only after a rotation. Table 7.2 summarizes the complexities.

Given two polyhedra of complexityn andm, respectively, the Boolean set op-
eration with a result of complexityk has a runtime that decomposes into four parts:

(i) O(nlogm+mlogn) expected time for the location of each vertex in the cor-
responding other input polyhedron.

(ii) O((n+m) log3(n+m)+k) expected time to find all edge-facet and edge-edge
intersections. Here, we expect the number of intersectionsto be close to the
number of pairwise intersecting boxes. Since each edge–edge and edge–facet

74

7.3. TOTAL COMPLEXITY

intersection corresponds to a vertex in the result polyhedron, the number of
intersections is inO(k).

(iii) O((n+ m+ k) log(n+ m)) worst-case time for the overlay of alln+ m+ k
sphere maps.

(iv) O(c 3
√

k logk) expected time for the synthesis including the kd-tree construc-
tion. Table 7.3 gives an overview of the complexity of all major subroutines.
It lists the total complexity of the binary operation.

The space complexity of our representation is clearly linear in the complexity
of the Nef polyhedra, unless the kd-tree deteriorates as explained above.

75

CHAPTER 7. COMPLEXITY

76

Chapter 8

Software Design

We implemented two CGAL packages,Nef 3 andNef S2, for 3D Nef polyhedra and
Nef polyhedra embedded on the sphere, respectively. The design of the data struc-
tures extends design ideas presented by Kettner [Ket99], which were also used by
Seel [See01b, See01a] for planar Nef polyhedra. The major goals of our software
design are the following:

Flexibility: Nef polyhedra should work with various geometric kernels.

Extensibility: The functionality of Nef polyhedra shall be extensible via ex-
changeable items and labels.

Code reuse: To realize sphere maps, Nef3 shall reuse the code of Nef2
to a great extent. As a result, sphere maps shall be obtainable as a
Nef polyhedron S2, such that functionality written for NefS2 can be ap-
plied to sphere maps.

Each item type—vertex, halfedge, halffacet, volume, svertex, shalfedge,
shalfloop, sface—is defined as a separate class. Those classes store the geome-
try and the combinatorial information of incidences (as CGAL handles), and they
provide proper query and accessor functions for them. To be more precise, there
are two implementations of the items shalfedge, shalfloop and sface, since 3D Nef
polyhedra require additional incidences in comparison to planar Nef polyhedra em-
bedded on the sphere. Similarly, a halfedge is the extended version of an svertex.
Each class that realizes an item is parameterized with a template parameter that
provides the const and non-const handle and iterator types of all items, the types of
all necessary geometric primitives, like points and planes, and the label type. The

77

CHAPTER 8. SOFTWARE DESIGN

class definitions of the items of a 3D Nef polyhedron and a spherical Nef polyhe-
dron are wrapped by outer classesSNC items andSM items, respectively. This
way, the item types can be passed via a single template parameter.

class SNC_items {

template <typename SNCTraits> class Vertex;

template <typename SNCTraits> class Halfedge;

template <typename SNCTraits> class Halffacet;

template <typename SNCTraits> class Volume;

template <typename SNCTraits> class SHalfedge;

template <typename SNCTraits> class SHalfloop;

template <typename SNCTraits> class SFace;

...

};

class SM_items {

template <typename SMTraits> class SVertex;

template <typename SMTraits> class SHalfedge;

template <typename SMTraits> class SHalfloop;

template <typename SMTraits> class SFace;

...

};

The classSNC structure is a proper argument for the template parameter
SNCTraits. Likewise, the class Spheremap is a model for theSMTraits. Both
classes include type definitions of all the handle and iterator types, the geometric
objects, and the label type. Therefore, they themselves must be parameterized with
the geometric kernel, the items, and the label type. In addition, both classes also
constitute the representation layer of the respective datastructure. They include a
list for each of the item types. To be more specific,Sphere map has three lists:
one for all svertices, one for all shalfedges, and one for allsfaces. There is no need
for a list of shalfloops, as there can be only two shalfloops or no shalfloop at all in
a spherical Nef polyhedron. In a 3D Nef polyhedron, the itemsof the sphere maps
are centrally stored in theSNC structure for an easy iteration over all of them.
Additionally, the items of a single sphere map are stored in consecutive order, such
that the iteration over them also is simple and fast. The iterator ranges of the items
of a sphere are stored with the center vertex of the sphere. Thus,SNC structure

maintains seven lists: for all vertices, halfedges (=svertices), halffacets, volumes,
shalfedges, shalfloops, and sfaces.Sphere map andSNC structure provide in-
terfaces for the proper creation and deletion of items.

78

Unfortunately, this design neither allows the reuse of the Nef S2 code in Nef3,
nor a function that returns a sphere map of aNef polyhedron 3 as aconst
Nef polyhedron S2. We introduce a new typeSNC sphere map, which is sup-
posed to behave like the typeSphere map, except that it does not manage the items
of the represented sphere map itself, but delegates this task to SNC structure.
With such a class, most of the NefS2 code can be reused. Furthermore, we add
another template parameter toNef polyhedron S2 that allows us to exchange
Sphere map by SNC sphere map. Now, Nef polyhedron 3 can construct a
Nef polyhedron S2 from aSNC sphere map.

The vertex type already fulfills most of the requirements of aclass
SNC sphere map. However, it cannot be used without adaptation. On the other
hand, we do not want to adapt the vertex type itself, since it is exchangeable by
the user, and thus should only comprise few functionality that is interesting for
users. Instead, we realizeSNC sphere map as a new class derived from the ver-
tex type. As mentioned above, the new class must realize the whole functionality
of the classSphere map. Most of the functionality is already given by the vertex
type. The remaining functionality is related to the management of items, which is
delegated to theSNC structure. Because we regularly access the NefS2 code
within Nef 3, we replace the list of vertices stored inSNC structure by a list of
SNC sphere maps.

The final class signature of this implementation layer looksas follows:

template <typename Kernel, typename Items, typename Label>

class SNC_structure {

typedef SNC_structure<Kernel, Items, Label> Self;

typedef SNC_sphere_map<Kernel, Items, Label> Sphere_map;

list<typename Items::Sphere_map<Self> > vertices;

list<typename Items::Halfedge<Self> > halfedges;

list<typename Items::Halffacet<Self> > halffacets;

list<typename Items::Volume<Self> > volumes;

list<typename Items::SHalfedge<Self> > shalfedges;

list<typename Items::SHalfloop<Self> > shalfloops;

list<typename Items::SFace<Self> > sfaces;

...

};

template <typename Kernel, typename Items, typename Label>

class Sphere_map {

79

CHAPTER 8. SOFTWARE DESIGN

typedef Sphere_map<Kernel, Items, Label> Self;

list<typename Items::SVertex<Self> > svertices;

list<typename Items::SHalfedge<Self> > shalfedges;

list<typename Items::SHalfloop<Self> > shalfloops;

list<typename Items::SFace<Self> > sfaces;

...

};

template <typename Kernel, typename Items, typename Label>

class SNC_sphere_map {

typedef SNC_sphere_map<Kernel, Items, Label> Self;

list<typename Items::Halfedge<Self> > svertices;

list<typename Items::SHalfedge<Self> > shalfedges;

list<typename Items::SHalfloop<Self> > shalfloops;

list<typename Items::SFace<Self> > sfaces;

...

};

Finally, the main classes of the two packages look as follows. The class
Nef polyhedron 3 has three templates parameters, one for the geometric kernel,
one for the items, and one for the label. As default we use the classSNC items

for the items and assignbool as the label type. Furthermore,Nef polyhedron 3

has a protected member variable of the typeSNC structure as its representation
layer, which is parameterized with the same types as the classNef polyhedron 3.

The classNef polyhedron S2 also has template parameters for the geometric
kernel, the items (with the default typeSM items), and the labels (with default
typebool). Additionally, it has a fourth parameter for the type of thesphere map,
which by default is the classSphere map parameterized with the same geometric
kernel, items, and label type asNef polyhedron S2. The representation layer of
Nef polyhedron S2 is realized by a protected member of the given sphere map
type.

template <typename Kernel,

typename Items=SNC_items,

typename Label=bool>

class Nef_polyhedron_3 {

typedef SNC_sphere_map<Kernel, Items, Label>

80

Sphere_map;

typedef Nef_polyhedron_S2<Kernel, Items, Label, Sphere_map>

Nef_polyhedron_S2;

protected:

SNC_structure<Kernel, Items, Label> snc;

...

};

template <typename Kernel,

typename Items=SM_items,

typename Label=bool,

typename Map=Sphere_map<Kernel, Items, Label> >

class Nef_polyhedron_S2 {

protected:

Map sm;

...

};

While the items provide accessor functions for the incidence structure,
the geometry, and the labels, the main classesNef polyhedron 3 and
Nef polyhedron S2 offer constructors, the Boolean and topological operations,
transformations, point location, and entries to the incidence structure. The latter
are iterator ranges for all vertices, halfedges, edges, halffacets, facets, volumes,
shalfedges, sedges, shalfloops, sloops, and sfaces, and a function that initiates a
shell traversal. The user interface is completed by an inputand an output operator.
As usual, those operations are global functions.

81

CHAPTER 8. SOFTWARE DESIGN

82

Chapter 9

Algorithm Engineering

Our first implementation realized all data structures and the most important func-
tionality, but used simple brute-force algorithms for ray shooting, point location
and intersection finding. The idea behind this approach is toobtain a well struc-
tured, running solution in relative short time, and check the correctness of our
concepts early. Afterwards we can concentrate on optimizing the efficiency of the
code. With this approach we followed a famous saying by Hoare:

We should forget about small efficiencies, say about 97% of the time:
premature optimization is the root of all evil. C. A. R. Hoare 1980

With the first implementation, a binary operation on a manifold solid with more
than 1000 vertices could only be performed in several hours.Now that we have
added fast heuristic search data structures and applied additional optimizations,
our current version computes the symmetric differences of ahammerhead shark
(2560 vertices and 5116 facets) and a translated copy of the same shark (the result
has 6864 vertices and 11090 facets) in 41 second on a 846MHz Pentium III laptop
with 256 MB RAM.

In Section 9.1 we introduce optimizations and confirm their impact with exper-
iments. In Section 9.2 and Section 9.3 we perform further experiments to examine
the general runtime behavior of our implementation, and to stress the main sub-
routines with complex situations. In Section 9.4 we compareourselves to ACIS

R13, the newest version of a common professional CAD kernel.The compari-
son to ACIS gives a first impression of the advantages and disadvantagesof exact
arthmetic in comparison to floating-point arithmetic. In Section 9.5, we deepen

83

CHAPTER 9. ALGORITHM ENGINEERING

the comparison by examining the runtime behavior of our implementation in cas-
caded constructions. Finally, we summarize some results and discuss oportunities
to remove weaknesses in Section 9.6.

The tests are performed on two different computers. Machine1 has a 846 MHz
Pentium III processor and 256MB RAM. It is used for tests thatare later repeated
with ACIS on the same computer. All other tests are measured on Machine2,
which has two 3 GHz Intel Xeon processors and 4GB RAM. When we performed
the tests, we already applied some important corrections toour code as published
in CGAL 3.1. We therefore perfomed the tests on CGAL 3.1., but exchanged the
folowing packages with newer versions from internal release CGAL 3.2-I-???: pla-
nar Nef polyhedra, planar Nef polyhedra embedded on the sphere, 3D Nef polyhe-
dra, and Box intersection. The test series were peformed on adebian linux system
and compiled with g++-3.3.4 and the options -O2 and -DNDEBUG. They were
scheduled, run, and archived with the tool ExpLab [HPKS02].The source code
of the experiments, the test data, and the results are published for reference at<
http://www.mpi-inf.mpg.de/~hachenb/proj/Nef> togehter with the proper
versions of the exchanged packages.

9.1 Optimizations

In the following we introduce several optimizations of our implementation. We
want to emphasize, that the code is not fully optimized. The presented improve-
ments remove the most obvious bottlenecks, but there are still a couple of opti-
mization oportunities left.

The benefit of the conducted improvements is confirmed by the TETGRID ex-
periment, which unites two polyhedra of approximately equal size. We designed
the scenario without aiming for special properties besidesthe size of the polyhedra.
Also we wanted to allow all kinds of degeneracies without enforcing special ones.
However, there are many collinear edges, coplanar facets, and the result has a high
genus. As a reference, we perform a run of the TETGRID experiment (N = 12)
with all optimizations activated. Input objectT andC have 6912 and 10648 ver-
tices, respectively. Their union has 43613 vertices and is computed in 56.8 seconds
on machine 2. To examine the effect of some optimizationo, we perform another
run of the same scenario on the same machine but witho deactivated. We com-
pare the runtimes of the union operation and of the interesting subroutines with the
reference runtime.

84

9.1. OPTIMIZATIONS

T C T∪C

Experiment TETGRID

1. Create a regularN3 grid T of random tetrahedra:

(a) Generate four vertices for each tetrahedron randomly ina half-open
fixed-size cube.

(b) Let these cubes form a regularN3 grid.

2. Create a regular(N−1)3 grid C of such cubes.

3. Align T andC such that the grid nodes ofC are at the centers of the grid
cells ofT.

4. Measure time forT ∪C.

9.1.1 Ray shooting and Point Location

The first optimization is the obvious step of replacing the trivial methods for point
location, ray shooting and intersection finding with more sophisticated approach.
The trivial implementations of these query types cause a quadratic runtime of bi-
nary operations. For point location and ray shooting queries, we add a kd-tree. As
pointed out in Chapters 5 and 7, we expect clear improvement.

Table 9.1 shows the impact of the kd-tree on the ray shooting and point location
queries. Its impact on the intersection finding is scrutinized in the next section
together with the box intersection. With the kd-tree, the 17606 queries (17550
point location and 56 ray shooting queries) can be answered in less than 10 seconds
instead of 8805 seconds. Adding the 6 seconds for the construction of the kd-tree,
the time spent for operations on the kd-tree is only 0.18% of runtime needed for the
same ray shooting and point location queries performed by the trivial algorithms.
Repeating this comparison withN = 1, the ratio between the runtime of the two
approaches becomes much smaller. In this test, the combinedruntime of all kd-tree

85

CHAPTER 9. ALGORITHM ENGINEERING

kd-tree construction point location ray shooting binary op.
not used 0.00s 8704.68s 100.35s 8846.44s

N = 12
used 5.97s 9.16s 0.21s 56.8s

not used 0.000s 0.033s 0.012s 0.067s
N = 1

used 0.004s 0.012s 0.001s 0.039s

Table 9.1: Experiment TETGRID: Comparison between the fully optimized binary
operation and the binary operation without kd-tree support. Listed are the time
spent for kd-tree construction, point location queries, ray shooting queries, and for
the total runtime of the binary operation.

queries and the construction of the kd-tree is only 38% of theruntime spent by the
trivial algorithms. Hence, for small instances the kd-treeis still significantly faster
than the trivial method.

9.1.2 Intersection

As we already pointed out in Chapter 5, testing every single edge–edge and edge–
facet pair for intersection is a very costly task. On the one hand, there can be a high
number of these pairs, and on the other hand, intersection tests are very expensive,
especially when large facets are involved. We have two heuristic search methods
for fast intersection computation: a kd-tree and the box-intersection. Both return
a set of candidate pairs, i.e., a set of edge–edge and edge–facet pairs that might
possibly intersect. Of course, the heuristics must not overlook any intersecting
pair, but are allowed to return too many. In consequence, it suffices to perform the
intersection test on these candidate pairs. A good heuristic suggest only very few
candidate pairs. We measure the quality of the heuristics bythe time needed to

intersection candidate candidate pairs runtime
method pairs per intersection search total
trivial 358795008 11606 4579.56s 4631.87s
kd-tree 527113 17.05 13.66s 63.63s

box intersection 177177 5.73 4.49s 56.85s

Table 9.2: Experiment TETGRID with N = 12: Comparison between box intersec-
tion, intersection finding via kd-tree, and trivial intersection finding. Listed are the
number of candidate pairs, the ratio between candidate pairs and the real intersec-
tions (30914), the time spent for finding all intersections,and the total runtime of
the binary operation.

86

9.1. OPTIMIZATIONS

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 20000 40000 60000 80000 100000 120000

R
un

tim
e

[s
]

Vertices in Result

Kd-tree
Box intersection

Figure 9.1: Experiment TETGRID with N = 12: Runtime comparison between the
box-intersection algorithm and the kd-tree on the TETGRID experiment.

identify all intersections and the number of returned candidate pairs.

The box-intersection algorithm runs inO(nlog3(n) + s) time, wheren is the
number of boxes in the two input sequences ands is the number of pairwise inter-
sections of boxes. Using the assumptions from Chapter 7 regarding the shape of
the polyhedra, the expected complexity of obtaining all intersection candidates of
some given edge from the kd-tree isO(l logn), wheren is the total complexity of
the polyhedron andl the number of cells crossed by the edge. Then we can express
the complexity of all edge–facet and edge–edge intersections asO(L logn), where
L is the sum of thel ’s over all edges.

Considering the theoretic complexity, it is unclear which algorithm is more
efficient, box intersection or the kd-tree. The kd-tree could win asymptotically
for L is in O(nlog2(n)). We expect that on average each edge traverses only a
constant number of cells. On the other hand, the kd-tree tests the same candidate
pairs several times, when an edge or facet is stored in several kd-tree cells. The
complexity may not change, but the hidden constant factor might be higher than
for the box intersection.

Table 9.2 shows that both heuristics are effective in comparison to the trivial
method. Box-intersection leads in both quality measures; it runs faster and returns
fewer candidates. But we want to take a closer look and perform a complete test
series.

87

CHAPTER 9. ALGORITHM ENGINEERING

Input candidate pairs / intersection
N

Complexity box intersection kd-tree
2 172 6.64 13.33
4 1012 5.88 13.37
6 3100 5.78 14.28
8 7012 5.79 13.29
10 13324 5.76 13.74
12 22612 5.71 13.43
14 35452 5.79 14.07
17 62632 5.77 13.03
20 101044 5.79 13.61

Table 9.3: Experiment TETGRID with N = 1, . . . ,20: Number of candidate pairs
tested per real intersection. The input complexity is the sum of the vertices in the
two polyhedra.

Figure 9.1 shows the result of a test series with the TETGRID experiments
for N = 1, . . . ,20. The box-intersection algorithm is clearly preferable.Table 9.3
supports this result. It lists the candidates per intersection ratio, which seems to stay
constant. The kd-tree tests more (redundant) candidates. It always proposes about
13 candidates per intersection, while the box-intersection algorithm only suggests
about 6 candidates per intersection.

9.1.3 Half-sphere Sweep

After we had exchanged the trivial methods for ray shooting,point location, and in-
tersection finding with more sophisticated methods, we usedthe GNU profiler [gpr]
to search for the main bottlenecks in our binary operation. We discovered that most
of the runtime was spent in the sweep operations in all conducted experiments. The
sweep-line algorithm is a powerful tool; we use it in the plane for resolving the
nesting structure of the boundary cycles of facets, and we use it on half-spheres to
compute the overlay of two sphere maps. Especially, the half-sphere sweep used
more than 50% of the running time; it is called twice — once foreach sphere map.
However, the sweep is written to solve arbitrary complex overlays efficiently, while
we use it for generic and therefore simple overlay situations most of the times.

As an example, we look at an edge–facet intersection. A sphere mapsme of that
models the local neighborhood of an edgee, has two oppositely oriented svertices
and one halfloop for every facet incident to the edge from one svertex to the other.
A sphere mapsmf that models the local neighborhood of a facetf only has an

88

9.1. OPTIMIZATIONS

sloop. The overlay ofsme andsmf combines those two simple structures, i.e., the
sloop fromsmf is inserted intosme. Thereby it cuts each halfloop ofsme into
two parts. Likewise, the sloop is cut into several parts by the halfloops ofsme.
This construction has no degenerate situations, sinceecannot lie in the supporting
plane of f . Consequently, it is not necessary to apply an alogrithm as powerful as
the sweep-line algorihtm to solve this overlay.

The following optimizations circumvent the execution of unnecessary
halfsphere-sweeps, or replace them with simple solutions for specific situations.

(i) Overlays for vertices located in a volume of the counterpart polyhedron and
for edge–facet intersections are performed by hand, i.e., without the sweep-
line algorithm.

In the first case, the vertex is cloned and the marks of the clone are deduced
from the old marks, the mark of the volume and the Boolean function. Af-
terwards, the sphere map is simplified as usual. The simplification can be
omitted if optimization (iii) is enabled.

In case of the edge–facet intersection, the resulting arrangement always has
the same structure. Lete and f denote the edge and the facet participating
in the intersection. Then the arrangement consists of several half-circles, i.e.,
one for each facet incident toe, which are all split by the plane supportingf .
It is obvious how to compute the marks of the arrangement. Thesimplifica-
tion on the sphere map is performed afterwards as usual.

As a result of this optimization, the sweep-line algorithm is only used in case
of edge–edge intersections and when a vertex is located on a vertex, edge, or
facet of the counterpart polyhedron. This means that all common situations
are solved by specialized algorithms. The situations in which the sweep-line
algorithm is still needed are only degenerate situations, which we argue that
they occur in real world data sets as well, but then not very many of them.

(ii) Our sphere sweep can process a half-sphere at once. Certain extra work has
to be done to cut each sphere map in two halves and to paste the two resulting
half-spheres back together. Since this includes cutting edges in two halves
and introducing several equator edges, the two halves combined often have
twice as many elements than the original sphere map. We therefore test, if all
svertices and sedges of a sphere map either lie on the top, bottom, left, right,
front, or back half-sphere. In such an instance, we need not cut the sphere
into two halfspheres. Instead it suffices to perform only onesweep on the
relevant half of the sphere.

89

CHAPTER 9. ALGORITHM ENGINEERING

(iii) For some vertices of the input polyhedra it is easy to determine that they will
not appear in the resulting polyhedron. For instance, in a union operation
every vertex of either polyhedron located in the inside of the other polyhedron
is absorbed into this volume. Here, the selection routine assigns the same
mark to each svertex, sedge and sface on the sphere map. This happens when
the Boolean operationbop applied to the mark of the determined volume
and any second mark always has the same result. Thus, if a vertex of the
first polyhedron has been located in volumec of the second polyhedron, and
bop(true,mark(c))==bop(false,mark(c)), then the vertex does not need to be
considered.

Because two completely random polyhedra usually do not include degenerate
situations, optimization (i) alone would reduce the numberof sphere sweeps to
zero in such a case. In the TETGRID experiment, the vertices are placed at loca-
tions with integer coordinates and the grid cells have dimensions 100×100×100.
Hence, there will probably be some remaining sphere sweeps in our test series.

Table 9.4 illustrates the benefit of the optimizations. The impact of optimiza-
tion (i) is impressive. With this single optimization activated, 91072 of 96928
sphere sweeps are replaced by 30024 specialized edge–facetoverlays and 15512
specialized vertex-in-volume overlays. Thereby, it reduces the runtime of the
sweeps to 7% and the total runtime to 32%. Applying all three optimizations,
we find further 811 sphere overlays that can be handled with sweeping only one
half-sphere, and 568 vertex-in-volume overlays can be omitted. In total number of
the executed sphere sweeps is reduced to 5%.

optimizations number of runtime
(i) (ii) (iii) sphere sweeps sphere sweeps binary op.
- - - 96928 134.27s 227.23s
+ - - 5856 10.88s 69.21s
- + - 80996 115.00s 205.27s
- - + 87792 124.42s 212.89s
+ + - 5045 8.57s 55.21s
+ - + 5856 10.06s 57.72s
- + + 76185 110.56s 195.54s
+ + + 5045 8.74s 56.85s

Table 9.4: Experiment TETGRID with N = 12: Number of sphere sweeps per-
formed, the runtime of all sweeps, and the complete binary operation are shown
for runs with all combinations of enabled and disabled optimizations.

90

9.1. OPTIMIZATIONS

The sphere sweep is not an optimal solution for the overlay. Andreas Meyer, a
student at the Max-Planck-Institut implemented two algorithms for planar overlay
as part of his Master thesis. The first algorithm is by Finke and Hinrichs [FH95] and
the second is a randomized incremental approach by Mulmuley[Mul90]. Both al-
ways perform considerably better than Seel’s sweep based overlay implementation.
In overlay computations with many intersections, Mulmuleyeven outperforms the
sweep by a factor of up to 13. Mulmuley’s method proved to be the most memory
and time efficient of the three methods.

We still need to adapt the interface of the alternative overlay methods, such that
they also work for spherical geometry. It is very likely, that both outperform Seel’s
sweep on the sphere, also. Especially, because they probably can process a full
sphere at once. Obviously, optimizations (i) and (iii) still work with these overlay
algorithms, too. If an alternative overlay method can process the full sphere at
once, optimization (ii) becomes superfluous.

9.1.4 Plane Sweep

For the plane sweep, we use the same generic sweep-line algorithm as for the
sphere sweep. Again, we try to avoid as many sweeps as possible. In the most
general case we perform a sweep for every plane supporting a facet, but we need the
sweep only if there is a hole in a facet. As described in Section 4.6, we determine
whether a boundary cycle is an inner or outer facet cycle by anorientation test at its
smallest vertex. A left turn indicates an outer, and a right turn an inner cycle. Since
we need to check the orientation at the smallest vertex of each facet cycle anyway
in order to link the facet cycles correctly as inner or outer cycles, the optimization
includes no significant overhead. Table 9.5 shows the effectof this optimization.

Like for the sphere overlay we can replace the sweep with a faster method. The
method by Mulmuley is applicable, again; the method by Finkeand Hinrichs is not
applicable.

number of runtime
optimization

plane sweeps plane sweeps binary op.
off 6867 17.10s 60.21s
on 343 13.40s 56.85s

Table 9.5: Experiment TETGRID with N = 12: Listed are the number of performed
plane sweeps, the runtime of the plane sweeps, and the runtime of the binary oper-
ation in runs with and without the plane-sweep optimization.

91

CHAPTER 9. ALGORITHM ENGINEERING

9.2 General Runtime Behavior

In this and in the following section, we experimentally evaluate the runtime be-
havior of our implementation, in particular the binary Boolean operations. We
have several experiments that support the expected runtimeanalyzed in Chapter 7,
and we have designed experiments to stress our implementation with worst-case
scenarios.

Besides the total runtime, we list also the runtime of important subroutines in
the binary Boolean operation to illustrate the distribution of resources, potential
bottlenecks, and further places for optimizations. We summarize the important
subroutines here in their order of usage (see Chapter 4 for further explanations):

Point location: queries the kd-tree of the input polyhedra to locate the vertices of
the respective other polyhedron.

Box-intersection: intersection finding on the bounding boxes of facets and edges.
Includes the cost of the intersection test on the actual edgeand facet geome-
try.

Sphere sweeps: sum of all sphere sweep-line algorithms performed during
Boolean operations on sphere maps.

Synthesizing edges:in the synthesis step, sorts the line representation based on
Plücker coordinates.

Plane sweeps:in the synthesis step, sorts facet boundary cycles of the result
polyhedron.

Kd-tree construction: in the synthesis step, initializes the kd-tree for the result
polyhedron.

Ray shooting: in the synthesis step, used to resolve the nesting of shells of the
result polyhedron.

Others: all other parts not listed explicitly in the same graph, so parts which have
no critical worst-case or no interesting practical runtimecontributions.

9.2.1 Balanced Binary Operations

In our first test series, we want to examine the generic runtime behavior when
the two input polyhedra and the result all have similar size.We capture these

92

9.2. GENERAL RUNTIME BEHAVIOR

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 20000 40000 60000 80000 100000 120000 140000 160000

R
un

tim
e

[s
]

Vertices in Result

Total Runtime
Plane sweeps

Kd-tree construction
Others

Sphere sweeps
Box intersection

Synthesizing edges
Point location

Figure 9.2: Total runtime and runtime distributed over the major subroutines for
our implementation in the TETGRID experiment.

properties in the TETGRID experiment (see page 85). We measure its runtime for
valuesN = 3, . . . ,17 on machine 1 for a later comparison with ACIS.

In Figure 9.2 we see the total runtime and the runtime distributed over the major
subroutines. The plane sweeps and the construction of the kd-tree each comprise
about a quarter of the total runtime. The total runtime lookslinear in the size of the
result. But since the construction of the kd-tree isΩ(k logk), where k is the size of
the result, the total runtime must have a logarithmic factor, too.

9.2.2 Binary Operation with Quadratic Result

In the next test series we again start with input objects of equal size, but we achieve
a worst-case output complexity, as described in the QUADRATICWALL GRID ex-
periment. We run this experiment forN = i ∗10, i = 1, . . . ,15 on machine 2. We
see in Figure 9.3 that the construction of the kd-tree is dominating the runtime.

In consideration of the results of the previous experiment,the results of the
current experiment seems reasonable. The construction of the kd-tree already com-
prised a large part of the runtime in the TETGRID experiment. In the QUADRAT-
ICWALL GRID experiment it becomes even more dominating, because in contrast
to other subroutines its runtime solely depends on the complexity of the result poly-
hedron. This argument also applies for the planar sweep. Butsince there is not a
single facet with a hole in this scenario, the planar sweep isnever executed.

93

CHAPTER 9. ALGORITHM ENGINEERING

top
view

front view

Experiment QUADRATICWALL GRID

1. ConstructN parallel cuboids of size 10000×1×100 spaced one unit
apart iny-direction as objectW.

2. ConstructN parallel cuboids of size 1×10000×100 spaced one unit
apart inx-direction as objectW′.

3. Align W andW′ at their lower front left corner.

4. MoveW′ along thez-axis for fifty units.

5. Measure time forW∪W′.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 40000 80000 120000 160000 200000

R
un

tim
e

[s
]

Vertices in Result

Total Runtime
Kd-tree construction

Others
Synthesizing edges

Box intersection
Point location

Figure 9.3: Total runtime and runtime distributed over the major subroutines for our
implementation in the QUADRATICWALL GRID experiment. Note that the plane
sweep and the ray shooting are not executed in this experiment.

94

9.2. GENERAL RUNTIME BEHAVIOR

C∪G (C∪G)\c

Experiment COMPLEXFACET, COMPLEXM INUSSIMPLE

1. Create a cubeC of sizeN3.

2. Create aN×N×1 grid of tetrahedraG:

(a) Generate four vertices for each tetrahedron randomly ina half-open
unit cube, but at least one vertex in the lower half and one vertex in
the upper half of the cube.

(b) Let the cubes form a regularN×N×1 grid and place the grid such
that each tetrahedron penetrates the top surface ofC.

3. COMPLEXFACET: Measure time forC′ = C∪G.

4. Create a cubec of size 23 such that each of its vertices match the center
of some grid cell.

5. COMPLEXM INUSSIMPLE: Measure time forC′ \c.

9.2.3 A Complex Object Minus a Simple Object

We designed the COMPLEXM INUSSIMPLE experiment to reflect a common task
in machine tooling where a small object is subtracted from a large complex object.
Additionally, we use the first part — the construction of the complex object — as
experiment COMPLEXFACET in order to stress the sweep-line algorithm sorting
the facet boundary loops.

For the COMPLEXM INUSSIMPLE experiment, we perform a test series with
N = i ∗5 andi = 1, . . . ,40. Since we want to run this experiment with ACIS, too,
we perform it on machine 1. Figure 9.4 shows the results of theexperiment. There
is no subroutine that is dominating the runtime. Still the kd-tree construction is

95

CHAPTER 9. ALGORITHM ENGINEERING

 0

 5

 10

 15

 20

 25

 0 2000 4000 6000 8000 10000 12000 14000

R
un

tim
e

[s
]

Vertices in Result

Total Runtime
Others

Kd-tree construction
Plane sweeps

Synthesizing edges
Box intersection

Figure 9.4: Total runtime and runtime distributed over the major subroutines of our
binary operation in a test series of the COMPLEXM INUSSIMPLE experiment with
N = i ∗5 andi = 1, . . . ,40.

most time consuming. The other subroutines follow in the same order as in the
TETGRID experiment.

As already discussed in our analysis from Chapter 7, the runtime of the binary
operation depends on the complexities of both input and the output complexity.
As a result, the runtime of the COMPLEXM INUSSIMPLE experiment is determined
by the size ofC′ and the result polyhedron. Although only a constant-sized part
of C′ is changed byc, we perform a complete synthesis for the result polyhedron.
Figure 9.4 confirms this property.

9.3 Runtime Behavior in Complex Situations

The following experiments are designed to stress single subroutines. Mostly, we
are interested in those routines that proved to be most time consuming, and those
that rely on a good average case performance. We want to identify those subrou-
tines that can become the bottleneck in certain situations.Furthermore, we want to
confirm the theoretical runtime analysis of Chapter 7.

96

9.3. RUNTIME BEHAVIOR IN COMPLEX SITUATIONS

 0

 50

 100

 150

 200

 250

 300

 350

 0 50000 100000 150000 200000 250000

R
un

tim
e

[s
]

Vertices in Result

Total Runtime
Kd-tree construction

Point location
Others

Plane sweeps
Synthesizing edges

Box intersection
Sphere sweeps

Figure 9.5: Total runtime and runtime distributed over the main subroutines for our
implementation in the COMPLEXFACET experiment in a test series withN = i ∗20,
i = 1, . . . ,10.

9.3.1 Complex Facet

In large Nef polyhedra of complexityn, there rarely is a single supporting plane
with complexityO(n). On the other hand, worst-case examples do not seem very
artificial. We use the COMPLEXFACET experiment (see page 95) as such worst-
case example. The union of the grid of tetrahedra with the surface of the cube
results in a facet withO(n) holes.

Figure 9.5 shows the result of a test series withN = i ∗ 20 andi = 1, . . . ,10
on machine 2. Although we tried to build a scenario that especially stresses the
runtime of the planar sweep, and although both routines consumed about the same
amount of runtime in the TETGRID experiment, the construction of the kd-tree
consumes much more time in the COMPLEXFACET experiment. This effect is
explicable, since the complex facet intersects most of the splitting planes. Each
time an intersection test is performed, which on average consumes time linear in
the size of the facet.

The runtime of the plane sweep looks close to linear, but actually has the (ex-
pected)O(nlogn) behavior. If we divide the runtime byn, we still get an increasing
curve. Dividing bynlogn results in an oscillating, but neither increasing nor de-
creasing curve. Seel’s experiments already confirmed this behavior [See01b].

97

CHAPTER 9. ALGORITHM ENGINEERING

T T∪T′

side
view

front
view

side
view

front
view

Experiment COMPLEXSPHEREMAP

1. Create trianglesti , t ′i , i = 1, . . . ,N+1 with the following properties:

(a) the first vertex of each triangleti /t ′i is located at the origin.

(b) the second vertex of each triangleti /t ′i has coordinates
(N,−N+2∗ i,N)/(N,N,−N+2∗ i)

(c) the third vertex of each triangleti has coordinates
(N,−N+2∗ i,−N)/(N,−N,−N+2∗ i)

2. Unite trianglesti /t ′i as objectT/T ′.

3. Measure time forT ∪T ′.

9.3.2 Complex Sphere Map

In the worst case, the overlay of alln+ m+ s sphere maps runs inO((n+ m+
s) log(n+ m)) time. For this to happen, there must be a single sphere map with
complexityO(n+ m+ s). Usually, each sphere map is of constant size. Then the
runtime of the overlay drops toO(n+m+s).

In the COMPLEXSPHEREMAP experiment we can see a scenario where a
sphere map of complexityO(n+m+s) is created during a binary operation. Fig-
ure 9.6 shows the result of a test series of this scenario withN = i ∗50, i = 2, . . . ,17
performed on machine 2. Again, the kd-tree construction dominates the runtime.
The half-sphere sweep is the second biggest consumer, but only needs half the
runtime of the kd-tree construction.

98

9.3. RUNTIME BEHAVIOR IN COMPLEX SITUATIONS

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 50000 100000 150000 200000 250000 300000

R
un

tim
e

[s
]

Vertices in Result

Total Runtime
Kd-tree construction

Sphere sweeps
Others

Box intersection
Synthesizing edges

Point location

Figure 9.6: Total runtime and runtime distributed over the main subroutines for
our implementation in a test series of the COMPLEXSPHEREMAP experiment with
N = i ∗50, i = 2, . . . ,17.

9.3.3 Kd-tree Construction and Queries

We use the ROTCYLINDER experiment as a worst-case scenario for the construc-
tion of the kd-tree, as well as for the point location subroutine. In the construction
of the kd-tree both large facets are intersected by most of the splitting planes. Con-
sequently, most of the split operations need to test for intersection with at least one
of these two facets, which haveO(n) size. We therefore expect quadratic construc-
tion time.

Figure 9.7 shows the result of a test series withα = 10−7 and n = 100i,
i = 1. . .30 on machine 2. The curve of the kd-tree construction includes some ir-
regularities. Most remarkable is an upward leap by more than100% fromN = 1600
to N = 1700. Looking more closely, there are further leaps in the curve. They
can also be found at the same places in other experiments. Forexample, in Fig-
ure 9.3 includes a big jump between the two runs with result sizes of about 50000
and 60000 vertices, and a small jump between the runs with result sizes of about
120000 and 140000 vertices.

Scrutinizing the construction procedure, we can observe that the number of
intersection tests against complicated facets grows steadily, but jumps upwards
every time the number of vertices exceeds the next power of two. The reason is
that we cut off the kd-tree construction at logarithmic depth. Exceeding a power of

99

CHAPTER 9. ALGORITHM ENGINEERING

C C′ C∪C′

Experiment ROTCYLINDER

1. Create a right cylinderC:

(a) the base ofC is a regular polygon withN sides.
(b) the base is parallel to thexy-plane.

2. Create a copyC′ of C.

3. RotateC′ around its vertical centerline byα degrees.

4. Measure time forC∪C′.

 0

 50

 100

 150

 200

 250

 0 5000 10000 15000 20000 25000

R
un

tim
e

[s
]

Vertices in Result

Total Runtime
Kd-tree construction

Point location
Others

Plane sweeps
Synthesizing edges

Box intersection
Sphere sweeps

Figure 9.7: Experiment ROTCYLINDER with α = 10−7 andn = 100i, i = 1. . .30:
Shown are the total runtime of the total runtime of the binaryoperation and the
runtime of the main subroutines.

100

9.3. RUNTIME BEHAVIOR IN COMPLEX SITUATIONS

Experiment WORSTCASERAY SHOOTING

1. Create regularN-gonG parallel toxy-plane.

2. RotateG by small angleα around an axis through the center ofG parallel
to they-axis.

3. Create set ofN/4 tetrahedraT, such that

(i) they are not pairwise overlapping iny direction.
(ii) they are completely to the right ofG.
(iii) their y coordinates are in the range ofG’s y coordinates.
(iv) their smallest vertex is either slightly higher thanG’s highest vertex,

or lower thanG’s lowest vertex.

4. Measure time forG∪T.

two, the tree is allowed to grow deeper by one further level. As a result, the number
of inner nodes, and therefore the number of splitting planesintersecting complex
facets increases abruptly. At the same time, the quality of the kd-tree as a heuristic
search data structure improves, which is confirmed by the point location curve.

Because of the irregularities, it is not possible to analyzethe curve properly.
Another test series that only included runs where the resultpolyhedron is slightly
larger than 2i did not help to clarify the situation. We only can conclude that the
runtime is worse than linear.

The ROTCYLINDER experiment works fine as a worst-case scenario for point
location. Most of the leafs contain either of the large facets. In combination with
O(n) point location queries, the subroutine is expected to use quadratic runtime.

101

CHAPTER 9. ALGORITHM ENGINEERING

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 1000 2000 3000 4000 5000 6000 7000 8000

R
un

tim
e

[s
]

Vertices_in_Result

Total_runtime
Ray_shooting
Point_location

Kd_tree_construction

 4e-07

 5e-07

 6e-07

 7e-07

 8e-07

 9e-07

 1e-06

 1.1e-06

 1.2e-06

 1.3e-06

 1.4e-06

 0 1000 2000 3000 4000 5000 6000 7000 8000

R
un

tim
e

[s
]

Vertices_in_Result

rs_divn2

Figure 9.8: Experiment WORSTCASERAY SHOOTING with N = 80i, i = 1, . . . ,50:
The left graph shows the runtime of the major subroutines andthe total runtime of
the binary operation. The graph on the right shows the runtime of the ray shooting
subroutine divided by the squared output complexity.

The curve of the point location in Figure 9.7 supports our assumption, but a closer
look at the data reveals a sub-quadratic behavior. Dividingthe runtimes by the
complexity of the result yields a curve, which seems to be linearly growing, but
dividing the runtime by the squared complexity of the resultgives a slightly falling
curve.

It is not easy to construct a worst-case scenario for the ray shooting subrou-
tine. As we have seen in previous experiments, usually ray shooting only accounts
for a negligible amount of time. In a worst-case scenario, there must beO(n) ray
shooting queries, that visitO(3

√
n) kd-tree leafs. On average, the intersection tests

performed at each kd-tree leaf must have linear complexity.We try to realize a
worst-case scenario with the WORSTCASERAY SHOOTING experiment. The poly-
hedron that results from the final union operation hasO(n) shells. To resolve the
nesting structure of the shells, a ray shooting query is performed from the lexico-
graphically smallest vertex of each shell in the−x direction. TheO(n) rays cast
from the tetrahedra travel closely alongG without hitting it. All those queries visit
O(3

√
n) kd-tree leafs and many of the corresponding regions are intersected by the

complex facet.

Figure 9.8 shows the result of a test series of the WORSTCASERAY SHOOTING

experiment withN = 80i, i = 1, . . . ,50. Ray shooting accounts for most of the
runtime in this experiment. Also we can see from the second graph, that the ray
shooting probably has a quadratic behavior, maybe it even reaches the theoretic
worst-case behavior. However, it is very unlikely to encounter a quadratic runtime
of the ray shooting subroutine in a non-artificial scenario.The runtime already
drops to sub-quadratic, if the complex facet in the WORSTCASERAY SHOOTING

102

9.4. COMPARISON WITH ACIS

experiment is not placed perfectly. For instance, the runtime drops when the facet
becomes parallel to thexy-plane, or its normal vector essentially faces into the
x-direction. Also, we can easily adjust the kd-tree such thatray shooting in the
WORSTCASERAY SHOOTING experiment also drops to sub-quadratic by introduc-
ing bounding boxes around complex facets. Then, the intersection test of the ray
with the box already reveals that they do not intersect.

9.4 Comparison with ACIS

We compare our implementation with ACIS R13 by Spatial Corp. [Spa04], one of
the three common commercial CAD kernel along with Catia [Das] and Parasolid
by UGS [UGS]. It is used in many CAD systems like for instance Auto CAD by
Autodesk [Aut]. It should be said that we are comparing apples with oranges here.
On the one hand, it is daunting for a research prototype to be compared with a long
established and optimized industry implementation. On theother hand, ACIS is
handling more general geometries and has some overhead in dispatching function
calls to the specialized functions for linear geometry. However, our implementation
handles Nef polyhedra in their full generality with all the potentially occurring
degeneracies in the algorithms and it uses exact arithmeticto be reliable and robust.
We use the SCHEME interface of ACIS that has some small overhead in translating
function calls to the C++ library calls. ACIS also seems to store more information,
because in our experiments it swaps earlier than our implementation. However,
we store exact number types with their burden of memory usage. All this said, our
comparison is still important to demonstrate where we are inthe context of existing
systems.

Comparisons with ACIS were measured on machine 1, a 846 MHz Pentium III
processor with 256 MB RAM. Our implementation runs under Linux, while we
used the Microsoft Windows XP version of ACIS. Our test programs for ACIS are
written in SCHEME. According to Spatial Corp. SCHEME commands are mapped
to their C++ counterparts. The input data for the SCHEME scripts is created by
ACIS primitives or loaded from SAT-files. SAT is ACIS’ open file format. For the
generation of SAT files we implemented a function writing Nefpolyhedra as SAT
files.

9.4.1 Balanced Binary Operations

To get a general impression, we repeat the TETGRID experiment with ACIS. It
contains no special difficulties. However, facets are likely to have holes and we do

103

CHAPTER 9. ALGORITHM ENGINEERING

runtime [s]
N result vertices

ACIS R13 Nef 3D
3 338 0.29 0.61
4 1135 0.63 2.53
5 2390 1.37 5.71
6 4548 2.79 11.37
7 7383 5.29 19.26
8 11555 10.13 30.61
9 16998 14.27 48.02

10 23883 22.81 67.31
11 32892 25.58 96.12
12 43418 35.58 126.01
13 56188 55.64 164.05
14 70827 swapping 211.02
15 87871 swapping 262.62
16 108066 swapping 321.72
17 131304 swapping 413.32

Table 9.6: Comparison of ACIS R13 and our Nef polyhedron with the TETGRID

experiment.

not exclude degeneracies explicitly, but they are highly unlikely. Naturally, both
algorithms perform on the same data sets.

The results in Table 9.6 show that ACIS is faster by a factor of two to four.
The factor fluctuates and no obvious trend is visible. ACIS swaps heavily forN ≥
14 on our test machine. We therefore excluded these timings for ACIS. As our
implementation performs a few further runs without swapping, it seems that we
need less memory for the representation of the same polyhedron.

9.4.2 Floating-Point versus Exact Arithmetic

One of the major differences between ACIS and our implementation is our use of
exact arithmetic instead of floating-point arithmetic. Floating-point and interval
arithmetic are the state-of-the-art in Computer Aided Design, and we are not aware
of any commercial system that uses exact arithmetic to solvethe remaining cases
that floating-point and interval arithmetic cannot solve. An obvious reason is the
runtime cost for exact arithmetic, but also the difficultiesin realizing exact and
efficient solutions for more general curves and surfaces mayplay a role.

104

9.4. COMPARISON WITH ACIS

n α time
ACIS R13

runtime [s]
Nef 3D

100

10−1

10−2

10−3

10−4

10−5

10−6

1.08s
1.05s
1.08s
1.07s

not executable
not executable

3.47s
3.50s
3.59s
3.64s
3.72s
3.77s

1000

10−1

10−2

10−3

10−4

10−5

10−6

61s
61s
61s

not executable
not executable
not executable

67s
68s
69s
69s
71s
71s

2000

10−1

10−2

10−3

10−4

10−5

10−6

252s
253s
255s

not executable
not executable
not executable

195s
198s
203s
205s
207s
210s

10000 10−7 not executable 3219 s

Table 9.7: Comparison of ACIS R13 and our Nef polyhedron with the ROTCYLIN -
DER experiment. Here, “not executable” means that ACIS could not compute the
union without topological errors and therefore cancels theoperation. As a result,
ACIS keeps the first input object unmodified and deletes the secondinput object.

We designed the simple ROTCYLINDER experiment (see page 100) to de-
monstrate the effect of exact arithmetic; on one hand, we gain expressiveness in
modeling, because we can compute results where other systems fail very soon, and
on the other hand, we have to deal with the runtime costs of exact arithmetic. We
already analyzed the aspect of coordinate growth in Section9.5. Now, we investi-
gate the runtime costs of exact arithmetic in comparison to ACIS.

In this ROTCYLINDER test scenario we have 4n edge–edge intersections. In
one half of those intersections the endpoints of the intersecting edges are extremely
close together. Without an adequate precision it is not possible to compute an
intersection point that is on both edges and different from the endpoints.

We omit the expensive computation of the exact rotation in our test series (see
Section 6.2) and focus on the binary Boolean operation. The result of the ROT-

105

CHAPTER 9. ALGORITHM ENGINEERING

runtime [s]
n α

ACIS R13 Nef 3D
10−1 21.57 31.55
10−2 20.60 32.88
10−3 20.75 33.51

1000
10−4 20.79 34.63
10−5 not executable 35.41
10−6 not executable 36.11

Table 9.8: Comparison of ACIS R13 and our Nef polyhedron with the ROTCYLIN -
DER experiment with the modification that the second cylinder istranslated along
the z-axis before computing the union such that all edge–edge intersections change
to edge–facet intersections.

CYLINDER experiment in Table 9.7 shows that ACIS’ floating-point operations are
insufficient forα smaller than 10−3. ACIS’ binary operations modify the first in-
put object; it becomes the result during the operation. The second input object
is deleted meanwhile. When the union operation fails, the first input object stays
unchanged. The second input object is deleted.

On the other hand, ACIS is faster except for very large instances. Forn = 100
the factor of our runtime and ACIS’ runtime is slightly below four; forn = 2000
we are faster up to a factor of 1.2. Additionally, we listed a run withn= 10000 and
α = 10−7 for comparison. In Section 9.5 we performed further runs with angles as
small as 10−40. As claimed, robustness is not an issue.

This experiment is particularly complex because of the edge–edge intersec-
tions. We repeat parts of this experiment with the modification that the second
cylinder is shifted along thez-axis before computing the union. As a result, we get
edge–facet instead of edge–edge intersections, which can be computed by hand
as discussed in Section 9.1.3. We expect that the modification results in a clear
improvement of our runtime. The modification will also be beneficial for ACIS’
runtime, since vertices are not so close together any more. The results in Table 9.8
show that both algorithms benefit from this change; our algorithm by a factor of
about two, and ACIS by a factor of about three. Nonetheless, ACIS aborts the union
computation for an angle below 10−4.

9.4.3 A Complex Object Minus a Simple Object

We designed the COMPLEXM INUSSIMPLE experiment (see page 95) to reflect a
common task in machine tooling where a small object is subtracted from a large

106

9.5. GROWTH OF COORDINATE REPRESENTATION

runtime [s]
N result vertices

ACIS R13 Nef 3D
3 61 0.044 0.10
6 218 0.078 0.34
9 460 0.156 0.77
12 801 0.233 1.59
15 1241 0.379 2.00
18 1759 0.556 2.84
21 2392 0.845 4.15
24 3117 1.056 5.93
27 3960 1.334 6.61
30 4870 2.069 10.12
33 5912 1.983 12.20
36 6999 2.814 14.38
39 8235 3.175 19.36

Table 9.9: Comparison of ACIS R13 and our Nef polyhedron with the COM-
PLEXM INUSSIMPLE experiment. ACIS is about six times faster than our imple-
mentation.

complex object. We repeat this experiment with ACIS and compare it with the
results of our implementation from Section 9.3.

Table 9.9 shows the results of a test series withN = i ∗3, i = 1, . . . ,13. Here, the
difference between ACIS and our algorithm is quite pronounced with ACIS being
a factor of about six faster than our implementation. A notable difference might be
in the software interface; ACIS modifies the first input object to become the result,
while our implementation creates the result from scratch without modifying the
two input polyhedra. Still, ACIS also does not seem to profit from the in principle
constant-size problem complexity here.

9.5 Growth of Coordinate Representation

One major critic of exact computation is that it is slow in general, and gets even
slower in cascaded constructions. Constructing geometricobjects usually starts
from geometric primitives, which are combined to complex objects via geomet-
ric constructions. Geometric constructions can be expressed by multiplications,
additions and subtractions. Each addition or subtraction can increase the bit com-
plexity by one, each multiplication adds up the bit complexities of the factors. In

107

CHAPTER 9. ALGORITHM ENGINEERING

cascaded constructions the output of one algorithm becomesthe input of the next.
This way, the bit complexity grows in every iteration. The cascaded construction of
a geometric object from primitives can be illustrated as a construction tree, where
the primitives are the leaves of the tree, and the final objectis at the root of the
tree. Milenkovic shows in [Mil00] that the bit complexity ofa construction grows
exponentially with the height of its construction tree in the worst case.

We have already compared floating-point arithmetic with exact arithmetic by
one experiment in Section 9.4. But from this experiment we did not get a good
impression of the impact of coordinate growth. We now examine two scenarios that
should give us some insight. In cascaded constructions the output of an operation
is taken as the input of the next. Consequently, the bit complexity is continuously
growing with each step. In the first scenario, we are interested in the growth of
the bit complexity when the result of an operation is combined with geometric
primitive of constant bit complexity in the next run. This means, that in every
operation we combine an object with constant bit complexitywith an object with
growing bit complexity. Here, the bit complexity grows linear with the height of
the construction tree. In the second scenario, we want to examine the growth of
the bit complexity when we have a real construction tree, i.e., on each level we
only combine objects that have the same distance to the leafs. Consequently, only
objects with roughly equal bit complexity are combined. Thebit complexity at
least doubles with each iteration.

Consecutive binary operations on Nef polyhedra do not increase the bit com-
plexity, since binary operations do not introduce new planecoordinates. It is not
possible to perform cascaded operations with the functionality provided by our
package. Consequently, we rather simulate cascaded constructions.

Instead, we simulate the two scenarios with two variations of our ROTCYLIN -
DER experiment (see page 100). For the first scenario, we performa test series
of the ROTCYLINDER experiment with a growing angleα . At the moment, there
is no practical solution to perform a rotation of exactlyα degrees, as pointed out
in Section 9.4. Also, it is expensive to compute good rational approximations for
sine and cosine. The CGAL functionrational rotation approximation pro-
vides exact sine and cosine values for someα ′, such that|α −α ′| < ε for a small
specifiedε > 0, but is very runtime intensive for smallε (see Table 6.1). Instead
of approximating angles,we use angles from which we know theexact rational
representation of sine and cosine. Withsin(α) = 2·10i

102i+1 andcos(α) = 102i−1
102i+1, we

know that sin2(α) + cos2(α) = 1 andα ≈ 1.993373· 10−i . We execute runs for
i = 1, . . . ,50, and withn = 1000, 2000.

Figure 9.9 shows the result of the test series performed on machine 2. It depicts
the relation of the runtime and the bit complexity of the coordinate representation.

108

9.5. GROWTH OF COORDINATE REPRESENTATION

 20

 40

 60

 80

 100

 120

 140

 160

 180

 1 1e+10 1e+20 1e+30 1e+40 1e+50 1e+60 1e+70 1e+80 1e+90 1e+100 1e+110

R
un

tim
e

[s
]

Complexity

n1000
n2000

Figure 9.9: Experiment ROTCYLINDER with α ≈ 1.993373· 10−i , i = 1, . . . ,50,
and withn= 1000,2000: The graph depicts the relation between the bit complexity
of the coordinate representation and the runtime.

We measure the order of magnitude of the coordinate values bythe value of the
largest integer used to represent a coordinate, and computethe bit complexity of
the integer. During the test series, the largest coordinaterepresentation grows from
109 to 10107. This relates to a bit complexity between 30 bit and 355 bit per vertex
coordinate. In this experiment, the coordinates ofC stay constant. Only the coor-
dinates ofC′ grow. Consequently, the complexity of the arithmetic operations is
only growing linearly. Figure 9.9 and a closer examination of the experiment data
support this evaluation.

For the second scenario, we want to combine two objects with the same bit
complexity. For this purpose, we adjust the ROTCYLINDER experiment as fol-
lows: We rotateC by β ≈ 1.993373· 10−i degrees at the beginning of each run
to obtain large coordinate representations. ThenC is copied and the copyC′ is
rotated byα = 10−8 degrees. Finally, we uniteC andC′. We perform test runs
with i = 1, . . . ,50, andn = 1000,2000. Sinceα is a relative large constant angle in
comparison toβ , the bit complexity ofC andC′ are about the same. Figure 9.10
depicts the result of this test series. An close examinationof the data shows that
the curves roughly fit the functionf (x) = ax1.4 + x0, wherea andx0 are constant
values.

Now, we put our simulated scenarios in relation to a real scenario. Let us

109

CHAPTER 9. ALGORITHM ENGINEERING

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 1 1e+10 1e+20 1e+30 1e+40 1e+50 1e+60 1e+70 1e+80 1e+90 1e+100 1e+110

R
un

tim
e

[s
]

Complexity

n1000
n2000

Figure 9.10: Experiment ROTCYLINDER with α = 10−8, and withn= 1000, 2000:
In order to obtain two input polyhedra with equally large coordinate representa-
tions,C is initially rotated byβ ≈ 1.993373·10−i degrees. The rotatedC is then
used as input object for the ROTCYLINDER experiment. The graph depicts test
series withi = 1, . . . ,50

assume for the sake of this comparison that coordinates of 3Dmodels in the CAD
community are stored as signed numbers that consist of up to 9decimal digits
with a floating-point and no exponent. If we construct a Nef polyhedron from data
using this representation, the floating-point numbers of the point coordinates are
converted to rational numbers represented by integers withup to 30 bit.

For cascaded operations on Nef polyhedra, we must repeatedly apply two steps.
First, we perform binary operations to obtain new points from the intersection of
the involved polyhedra. Then, we construct new polyhedra from the intersection
points. We are interested in the growth of the vertex coordinates caused by these
two steps. New vertices are constructed from edge–edge and edge–facet intersec-
tions. With 30 bit vertex coordinates, the geometry of an edge can be represented
by its two endpoints, and therefore only needs the existing 30 bit representations.
The direction of an edge is computed as the difference of two points and needs 31
bit. The supporting planes of the facets are constructed from three points. This
construction has degree 3 and constructs plane coordinateswith at most 93 bit. An
edge–plane intersection also has degree 3, where the factors of the monomials with
the highest degree include one plane and two vector coordinates. Thus, the result

110

9.6. RÉSUMÉ

vertex can be represented with at most 158 bit. Vertices thatresult from edge–edge
intersections are less complex.

From our experiments, we can conclude how the runtime changes from the
first to the second operation in a row of cascaded operations.The first operation is
performed on polyhedra with vertices that use 30 bit for eachinteger, while during
the second operation 158 bit are needed. We compare runs of our experiment with
i = 1 and i = 21, which resemble complexities of 30 and 162 bit. In the first
scenario, the runtime grows by 41% forn = 1000 and by 39% forn = 2000. In
the second scenario, the runtime grows by 114% forn = 1000 and by 99% for
n = 2000.

9.6 Résuḿe

In this chapter, we confirmed the efficiency of our implementation, but we also
discovered the following three weaknesses:

1. The kd-tree related operations perform bad on polyhedra with linear-sized
facets.

2. The complexity of the binary operation is not sensitive tosmall areas of
concern. For example, even if we subtract the empty space from some poly-
hedron, the operation still performs a complete synthesis and a complete
kd-tree construction for the result.

3. Coordinate growth can become a big issue.

In the following, we discuss opportunities to deal with eachweakness.

9.6.1 Further Improvement on Point Location and Ray Shooting

Although the kd-tree improves the performance of our binaryoperations consider-
ably, it is still the bottleneck. Most notably are operations with a quadratic-sized
result polyhedron, and operations on polyhedra with linear-sized facets.

In the latter case, we would like to have a method that allows us only to op-
erate on the relevant part of a complex facet. In a point location query we want
to test for intersection with that part of the facet that lieswithin the boundaries of
the relevant kd-tree cell. Likewise, we want to split a facetinto two halves each
time it is intersected by some splitting plane during the construction of the kd-tree.

111

CHAPTER 9. ALGORITHM ENGINEERING

We performed experiments with storing triangulated facetsin the kd-tree. Unfor-
tunately, the triangulation often results in badly shaped triangles, i.e., the triangles
are long and skinny, such that they intersect many kd-tree cells. As a result, the
runtimes change for the worse. We expect better result from atriangulation method
that returnsfat triangles, i.e, triangles that are not long and skinny.

As pointed out above, the kd-tree construction is our major bottleneck. On the
other hand, we construct the kd-tree at the end of the binary operation only to use
it for a few ray shooting queries for most of the times. If the kd-tree is not used
further for subsequent binary operations or for point location and ray shooting
queries posed by the user, the effort seems wasted. Therefore, we want to find
out, whether there is some efficient way to solve the ray-shooting queries without
constructing the kd-tree, or at least without constructingit completely. We can
either provide an additional ray shooting solution that is not based on the kd-tree,
or we construct only those parts of the kd-tree that are needed to solve a given set
of ray shooting queries. Then, we can offer exchangeable rayshooting strategies.
The user can decided whether a kd-tree is constructed completely at the end of the
synthesis for the ray shooting and future queries, or whether it is only constructed
as much as needed for the ray shooting.

As a third approach to get rid of the kd-tree construction in the synthesis, we
are interested in whether it is possible to perform the ray shooting queries needed
for the synthesis on the kd-trees of the input polyhedra rather than on the kd-tree
of the result. The following must be realized: First, we mustdeduce those input
vertices that might become the smallest vertices of the shells in the result polyhe-
dron. In a union operation these can only be the smallest vertices of the shells in
both input polyhedra, and in an intersection operation these can only be the small-
est intersection vertices of each shell with the respectiveother input polyhedron.
In a symmetric difference and in a difference operation it isa combination of these
two vertex types. Having the locations of these vertices, weperform ray shooting
queries on the kd-trees of both input polyhedron. We shoot rays from the locations
of the smallest vertex candidates in−x direction. In order to remember the location
lh hit by a ray shot from locationls, we associatelh with a sphere map atls. If there
is no sphere map atlh, we create a redundant sphere map on the fly. This way we
can obtain two sphere maps intersected by a ray shot in the result polyhedron from
l in −x direction. Since a ray shooting query reports the first intersected bound-
ary element, we must determine which of the two given sphere maps represents
the local pyramid of that boundary element. If both represent the local pyramid of
some boundary element, the boundary element represented bythe sphere map at
the lexicographically larger position would be hit first. Ifonly one of the sphere
maps represents a boundary element, this boundary element would be hit. If both

112

9.6. RÉSUMÉ

sphere maps represent volumes, the ray shooting query wouldhit no boundary el-
ement. Hence, the considered shell is surrounded by the outer volume. Note that
all artificially inserted sphere maps are removed by the simplification routine after
the synthesis.

This method surely is only effective, if a single boolean operation is performed
and afterwards no ray shooting or point location is needed bythe user. But it
can also become effective in consecutive binary operations, if we use it to replace
the kd-tree completely with some streamed data structure similar to the fast box
intersection. Since we perform ray shooting queries on the input polyhedra, a
streamed data structure can perform all point location and ray shooting queries
batched at the same time.

9.6.2 Modification Operations

The complexity of our binary operations always depends on the largest polyhe-
dron among the two input polyhedra and the result polyhedron. Thus, subtracting
a single point from a polyhedronP is just as complex as intersectionP with a trans-
formed copy ofP, although the subtraction can be seen as a slight modification of
P. Our data structure and algorithms are not sensitive to small changes or to a small
area of concern. For this reason, we would also like to have modification opera-
tions in addition to our binary operations. Such operationsyield the same results
as the binary operations, but instead of creating a third polyhedron that holds the
result, they return the modified first input polyhedron.

In order to realize modification operations we need update operations for the
SNC and the kd-tree. An alternative to an update operation ofthe kd-tree is again
to replace the kd-tree with some streamed data structure. This way we also can
easily decide upfront which objects need to be considered. The decision is done by
checking the bounding boxes of all objects against a box thatencloses the area of
concern.

9.6.3 Exact Geometric Computing

In general, the problem of growing coordinate representations in cascaded con-
structions cannot be avoided, but it is possible to reduce the performance down-
side of exactness in geometric algorithms. The exact geometric computing (EGC)
paradigm [YD95] emphasizes that exactness must be in the geometry, not in the
arithmetic. This means, we need not use exact arithmetic, but the outcome of every
predicate evaluation must be correct for the given input. InCGAL many algorithms

113

CHAPTER 9. ALGORITHM ENGINEERING

and data structures are designed for the use offloating-point filters. The idea is to
exploit the machine floating-point arithmetic, which is highly optimized on current
hardware. For this purpose, the machine evaluation of predicates is certified. When
a correct result cannot be guaranteed, the predicate is recomputed with the slower
exact methods [LPY04].

Unfortunately, our current implementation does not benefitfrom floating-point
filters. On the contrary, floating-point filters slow our implementation down. The
reason is in our synthesis step. Floating-point filters are only effective as long as
most of the predicates can be solved with floating-point arithmetic. In the synthe-
sis step we regularly test for equality of geometric objects. In detail, we categorize
halfedges by their supporting line, we identify facet cycles by the common sup-
porting planes of shalfedges, and we perform plane sweeps for all shalfedges lying
in a common plane. Equality tests on geometric objects can easily be handled with
floating-point filtering, as long as the tested objects are clearly unequal. The closer
to equal two objects are, the more precise must the arithmetic be in order to de-
cide whether two objects are the same, or slightly different. In our case, we apply
equality tests because we want to pair up equal geometric objects. Hence, the filters
regularly have to fall back to exact arithmetic.

In order to allow the effective use of floating-point filters for our binary oper-
ations, we must re-design the synthesis step. The idea is to match up halfedges
and shalfedges by indices instead of geometric properties.Indices can be set prop-
erly in the constructors and input operations. Then, they must be transfered and
updated during the boolean and topological operations. There-design is elaborate,
but seems possible. As an example, we discuss the modifications that are necessary
to pair up the halfedges by indices.

First, we have to specify how indices are assigned. The two halfedges of an
halfedge pair must always have the same index. Multiple halfedges pairs with
the same supporting line may share a common index, but do not have to. With
this rule, the pairing is still easy and effective, and we do not include unnecessary
restrictions.

In all our constructors, we know which halfedges comprise a pair before we
compute their geometric properties. Thus, it easy to assigna unique index to each
halfedge pair. When we create the sphere map of an edge on the fly during a binary
operation, both new svertices take on the index of the edge.

There are two steps, where the handling of indices is complicated. First, erasing
a redundant sphere map on an edge, we may have to join two halfedge pairs with
different indices, but have not even paired up the two pairs.And second, the overlay
of two sphere maps may introduce new svertices. Such a new svertex must get the

114

9.6. RÉSUMÉ

same index as some other svertex in a different sphere map. Ofthe latter svertex,
we do not know in which sphere map it is, and whether it has already been created.
Both problems can be solved with additional associations.

With these modifications, the pairing is easy. Instead of categorizing halfedges
by their common Plücker coordinates, we categorize them bytheir common index.
Then we sort each list of halfedges as before. Note that we first decide whether
two compared halfedges have the same source vertex before wecompare their lo-
cation lexicographically. This way we compare equal coordinates, only if com-
pared points are unequal, but have the samex-coordinate, i.e., the supporting line
is orthogonal to thex-axis.

115

CHAPTER 9. ALGORITHM ENGINEERING

116

Chapter 10

Applications for Nef polyhedra

In this chapter we present first approaches for realizing twoapplications of 3D
Nef polyhedra—for the visual hull and for the Minkowski sum of two closed Nef
polyhedra. These two implementations are complete and robust, but do not use the
most sophisticated and efficient algorithms. Also, the Minkowski sum is limited
to closed polyhedra, so far, We describe the algorithms, perform tests to get a first
impression of the performance, and discuss their potential.

10.1 Visual Hull

The visual hull of a three-dimensional object is an approximation of the original,
deduced from concurrent snapshots of several cameras facing the object [Lau94].
Each snapshot provides a two-dimensional silhouette. The idea is to create a cone
for each camera, such that the shape of their cross-section equals the silhouette of
the snapshot. This way, the cone closely covers each object that could have caused
the silhouette. Each cone already is a rough approximation of the original object.
Intersecting the cones of all cameras refines the approximation. Note, the original
object is always a subset of the approximation. Figure 10.1 illustrates the method.

Having Nef polyhedra as provided in CGAL 3.1, we implemented a solution
for the visual hull problem based on connected polygonal silhouettes with holes.
Although cones are infinitely bounded polyhedra, we want to use a standard kernel
in order to get a fast solution. We therefore clip each cone ata fixed box. This box
is not computed by us, but defined by the user. The implementation was easy and
took only a few days.

The main advantage of our implementation lies in its robustness. If many cam-
eras are used, the boundary edges of the silhouettes of multiple cameras standing

117

CHAPTER 10. APPLICATIONS FOR NEF POLYHEDRA

C1

C2

C3

Figure 10.1: Two rectangular objects observed by three cameras c1, c2, andc3.
The grey area illustrates the visual hull computed from the pictures seen by the
cameras.

closely together might arise from the same edge of the object, i.e., several cones
intersect in a common edge. Here, floating-point arithmeticcan cause severe prob-
lems. The main disadvantage of our implementation is a lack of speed.

Without genuine snapshot data, we tested our implementation with artificially
created data. Figure 10.2 shows such an artificial example. We computed the inter-
section of three cones generated from artificial silhouettes showing the letters M,
P, and I. Using a computer with two 3GHz processors and 4GB RAM, our imple-
mentation creates a single cone from a silhouette with 10-20vertices in about 0.005
seconds, and intersects two of these cones in about 0.1 seconds. The polyhedron
shown in Figure 10.2 was computed in 0.217 seconds. Visual hulls are often used
in real-time applications. For this purpose, we must speed up our implementation
by a factor of about 100.

The intersection of the cones consumes most of the runtime. As we will see in
the next section, the Minkowski sum has the same bottleneck.In this context, we
consider different strategies to perform a sequence of union or intersection opera-
tions efficiently.

118

10.2. MINKOWSKI SUM OF TWO NEF POLYHEDRA

Figure 10.2: Two views on a visual hull example created from three two-
dimensional silhouettes showing the capital letters M, P, and I.

10.2 Minkowski Sum of Two Nef polyhedra

The Minkowski sum of two point setsS1 ⊂ R
d andS2 ⊂ R

d, denoted byS1⊕S2,
is defined as

S1⊕S2 := {p+q : p∈ S1,q∈ S2},

wherep+ q denotes the vector sum of the vectors from the origin top andq,
respectively. Ifp = (p1, . . . , pd) andq = (q1, . . . ,qd) then we have

p+q := (p1 +q1, . . . , pd +qd).

Minkowski sums are often used in robot motion planning for non-trivially
shaped robots with translational movement. For such an application, we want to
compute the configuration space of a robotR with respect to a set of obstaclesO,
i.e., each placement of the robot without intersecting any obstacle. The placement
of the robot is given with respect to some fixed reference point of R. By R(x,y)
we denote the placement ofR at position(x,y). The configuration space can be
calculated as the negation of the Minkowski sumO⊕−R, with −R defined as
−R := {−p : p∈ R}, i.e., the point setO⊕−R includes all illegal placements of
R. −Rcan be obtained by reflection about the origin [dBvKOS97].

The computation of the Minkowski sum of two three-dimensional polyhedraM
andN is a complex problem by nature. It yields another three-dimensional polyhe-
dron, whose worst-case complexity isO(m3n3), wheremandnare the complexities
of the respective input polyhedra. Because of this, there isno exact implementation

119

CHAPTER 10. APPLICATIONS FOR NEF POLYHEDRA

Robot

Room

Minkowski sumObstacle

Figure 10.3: Tight passage: Can the robot move through the tight passage into the
room by translational movement? The Minkowski sum providesthe configuration
space of the robot. Modeling the robot as an open polygon and the obstacles as a
set of closed polygons, the Minkowski sum is an open point setthat denotes the
illegal placements. The robot can move along the boundary ofthe Minkowski sum
into the room.

to this problem. There only exist approximative approacheslike [VM04]. On the
other hand, approximative approaches are obviously not sufficient to solve tight
passage problems as shown in Figure 10.3. We present a first exact approach to the
3D Minkowski sum. Yet, our implementation is restricted to closed polyhedra, and
not all subroutines are solved by the most efficient methods.Then again, with our
binary operation as the basic building block for the most complex step, we could
already achieve promising results.

Our implementation adopts a common approach for the Minkowski sum of
non-convex polyhedra, which is based upon the solution for convex polyhedra.
The idea is to decompose non-convex polyhedra into convex sub-polyhedra. Then,
the Minkowski sum of two non-convex polyhedra is the union ofall pairwise
Minkowski sums of the two sets of sub-polyhedra.

In the following, we will first discuss solutions for the Minkowski sum of con-
vex polyhedra and present our solution based upon Nef polyhedra embedded on the
sphere. Then, we adapt a vertical decomposition method for the volume of a 3D
Nef polyhedron. Afterwards, we test strategies for the union of multiple polyhedra
by consecutive binary operations. Finally, we point out limitations and weaknesses
of our first implementation, and discuss opportunities of improving it with respect
to completeness and efficiency.

120

10.2. MINKOWSKI SUM OF TWO NEF POLYHEDRA

10.2.1 The Minkowski sum of convex polyhedra

The Minkowski sum of two convex polyhedra is a convex polyhedron, too. Fur-
thermore, it is well known that each vertexvP⊕Q of the Minkowski sumP⊕Q is
the vector sum of verticesvP in P andvQ in Q [Lat91]. Hence, a trivial solution for
the Minkowski sum of two convex polyhedraP andQ computes the convex hull
of all vector sums of vertex pairs ofP andQ. This algorithm performs a convex
hull algorithm onpq vertices, wherep andq are the number of vertices inP and
Q. Thus, using the CGAL convex hull 3 function the trivial algorithm runs in
O(pqlog(pq)) time.

Figure 10.4: The upper row shows a tetrahedron and a cube together with their
Minkowski sum. The lower row shows the normal diagrams of thethree objects.

A more efficient solution can be obtained by using normal diagrams. Each con-
vex polyhedronP has a unique dual representationNP called theGaussian diagram
or normal diagram. It is a subdivision of the sphere into vertices, edges and faces,
such that the outward-directed normal directions of all planes supporting some item
of P constitute an item ofNP. A plane supports an itemi of P, if the intersection
of the plane andP is i. For a facet ofP there is exactly one plane supporting it.
Thus, its dual item is the single point on the sphere with the same normal direction
as the supporting plane. The normal directions of the planessupporting an edgeeP

of P form a great arc on the sphere. The endpoints of the great arc are dual items
of the facets incident toeP. A face fn on NP is the dual item of a vertexvp of P.
fn is bound by a convex cycle of edges and vertices, which are thedual items of

121

CHAPTER 10. APPLICATIONS FOR NEF POLYHEDRA

the edges and facets incident tovp. The order of the edges and vertices aroundfn
coincides with the order of dual items aroundvp.

The faces ofNP⊕Q are intersections of faces ofNP andNQ. What is more, the
dual face ofvP⊕Q is the intersection of the dual faces ofvP andvQ with vP +vQ =
vP⊕Q. As a consequence, the overlay ofNP andNQ is the normal diagram of the
Minkowski sumP⊕Q. Using the overlay of the normal diagrams improves on the
trivial algorithm in two points. First, we can obtain the setof vertices ofP⊕Q
easily from the overlay by computation of the vector sum of the supports of each
face in the overlay. As a result, the construction ofP⊕Q operates on a set of
vertices that might be far smaller thanpq. However, in the worst case,P⊕Q still
hasO(pq) vertices. And second, The incidence structure ofNP⊕Q allows us to
constructP⊕Q from it in time linear toP⊕Q.

With Nef polyhedra embedded on the sphere, we can realize normal diagrams
easily. Also we can reuse their overlay algorithm for the Minkowski sum. For
this purpose, we store the coordinates of each primal vertexas the label of its dual
sface. During the overlay, the selection function performsthe vector sum on these
coordinates. The sfaces ofNP⊕Q are labeled with the coordinates of their primal
vertex.

In addition, we also store the usual set-selection marks in the labels of the
normal diagrams, such that we can perform Minkowski sums on convex polyhe-
dra with selected and unselected vertices, edges and facets. Without set-selection
marks, the input polyhedra must either be considered as openor closed. With ei-
ther input polyhedron being open, the Minkowski sum must also be open. Adding
marks, the boundary of the Minkowski can become more complex. For instance,
a vertexvP⊕Q of the Minkowski sum, which is the vector sum of verticesvP and
vQ, must be selected iff bothvP andvQ are selected. In order to obtain the correct
marks for all items of the Minkowski sum, we store the marks ofP andQ as labels
of their dual items and apply the and-operation in the selection step of the spherical
overlay.

Summing up, we combine point coordinates and boolean set-selection marks to
a new typePointBool, and store it with each item in the normal diagram. The new
class defines theoperator&&, which performs vector addition upon the points, and
the and-operation upon the bools. For svertices and sedges,the point coordinates
are meaningless; a default value is assigned.

Note that each side of the polyhedron is restricted to a single simple facet. We
do not know how to handle a polyhedron side that consists of multiple facets with
different selection marks, since each side of the polyhedron corresponds to a single
vertex in the normal diagram. It is unclear, how the structure and the set-selection

122

10.2. MINKOWSKI SUM OF TWO NEF POLYHEDRA

marks of complex polygon sides can be encoded as attributes of a vertex in the
normal diagram, or how to combine those attributes during a Boolean operation of
two normal diagrams.

Having Nef polyhedra embedded on the sphere, this approach is quite sim-
ple and more efficient than the trivial algorithm. It computes the Minkowski sum
in O((p+ q) log(p+ q) + r) time, wherer is the complexity of the Minkowski
sum. In addition to the trivial method, it can also handle selected and unselected
boundaries. On the other hand, Fogel and Halperin showed that there are much
faster methods [FH06]. They conducted experiments to compare the efficiency
of their own implementation with the trivial solution, withWeibel’s implementa-
tion of Fukuda’s method [Fuk04], and with our implementation. There is no other
known exact and robust implementation at the moment.

Fogel and Halperin implemented aCubical Gaussian map[FH06], which
projects the normal diagram onto the unit cube. They performseparate overlays
for each side of the cube. The method runs inO(r log(p+ q)) time. Fukuda’s
method is based on linear programming. Its complexity isO(δLP(3,δ)V), where
δ is the sum of the maximal degrees of vertices in the two input polytopes,V is
the number of vertices of the resulting Minkowski sum, andLP(d,m) is the time
required to solve a linear programming ind variables andm inequalities. Note,
the implementation of Fogel and Halperin is the only implementation specifically
optimized for the computation of the Minkowski sum of convexthree-dimensional
polyhedra. Fukuda’s algorithm is more general, as it can be used to compute the
Minkowski sum of polytopes in an arbitrary dimension. Our binary operations on
sphere maps can handle more complex overlays than those of normal diagrams,
which are always convex arrangements; they never include nested faces or lower
dimensional features.

The Cubical Gaussian Map proved to be much faster than the other implemen-
tations. In the conducted experiments, it was between 36 and60 times faster than
our implementation, and between 4 and 31 times faster than Weibel’s implemen-
tation. For small instances, our implementation was even slower than the trivial
method. But since the trivial method is not output-sensitive, our implementation is
much faster in complex experiments.

10.2.2 The Vertical Decomposition of a 3D Nef polyhedron.

The problem of partitioning a polyhedron into convex piecesis more complex
than its two-dimensional counterpart. In general it is not possible to decom-
pose a polyhedron into simplices, i.e., into tetrahedra, without introducing Steiner

123

CHAPTER 10. APPLICATIONS FOR NEF POLYHEDRA

e

A(pe)

FW(e)

e

SW(e)

Figure 10.5: The vertical wall for the edgee according to the two definitions.
The wall flood wallFW(e) completely fills the intersection of the vertical plane
pe throughe and the cell abovee. The cell abovee is formed by the original
polyhedron and previously inserted walls (dashed lines). The sigh wallSW(e)
covers all points that can be connected toeby a vertical edge without intersections.

points [O’R87]. The decomposition of a polyhedron into a minimum number of
convex pieces is known to be NP-hard [O’R87]. Chazelle showed that a polyhedron
with input complexityn and r reflex angles, i.e., angles larger than 180 degrees,
can be decomposed intoO(r2) convex pieces inO(nr3) time andO(nr2) space. He
also provided an example for which the bound ofO(r2) convex sub-polyhedra is
tight [Cha84].

We choose to perform a vertical decomposition, which seems to be an intuitive
and easy to implement decomposition method. We follow the common approach
of adding vertical facets usually denoted as walls. This approach was introduced
for the vertical decomposition of the three-dimensional space with respect to a
set of triangles [AS88, dBGH94]. We adapt it for the decomposition of 3D Nef
polyhedra.

A vertical wall W(e) of some non-vertical edgee is a connected subset of the
vertical planepe that supportse. There are two different definitions of vertical
walls. In the following, we present both definitions together with the vertical de-
compositions based upon them. Then we introduce an easy method for creating
vertical walls and discuss its applicability for the two decompositions.

Vertical walls were first defined by Aronov and Sharir [AS88].Adapting their
definition to our problem, vertical walls are defined as follows: LetA(pe) be the
planar arrangement of the intersection of the polyhedron, including previously

124

10.2. MINKOWSKI SUM OF TWO NEF POLYHEDRA

erected walls, withpe. Then, the vertical wall ofe consists of all faces ofA(pe)
that are incident toe and inside the polyhedron. The left graphic of Figure 10.5
illustrates the planar arrangementA(pe) and the vertical wall ofe. In order to
distinguish this definition from the other definition, whichwill be given later, we
denote such a vertical wall as aflood wall FW(e).

With the definition of flood walls, a decomposition into convex pieces is rather
simple. Erecting the flood wall of anreflex edge e, i.e., of and edge whose adjacent
facets form a reflex angle, the wall divides the reflex angle into two or three non-
reflex angles. Also, the wall does not introduce new reflex edges [AS88]. This
way, a convex decomposition can be achieved by erecting floodwalls for all reflex
edges. In the degenerate case of a vertical reflex edgeev, it suffices to consider the
edge as slightly perturbed to determine a planepev together with the corresponding
arrangementA(pev). Either plane that supportsev is appropriate.

De Berg, Guibas, and Halperin defined a vertical wall as the set of all points
that can be connected toevia a vertical segment that does not intersect a face, edge,
or vertex [dBGH94]. Adapting their definition for our purposes, we only consider
those parts of the wall that lie within the polyhedron. Further on, we denote such
a wall as thesight wall SW(e). The right graphic of Figure 10.5 illustrates the
definition.

Sight walls also divide reflex angles into non-reflex angles,but their vertical
boundary edges may become new reflex edges. Some of them may beresolved by
the other sight walls of the original reflex edges, but some may not be resolved.

In the original scenario, the decomposition of the three-dimensional space into
convex cells with respect to a set of triangles, the decomposition works in two steps.
In the first step, vertical walls are erected for all non-vertical edges. As a conse-
quence, the three-dimensional space becomes subdivided into cylindrical cells, i.e.,
each cell is bounded by several vertical, convex facets, andby two equally shaped,
non-vertical, not necessarily convex facets—one at the topand one at the bottom.
Note that there are degenerate cases, where the top and bottom facet meet in a com-
mon vertex or edge. In the second step, further vertical walls are added. They are
chosen in such a way, that they decompose the top and bottom facets of each cylin-
drical cell into convex sub-facets, and thereby they also decompose the cells into
convex sub-cells. For this purpose, any common polygon decomposition method
can be applied on the top and the bottom facet. For every edge inserted by the poly-
gon decomposition, another vertical wall is erected. Figure 10.6 illustrates the two
steps of the vertical decomposition by sight walls. Note that every vertical wall,
that is created in the second step, is convex. As a result, we need not distinguish
between flood walls and sight walls. They are the same.

125

CHAPTER 10. APPLICATIONS FOR NEF POLYHEDRA

Figure 10.6: Vertical decomposition based on the insertionof sight walls (viewed
from the top). In the first step, the polyhedron is decomposedinto xy-monotone
sub-cells. Then, further vertical walls are inserted to subdivide the cells into convex
sub-cells.

In our scenario, where we decompose the selected volumes of aNef polyhe-
dron, it is more efficient to erect walls only for those edges,whose adjacent facets
form a reflex angle. As a consequence, the cells that result from the first step are
not cylindrical, but stillxy-monotone, i.e., the intersection of a vertical line with
a cell is either empty or connected. The cells are still bounded by multiple verti-
cal facets, but the top and the bottom may consist of multiplefacets, which form
convex surface patches. Again, we can find proper vertical walls for the second
step by decomposing a polygon. Projecting the top and bottompatch of a cell into
thexy-plane, both projections form the same polygon. This polygon needs not to
be convex. Vertical walls, whose projection decompose the polygon into convex
sub-polygons, decompose the cell into convex sub-cells.

The decomposition based on sight walls implies two major advantages: the
result of the decomposition does not depend on the order of the wall erection, and
the decomposition yields fewer sub-polyhedra [dBGH94].

So far, we described how to partition the selected volumes ofa Nef polyhedron.
For holes in a volume we need no special treatment. If there are selected boundary
parts in an unselected volume that do not enclose a selected volume, we handle
each such facet, isolated edge, or isolated vertex as a separate sub-polyhedron.

But how do we create walls? Since we decompose volumes of a polyhedron
enclosed by a shell, often it is fairly easy to insert a flood wall of some edgee in
the outer shell of a volume. Starting frome, we walk along the intersection of the
shell with the vertical planepe supportinge. During the walk, we adapt the sphere
maps of the encountered vertices and create new vertices when the walk crosses
an edge. The twin relation between halfedges can easily be updated. The walk

126

10.2. MINKOWSKI SUM OF TWO NEF POLYHEDRA

terminates when it returns toe. If this newly created facet cycle is an outer cycle
of the wall, and there are no inner cycles, we only need to recompute the SNC in
order to finalize the creation of the wall.

For the walk along the shell, we need ray shooting to detect the next intersection
with the 1-skeleton of the shell. We use our kd-tree for this purpose, which we
update every time a new vertex or a new edge is created. For this purpose, we add
those objects into the proper leaf nodes of the kd-tree. Because the walk only needs
the 1-skeleton and the kd-tree to be up-to-date, it is not necessary to recompute the
SNC in a series of wall creations. It suffices to recompute it once at the end.

The walk is an easy solution to create the outer boundary of a wall, but it is not
sufficient to create all walls properly. In the first wall creation phase, a wall may be
intersected in its interior and therefore may contain holes. Since after the first wall
creation phase, there are no inner cycles left, it seems likethose boundary cycles
are not necessary. But they become part of an outer cycle later in the decomposition
process.

Another problem occurs, when a walk started from an edgee does not create
outer cycles, but an inner cycles. This happens, when multiple shells intersectpe,
or one shell intersectspe multiple times. In both cases the walk would create an
inner facet cycle we are probably not interested in, becauseonly in degenerate
cases there is another edgee′ that lies in the same planepe = pe′ , and that triggers
the construction of the outer cycle ofW(e) = W(e′).

We want to adjust the walk in such a way, that it creates sight walls instead
of flood walls. Because of their definition, a sight wall isxy-monotone. As a
result, there can be no holes in a sight wall; they only have anouter face cycle.
The outer boundary of a sight wallSW(e) is composed of three types of segments:
intersections with the shells, intersections with other walls, and vertical segments
from an endpoint ofe to the first intersection with some boundary element. We
denote segments of the third type as thelateral delimitersof SW(e). The walk can
be applied for the creation ofSW(e), if we can guarantee that the walls that are part
of SW(e)’s boundary, further on denoted as theprerequisite wallsof SW(e), have
been erected before. Then, we start by creating the lateral delimiters and perform
two separate walks afterwards; one creates the lower, and the other the upper part
of SW(e). With lower and upper parts, we refer to the set of points of a sight wall
SW(e) that are vertically below or abovee.

In general, the reflex edges of a selected volume cannot be sorted in such a
way, that all prerequisite walls of some wallSW(e) are erected beforeSW(e) itself.
There can be mutual and cyclic dependencies. The mutual dependencies can be
resolved by first creating the lower parts of all sight walls,and then all upper parts,

127

CHAPTER 10. APPLICATIONS FOR NEF POLYHEDRA

Figure 10.7: Variation of Schönhardt polyhedron with a quadratic base viewed
from the side and from the top. The diagonals of the sides are reflex edges, which
are circular dependent on one another.

or the other way around. But amongst all lower, and amongst all upper parts,
there can still be cyclic dependencies. Figure 10.7 shows anexample for cyclic
dependencies.

To create the lower parts of the sight walls of all reflex edges, we sort the
reflex edges by their smaller endpoint in ascending lexicographic order, resolve
dependency problems, create the lateral delimiters for thelower parts, and finally
apply the walk in the determined order. After sorting the reflex edges by their lower
endpoint, we must resolve the situation, wheree1 is sorted in front ofe2, because
its lower endpoint is lexicographically smaller, bute2 is a prerequisite wall ofe1.
The edgese1 ande2 have a common vertical intersection linelv, which intersectse1

in i1 ande2 in i2, wherei1 lies abovei2. We splite2 = (s2, t2) at i2 into e′2 = (s2, i2)
ande′′2 = (i2, t2), and insert both parts at the proper position of the sorted sequence
of reflex edges. In consequence,e1 is still created before both parts ofe2, but does
not dependent on their prior erection. Instead ofe2, the common vertical delimiter
of e′2 ande′′2 have become part ofSW(e1)’s boundary. The complete procedure for
decomposing the selected volume of a Nef polyhedron intoxy-monotone cells, is
summarized in Algorithm 2.

For the second step of the decomposition—the decompositionof xy-monotone
cells into convex sub-cells—we still need to specify how we find a proper set of
vertical walls that divides the remaining reflex edges. Those remaining reflex edges
either are vertical edges not handled in the first phase, or vertical boundary edges
of the sight walls created in the first phase. We choose the following easy to adapt
y-vertical polygon decomposition. For everyreflex vertex v, i.e., for every vertex

128

10.2. MINKOWSKI SUM OF TWO NEF POLYHEDRA

Algorithm 2 Decomposition of a 3D Nef polyhedron intoxy-monotone pieces.
1: procedure XY MONOTONE DECOMPOSITION(N)
2: R= /0
3: for all edgeseof N do
4: if !is vertical(e) AND volume below is selected(e) then
5: R= R∪e
6: end if
7: end for

8: Sort edges inRby their smaller endpoints in ascending order
9: Resolve dependencies inR

10: Insert lateral delimiters in−zdirection

11: for all edgese∈ Rdo createlower part of sight wall(e)
12: end for

13: R= /0
14: for all edgeseof N do
15: if !is vertical(e) AND volume aboveis selected(e) then
16: R= R∪e
17: end if
18: end for

19: Sort edges inRby their larger endpoints in descending order
20: Resolve dependencies inR
21: Insert lateral delimiters inzdirection

22: for all edgese∈ Rdo createupperpart of sight wall(e)
23: end for
24: end procedure

129

CHAPTER 10. APPLICATIONS FOR NEF POLYHEDRA

whose interior angle is bigger than 180 degrees, we insert eithery-vertical edge that
starts atv and crosses the polygon’s interior. The reflex vertices of the 2D version
correlate to the remaining reflex edges of thexy-monotone cells, and they-vertical
edges correlate to walls parallel to theyz-plane, where each wall divides the cell in
two separate parts. We can easily create such a wall by starting our walk from a
reflex edge in the proper direction. Summing up, we decomposeanxy-monotone
cell into convex pieces by creating either wall parallel to theyz-plane that divides
a reflex edge.

10.2.3 Uniting a Set of 3D Polyhedra

The implementation of the main routine of the Minkowski sum is straight for-
ward except for one point. The union of the Minkowski sums of the convex sub-
polyhedra is resolved by multiple binary union operations.Here, it is essential not
to perform the binary operations in arbitrary order. The complexity of our binary
operation depends on the complexities of both input and the result polyhedron in
equal shares. As a consequence, it is favorable uniting small polyhedra first. Since
we cannot foresee the optimal order, we test three differentstrategies.

The trivial method maintains one Nef polyhedron holding thecurrent interme-
diate result. It starts with an empty polyhedron and adds thepolyhedra one by one.
This method is expected to perform very badly, since most of the union operations
involve at least one big polyhedron, namely the intermediate result.

The second method aims for more balanced operations. We initialize a queue
with all polyhedra in arbitrary order. The method continuously takes the first two
polyhedra from the queue, unites them, and appends the result. As the decompo-
sition creates constant-sized sub-polyhedra, we can assume that we always unite
polyhedra of similar size. The method finishes with the result left as the sole re-
maining item in the queue.

The third method refines the second one. Instead of a normal queue, we main-
tain a priority queue. The priority of a polyhedron is its size measured by the
number of its vertices. As a result, each union operation is performed on the two
smallest polyhedra in the priority queue. Again, the resultof each union is inserted
into the queue, and the method terminates with the result left as the final remaining
element in the queue.

We compute the Minkowski sum of a two-manifold, triangulated mesh, which
depicts a mushroom, with a cube. Our implementation decomposes the mushroom,
which has 226 vertices, 672 facets, and 213 reflex edges, into304 sub-polyhedra.
We do not decompose the cube, which surely is convex. Figure 10.8 shows the

130

10.2. MINKOWSKI SUM OF TWO NEF POLYHEDRA

Figure 10.8: The bottom right picture shows the Minkowski sum of a mushroom
(top left) and a cube (bottom left). The top right picture shows the mushroom
vertically decomposed by vertical walls.

mushroom, the decomposed mushroom, the cube, and the Minkowski sum of the
mushroom and the cube. The total runtime of the Minkowski sumand the runtimes
of its major parts are listed in Table 10.1.

The fastest method computes the Minkowski sum in 106 seconds. As expected,
the union of the intermediate results takes most of the time—about 75% with the
fastest union method. Surprisingly, the queue outperformed the priority queue.
We assume, that the order of the intermediate results in the queue was not arbitrary
after all. It is likely, that the volumes are ordered in such away, that the Minkowski

trivial queue priority queue
decomposition 9s 10s 10s

convex sum 14s 17s 15s
union 269s 79s 104s
total 292s 106s 129s

Table 10.1: Runtime of the Minkowski sum of a mushroom and a cube. For the
union of the Minkowski sums of the cube with each the sub-polyhedra of the mush-
room, three methods are compared.

131

CHAPTER 10. APPLICATIONS FOR NEF POLYHEDRA

sums of neighbor cells in the decomposition reappear close to each other in the
queue. The union of two such polyhedra has a lower complexitythan the union
of the same two polyhedra far apart from one another. Using a priority queue, the
neighboring structure gets totally lost. Hence, the first unions unite polyhedra far
apart. We conclude, that there is much to gain from an elaborate union strategy.

10.2.4 Limitations and Future Work

As already mentioned at the beginning of this section, our current implementation
of the Minkowski sum is restricted to closed polyhedra. The reason is, that the sides
of the convex sub-polyhedra returned by our decomposition may be complex, i.e.,
a side may consist of several selected and unselected facets. On the other hand, we
do not know how to compute the Minkowski sum of convex sub-polyhedra with
complex sides. Neither of the presented methods applies.

One approach to overcome this problem is a finer decomposition, such that
each side of the convex sub-polyhedra is simple. This approach seems not effective,
because a finer decomposition means that more convex sums, which also have
larger combined complexity, have to be united at the end of the Minkowski sum
computation. Hence, the union step, which already is the most time consuming
step, would becomes slower. A more promising approach computes the Minkowski
sum of the complex sides as a separate step. Here, well-examined solutions for the
Minkowski sum of non-convex polygons can be applied [AFH02].

The test run of our Minkowski sum implementation showed thatthe secluding
union step is the major bottleneck. We already examined three strategies for uniting
a set of polyhedra by consecutive binary unions, and want to continue with more
sophisticated strategies. Another way to reduce the time spent for the union is to
implement ann-ary Boolean operation on 3D Nef polyhedra. It is not clear how
efficient ann-ary operation can be. But the potential seems large in consideration
of the many intermediate kd-trees and SNCs that can be spared. Essential for an
efficientn-ary operation is a proper search data structure that identifies the locations
of the candidate vertices. Also it should provide the set of input polyhedra whose
boundary intersects the location of a candidate vertex. Ann-ary operation surely is
interesting for the visual hull computation, too.

132

Chapter 11

Conclusion

In this thesis we have presented data structures that realize a boundary represen-
tation of Nef polyhedra in three-dimensional space, together with algorithms for
Boolean and topological operations on them. Our implementation has two fea-
tures that improve on the polyhedron modelers currently on the market. First, it
is exact, i.e., it always computes the correct result, is robust, and can handle all
degeneracies. Second, its modeling space contains half-spaces and is closed under
Boolean and topological operations. Consequently, we can represent non-manifold
situations, open and closed boundaries, and mixed-dimensional features.

In December 2004, our implementation was released as Open Source software
in the Computation Geometry Algorithm Library (CGAL) release 3.1. It supports
the construction of Nef polyhedra from half-spaces and manifold solids, Boolean
and topological operations, rotation by rational rotationmatrices, translation and
scaling. Furthermore, we provide visualization via QT.

11.1 Results

By performing and analyzing several experiments, we examined our binary oper-
ation routine and its major subroutines. We were able to confirm their worst-case
runtime, as well as the runtime expected under the assumption of well-shaped ge-
ometry. The experiments showed that the runtime of the binary operations clearly
diverges from the runtime expected under the assumption of well-shaped geome-
try if a polyhedron contains a facet of linear size. Thus, point-location and ray-
shooting queries posed to our kd-tree can only be answered intime quadratic to the
polyhedron’s complexity.

133

CHAPTER 11. CONCLUSION

Another set of experiments showed that our implementation can compete with
the commercial CAD kernel ACIS R13. Usually ACIS is faster by a factor of about
four, but in some situations we perform even better than ACIS, despite that ex-
act arithmetic is used instead of floating-point arithmetic. Because of the exact
arithmetic, our algorithms are robust even in scenarios where ACIS fails. We lose
ground on ACIS in situations where a complex polyhedron is slightly altered by a
small and simple polyhedron. In this case, we are about seventimes slower than
ACIS.

We realized two example applications: the visual hull of a three-dimensional
polyhedron and the Minkowski sum of two closed Nef polyhedra. Both applica-
tions are not optimized; however, they demonstrate the potential of our polyhedron
modeler. What is more, our implementation of the Minkowski sum is the first exact
solution for three-dimensional non-convex polyhedra. At the moment we can only
handle closed polyhedra, and therefore cannot handle tightpassages.

11.2 Future work

The most important improvement to our implementation will be the adaptation for
the effective use of floating point filters. We expect it to provide a major speed up.
In addition to the faster arithmetic operations, categorizing items by indices will
clearly be faster than categorizing them by geometric properties.

The kd-tree is an important tool for our application. It efficiently solves point-
location and ray-shooting queries. On the other side, it often becomes the bottle-
neck of our implementation, especially if a polyhedron witha linear-sized facet is
involved in a binary operation. In Section 9.6 we discussed several opportunities
to improve on the point location and the ray shooting. One idea is to solve all
point-location and ray-shooting queries needed in a binaryoperation batched with
the help of a special streamed data structure as the first stepof the binary opera-
tion. Also, it might be interesting to offer several ray-shooting and point-location
strategies, which are exchangeable by the user between binary operations. This
way, the user can choose the best strategy depending on the subsequent need for
point location and ray shooting.

In addition, we want to improve our two applications. For both applications
it will be interesting to develop efficientn-ary operations. Withn-ary intersection
operations and the efficient use of floating point filters, we want to make the visual
hull competitive to its inexact counterparts. Also, we wantto extend our imple-
mentation of the Minkowski sum to arbitrary Nef polyhedra inorder to exactly
compute configuration spaces with tight passages in three-dimensional space.

134

Bibliography

[AFH02] P. K. Agarwal, E. Flato, and D. Halperin. Polygon decomposition
for efficient construction of minkowski sums.Computational Ge-
ometry: Theory and Application, 21:39–61, 2002.

[AR94] A. Agarwal and A. G. Requicha. A paradigm for the robust design
of algorithms for geometric modeling.Computer Graphics Forum,
13(3):33–44, 1994.

[AS88] B. Aronov and M. Sharir. Triangles in space or building (and analyz-
ing) castles in the air. InSCG ’88: Proceedings of the fourth annual
symposium on Computational geometry, pages 381–391, New York,
NY, USA, 1988. ACM Press.

[Aut] Autodesk.The Autodesk homepage. http://www.autodesk.com.

[Ben75] J. L. Bentley. Multidimensional binary search trees used for asso-
ciative searching.Commun. ACM, 18(9):509–517, September 1975.

[BFS98] C. Burnikel, S. Funke, and M. Seel. Exact arithmeticusing cas-
caded computation. InProceedings of the 14th Annual Symposium
on Computational Geometry (SCG’98), pages 175–183, 1998.

[Bie95] H. Bieri. Nef polyhedra: A brief introduction.Computing Supple-
ment, 10:43–60, 1995.

[Bie96] H. Bieri. Two basic operations for Nef polyhedra. InCSG 96: Set-
theoretic Solid Modelling: Techniques and Applications, pages 337–
356. Information Geometers, April 1996.

[BMP94] M. Benouamer, D. Michelucci, and B. Peroche. Error-free boundary
evaluation based on a lazy rational arithmetic: a detailed implemen-
tation. Computer-Aided Design, 26(6), 1994.

135

BIBLIOGRAPHY

[BN88] H. Bieri and W. Nef. Elementary set operations withd-dimensional
polyhedra. InProceedings on International Workshop on Computa-
tional Geometry on Computational Geometry and its Applications,
LNCS 333, pages 97–112. Springer Verlag, 1988.

[BO79] J. L. Bentley and T. A. Ottmann. Algorithms for reporting and count-
ing geometric intersections.IEEE Trans. Comput., C-28(9):643–
647, September 1979.

[BPP95] G. Bell, A. Parisi, and M. Pesce. Vrml the virtual reality model-
ing language: Version 1.0 specification.http://www.web3d.org/

, May 26 1995. Third Draft.

[BR96] R. Banerjee and J. Rossignac. Topologically exact evaluation of
polyhedra defined in CSG with loose primitives.Computer Graph-
ics Forum, 15(4):205–217, 1996.

[BS04] Jasmin Blanchette and Mark Summerfield.C++ GUI Programming
with Qt 3. PH, 2004.

[CDR92] J. Canny, B. R. Donald, and E. K. Ressler. A rational rotation
method for robust geometric algorithms. InProceedings of the 8th
annual Symposium on Computational Geometry (SCG ’92), pages
251–260, 1992.

[CGA] The CGAL Homepage. http://www.cgal.org/.

[Cha84] B. Chazelle. Convex partitions of polyhedra: a lower bound
and worst-case optimal algorithm.SIAM Journal on Computing,
13(3):488–507, 1984.

[CLR90] T. H. Cormen, C. E. Leiserson, and R. L. Rivest.Introduction to
Algorithms. MIT Press, 1990.

[Das] Dassault Systèmes.The Dassault Systèmes homepage. http://

www.3ds.com/.

[dBGH94] M. de Berg, L.J. Guibas, and D. Halperin. Vertical decomposi-
tions for triangles in 3-space. InSCG ’94: Proceedings of the tenth
annual symposium on Computational geometry, pages 1–10, New
York, NY, USA, 1994. ACM Press.

[dBvKOS97] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf.
Computational Geometry: Algorithms and Applications. Springer
Verlag, 1997.

136

BIBLIOGRAPHY

[DMY93] K. Dobrindt, K. Mehlhorn, and M. Yvinec. A complete and efficient
algorithm for the intersection of a general and a convex polyhedron.
In Proceedings of the 3rd Workshop on Algorithms and Data Struc-
tures, LNCS 709, pages 314–324, 1993.

[EO85] H. Edelsbrunner and M. H. Overmars. Batched dynamic solutions to
decomposable searching problems.Journal of Algorithms, 6:515–
542, 1985.

[FGK+00] A. Fabri, G.-J. Giezeman, L. Kettner, S. Schirra, and S. Schönherr.
On the design of CGAL a computational geometry algorithms li-
brary. Softw. – Pract. Exp., 30(11):1167–1202, 2000.

[FH95] U. Finke and K.H. Hinrichs. Overlaying simply connected planar
subdivisions in linear time. InSCG ’95: Proceedings of the eleventh
annual symposium on Computational geometry, pages 119–126,
New York, NY, USA, 1995. ACM Press.

[FH06] E. Fogel and D. Halperin. Exact and efficient construction of
minkowski sums of convex polyhedra with applications. In7th
Workshop on Algorithm Engineering and Experiments (ALENEX
06), 2006. to appear.

[For97] S.J. Fortune. Polyhedral modelling with multiprecision integer arith-
metic. Computer-Aided Design, 29:123–133, 1997.

[Fuk04] K. Fukuda. From the zonotope construction to the minkowski
addition of convex polytopes.Journal of Symbolic Computation,
38(4):1261–1272, 2004.

[FW93] S.J. Fortune and C.J. Van Wyk. Efficient exact arithmetic for com-
putational geometry. InSCG ’93: Proceedings of the ninth annual
symposium on Computational geometry, pages 163–172, New York,
NY, USA, 1993. ACM Press.

[FW96] S.J. Fortune and C.J. Van Wyk. Static analysis yieldsefficient exact
integer arithmetic for computational geometry.ACM Transactions
on Graphics, 15(3):223–248, July 1996.

[GCP90] E.L. Gursoz, Y. Choi, and F.B. Prinz. Vertex-based representation
of non-manifold boundaries.Geometric Modeling for Product En-
gineering, 23(1):107–130, 1990.

137

BIBLIOGRAPHY

[GHJV95] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design Patterns
– Elements of Reusable Object-Oriented Software. Addison-Wesley,
1995.

[gpr] The GNU profiler homepage.http://www.gnu.org/software/
binutils/manual/gprof-2.9.1/.

[Hal02] D. Halperin. Robust geometric computing in motion.Int. J. of
Robotics Research, 21(3):219–232, 2002.

[Hav00] Vlastimil Havran.Heuristic Ray Shooting Algorithms. Ph.d. thesis,
Department of Computer Science and Engineering, Faculty ofElec-
trical Engineering, Czech Technical University in Prague,Novem-
ber 2000.

[Hof89] Christoph M. Hoffmann.Geometric and Solid Modeling – An Intro-
duction. Morgan Kaufmann, 1989.

[HPKS02] S. Hert, T. Polzin, L. Kettner, and G. Schäfer. Explab - a tool set for
computational experiments. Research Report MPI-I-2002-1-004,
MPI für Informatik, Saarbrücken,Germany, 2002.

[HSW01] M. Hemmer, E. Schömer, and N. Wolpert. Computing a 3-
dimensional cell in an arrangement of quadrics: Exactly andactu-
ally! In ACM Symp. on Comp. Geom., pages 264–273, 2001.

[HW96] J. Hartman and J. Wernecke.The VRML 2.0 Handbook: Building
Moving Worlds on the Web. Addison-Wesley, 1996.

[JLM00] M. Jazayeri, R. Loos, and D.R. Musser, editors.Generic Program-
ming, International Seminar on Generic Programming, Dagstuhl
Castle, Germany, April 27 - May 1, 1998, Selected Papers, volume
1766 ofLecture Notes in Computer Science. Springer, 2000.

[Kar89] M. Karasick. On the Representation and Manipulation of Rigid
Solids. Ph.D. thesis, Dept. Comput. Sci., McGill Univ., Montreal,
PQ, 1989.

[Ket99] L. Kettner. Using generic programming for designing a data struc-
ture for polyhedral surfaces.Computational Geometry: Theory and
Applications, 13:65–90, 1999.

[KKM97] J. Keyser, S. Krishnan, and D. Manocha. Efficient andaccurate
B-rep generation of low degree sculptured solids using exact arith-
metic. InProc. ACM Solid Modeling, 1997.

138

BIBLIOGRAPHY

[KLN91] M. Karasick, D. Lieber, and L. R. Nackman. Efficient delaunay tri-
angulation using rational arithmetic.ACM Trans. Graph., 10(1):71–
91, 1991.

[KM76] K. Kuratowski and A. Mostowski.Set Theory. North-Holland Pub-
lishing Co., 1976.

[KMP+04] Lutz Kettner, Kurt Mehlhorn, Sylvain Pion, Stefan Schirra, and
Chee Yap. Classroom examples of robustness problems in geometric
computations. InESA, pages 702–713, 2004.

[Lat91] J.-C. Latombe.Robot Motion Planning. Kluwer Academic Publish-
ers, Norwell, MA, USA, 1991.

[Lau94] A. Laurentini. The visual hull concept for silhouette-based image
understanding.IEEE Trans. Pattern Anal. Mach. Intell., 16(2):150–
162, 1994.

[LPY04] Chen Li, Sylvain Pion, and Chee Yap. Recent progressin exact
geometric computation.J. of Logic and Algebraic Programming,
64(1):85–111, 2004. Special issue on “Practical Development of
Exact Real Number Computation”.

[Män88] M. Mäntylä. An Introd. to Solid Modeling. Comp. Science Press,
Rockville, Maryland, 1988.

[Mid94] A. E. Middleditch. “The bug” and beyond: A history ofpoint-set
regularization. InCSG 94 Set-theoretic Solid Modelling: Techn.
and Appl., pages 1–16. Inform. Geom. Ltd., 1994.

[Mil00] Victor Milenkovic. Shortest path geometric rounding. Algorithmica,
27(1):57–86, 2000.

[MN94] K. Mehlhorn and S. Näher. The implementation of geometric algo-
rithms. InProceedings of the 13th IFIP World Computer Congress,
volume 1, pages 223–231. Elsevier Science B.V. North-Holland,
Amsterdam, 1994.

[MN99] K. Mehlhorn and S. Näher.LEDA: A Platform for Combinatorial
and Geometric Computing. Cambridge University Press, 1999.

[MS03] K. Mehlhorn and M. Seel. Infimaximal frames: A technique for
making lines look like segments.International Journal of Compu-
tational Geometry and Application, 13(3):241–255, 2003.

139

BIBLIOGRAPHY

[Mul90] K. Mulmuley. A fast planar partition algorithm, i.J. Symb. Comput.,
10(3-4):253–280, 1990.

[Mye95] Nathan C. Myers. Traits: a new and useful template technique.
C++ Report, June 1995.

[Nef78] W. Nef. Beiträge zur Theorie der Polyeder. Herbert Lang, Bern,
1978.

[O’R87] J. O’Rourke. Art Gallery Theorems and Algorithms. Oxford Uni-
versity Press, Inc., New York, NY, USA, 1987.

[Phi96] M. Phillips. Geomview Manual, Version 1.6.1 for Unix Worksta-
tions. The Geometry Center, University of Minnesota, 1996.http:

//www.geom.umn.edu/software/download/geomview.html.

[Req80] Aristides G. Requicha. Representations for rigid solids: Theory,
methods, and systems.ACM Computing Surveys, 12(4):437–464,
1980.

[RO89] J. R. Rossignac and M. A. O’Connor. SGC: A dimension-
independent model for pointsets with internal structures and incom-
plete boundaries. In M. Wozny, J. Turner, and K. Preiss, editors,Ge-
ometric Modeling for Product Engineering. North-Holland, 1989.

[RR] J. R. Rossignac and A. G. Requicha. Solid modeling.http://

citeseer.nj.nec.com/209266.html.

[Sam90a] H. Samet. Applications of Spatial Data Structures: Computer
Graphics, Image Processing, and GIS. Addison-Wesley, Reading,
MA, 1990.

[Sam90b] H. Samet.The Design and Analysis of Spatial Data Structures.
Addison-Wesley, 1990.

[See01a] M. Seel. Implementation of planar Nef polyhedra. Research Report
MPI-I-2001-1-003, MPI für Informatik, Saarbrücken, Germany, Au-
gust 2001.

[See01b] M. Seel.Planar Nef Polyhedra and Generic Higher-dimensional
Geometry. PhD thesis, Universität des Saarlandes, Saarbrücken,
Germany, 5. December 2001.

[Spa04] Spatial Corp., A Dassault Systèmes company.ACIS R13 Online
Help, 2004.

140

BIBLIOGRAPHY

[Sto91] J. Stolfi.Oriented Projective Geometry: A Framework for Geomet-
ric Computations. Academic Press, New York, NY, 1991.

[Tro] Trolltech. Trolltech—Cross-platform C++ Gui Development, and
Embedded Linux Solutions. http://www.trolltech.com/.

[UGS] UGS. UGS: Product Lifecycle Management (PLM) Solutions.
http://www.ugs.com/.

[VM04] G. Varadhan and D. Manocha. Accurate minkowski sum approxima-
tion of polyhedral models. InPG ’04: Proceedings of the Computer
Graphics and Applications, 12th Pacific Conference on (PG’04),
pages 392–401, Washington, DC, USA, 2004. IEEE Computer So-
ciety.

[VRM96] The virtual reality modeling language specification: Version 2.0,
ISO/IEC CD 14772.http://www.web3d.org/, August 4 1996.

[Wei88] K. Weiler. The radial edge structure: A topologicalrepresentation
for non-manifold geometric boundary modeling. In M. J. Wozny,
H. W. McLaughlin, and J. L. Encarnaçao, editors,Geom. Model. for
CAD Appl., pages 3–36. IFIP, May 12–16 1988.

[Wer94] J. Wernicke.The Inventor Mentor: Programming Object-Oriented
3D Graphics with Open Inventor, Release 2. Addison-Wesley, 1994.

[Yap97] C. Yap. Towards exact geometric computation.Computational Ge-
ometry: Theory and Applications, 7(1):3–23, 1997.

[YD95] C. K. Yap and T. Dubé. The exact computation paradigm. In D.-Z.
Du and F. K. Hwang, editors,Computing in Euclidean Geometry,
volume 4 ofLecture Notes Series on Computing, pages 452–492.
World Scientific, Singapore, 2nd edition, 1995.

[ZE02] A. Zomorodian and H. Edelsbrunner. Fast software forbox intersec-
tion. Int. J. Computational Geometry and Applications, 12:143–172,
2002.

141

