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Kurzzusammenfassung

Nef-Polyeder sindl-dimensionale Punktmengen, die durch eine endliche Anzahl
boolescher Operationen tiber Halbraumen generiert \wwefsie sind abgeschlos-
sen hinsichtlich boolescher und topologischer OperatioAds Konsequenz dar-
aus konnen sie nicht-mannigfaltige Situationen, offend geschlossene Men-
gen und gemischt-dimensionale Komplexe darstellen. Digefieinheit von Nef-
Komplexen ist unentbehrlich fur einige Anwendungen.

In dieser Doktorarbeit stellen wir eine neue Datenstrultrr die eine Rand-
darstellung von dreidimensionalen Nef-polyedern und Atgmen fir boolesche
Operationen realisiert. Wir benutzen exakte Arithmetik dim bekannten Pro-
bleme mit Gleitkommaarithmetik und Degeneriertheiten eumeiden. Aul3erdem
prasentieren wir wichtige Optimierungen der Algorithmerd bewerten die opti-
mierte Implementierung an Hand umfassender Experimengée Experimente
belegen die theoretische Laufzeitanalyse und vergleicimsere Implementation
mit dem kommerziellen CAD kernel &s. Acis is meistens bis zu sechs mal
schneller, aber es gibt auch Beispiele bei denemsAcheitert.

Nef-Polyeder konnen bei einer Vielzahl von Anwendungemyesetzt werden.
Wir prasentieren einfache Implementationen zweier Ardugigen — von der visu-
ellen Hulle und von der Minkowski-Summe zwei abgeschlnssdef-Polyeder.

Abstract

Nef polyhedra ird-dimensional space are the closure of half-spaces undérdmo
set operations. Consequently, they can represent norfatthsituations, open and
closed sets, mixed-dimensional complexes, and they asedlonder all boolean
and topological operations, such as complement and boundlae generality of
Nef complexes is essential for some applications.

In this thesis, we present a new data structure for the boynidaresentation
of three-dimensional Nef polyhedra and efficient algorighfor boolean opera-
tions. We use exact arithmetic to avoid well known problenith Woating-point
arithmetic and handle all degeneracies. Furthermore, @gept important opti-
mizations for the algorithms, and evaluate this optimizaglementation with ex-
tensive experiments. The experiments supplement thedtiesrruntime analysis



and illustrate the effectiveness of our optimizations. \Gkapare our implementa-
tion with the Acis CAD kernel. Acis is mostly faster, by a factor up to six. There
are examples on which@&s fails.

Nef polyhedra can be used in many a variety of applications p¥sent simple
implementations of the visual hull, and of the Minkowski sofrtwo closed Nef
polyhedra.



Zusammenfassung

Nef-Polyeder sindd-dimensionale Punktmengen, die durch eine endliche An-
zahl boolescher Operationen tUber Halbraumen generiertlenm. Sie sind abge-
schlossen hinsichtlich boolescher und topologischer &jmeren. Infolgedessen
kdnnen sie nicht-mannigfaltige Situationen, offene uadalossene Mengen und
gemischt-dimensionale Komplexe darstellen. Nef-Polyededen zuerst von W.
Nef in seinem wegweisenden Buch Uber Polyeder von 197&#&ihg. Die Allge-
meinheit von Nef-Komplexen ist unentbehrlich fir einigawendungen.

Unsere Implementation von dreidimensionalen Nef-Polgeaeurde im De-
zember 2004 als Open Source als Teil der Computational GeprAggorithm
Library (CGAL) Release 3.1 herausgegeben und stof3t seigde groRes Interes-
se. Unser wichtigstes Herausstellungsmerkmal ist die ¥dung exakter Arith-
metik, mit deren Hilfe wir robuste Operationen und die Beatlang aller Dege-
neriertheiten realisieren konnten. Wir unterstiitzenKbastruktion mannigfalti-
ger Korper gegeben im OFF Dateiformat, boolesche OpertidVereinigung,
Schnitt, Komplement, Differenz, symmetrische Differenapologische Operatio-
nen (Innenraum, Rand, Abschluss, Regularisierung),estdfine Transformatio-
nen und Rotationen durch rationale Rotationsmatrizen.

Nef-Polyeder mit beschranktem Rand konnen eindeutigidaine Reprasen-
tation der lokalen Umgebungen ihrer Knoten dargestelldeer Wir nutzen diese
Eigenschaft, indem wir die lokale Umgebung eines Knotemshdain auf der Ku-
geloberflache eingebettetes zweidimensionales Nefeldelyreprasentieren. Die
Darstellung eines dreidimensionalen Nef-Polyedersralikirch die Knoten und
ihrer lokalen Umgebungen ist ausreichend, aber weder beaqueh effizient zu
handhaben. Aus diesem Grund berechnen wir zusatzlichotfieriden Inziden-
zen: Kanten, Facettenzyklen, die Verschachtelung dertteazgklen, Zusammen-
hangskomponenten und die Verschachtelung der Zusamngskwmponenten.
Alle Knoten, Kanten, Facetten und Volumen tragen eine Menggehorigkeits-
Markierung. Damit unterscheiden wir zur Punktmenge gglet©bjekte von rein
begrenzenden Objekten. Durch einen Reduktionsmechasismyeitern wir un-
sere Reprasentation auf allgemeine dreidimensionalePdigeder. Wir schneiden
ins Unendliche laufende Kanten und Facetten an einem biveed grof3en, um-
schlieBenden, achsenparallelen Wirfel ab. Dadurchednitsin Nef-Polyeder mit
beschranktem Rand, welches wir wie oben beschrieberetiarst

Um die wichtigsten Teilroutinen unserer binaren Operaio Uber Nef-
Polyedern zu beschleunigen, benutzen wir heuristischédatenstrukturen. Mit



der Hilfe eines kd-Baumes berechnen wir den ersten Schnlktpeines Strahls
mit dem Rand eines Nef-Polyeders und die Lage eines Punkt&&ihaltnis zu
einem Nef-Polyeder. Weiterhin schneiden wir die minimabkghiie3enden Boxen
von Kanten und Facetten zweier Polyeder, um schnell eineeki@bermenge aller
Schnitte zwischen Kanten und Facetten der zwei Polyedatentifizieren.

Wir haben unsere Implementation an Hand umfassender Expete getes-
tet. Die Experimente untersuchen das Laufzeitverhaltesenam binaren Operatio-
nen in speziellen Situationen. Dabei interessieren unslisiogenerische Situatio-
nen, wie z.B. die Subtraktion eines kleinen und simplen Kibjeon einem grof3en
und komplexen Objekt, als auch Situationen, die eine bessrsthlechte Laufzeit
der wichtigsten Teilschritte unseres Algorithmus bewirk&uRerdem bestatigen
wir an Hand dieser Experimente auch die theoretisch beetehtomplexitat der
binaren Operationen und ihrer wichtigsten Teilschriae weitere Gruppe von
Experimenten belegt den Nutzen von wichtigen Optimierandse letzte Grup-
pe unserer durchgefiihrten Experimente vergleicht urisgseementation mit dem
kommerziellen CAD Kernel &1sR13. Die beiden Systeme sind recht unterschied-
lich, da beide Uber Fahigkeiten verfugen, die dem amdéklen. Wahrend Ais
zusatzlich mit gekrimmten Objekten umgehen kann, vedetas andererseits die
auf dem Markt Ubliche Gleitkommaarithmetik und ist somaht robust. Die Er-
gebnisse zeigen, das<hs R13 im Allgemeinen bis zu sieben mal schneller ist. In
manchen Szenarien istdAs jedoch langsamer oder schlagt sogar fehl.

Nef-Polyeder kdnnen bei einer Vielzahl von Anwendungemgesetzt werden.
Wir prasentieren einfache Implementierungen zweier Arduegen — von der vi-
suellen Hille und von der Minkowski-Summe zwei abgesddasr Nef-Polyeder.
Die Implementierung der visuellen Hille konnte schnelll wine grol3e Schwie-
rigkeiten durchgefuihrt werden. Sie ist robust und umfadsaber noch zu lang-
sam fur viele Anwendungen — vor allem fur Echtzeitanwergdn. Minkowski-
Summen konnen zur Bewegungsplanung von Robotern eirgesetden, die
sich ausschlie3lich durch Translation fortbewegen. Exukie Berechnung der
Minkowski-Summe ist von gro3em Interesse, wenn der Rolsdtér durch eine
enge Passage bewegen soll, also durch eine Passage, dis@énait ist wie er
selbst. Unsere Implementation ist die erste exakte Imphatien der Minkowski-
Summe auf nicht-konvexen dreidimensionalen Polyederdefarseits kbnnen wir
noch nicht die Minkowski-Summe nicht-geschlossenen Ridyderechnen, und
somit noch nicht mit engen Passagen umgehen.
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Chapter 1

Introduction

In this dissertation we consider a data structure for Neyhpedra in three-dimen-
sional space and algorithms for Boolean operations on tidehpolyhedra were
introduced by Walter Nef in his seminal book on polyhedrarfrd978 [Nef78].
They are defined as a finite number of set intersection andoseplement oper-
ations on half-spaces. In consequence, they are closed Bodéean and topo-
logical operations. Furthermore, they can represent nanHoid situations, open
and closed boundaries, and mixed-dimensional featuresanfexample, the in-
tersection of the six half-spaces definedxyy 0.5, x > —0.5,y < 0.5,y > —0.5,
z< 0.5, andz > —0.5 forms the unit cube. Figure 1.1 shows a more complex ex-
ample with non-manifold situations, selected and unsetebbundary parts, and
lower dimensional features.

Polyhedron modelers are useful tools for solving variousblams in solid
modeling, computer graphics, and computational geoméihe solid modeling
community spent much effort on theoretical foundations iamplementations of
polyhedron modelers. Nef’s approach to modeling polyhesinmathematically
well-founded and clean. No other approach is as general amgrehensive as
Nef’s. Still, nobody provided an implementation of his cept yet. Most of
the research on polyhedra was done more than twenty years/Asgihat time,
it probably was an obvious choice to implement models of selegenerality and
therefore a lesser complexity than Nef polyhedra. Nowadaglghedron modelers
are still limited in their generality and the research is enoterested in methods for
modeling higher-order surfaces. Nevertheless, we arg8edtion 1.1 that there is
a need for a more powerful polyhedron implementation.

In this thesis, we describe data structures capable of nmgd8D Nef poly-
hedra completely. Also we provide algorithms for perforgnBoolean and topo-
logical operations on Nef polyhedra. What is more, all ogoathms and data
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CHAPTER 1. INTRODUCTION

PR—Y

ey

Figure 1.1: A Nef polyhedron with non-manifold edges, a dimggfacet, two
isolated vertices, and an unselected boundary in the tunnel

structures work with exact arithmetic instead of floatiraAp arithmetic. Exact
arithmetic is often regarded as slow. We compare our imphtatien with the
Acis CAD kernel and demonstrate the power and cost of exact agtibnm near-
degenerate situations. As far as we know our implementagitime only polyhe-
dron modeler on the market that uses exact arithmetic.

In December 2004, our implementation was released as Opercesasoft-
ware in the Computation Geometry Algorithm Library ¢&L) release 3.1. It
supports the construction of Nef polyhedra from half-sgamed manifold solids,
Boolean operations (union, intersection, complemenfteidince, symmetric dif-
ference), topological operations (interior, closure, fmary), rotation by rational
rotation matrices (arbitrary rotation angles are apprexed up to a specified tol-
erance [CDR92)), translation and scaling.

In order to demonstrate the opportunities of our polyhednaaeler, we also
examine and solve two applications: the computation of theal hull from a set
of two-dimensional shapes, and the Minkowski sum of two N#yIpedra.

1.1 Motivation

Most of the professional polyhedron modelers serve as a&k&ncomputer-aided
design applications. They share two problems: completeard exactness. Our
implementation of Nef polyhedra deals with these problemisf polyhedra are

2



1.1. MOTIVATION

®

Figure 1.2: The width of the cutté is equal to the width of the cavity i@. The
boundary of the region of legal placements is shown in balds &n unbounded
polygon with a dangling edge.

more complete than any other polyhedron model; they can hraiemanifold
solids, unbounded solids, lower dimensional features,rafimdte boundaries. Ad-
ditionally we use exact arithmetic instead of floating-panthmetic. These fea-
tures are often regarded as unnecessary. We disagree.

Nef polyhedra are the smallest family of solids containing half-spaces and
being closed under Boolean operations. Without a doubsed modeling space
is desirable. We want to discuss two subsets of Nef polyhetiiah also provide
a closed modeling space: Regularized sets and finitely embiingf polyhedra.
As described above, regularized sets are closed undearemad set operations,
but Middleditch [Mid94] argues that we need more than regzea set operations.
We need to concurrently model objects of different dimemaiity, or objects with
open and closed boundaries. One of his examples occurs inimeawoling. We
may want to generate a polyhedr@uby a cutting toolM, as shown in Figure 1.2.
When the tool is placed at a poiptin the plane, all points ip-+ M are removed.
The set of legal placements ftM is called theconfiguration spacef M. It is
defined as the s& = {p; (p+M)NQ=0}. The setC may contain lower di-
mensional features. In the context of robot motion planrarigwer dimensional
feature in the configuration space is referred to tighd passageln order to iden-
tify and handle tight passages, it is nhecessary to allow @meclosed polyhedra.
If M andQ are both modeled as closed sé&ls;annot contain lower dimensional
features, i.e., tight passages cannot be identified. Thaim,a either of the two

3



CHAPTER 1. INTRODUCTION

is open, therC will be closed. See [Hal02] for the case of planar configorati
spaces.

Our implementation can be used in two modes. It can eitheesent the full
modeling space of 3D Nef polyhedra, or the user may decidenibthe modeling
space to a specific subclass of 3D Nef polyhedra because @éaffy reasons. In
order to describe this subclass, we introduce the notionngely and infinitely
bounded Nef polyhedra. Usually, polyhedra are classifiebamded and un-
bounded, i.e., a polyhedron either has a finite or an infinilere. We need a
slightly different classification. Since our data struetulare a boundary repre-
sentation of Nef polyhedra, we are more concerned whetldbdhindary itself is
bounded, and not whether the complete polyhedron is bounflechn example,
neglecting selection marks a cube and its complement hawsstine boundary rep-
resentation, although the cube is bounded and its compldameot. Therefore, we
denote a polyhedron dimitely boundedif each bounding edge has a finite length,
and each bounding facet covers a finite surface area. Oriviis denoted as
infinitely bounded Note that finitely bounded polyhedra either have no boundar
or a finite boundary; they can be both, bounded or unboundgitelly bounded
Nef polyhedra are a subset of Nef polyhedra, but are alsedlasder Boolean
and topological operations.

We do not know any other polyhedron modeler that supportsiiafy bounded
polyhedra. For most applications it suffices to only havadipibounded polyhe-
dra available. Furthermore, offering the whole modelingcgpof Nef polyhedra is
more complicated and therefore less efficient. Still, idlyi bounded Nef poly-
hedra are meaningful for some applications. As an exampkepbGCsAL's evalu-
ators uses infinitely bounded Nef polyhedra to create tbimewnsional Voronoi
diagrams. The resulting polyhedron reasonably approméte requirements
of a specific space partition needed by the evaluator. We bfith: the limited
modeling space of finitely bounded Nef polyhedra for fastiappons that do not
necessarily need infinite boundaries, and the full modalpace as an alternative.
Both modes use the same data structures and algorithms. sEhelecides about
the modeling space by providing a proper template argunterttrapile time. The
mechanism is explained in Section 3.3.

The lack of exactness caused by floating-point arithmetongll known prob-
lem. The robustness example shown in Figures 1.3 and 1strdbes the problems
nicely. We intersect two equal cubes, where the secondaseaby a small angle
a around each coordinate axis. The first picture shows thdtfeswx being five
degrees. Neglecting minor deviations, the result looks kcube. We can see
three vertices in the upper front corner lying very closedoheother. Also we can
see diagonals on each side indicating the non-planaritiyeoides. It decreases

4



1.1. MOTIVATION

Figure 1.3: A robustness exampleFigure 1.4: As Figure 1.3 but with 0.01

showing the intersection of 2 cubesdegree rotations. Vertices are not sep-
where one is rotated by five degreesarable in the drawing, but the edges il-
around each coordinate axis. lustrate the solution.

continuously, the three vertices in the front corner moweset together and the
sides become nearer to coplanar. Using floating-pointrastle, it is not possible
for small angles to distinguish the three vertices, and tiddewhether the sides
are coplanar or not. Exactness becomes crucial for manycated. For example,
we may want to perform point location queries. With floatpmnt arithmetic it is
often impossible to get a correct solution if the queriechpties near to or even
on aline or plane.

Yap gives an elaborate discussion about exact computatiacomputational
geometry [Yap97]. He defines the teeract computatioms a computation that

1. represents the underlying mathematical objects in act @xanner, and

2. in the course of computation, never makes an error in itsa.

One goal of his discussion is to “study the inherent tradeb#tween speed
and precision, between fixed-precision and exact computatiAmongst others,
he names the following advantages of exact computation:

e Arithmetic robustness is a non-issue.
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e Classical geometric concepts and algorithms are often dlated in ex-
act terms. Providing exact computation preserves thoseept® and algo-
rithms. Using fixed-precision arithmetic with these coriseggnd algorithms
can lead to major robustness problems or extensive workdsou

e A major technique for handling degeneracies is symbolitupeation. This
method is only meaningful with exact computation.

The main disadvantage of exact computation is its lack oédpmmpared
to fixed-precision arithmetic. Reflecting on approaches drguhe and Van Wyk
[FW93], and by Karasick, Lieber and Nackman [KLN91], Yapnks that with
careful work, exact geometric primitives should be at mesttimes slower than
their floating-point counterparts.

Test series have confirmed the robustness issues arisingoimegric algo-
rithms. In [KMP"04] the authors show that rounding errors in basic geometric
predicates can lead to severe errors in geometric apjplicatike the computation
of the convex hull. Still, exact computation is unpopulamany areas. In addi-
tion, the floating-point community enjoys a huge infrastuual support that helps
to manifest its predominance. Yap [Yap97] names robustrigfgos for perform-
ing Boolean operations on solids as “fundamental in the faélsblid modeling.”
Yet, exact solid modelers are non-existent. We will shoat thur exact solid mod-
eler can compete with professional CAD kernels. In compariwith the Acis
CAD kernel, we achieve a significantly better result thanféwtor ten demanded
by Yap.

1.2 Previous Work

Data structures for solids and algorithms for Boolean djmra on geometric mod-
els are among the fundamental problems in solid modelingpecer aided design,
and computational geometry [Hof89, Man88, RR, HSWO01, Fprtn their sem-
inal work, Nef and, later, Bieri and Nef [Nef78, BN88] devpéal the theory of
Nef polyhedra. Dobrindt, Mehlhorn, and Yvinec [DMY93] camar Nef polyhe-
dra in three-space and give @f(n+ m-+s)log(n+m)) algorithm for intersecting
a general Nef polyhedron with a convex one; heemdmare the sizes of the input
polyhedra andis the size of the output. The idea of the sphere map is intediu
in their paper (under the name local graph). They do not ds@auplementation
details. Seel [See0la, See01b] gives a detailed study mdiphéef polyhedra. Our
implementation is based on his work. We closely investifaeontribution in the
following section.

6



1.2. PREVIOUS WORK

In the following, we shortly introduce other approaches @o-manifold geo-
metric modeling, and identify the major differences to gopt@ach:

Rossignac and O’Connor describe modeling by so-callddctive geometric
complexes The underlying geometry is based on algebraic varietidge dorre-
sponding point sets are stored in selective cellular coxegle Each cell is de-
scribed by its underlying extent, and by a subset of cellfi@fdomplex that con-
stitute its boundary. The non-manifold situations thatuncre modeled via the
incidence links between cells of different dimension. Theidence structure of
the cellular complex is stored in a hierarchical but otheeninordered way. No
implementation details are given.

Weiler’s radial-edge data structure [Wei88] and Karasictar-edge boundary
representation [Kar89] are centered around the non-mdngituation at edges.
Both present ideas about how to incorporate the topolodisalviedge of non-
manifold situations at vertices; their solutions, howewder not completely cover
all incidences [GCP90]. If a vertex is incident to multiplelwmes, their repre-
sentation does not store data that resolves the nestirgustewof their shells. The
missing data must be computed from geometric informatiome#ded. Gursoz,
Choi and Prinz [GCP90] extend the ideas of Weiler and Kakaaiw center the
design of their non-manifold modeling structure aroundiges. They introduce a
cellular complex that subdivides space and that modelsoj@dgical neighbor-
hood of vertices. The topology is described by a spatial isigidn of an arbi-
trarily small neighborhood of the vertex. Their approackegithereby a complete
description of the topological neighborhood of a vertex.

Fortune’s approach [For97] centers around plane equadéindsises symbolic
perturbation of the planes’ distances to the origin to elae® non-manifold situ-
ations and lower-dimensional faces. Here, a two-manifefttesentation is suffi-
cient. The perturbed polyhedron still contains the degaeies, now in the form of
zero-volume solids, zero-length edges, etc. Depending@mpplication, special
post-processing of the polyhedron might be necessaryxénple, to avoid mesh-
ing a zero-volume solid. Post-processing is not discusséuki paper and it is not
clear how expensive it would be. The direction of the pedtidm, i.e., towards or
away from the origin, can be used to model open and closed sets

We improve the structure of Gursoz et al. with respect tcagi@requirements
and provide a more concrete description with respect to thk wf Dobrindt et
al. as well as a first implementation. Our structure proviskesimal topological
information and is centered around the local view of vesticENef polyhedra. We
detect and handle all degenerate situations explicitlyclvis a must given the gen-
erality of our modeling space. The clever structure of ogoathms helps to avoid
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the combinatorial explosion of special case handling. Weaxsact arithmetic to
achieve correctness and robustness.

The fact that we can quite naturally handle all degeneraametuding non-
manifold structures, as well as unbounded objects and alweyduce the correct
mathematical result differentiates us from other appresctrrevious approaches
using exact arithmetic [AR94, BR96, BMP94, For97, KKM97]nkan a less gen-
eral modeling space, some unable to handle non-manifokettsdband none able to
handle unbounded objects.

1.3 Relation to Preceding Work

Following [BN88], Nef polyhedra can be represented by miodahe local neigh-
borhood of its vertices. Later, Dobrindt, Mehlhorn and YagriDMY 93] proposed
to realize the local neighborhood of a vertex by a symboliersection of the poly-
hedron with are-sphere around the vertex. The resulting surface is a pldaar
polyhedron embedded on the sphere. We follow this approatthowr implemen-
tation.

Our work on Nef polyhedra in three-dimensional space is dbagson the
work of Michael Seel. First, Michael Seel implemented ptahgf polyhe-
dra [See0Ola, See0lb]. His implementation was releasedraefp@GaL 2.3 in
August 2001. Then he started to implement three-dimenkMegpolyhedra, too.
As an intermediate step, he adopted his implementationasfgplNef polyhedra
for spherical surfaces. In the context of three-dimengibied polyhedra, this code
can be reused for the representation of a so caltbre mapi.e., ane-sphere in-
tersecting the polyhedron around the vertex, together thighvertex in its center,
and the label of the vertex. With most of the functionalitytioé spherical Nef
polyhedra completed, and a good deal of the three-dimealsi@rsion realized,
Michael Seel quit his academic work and went to industry. eAftards, Miguel
Granados, who visited the Max-Planck-Institut for half aryeontinued Michael
Seel’'s work during his stay.

| took over the package in August 2002. At this time, the basictionality
of two-dimensional Nef polyhedra embedded on the sphereraad-dimensional
Nef polyhedra was complete, but had some major bugs. Algcshaoting, point
location and intersection finding were implemented byatibrute-force solutions.
As a first step, | created a running version by correcting th@rbugs. This first
running version worked with finitely bounded polyhedra onle applied the
technique of infimaximal boxes to remove this restriction. cbntrast to Seel's
implementation of planar Nef polyhedra, it is possible toase between the full
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modeling space or to limit it to finitely bounded Nef polyhadit compile time.
For infinitely bounded Nef polyhedra, we use an infimaximat,behich implies

using linear polynomials as coordinates. Exchanging tieali polynomials with
constants limits the modeling space to finitely bounded lpadya, but improves
the performance significantly.

Then we completed the functionality by adding transforovadifor arbitrary
Nef polyhedra. Rotations of inifinitely bounded polyhedra aspecially compli-
cated for our approach. We discuss this problems extegsiv&ection 6.2.

Having a complete functionality, we accomplished two fartboals. First, we
turned our implementation into a propec&L package. This includes a compre-
hensive test suite and a documentation. Furthermore, \aetogéd large parts of
the code. Michael Seel did not reuse the code of the Nef pdhghembedded
on the sphere, but duplicated and adapted it. We consdiidhtecode for better
maintainability. As a consequence it is now possible toiobdasphere map as a
two-dimensional Nef polyhedron embedded on the sphergeaeh algorithm cre-
ated for Nef polyhedra embedded on the sphere also workshamespaps without
special adaptation.

As a second step, we optimized our implementation for effigie On a sec-
ond visit Miguel Granados implemented a kd-tree to speedaypshooting and
point location. Another student, Andreas Meyer, impleradrfast box intersec-
tion as described in [ZEQ2]. Andreas Meyer’'s work was suiger/by Lutz Ket-
tner, Miguel Granados’ work was supervised by Lutz Kettnedt ene. Here, our
test suite helped us to identify and remove errors early.ithdally, | performed a
great number of experiments and benchmarks to find and rethevaain bottle-
necks. As a result we can compete with professional softieai@omputer-Aided
Design.

With the packages for spherical Nef polyhedra and threesdsional Nef poly-
hedra completed, we implemented applications based upan.thVe have al-
ready realized an algorithm for the computation of visudishand intend to solve
Minkowski sums on arbitrary Nef polyhedra. As a first stephaf Minkowski sum,
we implemented the Minkowski sum on convex polyhedra.

1.4 CcAL — A Generic Software Library

Nef polyhedra in three-dimensional space were releasegaskage of the Com-
putational Geometry Algorithm Library (€aL) [CGA, FGK"00] in December
2004. GsAL is a collaborative effort of several sites in Europe anddisréhe goal
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is to make the most important of the solutions and methodsldpgd in compu-
tational geometry available to users in industry and acéaéma C++ software
library.

CGAL is designed as a C++ library. Following the generic programgm
paradigm, GAL is particularly efficient and flexible. Here is one definitioh
the generic programming paradigm [JLMOO]:

Generic programming is a sub-discipline of computer s@&etimat
deals with finding abstract representations of efficienbidtigms, data
structures, and other software concepts, and with theiesyatic or-
ganization. The goal of generic programming is to expregsrahms
and data structures in a broadly adaptable, inter-opeffabfe that
allows their direct use in software construction. Key ideatude:

e Expressing algorithms with minimal assumptions about dhata
stractions, and vice versa, thus making them as inter-bfeees
possible.

e Lifting of a concrete algorithm to as general a level as pussi
without losing efficiency; i.e., the most abstract form sticét
when specialized back to the concrete case the result iggust
efficient as the original algorithm.

e When the result of lifting is not general enough to cover aési
of an algorithm, additionally providing a more general folmt
ensuring that the most efficient specialized form is autcraby
chosen when applicable.

e Providing more than one generic algorithm for the same @m&po
and at the same level of abstraction, when none dominates the
others in efficiency for all inputs. This introduces the resity
to provide sufficiently precise characterizations of thendan for
which each algorithm is the most efficient.

The generic programming paradigm is realized in C+<lags templateand
function templates Templates are incompletely specified components, i.egso
types are only identified by formal placeholders, tdraplate argumentsThe com-
piler generates a separate translation of the code for aatdntiation of a template
argument. The requirements that are needed to obtain actarstantiation of a
template argument are not defined explicitly. Syntactieguirements are defined
by calls on instantiations of the templated type. Surelyebggned type must also
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meet the semantical requirements as intended - and hopefall specified - by
the developer. Note that an actual type must only fulfill teguirements of the
actually called functions. This enables the design of dessgplates with optional
functionality.

The main advantage of generic programming lies in its fléigibin contrast to
object-oriented programming, polymorphism is availabi¢hout the restrictions
of inheritance. Not relying on inheritance implies benéifitefficiency, because
inheritance requires extra memory and call indirectiomssidual functions.

In the overall design of GAL two major layers can be identified, the layer of
algorithms and data structures and the geometric-kempet.|ldhe concept of a ge-
ometric kernel comprises all basic geometric data typesafgatithms abstracted
from number types and the choice whether to use Cartesianmogeneous co-
ordinates. Thereby it bundles several concepts into oge lanit. As a result, the
geometric kernel concept can be used with aaC algorithm.

CaGAL provides further concept bundles for specific problems.s Toincept
is denoted as #aits class The notion of traits classes has evolved in the recent
years in the domain of software libraries. Originally, tfmcept of traits classes
[Mye95] was developed to associate related types, cosstamd functions to built-
in types. This is achieved by specialization of a gener#ékttamplate.

For the access of geometry and incidence objeatsylQusesiterators, which
are a generalization of pointers. Iterators decouple theage of data from its
usage. Programmers may use different data structuressbuham in a uniform
manner without even knowing the data structure. An iterigtarconcept that spec-
ifies a set of requirements. A type is an iterator if it sattsfleose requirements. In
this sense, a pointer to an element of an array is an iterator.

Iterators are often used to defiiterator ranges Two iteratorsfirst andlast
define a valid iterator ranggfirst,last), if both point to an element in the same
data structure, and the elements of the data structure deeeak in such a way,
that last is a successor element déirst. Then, the iterator range refers to the
iterators first, first +1,...,last— 1, as well as to the elementdirst, «( first +
1),...,x(last—1). The iteratorast is not part of the range, but indicates the end
of the range. This way, even empty ranges can uniformly besgmted.

The standard template library {5) defines five iterator concepts: input it-
erator, output iterator, forward iterator, bidirectiorgrator, and random access
iterator. Each of these concepts defines a subset of theepdimtctionality typi-
cally needed for the access of a data structure. An inp@ttdeallows to read from
a data structure in consecutive order, an output iteratervantes the elements in
consecutive order, a forward iterator has read and writesscto a data structure,
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but can only process its elements in consecutive ordergvehididirectional itera-
tor can additionally process them in reverse order. Finaltgndom access iterator
has the full flexibility of a pointer, which also includes ptar arithmetic.

CcAL defines two additional iterator concepts. A handle, alsoakas triv-
ial iterator, does not support an iteration over the datacgire. It only points to
some element that can be accessed for reading and writirggciidulator concept
extends the iterator concept for iteration on circular ddtactures. Analogous to
iterators, GAL defines multiple circulator concepts: forward circulatadirec-
tional circulator, and random access circulator.

1.5 Outline

The organization of the remaining chapters is as follows:

e In Chapter 2 we repeat Nef’s definitions of polyhedra, theaek, and their
incidence structure.

¢ In Chapter 3 we introduce the three basic concepts that weutee repre-
sentation of 3D Nef polyhedra. Sphere maps model the loéghherhood
of vertices. With a sphere map for each vertex, we can modeiitzfi
bounded Nef polyhedra. The selective Nef complex addsduititidences
for a more convenient and faster usage. With the infimaxirngMse reduce
infinitely bounded Nef polyhedra to finitely bounded Nef gudgra.

e In Chapter 4 we put down Boolean and topological operatianghoee-
dimensional Nef polyhedra to Boolean and topological d@mna on two-
dimensional Nef polyhedra embedded on the sphere. Also a&ite the
construction of the selective Nef complex.

e During Boolean operations we use fast box intersection deoto find all
edge—edge and edge-facet intersections, and we use aekibitrefficient
ray shooting and point location. We describe those two bestractures in
Chapter 5.

e Chapter 6 shortly introduces the remaining functionalitpvided by our
implementation.

e Chapter 7 discusses the worst-case and expected aveisgaindme of our
algorithms.

12
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e In Chapter 8 we describe the design of our two software paskag
Nef _polyhedron_3 andNef_polyhedron_S2.

e In Chapter 9 we investigate the performance of our impleat&mt and the
means used to guarantee its efficiency. We perform sevetaddees in or-
der to examine the runtime behavior of binary operations taed major
subroutines. With the results of the experiments, we migtigaveral opti-
mizations and confirm their benefit. Also, we compare our enm@ntation
to the professional CAD-kernel &s.

e In Chapter 10 we present basic implementations of two agiibics: the
computation of the visual hull from a set of two-dimensiosiaapes, and the
Minkowski sum of two Nef polyhedra.

e Chapter 11 summarizes the main results and discusses opitieg for fu-
ture research based upon 3D Nef polyhedra.
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Chapter 2

Nef’s Theory of Polyhedra

Partitions of three-space into cells are a common theme laf swdeling and
computational geometry. The two major representation reelsewere developed
in the solid modeling community, which is the older of the waonmunities. Those
schemes areconstructive solid geomet(C SG) andboundary representation®-
rep). Both have inherent strengths and weaknesses, se89Hof a detailed
discussion.

In CSG, a solid is represented as a set-theoretic Booleahination of primi-
tive solid objects, such as blocks, prisms, cylinders, or Tthe Boolean operations
are not computed explicitly. Instead, objects are repteseimplicitly with a tree
structure; leaves represent primitive objects and interamles represent Boolean
operations or rigid motions, e.g., translation and rotatiélgorithms on such a
CSG-tree first identify properties of the primitive objeatsd propagate the results
using the tree structure.

A B-rep describes a solid by the incidence structure and goengtric prop-
erties of its boundary. Surfaces are oriented to decide dmtvthe interior and
exterior of a solid.

The class of representable objects in a CSG is usually khbiethe choice
of the primitive solids. A B-rep is usually limited by the dbe for the geometry
of the supporting curves for edges and the supporting ssféor surface patches,
and, in addition, the connectivity structure that is alldwén particular, a B-rep
is not always closed under Boolean set operations. As anmgarie class of
orientable two-manifold objects is a popular and well ustteyd class of surfaces
commonly used for B-reps. They can be represented and matagdwefficiently,
the data structures are compact in storage size, and maonitlahgs are simple. On
the other hand, this object class is not closed under Bodetoperations. The
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objectin Figure 1.1 can be generated by applying Booleanpsations on several
cubes. Cubes are orientable two-manifold object, but thecoln Figure 1.1 is
not a two-manifold. The vertices bounding the tunnel, orelge connecting the
“roof” with the cube are non-manifold situations.

Because manifolds are not closed under Boolean operatitegyicha pro-
posedregularized set operation&gkKM76, Req80]. A set igegular, if it equals the
closure of its interior. A regularized set operation is defiras the standard set
operation followed by a regularization of the result, iadter the standard set oper-
ation, the closure and the interior operation are consegytapplied to the result.
Regularized sets are closed under regularized set opesaths they exclude lower
dimensional features and the boundary belongs to the patirnthey are considered
to reflect the nature of physical solids closely.

Nef took a different approach. Instead of finding new kindepdrations to es-
tablish a closed modeling space, he adapted the definitipolghedra. His sem-
inal book from 1978 provided clean mathematical definitiforsd-dimensional
polyhedra [Nef78]. Some basic notions of polyhedra, like tiotion of a face,
where properly defined for the first time. The new theory idelkisome very nice
properties. For instance, each face of a polyhedron is @pdhpn itself.

We repeat a few definitions and facts about Nef polyhedraq8l¢hat we need
for our data structures and algorithms. The definitions aesgnted for arbitrary
dimensions, but in the sequel we restrict ourselves to tiiraensions.

Definition 2.1 (Nef polyhedron). A Nef-polyhedronn dimensiond is a point set
P C RY generated from a finite number of open half-spaces by setleonemt and
set intersection operations.

Set union (), difference ), and symmetric difference\j can be reduced to
set intersectionrf) and set complement (!) as follows:

PLUP, = 1 (IPNIP)
Pl\ PR= PNPRP
PAP = (PL\Py) U (R\ Pr) =!(!(PiNIR) N (RNIPT))

Set complement changes between open and closed half-sgaeeshe topo-
logical operationdoundary interior, exterior, closureandregularizationare also
in the modeling space of Nef polyhedra. In what follows, wieré& Nef polyhedra
whenever we say polyhedra.

A face of a polyhedron is defined as an equivalence clalexaf pyramidshat
are a characterization of the local space around a point.
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Figure 2.1: Planar example of a Nef Figure 2.2: Sketches of the local pyra-
polyhedron. The shaded region, bold mids of the planar Nef polyhedron ex-

edges and black nodes are part ofample. The local pyramids are indi-

the polyhedron, thin edges and white cated as shaded in the relative neigh-
nodes are not. borhood in a small disc.

Definition 2.2 (Local pyramid). A point setk C RY is called acone with ape®,
if K=R"K (i.e.,,Vpe K,VA >0:ApeK) and it is called aone with apex x
x € RY, if K =x+R*(K —x). A coneK is called gpyramidif K is a polyhedron.

Now let P € RY be a polyhedron ande RY. There is a neighborhoddy(x)
of x such that the pyrami@® := x+R*((PNU(x)) — x) is the same for all neigh-
borhoodsU (x) C Up(x). Q is called thelocal pyramidof P in x and denoted by

Py ().

Definition 2.3 (Face). Let P € RY be a polyhedron ang,y € R be two points.
We define an equivalence relatian- y iff Pyrp(x) = Pyrs(y). The equivalence
classes ofv are thefacesof P. The dimension of a faceis the dimension of its
affine hull, dims:= dim affs.

In other words, dace sof P is a maximal non-empty subset®f such that all
of its points have the same local pyranf)ienoted by Py(s). This definition of
a face partition®R¢ into faces of different dimension. A fasds either a subset of

P, or disjoint fromP. We use this later in our data structure and store a selection

mark in each face indicating its set membership.

Example 2.4. We illustrate the definitions with an example in the planeze@ithe
closed half-spaces

hy:y>0, hy:x—y>0, hg:x+y<3, hg:x—y>1 hg:x+y<2

we define our polyhedroR := (hy nhpNhg) — (hyNhs). Figure 2.1 illustrates
the polyhedron with its partially closed and partially odesundary, i.e., vertex
V4,Vs, Vg, and edgeg, andes are not part oP. The local pyramids for the faces
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are Pyp(f1) = 0 and Pyg( f,) = R2. Examples for the local pyramids of edges are
the closed half-spad® for the edges;, Pyrs(e1) = hy, and the open half-space that
is the complement df, for the edgess, Pyrs(es5) = {(X,y)|x—y < 1}. The edge

e3 consists actually of two disconnected parts, both with #aeslocal pyramid
Pyr-(e3) = h;. However, as explained later, in our data structure, wereqitesent
the two connected components of the edgseparately. Figure 2.2 illustrates all
local pyramids for this example.

Faces do not have to be connected. There are only two fuktional faces
possible, one whose local pyramid is the sp&Seitself and the other with the
empty set as a local pyramid. All lower-dimensional facesnfdhe boundary
of the polyhedron. As usual, we call zero-dimensional fageticesand one-
dimensional facesdges In the case of polyhedra in space we call two-dimensional
facesfacetsand the full-dimensional faceslumes Faces areelative opensets,
e.g., an edge does not contain its end-vertices. The inoédexationship of faces
in a Nef polyhedron is defined as follows:

Definition 2.5 (Incidence relation). In a polyhedronP, a faces is incidentto a
facet iff sC clost. This defines a partial ordering such thas < t iff sis incident
tot.

Bieri and Nef also proposed several data structures fangtdef polyhedra in
arbitrary dimensions. In thé/furzburg structurdBN88], named after the workshop
location where it was first presented, all faces are stordéderfiorm of their local
pyramids. The Wurzburg structure is complete, but not earant, since it misses
the explicit representation of incidences between facdwyTnust be computed
if needed. In theextended \Wrzburg structurethese incidences are additionally
stored. On the other hand, the Wirzburg structure stodzsdant information.
It suffices to store only the local pyramids of the minimalnedmts in the inci-
dence relation<, which is realized by theeduced Wirzburg structure[Bie96].
For bounded polyhedra all minimal elements are vertices.
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Representation schemes

Either Wirzburg structure supports Boolean operationsleinpolyhedra, neither
of them does so in an efficient way. The reason is that Wigzbtnuctures do
not store enough information about the structure of thestadeor example, the
extended Wurzburg structure, which provides more infaionahan the other two,
records the facets incident to an edge, but it does not reberdyclic ordering of
the edges around a facet.

Our data structures build upon the ideas of the reduced amdextended
Wirzburg structure. Like in the reduced Wirzburg struetie want to represent
only the local pyramids of the smallest elements of the oo structure. But we
also want to add the complete incidence structure and evérefustructural data
to allow a convenient and efficient usage of our data stractur

We represent the local pyramid of a vertex by a planar Nefhmayon em-
bedded on a sphere. Together with the position of the vertexaaset-selection
mark for the vertex, we call this structure the sphere mapefertex. For finitely
bounded Nef polyhedra, the sphere maps for all vertices audfigient represen-
tation, because the smallest elements of the incidencetsteuare only vertices.
In the incidence structure of infinitely bounded polyhedrdges and facets can
also become the smallest elements. Applying the conceptfiofiaximal frames
reduces the representation of arbitrary Nef polyhedra ttefjnrbounded Nef poly-
hedra, and therefore allows a simple, uniform represemtatiith sphere maps.
In addition to the sphere maps, we explicitly represent gdfgeets and volumes
together with their incidences, a set-selection mark, amthér structural infor-
mation. The final structure is a selective cell complex of tthree-dimensional
space.
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Figure 3.1: An example of a sphere map. The dark regionsatelgelected sfaces.

3.1 Sphere Maps

We represent the local pyramid of a vertex by conceptualigrgecting the local
neighborhood of a vertex with aasphere. This intersection forms a subdivision of
the sphere (Figure 3.1) which we represent by a mamafis a bidirected edge-
paired graph, i.e., every edge= (v,w) has a reversal edg# = (w,v), and there
exists a bijective mappintyin such thatwin(e) = € andtwin(€¢') = e. Together
with a set-selection mark for each item, the map forms a tintedsional Nef
polyhedron embedded on the sphere. We add a set-selectidnfondhe vertex
and call the resulting structure tlsphere mapf the vertex. Sphere maps were
introduced in [DMY93].

We use the prefigto distinguish the elements of the sphere map from the three-
dimensional elements. Asvertexcorresponds to an edge intersecting the sphere.
An sedgecorresponds to a facet intersecting the sphere. Geonlbtragasedge
forms a great arc that is part of the great circle in which thgpsrting plane of the
facet intersects the sphere. When there is a single faegsétting the sphere in a
great circle, we get asloopgoing around the sphere without any incident vertex.
There is at most onsloopper vertex because a secasildopwould intersect the
first. Ansfacecorresponds to a volume. This representation extends déinapNef
polyhedron representation [See01a].

As incidence structure of the sphere maps, we adapt andcettierhalfedge
data structure provided bydL [Ket99]. For each sedge we store two oppositely
orientedshalfedges The opposite of an shalfedge is denoted aswis. Each
svertex stores a cyclic list of its outgoing shalfedges imrterclockwise order.

Figure 3.2 depicts the relationship between an shalfedgk itanincident
shalfedges, svertices, and sfaces on a sphere map. Andg®li® an oriented
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te shalfedge

opposi

incident svertex shalfedge

incident sface

Figure 3.2: Incidences of shalfedges and shalfloops on aespiap.

sedge between two svertices. It is always paired with arfedgd pointing in the
opposite direction.

Note that sphere maps are capable to represent the locatipyofevery loca-
tion in the three-dimensional space with respect to somepblighedron. Thus, in
addition to the locations of vertices, it can also repregacdtions on an edge, on
a facet, or in a volume, no matter whether this volume is therior of the poly-
hedron or the outer volume. For our data structure we only spbere maps to
represent the local pyramid of vertices, but during bingrgrations we also need
sphere maps of other locations as an intermediate repateen{see Section 4.4).

3.2 Selective Nef Complex

Having sphere maps for all vertices of a polyhedron is a sefficbut not easy
accessible representation of finitely bounded Nef polyduedie enrich the data
structure with more explicit representations of all theeaand incidences between
them. We also depart slightly from the definition of faces et polyhedron; we
represent the connected components of a face individuatlyda not implement
additional bookkeeping to recover the original faces (alljedges on a common
supporting line with the same local pyramid) as this is ned®el in our algorithms.
We discuss features in the increasing order of dimensianaks® Figure 3.3:

Edges: We store two oppositely oriented halfedges for each edgdiakdhem
by pointers from each halfedge to its opposite. Such a hgdfedn be iden-
tified with ansvertexin a sphere map; it remains to link oseertexwith the
corresponding oppositvertexin the other sphere map.
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sphere map

vertex

oriented facet

edge—use

Figure 3.3: A selective Nef complex: We show one facet with wertices, their
sphere maps, the connecting edges, and both oriented.f&letdis and volumes
are omitted.

Edge-uses: An edge can have many incident facets (non-manifold sanoatiWe
introduce two oppositely oriented edge-uses for each émti€acet; one for
each orientation of the facet. An edge-use points to itsesponding ori-
ented edge and to its oriented facet. We can uniquely idea#th edge use
with anshalfedgeor, in the special case, also with simalfloop

Facets: We store oriented halffacets as boundary cycles of oriesdige-uses. We
have a distinguished outer boundary cycle and several (gbenaone) inner
boundary cycles representing holes in the facet. Boundangs are linked
in one direction. We can access the other traversal direetteen we switch
to the oppositely oriented halffacet, i.e., by using theasiie edge-use.

Shells: The volume boundary decomposes into different connectetpoaents,
the shells They consist of a connected set of facets, edges, and asrtic
incident to this volume. Facets around an edge form a radgsdrahat is
captured in the radial order sedgesaround arsvertexin the sphere map.
Using this information, we can traverse a shell complet&yting at an ar-
bitrary entry element with a graph search.

Volumes: A volume is defined by a set of shells, one outer shell comigirine

22



3.3. INFIMAXIMAL BOX - A REDUCTION TO FINITELY BOUNDED
POLYHEDRA

volume and several (or maybe none) inner shells excludingsvioom the
volume.

The point sets defined by the vertices, edges, facets, andchesl of a polyhe-
dron form a cell complex of the three-dimensional space,a.subdivision ofk3
into 0, 1, 2, and 3-dimensional relative open sets. The natioa cell complex
is closely related to the notion of an arrangement. Whilellecomplex is purely
topological, an arrangement is a cell complex that is indumea set of geometric
objects. Hence, we can also denote our data structure assamgement induced
by a set of half-spaces.

For each cell of our cell complex, i.e., for each vertex, edaeet and volume,
we store a label. This label can be of an arbitrary type. Toehbiéf polyhedra,
the labels are set-selection marks. A selected face irdécpbint set that is part of
the polyhedron, while an unselected face indicates a petrihat is excluded, e.g.,
the outer volume or a facet that is only bounding the polybedbut is not a part
of it. We call the resulting data structuselective Nef comple®NCfor short.

3.3 Infimaximal Box - A Reduction to Finitely Bounded
Polyhedra

Nef polyhedra can be represented by the local pyramids aghthegnal elements in
the incidence relatior defined in Definition 2.5. For finitely bounded polyhedra
those minimal elements are only vertices, but for infinitebyinded polyhedra this
property does not hold. For example, the sole minimal eléraéa polyhedron
representing aline, is an edge. In this section, we presechetion from arbitrary
to finitely bounded polyhedra. Applying the reduction, aihimal elements of
the incidence structure are vertices. Hence, represetite@pcal pyramids of all
vertices by a sphere map becomes a sulfficient representdtinfinitely bounded
Nef polyhedra, too.

As a reduction, we adapt infimaximal frames as presented 803]ifor three-
dimensional Nef polyhedra. Seel has already applied thpsoggh for planar Nef
polyhedra [See0la, See01b]. In three-dimensional spaegfimaximal boxs a
bounding volume of sizé-R +R]® whereR represents a sufficiently large value
to enclose all vertices of the polyhedron. The valudra$ left unspecified as an
infimaximal numberi.e., a number that is finite but larger than the value of any
concrete real number. Clipping lines, rays, and planeseantimaximal box leads
to points and segments on the box, i.e., polyhedra becontelyiiounded. As a
result, we are left with only vertices as minimal elements<of
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Figure 3.4: The half-space defined by the plare-3y+ 7z+ 9 = 0 clipped at the
infimaximal box. For visualizatiorR is set to a suitable finite value.

Mehlhorn and Seel argue that interpretiR@s an infimaximal number instead
of setting it to a large concrete number has several advasitag particular in-
creased efficiency and convenience [MS03]. Using a largeretes number re-
quires the computation of a sufficiently large value for epelformed operation.
Then all rays and lines must explicitly be clipped at a frarhthe computed size.
Furthermore, a single point with large coordinates forbeassage of a large frame.
In consequence, the endpoints of clipped rays and lines Veryelarge coordi-
nates, too. Large coordinates are a major efficiency prololeaxact arithmetic.
In Particular, floating-point filters are most effective whgoint coordinates are
small [BFS98, FW96, MN94].

For projective geometry, Mehlhorn and Seel show that a ptaveep for seg-
ments cannot be generalized to inputs containing rays aed [MS03]. We did
not examine the applicability of projective geometry to tuee-dimensional pro-
cedure, but it needs special treatment of rays, lines, areddand shells bounded
by rays and lines. This special treatment is not necessdhyamiinfimaximal box.
Instead, we can develop our algorithms and data structumésrmly for finitely
bounded and arbitrary polyhedra.

We denote the points on the boxfeame pointsor non-standard pointgcom-
pared to the regulatandard pointsnside the box). The coordinates of such points
areR or —Rfor at least one coordinate axis, and linear functi6é(R) for the other
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coordinates. We use linear polynomials o¥eras coordinate representation for
standard points as well as for non-standard points, thugingithe two kinds of
points in one representation, tegtended pointdn Lemma 3.1, we show that this
representation is always sufficient, even in iterated coosons.

Analogous to non-standard and extended points, we can defimstandard
segmentsextended segmentaon-standard planesind extended planes Non-
standard segments have at least one non-standard pointligsirgn They arise
from clipping standard planes at the infimaximal box. Namsdard planes only
occur as the supporting planes of the sides of the infimaxiioal Extended seg-
ments and planes are the unified representation of standdrdaam-standard seg-
ments and planes, respectively.

It is easy to compute predicates involving extended poiliidact, all predi-
cates in our algorithms resolve to the sign evaluation ofmpamial expressions in
point coordinates. With the coordinates represented gspulials inR, this leads
to polynomials inR whose leading coefficient determines their signs.

We will also construct new points and segments. The coateknat such points
are defined as polynomial expressions of previously coct&ducoordinates. For-
tunately, the coordinate polynomials stay linear evendratied constructions.

Lemma 3.1. The coordinate representation of extended points in three-
dimensional Nef polyhedra is always a polynomial in R withegrde of at most
one. This also holds for iterated constructions where nem¢t are formed from
constructed (standard) intersection points.

Proof. We show the second part of the Lemma first: In iterated cocisbns, the
expression for computing new points, e.g., from intersgcpilanes and/or edges,
is a rational expression where it is not obvious that it musipsfy to a linear
polynomial. On the other hand, the constructed point iseeith standard point
or the intersection of two extended segments. An extendgiohesat results from
clipping a facet supported by a standard plane at the infimalxbox. Hence, the
intersection point of two extended segments results frappiclg the intersection
line of two facets at the infimaximal box. As a result, it is anrgiandard point,
i.e., it has a representation with coefficients lineaRinThe rational expression
must be equal to that representation and thus simplify.

We prove the first part of the Lemma: Frame points in a thresedsional Nef
polyhedron result from lines and rays clipped at the infimetibox. Consider a
line | defined by
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X1 Xo
[{yi A+ | Yo
yA4l V)

In the following, we list the endpointp; and p, of | for every assignment
of the valuesx;, vi, z, i = 0,1. Because the infimaximal box is symmetric in all
three dimensions, there are many symmetric cases in theglist the endpoints.
Without loss of generality we assume that| > |y1| > |z1| and distinguish the
following cases:

o x| > |y
L= (R X2y +yo, 52021+ 20), p2 = (R =522y1 + Yo, =322 + 20)

1 X1 1

o |x1| = |y1|, [X1] > |z1|, without loss of generalit)% =1

- X—Y>0
pL = (RR—Xo+Yo, 529214 2), po = (~R+X%— Yo, R, 52021 +
2)

—X—Y<0
pl = (_R7_R—X0+y0, 7RXIXOZ]_—|—ZO), p2 = (R—I_XO_yO,R, R;l)’ozl_i_
20)

— X0 =Yo

pl - (R7 R7 — XIX021+ZO)1 p2 - (_Ra_Ra R;1X021+ZO)

o [X1| = |y1] = |z1]
We omit a detailed and straight forward discussion of theut8eases, here.

We now prove in detail that the listed endpoints for the dage> |y1| are cor-
rect. The proof of the other cases works analogously. We egfymhat the points
(RR—X0+ Y0, 522 +2) and (—R+xo— Yo, —R, =522 + %) lie on | Also,
we can see that they lie on the supporting planes of the sid anfimaximal
box in positive and negative-direction, respectively. It is left to show that the
point does not lie outside of the infimaximal box. They aretmtioundary of the

infimaximal box, if
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‘(iR_XO)))Z_i"‘YO’ <R (3.1)
V4
\(iR—Xo)X—iﬂLZo\ <R (3.2)

With C = _%XW‘YO’ inequality 3.1 can be rewritten as follows:

+R24cl< R
X1

2R+ cl< R

X1

LrR-R <[]

X1

Y1
(Z-vR=IC
1

<~
=
=

The final inequality is true, since we have an arbitrary larggative value on
the left side, which is smaller than any constant valuelnequality 3.2 follows
analogously. Consequently, the given points are corradpants ofl.

At compile time, we provide two modes for the work with Nef ylokdra, i.e.,
working with standard or extended geometry. The first tetegiarameter of our
main clasdief polyhedron 3 is used for specifying the underlying geometry. For
this purpose we provide twextended kernelsinamelyExtended homogeneous
andExtended_cartesian. They differ from the standard @L kernels in using
polynomials for representing coordinates. Extended keigan represent extended
points and segments and can therefore handle the full nmodstiace of Nef poly-
hedra.

We also offer the parameterization Béf polyhedron_3 with a standard
CaGAL kernel. A standard kernel restricts the modeling space tteljirbounded
Nef polyhedra. Still, the modeling space is closed underi&@ooand topological
operations. Standard kernels are considerably fastergtktanded kernels.

Note that we follow a different strategy than Seel's implatadon of planar
Nef polyhedra [MS03]. To date, planar Nef polyhedra only kvaith extended
kernels, while the user is restricted only to work on staddgometry. Geometry is
accessed by special functions, which interpret frame paisistandard rays. Edges
that completely lie on the infimaximal square—the two-disienal equivalent of
the infimaximal box—can be identified, but can not be accessady other way.
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We offer the use of extended and standard kernels. Poirgs)esgs, and planes
on the infimaximal box can be identified by special functiotw®, but are not
interpreted as standard geometry in any way.
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Chapter 4

Boolean and Topological
Operations

Following Rossignac and O’Conner [RO89], Boolean operation planar Nef
polyhedra work in three steps—overlay, selection, and Kficgtion. The overlay
step computes the conventional planar map overlay of that ipplyhedra with a
sweep-line algorithm [MN99, section 10.7]. The overlay iscenbined arrange-
ment of the two input polyhedra. For each fafgan the overlay there is a fack

in each of the input polyhedra, such tHgtC f;. We call f; thesupport §. The se-
lection step computes the mark of each face in the overlaypplysng the Boolean
expression on the marks of the corresponding supports.cahie generalized to
arbitrary functions on label sets. Finally, the simplifioatstep cleans up the data
structure and removes redundant representations. Thisnechas already been
used by Michael Seel on Nef polyhedra in the plane. We addpt iplanar Nef
polyhedra embedded on the sphere.

The Boolean operations on spherical Nef polyhedra provideasis for the
Boolean operations on three-dimensional Nef polyhedra.wAgpointed out in
Chapter 3, as a representation scheme for Nef polyhedra iththe-dimensional
space, it suffices to compute the sphere maps of the verfites.can be done by
Boolean operations on sphere maps, which are either prabigiéhe input polyhe-
dra, or are computed on the fly. Having the sphere maps of #udt ©golyhedron,
we synthesize a selective Nef complex. Our method may genexdundant sphere
maps. We erase them in another simplification step.

The steps are described in detail in the following sectiongife case of binary
operations. Afterwards we discuss the differences foryuoperations.
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O(ALA) [

Figure 4.1: Two arrangements (solid edges) and\y, (dashed edges), and their
overlayO(A1,Az).

4.1 Map Overlay on the Sphere

As the first step of a binary operation on spherical Nef palyagwe compute the
overlay of the two input sphere maps. The overlay of two suibidins S; and S,
is defined as the subdivisidD(S;,S,) such that there is a fackin O(S;,S) if
and only if there are facefg in § andf, in S, such thatf is a maximal connected
subset off; N f,. The faces; andf;, are called the support df N f, [dBVKOS97].

We are interested in the overlay of two planar arrangemehtsegments.
Adapting our definition from Section 3.2, a planar arrangetnoésegment#\(S) is
a subdivision of the plane into 0, 1, and 2-dimensional kedatpen sets, induced
by set of segmentS. Figure 4.1 illustrates the notion of an overlay for two @lan
arrangement#g\; andA,. Their overlayO(Aq,Az) is the arrangement induced by
the edges fromd\; andA,. Likewise, the overlay of two arrangements of the sphere
are induced by the edges and loops of the arrangements.

For planar Nef polyhedra, Seel realized the overlay of plaameangements
with the segment sweep algorithm by Bentley and Ottmann OWis imple-
mentation builds upon the solution described in treph book [MN99], which
includes the handling of all degeneracies, but is furtheegaized for flexible us-
age [See01b]. As a result, we could adopt his implementditiothe overlay of
two sphere maps.

In this section, we first give a short introduction to the segtnsweep al-
gorithm. Afterwards, we investigate the design of Seel'plamentation of the
segment sweep algorithm, and show how to compute an ovefrlayoglanar ar-
rangements with the help of a segment sweep algorithm. lizimad adopted Seel's
implementation for computing an overlay of two sphere maps.
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Figure 4.2: The name sweep stems from the image of sweeping hdver the

plane, starting from a position beyond all geometric itefasweep line algorithm
successively constructs the arrangement of the geomtntsi As an invariant,
the arrangement is always complete up to the current posofib.

4.1.1 A Segment Sweep Algorithm.

Given a set of segments in the plaBea segment sweeglgorithm computes the
arrangement of the plane induced by the segments. The nagepstems from
the image of sweeping a lineover the plane, starting from a position beyond all
segments. During the sweep, the algorithm keeps track afttbeture induced by
the swept segments and creates the arrangement (see Fgurigtead of a real
line, we sweep an imaginary line and maintain the set of satgrietersecting it.
The set of intersecting segments is called dte&usof the sweep line. The status
changes every time the sweep line reaches an event pointan.endpoint of a
segment or the intersection of at least two segments. Irtiaddd the update of
the status, each event point triggers an update of the amaewt. As the main
invariant of the algorithm, the arrangement is always cateplp to the current
event point.

The algorithm described in theeElDA book [MN99] suggests to realize the seg-
ment sweep algorithm in the following way. The progressifghe sweep line
is realized by a lexicographically sorted list containitg event points. Conse-
quently, the sweep line is vertical and sweeps from leftgbtriif two event points
have the same-coordinate, the point with the lowgrcoordinate is processed first.
This list is denoted as thestructure At the beginning, the-structure is initial-
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ized with all endpoints of the segments $1 The intersection points are added
successively during the sweep. Like thstructure, the status is also represented
by a sorted list. Because the segments in that list are sbytétey-coordinate of
their intersection point with the sweep line, it is denotedheey-structure

Seel follows the approach described in thenla book. Details, including the
handling of degeneracies can be found in Seel's PhD thess0fh] and in the
LEDA book [MN99].

4.1.2 A Generic Framework.

The LEDA segment sweep algorithm
void SWEEP_SEGMENTS(const 1ist<SEGMENT>& S, GRAPH<POINT,SEGMENT>& G)

constructs the EDA graphG, which represents the arrangement induced by the list
of LEDA segmentsS. The graphG stores the incidence structure, the coordinates
of each vertex and the supporting segment of each edgeA Iprovides two ver-
sions of the algorithm; one works with homogeneous cootdmeepresented by
arbitrary precision integers, the other works with Cagegioordinates represented
by doubles.

Seel generalized theHDA approach. His generic sweep framework includes
two layers of abstraction. The first layer models the basicgss flow of a sweep
line algorithm, and delegates all basic operations to éstdass. It consists of
a templated clasgeneric_sweep with a single routinesweep (). The routine
sweep () is shown in Figure 4.3.

The classSegment_overlay_traits, which is the second layer of the
generic sweep framework, is a traits class for the clggseric_sweep. This
means that it realizes some specific task that can be acaimagliby a sweep
line algorithm by implementing the functions delegated bg first layer. In
particular, it realizes the overlay of two planar arrangetmeof segments.
The interface of the clasSegment overlay traits also includes three tem-
plate parameters, which allow an adaptation to diversedémie structures
and geometries. Seel defined the requirements of the tessplarameters
by the conceptsSegmentOverlayGeometry 2, SegmentOverlayInput, and
SegmentOverlayOutput.

The SegmentOverlayGeometry 2 concept defines the geometric require-
ments of the algorithm. With this concept, we are not restddo use specific
points, segments or number types. It is designed for affimegolgeometry, but we
will see later in this section that it also works well with ethgeometric models.
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void sweep() {
traits.initialize_structures();
traits.check_invariants();
post_init_hook(traits);

while ( traits.event_exists() ) {
pre_event_hook(traits);
traits.process_event();
post_event_hook(traits) ;
traits.check_invariants();
traits.procede_to_next_event();
}
traits.complete_structures();
traits.check_final();
post_completion_hook(traits) ;

Figure 4.3: The first layer of Michael Seel's generic sweepnework. The main
routinesweep () structures the sweep into an initialization, a loop proogsthe

events, and the completion of the output data structureslitiédally, it provides

for the checking of invariants and for animation via a hookchamism. The im-
plementation of these steps is delegated to a traits class.

The geometric kernels of @L each provide a point and segment type, such that
each of the kernels together withG&L’s global functions works as a model of the
SegmentOverlayGeometry_2 concept without adaptation.

The SegmentOverlayGeometry 2 concept asks for a segment and a point
type, further on denoted @&@egment 2 andPoint_2, together with the following
functions and predicates:

Segment_2 construct_segment (Point_2 p1, Point_2 p2)
Constructs a segment with endpoiptsandp2.

Point_2 source(Segment_2 s)
Returns the source point of segment

Point_2 target (Segment_2 s)
Returns the target point of segment

bool is_degenerate (Segment_2 s)
Decides whether both endpoints of segneaite the same.

int compare_xy (Point_2 pl, Point_2 p2)
Compares pointpl andp?2 lexicographically.
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int orientation (Segment_2 s, Point_2 p)
Decides whethep lies on the lind through the endpoints af(return value
0), or whether it lies on the right or left side of(return value -1 or 1,
respectively).

Point_2 intersection (Segment_2 sl, Segment_2 s2)
Returns the intersection point of the segmesitands2

The SegmentOverlayInput concept asks for an iterator type, which is used
for passing the input segments to the segment sweep as atoiteange of
Segment_2 objects. This way, the segment sweep becomes decoupledttieom
task of storing the input segments.

Finally, the SegmentOverlayOutput concept defines the requirements of a
planar map as a generic output data structure. Many comntarstfactures like
the Halfedge Data Structure or the Directed Cyclic Edge tdst be adapted as
a model of theSegmentOverlayOutput concept. Besides creating the incidence
structure, the concept is designed to associate each etlyésagupporting input
segment, as well as each vertex with the edge lying direetigvbit. With the first
association it is possible to propagate data linked withsdgaments to the output
structure. If the output structure comprises multiple @oted components, the
second association can be used to resolve their nestirgws&u

The concept requires handle types for vertices and halgeidgbe output struc-
ture, in addition to a point and an iterator type that musthme dame as in the
SegmentOverlayGeometry 2 and theSegmentOverlayInput concepts. Also,
three types of functions are defined. The first set of funstime used to construct
the output structure.

Vertex_handle new_vertex (Point_2 p)
returns a new vertex created at pomt

Edge_handle new_halfedge_pair_at_source(Vertex_handle v)
returns a newly created edge inserted before the first edtpe iadjacency
list of v. Creates also a reversal edge whose target is

void link_as_target_and_append (Edge_handle e, Vertex_handle v)
completes the halfedge pair between the sourcearfdv by makingv the
target ofe and appending the reversal@fo the adjacency list of.

After the construction of an edge, each segment suppottagdge is identi-
fied. The sweep-line algorithm calls the functisapporting segment for each
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of these segments, and thereby indicates them as the edgp&rs There are also
four functions which indicate the support of newly createdices. Each of them
implies a different relation between the location of the n@ntex and its support-
ing segment. The segment may start or end at the locatiorassrthrough it. The
fourth option is a trivial segment supporting the vertex.

void supporting_segment (Edge_handle e, Iterator it)
Indicatesxit as a supporting segment of the edge

void starting_segment (Vertex_handle v, Iterator it)
Indicateskit as a supporting segment of the venghkat starts at the location
of v.

void passing_segment (Vertex_handle v, Iterator it)
Indicatesxit as a supporting segment of the vertethat passes through the
location ofv.

void ending_segment (Vertex_handle v, Iterator it)
Indicateskit as a supporting segment of the venghat ends at the location
of v.

void trivial_segment (Vertex_handle v, Iterator it)
Indicates«it as a trivial segment supporting the vertex

Finally, for every newly created vertex the functinalfedge below reports
the edge that lies directly below the new vertex, i.e., iimes the first edge hit by a
ray shot from the vertex in negatiyedirection. With the help of this information,
it is possible to resolve the nesting structure of face sychs we will see later in
this chapter.

void halfedge_below (Vertex_handle v, Edge_handle €)
Reports the edgelying directly below vertew.

4.1.3 Overlay of Two Planar Nef polyhedra.

The sweep yields the 1-skeleton of the common arrangemettmplanar ar-
rangements and additional information to complete thelayeA 1-skeletorof an
arrangement only includes the 0 and 1-dimensional objedteiarrangement, i.e.,
of vertices and edges. At this point, our arrangement doesaolode the faces. If
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the arrangement is represented by a halfedge data struatuvee do it for planar
Nef polyhedra and Nef polyhedra embedded on the sphereeginesentation in-
cludes items for vertices and edges together with propélences, but the items
for the faces are yet missing. Therefore, we need to createifems and deter-
mine the boundary cycles of each face. To complete the gyexia additionally
determine the supports of each item in the overlay. With #ip bf the supports,
we can access additional information stored with a face.

The sweep provides the following properties and infornreifor the comple-
tion of the overlay:

e The embedding of the 1-skeletonamler-preservingi.e., for any vertex, the
counterclockwise order of the outgoing edges agrees wétleyhlic order of
the adjacency list. As a result, the edges naturally forne faeles which
agree with the faces of the embedding. They can be travessty dy
means of the twin relation and the order of the adjacency. list

e For every vertex we know the halfedge, lying directly below the vertex,
i.e., & is the first edge hit by a ray shot fromin —y direction.

e In case of a support by a vertex or an edge, the supportedtdjews its
unique support from each each of the input arrangements.ridxwalways
supports a vertex. An edge can support multiple verticescagés.

First, we create face items. Such a face item point to eacks dfdundary
cycles. Faces are bound by at least one boundary cycle. \ifegdish between
outer and inner face cycles. Each face—except for the oatsr—is enclosed
by exactly one outer face cycle, which is a counterclockvasented cycle of
halfedges. The outer face has no outer face cycle. Innerdgdes bound the
holes in a face. There are trivial inner face cycles, whiaistsi of a single isolated
vertex, and there are clockwise oriented cycles of edgesder to decide whether
a cycle of halfedges is an outer or inner face cycle, we cheelotientation of the
cycle at its lexicographically smallest vertex. A left tundicates an outer, a right
turn an inner face cycle (see Figure 4.4). The opposite offadge usually is a
halfedge of some other face cycle. Then, the two cycles bouo@ddjacent or two
nested faces. If the two faces are adjacent, both cyclesuége @ycles; if the faces
are nested, one of them is an inner cycle of the outer facethenather is the outer
cycle of an inner face. In degenerate situations, the ofgpabsilfedge belongs to
the same cycle, i.e., both halfedges are incident to the faree

Figure 4.4 shows a face with two holes, where one of the halesdes two
separate faces. All halfedge pairs bound an inner and anoudke, except for the
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Figure 4.4: The orientation at the lexicographically sestlivertex in a face cycle
shows whether the cycle is enclosing a face or is boundindeadut into the face.
In the former case the cycle makes a left turn at that vertexhe latter case it
makes a right turn. The nesting of face cycles is resolveabyrsively shooting a
ray from the lexicographically smallest vertex of an inrexd cycle until an outer
cycle is found.

halfedge pair(e;, e3), which bounds two different inner cycles. Because there are
no lower dimensional features, there is no halfedge paiselalfedges belong to
the same cycle.

In order to create and link all face items properly, we stattwhe creation of
the face item for the outer face. Then, we check each face eyiskther it is an
outer or an inner cycle. If we identify an outer cycle thatas inked to a face item,
we create a new face item and link it properly with the outaleyIf we identify
an inner cyclefc, and it is not already linked to the face item of the fddacident
to fc, we obtain the proper face item from some other face cyglgeq incident
to f that is already linked to a face item. The search for the fyotedCinked,
is guided by the information provided by the sweep, i.e., we the knowledge
about the halfedge that lies below a vertex. We obtain thietigée, below the
lexicographically smallest vertex dt. &, is part of another face cycl’ incident
to f. If fc’ has already been processdd, is already linked tof. Thus, we can
obtain f’s face item and linkfc to it. If fc’ is an unprocessed outer face cycle,
we create a new face item and link it wific properly. If f¢' is an unprocessed
inner face cycle, we proceed recursively frdgl. The recursion must end, since
the smallest vertex of the current face cycle becomes snvaillle each recursion.
Incidentally, the recursion will encounter an outer faceleyor an inner face cycle
whose smallest vertex has no halfedge below. In the formse,dae final face
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cycle encloses all face cycles found during the recursiagcke in the latter case,
all found cycles are incident to the outer face.

In Figure 4.4, there are four outer cycles. Therefore, wettnesate four facet
items fp, f1, fo, andfs,. Additionally there are three inner cycles, whose smilles
vertex isvy, v1, andvs, respectively. Supposing there already are face item$iéor t
outer cycles, the linking of the inner cycles works as fobowVe arbitrarily start
from the inner face cycle with the smallest vertex From the orientation at, we
can see that the cycle performs a right turn and thereforeeithds an inner cycle.
The halfedge-below relation gives us the e@gewhich also belongs to an inner
cycle as we can conclude from the orientation at veviex he halfedge below;
is eg. The facet cycle that contairgg is an outer cycle, since the cycle performs a
left turn at vertexvg. As a result, we can determine the face itgnfrom that outer
cycle and link two encountered inner cycles as hole$yofThere is no halfedge
below the vertexy. Thus, the inner face cycle that contaigss linked as a hole
of the outer face.

Having created and linked all face items, we identify thepsuwrpof each item
in the overlay. The sweep already provided all supports bijces and edges. It
remains to determine the supports by faces. We proceed ingpsfashion, i.e., we
handle the items in lexicographic order, and always findliwesupport up to the
current event point. The event points are the vertices afdingbined arrangement.
We maintain the invariant that at any event point, the suppas already been
computed for all svertices, shalfedges, and sfaces tha begn swept at least
partially. We start with the support of the outer face to futfie invariant at the
first event point. Its support are the outer faces of the mputangements.

At each event point, we first obtain the support of the vewtakthat position.
Either it is supported by a vertex or edge, then we alreadyvithe support, or it
is supported by a face. We obtain a face supportigg the face incident to the
halfedge below.

The outgoing halfedges that lead to lexicographically senakrtices have al-
ready been handled. The other so-calledvard halfedgese, ..., e, constitute a
single consecutive sequence of the adjacency list oThey are incident to the
facesfy,..., f,. Because of the invariant, we already know the supports, ahd
the facefq, which is the face incident to the twin ef. We identify the supports in
the orderey, f1,e,..., fn_1,e,. Knowing the support of;, we first check whether
6.1 is supported by an edge. If it is not supported by an edge,and fi, 1 are
supported by the same face s If it is supported by an edge, the support of
fi, 1 is the face incident tes. As a result, we have deduced the suppont afd its
incident edges and faces.
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O(A,B)

Figure 4.5: The face supports in an overl@yA, B) are determined in a sweep-
line fashion. The vertices are processed in lexicograploicker. As an invariant,
the face supports are identified up to the current vertexcd3sing a vertey, the
face supports of its outgoing forward edges and their inttifkces are deduced in
counterclockwise order.

The method is illustrated in Figure 4.5 by an example ovetl&y, B). Looking
at the supports from subdivisioh, the invariant guarantees that the supportpof
by ¢\ is already known. Since; is not supported by an edgen f§* also supports
e; andf;. & is supported bya'i*. As a consequencd; is supported by the incident
face ofe}, i.e., by f{*. The supports of; and f3 are known. Looking at the supports
from B, the support offy by fE is known. Ase; is supported b, f; is supported
by f2, which is the face incident tef. Also &, f, ande; are supported byE,
since both edges are not supported by an edge.

Moving on to the next event point, we can easily see thateth# below the
sweep line, and all edges and faces crossing the sweep éneaadent to some
event point that has already been processed. Thus, théaintzaolds.

4.1.4 Segment Sweep on the Sphere.

In order to adopt the segment sweep for the sphere, we havestive geo-
metric and topological differences. Most important is theice of a proper
sweep line together with its progression. The sweep linetrbasa continu-
ous curve, which continuously progresses over the spheigngi every point
exactly once. The order in which the points on the sphere aspts is deter-
mined by thecompare xy function, which is part of some class that implements
theSegmentOverlayGeometry 2 concept. This function must resemble a proper
sweep line, and we want it to be fast, i.e., we do not want tonadize vector co-
ordinates or use sine and cosine functions. As sweep linese@ thalf-circle that

is fixed at its endpoints and rotates around the sphere. trigenient to use the
two intersection points of a coordinate axis with the splar¢he fixed endpoints
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of the sweep line. We choose the intersection points withytagis. To realize
such a sweep line, theompare xy function sorts points on the sphere by three-
dimensional orientation tests. The orientation test decighether a point lies on
the left or on the right side of the sweep line. If two pointsdin the same sweep
line, we determine their relative position on the sweep. liRer this purpose, we
obtain the orientation of the second point with respect tegrent passing the first
point orthogonal to the sweep line. The sweep line fulfills $hated requirements
except for one. The two endpoints of the sweep line are swephy position of
the sweep line. We handle those endpoints separately; othewf is ranked by
compare xy as the smallest, and the other as the largest point of alls Whl,
they are processed once, as the first and last event point.

Problems arise from the cyclic nature of the sweep line. &liemno natural
beginning or ending position of the sweep line movement hkaitial sweep line
might already intersect several segments. Thereforenitipossible to state that
the arrangement has completely been constructed for thptswea. Also, the
three-dimensional orientation predicate is only suitdbtehalf-sphere geometry.
Using it in thecompare xy function as described above, it compares two points
with respect to a full great circle instead of a half-cirofdso, the predicate has no
means for deciding whether a point is lying before or afteritfitial sweep line.

Furthermore, we have to deal with loops and with the ambggiithat
occur when we define a spherical segment by its two endpoirtigndling
loops requires an extended incidence structure which issaopported by the
Segment _overlay traits. Constructing a segment on the sphere from two
points as part of a great circle, there are always at leaspbssibilities (except for
the trivial case). If the points are not opposite to eachrothey define a distinct
great circle, but the segment could go either way around phers. If the end-
points are opposite to each other, they do not even defindimadiigreat circle. As
the SegmentOverlayGeometry 2 concept does not allow additional information
for the construction of a segment besides the two endpawgs;annot determin-
istically construct the correct segment.

Because of these problems, we want to perform overlays d+splakres rather
than on a full sphere. On a half-sphere, there are no loopsaretiges longer
than a half-circle. Only the problems of handling half-@scremains open. We
proceed as follows: We cut each segment atihplane. Then we add an equator
in thexy-plane by connecting the cut segments. Finally, we get ride@femaining
half-circles by cutting them in two halves. Figure 4.6 ithages this process.

The two half-spheres can be swept separately. After thdayef both halves
have been completed—we discuss the overlay below—theshhHres are re-
joined. Note that redundant equator edges must be removed. twirst, the
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upper
halfsphere

lower
halfsphere

Figure 4.6: On the left side, a sphere map with an sloop isgoesbfor the half-
sphere sweep: Equator edges are inserted and long sedges @te two halves.
On the right side, the two half-spheres are shown separatelyn detail for better
illustration. Both are projected into ttze= 0 plane and are viewed from the top.

O-C

sweep-line algorithm creates halfedge pairs for each egealge on both half-
spheres. Therefore, each equator halfedge exists twicevarithve to erase one
half of them during the rejoin. Second, most of the equatgesdare redundant,
but some of them might be necessary. We remove them latangdthie simpli-
fication process. For this purpose, we assign proper markadb equator edge.
The mark of a newly inserted equator edge coincides with ek of the face that
is divided by that edge. If it is still redundant after the swethe marks of the
divided face and the equator edge will still be equal. As altgthe simplification
step can remove the edge as we will see in Section 4.3.

The identification of the support in the half-sphere oventeyudes one major
difference to the planar version: a half-sphere has no afiéee. Instead, there
are the sfaces of the other half-sphere that border on tlvessiaf the currently
processed half-sphefes Looking at the full sphere, the sface that is incident to
the twin of the first forward shalfedge outgoing from the deslsvertexs in hs
can be used as a replacement for the outer sface. We obtanghert of this sface
by a point location query on the input sphere maps at theitotaf vs. Either the
query directly returns an sface, or we obtain the properesfeam the incidence
structure of the returned item.
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4.2 Selection

The overlay of two planar (or spherical) Nef polyhedra ysetbeir combined ar-
ragement and the support of each vertex, halfedge, and fdoematter which
boolean operation is applied on the planar polyhedra, tieeitbined arrangement
is sufficient for the representation of the result polyhedrd/e obtain the correct
mark of an item in the combined arrangement by applying the boolean operati
upon the marks afs supports.

As a default, each item carries a set-selection mark of bged. As an al-
ternative, other labels can be used. The replacement Igpelrieeds to define
at least one of the functionsperator&&, operator| |, andoperator-, which
are used by the selection step to combine the labels. Witleaodabels, these
function are pre-defined as expected, and therefore rethkizanion, intersection,
difference operation, respectively. The symmetric défere naturally combines
the functionsoperator&&, operator| |, andoperator!. It can also be useful to
replace theperator!, because it is also used in the negation operation.

In Section 10.2, we present an example for the use of diffdedrels in the
computation of the Minkowski sum of two convex polyhedra.

4.3 Simplification on the Sphere

According to Nef’s theory [Nef78, Bie95], a face is a maxirsat of points with
the same local pyramid. As we pointed out in Chapter 2, weessptt the con-
nected components of each face separately. This représantaunique. During
the overlay step, we compute a combined arrangement ofpieutolyhedra. Inde-
pendent of the concrete Boolean operation, this arrangeimenitable for repre-
senting the resulting Nef polyhedron. As a consequencerdigmt on the concrete
Boolean operation, items may be redundant. The uniquerie¢se cepresentation
is restored by a simplification step, which identifies andesaall redundant items.
In Figure 4.7 we see the combined arrangen@& T ) of a square&Sand a triangle
T. In the arrangemer®(S T), the triangle is subdivided into an upper and a lower
part. In the difference between the square and the triahglééms of the lower
part redundantly subdivides the outer face and therefardoegoined with it; in a
union the top part redundantly subdivides the only face @fésulting polyhedron.

An item is redundant, if it is either surrounded by some higlimensional
item, or separates two higher-dimensional items lying im@m@on hyper-plane.
In both cases, the relevant items have the same mark. Fopéxanwe can erase a
vertex lying on a face with the same mark. Surely this canealdne, if there are
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OST) \| S\T SUT W

Figure 4.7: The combined arrangement of a sq&ard a triangldl, the arrange-
ment of their differenc&\ T, and the arrangement of their uni T.

f1 fa

1. 2. 3.

Figure 4.8: Basic situations that trigger a simplification.

edges incident to the vertex. Then we first have to find out drehose edges are
redundant, too.

For planar polyhedra there are three basic situations (geeg.8) that trigger
a simplification:

1. An edgee, which separates two facds and f,. e, f; and f, have the same
marks. f; and f, can be equal, i.eg is surrounded by same face with the
same mark=- Deletee. Unite f; and f, if necessary.

2. A vertexv, which separates two collinear edggsande;,. v, e; ande, have
the same marks=- Deletev. Unite e; ande;.

3. A vertexv without incident edges, which lies in a face with the samekmar
= Deletev.

To clean up the structure completely and efficiently, we fitstck all edges
for situation 1. As a result, no vertex can have redundarniti@mt edges when
checked for isolation in the next step. Afterwards, all ieext can then be checked
for situations 2 and 3 simultaneously.
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Figure 4.9: A cubeC, a prismP, and their combined arrangemed{C,P). The
combined arrangement of multiple polyhedra exactly hdigsvertices which may
occur in the result of a Boolean operation on them. Which e&¢hvertices are
finally needed depends on the specific operation.

For the merge operation of faces in situation 1, we cannor@ffo maintain
an updated status of the face objects after every singldifizapion, as this would
imply the repeatedly iteration of face cycles. We avoid adgagc runtime by using
a union—find data structure [CLR90]. Thus, situation 1 isteaah as follows: While
the separating edge is deleted directly, and the outer facle ¢s concatenated
properly, the face objects together with the mutual inctgewith their boundary
cycle objects remain untouched. Instead, the union—fina staticture keeps track
of the united faces. After all occurrences of situation lenasen handled this way,
the update of the face objects and their associated in@deointers can be done
in linear time.

The adaptation for sphere maps is simple. Identifying theasbns needs
incidence informations only, except for the collinearigstt in situation 2. We
adapt to spherical geometry by checking if the two sedgesri¢he same great
circle, instead. Additionally, we have to deal with sloopghey can be handled
analogously to sedges in situation 1, i.e., if an sloop rddantly separates two
faces, we can erase the sloop and unite the faces. But sintaweenot erased
the redundant equator sedges before the simplification Sitegps are still cut into
several sedges. On the other hand, the simplification murtiight unite several
sedges to an sloop. The conversion of an sedge with idemtimhpoints into an
sloop is trivial.
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4.4 Candidate Sphere Maps

The set of vertices in a polyhedrds resulting from am-ary Boolean operation

b on polyhedraP,...,R, is a subset of the vertices in the combined arrangement
of Py,...,Py. They are either located at the position of a vertex in anyePts, or

at an intersection df andP;. For binary operations we must consider edge—edge
and edge—facet intersections. These locations are thedosaf the vertices in
the overlay of théd®s (see Figure 4.9).

As for the binary operations on two-dimensional Nef polylaeahot the com-
plete combined arrangement is needed for representingetiudt.r We determine
the sphere maps for all vertex locations of combined arnaege, first. Those
sphere maps are a sufficient representation of the resylhg@dion, but may in-
clude redundant sphere maps. We identify the redundantesphaps and erase
them. In contrast to our approach of binary operations omvibbedimensional Nef
polyhedra, the overlay is not computed. Instead, the pdiyrecan directly be
synthesized from the sphere maps that remain after theifizapbn.

The sphere map d®¢s at locationl is calculated by applying on the sphere
maps representing the local neighborhood @f each of the polyhedr&. We
already have sphere maps at locatiom all Ps that have a vertex &t For all
otherPRs, the locationl lies on an edge, on a facet, or in a volume. Remember
that sphere maps can represent the local pyramid of eveajidocin the three-
dimensional space with respect to some given Nef polyhedrononly the local
pyramids of vertices. Thus, we can compute proper sphere fioap on the fly,
if it is necessary. In case of a volume, the sphere map thatsepts locatiorh
consists of a single sface with the same mark as the volunhéieff on a facet, the
sphere map has two sfaces separated by an sloop. The martk&kemerom the
facet and the incident volumes. In casd dfing on an edge, the sphere map has
two opposite svertices with an sedge connecting them fdr zeet incident to the
edge. The marks are taken from the edge, the incident fagsdtecdumes.

4.5 Simplifying the Selective Nef Complex

Given two polyhedrorP andQ, we created a set a sphere maps that is sufficient
to represent the result polyhedron of a Boolean operatiofoqmeed onP and Q

in the previous step. In particular, we created sphere nmapalifvertex locations

of the combined arrangement Bfand Q. The set of these vertex locations is a
superset of the vertex locations in the result polyhedragpdhding on the specific
Boolean operation, some of the vertices occur in the reaotl, some do not. In
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Figure 4.10: The combined arrangem@&iC, P) of a cubeC and a prismP, and
the arrangements @\ P andCUP. In the difference operation, two verticesPf
are absorbed by facets, and two others by edg€s @h the union operation, the
final two vertices oP get absorbed in the outer volume.

the latter case, the sphere maps represents a location alganan a facet, or in
a volume. This happens when for example the vertex of one ipplyhedron is
absorbed by an edge, facet, or volume of the other polyhedioese sphere maps
are redundant and will be erased in this step.

As an example, Figure 4.10 shows the combined arrange@@htP) of a
cubeC and a prisnP, together with the arrangements®f P andCUP. The latter
two arrangements include all vertices@fC, P). In C\ P, the two lower vertices
of P have been absorbed into the outer volumeCInP, the two left vertices of
P have been absorbed into the volumeCpfand the two upper vertices &fhave
become a part of the boundary©f

As discussed in Section 4.4, sphere maps that represenitia@pas an edge,
on a facet, or in a volume, have special structure. Thusgiasy to identify them.
Once such a redundant sphere map is identified, it can singptieketed together
with all its items. Since the SNC has not been synthesizedtlyetsphere maps
are not linked by any pointers. They are only implicitly letkby their geometric
properties, which will later help us to perform the syntkesi

4.6 Synthesizing the SNC

Given the sphere maps of a particular polyhedron, it is@ithplex to solve inter-
esting geometric queries on the polyhedron. For instahteyéry complicated to
solve a point location query, because there are no edgé, taemlume items that
could be returned. As a result, a user must first define thgsetob
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Providing the SNC is a necessity not only because of conmeaidut also
because of efficiency reasons. Determining edges, fa@atst €ycles, shells or
volumes on demand can increase the complexity of algorithem®rmed on a
polyhedron essentially. As an example, without precontmutehe identification
of the opposite endpoint of some edge needs at least timar linghe size of the
polyhedron.

The selective Nef complex complements the information idex by the
sphere maps. In this section, we describe how to synthdsizeelective Nef com-
plex. The synthesis works in order of increasing dimension.

4.6.1 Pairing up Halfedges.

Interpreting an svertex as a halfedge in a three-dimenispmighedron, the center
vertex of the sphere map becomes the source vertex of thedigelf The direction
of the halfedge is the direction from the center vertex tcsthertex. A halfedge has
a unique supporting line, which is defined by the positiont®&burce vertex and
its direction. Edges are identified by two svertices diseopyposite to each other,
i.e., they have the same supporting line, they are oppgstednted, and there is
no other vertex lying on the same supporting line betweemthe

We create halfedge pairs as follows: First, we compute a alized line rep-
resentation for each halfedge, and group halfedges thahltbe same supporting
line in a common list. Then we sort each list such that cortsechalfedges can
be linked as halfedge pairs.

To group halfedges with the same supporting line, we use alored Plicker
coordinates of the line [Sto91]. The Pliicker coordinatea ine | can be deter-
mined from two distinct pointg andqg onl. For a halfedge with source vertex at
locationsand directionv, we setp = sandq= s+ V. The Plucker coordinates are a
sixtupel, which represent the line definedfpgindq uniquely up to a multiplicative
factor. It is computed as follows:

P-X() *q.y() — p-y() * 9-X(), p-hx() * g.hy() — p.hy() * q.hx(),
P-X() % 0.2() — p.2() * q.X(), p-hx() x0.hz() — p.hz() x g.hx(),
P.y() *9.2() — p.z() *q.y(), p.hy() x0.hz() — p.hz() x g.hy(),
P-X() — a.X(), p-hx() + g.hw() — p.hw() * g.hx(),

p.y() — a.y(), p-hy() * g.hw() — p.hw() * g.hy(),

p-2() — 9.2() p.hz() + g.hw() — p.hw() * g.hz()
Cartesian coordinates homogeneous coordinates
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| source verteX direction |

P1(0,1,0,1,0,0)

(1,0,1) (1,0,0)

(2,0,1) (—=1,0,0)

(2,0,1) (1,0,0)

(3,0,1) (—=1,0,0)
PI(2,1,0,1,0,0)

Y (1,2,1) (1,0,0)

(1.0,1) (201 (3,0,1) 220 | CLoo

(2,2,1) (1,0,0)

(3,2,1) (—1,0,0)

Figure 4.11: Symmetric Difference of two axis-aligned cibwith corners at
(0,0,0), (2,2,2), and(1,0,1), (3,0,3): The table lists the position of the source
vertex and the direction of the halfedges with the suppetimesPI (0, 1,0, 1,0,0)
andPI(2,1,0,1,0,0). The halfedges are lexicographically sorted by the locatio
of their source vertices. The direction breaks the tie.

Since we want to group all halfedges with the same suppolitiegin a com-
mon list, we need to normalize the Pliicker coordinates. hBonogeneous coor-
dinates we achieve normalization by division with the comrgeeatest divisor of
all six Plucker coordinates and negate them if the first dibaite is negative; for
Cartesian coordinates we divide all by the first Pluckerdoate.

Since the source vertices of twin halfedges must lie nexath @ther on their
supporting line, we sort the lists lexicographically. Thritographic order always
coincides with the order of points on their common suppgrtine. There can be
two oppositely oriented halfedge$ ande™ with the same source vertex lying on
the same supporting line. Because of the lexicographicrottue twin halfedge of
e, the one pointing in a direction of lexicographic smallein®, is sorted directly
beforee~ ande’. The twin halfedge o&" is sorted directly after them. Thus, we
break the tie by sorting~ beforee™.

The method is illustrated by Figure 4.11. For a polyhedronstoicted by
the symmetric difference of two cubes, it shows two of this lef halfedges with
common Plucker coordinates. Each halfedge is identifiedheyhomogeneous
coordinates of its source vertex and its direction. Theisest(1,0,1), (2,0,1),
and(3,0,1) lie on a common supporting line with normalized Pluckerrdatates
P1(0,1,0,1,0,0). Consequently, those are the normalized Pliucker codeinaf
the four halfedges connecting these vertices. There aréalfedges with source
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edge-use)

Figure 4.12: The shalfedge representing the edge-use efesddvy, V) in half-
facetf is the shalfedge in the sphere map arounthat lies in the supporting plane
that is oppositely oriented tb and whose target svertexes

vertex(2,0,1). The halfedge with directiof—1,0,0) points into a direction with
lexicographically smaller points, and is therefore sotietbre the one with direc-
tion (1,0,0). The first and second halfedge of the list are paired as adusfpair.
So are the third and the fourth.

In case of extended points we proceed the same way. For singpbnes
that do not lie completely on the infimaximal box, the normedi Pliicker co-
ordinates of the frame points are the same as for the noreffgomts. For the
lines lying completely on the infimaximal box, we get normed Plicker coor-
dinates whose three leading coordinates are each either aela polynomials
in R of degree one. The other three coordinates are constant@an Agample,
the edge from(—R,—R,R) to (R,0,R) has the normalized Plucker coordinates
PI(R,—2R,—R,—2,—1,0). To sort the vertex coordinates of frame points, we use
the notion ofR as an infimaximal number, i.e., a number greater than any.othe

4.6.2 Creation of Facet Cycles.

Facets are bounded by at least one boundary cycle. The quderis obligatory

and consists of edges. Inner cycles border holes. Theyreitmesist of a single
vertex or of a cycle of edges. Since edges and vertices may otmultiple facet

cycles, we regard facet cycles as cycles of edge-uses rthideredges. Instead
of introducing additional items for the edge-uses, we das®dhe edge-use of
halfedgee = (v1,V2) in halffacetf with the shalfedgese such thasehas the same
oriented supporting plane dsand is part of the sphere map\waf(see Figure 4.12).

49



CHAPTER 4. BOOLEAN AND TOPOLOGICAL OPERATIONS

incident shalfedges of
sV sV’s twin
s: —-z=0|sg¢: z=0
seg: x=0|sg: x=0
s: z=0|sg: -z=0
sgg: —x=0|sg: —x=0
prev(se)) =twin(s€)) prev(sg)) = twin(se)
prev(se ) =twin(seg;) prevse;) = twin(se)
prevse) =twin(seg,) prevse) = twin(se)
prev(se;) =twin(s€) prevsg) = twin(se;)

Figure 4.13: Symmetric Difference of two axis-aligned cibwith corners at
(0,0,0), (2,2,2), and(1,0,1), (3,0,3): The table lists the shalfedges incident to
the shalfedge paie = (svtwin(sv)), i.e., the svertex with source vertéx, 0,2)
and direction0,1,0), and its twin. The shalfedges are denoted by their supgprtin
planes in the the sphere’s coordinate system and are listedunter-clockwise
order. The new previous pointers are listed below the takie. next pointers link

in the opposite direction.

A boundary cycle consisting of a single vertex is regardedltaisial edge-use. We
associate the trivial edge-use of vertean facetf with the shalfloop on the sphere
map ofv that has the same oriented supporting plané.as

We link shalfedges to previous—next pairs, such that a bayndycle of
halfedgesey, - - - , &, is represented by a cycle of shalfedgg, - - - ,sg,, wherese
represents the edge-useef For this purpose, we form facet cycles by linking
together sedges that are incident to twin shalfedges ail tiee same supporting
plane. To identify the previous—next pairs for all shalfesigadjacent to svertex
sV, we first search the adjacency list®ofs twin for an shalfedgee lying on the
oppositely oriented supporting plane than the first shgked, outgoing fromsv.
The shalfedgese andse lie on oppositely oriented facet cycles passing along
the same edges and vertices. In one of these two facet cheldwin ofse is the
predecessor fe; in the other facet cycle the twin sk is the predecessor sf .

We link them as previous—next pairs, accordingly. We usecthater-clockwise
order of the shalfedges outgoing fraewand its twin to link together the remain-
ing sedges adjacent ®v. In this fashion we create all previous—next pairs, and
consequently also form all facet cycles.

In Figure 4.13, we look at the svertexwith source vertex1,0,2) and direc-
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tion (0,1,0). It's twin svertex has source vertgg, 2, 2) and direction(0, —1,0).
The table lists the supporting planes of the outgoing stigéfe of both svertices in
counter-clockwise order. Remember that in a sphere maplane gqualities are
given with respect to the center of the sphere. The first dnggehalfedge oévlies

in the plane—z= 0. We therefore match it with the outgoing shalfedge twin
that lies in planez = 0. Traversingsvs adjacency list in counter-clockwise order
and the adjacent list (Vs twin in clockwise order simultaneously, we obtain all
the previous—next pairs.

4.6.3 Creation of Facets.

To resolve the nesting relationship of the boundary cycfes lvalffacet, we can
reuse the planar sweep line algorithm from Michael SeelQ$eEe From the dis-
cussion of the overlay in Section 4.1, we know that we onlydriibe information
which edge lies below each of the vertices to resolve thénmestlationship. Since
we also do not need the sweep to create an output graph, mibst ffnctions im-
plementing theSegmentOverlayOutput concept are empty.

Our boundary cycles consist of shalfedges and shalfloopsthEsweep we
reinterpret them as edge-uses, i.e., each shalfedgeunderstood as the use of
the halfedge fronses center vertex to the center vertex of its successor siigdfe
Thus, for each shalfedge in a boundary cycle we create a sedragveen the lo-
cations of those vertices as an input for the sweep; for daalfi@op in a boundary
cycle, we create the trivial segment of its center vertex.

With the sweep, we can process all halffacets lying in theesaapporting
plane at once. Also, we can conclude the nesting structusehalffacet from its
already processed twin. Consequently, it suffices to sbdhallfedges by their
normalized oriented plane equation and perform one sweagposéively-oriented
supporting plane.

4.6.4 Creation of Volumes.

Shells are identified with a graph traversal. As halffaceigether with the

shalfedges and shalfloops in their boundary cycles belorexaatly one shell,

we can traverse facet and sface cycles to obtain furthereglitnof the same shell.
Starting at any sface or halffacet this method yields athgef the shell if there is
no edge whose removal divides the shell into two separats.p&his situation is

handled by traversing from an isolated svertex to its twigrtex.

Looking at our example with the symmetric difference of twibes, we tra-
verse the outer shell starting from the outer sfatat vertex(0,0,0) as follows.
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class Smallest_vertex_visitor {
bool first;
Vertex_const_handle v_min;

public:
Shell_explorer() : first(true) {3}

void visit(Vertex_const_handle v) {
if(first ||
CGAL: :lexicographically_xyz_smaller (v->point(),
v_min->point())) {
v_min = v;
first=false;
}
}

void visit(Halfedge_const_handle e) {}
void visit(Halffacet_const_handle f) {}
void visit(SHalfedge_const_handle se) {}
void visit(SHalfloop_const_handle sl) {}
void visit(SFace_const_handle sf) {}

Vertex_const_handle get_result() { return v_min; 3}

};

Vertex_const_handle get_smallest_vertex(const Nef_polyhedron& N,
Shell_entry_const_iterator it) {
Smallest_vertex_visitor S;
N.visit_shell_objects(SFace_const_handle(it),S);
return S.get_result();

}

Figure 4.14: The class Smallest vertex visitor implements a
Shell visitor, which obtains the smallest vertex of a shell. The function
get_smallest vertex Starts the shell exploration and forwards the result.
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We first traverse the only sface cycle sif and find the three outwards oriented
halffacets adjacent to vert¢®, 0,0). Traversing the boundary cycles of these half-
facets yields the proper sfaces of the vertit@2,0), (0,2,2), (0,0,2), (2,0,0),
(2,2,0), (0,0,2), (1,0,2), (1,0,1), and(2,0,1). Going on obviously yields the
remaining sfaces and halffacets of the shell.

The traversal is implemented using the visitor pattern [&®4], i.e., we offer
afunctionvisit_shell objects which traverses the shell and reports each found
item to a givenShell visitor. TheShell_visitor concept specifies six visit
functions for reporting the six item types that constitutelks: vertex, halfedge,
halffacet, shalfedge, shalfloop, and sface. This way, wewgde the traversal of
the shell from operations performed on the items. Figurd #ldstrates the usage
of visit_shell objects by an example function that calculates the lexicograph-
ically smallest vertex of a shell.

Similar to facet cycles, we distinguish between outer ametiirshells. Each
volume, except for the outermost, is enclosed by the sedaluter shell. In a
volume, there can be an arbitrary number of inner shells @iognholes in the
volume. To identify whether a she8 is an outer or inner shell, we locate the
spherical point with directioifi—1,0,0) on the sphere map of the lexicographically
smallest vertexs in S. If the query returns an svertex or and shalfedgés an
inner shell, because the found svertex or shalfedge iredictite existence of a
vertex smaller thaws on the adjacent outer shell. If the query returns an sface,
we check whether the sface belongs3tolf it belongs toS Sis an outer shell.
Otherwise, it is an inner shell.

The resolving of the nesting structure is similar to the kéag of facet cycles
in the planar overlay. The idea is to move from shell to shatil we find a shells;
that encloses the shéll we started fromS; also encloses all other shells we came
across in our walk fron%s to S.. To direct our walk, we determine the shell below
the smallest vertex of the current shell by a ray shootingygume—x direction. As a
consequence, the smallest vertex of the successor shislagsalexicographically
smaller than the smallest vertex of the current shell. Tthesywalk will eventually
find an enclosing shell, or no more further shell. In the tattese, all shells found
during the walk are not enclosed by any shell.

The set-selection mark of a volume can be obtained from atrampsface of
any shell bounding the volume. We take it from the smallegtexeof the enclosing
shell. This concludes the assembly of the selective Nef ¢exnp
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4.7 Unary Operations

Because the result of a unary operation is always a simpldicaf the input, i.e.,
the latter one can be obtained from the first by uniting andtahg items, we want
to copy and simplify the input rather than constructing a pelyhedron from its
sphere maps. Thus, we realize a unary function by applyiegéfection function
on the sphere map items and on the SNC items. With the new miakks$SNC
already represents the result, but potentially with redmhdphere maps, edges,
facets, and volumes. We identify and simplify the followsituations in the listed
order:

1. Identify redundant facef that separates two volumesg andc,, with f, ¢,
andc; having the same marks; andc, may be equal, iff is surrounded by
the volume.
= Deletef. Unitec; andc; if necessary.

2. Identify redundant edgethat separates two facets and f,, with e, f; and
f, having the same markd; and f, can be equal, i€ is surrounded by the
facet.
= Deletee. Unite f; and f; if necessary.

3. Identify redundant vertex that separates two collinear edgesande,. v,
e; ande, have the same marks.
= Deletev. Unitee; ande.

4. ldentify redundant vertex without incident edges that lies in a facet with
the same mark.
= Deletev.

5. Identify redundant vertex without incident edges and facets that lies in a
volume with the same mark.
= Deletev.

Similar to the simplification on the sphere as described tiiSe 4.5, updating
the SNC with every single simplification can lead to a quadraintime. When we
delete a sphere map isolated on a facate have to delete the corresponding facet
cycle entry stored witif. When we delete a sphere map isolated in a volaywee
have to delete the corresponding shell entry stored gvithgain, we use a union-
find data structure [CLR90] to efficiently update the poisteseparate union-find
structures are needed for the merge of volumes, facets faceks
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Chapter 5

Search Data Structures

The main bottlenecks of our first implementation were paiaation, ray shoot-
ing and intersection finding. We implemented each task awialtbrute force
algorithm. With these algorithms, each point location, shgoting and intersec-
tion query has complexity linear in the size of the querielylpedron in the worst
case. Summing up all queries during a binary operation, wat&§nm) time for
point location queries, whene and m is the complexity of the input polyhedra,
andO(k?) time for the ray shooting queries, whekés the complexity of the re-
sult polyhedron. To get rid of these bottlenecks, we impleted two search data
structures: a kd-tree and fast box intersection. We deschib concepts in the
following sections. A detailed discussion of the runtimel @pace complexity is
given in Chapter 7. We confirm the efficiency of both structusg experiments in
Section 9.3.

5.1 Kd-tree

As the last step of the synthesis, we resolve the nestingtsteuof the shells. We
do this by shooting a ray from the lexicographically smaliestex of each shell
in negativex-direction and obtain the boundary item that is hit first by thy. A
brute force algorithm tests each boundary item for intdiseavith the ray and
reports the item intersecting it first. The combined comipyeaf testing a ray for
intersection with all vertices, edges and facets of a palyt is linear in the size
of the polyhedron.

During the binary operation, we calculate the sphere majlseofesult poly-
hedron. For this purpose, we deduce a set of candidate dosatif vertices in the
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result polyhedron, and then obtain a sphere map for eaclesétlocations in both
input polyhedron. We can easily determine the sphere mapoatéion! from the
item that is located dt We do not know the item df but we can identify it by a
point location query. The brute force method solves poioafion by testing first
whetherl is on a vertex, is part of the relative interior of an edge oefaor lies in
a volume. In the latter case, we obtain the volume from thelamce relations of
the item hit first by a ray shot frorhin an arbitrary direction. The complexity is
essentially the same as for a ray shooting query.

Both query types can be solved more efficiently with the héla kd-tree. A
kd-tree correlates with a decomposition of the space intalfmensional regions.
It stores the information which items can be found (at leastly) in each of the
regions.

Having a kd-tree we need not consider all items in each ragtsigpand each
point location query. In a ray shooting query, it suffices ¢mgider the items of
the regions intersected by the ray. Furthermore, the lagrevides a rough order
of the items along the ray. Since we search for the first hitnegd not check all
items of the regions intersected by the ray. After the firrigection, it suffices
to test the remaining items of the currently inspected megim a point location
guery, we only consider items close to the queried locatien,only items of a the
region which contains the queried location. Miguel Grarsaaplemented a kd-
tree, which efficiently solves both query types on threeatisional Nef polyhedra.

A Binary Space PartitioningBSP) is a
spatial subdivision of a k-dimensional space s, Sight
D into disjoint regions. Given a set of ge-
ometric objectsS, D is iteratively split by °
hyper-planes into subregions until each sub- e 4 ¢
region only contains a constant-sized subset
of S. During the subdivision 8SP treeis
created as follows: We start by splitting ° °
at hyper-planep into subsetsSett and Sight.
Objects intersecting are put into both sub- 4 \
sets. The hyper-planp is stored with a new
node, which becomes the root node of the kd-
tree. The children of the root are the BSP p
trees ofSet andSignt With respect to the sub-

regions oD to the left and to the right gb. The recursion ends with constant-sized
sets of objects, which are stored as the leaf nodes of the tree

The structure of the BSP tree correlates to the subdivisiongss. In detail,
each noden of the BSP tree correlates to some subregipof D, such that each
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SPo
SPy P2
SP3 SP4 SPs SPs
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fo ||esfo] | Jo || Jo 5,66
s .
P2 SPo Sps fi

Figure 5.1: Two-dimensional kd-tree.

object that lies in or crossesg is stored in a leaf node of the subtree rooted.at
With the help of the splitting planes stored in the interiodas, it is easy to obtain
the object in the same region as some query point, or in the sagions that are
crossed by a query edge, ray, or plane.

A kd-treeis an axis-aligned version of the BSP tree, i.e., the spijtfilanes are
orthogonal to the coordinate axes in alternating order fBeisam90a, Sam9ob].
As an example, Figure 5.1 shows a two-dimensional kd-treethé following
discussion we concentrate on three-dimensional kd-trees.

To solve a point location query using a kd-tree, we only needonsider the
objects in one leaf node, i.e., we consider the objects tHaast partially lie in the
same regiom, as the query locatioh Restricted to a constant number of objects,
we proceed similar to the brute force method. We check whetfieof the objects
hasl in its relative interior. Otherwisé must be in the interior of a volume. To
identify the volumes, we shoot a ray to the nearest vertekenrégion—we will
see later that there is at least one vertex in each region-seath for the first
intersection of the ray with any object in the region. As tlg connects two points
in a convex region, every object intersecting the ray betwtbe two points must
also lie inry.

For a ray shooting query, we have to consider the objects @myexegion
crossed by the ray. We examine the regions in the order th&aagrses them.
If we find an intersection, we only have to test the remainibgcts of the current

57



CHAPTER 5. SEARCH DATA STRUCTURES

region. Objects in upcoming regions are irrelevant, as tayonly intersect the
ray in some point that lies farer away from the source of tlyghan the intersec-
tion already found.

During the construction of the kd-tree, there are differgnategies for find-
ing the splitting planes. For our purposes, we want to ogenthe point-location
gueries rather than the ray-shooting queries. In a binagyatipn, one ray shooting
query is posed per shell. In comparison, one point locatigrygis posed per input
vertex, per edge—edge, and per edge—facet intersectiom résult, ray shooting
gueries only consume a negligible amount of time comparéetdme consumed
by point location queries, which we will confirm in Sectior39.

In our situation, a simple strategy for finding splitting més applies well. To
determine a splitting plane orthogonal to thexis for a set of objectS, we com-
pute the median vertex, of the vertices irSwith respect to the-axis. Then, the
splitting plane is the unique plane orthogonal to xkexis with vy, in its interior.
Finding splitting planes orthogonal to tlyeand z-axis works analogously. The
division process terminates when a region contains at naasertices. Conse-
quently, the tree is limited to logarithmic depth, but we ao¢ guaranteed to have
only a constant number of edges and facets stored in the leafs

The performance of both query types depends on the shape dadbts. A
large facet with many vertices on the boundary may cross orosten all of the
regions and thus are stored in most of the leafs. As a consegueach point loca-
tion query has to test for intersection with that facet. lotaer bad scenario many
constant-sized facets each intersect most of the regiogs, that the combined
number of objects in the leafs of the kd-tree is quadraticpamed to the complex-
ity of the polyhedron. On the other side, we expect well-sluafacets most of
the times, and as a result constant-sized leafs that allfigvesit queries. We dis-
cuss the complexity of the kd-tree and its operations in thestscase and under
assumption of well-shaped polyhedra in Chapter 7. Also, xeenéne worst-case
examples for the performance of the kd-tree in Section 9d,vae discuss po-
tential improvements of the kd-tree in order to handle bahados as described
above in Section 9.6.

5.2 Fast Box Intersection

To find all edge—edge and edge—facet intersections effigiemt chose to imple-
ment fast box intersection as described in [ZEQ2]. Thisisegummarizes their
approach. Andreas Meyer conducted the implementation ejsaaiate GAL pack-
age.
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Given two sets oh and m geometric objects, it is our goal to find all pair-
wise intersections between objects from different setse ffiwial method is the
test of all pairs. The algorithm perfornms m intersection tests. The idea of box
intersection is to put axis-aligned bounding boxes arowuh @bject and find the
intersecting boxes. If two boxes intersect, we check whetreobjects intersect,
too. Replacing the intersection test of complicated objdxst testing boxes can
be much faster, especially since it suffices to use floatmgtmrithmetic for the
coordinates of the bounding boxes. However, the biggesfliéngained by using
sophisticated algorithms for finding all pairwise intertisg boxes. In most do-
mains of interest, the number of pairwise intersecting béis in O(n+ m). Fast
box intersection need3((n+m)log®(m+ n) +k) time andO(n+ m) space to find
all those boxes.

We use the following two properties of axis-aligned boxeérd intersecting
box pairs efficiently:

Property 1 Boxes intersect if and only if they intersect in each dimensnde-
pendently.

Property 2 Two intervals intersect if and only if one contains the lovdpeaint of
the respective other.

If we test for the intersection of two axis-aligned boxesyperty 1 allows us
to reduce this three-dimensional problem to three one-aswaal problems. The
problem of deciding whether a given point lies in a given live is known as
the stabbing problem With Property 2, it suffices to solve at most two stabbing
problems for each of the three dimension. Instead of corieglene box pair after
the other, we rather applyatched stabbingi.e., given points and intervals, we
report for each point all intervals that contain it. Hence,aan find all intersecting
boxes by applying batched stabbing six times. In each dirnenae test the lower
endpoints of one set for intersection with the intervalshefitespective other. Both
sets are once considered as points and once as intervals.

In the following we describe several data structures andrilgns used for
finding pairwise intersecting boxes Imatched stabbingfficiently. At the end of
the section we show how these techniques work together ib@dhglgorithm.

5.2.1 Segment Trees.

Figure 5.2 demonstrates the structure and the usage of segees. The segment
tree is a balanced binary search tree. Each node repressotinderval of the
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Primary Segment Tree
(Dimension x)

4+ Secondry Segment Tree
(Dimension y for Boxes D and E)

Figure 5.2: 2-level segment tree for a set of boxes in theeplan

number line, such that each level spans the whole numbeiahidechild nodes
partition the interval of their common parent. In our exaephe number line is
partitioned by the endpoints of the given segments. Theigrd¢leen created as
a balanced binary tree based on the intervals of the numieer The tree needs
O(nlogn) space and can be constructeddfnlogn) time.

The nodes of a segment tree store those segments that spadéie interval
but not that of its parent. As a result, each segment is storetl most 2logn
nodes. Posing a single stabbing query, we visit all nodessw/imtterval contains
the query point and report the stored segments. Note thhtreported segment
contains the point and no segment is reported twice. TheydakesO(logn-+ k)
time, wherek denotes the number of reported segments.

To use segment trees, we only consider the extent of a boxmerdiond;.
This way, we reduce both sets of boxes to sets of segmentmiendiond;. Now,
we find all pairwise intersections in dimensidnof two sets of boxes as follows:

1. Build a segment tree for the first set of segments and quevith the left
endpoints of the segments in the second set.

2. Build a segment tree for the second set of segments anyg iuéth the left
endpoints of the segments in the first set.
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So far, we only have solved a one-dimensional problem. If ise want to
resolve the other two dimensions, we can build secondaryteatidry trees. Sec-
ondary trees are built for each node of the primary tree. \(feae the boxes stored
in a node to segments in the second dimension and build a ségree from the
resulting segments. From the boxes stored in the nodes skttendary trees we
then create tertiary trees. This approach U3gsog;n) space and finds all inter-
secting boxes iO((n+ m)log;(n+ m) + k) time.

5.2.2 Streaming.

The space requirements of multi-level segment trees aaisfactory. By apply-
ing the streamingtechnique [EO85] linear space requirements become suificie
The solution is to perform all queries to the multi-leveletreimultaneously. As
a result, the tree is only traversed once in post-order aed net to be stored in
memory. Each node is generated on demand and erased afterwaerefore only
the O(n+ m) space for the boxes is needed. This technique is callechstiga

5.2.3 Scanning.

Segment trees are efficient but complex. Consequently, hlagg high hidden
constants. Scanning is a much simpler method, which isrfesstene-dimensional
and small problems.

Given a set oh pointsP and a set ofn segmentsS, we first sort both sets—
the intervals are sorted by their low endpoints. Then wecbketor the first ver-
tex p lying on the first segmerd. From p onward we report all points until we
find any that does not lie oa We proceed the same way with the next seg-
ments, but begin our search for the first point ghwith p. The algorithm has
running timeO(nlogn+ mlogm+k’). Neglecting the time for sorting, it runs in
O(n+m+K'). For the one-dimensional case, the algorithm is very fastfds the
three-dimensional case, we have to check foKailhtersections found in the first
dimension whether they also intersect in the second andl diinensionk’ can be
much bigger than the number of intersecting boke¥he experiments in [ZE02]
show that scanning is slightly faster for up to 200000 bok&swvever, a hybrid al-
gorithm combining streamed segment trees with scanningsisraially faster than
both.
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Algorithm 1 Hybrid algorithm for fast box intersection.

1. procedure HYBRID(SP,lo,hi,d)

2:

3
4.
5
6

~

8:

9:
10:
11:

12:

13:
14:
15:

16:
17:
18:

if S=0 orP=0orhi <lothen
return
end if

if d=1then oneway_scangP,0)
end if

if |§ < cor|P| < cthen modifiedtwo_way_scang,P,d)
end if

Sn= {i € Slo,hi) Ci}
hybrid(Sn,P,—,+,d — 1)
hybrid(P,Sn,—,+0,d — 1)

mi =approxmedianpP)
A={peP|p<mi}

S = {i € S—Syjin[lo,mi) # 0}
hybrid(§,R,lo,mi,d)

R = {pG P‘pz mi}

S = {i € S— Syfi N [mi, hi) # 0}
hybrid(S ,Pr,mi,hi,d)

19: end procedure
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5.2.4 The Hybrid Algorithm.

Algorithm 1 combines the methods and data structures destebove. The func-
tion HYBRID computes all pairwise intersections of te@aimensional boxeSand

P, with the restriction, that in dimensiaththe boxes ofS are only considered as
segments, and the boxes®fare only considered as points. In the course of the
execution offYBRID, subsets oS andP are considered in both ways, EsandP
themselves are not reinterpreted. For this reason, thdidumnceeds to be called
twice. As an example, we use the following calls to computeatwise intersec-
tions of two sets of three-dimensional boX@sandB;:

HYBRID(B1,By,—c0,+0,3)
HYBRID(B,,B;,—c0,+,3)

Neglecting the lines 2-8, the algorithm streams a mulillesegment tree.
There are two types of recursions, which are used in such a talthe each
invocation ofHYBRID uniquely correlates to a node of the segment tree. The recur-
sive calls in lines 10 and 11 trigger the construction of tegtnree level for those
intervalsS;, that completely cover the currently considered intefh@lhi), but do
not cover the interval considered in the parent node. Oneesiet two calls consid-
ersS;, as a set of segments aRdhs a set of points, while the other call considers
them the other way. The recursive call in lines 15 and 18 eribet two child nodes
of the current node. For this purpose, the &tmdP, and the intervallo, hi) are
split atmi into two halves, whereni is an approximation of median of the points
in P.

There are three situations that stop the streaming of thaesgigiree and there-
fore terminate the recursion. Line 3 interupts when thermiking left to process,
i.e., either of the setSandP is empty, or the considered interval is empty. Lines 5
and 7 replace some part of the segment tree by scanning. dit, diee 5 triggers
a one-way scan as described above as a replacement for thevaiaf the tree,
and line 7 prunes the tree for small-sized problems and £gem/o-way scan in-
stead. The two-way scan processes two one-way scans af.endealternatingly
considers the elements of both sets as points and segmaatsiiEn the smallest
unprocessed segmesfrom both sets is processed sl in the first set, the second
set is viewed as points, and vice versa. Both scanning esitian finally discover
and report those boxes that intersect in all dimensions.
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Chapter 6

Additional Functionality

The data structures and the Boolean and topological opegatire the core of our
implementation of Nef polyhedra in three-dimensional gpdn this chapter we
present the remaining functionality provided by ousAL package.

6.1 Constructors, Input and Output

The classNef polyhedron 3 provides three constructors. The first one creates
a polyhedron that comprises a single volume. The consirinas a Boolean pa-
rameter that decides whether it creates the empty set oryhgavon covering the
whole three-space.

The second constructor creates an open or closed half-spgfiest parameter
is a plane, which defines the boundary of the half-space. Tihegonal vector
of the plane points to the outside. The second parametedeteahether the half-
space is open or closed. Since infinitely bounded polyheatianly be handled by
extended kernels, this constructor is not provided in cowaimn with a standard
kernel.

Finally, we provide a constructor for manifold solids. Thwid is passed as
an instance of the €AL classPolyhedron 3. This class comes with an input
operator for the Object File Format (OFF), with file extemsioff, which is also
understood by GeomView [Phi96]. OFF files represent susfasea set of facets.
Each facet is a list of indices pointing into a set of verticégertices are rep-
resented as coordinate triple®olyhedron 3 restricts the format to orientable
two-manifold solids with or without borders. Isolated eslgend vertices are not
allowed. Therefore, the smallest representable surfaeetnigangle; the smallest
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Figure 6.1: The polyhedron on the left side can be repredeag@Polyhedron 3
and as a&lef _polyhedron 3. In the latter case, the simplification routine unites
coplanar facets. As a result, the front side becomes onévattea hole. Hence,
the polyhedron cannot be converted fréig¥ polyhedron 3 to Polyhedron 3.

representable surface without borders is a tetrahedrorconeertPolyhedron_3
into Nef _polyhedron_3 only if the surface can be turned into a manifold solid.
Because of this, the constructor ®éf polyhedron 3 only accepts polyhedral
surfaces without boundary. The surface then is convertedarclosed solid by
marking the surface and the volume enclosed by the surface.

A Nef_polyhedron_3 can also be converted back intoPalyhedron 3, if
each shell comprises a two-manifold surface whose facetaatddchave holes.
The function is_simple is provided as a means to check whether the con-
version is allowed. Polyhedron 3 again provides output operators for writ-
ing the formats OFF, Openlnventor (.iv) [Wer94], VRML 1.0daR.0 (.wrl)
[BPP95, VRM96, HW96], and Wavefront Advanced Visualizerjezh format

(.ohj).

Note, that it is not guaranteed that conversions are réatersDbviously, the
conversion fromNef polyhedron_3 to Polyhedron 3 is more general than its
reverse counterpart, as it allows the handling of multipidezes. Likewise not
all conversions fronPolyhedron 3 to Nef polyhedron 3 are reversible. The
reason lies in the unique representation of our data stesti\s an example, Fig-
ure 6.1 shows a cube with a hole in the middle, representedrgngulated mesh.
The mesh is two-manifold and therefore can be converted tefgpdlyhedron. At
the end of the conversion the SNC is simplified. As a part ofsingplification
process coplanar facets are united. In the example, aB sitlédhe cube are copla-
nar. Thus, the triangles of each side are united and beconmgle $acet. For
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two sides this process results in a facet with a hole. Shwdsrhedron 3 does
not allow facets with holes, we cannot support a conversianfix this problem,
the facets with holes must either be decomposed into sniatiets without holes,
or additional data for reconstructing the original facetssirbe stored. The latter
procedure is in general too costly in relation to its benefibé supported auto-
matically. The former one is planned for future releases$,cannot guarantee a
one-to-one reconstruction of the original surface.

Nef polyhedron 3 is also equipped with an input and an output operator for
a proprietary file format. The file format includes the contplacidence structure,
the geometric data, and the labels of each item. Becausetpet@f the geometry
and the labels is delegated to the respective output opsrdte output depends
upon the actual types of the geometric kernel and the labéiss, it is only possi-
ble to read a file, if the current geometric kernel and theenuiriabel type coincide
with the types used during the creation of that file.

Looking at the output format of the geometric primitivesg thutput depends
on the choice between homogeneous and Cartesian kern@nadhd used number
type. Since extended kernels are realized by wrapping axpoilial class around
the given number type, i.e., their real number type is nogilien one but a poly-
nomial with coefficients of that number type, this propasitialso holds for the
extended kernels. There is one exception to this behavibe ifiput and output
operator bridge the difference between standard and esdidtetnels if a Nef poly-
hedron is finitely bounded. Using an extended kernel, thaetioperator can read a
file based on standard geometry. Likewise, the output filefimiitely bounded Nef
polyhedron is always formatted as though standard geometsyused, no matter
if the used kernel is a standard or an extended kernel. If amded kernel is used,
the coordinates are converted from constants to constiymiguials and the items
comprising the infimaximal box are added during the load ajpan of a file that
contains a finitely bounded polyhedron. If a finitely boung@et/hedron is written,
the coordinates are converted in the opposite directiorttaméhfimaximal box is
removed.

As a supplementary feature, the output operator can cresitmdardized out-
put. Nef polyhedra imply the nice property that they can gbkvhe represented
uniquely. As a consequence, itis possible to compare twgblghedra for equal-
ity by a standardized output. Another way to perform the canspn is by a sym-
metric difference. The symmetric difference of two polyteee@quals the empty
point set, if and only if the two polyhedra are equal. For ast tsuite, the first
method is particularly useful, because using a standatdizgput is faster than
performing a binary operation. Also, we can check the resfudtbinary operation
without performing another.
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6.2 Transformation

We support the following transformations on 3D Nef polyleedranslations, scal-
ings, and rotations by rational rotation matrices. Trai@hs and scalings can be
solved easily. It is sufficient to apply the transformatioatrix to the points stored
with the vertices, the planes stored with facets, and thi#isgl plane of the kd-
tree. The geometry stored with the items in the sphere maps dot change,
because the geometry of the items in a sphere map alwayssétethe coordinate
system of the respective sphere.

Rotations are more complex for three reasons. First, thengey of the sphere
maps changes, too. Second, the kd-tree has to be recompatadise the splitting
planes would not be parallel to the coordinate planes dfterdtation. Finally, a
rotation changes the intersection of the polyhedron wighitffimaximal box and
must be recomputed. We start by computing the segmentsestettion between
the infimaximal box and the facets that intersect the infimakibox. Then, we
construct proper sphere maps for the endpoints of the seagm&ince there is
only one standard line that supports such an endpoint, therespmaps have a
certain structure. Still, they can be arbitrary large, liseamultiple facets may
intersect the endpoint. When we have all sphere maps, wenpade the selective
Nef complex, which also includes the recomputation of therkd. Consequently,
rotations are expensive operations, especially when améat kernel is used.

a runtime [s]|| a runtime [s]
101 0.01] 10* 4.47
102 0.04| 10°° 44.89
103 0.43] 1076 450.56

Table 6.1: Runtime of the AL functionrational rotation approximation

to compute an exact rotation for the approximated amgle degrees with the
a

tolerance set tqqq5;,

Another problem with rotations is the computation of ratatmatrices. Since
sina and cogr are irrational numbers in general, there currently is natpral
possibility to perform a rotation of exactly degrees. One solution is to ap-
proximate both values by rationals. But in addition to riogtby an approx-
imation of the specified angle, the method often has anotider effect. Ap-
proximating siro and cosx separately usually introduces a scaling or a shear-
ing of the rotated objects, if stha) +cog(a) # 1. CGAL provides a function
rational rotation approximation, which returns exact values for $an)
and coga’) such that sif(a’) + co(a’) = 1 and|a — a’| < ¢ for a small speci-
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6.3. VISUALIZATION

Figure 6.2: @ widgets for visualization of 3D Nef polyhedra and sphere snap

fied € > 0. The implementation offered by&aL is based on Farey sequences as
described in [CDR92]. It is division free but slower than tigorithm described

in [CDR92]. The runtime for finding such an exact rotation rixaamounts to a
non-negligible fraction for smalt, as can be seen in Table 6.1. The computations
were performed on a computer with a 846 MHz Pentium Il laptaih 256 MB
RAM.

6.3 Visualization

We provide visualization via @ [Tro, BS04]—a cross-platform application de-
velopment framework best known for its support of graphicsgr interfaces. In
particular, we offer @ widgets for visualization of 3D Nef polyhedra and of 2D
Nef polyhedra embedded on the sphere. The latter can alssdakefar sphere
maps. Using the mouse and modifier keys, a visualized 3D Nghedron can
be translated in each direction, rotated and scaled. Faarigpih Nef polyhedra
rotation and scaling is sufficient. Additional functiortglis offered via context
menus, such as different viewing modes or the displayingdinate axes. Using
inheritance, users can derive new classes from the widgetsler to include their
own functionality. Figure 6.2 shows a snapshot of both wisige
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Chapter 7

Complexity

Amongst others, the complexity of most of our functions aseatially determined
by the complexity of the point location, the ray shootingd éime intersection tests.
Since we realized those subroutines with heuristic seaatzhsdructures, the worst-
case complexity deviates strongly from the expected rumtomhavior. For this
reason, we give two analyses of each of the two search stesctin addition to
the worst-case analysis, we also give an analysis of the lexitypexpected under
a number of heuristic assumptions in Section 7.1 and 7.2e¢tiéh 7.3 we include
the complexities of the heuristic search data structurtestive total complexity of
the major functions provided by our package.

Note that although we speak of expected runtime, we do ndbnperan
average-case analysis. Usually in computer science, thestexpected runtime
and average-case runtime refer to an analysis of the runhiedeconsiders all in-
puts and the probability of their occurence. Such an armbegms misplaced for
an algorithm that operates on complex geometric objecis.uiiclear how we can
argue about all possible Nef polyhedra and the likelihoothefr occurence. In-
stead, we argue that polyhedra used in pratical applica@oa often well-shaped.
As a result, we can exclude extreme situtations and canftinerexpect a better
runtime than in the worst-case.

Let the total complexity of a Nef polyhedron be the numbereatices, edges,
and sedges. Obviously, the number of all other items is mgetaby more than
a constant factor: Every sface is bounded by at least thrakediges or one
shalfloop, while there is one vertex for each sloop. Each fadeounded by mul-
tiple shalfedges, and each volume (except for the outemvejus bounded by at
least one shell, which consists of multiple vertices, edged facets.
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operation worst-case runtime expected runtime
kd-tree construction o(n?) O(nlogn)
point location (single query O(n) O(logn)
ray shooting (single query O(n¥nlogn) O(¥nlogn)
box-intersection o(r?) O(nlog(n) +s)

Table 7.1: Worst-case and expected complexity of boxgetegtion and kd-tree
based operations, whenalenotes the input complexity, asdlenotes the number
of pairwise intersecting boxes found during box-intereect

7.1 Kd-Tree

We chose to implement a kd-tree for the ray-shooting and thiat{pcation
queries [Ben75, Hav00]. During the construction of the kesktwe use the vertex
set as a criterion for finding proper splitting planes; weatspke vertex set along
alternating axes at its median vertex. The recursive sigddivends when at most
two vertices are left, which guarantees logarithmic depthhe leafs, we store all
vertices, edges and facets that intersect the correspgpmegion. Consequently,
long edges and large facets can be stored in W)(ip leafs, and there might exist
leafs withO(n) items. The tight worst-case space boun®i{s?).

Large facets may be cut by each splitting plane. In the wease, testing for
the intersection of a facet with a splitting plane needs timear in the size of the
facet. Thus, constructing a kd-tree from an object with adinsized facet that
intersects all splitting planes implies linear time at eawter node of the kd-tree.
The tight worst-case runtime of the kd-tree constructio®(is?).

As explained earlier, we restrict ourselves to ray shoatingertical direction.
To be more precise, we only shoot rays parallel to the x-axigepative direction.
Hence, a ray intersects at ma@3t.¥n) kd-tree regions. However, each region can
storeO(n) items, and we need logarithmic search time for locating ghi®ring
region in our walk through the kd-tree. In total, we get a waase runtime of
O(n¥nlogn) for vertical ray shooting.

For point-location queries, we find the containing regio®{itogn), but migh-
bibliothekt be forced to check agair3{n) items in that region.

Of course we use the kd-tree since we expect it to perform rhattker in prac-
tice. The usual heuristic assumption is a well-shaped gagméth the following
consequences: Each edge or facet is stored in a constanenaihiegions and
each region contains only a constant number of items. ltcadfif these assump-
tions hold in an amortized sense, such that we get a linemgaaize of the tree
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7.2. BOX-INTERSECTION ALGORITHM

operation worst-case runtime expected runtime
construction of half-space 0O(1)

construction from o(nZ) O(nlogn)

orientable two-manifold
complement O(n)

boundary, interior, O(n?) O(nlogn)
closure, regularization
translation, scaling O(n)

rotation o(r?) O(nlogn)

Table 7.2: Worst-case and expected complexity of unaryatjpsrs, wheren de-
notes the complexity of the polyhedron. See Table 7.3 foibihary operations.
The expected runtime is given under the heuristic assumgpti@scribed in Sec-
tion 7.1 and 7.2.

with O(nlogn) construction time, an efficient ray-shooting queryQ(¥nlogn)
time, and an efficient point-location query @(logn) time. Both, the worst-case
and the expected runtimes of all kd-tree related algorithrassummarized in Ta-
ble 7.1. We study them experimentally in Section 9.2 andiGe& 3.

7.2 Box-Intersection Algorithm

We use the fast box-intersection algorithm described a&asted segment tree
in [ZEO2] to compute the edge-edge and edge-facet intéossct It runs in
O(nlog®(n) +s) time, wheren is the total number of boxes of both input sequences
andsis the output complexity, i.e., the number of pairwise iséeting boxes. As

a heuristic, the box-intersection algorithm assumes thahding boxes approxi-
mate edges and facets well. If they do r@tan become as bad &n?), even
though the edge—edge and edge—facet intersections migtgaud that worst case
themselves. However, we expextb be close to the true output complexity of the
edge—edge and edge—facet intersection problem.

7.3 Total Complexity

Given the sphere map representation for a polyhedron of Exitypn, the synthe-

sis of the SNC is dominated by sorting the Pliicker coorésathe plane sweep
for the facet cycles and the shell classification. The la#tgk is solved by shooting
a ray to identify the nesting relationship of the shells, s;ehwe account also for
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operation worst-case runtime expected runtime
point location (total) O(nm) O(nlogm-+ mlogn)
box intersection O(nm) O((n+m)log®*(n+m) + k)
sphere sweeps O((n+m+k)log(n+m))
synthesizing edges O(klogk)
plane sweeps O(klogk)
kd-tree construction 0(k?) O(klogk)
ray shooting (total) O(k?Vklogk) O(cvklogk)
binary operation | O((n+m-+k)log(n+m)  O((n+m)log*(n+m)+
+nm+ k®Vklogk) klog(n+m) +cvklogk)

Table 7.3: Worst-case and expected complexity of the majbrasitines of the
binary operation, whera@ and m denote the complexity of the input objects,
is the complexity of the result object, ards the number of shells in the result
object. The expected runtime is given under the heuristiaraptions described in
Section 7.1 and 7.2.

the construction of the kd-tree. The synthesis runs in erpk(c./n-logn) time,
wherec is the number of shells in the result polyhedron. If thereraustO(n%)
many shells in the result polyhedron, the expected runtinopsito O(nlogn).
This is also the cost for constructing a polyhedron from aentable two-manifold
solid.

Given a polyhedron of complexity, the complement runs in linear time. The
topological operationslosure boundary interior, exterior, andregularizationre-
quire a simplification step and run @(n- a(n)) worst-case time, where (n)
denotes the inverse Ackermann function from the union-ftnactures in the sim-
plification algorithm. However, we need to update the keé-a#terwards, either the
expectedO(nlogn) time or theO(n?) worst-case time. The affine transformations
translation scaling androtation also run in linear time. A kd-tree reconstruction
is needed only after a rotation. Table 7.2 summarizes thelaxities.

Given two polyhedra of complexitg andm, respectively, the Boolean set op-
eration with a result of complexityhas a runtime that decomposes into four parts:

(i) O(nlogm+ mlogn) expected time for the location of each vertex in the cor-
responding other input polyhedron.

(i) O((n+m)log®(n+m)+k) expected time to find all edge-facet and edge-edge
intersections. Here, we expect the number of intersectiohe close to the
number of pairwise intersecting boxes. Since each edge-autfjedge—facet

74



7.3. TOTAL COMPLEXITY

intersection corresponds to a vertex in the result polytredihe number of
intersections is iO(K).

(i) O((n+ m+k)log(n+ m)) worst-case time for the overlay of all+m+k
sphere maps.

(iv) O(cvklogk) expected time for the synthesis including the kd-tree canst
tion. Table 7.3 gives an overview of the complexity of all oragubroutines.
It lists the total complexity of the binary operation.

The space complexity of our representation is clearly limedhe complexity
of the Nef polyhedra, unless the kd-tree deteriorates daiega above.
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Chapter 8

Software Design

We implemented two GAL packagesiNef3 andNet.S2 for 3D Nef polyhedra and
Nef polyhedra embedded on the sphere, respectively. Thgndekthe data struc-
tures extends design ideas presented by Kettner [Ket99¢hwhere also used by
Seel [See01b, See01la] for planar Nef polyhedra. The mapils @b our software
design are the following:

Flexibility: Nef polyhedra should work with various geometric kernels.

Extensibility: The functionality of Nef polyhedra shall be extensible via e
changeable items and labels.

Code reuse: To realize sphere maps, N8fshall reuse the code of Nef
to a great extent. As a result, sphere maps shall be obtairabla
Nef polyhedron S2, such that functionality written for Ne$2 can be ap-
plied to sphere maps.

Each item type—vertex, halfedge, halffacet, volume, s¥ertshalfedge,
shalfloop, sface—is defined as a separate class. Thosesckisse the geome-
try and the combinatorial information of incidences (asAC handles), and they
provide proper query and accessor functions for them. To @ precise, there
are two implementations of the items shalfedge, shalfloajsface, since 3D Nef
polyhedra require additional incidences in comparisoridngr Nef polyhedra em-
bedded on the sphere. Similarly, a halfedge is the extendesion of an svertex.
Each class that realizes an item is parameterized with alétenparameter that
provides the const and non-const handle and iterator tyfpabitems, the types of
all necessary geometric primitives, like points and plaaesl the label type. The
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class definitions of the items of a 3D Nef polyhedron and aspileNef polyhe-
dron are wrapped by outer class®¥C_items and SM_items, respectively. This

way, the item types can be passed via a single template peame

class SNC_items {

template
template
template
template
template
template
template

};

<typename
<typename
<typename
<typename
<typename
<typename
<typename

class SM_items {

template
template
template
template

<typename
<typename
<typename

SNCTraits>
SNCTraits>
SNCTraits>
SNCTraits>
SNCTraits>
SNCTraits>
SNCTraits>

SMTraits>
SMTraits>
SMTraits>
SMTraits>

class
class
class
class
class
class
class

class
class
class
class

Vertex;
Halfedge;
Halffacet;
Volume;
SHalfedge;
SHalfloop;
SFace;

SVertex;
SHalfedge;
SHalfloop;
SFace;

<typename

};

The classSNC_structure is a proper argument for the template parameter
SNCTraits. Likewise, the class Spheraap is a model for th&MTraits. Both
classes include type definitions of all the handle and ibergfpes, the geometric
objects, and the label type. Therefore, they themselves loeysarameterized with
the geometric kernel, the items, and the label type. In Exddiboth classes also
constitute the representation layer of the respective statature. They include a
list for each of the item types. To be more specifiphere map has three lists:
one for all svertices, one for all shalfedges, and one fasfalies. There is no need
for a list of shalfloops, as there can be only two shalfloopsocstralfloop at all in
a spherical Nef polyhedron. In a 3D Nef polyhedron, the itefithie sphere maps
are centrally stored in theNC_structure for an easy iteration over all of them.
Additionally, the items of a single sphere map are store@irsecutive order, such
that the iteration over them also is simple and fast. Thatderanges of the items
of a sphere are stored with the center vertex of the sphengs, THC_structure
maintains seven lists: for all vertices, halfedges (=sses$), halffacets, volumes,
shalfedges, shalfloops, and sfaceghere map andSNC_structure provide in-
terfaces for the proper creation and deletion of items.
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Unfortunately, this design neither allows the reuse of te& 8P code in Nef3,
nor a function that returns a sphere map ofief polyhedron_3 as aconst
Nef polyhedron S2. We introduce a new typeNC_sphere map, which is sup-
posed to behave like the typghere map, except that it does not manage the items
of the represented sphere map itself, but delegates tlkisdedNC_structure.
With such a class, most of the N8R code can be reused. Furthermore, we add
another template parameter Nef polyhedron S2 that allows us to exchange
Sphere map by SNC_sphere map. Now, Nef_polyhedron_3 can construct a
Nef_polyhedron_S2 from aSNC_sphere_map.

The vertex type already fulfills most of the requirements ofclass
SNC_sphere_map. However, it cannot be used without adaptation. On the other
hand, we do not want to adapt the vertex type itself, since éxichangeable by
the user, and thus should only comprise few functionaligt ik interesting for
users. Instead, we reali#C_sphere map as a new class derived from the ver-
tex type. As mentioned above, the new class must realize ioéeviunctionality
of the classSphere map. Most of the functionality is already given by the vertex
type. The remaining functionality is related to the manageinof items, which is
delegated to th&NC_structure. Because we regularly access the 1$f code
within Nef_3, we replace the list of vertices storedSNC_structure by a list of
SNC_sphere_maps.

The final class signature of this implementation layer loa&k$ollows:

template <typename Kernel, typename Items, typename Label>
class SNC_structure {
typedef SNC_structure<Kernel, Items, Label> Self;
typedef SNC_sphere_map<Kernel, Items, Label> Sphere_map;

list<typename Items::Sphere_map<Self> > vertices;
list<typename Items::Halfedge<Self> > halfedges;
list<typename Items::Halffacet<Self> > halffacets;
list<typename Items::Volume<Self> > volumes;
list<typename Items::SHalfedge<Self> > shalfedges;
list<typename Items::SHalfloop<Self> > shalfloops;
list<typename Items::SFace<Self> > sfaces;

};

template <typename Kernel, typename Items, typename Label>
class Sphere_map {
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typedef Sphere_map<Kernel, Items, Label> Self;

list<typename Items::SVertex<Self> > svertices;
list<typename Items::SHalfedge<Self> > shalfedges;
list<typename Items::SHalfloop<Self> > shalfloops;
list<typename Items::SFace<Self> > sfaces;

};

template <typename Kernel, typename Items, typename Label>
class SNC_sphere_map {
typedef SNC_sphere_map<Kernel, Items, Label> Self;

list<typename Items::Halfedge<Self> > svertices;
list<typename Items::SHalfedge<Self> > shalfedges;
list<typename Items::SHalfloop<Self> > shalfloops;
list<typename Items::SFace<Self> > sfaces;

};

Finally, the main classes of the two packages look as follow$e class
Nef polyhedron_ 3 has three templates parameters, one for the geometriclkerne
one for the items, and one for the label. As default we use ld®@sSBNC_items
for the items and assigsbol as the label type. Furthermonésf polyhedron 3
has a protected member variable of the tgii€_structure as its representation
layer, which is parameterized with the same types as theldgSpolyhedron 3.

The claslef _polyhedron_S2 also has template parameters for the geometric
kernel, the items (with the default ty@M_items), and the labels (with default
typebool). Additionally, it has a fourth parameter for the type of gmhere map,
which by default is the clas$phere map parameterized with the same geometric
kernel, items, and label type #sf polyhedron S2. The representation layer of
Nef polyhedron S2 is realized by a protected member of the given sphere map

type.

template <typename Kernel,
typename Items=SNC_items,
typename Label=bool>
class Nef_polyhedron_3 {
typedef SNC_sphere_map<Kernel, Items, Label>
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Sphere_map;
typedef Nef_polyhedron_S2<Kernel, Items, Label, Sphere_map>
Nef_polyhedron_S2;

protected:
SNC_structure<Kernel, Items, Label> snc;

};

template <typename Kernel,

typename Items=SM_items,

typename Label=bool,

typename Map=Sphere_map<Kernel, Items, Label> >
class Nef_polyhedron_S2 {

protected:
Map sm;

};

While the items provide accessor functions for the inciéerstructure,
the geometry, and the labels, the main clas®es polyhedron 3 and
Nef polyhedron _S2 offer constructors, the Boolean and topological operation
transformations, point location, and entries to the inetgestructure. The latter
are iterator ranges for all vertices, halfedges, edgeéfabats, facets, volumes,
shalfedges, sedges, shalfloops, sloops, and sfaces, andt@rfuthat initiates a
shell traversal. The user interface is completed by an iapdtan output operator.
As usual, those operations are global functions.
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Chapter 9

Algorithm Engineering

Our first implementation realized all data structures amdntiost important func-
tionality, but used simple brute-force algorithms for rdnpsting, point location
and intersection finding. The idea behind this approach @btain a well struc-
tured, running solution in relative short time, and chec& torrectness of our
concepts early. Afterwards we can concentrate on optimittie efficiency of the
code. With this approach we followed a famous saying by Hoare

We should forget about small efficiencies, say about 97%edfitthe:
premature optimization is the root of all evil. C. A. R. Hoare 1980

With the first implementation, a binary operation on a mddiémlid with more
than 1000 vertices could only be performed in several hoNi®ay that we have
added fast heuristic search data structures and appligtioaddl optimizations,
our current version computes the symmetric differences ldrmamerhead shark
(2560 vertices and 5116 facets) and a translated copy oftihe shark (the result
has 6864 vertices and 11090 facets) in 41 second on a 846Miimelll laptop
with 256 MB RAM.

In Section 9.1 we introduce optimizations and confirm thajpact with exper-
iments. In Section 9.2 and Section 9.3 we perform furtheegrments to examine
the general runtime behavior of our implementation, andiress the main sub-
routines with complex situations. In Section 9.4 we compareselves to AIs
R13, the newest version of a common professional CAD keriiéle compari-
son to Acis gives a first impression of the advantages and disadvantigesct
arthmetic in comparison to floating-point arithmetic. Incgen 9.5, we deepen
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the comparison by examining the runtime behavior of our éng@ntation in cas-
caded constructions. Finally, we summarize some resudtsiecuss oportunities
to remove weaknesses in Section 9.6.

The tests are performed on two different computers. Machinas a 846 MHz
Pentium IIl processor and 256MB RAM. It is used for tests tiratlater repeated
with Acis on the same computer. All other tests are measured on Maehine
which has two 3 GHz Intel Xeon processors and 4GB RAM. When &réopmed
the tests, we already applied some important correctiomsit@ode as published
in CcAL 3.1. We therefore perfomed the tests oaAT 3.1., but exchanged the
folowing packages with newer versions from internal rede@sAL 3.2-1-??7?: pla-
nar Nef polyhedra, planar Nef polyhedra embedded on thasp8B Nef polyhe-
dra, and Box intersection. The test series were peformeddatian linux system
and compiled with g+-3.3.4 and the options -O2 and -DNDEBUG. They were
scheduled, run, and archived with the tool ExpLab [HPKSO:je source code
of the experiments, the test data, and the results are padliior reference at
http://www.mpi-inf .mpg.de/ hachenb/proj/Nef>togehter with the proper
versions of the exchanged packages.

9.1 Optimizations

In the following we introduce several optimizations of oarplementation. We
want to emphasize, that the code is not fully optimized. Ties@nted improve-
ments remove the most obvious bottlenecks, but there dre stbuple of opti-
mization oportunities left.

The benefit of the conducted improvements is confirmed by #®SRID ex-
periment, which unites two polyhedra of approximately éiee. We designed
the scenario without aiming for special properties besidesize of the polyhedra.
Also we wanted to allow all kinds of degeneracies withoubetifig special ones.
However, there are many collinear edges, coplanar facedsthe result has a high
genus. As a reference, we perform a run of tterGRID experiment N = 12)
with all optimizations activated. Input obje¢tandC have 6912 and 10648 ver-
tices, respectively. Their union has 43613 vertices andngprited in 56.8 seconds
on machine 2. To examine the effect of some optimizatipwe perform another
run of the same scenario on the same machine buteviteactivated. We com-
pare the runtimes of the union operation and of the intergsiibroutines with the
reference runtime.
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Experiment TETGRID

1. Create a regulaX® grid T of random tetrahedra:

(a) Generate four vertices for each tetrahedron randomdyhalf-open
fixed-size cube.
(b) Let these cubes form a reguls? grid.

2. Create a regulgiN — 1)3 grid C of such cubes.

3. Align T andC such that the grid nodes Gfare at the centers of the grid
cells of T.

4. Measure time fol UC.

9.1.1 Ray shooting and Point Location

The first optimization is the obvious step of replacing tléal methods for point
location, ray shooting and intersection finding with morplssticated approach.
The trivial implementations of these query types cause dratia runtime of bi-
nary operations. For point location and ray shooting gseme add a kd-tree. As
pointed out in Chapters 5 and 7, we expect clear improvement.

Table 9.1 shows the impact of the kd-tree on the ray shootidgpaint location
queries. Its impact on the intersection finding is scruédiin the next section
together with the box intersection. With the kd-tree, théd& queries (17550
point location and 56 ray shooting queries) can be answareds than 10 seconds
instead of 8805 seconds. Adding the 6 seconds for the catisimuof the kd-tree,
the time spent for operations on the kd-tree is only 0.18%iatime needed for the
same ray shooting and point location queries performed &yrivial algorithms.
Repeating this comparison with = 1, the ratio between the runtime of the two
approaches becomes much smaller. In this test, the comhinéche of all kd-tree
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kd-tree || construction| point location| ray shooting| binary op.

N—12 not used 0.00s 8704.68s 100.35s| 8846.44s
used 5.97s 9.16s 0.21s 56.8s

N1 not used 0.000s 0.033s 0.012s 0.067s
used 0.004s 0.012s 0.001s 0.039s

Table 9.1: Experiment @TGRID: Comparison between the fully optimized binary
operation and the binary operation without kd-tree suppbisted are the time
spent for kd-tree construction, point location querieg,sl@ooting queries, and for
the total runtime of the binary operation.

gueries and the construction of the kd-tree is only 38% ofdinéime spent by the
trivial algorithms. Hence, for small instances the kd-fisestill significantly faster
than the trivial method.

9.1.2 Intersection

As we already pointed out in Chapter 5, testing every sindtgeeedge and edge—
facet pair for intersection is a very costly task. On the cawadh there can be a high
number of these pairs, and on the other hand, intersectsis dee very expensive,
especially when large facets are involved. We have two kgtisearch methods
for fast intersection computation: a kd-tree and the bagrgection. Both return
a set of candidate pairs, i.e., a set of edge—edge and edgepfirs that might
possibly intersect. Of course, the heuristics must notlogkrany intersecting
pair, but are allowed to return too many. In consequenceffices to perform the
intersection test on these candidate pairs. A good heusatigest only very few
candidate pairs. We measure the quality of the heuristicéytime needed to

intersection candidate | candidate pairg runtime
method pairs per intersection search total
trivial 358795008 11606 4579.56s| 4631.87s
kd-tree 527113 17.05 13.66s| 63.63s
box intersection| 177177 5.73 4.49s 56.85s

Table 9.2: Experiment BTGRID with N = 12: Comparison between box intersec-
tion, intersection finding via kd-tree, and trivial intecien finding. Listed are the
number of candidate pairs, the ratio between candidats paut the real intersec-
tions (30914), the time spent for finding all intersectioasd the total runtime of
the binary operation.
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45 T
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Box intersection ---x---

Runtime [s]
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Figure 9.1: Experiment @TGRID with N = 12: Runtime comparison between the
box-intersection algorithm and the kd-tree on therGRID experiment.

identify all intersections and the number of returned cdatdi pairs.

The box-intersection algorithm runs @(nlog*(n) + s) time, wheren is the
number of boxes in the two input sequences aigdthe number of pairwise inter-
sections of boxes. Using the assumptions from Chapter fdeggthe shape of
the polyhedra, the expected complexity of obtaining akris¢ction candidates of
some given edge from the kd-treeG@gl logn), wheren is the total complexity of
the polyhedron antthe number of cells crossed by the edge. Then we can express
the complexity of all edge—facet and edge—edge intersectsO(L logn), where
L is the sum of thé’s over all edges.

Considering the theoretic complexity, it is unclear whidgoaithm is more
efficient, box intersection or the kd-tree. The kd-tree dowin asymptotically
for L is in O(nlog?(n)). We expect that on average each edge traverses only a
constant number of cells. On the other hand, the kd-tres testsame candidate
pairs several times, when an edge or facet is stored in dekabiteee cells. The
complexity may not change, but the hidden constant factghttie higher than
for the box intersection.

Table 9.2 shows that both heuristics are effective in coisparto the trivial
method. Box-intersection leads in both quality measutesnis faster and returns
fewer candidates. But we want to take a closer look and parBocomplete test
series.
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N Input candidate pairs / intersectign
Complexity | box intersection| kd-tree
2 172 6.64 13.33
4 1012 5.88 13.37
6 3100 5.78 14.28
8 7012 5.79 13.29
10 13324 5.76 13.74
12 22612 5.71 13.43
14 35452 5.79 14.07
17 62632 5.77 13.03
20 101044 5.79 13.61

Table 9.3: Experiment TGRID with N = 1,...,20: Number of candidate pairs
tested per real intersection. The input complexity is tha sfithe vertices in the
two polyhedra.

Figure 9.1 shows the result of a test series with tlETGRID experiments
for N=1,...,20. The box-intersection algorithm is clearly preferablable 9.3
supports this result. It lists the candidates per inteisecatio, which seems to stay
constant. The kd-tree tests more (redundant) candiddtalsvadys proposes about
13 candidates per intersection, while the box-interseaiigorithm only suggests
about 6 candidates per intersection.

9.1.3 Half-sphere Sweep

After we had exchanged the trivial methods for ray shoofaint location, and in-
tersection finding with more sophisticated methods, we tlse@Nu profiler [gpr]
to search for the main bottlenecks in our binary operatioa.di§’covered that most
of the runtime was spent in the sweep operations in all caeduexperiments. The
sweep-line algorithm is a powerful tool; we use it in the gldor resolving the
nesting structure of the boundary cycles of facets, and wétus half-spheres to
compute the overlay of two sphere maps. Especially, thedpdlére sweep used
more than 50% of the running time; it is called twice — oncedach sphere map.
However, the sweep is written to solve arbitrary complexiaye efficiently, while
we use it for generic and therefore simple overlay situatimost of the times.

As an example, we look at an edge—facet intersection. A sphapsm, of that
models the local neighborhood of an edgéas two oppositely oriented svertices
and one halfloop for every facet incident to the edge from erdex to the other.
A sphere magsny that models the local neighborhood of a fadebnly has an
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sloop. The overlay om, andsmy combines those two simple structures, i.e., the
sloop fromsny is inserted intosm.. Thereby it cuts each halfloop s, into
two parts. Likewise, the sloop is cut into several parts lgy lihlfloops ofsm.
This construction has no degenerate situations, gma@not lie in the supporting
plane off. Consequently, it is not necessary to apply an alogrithmoagedful as
the sweep-line algorihtm to solve this overlay.

The following optimizations circumvent the execution of necessary
halfsphere-sweeps, or replace them with simple solutionsgecific situations.

(i) Overlays for vertices located in a volume of the coungetpolyhedron and
for edge—facet intersections are performed by hand, iighput the sweep-
line algorithm.

In the first case, the vertex is cloned and the marks of theecdma deduced
from the old marks, the mark of the volume and the Booleantfanc Af-
terwards, the sphere map is simplified as usual. The singtlific can be
omitted if optimization (iii) is enabled.

In case of the edge—facet intersection, the resulting geraent always has
the same structure. Letand f denote the edge and the facet participating
in the intersection. Then the arrangement consists of aklvelf-circles, i.e.,
one for each facet incident & which are all split by the plane supportirig

It is obvious how to compute the marks of the arrangement. sitnelifica-
tion on the sphere map is performed afterwards as usual.

As a result of this optimization, the sweep-line algorittsionly used in case
of edge—edge intersections and when a vertex is located ertexyedge, or
facet of the counterpart polyhedron. This means that allmomsituations
are solved by specialized algorithms. The situations irctvithe sweep-line
algorithm is still needed are only degenerate situatiorschivwe argue that
they occur in real world data sets as well, but then not vergiynad them.

(i) Our sphere sweep can process a half-sphere at onceailCextra work has
to be done to cut each sphere map in two halves and to pastediedulting
half-spheres back together. Since this includes cuttigegdh two halves
and introducing several equator edges, the two halves cmudliften have
twice as many elements than the original sphere map. Wefthertest, if all
svertices and sedges of a sphere map either lie on the tapphadeft, right,
front, or back half-sphere. In such an instance, we need utahe sphere
into two halfspheres. Instead it suffices to perform only emeep on the
relevant half of the sphere.
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(i) For some vertices of the input polyhedra it is easy tted@ine that they will
not appear in the resulting polyhedron. For instance, iniarunperation
every vertex of either polyhedron located in the inside efdther polyhedron
is absorbed into this volume. Here, the selection routirsigas the same
mark to each svertex, sedge and sface on the sphere map.appisris when
the Boolean operatiobop applied to the mark of the determined volume
and any second mark always has the same result. Thus, if exvafrthe
first polyhedron has been located in volumef the second polyhedron, and
bop(true,mark(c))==bop(false,mark(¢))hen the vertex does not need to be
considered.

Because two completely random polyhedra usually do notdeldegenerate
situations, optimization (i) alone would reduce the numbiesphere sweeps to
zero in such a case. In theeTGRID experiment, the vertices are placed at loca-
tions with integer coordinates and the grid cells have dsirs 100< 100x 100.
Hence, there will probably be some remaining sphere sweepsritest series.

Table 9.4 illustrates the benefit of the optimizations. Theact of optimiza-
tion (i) is impressive. With this single optimization aetted, 91072 of 96928
sphere sweeps are replaced by 30024 specialized edgeefactktys and 15512
specialized vertex-in-volume overlays. Thereby, it reguthe runtime of the
sweeps to 7% and the total runtime to 32%. Applying all thrpgnuizations,
we find further 811 sphere overlays that can be handled wittepimg only one
half-sphere, and 568 vertex-in-volume overlays can betethiin total number of
the executed sphere sweeps is reduced to 5%.

optimizations number of runtime
@ | (i) | (i) || sphere sweeps sphere sweeps binary op.
- - - 96928 134.27s| 227.23s
+ | - - 5856 10.88s 69.21s
-+ - 80996 115.00s| 205.27s
-] - + 87792 124.42s| 212.89s
+ | + - 5045 8.57s 55.21s
+ | - + 5856 10.06s 57.72s
-+ + 76185 110.56s| 195.54s
+ | + + 5045 8.74s 56.85s

Table 9.4. Experiment ATGRID with N = 12: Number of sphere sweeps per-
formed, the runtime of all sweeps, and the complete binasraifpn are shown
for runs with all combinations of enabled and disabled ogations.
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The sphere sweep is not an optimal solution for the overlandréas Meyer, a
student at the Max-Planck-Institut implemented two aliponis for planar overlay
as part of his Master thesis. The first algorithm is by Finkeldmrichs [FH95] and
the second is a randomized incremental approach by Mulniilei®0]. Both al-
ways perform considerably better than Seel's sweep basathgymplementation.
In overlay computations with many intersections, Mulmuteen outperforms the
sweep by a factor of up to 13. Mulmuley’s method proved to lgeniost memory
and time efficient of the three methods.

We still need to adapt the interface of the alternative @yemethods, such that
they also work for spherical geometry. It is very likely, thath outperform Seel’'s
sweep on the sphere, also. Especially, because they pyotablprocess a full
sphere at once. Obviously, optimizations (i) and (iii)lstibrk with these overlay
algorithms, too. If an alternative overlay method can pssctne full sphere at
once, optimization (ii) becomes superfluous.

9.1.4 Plane Sweep

For the plane sweep, we use the same generic sweep-lindttalgas for the
sphere sweep. Again, we try to avoid as many sweeps as possibthe most
general case we perform a sweep for every plane supportameg but we need the
sweep only if there is a hole in a facet. As described in Seeti6, we determine
whether a boundary cycle is an inner or outer facet cycle lyri@mtation test at its
smallest vertex. A left turn indicates an outer, and a right &in inner cycle. Since
we need to check the orientation at the smallest vertex df fzaet cycle anyway
in order to link the facet cycles correctly as inner or outgles, the optimization
includes no significant overhead. Table 9.5 shows the effidttis optimization.

Like for the sphere overlay we can replace the sweep withtarfasethod. The
method by Mulmuley is applicable, again; the method by Feakeé Hinrichs is not
applicable.

s number of runtime
optimization .
plane sweeps plane sweeps binary op.
off 6867 17.10s 60.21s
on 343 13.40s 56.85s

Table 9.5: Experiment ATGRID with N = 12: Listed are the number of performed
plane sweeps, the runtime of the plane sweeps, and the rinfithe binary oper-
ation in runs with and without the plane-sweep optimization
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9.2 General Runtime Behavior

In this and in the following section, we experimentally exsk the runtime be-
havior of our implementation, in particular the binary Bemh operations. We
have several experiments that support the expected ruatiagzed in Chapter 7,
and we have designed experiments to stress our implenmntaith worst-case
scenarios.

Besides the total runtime, we list also the runtime of imaattsubroutines in
the binary Boolean operation to illustrate the distribatiaf resources, potential
bottlenecks, and further places for optimizations. We sanwe the important
subroutines here in their order of usage (see Chapter 4 fiiveiuexplanations):

Point location: queries the kd-tree of the input polyhedra to locate thecestof
the respective other polyhedron.

Box-intersection: intersection finding on the bounding boxes of facets andedge
Includes the cost of the intersection test on the actual adddacet geome-

try.

Sphere sweeps: sum of all sphere sweep-line algorithms performed during
Boolean operations on sphere maps.

Synthesizing edgesin the synthesis step, sorts the line representation based o
Plucker coordinates.

Plane sweeps:in the synthesis step, sorts facet boundary cycles of thdtres
polyhedron.

Kd-tree construction: in the synthesis step, initializes the kd-tree for the rtesul
polyhedron.

Ray shooting: in the synthesis step, used to resolve the nesting of shiefleo
result polyhedron.

Others: all other parts not listed explicitly in the same graph, sagpahich have
no critical worst-case or no interesting practical runticoatributions.

9.2.1 Balanced Binary Operations

In our first test series, we want to examine the generic runtiehavior when
the two input polyhedra and the result all have similar six®e capture these
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Figure 9.2: Total runtime and runtime distributed over thaon subroutines for
our implementation in the HTGRID experiment.

properties in the ETGRID experiment (see page 85). We measure its runtime for

valuesN = 3,...,17 on machine 1 for a later comparison witlci&.

In Figure 9.2 we see the total runtime and the runtime disteith over the major
subroutines. The plane sweeps and the construction of ttie&dach comprise
about a quarter of the total runtime. The total runtime |dokesar in the size of the
result. But since the construction of the kd-tre®iklogk), where k is the size of
the result, the total runtime must have a logarithmic fadtm.

9.2.2 Binary Operation with Quadratic Result

In the next test series we again start with input objects oaksjze, but we achieve
a worst-case output complexity, as described in tRABGRATICWALL GRID ex-
periment. We run this experiment fof =ix10,i = 1,...,15 on machine 2. We
see in Figure 9.3 that the construction of the kd-tree is datimg the runtime.

In consideration of the results of the previous experimérg, results of the
current experiment seems reasonable. The constructitwe &bittree already com-
prised a large part of the runtime in th&TGRID experiment. In the QADRAT-
ICWALL GRID experiment it becomes even more dominating, because imasbnt
to other subroutines its runtime solely depends on the cexitplof the result poly-
hedron. This argument also applies for the planar sweepsiBog there is not a
single facet with a hole in this scenario, the planar sweegver executed.
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e 5 |||||||7 front view

Experiment QUADRATICWALL GRID

1. ConstruciN parallel cuboids of size 100001 x 100 spaced one unit
apart iny-direction as objec{V.

2. ConstruciN parallel cuboids of size £ 10000x 100 spaced one unit
apart inx-direction as objectV’.

3. Align W andW’ at their lower front left corner.
4. MoveW’ along thez-axis for fifty units.

5. Measure time fotwv UW'.
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Kd-tree construction ---x---
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Point location ---o--- x
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Figure 9.3: Total runtime and runtime distributed over tt@ansubroutines for our
implementation in the QADRATICWALL GRID experiment. Note that the plane
sweep and the ray shooting are not executed in this expetrimen
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CUG (CUG)\c

Experiment COMPLEXFACET, COMPLEXMINUSSIMPLE

1. Create a cub€ of sizeN3.
2. Create & x N x 1 grid of tetrahedr&s:

(a) Generate four vertices for each tetrahedron randoméyhalf-open
unit cube, but at least one vertex in the lower half and ongexen
the upper half of the cube.

(b) Let the cubes form a regul&l x N x 1 grid and place the grid such
that each tetrahedron penetrates the top surfaCe of

3. CoMPLEXFACET: Measure time fo€’ =CUG.

4. Create a cube of size 2 such that each of its vertices match the center
of some grid cell.

5. COMPLEXMINUSSIMPLE: Measure time fo€'\ c.

9.2.3 A Complex Object Minus a Simple Object

We designed the @MPLEXMINUSSIMPLE experiment to reflect a common task
in machine tooling where a small object is subtracted froargd complex object.
Additionally, we use the first part — the construction of tlenplex object — as
experiment ©@MPLEXFACET in order to stress the sweep-line algorithm sorting
the facet boundary loops.

For the @WMPLEXMINUSSIMPLE experiment, we perform a test series with
N=ix5andi =1,...,40. Since we want to run this experiment witlti&, too,
we perform it on machine 1. Figure 9.4 shows the results oéperiment. There
is no subroutine that is dominating the runtime. Still thetkek construction is
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Figure 9.4: Total runtime and runtime distributed over tr@gansubroutines of our
binary operation in a test series of th®@ @PLEXMINUSSIMPLE experiment with
N=ix5andi=1,...,40.

most time consuming. The other subroutines follow in theesamder as in the
TETGRID experiment.

As already discussed in our analysis from Chapter 7, themendf the binary
operation depends on the complexities of both input and tipud complexity.
As a result, the runtime of thed@PLEXMINUSSIMPLE experiment is determined
by the size ofC’ and the result polyhedron. Although only a constant-sizad p
of C is changed by, we perform a complete synthesis for the result polyhedron.
Figure 9.4 confirms this property.

9.3 Runtime Behavior in Complex Situations

The following experiments are designed to stress singleostibes. Mostly, we

are interested in those routines that proved to be most tonswning, and those
that rely on a good average case performance. We want tafiddmise subrou-

tines that can become the bottleneck in certain situatibnghermore, we want to
confirm the theoretical runtime analysis of Chapter 7.
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Figure 9.5: Total runtime and runtime distributed over tr@msubroutines for our
implementation in the GMPLEXFACET experiment in a test series with=i x 20,
i=1,...,10.

9.3.1 Complex Facet

In large Nef polyhedra of complexity, there rarely is a single supporting plane
with complexity O(n). On the other hand, worst-case examples do not seem very
artificial. We use the GMPLEXFACET experiment (see page 95) as such worst-
case example. The union of the grid of tetrahedra with thé&aserof the cube
results in a facet witld(n) holes.

Figure 9.5 shows the result of a test series With=ix20 andi = 1,...,10
on machine 2. Although we tried to build a scenario that désfigcstresses the
runtime of the planar sweep, and although both routineswoed about the same
amount of runtime in the ETGRID experiment, the construction of the kd-tree
consumes much more time in theo@PLEXFACET experiment. This effect is
explicable, since the complex facet intersects most of gigisg planes. Each
time an intersection test is performed, which on averagsumes time linear in
the size of the facet.

The runtime of the plane sweep looks close to linear, butadigthas the (ex-
pected)O(nlogn) behavior. If we divide the runtime hy, we still get an increasing
curve. Dividing bynlogn results in an oscillating, but neither increasing nor de-
creasing curve. Seel's experiments already confirmed #ha\or [See01b].
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Experiment COMPLEXSPHEREM AP

1. Create triangles,t/,i = 1,...,N+ 1 with the following properties:

(a) the first vertex of each trianglgt/ is located at the origin.

(b) the second vertex of each triange has coordinates
(N, =N+ 25%i,N)/(N,N, =N+ 2xi)

(c) the third vertex of each triangtehas coordinates
(N, =N+ 21, —N)/(N, =N, =N+ 2:xi)

2. Unite triangleg;i/t/ as objecfT/T’.

3. Measure time fol UT"’.

9.3.2 Complex Sphere Map

In the worst case, the overlay of alH- m+ s sphere maps runs i®((n+ m+
s)log(n+m)) time. For this to happen, there must be a single sphere mdp wit
complexityO(n+ m+s). Usually, each sphere map is of constant size. Then the
runtime of the overlay drops O(n+ m+s).

In the COMPLEXSPHEREMAP experiment we can see a scenario where a
sphere map of complexit®(n+ m+s) is created during a binary operation. Fig-
ure 9.6 shows the result of a test series of this scenarioNviti «50,i =2,...,17
performed on machine 2. Again, the kd-tree constructionidatas the runtime.
The half-sphere sweep is the second biggest consumer, unheeds half the
runtime of the kd-tree construction.
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Figure 9.6: Total runtime and runtime distributed over thaeimsubroutines for
our implementation in a test series of thel@PLEXSPHEREM AP experiment with
N=i%50i=2,...,17.

9.3.3 Kd-tree Construction and Queries

We use the RTCYLINDER experiment as a worst-case scenario for the construc-
tion of the kd-tree, as well as for the point location subirgait In the construction

of the kd-tree both large facets are intersected by mosiedsdphtting planes. Con-
sequently, most of the split operations need to test forsetegion with at least one

of these two facets, which ha@(n) size. We therefore expect quadratic construc-
tion time.

Figure 9.7 shows the result of a test series with= 10-" and n = 100,
i =1...30 on machine 2. The curve of the kd-tree construction iredusbme ir-
regularities. Most remarkable is an upward leap by more 10880 fromN = 1600
to N = 1700. Looking more closely, there are further leaps in th&ecu They
can also be found at the same places in other experimentsexBorple, in Fig-
ure 9.3 includes a big jump between the two runs with resméissof about 50000
and 60000 vertices, and a small jump between the runs witht reiges of about
120000 and 140000 vertices.

Scrutinizing the construction procedure, we can obsergé ttie number of
intersection tests against complicated facets grows igteddit jumps upwards
every time the number of vertices exceeds the next power of fihe reason is
that we cut off the kd-tree construction at logarithmic defExceeding a power of
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C

Experiment ROTCYLINDER

cuc

1. Create aright cylindet:

(a) the base df is a regular polygon witN sides.
(b) the base is parallel to the-plane.

2. Create a cop¢’ of C.
3. RotateC’ around its vertical centerline hy degrees.

4. Measure time foc UC'.
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Figure 9.7: Experiment & CYLINDER with a = 10~/ andn= 100, i = 1...30:
Shown are the total runtime of the total runtime of the binapgration and the
runtime of the main subroutines.
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Experiment WORSTCASERAY SHOOTING

1. Create regulaN-gonG parallel toxy-plane.

2. RotateG by small anglex around an axis through the center®parallel
to they-axis.

3. Create set dil /4 tetrahedrd, such that
() they are not pairwise overlapping yrdirection.
(i) they are completely to the right @3.
(iii) their y coordinates are in the range @& y coordinates.
(iv) their smallest vertex is either slightly higher th@ts highest vertex,
or lower thanG’s lowest vertex.

4. Measure time fo6GUT.

two, the tree is allowed to grow deeper by one further levslaAesult, the number
of inner nodes, and therefore the number of splitting planessecting complex
facets increases abruptly. At the same time, the qualith@kd-tree as a heuristic
search data structure improves, which is confirmed by thet pm¢ation curve.

Because of the irregularities, it is not possible to analymecurve properly.
Another test series that only included runs where the remijthedron is slightly
larger than 2did not help to clarify the situation. We only can concludattthe
runtime is worse than linear.

The ROTCYLINDER experiment works fine as a worst-case scenario for point
location. Most of the leafs contain either of the large facéth combination with
O(n) point location queries, the subroutine is expected to use@dic runtime.
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Figure 9.8: Experiment WRSTCASERAY SHOOTING with N =80i,i=1,...,50:
The left graph shows the runtime of the major subroutinestlaadotal runtime of
the binary operation. The graph on the right shows the rumtfrthe ray shooting
subroutine divided by the squared output complexity.

The curve of the point location in Figure 9.7 supports outagsion, but a closer
look at the data reveals a sub-quadratic behavior. Dividiregruntimes by the
complexity of the result yields a curve, which seems to bedity growing, but
dividing the runtime by the squared complexity of the regules a slightly falling
curve.

It is not easy to construct a worst-case scenario for the maptsng subrou-
tine. As we have seen in previous experiments, usually ragtsig only accounts
for a negligible amount of time. In a worst-case scenariergimust bé(n) ray
shooting queries, that visid(\¥/n) kd-tree leafs. On average, the intersection tests
performed at each kd-tree leaf must have linear compleXxifg try to realize a
worst-case scenario with the ®®STCASERAY SHOOTING experiment. The poly-
hedron that results from the final union operation @és) shells. To resolve the
nesting structure of the shells, a ray shooting query isoperéd from the lexico-
graphically smallest vertex of each shell in the& direction. TheO(n) rays cast
from the tetrahedra travel closely alo@gwithout hitting it. All those queries visit
O(¥/n) kd-tree leafs and many of the corresponding regions aresixteed by the
complex facet.

Figure 9.8 shows the result of a test series of tteRHTCASERAY SHOOTING
experiment withN = 80i, i = 1,...,50. Ray shooting accounts for most of the
runtime in this experiment. Also we can see from the secoaghygrthat the ray
shooting probably has a quadratic behavior, maybe it evaches the theoretic
worst-case behavior. However, it is very unlikely to endeura quadratic runtime
of the ray shooting subroutine in a non-artificial scenarithe runtime already
drops to sub-quadratic, if the complex facet in th@RMETCASERAY SHOOTING
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experiment is not placed perfectly. For instance, the matidrops when the facet
becomes parallel to they-plane, or its normal vector essentially faces into the
x-direction. Also, we can easily adjust the kd-tree such thgtshooting in the
WORSTCASERAY SHOOTING experiment also drops to sub-quadratic by introduc-
ing bounding boxes around complex facets. Then, the inteosetest of the ray
with the box already reveals that they do not intersect.

9.4 Comparison with ACIS

We compare our implementation withcAs R13 by Spatial Corp. [Spa04], one of
the three common commercial CAD kernel along with Catia [2esl Parasolid
by UGS [UGS]. Itis used in many CAD systems like for instanagACAD by
Autodesk [Aut]. It should be said that we are comparing applgh oranges here.
On the one hand, it is daunting for a research prototype totepared with a long
established and optimized industry implementation. Ondativer hand, &Is is
handling more general geometries and has some overheasbatching function
calls to the specialized functions for linear geometry. ldegr, our implementation
handles Nef polyhedra in their full generality with all thetentially occurring
degeneracies in the algorithms and it uses exact arithnodbie reliable and robust.
We use the SHEME interface of ACIs that has some small overhead in translating
function calls to the &+ library calls. Acis also seems to store more information,
because in our experiments it swaps earlier than our impiatien. However,
we store exact number types with their burden of memory usalyéhis said, our
comparison is still important to demonstrate where we atiearcontext of existing
systems.

Comparisons with &1s were measured on machine 1, a 846 MHz Pentium Il
processor with 256 MB RAM. Our implementation runs underuxinwhile we
used the Microsoft Windows XP version ofcAs. Our test programs for &is are
written in SCHEME. According to Spatial Corp. &HEME commands are mapped
to their Ct+ counterparts. The input data for the®EME scripts is created by
Acis primitives or loaded from SAT-files. SAT is@s’ open file format. For the
generation of SAT files we implemented a function writing Idefyhedra as SAT
files.

9.4.1 Balanced Binary Operations

To get a general impression, we repeat tlerGRrRID experiment with Ais. It
contains no special difficulties. However, facets are \ilkelhave holes and we do
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. runtime [s]
N | result vertices ACISRI3 | Nef3D
3 338 0.29 0.61
4 1135 0.63 2.53
5 2390 1.37 5.71
6 4548 2.79| 11.37
7 7383 5.29| 19.26
8 11555 10.13| 30.61
9 16998 14.27| 48.02
10 23883 22.81| 67.31
11 32892 25.58| 96.12
12 43418 35.58| 126.01
13 56188 55.64| 164.05
14 70827| swapping| 211.02
15 87871| swapping| 262.62
16 108066| swapping| 321.72
17 131304| swapping| 413.32

Table 9.6: Comparison of &s R13 and our Nef polyhedron with theeTGRID
experiment.

not exclude degeneracies explicitly, but they are highliykety. Naturally, both
algorithms perform on the same data sets.

The results in Table 9.6 show thatcss is faster by a factor of two to four.
The factor fluctuates and no obvious trend is visiblel#swaps heavily foN >
14 on our test machine. We therefore excluded these timimgad€is. As our
implementation performs a few further runs without swappiih seems that we
need less memory for the representation of the same polyhedr

9.4.2 Floating-Point versus Exact Arithmetic

One of the major differences betweercs and our implementation is our use of
exact arithmetic instead of floating-point arithmetic. &log-point and interval
arithmetic are the state-of-the-art in Computer Aided Besand we are not aware
of any commercial system that uses exact arithmetic to sblv@emaining cases
that floating-point and interval arithmetic cannot solven dbvious reason is the
runtime cost for exact arithmetic, but also the difficultiasrealizing exact and
efficient solutions for more general curves and surfacesptaya role.
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N a time runtime [s]
ACISR13 Nef 3D

101 1.08s 3.47s

102 1.05s 3.50s

100 103 1.08s 3.59s
104 1.07s 3.64s

10°° not executable 3.72s

106 not executable 3.77s

101 61s 67s

102 61s 68s

103 61s 69s

1000 104 not executable 69s
10°° not executable 71s

106 not executable 71s

101 252s 195s

102 253s 198s

103 255s 203s

2000 104 not executable 205s
10°° not executable 207s

106 not executable 210s

10000| 107 not executable 3219 s

Table 9.7: Comparison of &s R13 and our Nef polyhedron with theoRCYLIN -
DER experiment. Here, “not executable” means that#\could not compute the
union without topological errors and therefore cancelsapberation. As a result,
Acis keeps the first input object unmodified and deletes the seiopod object.

We designed the simple @RCYLINDER experiment (see page 100) to de-
monstrate the effect of exact arithmetic; on one hand, we gspressiveness in
modeling, because we can compute results where other syyféivery soon, and
on the other hand, we have to deal with the runtime costs aftexéhmetic. We
already analyzed the aspect of coordinate growth in SeétienNow, we investi-
gate the runtime costs of exact arithmetic in comparisondesA

In this ROTCYLINDER test scenario we havenedge—edge intersections. In
one half of those intersections the endpoints of the intérsgedges are extremely
close together. Without an adequate precision it is notiplesso compute an
intersection point that is on both edges and different froengndpoints.

We omit the expensive computation of the exact rotation intest series (see
Section 6.2) and focus on the binary Boolean operation. €keltr of the RT-
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N a runtime [s]

AcCIsR13 Nef 3D

101 21.57 31.55

102 20.60 32.88

103 20.75 33.51

1000 104 20.79 34.63
10° || not executablg 35.41

10°% || not executablg 36.11

Table 9.8: Comparison of &s R13 and our Nef polyhedron with thecdRCYLIN -
DER experiment with the modification that the second cylinddrasslated along
the z-axis before computing the union such that all edges-a@dgrsections change
to edge—facet intersections.

CYLINDER experiment in Table 9.7 shows thath' floating-point operations are
insufficient fora smaller than 10%. Acis’ binary operations modify the first in-
put object; it becomes the result during the operation. Tw®sd input object
is deleted meanwhile. When the union operation fails, thst ifijput object stays
unchanged. The second input object is deleted.

On the other hand, &is is faster except for very large instances. Ret 100
the factor of our runtime and &S’ runtime is slightly below four; fom = 2000
we are faster up to a factor of 1.2. Additionally, we listedia withn = 10000 and
a = 10~/ for comparison. In Section 9.5 we performed further run$aitgles as
small as 1040, As claimed, robustness is not an issue.

This experiment is particularly complex because of the eddge intersec-
tions. We repeat parts of this experiment with the modiftgathat the second
cylinder is shifted along the-axis before computing the union. As a result, we get
edge—facet instead of edge—edge intersections, which eaoiputed by hand
as discussed in Section 9.1.3. We expect that the modificagisults in a clear
improvement of our runtime. The modification will also be eg&aial for Acis’
runtime, since vertices are not so close together any mare rdsults in Table 9.8
show that both algorithms benefit from this change; our @lgor by a factor of
about two, and &1s by a factor of about three. Nonetheless;i8aborts the union
computation for an angle below 1f)

9.4.3 A Complex Object Minus a Simple Object

We designed the @MPLEXMINUSSIMPLE experiment (see page 95) to reflect a
common task in machine tooling where a small object is satadafrom a large

106



9.5. GROWTH OF COORDINATE REPRESENTATION

. runtime [s]
N | result vertices ACISR13 | Nef3D
3 61 0.044 0.10
6 218 0.078 0.34
9 460 0.156 0.77
12 801 0.233 1.59
15 1241 0.379 2.00
18 1759 0.556 2.84
21 2392 0.845 4.15
24 3117 1.056 5.93
27 3960 1.334 6.61
30 4870 2.069 10.12
33 5912 1.983 12.20
36 6999 2.814 14.38
39 8235 3.175 19.36

Table 9.9: Comparison of &s R13 and our Nef polyhedron with thea™-
PLEXMINUSSIMPLE experiment. AIS is about six times faster than our imple-
mentation.

complex object. We repeat this experiment witkci8 and compare it with the
results of our implementation from Section 9.3.

Table 9.9 shows the results of atest series Withi=3,i=1,...,13. Here, the
difference between @&is and our algorithm is quite pronounced witkcks being
a factor of about six faster than our implementation. A nietalifference might be
in the software interface; @&is modifies the first input object to become the result,
while our implementation creates the result from scratcthauit modifying the
two input polyhedra. Still, &1s also does not seem to profit from the in principle
constant-size problem complexity here.

9.5 Growth of Coordinate Representation

One major critic of exact computation is that it is slow in geal, and gets even
slower in cascaded constructions. Constructing geomehjects usually starts
from geometric primitives, which are combined to complejeots via geomet-
ric constructions. Geometric constructions can be expteby multiplications,

additions and subtractions. Each addition or subtract@niccrease the bit com-
plexity by one, each multiplication adds up the bit compiesi of the factors. In
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cascaded constructions the output of one algorithm bectimasput of the next.

This way, the bit complexity grows in every iteration. Thecaded construction of
a geometric object from primitives can be illustrated asmstwiction tree, where
the primitives are the leaves of the tree, and the final oligeat the root of the

tree. Milenkovic shows in [Mil00] that the bit complexity afconstruction grows
exponentially with the height of its construction tree ie thorst case.

We have already compared floating-point arithmetic withcéxaithmetic by
one experiment in Section 9.4. But from this experiment werdt get a good
impression of the impact of coordinate growth. We now exanivo scenarios that
should give us some insight. In cascaded constructionsutpeibof an operation
is taken as the input of the next. Consequently, the bit cenrilyl is continuously
growing with each step. In the first scenario, we are intetegt the growth of
the bit complexity when the result of an operation is comthiméth geometric
primitive of constant bit complexity in the next run. This ams, that in every
operation we combine an object with constant bit complewiiyh an object with
growing bit complexity. Here, the bit complexity grows larewith the height of
the construction tree. In the second scenario, we want tmi@eathe growth of
the bit complexity when we have a real construction tree, ar each level we
only combine objects that have the same distance to the IEafssequently, only
objects with roughly equal bit complexity are combined. THiecomplexity at
least doubles with each iteration.

Consecutive binary operations on Nef polyhedra do not asae¢he bit com-
plexity, since binary operations do not introduce new plaperdinates. It is not
possible to perform cascaded operations with the funditgnarovided by our
package. Consequently, we rather simulate cascaded woinss.

Instead, we simulate the two scenarios with two variatidisuo ROTCYLIN -
DER experiment (see page 100). For the first scenario, we peréotest series
of the ROTCYLINDER experiment with a growing angle. At the moment, there
is no practical solution to perform a rotation of exaatlydegrees, as pointed out
in Section 9.4. Also, it is expensive to compute good rafiapgroximations for
sine and cosine. The@L functionrational rotation approximation pro-
vides exact sine and cosine values for samesuch thaja — a’| < € for a small
specifiede > 0, but is very runtime intensive for small(see Table 6.1). Instead
of approximating angles,we use angles from which we knowetkact rational
representation of sine and cosine. Wsih(a) = ;2% andcoga) = 151, we
know that sif(a) +cos(a) = 1 anda ~ 1.993373 10~". We execute runs for
i=1,...,50, and withn = 1000, 2000.

Figure 9.9 shows the result of the test series performed @hima?2. It depicts
the relation of the runtime and the bit complexity of the acboate representation.
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Figure 9.9: Experiment & CYLINDER with a ~ 1.993373 10/, i =1,...,50,
and withn = 1000 2000: The graph depicts the relation between the bit coritglex
of the coordinate representation and the runtime.

We measure the order of magnitude of the coordinate valugbkebyalue of the
largest integer used to represent a coordinate, and corttputait complexity of
the integer. During the test series, the largest coordirgiieesentation grows from
10° to 10t%7. This relates to a bit complexity between 30 bit and 355 hiteetex
coordinate. In this experiment, the coordinate€aftay constant. Only the coor-
dinates ofC’ grow. Consequently, the complexity of the arithmetic opers is
only growing linearly. Figure 9.9 and a closer examinatibthe experiment data
support this evaluation.

For the second scenario, we want to combine two objects Wwéhsame bit
complexity. For this purpose, we adjust th@ FCYLINDER experiment as fol-
lows: We rotateC by 8 ~ 1.993373 10~ degrees at the beginning of each run
to obtain large coordinate representations. T@eis copied and the cop§’ is
rotated bya = 108 degrees. Finally, we unit€ andC’. We perform test runs
withi=1,...,50, andn = 1000 2000. Sincex is a relative large constant angle in
comparison tg3, the bit complexity ofC andC’ are about the same. Figure 9.10
depicts the result of this test series. An close examinaiicthe data shows that
the curves roughly fit the function(x) = ax* +xo, wherea andxg are constant
values.

Now, we put our simulated scenarios in relation to a real @¢en Let us
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Figure 9.10: Experiment&rCYLINDER with a = 108, and withn = 1000, 2000:

In order to obtain two input polyhedra with equally large iinate representa-
tions, C is initially rotated by ~ 1.993373 10~ degrees. The rotated is then
used as input object for thed®CYLINDER experiment. The graph depicts test
series with =1,...,50

assume for the sake of this comparison that coordinates oh@dkels in the CAD
community are stored as signed numbers that consist of updecBnal digits
with a floating-point and no exponent. If we construct a Ndypedron from data
using this representation, the floating-point numbers effihint coordinates are
converted to rational numbers represented by integersupitio 30 bit.

For cascaded operations on Nef polyhedra, we must repgateplly two steps.
First, we perform binary operations to obtain new pointsrfriie intersection of
the involved polyhedra. Then, we construct new polyhedsenfthe intersection
points. We are interested in the growth of the vertex coeartéis caused by these
two steps. New vertices are constructed from edge—edgedyed-facet intersec-
tions. With 30 bit vertex coordinates, the geometry of aneetin be represented
by its two endpoints, and therefore only needs the existhiBrepresentations.
The direction of an edge is computed as the difference of otp and needs 31
bit. The supporting planes of the facets are constructan ftoree points. This
construction has degree 3 and constructs plane coordiwéteat most 93 bit. An
edge—plane intersection also has degree 3, where thedadtihre monomials with
the highest degree include one plane and two vector codedind hus, the result
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vertex can be represented with at most 158 bit. Vertices#salt from edge—edge
intersections are less complex.

From our experiments, we can conclude how the runtime clsafrgen the
first to the second operation in a row of cascaded operatidms first operation is
performed on polyhedra with vertices that use 30 bit for eatgyger, while during
the second operation 158 bit are needed. We compare runs experiment with
i =1 andi = 21, which resemble complexities of 30 and 162 bit. In the first
scenario, the runtime grows by 41% foe= 1000 and by 39% fon = 2000. In
the second scenario, the runtime grows by 114%nfer 1000 and by 99% for
n=2000.

9.6 Resume

In this chapter, we confirmed the efficiency of our implem#aia but we also
discovered the following three weaknesses:

1. The kd-tree related operations perform bad on polyhedita limear-sized
facets.

2. The complexity of the binary operation is not sensitivestoall areas of
concern. For example, even if we subtract the empty spaoe$ome poly-
hedron, the operation still performs a complete synthesds aacomplete
kd-tree construction for the result.

3. Coordinate growth can become a big issue.

In the following, we discuss opportunities to deal with eadakness.

9.6.1 Further Improvement on Point Location and Ray Shootimg

Although the kd-tree improves the performance of our birepgrations consider-
ably, it is still the bottleneck. Most notably are operatiomith a quadratic-sized
result polyhedron, and operations on polyhedra with lirsgzed facets.

In the latter case, we would like to have a method that allogvenly to op-
erate on the relevant part of a complex facet. In a point locaquery we want
to test for intersection with that part of the facet that l&thin the boundaries of
the relevant kd-tree cell. Likewise, we want to split a faicéd two halves each
time it is intersected by some splitting plane during thestauction of the kd-tree.

111



CHAPTER 9. ALGORITHM ENGINEERING

We performed experiments with storing triangulated facetbe kd-tree. Unfor-

tunately, the triangulation often results in badly shap&ahgles, i.e., the triangles
are long and skinny, such that they intersect many kd-trése. c&s a result, the

runtimes change for the worse. We expect better result frisrarsgulation method

that returndat triangles, i.e, triangles that are not long and skinny.

As pointed out above, the kd-tree construction is our majtildneck. On the
other hand, we construct the kd-tree at the end of the binaeyation only to use
it for a few ray shooting queries for most of the times. If tletkee is not used
further for subsequent binary operations or for point lmcatnd ray shooting
gueries posed by the user, the effort seems wasted. Thereferwant to find
out, whether there is some efficient way to solve the ray{shgaueries without
constructing the kd-tree, or at least without construciingpmpletely. We can
either provide an additional ray shooting solution thataslmased on the kd-tree,
or we construct only those parts of the kd-tree that are rietmisolve a given set
of ray shooting queries. Then, we can offer exchangeablshagting strategies.
The user can decided whether a kd-tree is constructed ctetypét the end of the
synthesis for the ray shooting and future queries, or whétleonly constructed
as much as needed for the ray shooting.

As a third approach to get rid of the kd-tree constructiorhim $ynthesis, we
are interested in whether it is possible to perform the raoshg queries needed
for the synthesis on the kd-trees of the input polyhedraerdtian on the kd-tree
of the result. The following must be realized: First, we mdestiuce those input
vertices that might become the smallest vertices of thdsshrethe result polyhe-
dron. In a union operation these can only be the smallestesrof the shells in
both input polyhedra, and in an intersection operationgluas only be the small-
est intersection vertices of each shell with the respediter input polyhedron.
In a symmetric difference and in a difference operation & c®@mbination of these
two vertex types. Having the locations of these verticesparéorm ray shooting
gueries on the kd-trees of both input polyhedron. We shgat fram the locations
of the smallest vertex candidates-ix direction. In order to remember the location
In hit by a ray shot from locatioh, we associatk, with a sphere map #. If there
is no sphere map &, we create a redundant sphere map on the fly. This way we
can obtain two sphere maps intersected by a ray shot in thi pedyhedron from
| in —x direction. Since a ray shooting query reports the first sgeted bound-
ary element, we must determine which of the two given spheapsmepresents
the local pyramid of that boundary element. If both represiesm local pyramid of
some boundary element, the boundary element representttk lsphere map at
the lexicographically larger position would be hit first. dily one of the sphere
maps represents a boundary element, this boundary elenoaitd e hit. If both
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sphere maps represent volumes, the ray shooting query wduid boundary el-
ement. Hence, the considered shell is surrounded by the witene. Note that
all artificially inserted sphere maps are removed by the Kiicgttion routine after
the synthesis.

This method surely is only effective, if a single booleanragien is performed
and afterwards no ray shooting or point location is neededhbyuser. But it
can also become effective in consecutive binary operatibmge use it to replace
the kd-tree completely with some streamed data structundasito the fast box
intersection. Since we perform ray shooting queries on tipati polyhedra, a
streamed data structure can perform all point location aydshooting queries
batched at the same time.

9.6.2 Modification Operations

The complexity of our binary operations always depends enldigest polyhe-
dron among the two input polyhedra and the result polyhedfdms, subtracting
a single point from a polyhedrdnis just as complex as intersecti®with a trans-
formed copy ofP, although the subtraction can be seen as a slight modificafio
P. Our data structure and algorithms are not sensitive tolsimahges or to a small
area of concern. For this reason, we would also like to haveifination opera-
tions in addition to our binary operations. Such operatigiefd the same results
as the binary operations, but instead of creating a thirghgalron that holds the
result, they return the modified first input polyhedron.

In order to realize modification operations we need updatgatipns for the
SNC and the kd-tree. An alternative to an update operatigheokd-tree is again
to replace the kd-tree with some streamed data structures \ildy we also can
easily decide upfront which objects need to be considerbd.dgcision is done by
checking the bounding boxes of all objects against a boxehelbses the area of
concern.

9.6.3 Exact Geometric Computing

In general, the problem of growing coordinate represemiatin cascaded con-
structions cannot be avoided, but it is possible to redueepdrformance down-
side of exactness in geometric algorithms. The exact geanuamputing (EGC)
paradigm [YD95] emphasizes that exactness must be in th@efeg not in the
arithmetic. This means, we need not use exact arithmetichbwutcome of every
predicate evaluation must be correct for the given inpuCd&aL many algorithms
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and data structures are designed for the udtafing-point filters The idea is to
exploit the machine floating-point arithmetic, which istiigoptimized on current
hardware. For this purpose, the machine evaluation of gaéek is certified. When
a correct result cannot be guaranteed, the predicate impded with the slower
exact methods [LPYO04].

Unfortunately, our current implementation does not befiefit floating-point
filters. On the contrary, floating-point filters slow our irpientation down. The
reason is in our synthesis step. Floating-point filters alg effective as long as
most of the predicates can be solved with floating-poinharétic. In the synthe-
sis step we regularly test for equality of geometric objekisletail, we categorize
halfedges by their supporting line, we identify facet cgchy the common sup-
porting planes of shalfedges, and we perform plane sweepd fhalfedges lying
in a common plane. Equality tests on geometric objects csitydse handled with
floating-point filtering, as long as the tested objects azarty unequal. The closer
to equal two objects are, the more precise must the aritbrbetiin order to de-
cide whether two objects are the same, or slightly differémbur case, we apply
equality tests because we want to pair up equal geometiecitzbjHence, the filters
regularly have to fall back to exact arithmetic.

In order to allow the effective use of floating-point filte our binary oper-
ations, we must re-design the synthesis step. The idea isatchnup halfedges
and shalfedges by indices instead of geometric propettidices can be set prop-
erly in the constructors and input operations. Then, thegtrhe transfered and
updated during the boolean and topological operations.réduesign is elaborate,
but seems possible. As an example, we discuss the modifisdtiat are necessary
to pair up the halfedges by indices.

First, we have to specify how indices are assigned. The tifedges of an
halfedge pair must always have the same index. Multipleedgks pairs with
the same supporting line may share a common index, but doavet to. With
this rule, the pairing is still easy and effective, and we dbinclude unnecessary
restrictions.

In all our constructors, we know which halfedges comprisaia pefore we
compute their geometric properties. Thus, it easy to assignmique index to each
halfedge pair. When we create the sphere map of an edge ow theifig a binary
operation, both new svertices take on the index of the edge.

There are two steps, where the handling of indices is comtplit First, erasing
a redundant sphere map on an edge, we may have to join twalgelfsirs with
different indices, but have not even paired up the two p&irgl second, the overlay
of two sphere maps may introduce new svertices. Such a netesveust get the
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same index as some other svertex in a different sphere magheQdtter svertex,
we do not know in which sphere map it is, and whether it hagdirdeen created.
Both problems can be solved with additional associations.

With these modifications, the pairing is easy. Instead @&dg@izing halfedges
by their common Pliicker coordinates, we categorize thethdy common index.
Then we sort each list of halfedges as before. Note that wedigside whether
two compared halfedges have the same source vertex befaremeare their lo-
cation lexicographically. This way we compare equal caumatés, only if com-
pared points are unequal, but have the sarneordinate, i.e., the supporting line
is orthogonal to the-axis.
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Chapter 10

Applications for Nef polyhedra

In this chapter we present first approaches for realizing applications of 3D
Nef polyhedra—for the visual hull and for the Minkowski surintwo closed Nef
polyhedra. These two implementations are complete andgstobut do not use the
most sophisticated and efficient algorithms. Also, the Mimgki sum is limited
to closed polyhedra, so far, We describe the algorithmdppartests to get a first
impression of the performance, and discuss their potential

10.1 Visual Hull

The visual hull of a three-dimensional object is an appr@tion of the original,
deduced from concurrent snapshots of several camerag fd@object [Lau94].
Each snapshot provides a two-dimensional silhouette. déeeis to create a cone
for each camera, such that the shape of their cross-sediaisethe silhouette of
the snapshot. This way, the cone closely covers each obgotduld have caused
the silhouette. Each cone already is a rough approximafidinecoriginal object.
Intersecting the cones of all cameras refines the approximadtlote, the original
object is always a subset of the approximation. Figure lludtiates the method.

Having Nef polyhedra as provided ind3dL 3.1, we implemented a solution
for the visual hull problem based on connected polygonabsikttes with holes.
Although cones are infinitely bounded polyhedra, we wanswaistandard kernel
in order to get a fast solution. We therefore clip each corafexded box. This box
is not computed by us, but defined by the user. The implementaias easy and
took only a few days.

The main advantage of our implementation lies in its robesdn If many cam-
eras are used, the boundary edges of the silhouettes oplaudameras standing
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C3

Figure 10.1: Two rectangular objects observed by three m@swie, c, andcs.
The grey area illustrates the visual hull computed from titupes seen by the
cameras.

closely together might arise from the same edge of the qhject several cones
intersect in a common edge. Here, floating-point arithneit cause severe prob-
lems. The main disadvantage of our implementation is a lasheed.

Without genuine snapshot data, we tested our implementatith artificially
created data. Figure 10.2 shows such an artificial exampdecdMputed the inter-
section of three cones generated from artificial silhosetteowing the letters M,
P, and I. Using a computer with two 3GHz processors and 4GB Réwlimple-
mentation creates a single cone from a silhouette with 1@efiices in about 0.005
seconds, and intersects two of these cones in about 0.1dsec®he polyhedron
shown in Figure 10.2 was computed in 0.217 seconds. Visulsl &g often used
in real-time applications. For this purpose, we must spgedur implementation
by a factor of about 100.

The intersection of the cones consumes most of the runtirmeveAwill see in
the next section, the Minkowski sum has the same bottlenecthis context, we
consider different strategies to perform a sequence ofuaiidntersection opera-
tions efficiently.
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Figure 10.2: Two views on a visual hull example created frdwee two-
dimensional silhouettes showing the capital letters Mn@,la

10.2 Minkowski Sum of Two Nef polyhedra

The Minkowski sum of two point setS; ¢ RY andS,  RY, denoted bysl & S,
is defined as

S©S:={p+q:pcS,qc S},

wherep+ q denotes the vector sum of the vectors from the origip emdq,
respectively. Ifp= (p1,...,pq) andq = (qa,...,qq) then we have

p+0q:=(pPL+01,...,Pd+0d)-

Minkowski sums are often used in robot motion planning fon-tdvially
shaped robots with translational movement. For such aricapipin, we want to
compute the configuration space of a roBawith respect to a set of obstacl€s
i.e., each placement of the robot without intersecting dstacle. The placement
of the robot is given with respect to some fixed referencetpaiifk. By R(X,y)
we denote the placement Bfat position(x,y). The configuration space can be
calculated as the negation of the Minkowski s@wp —R, with —R defined as
—R:={—p:peR} ie, the point se©O® —Rincludes all illegal placements of
R. —Rcan be obtained by reflection about the origin [dBvKOS97].

The computation of the Minkowski sum of two three-dimensiquolyhedravi
andN is a complex problem by nature. It yields another three-dsional polyhe-
dron, whose worst-case complexity@$m°n®), wheremandn are the complexities
of the respective input polyhedra. Because of this, thame exact implementation
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Room D
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o

d

hobot Obstacle Minkowski sum

Figure 10.3: Tight passage: Can the robot move through ghe passage into the
room by translational movement? The Minkowski sum provitthesconfiguration
space of the robot. Modeling the robot as an open polygon landlistacles as a
set of closed polygons, the Minkowski sum is an open pointisstdenotes the
illegal placements. The robot can move along the boundattyeoinkowski sum
into the room.

to this problem. There only exist approximative approadhes[VMO04]. On the
other hand, approximative approaches are obviously néicsult to solve tight
passage problems as shown in Figure 10.3. We present a ficttapproach to the
3D Minkowski sum. Yet, our implementation is restricted knsed polyhedra, and
not all subroutines are solved by the most efficient meth@tien again, with our
binary operation as the basic building block for the most glex step, we could
already achieve promising results.

Our implementation adopts a common approach for the Minkbwsm of
non-convex polyhedra, which is based upon the solution éowvex polyhedra.
The idea is to decompose non-convex polyhedra into convaypslyhedra. Then,
the Minkowski sum of two non-convex polyhedra is the unionabfpairwise
Minkowski sums of the two sets of sub-polyhedra.

In the following, we will first discuss solutions for the Miakski sum of con-
vex polyhedra and present our solution based upon Nef pdtgrembedded on the
sphere. Then, we adapt a vertical decomposition methochéwvalume of a 3D
Nef polyhedron. Afterwards, we test strategies for the mmibmultiple polyhedra
by consecutive binary operations. Finally, we point ouiti#&tions and weaknesses
of our first implementation, and discuss opportunities gfrioving it with respect
to completeness and efficiency.
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10.2.1 The Minkowski sum of convex polyhedra

The Minkowski sum of two convex polyhedra is a convex polybed too. Fur-
thermore, it is well known that each vertex. g of the Minkowski sumP @ Q is
the vector sum of vertices in P andvg in Q [Lat91]. Hence, a trivial solution for
the Minkowski sum of two convex polyhediRaand Q computes the convex hull
of all vector sums of vertex pairs & andQ. This algorithm performs a convex
hull algorithm onpq vertices, wherg andq are the number of vertices i and
Q. Thus, using the GAL convex_hull_3 function the trivial algorithm runs in

O(palog(pa)) time.

N 1

’ N @ N

O W W
Figure 10.4: The upper row shows a tetrahedron and a cubéhtogeith their
Minkowski sum. The lower row shows the normal diagrams oftkiiee objects.

A more efficient solution can be obtained by using normaldiats. Each con-
vex polyhedrorP has a unique dual representatigg called theGaussian diagram
or normal diagram It is a subdivision of the sphere into vertices, edges acesfa
such that the outward-directed normal directions of athptasupporting some item
of P constitute an item oNp. A plane supports an iteimof P, if the intersection
of the plane andP isi. For a facet ofP there is exactly one plane supporting it.
Thus, its dual item is the single point on the sphere with #reesnormal direction
as the supporting plane. The normal directions of the planpporting an edges
of P form a great arc on the sphere. The endpoints of the grearadual items
of the facets incident tep. A face f, on Np is the dual item of a vertex, of P.
fn is bound by a convex cycle of edges and vertices, which areubkitems of
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the edges and facets incidentp The order of the edges and vertices arotind
coincides with the order of dual items aroud

The faces oNp g are intersections of faces bk andNg. What is more, the
dual face ofvpsq is the intersection of the dual faces\gfandvg with vp 4-vg =
Vpgo. As a consequence, the overlayMd andNg is the normal diagram of the
Minkowski sumP & Q. Using the overlay of the normal diagrams improves on the
trivial algorithm in two points. First, we can obtain the sétvertices ofP& Q
easily from the overlay by computation of the vector sum ef shpports of each
face in the overlay. As a result, the constructionPat Q operates on a set of
vertices that might be far smaller thaig. However, in the worst cas@,¢ Q still
hasO(pq) vertices. And second, The incidence structureNpfq allows us to
constructP & Q from it in time linear toP & Q.

With Nef polyhedra embedded on the sphere, we can realizaalaiagrams
easily. Also we can reuse their overlay algorithm for the kéwwski sum. For
this purpose, we store the coordinates of each primal vedeRke label of its dual
sface. During the overlay, the selection function perfothesvector sum on these
coordinates. The sfaces B are labeled with the coordinates of their primal
vertex.

In addition, we also store the usual set-selection mark#ienldbels of the
normal diagrams, such that we can perform Minkowski sumsamvex polyhe-
dra with selected and unselected vertices, edges and.fabétsout set-selection
marks, the input polyhedra must either be considered as opelosed. With ei-
ther input polyhedron being open, the Minkowski sum must ks open. Adding
marks, the boundary of the Minkowski can become more comgfex instance,
a vertexvpsg of the Minkowski sum, which is the vector sum of vertiogsand
Vo, must be selected iff bot» andvg are selected. In order to obtain the correct
marks for all items of the Minkowski sum, we store the mark® ahdQ as labels
of their dual items and apply the and-operation in the sielectep of the spherical
overlay.

Summing up, we combine point coordinates and boolean sttt marks to
a new typePointBool, and store it with each item in the normal diagram. The new
class defines theperator&&, which performs vector addition upon the points, and
the and-operation upon the bools. For svertices and setigeppint coordinates
are meaningless; a default value is assigned.

Note that each side of the polyhedron is restricted to asisighple facet. We
do not know how to handle a polyhedron side that consists dtipfaifacets with
different selection marks, since each side of the polyhedasresponds to a single
vertex in the normal diagram. It is unclear, how the struetmd the set-selection
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marks of complex polygon sides can be encoded as attrib@itassertex in the
normal diagram, or how to combine those attributes during@l&an operation of
two normal diagrams.

Having Nef polyhedra embedded on the sphere, this appr@aghiie sim-
ple and more efficient than the trivial algorithm. It computee Minkowski sum
in O((p+q)log(p+q) +r) time, wherer is the complexity of the Minkowski
sum. In addition to the trivial method, it can also handlees&ld and unselected
boundaries. On the other hand, Fogel and Halperin showedhteee are much
faster methods [FHO6]. They conducted experiments to coengiee efficiency
of their own implementation with the trivial solution, witiWeibel's implementa-
tion of Fukuda’s method [Fuk04], and with our implementatid here is no other
known exact and robust implementation at the moment.

Fogel and Halperin implemented @ubical Gaussian maprFHO06], which
projects the normal diagram onto the unit cube. They perfeeparate overlays
for each side of the cube. The method rungOifrlog(p+ q)) time. Fukuda’s
method is based on linear programming. Its complexit®(8LP(3,5)V), where
J is the sum of the maximal degrees of vertices in the two inplgtppes,V is
the number of vertices of the resulting Minkowski sum, &m{d, m) is the time
required to solve a linear programming dnvariables andn inequalities. Note,
the implementation of Fogel and Halperin is the only implatagon specifically
optimized for the computation of the Minkowski sum of contkree-dimensional
polyhedra. Fukuda’s algorithm is more general, as it candesl lo compute the
Minkowski sum of polytopes in an arbitrary dimension. Oundry operations on
sphere maps can handle more complex overlays than thosemfhdiagrams,
which are always convex arrangements; they never includeeddaces or lower
dimensional features.

The Cubical Gaussian Map proved to be much faster than tlee iotiplemen-
tations. In the conducted experiments, it was between 3®@anines faster than
our implementation, and between 4 and 31 times faster thahelfeimplemen-
tation. For small instances, our implementation was evewesl than the trivial
method. But since the trivial method is not output-sensjtowur implementation is
much faster in complex experiments.

10.2.2 The Vertical Decomposition of a 3D Nef polyhedron.

The problem of partitioning a polyhedron into convex pietesnore complex
than its two-dimensional counterpart. In general it is nosgible to decom-
pose a polyhedron into simplices, i.e., into tetrahedr#jout introducing Steiner
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Ap) X X

FW(e) SW(e)

¢ N ¢ N

Figure 10.5: The vertical wall for the edgeaccording to the two definitions.
The wall flood wallFW(e) completely fills the intersection of the vertical plane
pe throughe and the cell above. The cell abovee is formed by the original
polyhedron and previously inserted walls (dashed lineshe $igh wallSW(e)
covers all points that can be connectee by a vertical edge without intersections.

points [O’R87]. The decompoasition of a polyhedron into a imiam number of
convex pieces is known to be NP-hard [O’R87]. Chazelle sladivat a polyhedron
with input complexityn andr reflex angles, i.e., angles larger than 180 degrees,
can be decomposed in@(r?) convex pieces i®(nrd) time andO(nr?) space. He
also provided an example for which the boundQif?) convex sub-polyhedra is
tight [Cha84].

We choose to perform a vertical decomposition, which seerbg fan intuitive
and easy to implement decomposition method. We follow themon approach
of adding vertical facets usually denoted as walls. Thiseggh was introduced
for the vertical decomposition of the three-dimensionacgpwith respect to a
set of triangles [AS88, dBGH94]. We adapt it for the deconitpms of 3D Nef
polyhedra.

A vertical wall W(e) of some non-vertical edgeis a connected subset of the
vertical planepe that supportsee. There are two different definitions of vertical
walls. In the following, we present both definitions togetidth the vertical de-
compositions based upon them. Then we introduce an easydé&ih creating
vertical walls and discuss its applicability for the two degositions.

Vertical walls were first defined by Aronov and Sharir [AS88Hapting their
definition to our problem, vertical walls are defined as folo LetA(pe) be the
planar arrangement of the intersection of the polyhedrooluding previously
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erected walls, withpe. Then, the vertical wall oé consists of all faces of\(pe)
that are incident t@ and inside the polyhedron. The left graphic of Figure 10.5
illustrates the planar arrangemeftp:) and the vertical wall oe. In order to
distinguish this definition from the other definition, whiehill be given later, we
denote such a vertical wall aflaod wall F\W(e).

With the definition of flood walls, a decomposition into coxygeces is rather
simple. Erecting the flood wall of aeflex edge &.e., of and edge whose adjacent
facets form a reflex angle, the wall divides the reflex angie iwo or three non-
reflex angles. Also, the wall does not introduce new reflexeed@S88]. This
way, a convex decomposition can be achieved by erecting fladid for all reflex
edges. In the degenerate case of a vertical reflex edgesuffices to consider the
edge as slightly perturbed to determine a plpgeaogether with the corresponding
arrangemenf\(pe,). Either plane that supports is appropriate.

De Berg, Guibas, and Halperin defined a vertical wall as the@fsall points
that can be connected éwia a vertical segment that does not intersect a face, edge,
or vertex [dBGH94]. Adapting their definition for our purpss we only consider
those parts of the wall that lie within the polyhedron. Fartbn, we denote such
a wall as thesight wall SWe). The right graphic of Figure 10.5 illustrates the
definition.

Sight walls also divide reflex angles into non-reflex angheg, their vertical
boundary edges may become new reflex edges. Some of them mesabesd by
the other sight walls of the original reflex edges, but somg nw be resolved.

In the original scenario, the decomposition of the thrameattisional space into
convex cells with respect to a set of triangles, the decoitippsvorks in two steps.
In the first step, vertical walls are erected for all non{zaitedges. As a conse-
quence, the three-dimensional space becomes subdiviecylimdrical cells, i.e.,
each cell is bounded by several vertical, convex facetspgriaio equally shaped,
non-vertical, not necessarily convex facets—one at thetmpone at the bottom.
Note that there are degenerate cases, where the top anchlfatiet meet in a com-
mon vertex or edge. In the second step, further verticalsveakt added. They are
chosen in such a way, that they decompose the top and bottets faf each cylin-
drical cell into convex sub-facets, and thereby they alsmd®ose the cells into
convex sub-cells. For this purpose, any common polygonrdposition method
can be applied on the top and the bottom facet. For every edgeted by the poly-
gon decomposition, another vertical wall is erected. FdL.6 illustrates the two
steps of the vertical decomposition by sight walls. Notd theery vertical wall,
that is created in the second step, is convex. As a result,eed not distinguish
between flood walls and sight walls. They are the same.
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Figure 10.6: Vertical decomposition based on the insentiosight walls (viewed
from the top). In the first step, the polyhedron is decompastaxy-monotone
sub-cells. Then, further vertical walls are inserted tadstile the cells into convex
sub-cells.

In our scenario, where we decompose the selected volume&ef polyhe-
dron, it is more efficient to erect walls only for those edgelspse adjacent facets
form a reflex angle. As a consequence, the cells that resuit fhe first step are
not cylindrical, but stillxy-monotone, i.e., the intersection of a vertical line with
a cell is either empty or connected. The cells are still bednoy multiple verti-
cal facets, but the top and the bottom may consist of mulfgutets, which form
convex surface patches. Again, we can find proper verticlsviar the second
step by decomposing a polygon. Projecting the top and bgttteh of a cell into
the xy-plane, both projections form the same polygon. This palygeeds not to
be convex. Vertical walls, whose projection decompose tiiggon into convex
sub-polygons, decompose the cell into convex sub-cells.

The decomposition based on sight walls implies two majoraathges: the
result of the decomposition does not depend on the ordereof/il erection, and
the decomposition yields fewer sub-polyhedra [dBGH94].

So far, we described how to partition the selected volumed\ef polyhedron.
For holes in a volume we need no special treatment. If therselected boundary
parts in an unselected volume that do not enclose a seleotethe, we handle
each such facet, isolated edge, or isolated vertex as aaseab-polyhedron.

But how do we create walls? Since we decompose volumes ofyaguhion
enclosed by a shell, often it is fairly easy to insert a floodl wasome edgee in
the outer shell of a volume. Starting fromnwe walk along the intersection of the
shell with the vertical plan@e supportinge. During the walk, we adapt the sphere
maps of the encountered vertices and create new vertices thbkevalk crosses
an edge. The twin relation between halfedges can easily bateg. The walk
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terminates when it returns ® If this newly created facet cycle is an outer cycle
of the wall, and there are no inner cycles, we only need tomgcie the SNC in
order to finalize the creation of the wall.

For the walk along the shell, we need ray shooting to deteatéit intersection
with the 1-skeleton of the shell. We use our kd-tree for thisppse, which we
update every time a new vertex or a new edge is created. Boptinpose, we add
those objects into the proper leaf nodes of the kd-tree. igectne walk only needs
the 1-skeleton and the kd-tree to be up-to-date, it is natssary to recompute the
SNC in a series of wall creations. It suffices to recomputedeoat the end.

The walk is an easy solution to create the outer boundary @l but it is not
sufficient to create all walls properly. In the first wall cliea phase, a wall may be
intersected in its interior and therefore may contain haBisce after the first wall
creation phase, there are no inner cycles left, it seemgHib®ge boundary cycles
are not necessary. But they become part of an outer cyctariates decomposition
process.

Another problem occurs, when a walk started from an ezldees not create
outer cycles, but an inner cycles. This happens, when nribigells intersecpe,
or one shell intersectpe multiple times. In both cases the walk would create an
inner facet cycle we are probably not interested in, becaumde in degenerate
cases there is another edgje¢hat lies in the same plan® = pg, and that triggers
the construction of the outer cycle\0f(e) = W(¢).

We want to adjust the walk in such a way, that it creates sigiltswnstead
of flood walls. Because of their definition, a sight wallxgmonotone. As a
result, there can be no holes in a sight wall; they only havewar face cycle.
The outer boundary of a sight waW(e) is composed of three types of segments:
intersections with the shells, intersections with othellsyand vertical segments
from an endpoint ok to the first intersection with some boundary element. We
denote segments of the third type asldteral delimitersof SW(e). The walk can
be applied for the creation &\ (e), if we can guarantee that the walls that are part
of SW(e)’s boundary, further on denoted as therequisite wallof SW(e), have
been erected before. Then, we start by creating the lateliahiters and perform
two separate walks afterwards; one creates the lower, anathier the upper part
of SW(e). With lower and upper parts, we refer to the set of points aghatswvall
SW(e) that are vertically below or abowee

In general, the reflex edges of a selected volume cannot bedsior such a
way, that all prerequisite walls of some walN\(e) are erected befor®W\(e) itself.
There can be mutual and cyclic dependencies. The mutuahdepeies can be
resolved by first creating the lower parts of all sight wadlsd then all upper parts,
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Figure 10.7: Variation of Schonhardt polyhedron with adpaéic base viewed
from the side and from the top. The diagonals of the sidesedlexredges, which
are circular dependent on one another.

or the other way around. But amongst all lower, and amondsipgder parts,
there can still be cyclic dependencies. Figure 10.7 showaxample for cyclic
dependencies.

To create the lower parts of the sight walls of all reflex edges sort the
reflex edges by their smaller endpoint in ascending lexeglgic order, resolve
dependency problems, create the lateral delimiters folothier parts, and finally
apply the walk in the determined order. After sorting thesve@dges by their lower
endpoint, we must resolve the situation, wherés sorted in front of,, because
its lower endpoint is lexicographically smaller, itis a prerequisite wall oé;.
The edge®; ande, have a common vertical intersection ligewhich intersectg;
iniy andey in i, whereiy lies above,. We splite, = (s, t2) atiz into €, = (sp,12)
ande; = (i, t2), and insert both parts at the proper position of the sortqdesee
of reflex edges. In consequeneg,s still created before both parts ef, but does
not dependent on their prior erection. Instea@ofthe common vertical delimiter
of €, andé€j have become part @W(e;)’s boundary. The complete procedure for
decomposing the selected volume of a Nef polyhedronxgtmonotone cells, is
summarized in Algorithm 2.

For the second step of the decomposition—the decomposifigprmonotone
cells into convex sub-cells—we still need to specify how welfa proper set of
vertical walls that divides the remaining reflex edges. Ehresnaining reflex edges
either are vertical edges not handled in the first phase, rticaeboundary edges
of the sight walls created in the first phase. We choose th@firig easy to adapt
y-vertical polygon decomposition. For evemflex vertex yi.e., for every vertex
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Algorithm 2 Decomposition of a 3D Nef polyhedron inkg-monotone pieces.

1: procedure XY _"MONOTONE_.DECOMPOSITIONN)

N

No ahRow

3

10:

11:
12:

13:
14:
15:
16:
17:
18:

19:
20:
21:

22:
23:

R=0
for all edgese of N do
if lis_vertical@€) AND volume_below.is_selected) then
R=RuUe
end if
end for

Sort edges iR by their smaller endpoints in ascending order
Resolve dependencieskh
Insert lateral delimiters ir-z direction

for all edgese € Rdo createlower_part of_sight wall(e)
end for

R=0
for all edgese of N do
if lis_vertical@€) AND volume.aboveis_selectedf) then
R=RuUe
end if
end for

Sort edges iR by their larger endpoints in descending order
Resolve dependencieskh
Insert lateral delimiters ia direction

for all edgese € Rdo createupperpartof_sight wall(e)
end for

24: end procedure
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whose interior angle is bigger than 180 degrees, we ingbdrgtvertical edge that
starts atv and crosses the polygon’s interior. The reflex vertices ef2h version
correlate to the remaining reflex edges of Xiyganonotone cells, and thevertical
edges correlate to walls parallel to tyweplane, where each wall divides the cell in
two separate parts. We can easily create such a wall byngtantir walk from a
reflex edge in the proper direction. Summing up, we decomposg-monotone
cell into convex pieces by creating either wall parallelie yzplane that divides
a reflex edge.

10.2.3 Uniting a Set of 3D Polyhedra

The implementation of the main routine of the Minkowski swsnstraight for-

ward except for one point. The union of the Minkowski sumshaf tonvex sub-
polyhedra is resolved by multiple binary union operatidfsre, it is essential not
to perform the binary operations in arbitrary order. The plaxity of our binary

operation depends on the complexities of both input anddkeltr polyhedron in
equal shares. As a consequence, it is favorable unitind polghedra first. Since
we cannot foresee the optimal order, we test three diffesteategies.

The trivial method maintains one Nef polyhedron holding¢berent interme-
diate result. It starts with an empty polyhedron and addgtighedra one by one.
This method is expected to perform very badly, since modt@iiion operations
involve at least one big polyhedron, namely the intermediasult.

The second method aims for more balanced operations. \iidizgta queue
with all polyhedra in arbitrary order. The method continsiguakes the first two
polyhedra from the queue, unites them, and appends the.résuthe decompo-
sition creates constant-sized sub-polyhedra, we can a&sthahwe always unite
polyhedra of similar size. The method finishes with the rtelefil as the sole re-
maining item in the queue.

The third method refines the second one. Instead of a nornealequve main-
tain a priority queue. The priority of a polyhedron is itsesimeasured by the
number of its vertices. As a result, each union operatiorerfopmed on the two
smallest polyhedra in the priority queue. Again, the restitach union is inserted
into the queue, and the method terminates with the restlsehe final remaining
element in the queue.

We compute the Minkowski sum of a two-manifold, triangutateesh, which
depicts a mushroom, with a cube. Our implementation decsagptine mushroom,
which has 226 vertices, 672 facets, and 213 reflex edges3@#tsub-polyhedra.
We do not decompose the cube, which surely is convex. Fighi@ shows the
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Figure 10.8: The bottom right picture shows the Minkowskinsof a mushroom
(top left) and a cube (bottom left). The top right picture weahe mushroom
vertically decomposed by vertical walls.

mushroom, the decomposed mushroom, the cube, and the Mékkewm of the
mushroom and the cube. The total runtime of the Minkowski anchthe runtimes
of its major parts are listed in Table 10.1.

The fastest method computes the Minkowski sum in 106 secd@xisxpected,
the union of the intermediate results takes most of the tirakeut 75% with the
fastest union method. Surprisingly, the queue outperfdrthe priority queue.
We assume, that the order of the intermediate results inttbeegwas not arbitrary
after all. Itis likely, that the volumes are ordered in suaehegy, that the Minkowski

trivial | queue| priority queue
decomposition|| 9s 10s 10s
convex sum|| 14s 17s 15s
union || 269s | 79s 104s
total || 292s | 106s 129s

Table 10.1: Runtime of the Minkowski sum of a mushroom andlzecu-or the
union of the Minkowski sums of the cube with each the sub{pedtiya of the mush-
room, three methods are compared.
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sums of neighbor cells in the decomposition reappear closath other in the
gueue. The union of two such polyhedra has a lower compléén the union
of the same two polyhedra far apart from one another. Usingpaity queue, the
neighboring structure gets totally lost. Hence, the firgons unite polyhedra far
apart. We conclude, that there is much to gain from an elédorzon strategy.

10.2.4 Limitations and Future Work

As already mentioned at the beginning of this section, otrectl implementation
of the Minkowski sum is restricted to closed polyhedra. Téeeson is, that the sides
of the convex sub-polyhedra returned by our decompositiay be complex, i.e.,
a side may consist of several selected and unselected.f@etbe other hand, we
do not know how to compute the Minkowski sum of convex subypetira with
complex sides. Neither of the presented methods applies.

One approach to overcome this problem is a finer decomposisioch that
each side of the convex sub-polyhedra is simple. This aphreeems not effective,
because a finer decomposition means that more convex sunt) also have
larger combined complexity, have to be united at the end ®@Mimkowski sum
computation. Hence, the union step, which already is thet tiog consuming
step, would becomes slower. A more promising approach ctesplie Minkowski
sum of the complex sides as a separate step. Here, well-egdraolutions for the
Minkowski sum of non-convex polygons can be applied [AFHO0Z2]

The test run of our Minkowski sum implementation showed thatsecluding
union step is the major bottleneck. We already examinee tstrategies for uniting
a set of polyhedra by consecutive binary unions, and wanbmdirtue with more
sophisticated strategies. Another way to reduce the tireatdpr the union is to
implement am-ary Boolean operation on 3D Nef polyhedra. It is not cleawho
efficient ann-ary operation can be. But the potential seems large in dersion
of the many intermediate kd-trees and SNCs that can be spBsssbntial for an
efficientn-ary operation is a proper search data structure that fotksthe locations
of the candidate vertices. Also it should provide the sehptit polyhedra whose
boundary intersects the location of a candidate vertexn-Ary operation surely is
interesting for the visual hull computation, too.
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Conclusion

In this thesis we have presented data structures thateealzoundary represen-
tation of Nef polyhedra in three-dimensional space, togrethith algorithms for
Boolean and topological operations on them. Our implentiemtehas two fea-
tures that improve on the polyhedron modelers currentlyhennharket. First, it
is exact, i.e., it always computes the correct result, isisgband can handle all
degeneracies. Second, its modeling space contains fedés@and is closed under
Boolean and topological operations. Consequently, weegresent non-manifold
situations, open and closed boundaries, and mixed-dimeaisieatures.

In December 2004, our implementation was released as Opgoesoftware
in the Computation Geometry Algorithm Library @aL) release 3.1. It supports
the construction of Nef polyhedra from half-spaces and folthsolids, Boolean
and topological operations, rotation by rational rotatinatrices, translation and
scaling. Furthermore, we provide visualization via.Q

11.1 Results

By performing and analyzing several experiments, we exachur binary oper-
ation routine and its major subroutines. We were able to porifieir worst-case
runtime, as well as the runtime expected under the assumpfioell-shaped ge-
ometry. The experiments showed that the runtime of the pioperations clearly
diverges from the runtime expected under the assumptioretfshiaped geome-
try if a polyhedron contains a facet of linear size. Thusnptacation and ray-
shooting queries posed to our kd-tree can only be answetadérguadratic to the
polyhedron’s complexity.
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Another set of experiments showed that our implementatgncompete with
the commercial CAD kernel &is R13. Usually ACis is faster by a factor of about
four, but in some situations we perform even better thamsAdespite that ex-
act arithmetic is used instead of floating-point arithmetitecause of the exact
arithmetic, our algorithms are robust even in scenariosr&vAe s fails. We lose
ground on ACIS in situations where a complex polyhedron is slightly alieby a
small and simple polyhedron. In this case, we are about siaves slower than
Acis.

We realized two example applications: the visual hull of e¢hdimensional
polyhedron and the Minkowski sum of two closed Nef polyhedBath applica-
tions are not optimized; however, they demonstrate thenpiatef our polyhedron
modeler. What is more, our implementation of the Minkowskngs the first exact
solution for three-dimensional non-convex polyhedra.h&tinoment we can only
handle closed polyhedra, and therefore cannot handlepagdages.

11.2 Future work

The most important improvement to our implementation wéllthe adaptation for
the effective use of floating point filters. We expect it topde a major speed up.
In addition to the faster arithmetic operations, categogiitems by indices will
clearly be faster than categorizing them by geometric piegse

The kd-tree is an important tool for our application. It e#fietly solves point-
location and ray-shooting queries. On the other side, @oliecomes the bottle-
neck of our implementation, especially if a polyhedron vétlinear-sized facet is
involved in a binary operation. In Section 9.6 we discussactil opportunities
to improve on the point location and the ray shooting. Ona ideto solve all
point-location and ray-shooting queries needed in a binpgration batched with
the help of a special streamed data structure as the firsoétibye binary opera-
tion. Also, it might be interesting to offer several ray-shing and point-location
strategies, which are exchangeable by the user betweery lmparations. This
way, the user can choose the best strategy depending onlikegsient need for
point location and ray shooting.

In addition, we want to improve our two applications. Fortbapplications
it will be interesting to develop efficiemt-ary operations. Withm-ary intersection
operations and the efficient use of floating point filters, veemttto make the visual
hull competitive to its inexact counterparts. Also, we wamextend our imple-
mentation of the Minkowski sum to arbitrary Nef polyhedracirder to exactly
compute configuration spaces with tight passages in threergional space.
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