
HAL Id: hal-03469649
https://hal.inria.fr/hal-03469649

Submitted on 7 Dec 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Robust and Efficient Delaunay Triangulations of Points
on Or Close to a Sphere

Manuel Caroli, Pedro M M de Castro, Sébastien Loriot, Olivier Rouiller,
Monique Teillaud, Camille Wormser

To cite this version:
Manuel Caroli, Pedro M M de Castro, Sébastien Loriot, Olivier Rouiller, Monique Teillaud, et al..
Robust and Efficient Delaunay Triangulations of Points on Or Close to a Sphere. Symposium on
Experimental Algorithms, 2010, Naples, Italy. pp.462-473. �hal-03469649�

https://hal.inria.fr/hal-03469649
https://hal.archives-ouvertes.fr

Robust and Efficient Delaunay Triangulations
of Points on Or Close to a Sphere⋆

Manuel Caroli1, Pedro M.M. de Castro1, Sébastien Loriot1, Olivier Rouiller1,
Monique Teillaud1, and Camille Wormser2

1 INRIA Sophia Antipolis – Méditerranée, France
{Manuel.Caroli,Pedro.Machado,Monique.Teillaud}@sophia.inria.fr

2 ETH Zürich, Switzerland
Camille.Wormser@inf.ethz.ch

Abstract. We propose two ways to compute the Delaunay triangulation
of points on a sphere, or of rounded points close to a sphere, both based on
the classic incremental algorithm initially designed for the plane. We use
the so-called space of circles as mathematical background for this work.
We present a fully robust implementation built upon existing generic
algorithms provided by the Cgal library. The efficiency of the imple-
mentation is established by benchmarks.

1 Introduction

The Cgal project [3] provides users with a public discussion mailing list, where
they are invited to post questions and express their needs. There are recurring
requests for a package computing the Delaunay triangulation of points on a
sphere or its dual, the Voronoi diagram. This is useful in many domains such
as geology, geographic information systems, information visualization, or struc-
tural molecular biology, to name a few. An easy and standard solution to the
problem of computing such a Delaunay triangulation consists in constructing
the 3D convex hull of the points: They are equivalent [13,38]. The convex hull is
one of the most popular structures in computational geometry [20,11]; optimal
algorithms and efficient implementations are available [1,2].

Another fruitful way to compute Delaunay on a sphere consists of reworking
known algorithms designed for computing triangulations in R2. Renka adapts
the distance in the plane to a geodesic distance on a sphere and triangulates
points on a sphere [37] through the well-known flipping algorithm for Delaunay
triangulations in R2 [30]. As a by-product of their algorithm for arrangements of
circular arcs, Fogel et al. can compute Voronoi diagrams of points lying exactly on
the sphere [26]. Using two inversions allows Na et al. to reduce the computation
of a Voronoi diagram of sites on a sphere to computing two Voronoi diagrams

⋆ This work was partially supported by the ANR (Agence Nationale de la Recherche)
under the “Triangles” project of the Programme blanc ANR-07-BLAN-0319
http://www.inria.fr/geometrica/collaborations/triangles/

P. Festa (Ed.): SEA 2010, LNCS 6049, pp. 462–473, 2010.
c⃝ Springer-Verlag Berlin Heidelberg 2010

teillaud

Robust and Efficient Delaunay Triangulations 463

in R2 [33], but no implementation is available. Note that this method assumes
that data points are lying exactly on a sphere.

As we are motivated by applications, we take practical issues into account
carefully. While data points lying exactly on the sphere can be provided either
by using Cartesian coordinates represented by a number type capable of handling
algebraic numbers exactly, or by using spherical coordinates, in practice data-
sets in Cartesian coordinates with double precision are most common. In this
setting, the data consists of rounded points that do not exactly lie on the sphere,
but close to it.

In Section 4, we propose two different ways to handle such rounded data.
Both approaches adapt the well-known incremental algorithm [12] to the case
of points on, or close to the sphere. It is important to notice that, even though
data points are rounded, we follow the exact geometric computation paradigm
pioneered by C. K. Yap [39]. Indeed, it is now well understood that simply relying
on floating point arithmetic for algorithms of this type is bound to fail (see [29]
for instance).

The first approach (Section 4.1) considers as input the projections of the
rounded-data points onto the sphere. Their coordinates are algebraic numbers
of degree two. The approach computes the Delaunay triangulation of these points
exactly lying on the sphere.

The second approach (Section 4.2) considers circles on the sphere as input.
The radius of a circle (which can alternatively be seen as a weighted point)
depends on the distance of the corresponding point to the sphere. The approach
computes the weighted Delaunay triangulation of these circles on the sphere, also
known as the regular triangulation, which is the dual of the Laguerre Voronoi
diagram on the sphere [38] and the convex hull of the rounded-data points.

These interpretations of rounded data presented in this work are supported
by the space of circles [10,24] (Section 3).

We implemented both approaches, taking advantage of the genericity of Cgal.
In Section 5, we present experimental results on very large data-sets, showing
the efficiency of our approaches. We compare our code to software designed
for computing Delaunay triangulations on the sphere, and to convex-hull soft-
ware [28,35,1,6,2,37,25]. The performance, robustness, and scalability of our ap-
proaches express their added value.

2 Definitions and Notation

Let us first recall the definition of the regular triangulation in R2, also known
as weighted Delaunay triangulation. A circle c with center p ∈ R2 and squared
radius r2 is considered equivalently as a weighted point and is denoted by c =
(p, r2). The power product of c = (p, r2) and c′ = (p′, r′2) is defined as pow(c, c′) =
∥pp′∥2 − r2 − r′2, where ∥pp′∥ denotes the Euclidean distance between p and p′.
Circles c and c′ are orthogonal iff pow(c, c′) = 0. If pow(c, c′) > 0(i.e., the disks

464 M. Caroli et al.

π/2 < π/2 > π/2

Fig. 1. From left to right: orthogonal (pow(s0, s1) = 0), suborthogonal (pow(s0, s1) >
0), and superorthogonal (pow(s0, s1) < 0) circles in R2

defined by c and c′ do not intersect, or the circles intersect with an angle strictly
smaller than π

2), we say that c and c′ are suborthogonal. If pow(c, c′) < 0, then we
say that c and c′ are superorthogonal (see Figure 1). Three circles whose centers
are not collinear have a unique common orthogonal circle.

Let S be a set of circles. Given three circles of S, ci = (pi, r2
i), i = 1. . .3,

whose centers are not collinear, let T be the triangle whose vertices are the three
centers p1, p2, and p3 . We define the orthogonal circle of T as the circle that is
orthogonal to the three circles c1, c2, and c3 . T is said to be regular if for any
circle c ∈ S, the orthogonal circle of T and c are not superorthogonal. A regular
triangulation RT (S) is a partition of the convex hull of the centers of the circles
of S into regular triangles formed by these centers. See Figure 2 for an example.

Fig. 2. Regular triangulation
of a set of circles in the plane
(their power diagram is shown
dashed)

The dual of the regular triangulation is known as
the power diagram, weighted Voronoi diagram, or
Laguerre diagram.

If all radii are equal, then the power test re-
duces to testing whether a point lies inside, out-
side, or on the circle passing through three points;
the regular triangulation of the circles is the De-
launay triangulation DT of their centers.

More background can be found in [8]. We refer
the reader to standard textbooks for algorithms
computing Delaunay and regular triangulations
[20,11].

This definition generalizes in a natural manner
to the case of circles lying on a sphere S in R3 :
Angles between circles are measured on the sphere, triangles are drawn on the
sphere, their edges being arcs of great circles. As can be seen in the next sec-
tion, the space of circles provides a geometric presentation showing without any
computation that the regular triangulation on S is a convex hull in R3 [38].

In the sequel, we assume that S is given by its center, having rational coordi-
nates (we take the origin O without loss of generality), and a rational squared
radius R2. This is also how spheres are represented in Cgal.1

1 We mention rational numbers to simplify the presentation. Cgal allows more general
number types that provide field operations: +,−,×, /.

Robust and Efficient Delaunay Triangulations 465

3 Space of Circles

Computational geometers are familiar with the classic idea of lifting up sites
from the Euclidean plane onto the unit paraboloid Π in R3 [9]. We quickly
recall the notion of space of circles here and refer to the literature for a more
detailed presentation [24]. In this lifting, points of R3 are viewed as circles of R2

in the space of circles: A circle c = (p, r2) in R2 is mapped by π to the point
π(c) = (xp, yp, x2

p+y2
p−r2) ∈ R3 . A point of R3 lying respectively outside, inside,

or on the paraboloid Π represents a circle with respectively positive, imaginary,
or null radius. The circle c in R2 corresponding to a point π(c) of R3 outside Π
is obtained as the projection onto R2 of the intersection between Π and the cone
formed by lines through π(c) that are tangent to Π ; this intersection is also the
intersection of the polar plane P (c) of π(c) with respect to the quadric Π .

Points lying respectively on, above, below P (c) correspond to circles in R2 that
are respectively orthogonal, suborthogonal, superorthogonal to c. The predicate
pow(c, c′) introduced above is thus equivalent to the orientation predicate in R3

that tests whether the point π(c′) lies on, above or below the plane P (c). If
c is the common orthogonal circle to three input circles c1, c2, and c3 (where
ci = (pi, r2

i) for each i), then pow(c, c′) is the orientation predicate of the four
points π(c1), π(c2), π(c3), π(c′) of R3 . It can be expressed as

sign

∣∣∣∣∣∣∣∣

1 1 1 1
xp1 xp2 xp3 xp′

yp1 yp2 yp3 yp′

zp1 zp2 zp3 zp′

∣∣∣∣∣∣∣∣
, (1)

where zpi = x2
pi

+ y2
pi

− r2
i for each i and z2

p′ = x2
p′ + y2

p′ − r′2. It allows to
relate Delaunay or regular triangulations in R2 and convex hulls in R3 [9], while
Voronoi diagrams in R2 are related to upper envelopes of planes in R3 .

Up to a projective transformation, a sphere in R3 can be used for the lifting
instead of the usual paraboloid [10]. In this representation the sphere has a pole2

S

c
p = πS(c)

O

PS(p)

c1

p1 = πS(c1)

p2 = πS(c2)

c2

Fig. 3. c1 is suborthogonal to c, c2

is superorthogonal to c

and can be identified to the Euclidean plane
R2. What we are interested in this paper is
the space of circles drawn on the sphere S
itself, without any pole. This space of circles
has a nice relation to the de Sitter space in
Minkowskian geometry [19].

We can still construct the circle c on S that
is associated to a point p = πS(c) of R3 as the
intersection between S and the polar plane
PS(p) of p with respect to the quadric S (Fig-
ure 3). Its center is the projection of p onto S
and as above, imaginary radii are possible.3
So, in the determinant in (1), xpi , ypi , and
zpi (respectively xp′ , yp′ , zp′) are precisely the

2 See the nice treatment of infinity in [10].
3 Remember that S is centered at O and has squared radius R2.

466 M. Caroli et al.

coordinates of the points pi = πS(ci) (respectively p′ = πS(p)). This will be ex-
tensively used in Section 4. Again, we remark that Delaunay and regular trian-
gulations on S relate to convex hulls in 3D.

Interestingly, rather than using a convex hull algorithm to obtain the Delaunay
or regular triangulation on the surface as usually done for R2 [9], we will do the
converse in the next section.

4 Algorithm

The incremental algorithm for computing a regular triangulation of circles on
the sphere S is a direct adaptation of the algorithm in R2 [12]. Assume that
RT i−1 = RT ({cj ∈ S, j = 1, . . . , i − 1}) has been computed.4 The insertion of
ci = (pi, r2

i) works as follows:

• locate pi (i.e., find the triangle t containing pi),
• if t is hiding pi (i.e., if ci and the orthogonal circle of t are suborthogonal) then
stop; pi is not a vertex of RT i. Note that this case never occurs for Delaunay
triangulations.
• else (i) find all triangles whose orthogonal circles are superorthogonal to ci

and remove them; this forms a polygonal region that is star-shaped with respect
to pi;5 (ii) triangulate the polygonal region just created by constructing the
triangles formed by the boundary edges of the region and the point pi.

Two main predicates are used by this algorithm:
The orientation predicate allows to check the orientation of three points p, q,
and r on the sphere. (This predicate is used in particular to locate new points.)
It is equivalent to computing the side of the plane defined by O, p, and q on
which r is lying, i.e., the orientation of O, p, q, and r in R3 .
The power test introduced in Section 2 boils down to an orientation predicate in
R3 , as seen in Section 3. (This predicate is used to identify the triangles whose
orthogonal circles are superorthogonal to each new circle.)

The two approachesbriefly presented in the introduction fall into the general frame-
work of computing the regular triangulation of circles on the sphere. The next two
sections precisely show how these predicates are evaluated in each approach.

4.1 First Approach: Using Points on the Sphere

In this approach, input points for the computation are chosen to be the projec-
tions on S of the rounded points of the data-set with rational coordinates. The
4 For the sake of simplicity, we assume that the center O of S lies in the convex hull

of the data-set. This is likely to be the case in practical applications. So, we just
initialize the triangulation with four dummy points that contain O in their convex
hull and can optionally be removed in the end.

5 As previously noted for the edges of triangles, all usual terms referring to segments
are transposed to arcs of great circles on the sphere.

Robust and Efficient Delaunay Triangulations 467

three coordinates of an input point are thus algebraic numbers of degree two
lying in the same extension field of the rationals.

In this approach weights, or equivalently radii if circles, are null. The power
test consists in this case in answering whether a point s lies inside, outside,6 or
on the circle passing through p, q, and r on the sphere. Following Section 3, this
is given by the orientation of p, q, r, and s, since points on the sphere are mapped
to themselves by πS.

The difficulty comes from the fact that input points have algebraic coordi-
nates. The coordinates of two different input points on the sphere are in general
lying in different extensions. Then the 3D orientation predicate of p, q, r, and s
given by (1) is the sign of an expression lying in an algebraic extension of de-
gree 16 over the rationals, of the form a1

√
α1 + a2

√
α2 + a3

√
α3 + a4

√
α4 where

all a’s and α’s are rational. Evaluating this sign in an exact way allows to follow
the exact computation framework ensuring the robustness of the algorithm.

Though software packages offer exact operations on general algebraic numbers
[4,5], they are much slower than computing with rational numbers. The sign of
the above simple expression can be computed as follows:

–1– evaluate the signs of A1 = a1
√

α1 + a2
√

α2 and A2 = a3
√

α3 + a4
√

α4 , by
comparing ai

√
αi with ai+1

√
αi+1 for i = 1, 3, which reduces after squaring to

comparing two rational numbers,
–2– the result follows if A1 and A2 have different signs,
–3– otherwise, compare A2

1 with A2
2, which is an easier instance of –1–.

To summarize, the predicate is given by the sign of polynomial expressions in the
rational coordinates of the rounded-data points, which can be computed exactly
using rational numbers only.

4.2 Second Approach: Using Weighted Points

In this approach, the regular triangulation of the weighted points is computed
as described above. As in the previous approach, both predicates (orientation on
the sphere and power test) reduce to orientation predicates on the data points
in R3 . Note that Section 3 shows that the weight of a point p is implicit, as it
does not need to be explicitly computed throughout the entire algorithm.

Depending on the weights, some points can be hidden in a regular triangula-
tion. We prove now that under some sampling conditions on the rounded data,
there is actually no hidden point.

Lemma 1. Let us assume that all data points lie within a distance δ from S.
If the distance between any two points is larger than 2

√
Rδ, then no point is

hidden.

Proof. A point is hidden iff it is contained inside the 3D convex hull of the
set of data points S. Let p be a data point, at distance ρ from O. We have
6 On S, the interior (respectively exterior) of a circle c that is not a great circle of S

corresponds to the interior (respectively exterior) of the half-cone in 3D, whose apex
is the center of S and that intersects S along c.

468 M. Caroli et al.

ρ ∈ [R − δ, R + δ]. Denote by dp the minimum distance between p and the
other points. If dp >

√
(R + δ)2 − ρ2, the set B(O, R + δ) \B(p, dp) is included

in the half-space H+ = {q : ⟨q − p, O − p⟩ > 0}. Under these conditions, all
other points belong to H+ and p is not inside the convex hull of the other
points. It follows that if the distance between any two data points is larger than
supρ

√
(R + δ)2 − ρ2 = 2

√
Rδ, no point is hidden.

Let us now assume we use double precision floating point numbers as defined in
the IEEE standard 754 [7,27]. The mantissa is encoded using 52 bits. Let γ denote
the worst error, for each Cartesian coordinate, done while rounding a point on
S to the nearest point whose coordinates can be represented by double precision
floating point numbers. Let us use the standard term ulp(x) denoting the gap
between the two floating-point numbers closest to the real value x [32]. Assuming
again that the center of S is O, one has γ ≤ ulp(R) = 2−52+⌊log2 (R)⌋ ≤ 2−52R.
Then, δ in the previous lemma is such that δ ≤

√
3/4γ < 2−52R. Using the

result of the lemma, no point is hidden in the regular triangulation as soon
as the distance between any two points is greater than 2−25R, which is highly
probable in practice.

Note that this approach can be used as well to compute the convex hull of
points that are not close to a sphere: The center of the sphere can be chosen at
any point inside a tetrahedron formed by any four non-coplanar data points.

5 Implementation and Experiments

Both approaches presented in Section 4 have been implemented in C++, based
on the Cgal package that computes triangulations in R2. The package intro-
duces an infinite vertex in the triangulation to compactify R2. Thus the underly-
ing combinatorial triangulation is a triangulation of the topological sphere. This
allows us to reuse the whole combinatorial part of Cgal 2D triangulations [36]
without any modification. However, the geometric embedding itself [40], bound
to R2, must be modified by removing any reference to the infinite vertex. A
similar work was done to compute triangulations in the 3D flat torus [16,15],
reusing the Cgal 3D triangulation package [34,35] as much as possible.

Also, the genericity offered in Cgal by the mechanism of traits classes, that
encapsulate the geometric predicates needed by the algorithms, allows us to
easily use exactly the same algorithm with two different traits classes for our
two approaches.

To display the triangulation and its dual, the code is interfaced with the
Cgal 3D spherical kernel [21,22], which provides primitives on circular arcs in
3D. The vertices of the triangulations shown are the projections on the sphere
of the rounded-data points. The circular arcs are drawn on the surface of the
sphere (see Figures 5 and 6).

We compare the running time of our approaches with several available soft-
ware packages on a MacBook Pro 3,1 equipped with a 2.6 GHz Intel Core 2

Robust and Efficient Delaunay Triangulations 469

10 12 14 16 18 20 22

log #vertices

0.001

0.01

0.1

1

10

100

s
e
c
o
n
d
s
 (

lo
g
a
ri
th

m
ic

 s
c
a
le

)

1st

2nd

DT3

HULL

SUG

QHULL

STRIPACK

2

10 12 14 16 18 20 22

log #vertices

0

0.5

1

1.5

2

2.5

3

s
p
e
e
d
-u

p
 f
a
c
to

r
o
n
 D

T
3

2

Fig. 4. Comparative benchmarks. The programs were aborted when their running time
was above 10 minutes (HULL, SUG, QHULL) or in case of failure (STRIPACK)

processor and 2GB 667 MHz DDR2 SDRAM7 (see Figure 4). We consider large
sets of random data points8 (up to 223 points) on the sphere, rounded to double
coordinates. Figure 5 indicates running times on some real-life data.

Graph 1st of Figure 4 shows the results of our first approach. We coded a traits
class implementing the exact predicates presented in Section 4.1, together with
semi-static and dynamic filtering [31]. The non-linear behavior of the running
time is due to the fact that our semi-static filters hardly ever fail for less than
213 points, and almost always fail for more than 218 points.

Graph 2nd shows the results of the second approach. One of the predefined
kernels9 of Cgal provides us directly with an exact implementation of the pred-
icates, filtered both semi-statically and dynamically. In our experiments we have
observed that no point is hidden with such distributions, even when the data-set
is large, which confirms in practice the discussion of Section 4.2.

The Cgal 3D Delaunay triangulation (graph DT3) [35], with the same Cgal
kernel, also provides this convex hull as a by-product. We insert the center of
the sphere to avoid penalizing this code with too many predicate calls on five
cospherical points that would always cause filters to fail.

For these three approaches, 3D spatial sorting reduces the running time of
the location step of point insertion [23,14].

If the data points are lying exactly on a sphere, their Delaunay Triangulation
can be extracted from an arrangement of geodesic arcs as computed by the code
of Fogel and Setter [25,26]. Since it is not the main purpose of their algorithm,
the running times are not comparable: close to 600 seconds for 212 points. Note
however that the code is preliminary and has not been fully optimized yet. No
graph is shown.

7 Further details: MAC OS X version 10.5.7, 64 bits; compiler g++ 4.3.2 with -O3
and -DNDEBUG flags, g77 3.4.3 with -O3 for Fortran. All running times mentioned
exclude time used by input/output.

8 Generated by CGAL::Random_points_on_sphere_3
9 Precisely CGAL::Exact_predicates_inexact_constructions_kernel

470 M. Caroli et al.

Fig. 5. Delaunay triangulation (left) and Voronoi diagram (right) of 20,950 weather
stations all around the world. Data and more information can be found at
http://www.locationidentifiers.org/. Our second approach computes the result
in 0.14 seconds, while Qhull needs 0.35 seconds, and the first approach 0.57 seconds.
STRIPACK fails on this data-set.

Fig. 6. Delaunay triangulation of S250 (left), Voronoi diagram of S100 (right). STRI-
PACK fails for e.g. n = 1, 500.

We consider the following two software packages computing a convex hull in
3D,10 for which the data points are first rounded to points with integer coordi-
nates. Predicates are evaluated exactly using single precision computations.

Graph HULL corresponds to the code [1] of Clarkson, who uses a randomized
incremental construction [18] with an exact arithmetic on integers [17].

Graph SUG shows the running times of Sugihara’s code in Fortran [6,38].
Graph QHULL shows the performance of the famous Qhull package of Barber

et al. [2] when computing the 3D convex hull of the points. The option we
use handles round-off errors from floating point arithmetic by merging facets of
the convex hull when necessary. The convex hull of points situated close to the
sphere contains in practice all the input points (see Lemma 1). In this situation
QHULL is clearly outperformed by the second approach. However, QHULL can

10 The plot does not show the results of the Cgal 3D convex hull package [28] because
it is much slower than all other methods (roughly 500 times slower than Qhull).

Robust and Efficient Delaunay Triangulations 471

be about twice faster than our second approach when almost all the input points
are hidden.

Renka computes the triangulation with an algorithm similar to our first ap-
proach, but his software STRIPACK, in Fortran, uses approximate computations
in double [37]. Consequently, it performs quite well on random points (better than
our implementations for small random data-sets), but it fails on some data-sets:
Using STRIPACK, we did not manage to compute a triangulation of more than 219

random points (it returns an error flag). The same occurred for the inputs used to
produce Figures 5 and 6. Our implementations handle arbitrary data sets.

To test for exactness we devised a point set that is especially hard to trian-
gulate because it yields many very flat triangles in the triangulation. This point
set is defined as

Sn =

⎧
⎪⎨

⎪⎩

⎛

⎜⎝
cos θ sin φ
sin θ sin φ

cos φ

⎞

⎟⎠

∣∣∣∣∣∣∣
θ∈{0, π

n ,..., (n−1)π
n ,π},φ= (θ2 +1)

π2

⎫
⎪⎬

⎪⎭
∪

⎧
⎪⎨

⎪⎩

⎛

⎜⎝
1
0
0

⎞

⎟⎠ ,

⎛

⎜⎝
0
1
0

⎞

⎟⎠ ,

⎛

⎜⎝
0
0
1

⎞

⎟⎠ ,− 1√
3

⎛

⎜⎝
1
1
1

⎞

⎟⎠ ,

⎫
⎪⎬

⎪⎭

Table 1. Memory
usage

approach bppv
1st 113
2nd 113
DT3 174
QHULL 288

In Figure 6 we show the Delaunay triangulation of S250

and the Voronoi diagram of S100.
In Table 1, we compare the memory usage of our two ap-

proaches, the 3D Delaunay triangulation, and Qhull.11 The
given figures given in bytes per processed vertex (bppv)
and averaged over several data-sets of size larger than 216 .

6 Conclusion

The results show that our second approach yields better timings and memory
usage than all the other tested software packages for large data-sets, while being
fully robust. This justifies a typical phenomenon: the well-designed specialized
solution outperforms the more general one. Here the specialized one is our second
approach, and the general one is the Delaunay triangulation 3D computation
from which the 3D convex hull is extracted.

The first approach is slower but still one of the most scalable. It exactly
computes the triangulation for input points with algebraic coordinates lying
on the sphere, and thus ensures that in any case all points will appear in the
triangulation. It is the only one to do so within reasonable time and thus being
useful for real-world applications.

Acknowledgments

We warmly acknowledge Ophir Setter and Efi Fogel who kindly worked on their
code to give us access to it. We wish to thank Jean-Marc Schlenker for very
interesting discussions on the de Sitter space.
11 Memory usage measurements are done with CGAL::Memory_sizer for the first ap-

proach, second approach and for the 3D Delaunay triangulation. For the Qhull pack-
age the measurement is done with the -Ts option, taking into account the memory
allocated for facets and their normals, neighbor and vertex sets.

472 M. Caroli et al.

References

1. Hull, a program for convex hulls, http://www.netlib.org/voronoi/hull.html
2. Qhull, http://www.qhull.org/
3. Cgal, Computational Geometry Algorithms Library, http://www.cgal.org
4. Core number library, http://cs.nyu.edu/exact/core_pages
5. Leda, Library for efficient data types and algorithms,

http://www.algorithmic-solutions.com/enleda.htm
6. Three-dimensional convex hulls,

http://www.simplex.t.u-tokyo.ac.jp/~sugihara/opensoft/opensofte.html
7. IEEE standard for floating-point arithmetic. IEEE Std 754-2008, pp. 1–58 (August

2008)
8. Aurenhammer, F.: Power diagrams: properties, algorithms and applications. SIAM

Journal of Computing 16, 78–96 (1987)
9. Aurenhammer, F.: Voronoi diagrams: A survey of a fundamental geometric data

structure. ACM Computing Surveys 23(3), 345–405 (1991)
10. Berger, M.: The space of spheres. In: Geometry, vol. 1-2, pp. 349–361. Springer,

Heidelberg (1987)
11. Boissonnat, J.D., Yvinec, M.: Algorithmic Geometry. Cambridge University Press,

UK (1998); Translated by Hervé Brönnimann
12. Bowyer, A.: Computing Dirichlet tessellations. The Computer Journal 24(2), 162–

166 (1981)
13. Brown, K.Q.: Geometric transforms for fast geometric algorithms. Ph.D. thesis,

Dept. Comput. Sci., Carnegie-Mellon Univ., Pittsburgh, PA, Report CMU-CS-80-
101 (1980)

14. Buchin, K.: Constructing Delaunay triangulations along space-filling curves. In:
Fiat, A., Sanders, P. (eds.) ESA 2009. LNCS, vol. 5757, pp. 119–130. Springer,
Heidelberg (2009)

15. Caroli, M., Teillaud, M.: 3D periodic triangulations. In: CGAL Editorial Board
(ed.) CGAL User and Reference Manual, 3.5 edn. (2009)

16. Caroli, M., Teillaud, M.: Computing 3D periodic triangulations. In: Fiat, A.,
Sanders, P. (eds.) ESA 2009. LNCS, vol. 5757, pp. 37–48. Springer, Hei-
delberg (2009); Full version available as INRIA Reserch Report No 6823,
http://hal.inria.fr/inria-00356871

17. Clarkson, K.L.: Safe and effective determinant evaluation. In: Proceedings 33rd
Annual IEEE Symposium on Foundations of Computer Science, October 1992, pp.
387–395 (1992)

18. Clarkson, K.L., Mehlhorn, K., Seidel, R.: Four results on randomized incremental
constructions. Computational Geometry: Theory and Applications 3(4), 185–212
(1993)

19. Coxeter, H.S.M.: A geometrical background for de Sitter’s world. American Math-
ematical Monthly 50, 217–228 (1943)

20. de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational
Geometry: Algorithms and Applications, 2nd edn. Springer, Berlin (2000)

21. de Castro, P.M.M., Cazals, F., Loriot, S., Teillaud, M.: 3D spherical geometry
kernel. In: CGAL User and Reference Manual. CGAL Editorial Board, 3.5 edn.
(2009)

22. de Castro, P.M.M., Cazals, F., Loriot, S., Teillaud, M.: Design of the CGAL 3D
Spherical Kernel and application to arrangements of circles on a sphere. Compu-
tational Geometry: Theory and Applications 42(6-7), 536–550 (2009)

http://www.netlib.org/voronoi/hull.html
http://www.qhull.org/
http://www.cgal.org
http://cs.nyu.edu/exact/core_pages
http://www.algorithmic-solutions.com/enleda.htm
http://www.simplex.t.u-tokyo.ac.jp/~sugihara/opensoft/opensofte.html
http://hal.inria.fr/inria-00356871

Robust and Efficient Delaunay Triangulations 473

23. Delage, C.: Spatial sorting. In: CGAL Editorial Board (ed.) CGAL User and Ref-
erence Manual, 3.5 edn. (2009)

24. Devillers, O., Meiser, S., Teillaud, M.: The space of spheres, a geometric tool to
unify duality results on Voronoi diagrams. In: Proceedings 4th Canadian Confer-
ence on Computational Geometry, pp. 263–268 (1992); Full version available as
INRIA Research Report No 1620, http://hal.inria.fr/inria-00074941

25. Fogel, E., Setter, O.: Software for Voronoi diagram on a sphere. Personal commu-
nication

26. Fogel, E., Setter, O., Halperin, D.: Exact implementation of arrangements of
geodesic arcs on the sphere with applications. In: Abstracts of 24th European
Workshop on Computational Geometry, pp. 83–86 (2008)

27. Goldberg, D.: What every computer scientist should know about floating-point
arithmetic. ACM Computing Surveys 23(1), 5–48 (1991)

28. Hert, S., Schirra, S.: 3D convex hulls. In: CGAL Editorial Board (ed.) CGAL User
and Reference Manual, 3.5 edn. (2009)

29. Kettner, L., Mehlhorn, K., Pion, S., Schirra, S., Yap, C.: Classroom examples of
robustness problems in geometric computations. Computational Geometry: Theory
and Applications 40, 61–78 (2008)

30. Lawson, C.L.: Software for C1 surface interpolation. In: Rice, J.R. (ed.) Math.
Software III, pp. 161–194. Academic Press, New York (1977)

31. Li, C., Pion, S., Yap, C.K.: Recent progress in exact geometric computation. Jour-
nal of Logic and Algebraic Programming 64(1), 85–111 (2005)

32. Muller, J.M.: On the definition of ulp(x). Research Report 5504, INRIA (February
2005), http://hal.inria.fr/inria-00070503/

33. Na, H.S., Lee, C.N., Cheong, O.: Voronoi diagrams on the sphere. Computational
Geometry: Theory and Applications 23, 183–194 (2002)

34. Pion, S., Teillaud, M.: 3D triangulation data structure. In: CGAL Editorial Board
(ed.) CGAL User and Reference Manual, 3.5 edn. (2009)

35. Pion, S., Teillaud, M.: 3D triangulations. In: CGAL Editorial Board (ed.) CGAL
User and Reference Manual, 3.5 edn. (2009)

36. Pion, S., Yvinec, M.: 2D triangulation data structure. In: CGAL Editorial Board
(ed.) CGAL User and Reference Manual, 3.5 edn. (2009)

37. Renka, R.J.: Algorithm 772: STRIPACK: Delaunay triangulation and
Voronoi diagram on the surface of a sphere. ACM Transactions on
Mathematical Software 23(3), 416–434 (1997), Software available at
http://orion.math.iastate.edu/burkardt/f_src/stripack/stripack.html

38. Sugihara, K.: Laguerre Voronoi diagram on the sphere. Journal for Geometry and
Graphics 6(1), 69–81 (2002)

39. Yap, C.K., Dubé, T.: The exact computation paradigm. In: Du, D.-Z., Hwang,
F.K. (eds.) Computing in Euclidean Geometry, 2nd edn. Lecture Notes Series on
Computing, vol. 4, pp. 452–492. World Scientific, Singapore (1995)

40. Yvinec, M.: 2D triangulations. In: CGAL Editorial Board (ed.) CGAL User and
Reference Manual, 3.5 edn. (2009)

http://hal.inria.fr/inria-00074941
http://hal.inria.fr/inria-00070503/
http://orion.math.iastate.edu/burkardt/f_src/stripack/stripack.html

	Robust and Efficient Delaunay Triangulations of Points on Or Close to a Sphere
	Introduction
	Definitions and Notation
	Space of Circles
	Algorithm
	First Approach: Using Points on the Sphere
	Second Approach: Using Weighted Points

	Implementation and Experiments
	Conclusion
	References

