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Abstract: Modeling 3D objects with balls is routine for two reasons: on the one hand, the medial
axis transform allows representing a solid object as a union of medial balls; on the other hand,
selected shapes, and molecules in particular, are naturally represented by collections of balls. Yet,
the problem of choosing which balls are best suited to approximate a given shape is a non trivial
one. This paper addresses two problems in this realm.
The �rst one, conformational diversity selection, consists of choosing k molecular conformations
amidst n, so as to maximize the geometric diversity of the k conformers. The second one, inner
approximation, consists of approximating a molecule of n balls with k < n balls. On the the-
oretical side, we demonstrate that for both problems, a geometric generalization of max k-cover
applies, with weights depending on the cells of a surface or volumetric arrangement. Tackling these
problems with greedy strategies, it is shown that the 1 − 1/e bound known in combinatorial opti-
mization applies in some cases but not all. On the applied side, we present a robust and e�ective
implementation of the greedy algorithm for the inner approximation problem, which incorporates
the calculation of the exact Delaunay triangulation of a points whose coordinates are degree two
algebraic number, of the medial axis of a union of balls, and of a certi�ed estimate of the volume of
a union of balls. In particular, we show that the inner approximation of complex molecules yields
accurate coarse-grain models with a number of balls 100 times smaller than the number of atoms,
a key requirement to simulate crowded protein environments.
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Algorithmes Gloutons pour des Familles de Boules

Résumé : Les boules jouent un rôle central en modélisation géométrique pour deux raisons:
d'une part la transformée associée à l'axe médian permet de représenter un objet solide comme
une union in�nie de boules; d'autre part, certaines formes, et les modèles moléculaires de van
der Waals en particulier, sont dé�nies par une union de boules. Néanmoins, la question de savoir
quel ensemble de boules utiliser pour approximer une forme est non trivial, de telle sorte que
ce travail aborde deux problèmes liés. Pour les présenter, par conformation moléculaire, nous
entendons un modèle dé�ni par un ensemble �ni de boules.

La premier problème, ou selection de diversité géométrique, consiste à choisir k conformations
moléculaires parmi n, de façon à maximiser la diversité de l'ensemble choisi. Le second, ou
approximation par défaut, consiste à approximer une molécule de n boules par k < n boules.

Du point de vue théorique, nous montrons que les deux problèmes peuvent être traités avec
une variante géométrique de max k-cover, les poids dépendant de la géométrie d'un arrangement
surfacique ou volumique de sphères. La résolution de ces problèmes par un algorithme glouton
permet d'avoir un facteur d'approximation borné inférieurement par 1 − 1/e dans certains cas.
D'un point de vue appliqué, nous présentons une implémentation robuste de l'algorithme glouton
pour l'approximation par défaut, laquelle incorpore (i) le calcul exact d'une triangulation de
Delaunay dont les points ont des coordonnées qui sont des nombres algébriques de degré deux,
(ii) le calcul exact de l'axe médian d'une union de boules, et (iii) une approximation certi�ée du
volume d'une union de boules. En particulier, nous montrons que des approximations précises de
modèles moléculaires peuvent être obtenues en utilisant un nombre de boules 100 fois inférieur au
nombre d'atomes, une propriété particulièrement séduisante pour la simulation d'environnement
protéique dense.

Mots-clés : Optimisation géométrique, approximation géométrique, collections de boules,
approximation par défaut, conformations moléculaires
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4 F. Cazals et al / ABS

1 Introduction

1.1 Modeling with Balls

Modeling complex 3D shapes is commonplace in science and engineering, and simple primitives
such as balls play a central role in this process, for two reasons. On the one hand, the medial axis
transform (MAT) allows representing a shape as a collection of balls [Ser82], usually in�nite, so
that sub-sampling such balls naturally yield approximations. On the other hand, (hierarchical)
models represented by balls are ubiquitous, for example in molecular modeling, but also in
robotics, computer graphics and CAGD, where bounding sphere hierarchies provide an elegant
way to perform fast and numerically reliable collision detection. In this context, this paper
addresses the following two problems, which we phrase using the molecular modeling terminology,
even though the semantics of the balls might be di�erent:

Conformational selection. Given a set of n conformations of a molecule represented by a
collection of balls, select a diverse ensemble consisting of s < n conformations.

Inner approximation. Given a (molecular) model consisting of n balls, provide an accurate
volumetric approximation of this model using s < n balls, contained in the original model.

These two problems are actually connected to a variety of research veins, namely (i) geometric
approximation algorithms for 3D shapes, (ii) medial axis constructions and Voronoi diagrams,
(iii) (geometric) approximation algorithms in general and max k-cover in particular, (iv) robust
geometric software development, and (v) applications in structural biology. We now brie�y
comment on recent work in these directions.

As already mentioned, the problem of approximating 3D shapes is related to the medial axis
transform (MAT). The particular case of a shape bounded by a smooth surface motivated the
introduction of the MAT approximation using medial balls centered on speci�c Voronoi vertices
called poles [AK00], an idea later re-used to approximate a shape bounded by a triangulated
surface [AAK+09, SKS12]. This MAT approximation was also used for the sphere-tree construc-
tion [BO04], a representation to perform hierarchical object modeling and collision detection,
and to improve the grasping quality in robotics [PAD10]. For a shape with smooth boundary,
the previous MAT approximation typically comes with a guarantee, namely the convergence of
the Hausdor� distance between the input boundary and that of the approximation. In a broader
context, the problem of approximating a bounded open set has also been investigated recently.
In [GMPW09] the authors introduce the scale-axis transform, which consists of scaling forth and
back medial balls, so as to simplify a shape representation. It is worth noticing that all the
works just mentioned rely on Voronoi diagrams, generally for the Euclidean distance, but also
for a multiplicative distance in [GMPW09]. Consequently and from an implementation perspec-
tive, geometric algorithms from the Computational Geometry Algorithms Library [cga] (CGAL),
but also number types from the LEDA [MN99] and CORE [KLPY99] libraries play a key role to
implement such algorithms.

Our problems are also related to approximation algorithms in general, and greedy strategies
in particular. As we shall see, of particular interest for both problems is max k-cover, which
cannot be approximated within a ratio of 1 − 1/e + ε unless P = NP [Fei98].

Last but not least, our incentive to tackle these two problems comes from computational
structural biology, whose ultimate goal is to unravel the relationship between the structure and
the function of macro-molecules and macro-molecular machines. Originating with the work of
Richards [LR71], molecular models represented as collections of van der Waals (vdW) balls and
associated a�ne Voronoi diagrams have been instrumental to describe atomic packing proper-
ties [MJLC87, MLJ+87], to compute and decorate molecular surfaces [Con83, AE96], to ex-

Inria
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hibit correlations between structural and biological - biophysical properties of protein interfaces
[BCRJ03, MDBC12], to select diverse conformational ensembles for mean �eld theory based
docking algorithms [LSB+11], or to �nd entrance / exit passages to active sites [YFW+08].
More recently, compoundly weighted Voronoi diagram [CD10, DDC12] proved instrumental to
assess the reconstruction of molecular machines involving up to circa 450 polypeptide chains
[ADV+07], these reconstructions being plagued with uncertainties on the shapes and positions
of the proteins. In fact, the inner covering problem is directly related to the design of simpli�ed
yet accurate protein models, in particular in the perspective of simulating crowded whole cellular
environments [ME10, Goo09] � see also the beautiful illustrations of D. Goodsell1.

1.2 Contributions and Paper Overview

Our two problems are concerned with shapes represented as a union of balls. These balls may
have a molecular semantics, or may be carry a purely geometric meaning, e.g. in the MAT of
any 3D shape. In using balls, a key advantage is that the structure of the medial axis of the
union of these balls is known exactly [AM97, AK01]: it is actually coded by the α-shape of the
input balls [Ede92], and the Voronoi diagram of the points found on the boundary of the union.

In this context, our contributions are threefold. On the theoretical side, we demonstrate that
for both problems, a geometric generalization of max k-cover applies, with weights depending
on the cells of a surface or volumetric arrangement. In particular, it is shown that the 1 − 1/e
bound known in combinatorial optimization applies in some cases�but not all. From a geometric
approximation perspective, our results depart from previous work since we focus on an approxi-
mation guarantees obtained with a �nite set of balls rather than asymptotically. Second, on the
software development side, we present an e�ective implementation for the inner approximation
problem, based on state-of-the art geometric software. Finally, for the inner approximation prob-
lem, we present accurate coarse-grain protein models using a number of balls 100 times smaller
than the number of atoms.

2 Geometric Optimization Problems for Balls

In the sequel, a molecule stands for a collection of balls. For the conformational selection, the
molecule is termed a conformer when the relative position of the balls may change. The generic
term conformation refers to a molecule or to a conformer, and we shall manipulate a collection
of conformations C = {Ci}i=1,...,n. The 3D domain spanned by the conformations is the union
of their de�ning balls, and is denoted FC = ∪Ci∈CCi. For the inner approximation, we consider
a single molecule. The set C refers to its constituting balls, and the domain FC is the union of
these balls.

2.1 Geometric pre-requisites

Volume and surface decompositions. The spheres bounding the balls of a collection of
conformations induce two decompositions: a decomposition of the volume occupied by the balls;
and a decomposition of each sphere into spherical patches. More precisely, the decomposition
of the volume FC induced by the spheres is called a volumetric arrangement (or volumetric
decomposition). This arrangement consists of a collection of cells A = {Ai} such that the
interior of each cell is connected. Each such cell is bounded by 2D cells, called surface patches,
found on the spheres bounding the balls. On a given sphere, these patches are induced by the

1http://mgl.scripps.edu/people/goodsell/books/MoL2-preview.html
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6 F. Cazals et al / ABS

intersection circles with neighboring spheres. The collection P = {Pi} of all such patches de�nes
a surface arrangement (or surface decomposition). A surface patch of a sphere which is not
contained in any other ball is called exposed, and so is its supporting sphere. The collection of all
such patches makes up the boundary ∂FC of the domain FC . Note that each patch is bounded
by circle arcs which are themselves delimited by points (generically) found at the intersection of
three spheres. See Fig. 1 for a 2D illustration.

Medial axis of a collection of balls. The medial axis of the domain FC consists of the points
having several neighbors on ∂FC . Let a boundary point of FC be a 0-cell of ∂FC . As proved in
[AK01] and illustrated on Fig. 2, the MA consists of so-called singular simplices of the α-complex
for α = 0, together with a subset of the Voronoi diagram of the boundary points located within
the α-shape.

2.2 Generic Geometric Optimization Problems

Conformational selection. We shall be concerned with two classes of combinatorial opti-
mization problems. To state them from a combinatorial viewpoint (see section 3.1 and 3.2 for
the connexion with conformations), assume we are given a base set U = {Ui}i=1,...,m of inte-
rior disjoint cells (think cells of the volume or surface arrangement), and a collection of sets
C = {Ci}i=1,...,n called the pool (think conformations), where each set is a union of cells. For a
subset S ⊂ C, denote FS = ∪Cj∈SCj the union of the sets in S. Cells and sets shall be subsets
of R

3, so that the inclusion of a cell Ui in a set Cj is naturally de�ned.
For the �rst class of problem, assume we are given a weight function w, i.e. a real valued

function de�ned over the cells. Let
(

C

s

)

stand for the subsets of C of size s. We de�ne:

Problem 1. Given a weight function w, �nd a subset Ŝ of C of size s, called the selection, such
that:

Ŝ = arg max
S∈(Cs)

w(S), with w(S) =
∑

Ui⊂∪SCj

w(Ui). (1)

For the second class of problems, assume the weight function depends not only on the cells
of the decomposition, but also on the selection S, which we denote wS(Ui). We wish to solve:

Problem 2. Given a weight function wS , �nd a subset Ŝ of C of size s, called the selection,
such that:

Ŝ = arg max
S∈(Cs)

w(S), with w(S) =
∑

Ui⊂∪SCj

wS(Ui). (2)

Inner approximation. Consider a collection of n balls making up the domain FC , that is
FC = ∪Bi∈CBi, and let Vol(D) denote the 3D volume of a domain D. We introduce the following
covering problem, phrased as an inner approximation problem:

Problem 3. Find a collection S of s balls, such that FS ⊂ FC and Vol(FC\FS) is minimized.

This problem is more constrained than the minimization of the volume of the symmetric
di�erence Vol(FS∆FC). Yet, the inner approximation problem is natural since it requires using
balls centered on the medial axis of the input domain, since any other ball would be contained
within a maximal ball.

Inria
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Complexity issues. Our problems are intimately related to max k-cover. Given a set U of n
points, and a collection C of subsets of U , max k-cover aims at selecting k subsets from C so as
to maximize the number of points from U which get covered [GJ79, Fei98]. (In the literature,
this problem is sometimes called set cover [FG89]. To avoid confusion, we consider that the set
cover problem aims at minimizing the number of sets in C to cover at least k elements from U .)
We note that the classical max k-cover is a special case of Problem 1 with function w assigning a
unit weight to all cells. Since max k-cover is a NP complete problem, a polynomial time solution
both |C| and s cannot be expected. However, the problem is in P for a �xed s since all subsets of
size s can be probed. But this brute force method is doomed to fail even for moderate s, which
calls for alternate strategies, the greedy strategy being the most natural one.

2.3 The Greedy Strategy

The greedy strategy consists of s iterations, the kth step consisting of selecting the Cj maxi-
mizing the weight of the union of the Cj . The selection achieved at step k shall be denoted Sk.
Unfortunately, the selection Ss may not realize the optimum solution, as illustrated by the simple
example of Fig. 3. Thus, the performance assessment of greedy relies on the worst-case ratio
between the solution returned and the optimal one. For max k-cover, this ratio is known to be
of 1 − 1/e, and is tight [CFN77, NWF78, FG89, Fei98].

3 Conformational Selection and the Greedy Strategy

We �rst examine problems concerned with the selection of a subset of conformers maximizing
some diversity criterion.

3.1 Volumetric Decompositions and the Greedy Strategy

Problem 1 from volumetric decomposition. Consider the base set A whose cells are those
of the 3D arrangement. In Eq. (1), let w be some general function de�ned on the cells of the
volumetric decomposition. The weighting scheme is called non-negative provided all weights are
≥ 0�the most natural example being the standard Euclidean volume.

The approximation ratio of the greedy strategy and its optimality are usually proved in the
uniform weight case [CFN77, NWF78, FG89, Fei98]. We shall prove the following

Theorem 3.1. Consider a volumetric decomposition with non-negative weights. For Problem 1,
the greedy approach has an approximation ratio of 1 − (1 − 1/s)s > 1 − 1/e.

We shall use the following notation. The conformer selected at the kth step is denoted Ck,
and the weight of the optimum set of conformers OPT . Also, let w∗(Ck) be the sum of the
weights of the new elements in Ck that have not been covered in Cj , 1 ≤ j < k (i.e. the weight
increment at step k). We start with a lemma needed to prove theorem 3.1. The proof of the
lemma follows the usual one for max k-cover, but we include it for two reasons: �rst, it helps
spotting the condition on the weight-functions w (the positivity is mandatory); second, in section
4.2, we shall re-use the skeleton of this lemma to prove a result of the greedy strategy for inner
covering, with respect to the total volume of FC instead of the optimum.

Lemma 3.2. For 1 ≤ k ≤ s, the following holds:

w∗(Ck) +
1

s

k−1
∑

j=1

w∗(Cj) ≥
OPT

s
. (3)

RR n° 8205



8 F. Cazals et al / ABS

Proof. At the kth step, we select Ck that maximizes the weight of the new cells Ui being covered.
Because the cells selected up to step k − 1 may cover cells which are not covered by OPT, the
weight of the cells that are covered by the optimum solution but not yet covered by the (k − 1)
is at least

OPT −
k−1
∑

j=1

w∗(Cj) (4)

Since w is non-negative, the union-bound property states that for any collection of conformers
C1, . . . , Cp, one has w(C1 ∪ · · · ∪ Cp) ≤

∑

i=1,...,p w(Ci). Since all the cells involved in Eq. (4)
are covered by the optimum set of conformers, by the union-bound property, there must exist
one conformer,not yet selected, that covers these new cells with total weight at least

1

s



OPT −
k−1
∑

j=1

w∗(Cj)



 . (5)

Since Ck maximizes the weight of the new cells being covered, we must have

w∗(Ck) ≥
1

s



OPT −
k−1
∑

j=1

w∗(Cj)



 . (6)

Rearranging completes the claim.

Remark 1. The non-negativity assumption is critical in the proof of Lemma 3.2. As a counter-
example, consider the sets C1 = {e1, e2}, C2 = {e2, e3} with w(e1) = w(e3) = 1 and w(e2) = −1.
The union-bound fails for w(C1 ∪C2). This remark is of particular interest in bio-physics, where
atoms are decorated with physical, chemical or biological properties. For example, a weighting
function that would take into account the electrostatic properties, which may be negative, would
preclude the application of the previous lemma.

Using Lemma 3.2, the proof of Thm. 3.1 goes as follows:

Proof. Multiplying the inequality obtained in the previous lemma by (s−1)/s and adding to the
inequality for step two, we get

w∗(C1) + w∗(C2) ≥

(

1 +

(

s − 1

s

))

OPT

s

We multiply this equation again by
(

s−1
s

)

and add to the equation for step three, and so on. We
get the following,

k
∑

j=1

w∗(Cj) ≥

(

1 −

(

s − 1

s

)k
)

OPT

For k = s, we get,
∑s

j=1 w∗(Cj)

OPT
≥

(

1 −

(

s − 1

s

)s)

The left hand side is the ratio of the weight of the subset of C chosen by the greedy approach
and the optimum solution i.e. that approximation factor and hence we have the above theorem.
The fact that the above ratio is greater than 1 − 1

e
for all s is a trivial exercise.

Inria
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We now prove that the bound of the previous is tight (see also Fig.4):

Theorem 3.3. The greedy approach cannot perform better than 1 − (1 − 1/s)s.

Proof. Fix a given s. We shall construct an example where the greedy approach can achieve an
approximation ratio arbitrarily close to 1 − (1 − 1

s
)s.

Let
A = {Ai}i=1,...,(s2+s)

∀i, j s.t. 0 ≤ i < s, 1 ≤ j ≤ s, w(Ai.s+j) =
1

s2

(

s − 1

s

)i

∀j s.t. 1 < j ≤ s, w(As2+j) =
1

s

(

s − 1

s

)s

− ǫ

The conformers are de�ned as follows

C = {Ci}i=1,...,2s

∀i s.t. 1 ≤ i ≤ s, Ci =

i.s
⋃

j=(i−1).s+1

Aj

∀i s.t. ≤ i ≤ s, Cs+i =
⋃

j≡i (mods)

Aj

Simple calculations lead us the following total weights for the conformers

∀1 ≤ i ≤ s, w(Ci) =
1

s

(

s − 1

s

)i−1

∀1 ≤ i ≤ s, w(Cs+i) =
1

s
− ǫ

The optimum choice of S with |S| = s is clearly {Ci}i=s+1,...,2s with total weight 1− sǫ, whereas
the greedy method would choose {Ci}i=1,...,s, with a maximum weight of 1− (1− 1

s
)s, giving an

approximation factor is arbitrarily close to 1 − (1 − 1
s
)s.

3.2 Surface Decompositions and the Greedy Strategy

Problem 2 from surface decomposition. Consider the base set P = {Pi} whose cells are
those of the 2D arrangements induced on each sphere by the intersection circles with all the
other spheres, computed e.g. with the algorithm from [CL09]. Special cells of this arrangement
are those which are exposed, i.e. contribute to the boundary of the union of balls. Focusing
on these patches yields an instantiation of Problem 2, the dependence upon the selection S
consisting of discarding the patches which are not exposed with respect to the selection. For
example, wS(Pi) = surface area of patch Pi i� Pi is found on the boundary of the union FS , and
0 otherwise.

Interestingly, maximizing the boundary surface of the selection is an indirect way to ascertain
some diversity, since the overlap between conformers is minimized. Notice, though, that as
opposed to the volume, the boundary surface area is not a monotonic function of the number
of conformers. That is, for two selections S1 and S2 with S1 ⊂ S2, one has volume(S2) ≥
volume(S1), a property that may not hold for the boundary surface area.
Surface decomposition, boundary surface weight wS . For volumetric decompositions, the
previous bound indicates that one is always above 63% (1 − 1/e) from the optimum. Unfortu-
nately, such a result does not hold for problem 2:

RR n° 8205



10 F. Cazals et al / ABS

Observation 1. Consider a surface decomposition. For Problem 2, the greedy approach may
have a worst-case approximation ratio as bad as 1/s2.

Proof. Consider a large ball B, and place s small non-intersecting balls (B1, . . . , Bs) with their
centers on the surface of B. The surface of each Bi is now divided into 2 patches. To the patch
which lies inside B, we assign a weight of s. To each surface patch of B covered by some Bi, we
assign a weight of 1 + ǫ. All other surface patches are assigned a weight of 0.

The greedy strategy would �rst pick B because it has the largest exposed weight of s(1 + ǫ).
Now picking any s− 1 of the Bi's would leave us with an exposed weight of only s(1 + ǫ)− (s−
1)(1 + ǫ) = 1 + ǫ. On the opposite, a selection of the s smalls balls would have given us total
exposed surface weight of s2. This approximation factor is arbitrarily close to 1/s2.

4 Inner Approximation and the Greedy Strategy

We establish two results for the inner approximation: �rst the performance of greedy with respect
to the optimal solution, and second, with respect to the total volume Vol(FC).

4.1 Approximation Factor

As discussed when introducing problem 3, the inner approximation problem requires using balls
centered on the medial axis. But the medial axis is a cell complex with two dimensional faces, so
that one has an in�nite collection of balls to choose from. To circumvent this di�culty, consider
the following classical lemma [Ber87]:

Lemma 4.1. Consider two intersecting spheres Σ1 and Σ2 in 3D, and de�ne their convex linear
combination, namely Σλ = λΣ1 +(1−λ)Σ2, with λ ∈ [0, 1]. The ball bounded by Σλ is contained
in the union of the balls bounded by Σ1 and Σ2.

Denote B∗
p a maximal ball centered on a vertex p of the medial axis, and let V be the set

of vertices of the medial axis of FC . By the structure theorem of the medial axis of a union of
balls [AK01], this set is �nite. We shall use this set to run the greedy algorithm, based on the
following:

Observation 2. The input domain FC satis�es

FC =
⋃

i

Bi =
⋃

v∈V

B∗
v . (7)

Proof. We shall prove that any maximal ball B∗
p is contained in the union of at most three balls

centered on vertices from V. Omitting the trivial case of a singular vertex of the medial axis, we
�rst note that there are three cases to be analyzed, namely when p belongs to a singular edge of
the medial axis, when it belongs to a singular triangle, or when it belongs to a (possibly clipped)
Voronoi face f .

Case 1. This is exactly the case covered by lemma 4.1. In this case, the portion of the pencil
contains the intersection circle between the two spheres de�ning the singular edge.

Case 2. The second case contains two sub-cases, namely when p lies in the interior of a Voronoi
edge, and when p lies in the interior of the Voronoi facet f . The �rst sub-case is again the case
of lemma 4.1 � all the spheres in the portion of the pencil contain the three boundary points
de�ning the Delaunay triangle dual of the Voronoi edge in question. For the second one: let c be

Inria
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any Voronoi vertex of f belonging to V, let L be the ray emanating from c and passing through
p, and let d be the intersection point between L and the boundary ∂f of f . Point d belongs to
either a Voronoi edge or to an α-shape edge (if the Voronoi facet is a clipped Voronoi facet in
the medial axis). Call e and f the endpoints of this 1-cell of the medial axis. Now, by lemma
4.1, one has B∗

d ⊂ B∗
e ∪ B∗

f and similarly B∗
p ⊂ B∗

c ∪ B∗
d . Thus, B∗

p ⊂ B∗
c ∪ B∗

e ∪ B∗
f .

Case 3. Amenable to the analysis carried out for Case 2.

Thus, since any maximal ball is contained in the union of at most three balls centered at
vertices from V, the claim holds.

The corollary of the previous observation is that the balls centered on the medial axis con-
stitute the pool of candidate balls to choose from by the greedy strategy. Thus, theorem 3.1
applies, that is:

Theorem 4.2. For Problem 3, the greedy approach based on the maximal balls centered on the
vertices of the medial axis has an approximation ratio of 1 − (1 − 1/s)s > 1 − 1/e.

4.2 Worst Case Bound with respect to the Total Volume

Approximation bound. We generalize the previous result with respect to the total volume
of the input domain:

Lemma 4.3. Let V = Vol(FC) be the volume of union of given n balls and let GREEDY be the
volume of union of s balls selected by the greedy algorithm. These volumes satisfy:

GREEDY

V
≥ 1 −

(

1 −
1

n

)s

(8)

Proof. In the proof of the approximation factor of greedy algorithm for volumetric decomposition
given in lemma 3.3, note that it is valid for any solution and not only the optimum solution, i.e.
no property of the optimum solution is required. Thus we replace the optimum solution by a
solution selecting the given n balls. Thus we get the following equation.

w∗(Ck) ≥
1

n

(

V −

k−1
∑

i=1

w∗(Ci)

)

where Ci is the ith ball selected by the greedy algorithm, and w∗(Ck) is the new volume of Ck

not covered by any of Ci, 1 ≤ i < k. Solving it in the manner similar to that used in the proof
of Them 3.3 yields:

GREEDY =

s
∑

i=1

w∗(Ci) ≥ V ·

(

1 −

(

1 −
1

n

)s)

Tight example. Consider n balls of same radii. Then greedy algorithm would select any s
balls out of it. This would contribute a volume equal to s/n times the total volume.
Also note that

s

n
= 1 −

(

1 −
s

n

)

≈ 1 −

(

1 −
1

n

)s

for very large values of n. In fact, this is the best that can be done, i.e. no algorithm can
approximate union of n balls with approximation factor greater than s/n in worst case.
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5 Inner Approximation: Software and Experiments

We focus on the inner approximation since the implementation of the conformational selection
merely requires a robust algorithm to compute the volume of a union of balls in the volume case,
and an algorithm to compute arrangements of all types of circles on a sphere in the surface case.

5.1 Greedy Algorithm

Basic algorithm. The input consists of a collection of balls, and of a selection size s or a
target ratio τ (the volume of the selection divided by the volume of the input balls should be at
least τ). The output consists of an ordering of the selected balls, together with the increment in
volume associated to each ball. We also report the Betti numbers along the selection, computed
with the algorithm from [DE95].

The algorithm consists of iteratively selecting the ball providing the best volume increment,
selected from a priority queue containing all candidates. Upon selecting ball say Bi, we recompute
the volume increments of all candidate balls intersecting Bi.

Imposing connectedness of the selection. For selected applications, the domain FS should
be connected: for example, the selection associated to a connected molecule should also be
connected. To meet this constraint, the following heuristic is used. Let Sk be the selection upon
termination, and consider the exposed balls i.e. the balls contributing to the boundary ∂FS .
Split these balls into two groups L and Lc, namely the largest component (in number of exposed
balls), and the remaining ones. We aim at connecting L to one of the connected components of
Lc. To do so, using the Delaunay triangulation of the centers of the balls in L∪Lc ∪ (S\Sk), we
compute the shortest path joining a center of a ball in L to a center of a ball in Lc. This shortest
path uses centers of balls in S\Sk, which are added to the section. This process is iterated until
one connected component remains.

5.2 Geometric Objects

The previous algorithm involves elaborate geometric objects, which we present now by following
the �ow of the algorithm, mentioning the CGAL2 classes used and their template parameters
when appropriate.

The Delaunay triangulation DTB of the input balls, and the associated α-shape. Fol-
lowing classical usage, we call K the kernel used to instantiate the CGAL classes Regular_triangulation_3
and Alpha_shape_3. Two options for K are discussed below.

The Delaunay triangulation DTV of the boundary points of ∂FS . Two di�culties are
faced to construct DTV . First, more than three co-planar points are generic in DTV [AK01].
Second, since a boundary point is found at the intersection of three input spheres, its coordinates
are degree two algebraic numbers. We therefore store these points using the CGAL spherical
kernel Spherical_kernel_3 [CCLT09], instantiated with K. The two options for K, referred to
as the inexact and the exact kernels in the sequel, are:

� Exact_predicates_inexact_constructions_kernel, the underlying number type (NT)
to store the coordinates of the boundary points being a double.

2http://www.cgal.org
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� Exact_predicates_exact_constructions_kernel_with_sqrt, the underlying number type
to store the coordinates being either CORE::Expr or LEDA::real. Additionally, a map is
used to associate a singular or regular facet from the α-shape of DTB to each boundary
point.

To handle these di�culties, we implemented a dedicated kernel denoted DTV_kernel, de�ning
a new point type for the boundary points. This kernel is actually templated by two parameters:

� First, a ball identi�er, used to record the three input spheres de�ning a boundary point.
These identi�ers are used to handle the aforementioned special cases, so as to avoid the
numerical calculation of a predicate whose sign can be inferred from the fact that the input
points lie on a set of known input spheres. Practically and since an input ball corresponds
to a vertex of the α-shape of DTB, the vertex handle of the α-shape is taken as identi�er.

� Second, a number type used to represent the coordinates of the boundary points, the two
options being the NT associated to the aforementioned inexact and exact kernels.

One comment is in order about the Voronoi diagram DTV ∗ dual of DTV , since medial ball
associated to selected Voronoi vertices are used by greedy. With the inexact kernel, the input
points of DTV are approximations of the exact boundary points, since the degree two algebraic
number get converted to doubles. For these points, the combinatorial structures of DTV and
DTV ∗ are exact (exact predicates are used), but the embedding of the Voronoi vertices of DTV ∗

is inexact (inexact constructions are used). With the exact kernel, the input points of DTV are
exactly the boundary points. Moreover, the embedding of the Voronoi vertices is exact (exact
constructions are used).

The medial-axis of the union of input balls. We store the medial axis as a container of
polygons, possibly degenerate for singular vertices and edges of the α-shape [AK01]. Our polygon
class inherits inherit from the CGAL class Polygon_2 (embedded in 3D), instantiated with the
kernel K. It o�ers new features, in particular the computation of the maximal ball centered at a
point of the polygon. Such a ball has a center which is a Point_3 from K, and a squared radius
whose type is NT.

The candidate balls. Following the results of section 4.1, the candidate balls used are only
centered on the vertices of the medial axis. Such balls are associated with the medial axis, as
just discussed.

The volume of the selected balls. Computing the volume of a union of balls is a di�cult
problem, from a combinatorial, but also numerical standpoint�inverse trigonometric functions
are involved. We use our certi�ed algorithm [CKL11] which returns an interval certi�ed to
contain the exact volume. More precisely, due to the impossibility to obtain a volume as an
exact number type, whatever the kernel used (exact, inexact), the centers and radii of the
candidate balls are converted to doubles. These balls are input to our algorithm, which requires
two template parameters: the number type of the output (double or interval), and the level
of exactness used to compute the constructions involved in the volume computation, namely
the coordinates of Voronoi vertices, and boundary points of the union of the selected balls.
Following the discussion in [CKL11], the three options are referred to as (faster, ck_pt_exact
and all_exact). Practically, we use the pair (double, faster) for the inexact kernel, and (interval,
all_exact) for the exact kernel.

RR n° 8205



14 F. Cazals et al / ABS

5.3 Results

Dataset. As test set, we used the 96 protein - protein complexes from [LCJ99]. The complexes
are of high biological interest (all of them are coupled to well identi�ed biological processes). The
number of atoms lies in the range [1008, 13214], with a median of 3757.

Performances and robustness issues. The properties of predicates and constructions of the
exact and inexact kernels has been discussed in section section 5.2. We compared the volume
ratios obtained with these two options on a set of 10 protein complexes, and did not observe
any di�erence before the third digit. For two examples discussed in detail below, these ratios
are ∼ 0.69 for the protein complex 3sgb with r = 2.8 and 20 selected balls, and ∼ 0.64 for the
immunoglobulin 1igt with r = 2.8 and 103 selected balls. For running times, we compared the
execution time for the construction of DTB, for DTV and for the medial axis. The selection
itself was excluded since from the timing, as also noticed in section 5.2, our volume computation
algorithm uses double as number type. On the aforementioned 10 models, we observed that the
exact kernel was on average about 150 times slower than the inexact one. For these two reasons
� absence of obvious degeneracies and much better running time, the results reported in the
sequel were computed with the inexact kernel.

Using the inexact kernel, it is observed that the running times for computing DTB and DTV
are a mere order of magnitude slower than the CGAL ones 3 for the regular triangulation case
(Fig. 5). These running times are naturally consistent with the fact that the geometric objects
manipulated behave nicely for our molecular models: both the number of boundary points (Fig.
6) and the primitives of the medial axis (Fig. 7) are linear in the number of input balls.

Inner approximation guarantees. Intuitively, the ability of greedy to provide a good ap-
proximation relies on the possibility to choose large balls, which depends itself on two parameters.
First, the topological complexity: the closest to a topological ball the domain FC , the better.
Second, the geometric complexity: the more convex the domain FC , the better. Before com-
menting these properties on molecular systems, recall that in a vdW model, the radii of the balls
vary in the range 1-2Å, and that only balls of atoms linked by covalent bonds intersect. Thus,
for a vdW model, one expects the volume covered to vary linearly as a function of the selection
size, which is exactly observed (Fig. 8, red curves). Now, enlarging the input balls by a quantity
rw, e.g. rw = 1.4 to de�ne a solvent accessible model, results in simplifying the topology of FC .
Thus, the larger rw, the larger the candidate balls, and the better the ratio curve (Fig. 8 again).
For a �xed budget of balls and a given expansion radius, e.g. rw = 1.4, one also expect complex
topologies, characterized by a high Euler characteristic, to yield more di�cult problems. This
trend is also observed (Fig. 9).

As for the incidence of the overall shape, a roughly convex system (Fig. 10(A) versus Fig.
11(A)) clearly yields more favorable volume ratio curves (Fig. 8(Top, Bottom)).

Coarse graining molecular models. The immunoglobulin (Ig) structure just used provides
a good example, because of its non convexity, to test the algorithm to go beyond the inner
covering problem. This model also exhibits a topological rather than geometric di�culty, since
at the tip of the two arms each so-called variable domain has the topology of a �lled torus
(Fig. 11(A)). To this end, in a manner identical to the scale axis transform [GMPW09], we may
enlarge the model by rw, approximate it, and compare the balls obtained with the initial vdW

3http://www.cgal.org/Manual/latest/doc_html/cgal_manual/Triangulation_3/Chapter_main.

html#Subsection_39.6.1
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model. When implemented with rw = 2.8, this heuristic yields a coarse-grain model exhibiting
a discrepancy of about 3 atoms sticking out from the coarse grain model in the worst-case (Fig.
11(C)). Moreover, the topology of the variable domains has also been preserved. Thus, one gets
an accurate model for a number of balls which has been divided by about 100 in this case. (In
biophysics, a resolution of 5Å is the maximum which may be tolerated to say that a model has
atomic resolution.)

6 Conclusion and Outlook

This paper studies two basic problems dealing with collection of balls, namely selecting a diverse
set of molecular conformations, and providing an accurate inner approximation of a molecular
model. Both problems are shown to be geometric versions of max k-cover, the weight function
being a function of the geometry of the cells of a surface or volumetric arrangement, rather than
being uniform as in the combinatorial setting. Yet, for the volumetric case, the approximation
bound known in the combinatorial setting is preserved, provided that the weights are non-
negative. The implementation of our algorithms hinges upon state-of-the-art software coupled to
the CGAL library. In particular, this implementation involves the exact calculation of a Delaunay
triangulation for points whose coordinates are degree two algebraic numbers, the intersection of
the dual of this triangulation with the α-complex of the input balls, and the certi�ed calculation of
the volume of a union of medial balls. This implementation handles molecular models containing
up to O(105) atoms within minutes. For these reasons, we believe that our algorithms, the inner
approximation in particular, should prove useful for a broad class of geometric approximation
problems dealing with balls, in particular in the context of approximate medial axis transforms,
where the focus has been so far on asymptotic properties�upon increasing the number of balls.

Yet, our work calls for further developments, both in the theoretical and applied directions.
On the theoretical side, two challenging questions are of high interest. First, our greedy algo-
rithms come with guarantees for the inner approximation problem. But monitoring the sym-
metric di�erence of the input domain and of the selection, or the Hausdor� distance between
their boundaries is also clearly of interest. Second, constraining the geometric selection by topo-
logical criteria, e.g. prescribed Betti numbers, would also be of the highest interest. However,
approximation problems aiming at accommodating both geometric and topological criteria are
likely to be challenging�it has been shown that the so-called homology localization problem is
NP-hard. In an applied vein and as mentioned in introduction, we believe that a key applica-
tion of our algorithms will be the design of coarse-grain macro-molecular models, to investigate
macro-molecular machines and simulate crowded environments within whole cells. But prior to
undertaking these challenges, one will have to decorate our purely geometric coarse-grain models
with bio-physical properties.
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7 Artwork

7.1 Theory

Figure 1 2D conformations, each consisting of four balls��rst and fourth balls are
common, and the induced surface and volume arrangements. The (two dimensional)
volume occupied by the two conformations is decomposed into 19 cells (boxed numerals). The
circled numerals feature the surface arrangement of the ball centered at a1, based on intersections
with neighboring balls.
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Figure 2 The medial axis transform for a union of balls, in 2D. The boundary points
of the union of the seven balls are represented by red dots, while the medial axis is presented
by red line-segments. Two maximal balls centered on the medial axis are presented in dashed
circles (their centers are m1 and m2. Each such ball touches the boundary ∂FC in at least two
points.
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Figure 3 Greedy selection may not yield the optimal solution. Greedily selecting two
sets out of C1, . . . , C5 yields a score of 12 (selecting C3 and then C2), while the optimum is 14
(selecting C4 and C5). The shaded cells have the weights as indicated and the unshaded cells
have null weights.
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Figure 4 A tight example for the greedy strategy.
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7.2 Running Times

Figure 5 Running times for the key steps of the inner approximation algorithm, as
a function of the number of input balls. The models used are from [LCJ99]. (i) DTB of
input balls (ii)DTV of boundary vertices (iii) Medial axis of the union of balls
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7.3 Approximation Guarantees

Figure 8 Variation of volume ratios of each size of selection, wrt added radius of input balls:
Top Protein complex of 1690 balls (PDB code 3sgb, see Fig. 10) Bottom Immunoglobulin of
10416 balls (PDB code 3sgb, see Fig. 11)
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Figure 9 Volume ratio as a function of the Euler characteristic of the input model,
for rw = 1.4, and a budget of s = 200 balls. Each point represents a di�erent input molecule.
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Figure 10 Coarse graining a molecular model: the example of a small globular protein
complex (PDB id: 3sgb) (A) The atomic van der Walls models contains 1,872 atoms. (B)
A coarse grain model of 20 balls, de�ned as the inner approximation of the atoms whose van der
Waals radii have been expanded by rw = 2.8. (C) The superimposition of both models.

(A) 1,872 atoms (B) 20 balls

(C)

Figure 11 Coarse graining a molecular model: the example of an immunoglobulin
(PDB id: 1igt). (A) The atomic van der Walls models. (B) A coarse grain model of 103 balls,
de�ned as the inner approximation of the atoms whose van der Waals radii have been expanded
by rw = 2.8. Three balls were added to the greedy selection with s = 100 as explained in section
5.1 to force the connectivity. (C) The superimposition of both models. Note in particular that
the hole of the arm on the left hand side is respected.

12,543 atoms 103 balls(A) (B)

(C)
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