7,844 research outputs found

    Circular polarization measurement in millimeter-wavelength spectral-line VLBI observations

    Full text link
    This paper considers the problem of accurate measurement of circular polarization in imaging spectral-line VLBI observations in the lambda=7 mm and lambda=3 mm wavelength bands. This capability is especially valuable for the full observational study of compact, polarized SiO maser components in the near-circumstellar environment of late-type, evolved stars. Circular VLBI polarimetry provides important constraints on SiO maser astrophysics, including the theory of polarized maser emission transport, and on the strength and distribution of the stellar magnetic field and its dynamical role in this critical circumstellar region. We perform an analysis here of the data model containing the instrumental factors that limit the accuracy of circular polarization measurements in such observations, and present a corresponding data reduction algorithm for their correction. The algorithm is an enhancement of existing spectral line VLBI polarimetry methods using autocorrelation data for calibration, but with innovations in bandpass determination, autocorrelation polarization self-calibration, and general optimizations for the case of low SNR, as applicable at these wavelengths. We present an example data reduction at Ī»=7\lambda=7 mm and derive an estimate of the predicted accuracy of the method of m_c < 0.5% or better at lambda=7 mm and m_c < 0.5-1% or better at lambda=3 mm. Both the strengths and weaknesses of the proposed algorithm are discussed, along with suggestions for future work.Comment: 23 pages, 13 figure

    Bistability of an In Vitro Synthetic Autoregulatory Switch

    Get PDF
    The construction of synthetic biochemical circuits is an essential step for developing quantitative understanding of information processing in natural organisms. Here, we report construction and analysis of an in vitro circuit with positive autoregulation that consists of just four synthetic DNA strands and three enzymes, bacteriophage T7 RNA polymerase, Escherichia coli ribonuclease (RNase) H, and RNase R. The modularity of the DNA switch template allowed a rational design of a synthetic DNA switch regulated by its RNA output acting as a transcription activator. We verified that the thermodynamic and kinetic constraints dictated by the sequence design criteria were enough to experimentally achieve the intended dynamics: a transcription activator configured to regulate its own production. Although only RNase H is necessary to achieve bistability of switch states, RNase R is necessary to maintain stable RNA signal levels and to control incomplete degradation products. A simple mathematical model was used to fit ensemble parameters for the training set of experimental results and was then directly applied to predict time-courses of switch dynamics and sensitivity to parameter variations with reasonable agreement. The positive autoregulation switches can be used to provide constant input signals and store outputs of biochemical networks and are potentially useful for chemical control applications

    Signal processing methodologies for an acoustic fetal heart rate monitor

    Get PDF
    Research and development is presented of real time signal processing methodologies for the detection of fetal heart tones within a noise-contaminated signal from a passive acoustic sensor. A linear predictor algorithm is utilized for detection of the heart tone event and additional processing derives heart rate. The linear predictor is adaptively 'trained' in a least mean square error sense on generic fetal heart tones recorded from patients. A real time monitor system is described which outputs to a strip chart recorder for plotting the time history of the fetal heart rate. The system is validated in the context of the fetal nonstress test. Comparisons are made with ultrasonic nonstress tests on a series of patients. Comparative data provides favorable indications of the feasibility of the acoustic monitor for clinical use

    A First Search for Cosmogenic Neutrinos with the ARIANNA Hexagonal Radio Array

    Full text link
    The ARIANNA experiment seeks to observe the diffuse flux of neutrinos in the 10^8 - 10^10 GeV energy range using a grid of radio detectors at the surface of the Ross Ice Shelf of Antarctica. The detector measures the coherent Cherenkov radiation produced at radio frequencies, from about 100 MHz to 1 GHz, by charged particle showers generated by neutrino interactions in the ice. The ARIANNA Hexagonal Radio Array (HRA) is being constructed as a prototype for the full array. During the 2013-14 austral summer, three HRA stations collected radio data which was wirelessly transmitted off site in nearly real-time. The performance of these stations is described and a simple analysis to search for neutrino signals is presented. The analysis employs a set of three cuts that reject background triggers while preserving 90% of simulated cosmogenic neutrino triggers. No neutrino candidates are found in the data and a model-independent 90% confidence level Neyman upper limit is placed on the all flavor neutrino+antineutrino flux in a sliding decade-wide energy bin. The limit reaches a minimum of 1.9x10^-23 GeV^-1 cm^-2 s^-1 sr^-1 in the 10^8.5 - 10^9.5 GeV energy bin. Simulations of the performance of the full detector are also described. The sensitivity of the full ARIANNA experiment is presented and compared with current neutrino flux models.Comment: 22 pages, 22 figures. Published in Astroparticle Physic

    Postprocessing for quantum random number generators: entropy evaluation and randomness extraction

    Full text link
    Quantum random-number generators (QRNGs) can offer a means to generate information-theoretically provable random numbers, in principle. In practice, unfortunately, the quantum randomness is inevitably mixed with classical randomness due to classical noises. To distill this quantum randomness, one needs to quantify the randomness of the source and apply a randomness extractor. Here, we propose a generic framework for evaluating quantum randomness of real-life QRNGs by min-entropy, and apply it to two different existing quantum random-number systems in the literature. Moreover, we provide a guideline of QRNG data postprocessing for which we implement two information-theoretically provable randomness extractors: Toeplitz-hashing extractor and Trevisan's extractor.Comment: 13 pages, 2 figure

    Multi-Objective Optimization of FM Noise Waveforms via Generalized Frequency Template Error Metrics

    Get PDF
    FM noise waveforms have been experimentally demonstrated to achieve high time bandwidth products and low autocorrelation sidelobes while achieving acceptable spectral containment in physical implementation. Still, it may be necessary to further reduce sidelobe levels for detection or improve spectral containment in the face of growing spectral use. The Frequency Template Error (FTE) and the Logarithmic Frequency Template Error (Log-FTE) metrics were conceived as means to achieve FM noise waveforms with good spectral containment and good autocorrelation sidelobes. In practice, FTE based waveform optimizations have been found to produce better autocorrelation responses at the expense of spectral containment while Log-FTE optimizations achieve excellent spectral containment and interference rejection at the expense of autocorrelation sidelobe levels. In this work, the notion of the FTE and Log-FTE metrics are considered as subsets of a broader class of frequency domain metrics collectively termed as the Generalized Frequency Template Error (GFTE). In doing so, many different P-norm based variations of the FTE and Log-FTE cost functions are extensively examined and applied via gradient descent methods to optimize polyphase-coded FM (PCFM) waveforms. The performance of the different P-norm variations of the FTE and Log-FTE cost functions are compared amongst themselves, against each other, and relative to a previous FM noise waveform design approach called Pseudo-Random Optimized FM (PRO-FM). They are evaluated in terms of their autocorrelation sidelobes, spectral containment, and their ability to realize spectral notches within the 3 dB bandwidth for the purpose of interference rejection. These comparisons are performed in both simulation and experimentally in loopback where it was found that P-norm values of 2 tend to provide the best optimization performance for both the FTE and Log-FTE optimizations except in the case of the Log-FTE optimization of a notched spectral template where a P-norm value of 3 provides the best results. In general, the FTE and Log-FTE cost functions as subsets of the GFTE provide diverse means to optimize physically robust FM noise waveforms while emphasizing different performance criteria in terms of autocorrelation sidelobes, spectral containment, and interference rejection

    Challenges in Signal Analysis of Resonant-Mass Gravitational Wave Detectors

    Full text link
    An overview of the main points related to data analysis in resonant-mass gravitational wave detectors will be presented. Recent developments on the data analysis system for the Brazilian detector SCHENBERG will be emphasized.Comment: 6 pages, 3 figures, presented at the international conference "100 Years of Relativity" (Sao Paulo, Brazil, 22-24 August 2005), to appear in Brazilian Journal of Physics (Dec. 2005
    • ā€¦
    corecore