3,205 research outputs found

    On the eigenfilter design method and its applications: a tutorial

    Get PDF
    The eigenfilter method for digital filter design involves the computation of filter coefficients as the eigenvector of an appropriate Hermitian matrix. Because of its low complexity as compared to other methods as well as its ability to incorporate various time and frequency-domain constraints easily, the eigenfilter method has been found to be very useful. In this paper, we present a review of the eigenfilter design method for a wide variety of filters, including linear-phase finite impulse response (FIR) filters, nonlinear-phase FIR filters, all-pass infinite impulse response (IIR) filters, arbitrary response IIR filters, and multidimensional filters. Also, we focus on applications of the eigenfilter method in multistage filter design, spectral/spacial beamforming, and in the design of channel-shortening equalizers for communications applications

    Efficient algorithm for solving semi-infinite programming problems and their applications to nonuniform filter bank designs

    Get PDF
    An efficient algorithm for solving semi-infinite programming problems is proposed in this paper. The index set is constructed by adding only one of the most violated points in a refined set of grid points. By applying this algorithm for solving the optimum nonuniform symmetric/antisymmetric linear phase finite-impulse-response (FIR) filter bank design problems, the time required to obtain a globally optimal solution is much reduced compared with that of the previous proposed algorith

    Iterative reweighted l1 design of sparse FIR filters

    Get PDF
    Sparse FIR filters have lower implementation complexity than full filters, while keeping a good performance level. This paper describes a new method for designing 1D and 2D sparse filters in the minimax sense using a mixture of reweighted l1 minimization and greedy iterations. The combination proves to be quite efficient; after the reweighted l1 minimization stage introduces zero coefficients in bulk, a small number of greedy iterations serve to eliminate a few extra coefficients. Experimental results and a comparison with the latest methods show that the proposed method performs very well both in the running speed and in the quality of the solutions obtained

    Digital Filter Design Using Improved Artificial Bee Colony Algorithms

    Get PDF
    Digital filters are often used in digital signal processing applications. The design objective of a digital filter is to find the optimal set of filter coefficients, which satisfies the desired specifications of magnitude and group delay responses. Evolutionary algorithms are population-based meta-heuristic algorithms inspired by the biological behaviors of species. Compared to gradient-based optimization algorithms such as steepest descent and Newton’s like methods, these bio-inspired algorithms have the advantages of not getting stuck at local optima and being independent of the starting point in the solution space. The limitations of evolutionary algorithms include the presence of control parameters, problem specific tuning procedure, premature convergence and slower convergence rate. The artificial bee colony (ABC) algorithm is a swarm-based search meta-heuristic algorithm inspired by the foraging behaviors of honey bee colonies, with the benefit of a relatively fewer control parameters. In its original form, the ABC algorithm has certain limitations such as low convergence rate, and insufficient balance between exploration and exploitation in the search equations. In this dissertation, an ABC-AMR algorithm is proposed by incorporating an adaptive modification rate (AMR) into the original ABC algorithm to increase convergence rate by adjusting the balance between exploration and exploitation in the search equations through an adaptive determination of the number of parameters to be updated in every iteration. A constrained ABC-AMR algorithm is also developed for solving constrained optimization problems.There are many real-world problems requiring simultaneous optimizations of more than one conflicting objectives. Multiobjective (MO) optimization produces a set of feasible solutions called the Pareto front instead of a single optimum solution. For multiobjective optimization, if a decision maker’s preferences can be incorporated during the optimization process, the search process can be confined to the region of interest instead of searching the entire region. In this dissertation, two algorithms are developed for such incorporation. The first one is a reference-point-based MOABC algorithm in which a decision maker’s preferences are included in the optimization process as the reference point. The second one is a physical-programming-based MOABC algorithm in which physical programming is used for setting the region of interest of a decision maker. In this dissertation, the four developed algorithms are applied to solve digital filter design problems. The ABC-AMR algorithm is used to design Types 3 and 4 linear phase FIR differentiators, and the results are compared to those obtained by the original ABC algorithm, three improved ABC algorithms, and the Parks-McClellan algorithm. The constrained ABC-AMR algorithm is applied to the design of sparse Type 1 linear phase FIR filters of filter orders 60, 70 and 80, and the results are compared to three state-of-the-art design methods. The reference-point-based multiobjective ABC algorithm is used to design of asymmetric lowpass, highpass, bandpass and bandstop FIR filters, and the results are compared to those obtained by the preference-based multiobjective differential evolution algorithm. The physical-programming-based multiobjective ABC algorithm is used to design IIR lowpass, highpass and bandpass filters, and the results are compared to three state-of-the-art design methods. Based on the obtained design results, the four design algorithms are shown to be competitive as compared to the state-of-the-art design methods

    Digital Filter Design Using Improved Teaching-Learning-Based Optimization

    Get PDF
    Digital filters are an important part of digital signal processing systems. Digital filters are divided into finite impulse response (FIR) digital filters and infinite impulse response (IIR) digital filters according to the length of their impulse responses. An FIR digital filter is easier to implement than an IIR digital filter because of its linear phase and stability properties. In terms of the stability of an IIR digital filter, the poles generated in the denominator are subject to stability constraints. In addition, a digital filter can be categorized as one-dimensional or multi-dimensional digital filters according to the dimensions of the signal to be processed. However, for the design of IIR digital filters, traditional design methods have the disadvantages of easy to fall into a local optimum and slow convergence. The Teaching-Learning-Based optimization (TLBO) algorithm has been proven beneficial in a wide range of engineering applications. To this end, this dissertation focusses on using TLBO and its improved algorithms to design five types of digital filters, which include linear phase FIR digital filters, multiobjective general FIR digital filters, multiobjective IIR digital filters, two-dimensional (2-D) linear phase FIR digital filters, and 2-D nonlinear phase FIR digital filters. Among them, linear phase FIR digital filters, 2-D linear phase FIR digital filters, and 2-D nonlinear phase FIR digital filters use single-objective type of TLBO algorithms to optimize; multiobjective general FIR digital filters use multiobjective non-dominated TLBO (MOTLBO) algorithm to optimize; and multiobjective IIR digital filters use MOTLBO with Euclidean distance to optimize. The design results of the five types of filter designs are compared to those obtained by other state-of-the-art design methods. In this dissertation, two major improvements are proposed to enhance the performance of the standard TLBO algorithm. The first improvement is to apply a gradient-based learning to replace the TLBO learner phase to reduce approximation error(s) and CPU time without sacrificing design accuracy for linear phase FIR digital filter design. The second improvement is to incorporate Manhattan distance to simplify the procedure of the multiobjective non-dominated TLBO (MOTLBO) algorithm for general FIR digital filter design. The design results obtained by the two improvements have demonstrated their efficiency and effectiveness

    Sparse Filter Design Under a Quadratic Constraint: Low-Complexity Algorithms

    Get PDF
    This paper considers three problems in sparse filter design, the first involving a weighted least-squares constraint on the frequency response, the second a constraint on mean squared error in estimation, and the third a constraint on signal-to-noise ratio in detection. The three problems are unified under a single framework based on sparsity maximization under a quadratic performance constraint. Efficient and exact solutions are developed for specific cases in which the matrix in the quadratic constraint is diagonal, block-diagonal, banded, or has low condition number. For the more difficult general case, a low-complexity algorithm based on backward greedy selection is described with emphasis on its efficient implementation. Examples in wireless channel equalization and minimum-variance distortionless-response beamforming show that the backward selection algorithm yields optimally sparse designs in many instances while also highlighting the benefits of sparse design.Texas Instruments Leadership University Consortium Progra

    Digital Filters

    Get PDF
    The new technology advances provide that a great number of system signals can be easily measured with a low cost. The main problem is that usually only a fraction of the signal is useful for different purposes, for example maintenance, DVD-recorders, computers, electric/electronic circuits, econometric, optimization, etc. Digital filters are the most versatile, practical and effective methods for extracting the information necessary from the signal. They can be dynamic, so they can be automatically or manually adjusted to the external and internal conditions. Presented in this book are the most advanced digital filters including different case studies and the most relevant literature

    Design &implementation of complex-valued FIR digital filters with application to migration of seismic data

    Get PDF
    One-dimensional (I-D) and two-dimensional (2-D) frequency-space seismic migration FIR digital filter coefficients are of complex values when such filters require special space domain as well as wavenumber domain characteristics. In this thesis, such FIR digital filters are designed using Vector Space Projection Methods (VSPMs), which can satisfy the desired predefined filters' properties, for 2-D and three-dimensional (3-D) seismic data sets, respectively. More precisely, the pure and the relaxed projection algorithms, which are part of the VSPM theory, are derived. Simulation results show that the relaxed version of the pure algorithm can introduce significant savings in terms of the number of iterations required. Also, due to some undesirable background artifacts on migrated sections, a modified version of the pure algorithm was used to eliminate such effects. This modification has also led to a significant reduction in the number of computations when compared to both the pure and relaxed algorithms. We further propose a generalization of the l-D (real/complex-valued) pure algorithm to multi-dimensional (m-D) complex-valued FIR digital filters, where the resulting frequency responses possess an approximate equiripple nature. Superior designs are obtained when compared with other previously reported methods. In addition, we also propose a new scheme for implementing the predesigned 2-D migration FIR filters. This realization is based on Singular Value Decomposition (SVD). Unlike the existing realization methods which are used for this geophysical application, this cheap realization via SVD, compared with the true 2-D convolution, results in satisfactory wavenumber responses. Finally, an application to seismic migration of 2-D and 3-D synthetic sections is shown to confirm our theoretical conclusions. The proposed resulting migration FIR filters are applied also to the challenging SEGIEAGE Salt model data. The migrated section (image) outperformed images obtained using other FIR filters and with other standard migration techniques where difficult structures contained in such a challenging model are imaged clearly
    corecore