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ABSTRACT

Digital filters are often used in digital signal processing applications. The design objective
of a digital filter is to find the optimal set of filter coefficients, which satisfies the desired
specifications of magnitude and group delay responses. Evolutionary algorithms are
population-based metaheuristic algorithms inspired by the biological behaviors of species.
Compared to gradient-based optimization algorithms such as steepest descent and
Newton’s like methods, these bio-inspired algorithms have the advantages of not getting
stuck at local optima and being independent of the starting point in the solution space. The
limitations of evolutionary algorithms include the presence of control parameters, problem
specific tuning procedure, premature convergence and slower convergence rate. The
artificial bee colony (ABC) algorithm is a swarm-based search metaheuristic algorithm
inspired by the foraging behaviors of honey bee colonies, with the benefit of a relatively
fewer control parameters. In its original form, the ABC algorithm has certain limitations
such as low convergence rate, and insufficient balance between exploration and
exploitation in the search equations. In this dissertation, an ABC-AMR algorithm is
proposed by incorporating an adaptive modification rate (AMR) into the original ABC
algorithm to increase convergence rate by adjusting the balance between exploration and
exploitation in the search equations through an adaptive determination of the number of
parameters to be updated in every iteration. A constrained ABC-AMR algorithm is also

developed for solving constrained optimization problems.

There are many real-world problems requiring simultaneous optimizations of more than
one conflicting objectives. Multiobjective (MO) optimization produces a set of feasible
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solutions called the Pareto front instead of a single optimum solution. For multiobjective
optimization, if a decision maker’s preferences can be incorporated during the optimization
process, the search process can be confined to the region of interest instead of searching
the entire region. In this dissertation, two algorithms are developed for such incorporation.
The first one is a reference-point-based MOABC algorithm in which a decision maker’s
preferences are included in the optimization process as the reference point. The second one
is a physical-programming-based MOABC algorithm in which physical programming is

used for setting the region of interest of a decision maker.

In this dissertation, the four developed algorithms are applied to solve digital filter design
problems. The ABC-AMR algorithm is used to design Types 3 and 4 linear phase FIR
differentiators, and the results are compared to those obtained by the original ABC
algorithm, three improved ABC algorithms, and the Parks-McClellan algorithm. The
constrained ABC-AMR algorithm is applied to the design of sparse Type 1 linear phase
FIR filters of filter orders 60, 70 and 80, and the results are compared to three state-of-the-
art design methods. The reference-point-based multiobjective ABC algorithm is used to
design of asymmetric lowpass, highpass, bandpass and bandstop FIR filters, and the results
are compared to those obtained by the preference-based multiobjective differential
evolution algorithm. The physical-programming-based multiobjective ABC algorithm is
used to design IIR lowpass, highpass and bandpass filters, and the results are compared to
three state-of-the-art design methods. Based on the obtained design results, the four design

algorithms are shown to be competitive as compared to the state-of-the-art design methods.
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CHAPTER 1

INTRODUCTION

1.1 Introduction to Digital Filter Design

Electronic filters are circuits capable of passing certain frequency signals to extract useful
information. The electronic filters may be analog or digital depending on the components
used. The analog filters operate on continuous time analog signals, whereas digital filter
performs mathematical operations on digital signals. Unlike analog filters which requires
active and passive physical components, the digital filters can be implemented on

computers.

Digital filters can be mathematically expressed by the constant coefficient difference

equation:

N

M
y(m) = > bIx(n—k) = ) ak)y(n— i) (1)
k=0

k=1

where b(k) and a(k) are the forward tap coefficients and feedback tap coefficients

respectively. The transfer function of the digital filter can be expressed as,

Y(z)  SMo bz

H(z) = X(z) 1+3N_alk)z*

(1.2)

The digital filters can be classified into two categories finite impulse response (FIR) and
infinite impulse response (IIR) digital filters depending on the length of their impulse

responses and location of poles.

1.1.1 Finite Impulse Response Filters

A finite impulse response filter is based on the feed forward difference equation, which

means that the output of the system does not depend on the past or future values of output



but depends only on the present value of the input. FIR digital filters include asymmetric

FIR filters and symmetric FIR digital filters.

The asymmetric FIR filters are a class of causal filters with the difference equation and

transfer function is as expressed below,

N
ym) = ) bk)x(n - k) (13)
k=0
and
Y(2) N _
H() = 305 = Zkzob(k)z K (1.4)

The frequency response of filter can be found by substituting z = e/“T, where w is the

frequency of the input signal,

N
H(w) = Z b, e J@nT
n=0

N N
= Z b, cos(wnT) —j z b,, sin(wnT)
n=0 n=0

= | H(w)|e/®™) (1.5)

In equation 1.5, the magnitude response |H (w)|is equal to,

|[Hw)| = {[Z:=obn cos an]z + [Z:I:Obn sin nWT]Z} (1.6)

and the phase response 68 (w) is equal to,

N[ =



N_obnsinnwT
O(w) = —tan™! Z,’;“’ = l (1.7)
n=o bn cos nwT
From equation 1.7, the group delay 7(w) can be expressed as,
260(w) 1 Odc
= = 1.8
vw) owT 14 c?2owT (18)
where,
_ Xn=o by sinnwT (1.9)

RN
Yin=o bn cos nwT

The symmetric FIR filters have constant group delay, and the filter coefficients are either
symmetric or anti symmetric with respect to mid-point. A filter of order N or length M =

N + 1 is said to be linear phase if it satisfies the following equation,
h(n) = th(M — 1 —n) (1.10)

where n=0,1,2, . e ceo oo eee., M — 1.

Depending on the type of symmetry, there are four types of linear phase FIR filters; Type
1, Type 2, Type 3 and Type 4.

In Type 1 filters, the filter order, N(=M — 1) is even and the coefficients are

symmetrically distributed,

h(n)=h(M —-1-—n) (1.11)
wheren = 0,1,2, ... ... ce. oo ..., M — 1 and the frequency response H(w) is given by,
(M—3)/2
joT(M-1) M-1 M-1
Hw)=e 2 h(T>+ Z 2h(n)cos< 3 —n)wT (1.12)
n=0



In Type 2 filters, the filter order, N(= M — 1) is odd and the coefficients are symmetrically

distributed,
h(n) = h(M — 1 —n) (1.13)
wheren = 0,1,2, ... ......., M — 1 and the frequency response H (w) is given by,
Y1
H(w) =e_ij(2¢l)z 2h(n) cos(Mz_l—n)wT (1.14)
n=0

In Type 3 filters, the filter order, N(= M — 1) is even and the coefficients are anti-

symmetrically distributed,

h(n) = —h(M —1—-n) (1.15)
wheren = 0,1,2, ... ......., M — 1 and the frequency response H(w) is given by,
(M—3)/2
jwT(M—1) M=1
H(w) =je 2 Z 2h(n) sin( 5 —n> wT (1.16)
n=0

In Type 4 filters, the filter order, N(= M — 1) is odd and the coefficients are anti -

symmetrically distributed,

h(n) = —-h(M — 1 —n) (1.17)
wheren = 0,1,2, ... ......., M — 1 and the frequency response H (w) is given by,
M/2_1
 _JoTM-1) o M-1
Hw) = je~ =2 Z 2h(n) sm< - n) wT (1.18)
n=0



1.1.2  Infinite Impulse Response Filters

IIR filters include the following; direct-form general IIR filter; direct-form allpass IIR

filter; cascade-form general IIR filter and cascade-form allpass IIR filter.

Direct-form general IIR filter consisting of Mth order numerator and Nth order

denominator transfer function can be expressed as,

_ B2 Yilob(R)zTF o
H(z) = 20 T+ a0 E Zn=oc(n)z (1.19)

where B(z) and A(z) are polynomials written in ascending powers of z~1, M can be
smaller or larger than N. The coefficients c(n) for n > 0 represent the impulse response
values of the digital filter. The corresponding coefficient vector ¢ consisting of M + N + 1

distinct coefficients can be expressed as,
cC = [bO b1 b2 . bM—le aO a1 a2 ‘e aN_laN]T (1.20)

Direct-form allpass IIR filter can characterized by a unity magnitude response throughout
the frequency band and its group delay response is a function of its coefficient values. It
can be used to equalize the group delay of another digital filter or a system connected in
cascade. The direct-form transfer function of an Nth-order allpass IIR filter (N can be even

or odd) can be expressed as,

Zg:o aN—nZ_n -N Zg:o anzn
Hp(@) =Sy ———=z"—— (1.21)
n=0 anz n=0 anz

The coefficient vector ¢ consisting of N + 1distinct coefficients can be expressed as,
c=lapga;a, .. ay_jay ]’ (1.22)

The frequency response of a direct-form allpass IIR filter can be evaluated by substituting
z = /T into its digital transfer function equation 1.21, the magnitude response is given

as,



|Hap(w)]=1 (1.23)

Cascade-form general IIR filters can be obtained by combining two or more direct-form
structures. Assuming both the numerator and denominator transfer function are of same

order such that M = N, the cascade-form transfer function of an even Nth order IIR filter

can be expressed as,

N

H(z) = b, njzlj”g; (1.24)

N
2 (A +byz7t +by,z7? o
= b, | |2 ( in 2n ) _ E c(n)z™"
k=0

n=1 1+ a,z71 + ay,z272) B

. N . . .
where by, byy, Q15,2, With n =1 to 5 are real valued coefficients, and b, is a scaling

constant. The coefficients c¢(n) for n > 0 represents the impulse response values of TIR

filter. The corresponding coefficient vector ¢ consisting of 2N + 1 distinct coefficients can

be expressed as,

T

Cc = [bll b21 a11 a21 ‘e blﬂbzﬂ alﬂ azﬁbo (1.25)
’2 ’2 ’2 '2

Cascade-form allpass IIR filter of an even N th-order can be expressed as,

N -1 -2
Hip@) =0 [ [7 S EdnZ o ) (1.26)
n=1 (1 + a;pz™1 + az,z72)

The corresponding coefficient vector ¢ consisting of N distinct coefficients can be

expressed as,

T

Cc= a11 a21 alz a22 ‘e aln a2n ‘e alﬂ azﬁ (1.27)
’2 ’2



The frequency response of a cascade-form allpass IIR filter can be evaluated by substituting
z = /T into its digital transfer function equation 1.26 and magnitude response is given

by,
|Hyp (w)]=1 (1.28)

Two typical classes of design optimization methods for digital filters are and evolutionary
optimization [1] and mathematical optimization [2]. A number of useful reference books
on digital filter design methods are listed under [3]-[7] and a number of general reference
books on digital signal processing are listed in [8]-[10]. A collection of papers on IIR and
FIR filter design methods are listed in [11]-[122]. In general, FIR digital filters can be
subdivided into linear phase FIR digital filters and nonlinear phase FIR digital filters. The
design of linear phase FIR digital filters is described in [11]-[19]; the design of
differentiators and integrators are described in [20]-[23]; the design of sparse linear phase
FIR digital filters is described in [24]-[46]; and the design of nonlinear phase (or general
or asymmetric) FIR digital filters are described in [47]-[60]. An IIR digital filter can be
designed to approximate given magnitude response in both passband(s) and stopband(s)
and linear phase response in passband(s). The design of IIR digital filters are described in
[61]-[85]and adaptive digital filters in [86]-[93]. The design of variable IIR digital filters
are described in [94]-110] and variable FIR digital filters is described in [111]. The designs
of 2-dimensional FIR digital filters are described in [112]-[114] and IIR digital filters are
described in [115]-[122].

1.2 Limitations of Evolutionary Algorithm in Digital Filter Design

Classical methods such as steepest descent and Newton like methods have several
shortcomings such as sensitivity to initial points, difficulty in analytical calculation of
Hessian matrix, and optimal step size requirement to minimize the objective function value
progressively, making it impractical to solve problems with many variables. Evolutionary
algorithms have benefits over the classical optimization methods and can be applied

efficiently to solve nondifferentiable, multimodal, non-convex, non-separable problems.



Nevertheless, when evolutionary algorithms are used for digital filter design various
challenges has been faced, Figure 1.1 shows various limitations of evolutionary algorithm

in digital filter design.

Many control

parameters
Deteriorating .
. Problem specific
quality of )
) tuning
solutions
Evolutionary
algorithm for
digital filter design
Limited search Low
space diversity convergence rate

Stuck at local

optima

Figure 1.1 Limitations of Evolutionary Algorithms in Digital Filter Design

1.2.1 Many Control Parameters and Problem Specific Tuning

Conventional algorithms such genetic algorithm (GA), particle swarm optimization (PSO),
and differential evolution (DE) contain many control parameters and each of these
parameters must be tuned to their optimal value for best performance. Modifying each of

these parameters for filter design application require a tedious task of trial and error run.

Also, same set of parameters that works well for one problem does not guarantee a global
optimum for another problem with same algorithm, so problem specific tuning of

parameters is required in every task.



1.2.2 Low Convergence Rate

Evolutionary algorithms are inspired by the biological process of natural selection and

mutation, it is a slow process and needs long computation time to reach global optimum.

1.2.3 Stuck at Local Optima

Even though it is easy to customize the evolutionary algorithms for any application, it is
important to choose the best suited algorithm for a given problem. The wrong configuration
can lead to premature convergence to a local optimum solution and will not yield global

optimum.

1.2.4 Limited Search Space Diversity

In general, for reducing the longer computation time, instead of initializing with a random
population, optimization process is seeded with a good candidate solution that is previously
known or created. This process is found to reduce the diversity of search space, especially

in higher dimension problems.

1.2.5 Deteriorating Quality of Solutions with Increase in Dimensionality

When a limited search space is applied to non-convex, non-differentiable, multimodal,
composite functions the quality of solution deteriorates with increase in dimensionality. In
filter design applications, peak error value of designed filter cannot be reduced to an

optimal value with the increase in filter order.

1.3 Motivation

Classical optimization methods and conventional evolutionary algorithms have certain
limitations when applied to digital filter design. In order to overcome these limitations, this
dissertation focuses on an improved ABC algorithm for the design of optimal FIR and IIR
digital filters.

ABC algorithm is a swarm-based search algorithm inspired by the social cognitive
behavior of honey bees. Basic ABC algorithm works better than most of the conventional

evolutionary algorithm in terms of peak error values, and it is easy to tune the algorithm

9



towards any specific problem. However, it faces some difficulties such as lower
convergence rate, getting stuck at local optimum and difficulty in minimizing the peak
error values of the higher order digital filters. The above said problems are a result of
insufficient balance between the exploration and exploitation in the search equation.
Exploration refers to investigating unknown regions in the solution space to discover global
optimum and exploitation refers to applying knowledge about previous good solution to
find a better solution. The former occurs at initial stages of optimization while latter at later
stages of optimization. Though these two techniques contradict each other, a proper
balance between them is necessary for obtaining optimal results. Many variants of ABC
algorithm have been developed to address the concerning issues, most of them improves
the exploitation by directing the search towards the best solution, but this will limit the
diversity in the search space. As filter design problem is analyzed, in order to lower peak
error value and satisfy design constraints of higher order filters, new solutions must be
introduced into the solution space. So, in this dissertation, a novel improvement known as
adaptive modification rate is introduced to the original ABC algorithm, which mutates the

parameters in the solution space adaptively.

Research in the field of evolutionary computation is generally limited to single-objective
optimization but most of the real-life problems involve optimization of more than one
competing objectives. Instead of finding a single optimum solution, these types of
problems with the conflicting objectives can be solved using multiobjective optimization
(MOO). MOO generates a set of optimal solutions in the objective space, known as Pareto
front. At the end of optimization process, the decision maker (DM) choose a single solution
from the Pareto front according to his/her preference. In MOO, there are certain limitations
encountered as the number of objective increases such as, difficulty in visualization of
objective space, prominence of nondominated solutions which slows down the
convergence rate, an exponential increase in population size to meet population diversity.
If preference of decision maker can be incorporated into optimization process, a preferred
and smaller set of Pareto optimal solutions near the region of interest can be found. It

requires the decision maker to suggest a reference direction, a reference point or clues to

10



guide the search toward the region of interest. Different approaches can be used to
incorporate the decision maker’s preferences into the optimization process. In a posteriori
methods, preferences can be used at the end after Pareto front has been completely
determined whereas in a priori methods, preferences are given at the beginning of search
process which requires the decision maker to have some high-level information about the
objectives initially. Interactive methods involve the preferences to be set up interactively

during the optimization process.

In this dissertation, the preferences are incorporated into multiobjective optimization a

priori by physical programming approach and reference point-based approach.

1.4 Main Contributions

Digital filter design is an approximation problem, in which a designer tries to find a set of
filter coefficients which provides the best approximation of a desired filter. Even though,
it is impossible to produce exact magnitude or phase response of desired filter the classical
methods such as Butterworth and Chebyshev methods can be applied for the design of
optimal basic filters. Design of filters with arbitrary magnitude and phase response can
only be formulated as complex approximation problem and can be solved using
evolutionary algorithms. Using ABC algorithm, improved ABC algorithms and ABC-
AMR algorithm, various digital filters are designed in both single-objective space and

multiobjective space. The main contributions are listed below:

e The dissertation provides an in-depth analysis of ABC algorithm based digital filter
design, its advantages, limitations and modifications to be applied for improving its
performance in filter design. Initially, an investigation has been performed into the
modifications available in the literature. Various digital filters are designed using

basic ABC algorithm, its variants and their error values have been compared.

e A new and improved ABC known as ABC-AMR is proposed for digital filter design.
Various digital filters are designed to evaluate the performance of the proposed
method. Design results from linear phase Type 3 and Type 4 differentiators has been

published in - H. K. Kwan and R. Raju, “Minimax design of linear phase FIR
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differentiators using artificial bee colony algorithm,” in Proc. of 8th International
Conference on Wireless Communications and Signal Processing (WCSP 2016),
Yangzhou, China, Oct. 13-15, 2016, pp. 1-4. Simulation results indicate that the

proposed method can be used successfully to design various digital filters.

In order to minimize hardware requirement in filter design problems, another class of
digital filters known as sparse filters are designed using constrained ABC-AMR
algorithm and iterative shrinkage technique. The work has been published in - R.
Raju, H. K. Kwan and A. Jiang, “Sparse FIR filter design using artificial bee colony
algorithm,” in Proc. of IEEE 61st International Midwest Symposium on Circuits and
Systems (MWSCAS 2018), Windsor, Ontario, Canada, Aug. 2018, pp. 956-959. Using
constrained ABC-AMR algorithm, an increase in sparsity of digital filter can be
achieved. Sparse digital filters can be used in applications where computational cost
and hardware complexities are critical, because located sparse or zero-valued

coefficients do not require multiplications.

For designing asymmetric FIR filters in a multiobjective space, a user can provide a
reference point and the search can be directed towards preferred regions in the Pareto
front by minimizing the normalized Euclidean distance towards the reference point.
Using the reference-point-based multiobjective ABC, asymmetric FIR filters are
designed, and the work has been published in - R. Raju and H. K. Kwan, “FIR filter
design using multiobjective artificial bee colony algorithm,” in Proc. of 2017 IEEE
30th Canadian Conference on Electrical and Computer Engineering (CCECE 2017),
Windsor, Ontario, Canada, Apr. 30-May 3, 2017, pp. 1-4. Comparing the obtained
design results with those obtained by the multiobjective differential evolution, lower

error values can be obtained.

While dealing with multiobjective space, most of the algorithms try to improve
solutions in Pareto front which are outside the region of interest. Thus, a decision
maker’s preferences are introduced into the optimization process using a physical

programming approach. In this approach, a decision maker can set preferences using
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different degrees of desirability such as highly desirable (HD), desirable (D), tolerable
(T), undesirable (U) and highly undesirable (HU). Solutions in undesirable (U) and
highly undesirable (HU) are not considered in the optimization process. Using a
physical programming method, IIR filters are designed and the work has been
published in - R. Raju and H. K. Kwan, “IIR filter design using multiobjective
artificial bee colony algorithm,” in Proc. of 2018 IEEE 3 1th Canadian Conference on
Electrical and Computer Engineering (CCECE 2018), Quebec City, Quebec, Ontario,
Canada, May 13-16, 2018, pp. 1-4. The proposed design method can achieve similar

or better results when compared to state-of-the-art design methods.

1.5 Organization

The dissertation is organized into six chapters: In Chapter 2, variants of ABC algorithm,
their advantages and limitations when applied to filter design applications is briefly
described. The multiobjective evolutionary algorithms and its shortcomings are also
described in the same chapter. Chapter 3 proposes an improvement applied to the original
ABC algorithm, called the ABC-AMR algorithm, which is then used in the design of Type
3, Type 4 linear phase differentiators and the results are compared to those obtained by
other variants of the ABC algorithm. In Chapter 4, the constrained ABC-AMR algorithm
is applied to design sparse filters, and the results are compared with those obtained by other
design methods in the literature. In Chapter 5, a reference-point approach is used to
incorporate a decision maker’s preferences into optimization process and a multiobjective
error function is formulated for the design of asymmetric FIR filters. In Chapter 6, single-
objective ABC algorithm is extended to multiobjective space and the preferences of a
decision maker are incorporated into optimization process using a physical programming
approach. This reduces computational complexities by directing a search towards the
region of interest. Using a physical-programming-based multiobjective ABC, IIR filters
are designed. Finally, Chapter 7 concludes with the main findings of this dissertation and

makes suggestions for future research.
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CHAPTER 2

LITERATURE SURVEY

Evolutionary algorithms (EA) are population-based metaheuristic search methods that
imitate the processes of Darwinian Evolution. Given a set of potential solutions,
evolutionary algorithms apply the principle of survival of the fittest to discover optimal
solutions in a search space. New individuals in each generation are created by selecting the
parent individuals from the existing population according to their level of fitness and by
applying principle of natural genetics. This process will improve the quality of individuals

in each generation and finally evolve to an optimal solution.

Evolutionary algorithms are inspired by natural process such as reproduction, selection,
recombination and mutation. Every individual in the population represents a single possible
solution of the optimization problem. EA starts with a set of randomly initialized
population. Fitness value of the solutions is calculated by evaluating the objective function
for every individual. The individuals with higher fitness value represent the better-quality
solutions and some of these individuals are chosen to seed the next generation by applying
recombination or mutation. If optimization criteria or maximum number of generations are
not met, new generation will be started to produce a new set of individuals. Recombination
is an operator in which two or more selected individuals are combined to produce one or
more offsprings. Each offspring is then mutated, and its fitness value is calculated. If a new
offspring is better than its parents, it is inserted into the current population producing an
individual in a new generation. This new generation becomes the current population and

the iterative process repeats until it reaches the optimum solution.

The evolutionary algorithm can be applied to all types of problems in diverse fields, such
as economics, arts, engineering, biology, marketing, operations research etc. There are
many population-based stochastic optimization algorithms based on the principle of

evolution and some of the popular algorithms are as follows: genetic algorithms (GA) by
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Holland and Goldberg [123]-[124]; particle swarm optimization (PSO) by Kennedy and
Eberhart [125]; ant colony optimization (ACO) by Dorigo and Stutzle [126]; differential
evolution (DE) by Storn and Price [127]; simulated annealing by Kirkpatrick et al. [128].

2.1 Artificial Bee Colony Algorithm (ABC)

The ABC algorithm is metaheuristic optimization algorithm defined by Dervis Karaboga

in 2005 [129], based on collective intelligent biological behavior of honey bee colonies.

2. Employed Bee phase

1. Initialization phase
e Vij = Xij + (l"ij(xij —xkj)

G = cj[L] + a * (cj[U] - cj[L])

l

Forage begins: worker
Bee Hive bee look for nectar

fit(x;)

1
_ (m for f(x;) >0
1+ |f (x| for f(x;) <0

_ fit(x:)
s
Back to hive sum (fit)
with information Find food
and share it sources: Collects
through dancing nectar
4. Scout Bee phase ’ of bees
I 3. Onlooker Bee phase

Vi = Xij + P (Xij — Xpej)

Figure 2.1 Schematic Representation of Foraging Behavior of Honey Bees

Honey bees is an eusocial flying insect characterized by a high level of organization of
society and division of labor. Every honey bee colony consists of a single queen, hundreds
of male drones, thousands of female worker bees and numerous developing eggs, larvae
and pupae. The queen is the only member of the colony who can lay fertilized eggs, capable
of producing 2000 eggs per day. Workers are female honey bees that are unable to produce
any fertilized eggs. They forage nectar and pollen, defend against attack and perform
necessary tasks for the survival of the hive. Drones are male honey bees; whose purpose is

to mate with the queen, soon after mating they dies. Since bees can’t talk, they perform
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dances to communicate important messages. “Waggle dance” is performed by a worker
bee back at the hive to tell other bees about where to find food sources. The dance shows
the direction of flowers relative to the sun, and bees automatically adjust their dances
according to changing position of the sun. Speed of the dance indicates how far nectar is

from the hive.

Inspired by the foraging behavior of honey bee colonies, Karaboga proposed the ABC
algorithm [129]-[133] to solve multimodal, multidimensional problems. The foraging
behavior of honey bees and a schematic diagram for the ABC algorithm is shown in Figure
2.1. Unlike other optimization algorithms, the ABC algorithm does not need any parameter
tuning. The ABC algorithm finds the best solution in a search space like worker bees in
bee hives searching for food sources with the highest amount of nectar. In contrast to other
heuristic search algorithms, the ABC algorithm showed superior performance and has
several advantages: strong robustness, fast convergence, high flexibility and fewer control
parameters. Search strategy of the ABC algorithm is like the standard DE algorithm;
however, it has a decision making mechanism that decides which areas within the search
space is required to be surveyed in detail. This strategy discovers new high quality nectar

sources within a search space while preserving existing good quality solutions.

The ABC contains three groups: scouts, onlooker bees, and employed bees [129]-[133]. A
bee carrying out the random search is a scout. A bee going to the food source which has
been visited previously is called an employee bee. A bee waiting in the dance area is called
an onlooker bee. The number of food sources is equal to the number of employed or
onlooker bees. A solution which cannot be improved after several predetermined trials
becomes a scout bee and is abandoned. The best food source indicates a promising solution
to an optimization problem and a fitness function is used to evaluate the quality of the

solution obtained.

The main phases in the original ABC algorithm is as described below:
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2.1.1 Initialization Phase

In initialization phase of the ABC algorithm, initial food locations are generated as a
uniform random distribution, total number of food locations SN is equal to the number of

employed bees or onlooker bees,

X = {X1,X3,X3, ..., Xsy_1, XN} (2.1)

where x; fori = 1to SN is a 1 X D vector generated as,

Xij = cj[L] +a (cj[U] - cj[L]) (2.2)

where o is a random number in [0,1], j € {1,2, ..........D}, cj[U] and cj[L] are the upper and

lower limits of jth dimension. Each food location is associated with an employed bee which

exploits current location to find a better food location in its neighborhood.

2.1.2 Employed Bee Phase

In employed bee phase, bees search iteratively for food within a population. An employed
bee first searches for foods in the adjacent region of its current food source, a new food

location v; is calculated by,
Uij =xl-j+d)ij(xl-j—xkj) (23)

where j is a randomly selected parameter index; Xy, is a randomly selected food source; ¢
is a random number within the range [-1,1]. If the fitness value of new food source is better
than current one, then current food source is replaced by new food source. The fitness value

is calculated using equation,

1
fit;(x) = | 1+ fi(x) for fi(x;) >0

1+ |fi(x)] for fi(x;) < 0

(2.4)

where f;(x;) is the objective function value at x;.
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2.1.3 Onlooker Bee Phase

When employed bees complete their food search, they pass the information to onlooker
bees which in turn choose their food sources depending on the probability value calculated

using,

fit;(x;)

P TR ) @3

where fit;(x;) is the fitness value associated with food location and is given by equation
2.4. Solutions with a higher fitness value has a greater probability of being chosen by

onlooker bees.

2.1.4 Scout Bee Phase

In scout bee phase, a food source that is not improved after several trials, will be changed

to a scout bee. Scout bees will randomly search for a new solution according to equation

2.2.

Numerical comparison of the ABC algorithm with other swarm-based algorithms [131]-
[133], indicate that former can produce better results with benefit of fewer control
parameters. A review of the ABC algorithm can be found in [134]. As the ABC algorithm

is free from parameter tuning it is used widely in a variety of practical applications.

Like other evolutionary algorithms, the ABC algorithm also faces shortcomings such as
getting trapped in local minima, and slower convergence speed. The above two problems
are a result of insufficient balance between exploration and exploitation capability of
search equation in the ABC algorithm. The solution generation equation which produces
new food source based on the information of the previous solution, is good at exploration
but poor in exploitation. Accelerating convergence speed and avoiding local optima are

two most important goals in the ABC research.

There are many updates applied to the ABC algorithm in recent years to improve its speed,
convergence rate and diversity in population. Main challenge in improving the

performance of optimization problems is to find the right balance between exploration and
18



exploitation. To address this concerning issue, numerous ABC variants have been
developed. These improvements can be divided into two types, primarily new solution
search equations have been introduced and secondarily, the original ABC is hybridized
with other techniques. Some of the most popular modifications of the ABC algorithm are

described below.

The ABC algorithm in its original version lacks a mechanism to deal with constrained
optimization problems. Hence, a number of modifications have been applied to the original
ABC algorithm to improve its performance for specific constrained engineering application
problems. For constraint handling, the ABC algorithm can be combined with the Deb’s
rule and a probabilistic selection scheme to determine the optimum solution in the feasible
region of a search space depending on a violation index value [135]. The first modification
is made in the solution generation equation in employed and onlooker bee phase by
changing more than one parameter in each iteration. In the second modification, greedy
selection in the ABC algorithm is replaced by the Deb’s selection mechanism which
assigns probability value to solutions based on their fitness value. The probability value for

each solution is generated according to the following equation,

fiti(x:) : o :

05+ (ss5—F——<] %05 ifsolution is feasible
j=1 fitj(x;)

pi = (2.6)

! violation; _
k 1-— x 0.5 otherwise

PP I
=, violation,

where violation;, is the penalty value of the solution x; and fit;(x;) is the fitness value
of the solution x;. Probability values of infeasible solutions are between 0 and 0.5 while
those of feasible ones are between 0.5 and 1. By a selection mechanism like roulette wheel,
solutions are selected probabilistically proportional to their fitness values of feasible

solutions and inversely proportional to their violation values of infeasible solutions.

Zhu and Kwong [136] proposed the gbest-guided ABC algorithm by biasing the search
towards the best solution found so far. The employed and onlooker bee phase equation 2.2

can be modified as,
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Vij = x5 + ¢ij(xij - xkj) + wij(xgbest,j —x;;) i #k (2.7)

where Xgpest,; 18 @ randomly selected parameter index of global best solution, xj is
randomly selected food source, ¢;; is a random number within the range [-1,1], ¢;; €

[0, C] where C is a constant. The value of C is determined through the trial and error method

by applying it on different benchmark functions.

Diwold et al. [137] proposed a variation to the gbest-guided ABC algorithm, where a
random neighbor selection is controlled through the following equation. Let d(x;, x),) be
the Euclidean distance between two solutions x; and xj, the solution x; will be chosen

with probability defined by,

1
d(x;, x
LT (2.8)
SN

=102 A0, %)

The closer solution has greater probability of being selected. The idea behind this
modification is that it is more probable to find a better solution by mutating two good

solutions close to each other in a solution space.

The best-so-far selection ABC algorithm [138] exploits the best solution found so far to
improve convergence speed of the original ABC algorithm. The employed bee phase is

unaltered as in equation 2.2, while onlooker bee phase is changed as follows,

vij = xij + fitgbest (¢U(xl] - xgbest,j)) I+ k, d= 1,2 ...... D (29)

where j is a randomly selected dimension, and fitgpes; is the fitness value of the best
solution found so far. Position update is applied to all dimension in onlooker bee phase,
thus routing candidate solution towards the best solution so far. In scout bee phase, instead
of choosing a new random solution, perturbation is added to current solution randomly as

in equation below,
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iter

Xij = Xij + Xi5 * @y (Wmax — —— (Whax — Wmin)) (2.10)
itemax

where j € [1,D], Wyax, Wmin are control parameters to determine the strength of

perturbation and is fixed as 1 and 0.2 respectively, iter is current iteration number and

itery,q, 1S maximum number of iterations. As per the above equation, as number of

iterations increases, algorithm is more exploitative than explorative.

Alatas [139] proposed two new chaotic ABC algorithm by using seven different chaotic
maps as random number generators to improve convergence characteristics and to prevent
the ABC algorithm from getting stuck at local solutions. In the chaotic ABC 1, instead of

using uniform random distribution for population initialization it uses a chaotic map to

generate solutions. In the chaotic ABC 2, if a solution cannot be improved after %lt trials,

algorithm starts chaotic search for %lt trials around current solution by modifying the
dimension and accepts new solution if it improves the current one. By combing

modifications of the chaotic ABC 1 and the chaotic ABC 2, another variant of the ABC

algorithm called the chaotic ABC 3 is proposed.

In an improved ABC algorithm [140], the population is initialized using chaotic random
generator-based on the logistic map. After generating SN solutions randomly, a new set of
SN solutions are generated by opposition-based population initialization, in which each
variable is mirrored at the center of search range. From 2 * SN solutions the best SN
solutions are kept. Also, it modifies the search mechanism in onlooker and employed bee
phases by incorporating differential evolution-based search. It uses following two

equations inspired by the DE/best/1 and the DE/rand/1 scheme respectively,

In the ABC/best/1, equation 2.3 is modified as,

Vij = Xgpest,j + Dij(Xij — Xr1,5) (2.11)

In the ABC/rand/1, equation 2.3 is modified as,
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Vij = Xr1,j ¢ij(xij - xrz,j) (2.12)

where 1 and r2 are two random indices different from i, Xgpes; i the j dimension
randomly chosen from the best solution found so far. In the above equations, equation 2.11
biases a search towards the best solution in the current population which can improve
convergence speed but may lead to a premature convergence, whereas equation 2.12
utilizes explorative property to prevent premature convergence. The above two equations
are combined to find a new hybridized ABC search mechanism in which, a selective
probability p is used to control the frequency of introducing the ABC/best/1 and the
ABC/rand/1. The value of selective probability p is set as 0.25.

Inspired by the differential evolution, Gao. et al. [140]-[141] proposed the global best ABC
algorithm in which a solution search in employed and onlooker looker bee phases is
directed towards the best solution of the previous iteration. Initial population is generated
using a chaotic system and opposition-based learning which possesses ergodicity,
randomness and irregularity to generate initial populations. Sinusoidal iterator is selected,

and its equation is defined as follows,
chy4q = sin(mchy,) ch,€(0,1),k=0,12....c e coeee .. K (2.13)

Based on variants from the differential evolution, the employed and onlooker bee phases

are modified in the ABC/best/1 as follows,
Vij = Xpestj + $ij(Xr1j — Xr1j) (2.14)
and in the ABC/best/2 as follows,
Vij = Xpest,j + Pij(Xr1j — %) + b1 (X3 — Xraj) (2.15)

where rq, 15, 13 and 1, are mutually exclusive integers randomly chosen from {1,2, .....SN}
and different from base index i, X, 1S the individual vector with best fitness in current

population and j € {1,2, .............. D} is randomly chosen indices and ¢;; is a random
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number in range [—1,1]. In equation 2.3, the coefficient ¢;; is a uniform random number
in [-1, 1] and x;; is a random individual in population, and therefore, a solution search
dominated by equation 2.3 is random enough for exploration. However, according to
equation 2.14 or equation 2.15, ABC/best can drive a new candidate solution around the
best solution of the previous iteration. Therefore, modified solution search equation

described by above equation can increase exploitation of the ABC algorithm.

In the Rosenbrock ABC algorithm [142], optimization is carried out in two phases, during
exploration phase, the ABC algorithm locates regions of attraction and during exploitation
phase, it uses the adaptive Rosenbrock’s rotational direction method to carry out a local

search near the best solution.

In the first modification, fitness function is modified as follows,

2(SP - 1)(r; — 1)
SN — 1

fit;=2—SP + (2.16)

where SP € [1.0,2.0] is a parameter called selection pressure, 7; is rank of solution of x;
in the population. In the second modification, for every n. cycles of the ABC, a local search
technique, the Rosenbrock’s rotational direction method, is initiated with the global best
solution as a starting point. An adaptive step size 8, is defined as a fraction of average
distance between selected solutions and the best solution achieved so far and is determined

by following equation,

m(xf — Xpest,j)
5. =01 i=1\"ij est,j (2'17)
J m
where 6 is step size of jth dimension, m is the first 10% of solutions used to calculate step

size, x; is the ith solution after ranking, X, is the current best solution. A better solution
obtained from the Rosenbrock’s rotational directional search is used to replace a middle

positioned solution in the population space.
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In the incremental ABC [143] with local search method, a new population is added to the
initial population after every g iterations, biased by the members of a current population.

The employed and onlooker bee phases are modified as follows,

Vij = Xij + ¢ij(xgbest,j - xij) (2.18)

The scout bee phase is initialized by biasing towards the global best solution as,

Xij = Xgpest,j T Rfactor (xgbest,j - xnew,j) (2.19)

where x;; is a new solution replacing an abandoned solution and Ry 4t 18 the bias towards

the global best solution. When population size is increased, equation 2.3 of the employed

bee phase is replaced as follows,

Vnew,j = Xnew,j T (»bij (xgbest,j - xnew,j) (2.20)

where Xpe,, j is generated using equation 2.3, vy, is the jth coordinate biased by the

global best solution, and ¢;; is a random parameter.

In the orthogonal learning-based ABC algorithm [144], a new search equation is used in

the employed and onlooker bee phases as,

Vij = Xr1,j t ¢ij(xr1,j - xrz,j) (2.21)

where 77, and , are mutually exclusive integers randomly chosen from SN food locations
and different from base index i, and ¢;; is the random number in the range [—1,1]. In

equation 2.21, the vectors for generating candidate solutions are selected from the
population randomly. Consequently, it has no bias in any search direction. As it is guided
of only one term cl)i]-(xrl,]- — sz,j), it can easily avoid oscillation phenomenon and
maximize the search ability of the algorithm. A new candidate solution is generated around
a randomly selected solution x,;, hence it can bring more information to the search

equation and produces a more promising candidate solution. The orthogonal learning (OL)
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strategy-based algorithm (OCABC), combines the ABC algorithm with OL, the

transmission vector T; is generated as follows,
T; = x; + rand(0,1) (Xppesr — Xi) (2.22)

T; and x; are mixed by making use of the orthogonal learning strategy to obtain a new
solution v, and a greedy selection is applied to select the best solution for the next

generation.

In the Gaussian-based ABC algorithm [145], the food search equations in the employed

and onlooker bee phases are updated as follows,

X = x{’]-ld + A.2(r; — 0.5)Ba ifr,>p
(2.23)
X = xf1 + 0.2(r, — 0.5)2a ifr,<p
where 7y, 7, € [0,1] are random numbers from uniform distribution,
= it - 121
B = ls| (2.24)
iter
a=05-0.25 _—
maxiter

where s is a random number extracted from a gaussian (normal) distribution and iter and
maxiter indicate current iteration and maximum iteration number respectively; p is
responsible for a balance between gaussian and uniform distribution, and smaller values of
p seem preferable, indicating a superiority of the gaussian distribution. This method
improves the performance of the ABC algorithm through a better balance between

exploration and exploitation of the search space.

In the ABC algorithm-based on information learning [146], at each generation, the whole
population is divided into several subpopulations by clustering partition and size of each

subpopulation is dynamically adjusted based on the last search experience. Furthermore,
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two search mechanisms are designed to facilitate an exchange of information in each
subpopulation and between different subpopulations. In the employed bee phase, the search

equation is updated with the [best individual as,

£o= F;'lbest'xlbest,j + F;'kl' xkl,j

Y Frlbest + Ekl (225)

Vij = tij + @i (tij — Xka,j)
In the onlooker bee phase, the search equation is updated with the gbest individual as,

F;”gbest' xgbeStJ + F;'kl ' xkl’j

Frgbest + Frk1 (2.26)

tij =

vij = tij + 04 (tij — Xia,s)

where j €{1,...D} and @;; is a random number in [-1,1]; k1 and k2 are randomly
selected indices in [1, SN] such that k1 # k2 # i; lbest and gbest are the indices of the
best individuals found by corresponding subpopulation and whole population respectively;
T; is a transmission vector; Fr; is fitness ranking of the ith individual in the current whole
population from worst to best. Introduction of information about lbest and gbest in the
search equations can guide the search towards promising regions and speed up
convergence. Thus, the two search mechanisms have stronger exploitation than the original
ABC. On the other hand, the information of a randomly selected individual x;; in the
neighborhood is inserted into the transmission vector which can maintain population

diversity and escape from trapping into local optimum.

Since the introduction of the ABC algorithm, many ABC variants have been proposed for
numerical optimization problems. Apart from introduction of new solution search
equations [136]-[146], another common theme has been the hybridization of ABC
algorithms with procedures taken from other techniques. By combing local search
algorithms, the Nelder-mead algorithm (NMA) and the random walk with direction
technique, Fister ef al. [147] proposed the memetic ABC algorithm. The ABC algorithm is
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also hybridized with the genetic algorithm [148]-[149] and the particle swarm optimization
[150]-[153]. Inspired by foraging behavior of bacteria, Zhong et al. [154], introduced a
local search technique in solution update equations of employed and onlooker bee phase.
The differential evolution [155] and a chaotic operator [156] have been introduced into the
search equation of the original ABC algorithm to improve its convergence speed. For
improving movement of a scout bee, mechanisms based on nonlinear interpolated path and
gaussian movement is proposed by Sharma and Pant [157]. To improve solution search
equation, Rajasekhar ef al. [158] introduced levy probability distributions. The improved
artificial bee colony algorithm [159] with a new search cycle operator is used to solve
higher dimensional multimodal problems. Tsai et al. [160] proposed the interactive ABC
algorithm in which a gravitational force is used to drive the bee movement in onlooker
phase. The hybrid simplex ABC algorithm was proposed by Kang ef al. [161]by
integrating the Nelder-mead simplex method into the ABC algorithm. A hybrid swarm
intelligent approach based on the genetic algorithm and the ABC algorithm was proposed
by Zhao et al. [162], which combines the parallel computation merit of the genetic
algorithm with the self-improving ability of the ABC Algorithm by exchanging
information between bee colony and genetic algorithm population. An improved quantum
EA was proposed by Duan et al. [163] which uses the ABC algorithm to improve the local
search ability and escape from trapping into the local optima. The ABC algorithm have
also been hybridized with the Hooke-jeeves pattern search [164] and the Powell’s method

[165] to improve its exploitation capability.

It has been clear that these modified ABC algorithms can improve performance of the
ABC algorithm to some extent. However, it is impossible for a method to outperform all
other algorithms on every problem. For example, some approaches utilize information
about the best solution to speed up convergence on unimodal functions but gets trapped

into local optima on multimodal functions.
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2.2 Challenges Faced by Variants of ABC Algorithm in Digital Filter Design

The modifications to the original ABC algorithm, in general, improves exploitation
capability of the search equation but various challenges are faced when they are applied to

digital filter design. Some of them are listed in Figure 2.2.

2.2.1 Strong Impact of Local Search and Directed Search

A local search method can improve the performance of continuous optimization in many
population-based metaheuristics. Generally, a local search is applied with an initial point
as the global best solution and finds whether a local search can replace the best solution
obtained so far. Trade-off between local search and global search is essential for successful
optimization, because if the effect of local search is too strong then the ABC algorithm-
based optimization is insignificant. Also, in many variants of the ABC algorithm,
exploitation of search equation is improved by directing the search towards the best
solution obtained so far, which increases the chance of getting stuck at a local optimum

and decreases the quality of solutions for higher dimensional problems.

Qincreased chance of getting QVariables in all dimensions
stuck at local optima get close to each other
QPerformance declines for QOPerforms better if optimum
higher dimensional problems has same variable value in all
directions.
Local Global
search search
Hybrid ' .
ABC DIVGTSIty Q Population diversity

QTuning of parameters dgcreaseg
required QFilter design problems

QComputational cost require diverse solutions
increases in the search space.

Figure 2.2 Challenges Faced by Variants of ABC Algorithm in Digital Filter Design
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2.2.2 Issues in Obtaining a Global Optimum Solution

Directing the search towards the best solutions in the solution space makes variables in all
dimensions comes closer. These types of algorithms can be used to solve problems which
has same optimum value in all dimensions like f,,.(x) = [0,0,............0]. In some
variants of the ABC algorithm, their solution update equations are applied to all dimensions
[138], instead of a single dimension in every iteration. In such cases the variables in each
dimension will have optimum value in different directions, guiding the search towards the
best solution will restrict the search in the multi directions, which increases the error value

and, deteriorates the optimization performance.

2.2.3 Hybrid ABC

In addition to incorporating the ABC algorithm with local search heuristics [147], the
search equation can be updated by incorporating other evolutionary algorithm such as the
GA [148]-[149], the PSO [150]-[151] into the ABC algorithm. This will improve the
performance in some benchmark functions, but it requires tuning of the control parameters

of each of these evolutionary algorithms, which in turn increases the computational cost.

2.2.4 Diversity of Search Space

Directing a search towards the best solution will increase exploitation but limits the
diversity of a search space. When the search is biased towards the neighborhood of best
solution, it limits exploration of unknown regions in a search space and restricts the

diversity of a population.

2.3 Multiobjective Optimization

Many multiobjective algorithms have been developed in the past decade to deal with
optimization problems involving more than one objective. In general, a multiobjective

optimization problem can be stated [166] as,

Minimize or Maximize f,(x), m=12, .. M (2.27)
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gj(x) =0, j=12,....];
subjectto {hx(x) =0 k=12, ..,K;

xi(L) <x; < xi(U) i=12..,n

where f, (x) = (1 (%), (), f5(%), ..., fu (x))T represents the M objective functions that

need to be minimized or maximized, g;(x) represents J inequality constraints and hy (x)

represents K equality constraints, (xi(L), xl.(U)) represents lower bound and upper bound of

variables. The solution x is a vector of n decision variables x = [x;, x5, X3, ... ..., X, ] 7.

2.3.1 Concepts and Definitions

Some of the basic concepts and definitions that are generally used in multiobjective

optimization are disused below:

A solution x™@ is said to dominate the other solution x®, if both conditions 1 and 2 are

true:
1. The solution x¥ is no worse than x@ in all objectives, or f;(xV) »
fi(x?) vje{12.., M}
2. The solution x is strictly better than x(® in at least one objective or fj(xV) <

fj(x(z)) for at least one j € {1,2 ..., M}.

where fj(x(i)) is the jth objective function value of solution x® to be minimized.

If for every member x in a set P, there exists no solution y dominating any member of the
set P, then solutions belonging to the set P constitute a locally Pareto optimal set. The set
of all Pareto optimal solutions is the Pareto set (PS) and the image of PS in the objective

space is called Pareto front (PF).

A solution x™ strongly dominates a solution x® (or x(P < x®), if solution x™ is
strictly better then solution x® in all M objectives. Among a set of Pareto front solution
P, the weakly nondominated set of solutions P’ are those that are not strongly dominated

by other member of the set P.
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Multiobjective optimization generally falls into two categories: classical optimization
methods and evolutionary-based optimization methods. Classical methods use a
deterministic procedure, which starts from a random initial solution, new solutions are
generated by searching in new directions based on some transition rule. Unidirectional
search is performed in each search direction until stopping criteria is reached. The search
direction is determined using direct methods or gradient-based methods; direct method uses
objective function values and constraint values directly to determine the search direction
whereas gradient-based methods use first and/or second-order derivatives of objective
function/constraint values to control search strategy. The classical methods face a plethora
of difficulties, some of them are: dependence on initial solution; trapped at local optimum,;
inability to handle problems in discrete search space; and inefficiency on parallel machine.
While dealing with non-linear, complex real-world optimization problems, classical
methods are often stuck at local optimum. In addition, classical methods are problem
specific, as seen with conjugate gradient methods which can effectively solve quadratic

objective functions but incapable of solving problems with multi optimal solutions.

2.3.2 Multiobjective Evolutionary Algorithms

Evolutionary algorithms can alleviate above difficulties of classical methods, and hence
can be applied to multiobjective optimization problems. Due to metaheuristic-based nature,
evolutionary algorithms can approximate Pareto front of multiobjective problems. These
are known as the multiobjective evolutionary algorithm (MOEA). Some of the popular

MOEAs are described below.

In the pareto archived evolution strategy (PAES), Knowles and Corne [167]-[168]
suggested a simple MOEA using a single parent single offspring evolution strategy. The
initial offspring population Q, is generated from the parent population P, randomly. In
each generation, an offspring is compared with respect to a parent and nondominated
solutions are obtained. If an offspring dominates a parent, the former is accepted as the
next parent and iteration continues. On the other hand, if a parent dominates an offspring,

it is discarded, and a new mutated solution is generated. However, if an offspring and a
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parent do not dominate each other, the choice between them is made by comparing with an
archive of best solutions found so far. The offspring is compared with the archive to check
if it dominates any member of the archive. If it does, the offspring is accepted as the new
parent and all dominated solutions are eliminated from the archive. If the offspring does
not dominate any member of the archive, both the parent and the offspring are checked for
their nearness with the solutions of the archive. If the offspring resides in a least crowded
region of the objective space among the members of archive, it is accepted as a parent and
a copy is added to archive. The maximum size of the archive is specified by the user
initially. Crowding region is maintained by dividing the entire search space
deterministically into d™ subspaces, where d is the depth parameter and n is the number of
decision variables, and by updating subspaces dynamically. Even though the PAES
algorithm has an advantage of diversity maintenance without any sharing parameter, it is

highly sensitive to the depth parameter and the number of decision variables.

In the strength Pareto evolutionary algorithm2 (SPEA2) [169]-[170], elitism is introduced
to improve convergence properties by including the elite individuals in a gene pool. Also,
in the SPEA2, since the archive size is predefined, when the number of nondominated
solutions is less than the predefined archive size, all empty spaces in the archive are filled
up by dominated individuals. If the archive size exceeds the predefined limit, a truncation
method is used to eliminate excess nondominated solutions while preserving the boundary
solutions. The truncate function iteratively removes one solution at a time until the
predefined limit is reached. The initial population P, is generated randomly and its
nondominated members are filled into the initial archive Q. Then the offspring population
is generated from the archived solutions. The fitness value is assigned to an offspring after
considering both population and archive. Each solution p, from the population P and the

archive @, is assigned a strength value s, representing the number of individuals dominated

by ¢,

s, =lqlqg € PUQAP < q| (2.28)
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Raw fitness value of an individual is determined by the sum of strengths of its dominator

solutions in both the archive and the population,

Ry, = Z Sp (2.29)

qEP+Q.p<q

High value of R, means that p is dominated by many individuals, and low value of R,
corresponds to p being a nondominated solution. When most solutions nondominate with
each other, density information is used to discriminate between individuals having identical
raw fitness. The density estimation uses the k" nearest neighbor approach, where density
at any point is a decreasing function of distance to the k" nearest points. The SPEA2
preserves boundary solutions by keeping the number of solutions in an external archive

constant over time.

The nondominated sorting genetic algorithm I (NSGA-I) have many disadvantages
including high computational complexities and a lack of elitism. The above problems can
be eliminated using the NSGA II algorithm, which selects the best population by
combining the properties of both the parent and the offspring population. The NSGA 1I
[171] is the most prominent elitist multiobjective evolutionary algorithm. The general
principle of the NSGA 1I is as follows: Initial offspring population Q, is generated by
applying genetic operator to the parent population P,. Nondominated sorting is applied
after combining an offspring population and a parent population. In naive forecasting
approach, the first nondominated front in a population is obtained by comparing each
solution obtained to every other solution in the population. This process is repeated after
excluding the solutions of previous front to obtain the second nondominated front and so
on. This process continues until all population members are classified. New parent
population P;, is filled with individuals from the best nondominated front. Instead of
discarding solutions that cannot be accommodated in the new parent population, a niching
strategy is used to choose individuals from the last front which reside in the least crowded
regions. Crowding distance, a measure to quantify the average distance of one solution to

its two nearest neighbors in the same front in the NSGA maintains a diversity among the
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population members. Even though, the NSGA 1I is considered as one of the powerful
MOEAs, giving diverse solutions and a better convergence near the true Pareto optimal
front, it has certain disadvantages when cardinality of the first front exceeds the population
size, then some of the Pareto optimal solutions will be replaced by the non Pareto optimal

solutions based only on the crowding distance.

The ABC algorithm has been extended to multiobjective domain for solving various
practical design problems. The grid-based multiobjective ABC algorithm [172] is inspired
by the original ABC algorithm, in which fitness value of solutions generated is calculated

using the equation as below,

dom(x;)

. A (2.30)
FoodNumber

fit(x;) =
where dom(x;) is the number of food sources dominated by the food source x;. Best
solutions are archived to an external repository, and its size is maintained using the ¢
dominance approach. In this approach, solution space is divided into boxes of size € and
only one nondominated solution is selected from each box. If box contains more than one
solution, a member close to left corner is retained. On reaching termination criteria, the

external archive is updated as the Pareto optimal set.

The hybrid multiobjective ABC algorithm [173] has been applied for optimizing the copper
strip production by simultaneously optimizing the cost of raw materials and the amount of
raw materials thrown into furnace. The optimal Pareto front is generated using four
important multiobjective approaches such as, fast nondominated sorting approach,
crowded distance estimation, summation of normalized objective values and diversified
selection. The objective function value of all the members in colony is normalized as
follows,
_ f(xm) = finin

; = 2.31
fm(xm) fmax - fmin ( )
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where f,;,(x,,) is the mth normalized objective value and are summed to obtain a single
value. New solutions, generated in the employed and onlooker bee phases, are selected

based on their nondomination ranks and crowding distances.

For design optimization of laminated composite components, the vector evaluated ABC
algorithm [174] has been applied to simultaneously optimize the weight of layers, and the
implementation cost. For M objective functions, the entire population is divided into M
swarms each of size n and each swarm is evaluated according to one objective function
while information from other swarms determine its motion in the solution space. Each of
the swarm updates towards the best solution of its respective objective function and finally
converges to a global optimum solution. The best solution of one swarm is used to calculate
the new position in another swarm. The position update equation for the ith individual of

the jth swarm is as follows,

Ul
Di+1

=a(r —S)+ (1 — B)UID; + y¥IDbest; (2.32)
where « is the randomness in amplitude of the bee, § is the convergence rate, y is the
learning rate, r is the random number in the interval [0,1], S is the step size, Dbest; is the

overall best value of fitness function and k is the randomly selected neighbor swarm.

The nondominated sorting-based multiobjective ABC algorithm [175] maintains the best
and diverse solutions in the Pareto front. The size of the external archive is maintained
using nondominated sorting and crowding distance techniques. In the employed bee phase,
if newly generated solution does not dominate old solution X;;, an augmented population

is generated as follows,

iter
Ui = Xipe + randy (0,1) + (1 - W) (2.33)

where k is a randomly chosen dimension, iter is the current iteration number and MIC is

the maximum number of iterations.
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2.4 Limitations of Multiobjective Evolutionary Algorithms

Even though the state-of-the-art multiobjective evolutionary algorithms (MOEA) can
effectively solve some multiobjective practical design problems, they face some drawbacks

as described below:

2.4.1 Exponential Increase in Population Size

As the number of objective increases, a large fraction of population becomes nondominated
and in order to maintain diversity [176], the population size must increase exponentially.
If the population size is not adequate, the solutions will be distant in the objective space.
New solutions generated using the recombination of their parents will also be far away

from each other, and thus reaching an optimal solution is difficult.

2.4.2 Difficult to Select a Single Optimum Solution

As the number of objective increases, more points are required to represent the Pareto front.
It is difficult for the decision maker to choose a single optimum solution from the Pareto

front containing many optimal solutions.

2.4.3 Visualization is Difficult

It is difficult to visualize the Pareto front of optimization problems with more than three

objectives.

2.5 Preference-Based Multiobjective Evolutionary Algorithms

Even though the above multiobjective evolutionary algorithms can result in an optimal set,
from a practical point, a user needs only one solution. From multiple trade-off optimal
solutions, one solution must be selected by the decision maker using higher level
information. Figure 2.3 represents the Pareto front approximation of two objective
functions J;(6) and J,(6); blue points represents the Pareto optimal solutions; box
represents the decision maker’s region of interest, and any solution outside the region of

interest can be discarded.
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A Decision Makers

3,(0) region of interest

3,0)

Solutions outside
region of interest

Figure 2.3 Pareto Front Approximation

To find a preferred solution, some preference information is needed to guide the search
towards the region of interest in the Pareto front. If relative preference factor among
objectives are known for a specific problem, they can be used a posteriori, a priori or
interactively in the optimization process to obtain feasible solutions in the region of
interest. The non preference-based methods do not assign any importance to any of the
objectives, a posteriori methods use the preference information of each objective after
optimization process, a priori methods use information about the preferences of the
objectives, that is already known, to find a preferred optimal solution during optimization.

Interactive methods use preference information progressively during optimization process.

One of the earliest attempts in the preference-based MOO can be seen in [177], in those
algorithms, preference information and Pareto dominance are used to find fitness and
ranking of individuals in population pool. Fuzzy approach can be interactively used to set
preferences [178], the decision maker can iteratively choose reference points to represent
preferences until desired results are obtained. The reference point-based multiobjective
optimization [176] can be used to set preference information in an objective space.
Preference-based strategy is combined with the elitist nondominated sorting genetic
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algorithm to simultaneously find the preferred set of solutions near the reference point.
Instead of finding a single optimum solution, this method finds a set of optimal or near
optimal solutions near the desired region of the decision maker’s interest. The goal
programming technique is used in engineering design application to find a single solution
that satisfies several design goals. Goal programming can be used to solve a multiobjective
optimization problem by minimizing deviations from individual objectives/goals. In
contrast to classical methods, this method eliminates the need of assigning individual
weights to each objective. Goal programming can be incorporated into the NSGA [179] by
converting each goal into an equivalent objective function of minimizing deviation from
target. Even though this method can solve non-convex, multimodal optimization problems

that classical methods cannot solve, it is not effective in finding the Pareto optimal solution.

Preference information can be incorporated into the NSGA-II [180] by using the biased
crowding distance approach. Initially all the solutions are projected onto linear hyperplane
and crowding distance values can be calculated as the ratio of the distances of neighboring
solutions in the original objective space to those on the projected hyperplane. The preferred
solutions with larger biased crowding distances are those which lie on the plane parallel to
the selected hyperplane. This procedure requires a reference direction and a diversity

control parameter for the optimization process to converge to an optimal solution.

The interactive evolutionary multiobjective optimization (IEMO) [181] can be used by the
decision maker to set preferences interactively by incorporating classical decision making
approaches to the multiobjective optimization procedure. This method has been used to
generate solutions in region of interest in the Pareto front. In the interactive MOEA [182],
objective function weights can be changed adaptively by the decision maker depending
upon the locations of solutions in the current population. This can direct the search towards

the region of interest in the Pareto front.

The physical-programming can be combined with a priori preferences [183], [189] to guide
the search towards a region of interest in the Pareto front. The objective space is partitioned
into several levels to represent various preferences that represents the decision maker’s
interests. Designer’s higher level information is converted into preference functions that
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reflect the decision maker’s interest and meaningful parameters are used for each objective.
A single-objective function without weights is constructed to convert preferences to
numbers. This method eliminates time consuming and trial and error procedure of weight
selection, and instead it selects preference ranges which have the same units as each
objective function. The preference from the decision maker can be accepted progressively
[184] in each generation of multiobjective evolutionary algorithms like the NSGA-II to
guide search towards the most preferred solution of choice. Preference information is used
to design a monotone value function, which satisfies the decision maker’s preferences, and
the progressively interactive multiobjective optimization guides the direction of search

towards a preferred solution.

Incorporating preferences into the multiobjective ABC algorithm is a less explored area in
the field of evolutionary computation. More research in this direction is required to include

the decision maker’s preferences into the ABC algorithm.

2.6 Conclusions

Bio-inspired algorithms are becoming a popular research topic as evolutionary
computation is being applied to solve many real-world problems. Even though these
algorithms can solve complex multimodal problems, they face many difficulties for
designing digital filters. Compared to other algorithms, the ABC algorithm has a benefit of
fewer control parameters but requires a long time for convergence. This chapter gives a
brief survey on various modifications applied to the ABC algorithm and its limitations
when applied to filter design problems. Furthermore, single-objective optimization is
extended to multiobjective domain and prominent methods in multiobjective evolutionary
algorithms have been described. Limitations involved with an increased number of
objectives have also been explained. A review on preference-based multiobjective
optimization and its effectiveness in reducing computation complexity has also been

presented.
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CHAPTER 3

LINEAR PHASE FIR DIFFERENTIATOR DESIGN

In this chapter a novel improvement is applied to the original ABC algorithm to improve
its performance. The ABC algorithm with adaptive modification rate (called the ABC-
AMR algorithm) is used to design Type 3 and Type 4 linear phase FIR differentiators.
Minimax method is used to formulate the objective function. To analyze the performance
of proposed improvement, results are compared with other variants of the ABC algorithm
such as the gbest-guided ABC, the best-so-far selection ABC and the global best ABC; and
the Parks-McClellan algorithm. Experimental result indicates that the proposed

modification can reduce convergence time and minimax errors values.

This chapter is organized as follows: Section 3.1 gives an overview of linear phase FIR
differentiator design, Section 3.2 presents the ABC-AMR algorithm based on an adaptive
modification rate, Section 3.3 provides the minimax formulation of linear phase FIR filters,

obtained results are discussed in Section 3.4 and conclusions are given in Section 3.5.

3.1 Introduction

Differentiator design is an important filter design problem as it forms the building block of
a diverse range of applications in biomedical engineering, communication systems, digital
image processing and various other real-world scenarios. The differentiator computes the
time derivative of any applied signal. The earliest approach for differentiator design
includes minimax approach and eigenfilter method. Conventionally, digital differentiator
filters are designed using the McClellan-Park algorithm [11], which can be extended to the
design of higher order FIR differentiator [12] of any arbitrary length by applying a
modification to the McClellan, Parks, and Rabiner algorithm, such that the Remez
exchange method is combined with the minimum weighted Chebyshev error for obtaining
optimal coefficients. This method results in large error value and fails to converge in the

design of full band higher order differentiator designs. In [13], a simple and fast eigenfilter
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method is described to design higher order differentiators. Quadratic error function is
minimized in frequency band and filter coefficients are obtained by computing eigen vector
corresponding to the smallest eigen value of a positive definite symmetric matrix. In the
least square design approach [14], quadratic error function is formulated by calculating
absolute mean square error between the magnitude response of the ideal and approximating
differentiator and filter coefficients are obtained by solving a system of linear equations.
Analytical methods can be used in differentiator design, as it can simplify optimization
procedure by using the matrix properties of trigonometrical functions. Simple analytic
closed form relations for the least square design of higher order differentiators [18] can
reduce computation time as it doesn’t require to solve a system of linear equations. In
another class of differentiator design, the transfer function of integrator is inverted to obtain
the corresponding differentiator. An integrator transfer function can be obtained by using
simple linear interpolation between magnitude responses of different Newton-cotes
integrators such as rectangular, trapezoidal and Simpson integrators [19]. Digital
integration techniques [20] like the Schneider kaneshige groutage, trapezoidal rule and the
rectangular rule, can be interpolated and then modified to design differentiators.
Conventional algorithms can efficiently solve unimodal problems but in multimodal
problems, it has certain short comings such as: inability to solve discontinuous, non-
differentiable error function, convergence to a sub optimal solution, unable to find global

optimum in a large search space, and sensitivity to initial set points.

Due to the ability of evolutionary algorithms to solve multimodal, non-differentiable
composite problems, it has been used in recent years for filter design applications. EA-
based algorithms such as the ABC algorithm [15],the teaching -learning-based
optimization [16] and the cuckoo search algorithm [17] have been applied to digital filter
designs. Modified particle swarm optimization algorithm [21] have been used to optimize
mean square error to design digital integrators and differentiators. The results obtained for
second, third and fourth order differentiators by the proposed algorithm are either superior
or at par with the basic PSO variants and hybrid techniques. Linear phase second order

recursive integrators and differentiators can be designed using the genetic algorithm [22],
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and thus designed digital differentiators have linear phase response over the entire Nyquist
frequency range including w = 0 radian. Wide band differentiators are designed using
several optimization techniques such as simulated annealing, genetic algorithms, and
Fletcher and Powell optimization [23]. And the work emphasizes on designing
differentiators without relying on inverting integrators of similar order because inverting
an optimized integrator does not necessarily produce an optimized differentiator. Even
though these algorithms can design differentiator better than conventional methods, they
require longer convergence time. As the filter length increases, in order to speed up the
convergence, most of heuristic/metaheuristic evolutionary optimization algorithms need a
good candidate solution at initialization. However, it is not always possible to obtain a good
candidate solution prior to optimization process. Hence, in this chapter an improvement is
proposed to the original ABC algorithm which eliminates the necessity of seeding initial
population and linear phase Type 3 and Type 4 differentiators are designed using the ABC-
AMR algorithm.

3.2  ABC Algorithm with Adaptive Modification Rate (ABC-AMR)

Even though the original ABC algorithm is efficient in the optimization of multimodal and
multidimensional basic functions, it has a poor performance on composite and non-
separable functions. These limitations are due to an insufficient balance between
exploration and exploitation capability of the search equations. Exploring new solutions in
different regions of a search space is essential in the initial stages of optimization and in
later stages, algorithm can apply knowledge about previous good solutions to obtain global

optimum solution.

Most variants of the ABC algorithm reduce computation time by biasing a search towards
the direction of the best solution on the assumption that the best solution obtained is
optimum but since evolutionary algorithms are population-based random search method,
there is a chance that an algorithm gets stuck at any local optimum solution. So instead of

incorporating information about the best solution, a novel approach has been proposed, in
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which a control variable called adaptive modification rate (AMR) is used to determine the

number of variables updated in each iteration.

In contrast to many evolutionary algorithms, where an initial population is seeded with a
previously known good solution, in the proposed method, population is initialized using a

uniform random distribution,
Xij = 4 g« (c-[U] — c-[L]) 3.1)

where  x;; denotes jth dimension of ith solution, c]-L and ch represents maximum and

minimum jth dimension of food source boundaries respectively and a denotes a random

number in [0,1].

Once population is initialized, optimization begins with the employed bee phase, and in
the original ABC algorithm, the update rate is fixed, producing a new solution, v;;, by
changing only one parameter of a parent solution x; as described in equation 2.3. This
results in a longer convergence time and does not guarantee an optimal solution in filter
design problems. As seen from Chapter 2, most of the modifications applied to the ABC
algorithm tries to reduce computational time by biasing a search towards the best solution
which is beneficial in some applications but in the case of a composite, non-convex design
problems obtaining a minimal error value is difficult. In higher order filter design problems,
in order to assure a minimal error value within given design constraints, new mutated
solutions in the solution space must be explored. Some research has been done in this
direction [185], but with a constant modification rate (MR), resulting a limited solution
space diversity. For each parameter x; ;, a uniformly distributed random number, 0 < R;; <
1, is produced and if the random number is less than MR then the parameter x;; is modified

as,

4 0 —x), ifR.. < MR
vy = {xu Q)L](xl] xkj) 1Ry (3.2)

Xij otherwise
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where k € {1,2,.......SN} is randomly chosen index that is different from i and MR is the
constant modification rate which takes value between 0 and 1. A lower value of MR may
cause solutions to improve slowly while a higher value may cause too much diversity in

the solution space.

For some problems, a higher value of MR is appropriate while in others, a lower value is
suitable. For this reason, an improvement is proposed such that its value is set to change
adaptively during each search, called adaptive modification rate (AMR). This ensures
exploration in the initial stages of optimization and the value of AMR decreases towards
the end concentrating more on exploitation. This improvement guarantees that inefficient

sources are modified more while better ones are modified less often.

The solution update equation in onlooker and employed bee phase and adaptive

modification rate (AMR) is determined according to the following equation,

S Xij + Q)ij(xij —ij), lfRU < AMR
Y Xij otherwise
(3.3)

a
AMR(t + 1) = minj1, —_
E+1) mm{ pt u(t) + 0.01}
where a = 0.06 and f = 0.1 and u(t) is the ratio of number of successful mutations to
total number of mutations in the population. The value of @ and f are set in accordance

with filter design applications in single-objective and multiobjective domain.

The pseudocode for the ABC-AMR is illustrated in Table 3.1. In this pseudocode, adaptive
modification rate AMR is shown in line number 80, and the ratio of successful mutation to
total number of mutation is calculated such that for every position update, if the
corresponding objective function value is better than the global optimum of current
population, it is counted as a successful mutation (Wgycessr) and otherwise as a

unsuccessful mutation (Usgipyre)-

Note that pseudocode in Table 3.1 is for minimization problem and for a maximization

problem, lines 14, 29 and 53 must be changed from,
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f(xnew(*)) < f(xold(*))

to

f(xnew(*)) > f(xold(*))

where f(x()) is the objective function value.

(3.4)

(3.5)

Table 3.1 Pseudocode of ABC-AMR Algorithm

Pseudocode

Comments

1 For i = 1: SN

2 Forj=1:D

3 Xij = C]_[L] +ax (C]_[U] _ CJ_[L]) Randomly initialize food sources

4 Next j

5 trial; =0 Set the limit counter as 0

6 | Nexti

7 | For i =1:SN

8 |Ifi=1

9 Forj=1:D

10 x, (0, ) = x(i, ) Find best solution in the population
11 | Nextj

12 f®) = f(x(®)

13 | Else

14 1 1f f(x;) < f(xp)

15 Xp = X;

16 f(xp) = fxy) Find the global minimum of the current population
17 | Nexti

18 | Initialize AMR

Initialize parameters for AMR

19 | While iter < MaxIter

20 Usucessful = 0, Uraiture = 0

Initialize values

21 | For i = 1: SN

For each employed bee

22 | Forj=1:D

For each dimension

23 Select xy

Randomly select neighboring solution

24 S Xij + Q)ij(xij — Xkj ),ile-]- < AMR
Y Xij otherwise
where @;; = rand[—1,1]

Update the position of employed bees

25 | Nextj
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26

Select xy

If no parameter is changed randomly select a d
dimension of the solution.

27 | vig = xiq + Big(Xig — Xpq) Change at least one parameter
28 | Calculate f(v;) Evaluate the quality of solution v;
29 | Iff(wy) < fxyp) Compare between the old and new food position
30 X; = v; Select and replace with best solution.
31 trial; =0 Reset the limit counter
32 | Else
33 trial; = trial; + 1
34 | Endif
35 | If f(xp) < f(w)
36 Hsucessful = Msucessful T 1
37 | Else
38 Hraiture = Mraiure + 1
39 | Endif
40 | Nexti
41 | For i =1:SN
42 ' 1 for f(x) > 0 Calculate the fitness value of each food source
fit(x) ={ 1+ f(x)
1+ 1f(x)l for f(x;) <0
43 fit(x;) Calculate probability of each food source
i sum(fit)
44 | Nexti
45 | Whilet < SN
46 | Seti=1
47 | If rand < p;
48 t=t+1
49 Forj=1:D
50 Produce v;; using line 24
51 Next j
52 | repeat line 29 to 34 Apply selection between x; and v;
53 | If fxp) < f(vy)
54 Hsucessful = Msucessful T 1
55 Else
56 Hraiture = Mraiure T 1
57 | Endif
58 | Endif
9 |i=i+1
60 | End while
61 | For i = 1: SN
62 | If trial; > limit Abandon the scout bees
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AMR(iter + 1) = min {1,,8 +

Uiter + 0.01}

63 | Forj=1:D
64 SB;j = C].[L] +ax* (C].[U] — cj[L])
65 | Nextj
66 | trial; =0
67 repeat line 29 to 34 Apply selection between x; and SB;
68 | For i =1:SN
69 | Ifi=1
70 | Forj=1:D
71 xp(i,7) = x(i,)) Find best solution in the population
72 Next j
3 f®) = f(x®)
74 | Else
75 I () < fxp)
76 Xp = X;
77 fxp) = f(x) Find the global minimum of the current population
78 | Next i
79 _ _ Msucessful
Hiter = Wsucessful T Hfaiture
80

81

End while

Iteration iter ends

The flowchart for the ABC-AMR algorithm is given in Figure 3.1.
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3.3 Minimax FIR Filter Design

The transfer function of an Nth-order FIR filter can be expressed as,

H(z 1) = ZN h(n)z~" (3.6)

n=0

The desired frequency response H, (w) is related to the desired amplitude response A, (w)

by,
Hy(w) = je 7™ A (w;) =j(%e‘jfw) for0<w<m (3.7)

The parameter T denotes the group delay.

The frequency response of an ideal differentiator is given by,

0 atw =0
w

Ag(w) = p forO<w<mrm (3.8)
1 atw=m

For linear phase FIR digital filter approximation of a fullband digital differentiator, a
practical range of frequency is given by 0 <w < w, <, where w,, equal to 0.9z for
Type 3 and for Type 4 w, equal to .
3.3.1 Type 3 Linear Phase FIR Filters [1]
The M (M = N + 1) impulse responses of Type 3 linear phase FIR filter can be expressed
as,

h = [r(0),h(1),, ..., h(M), ... ,h(M — 2),R(M — 1)]

_ (3.9)
h(n) = —h(M —1—n) for =0,1,2,3, <$)

The frequency response of the Type 3 linear phase FIR filter is,
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M-3

2
M-1 M —
H(c,w) =je /2 "7 Z 2h(n) sin( 5 —n) wT
L (3.10)
M
=je 2 " A(c,w)
A(c,w) = cTsin(w) (3.11)
where,
. . . _ M-1 N\
sin(w) = [sm(wT) sin(2wT) sin(3wT) --- sm( > wT)]
_ e = n (1) = 3.12
c [cl,cz,c3,c4 .......C(MT—)],CO h( . ) 0 (3.12)

= [2r (22— 1), 20 (52 - 2), -, 20(2), 20(1), 200D

3.3.2 Type 4 Linear Phase FIR Filters [1]

For the Type 4 linear phase FIR filter M(= N + 1) impulse responses can be expressed as,

h = [R(0), (1), h(2), ..., h(1), ... ,h(M — 2), h(M — 1)]

M (3.13)
h(n)=—-h(M —1—-n)forn=0,1,2,3, '(E - 1)
The frequency response of the Type 4 linear phase FIR filter is given by,
M
-1
M1 M-1
H(c,w) =je 72 2h(n)sin< —n)wT
! (3.14)

oMo
=je 72 " A(c,w)

where,
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A(c,w) = cT sin(w)

T
C = [Co, Cl, Cz, C3, ,C(M):I
2

= [z (% ~1).2h (% ~ 2}, 2h(2), 2h(D), Zh(O)]T o
sin(w) = [Sin (%) sin (37W) e e sin (%W)]T

N
The group delay of Type 3 and Type 4 Linear phase FIR filter is given by, T(w) = 5

The optimization problem searches for an optimal coefficient vector ¢ that minimizes the

weighted minimax objective function e(c) with respect to ¢ defined by,

1
L_=1W(Wi)|A(C, w) — Al | (3.16)

forWw;)) =20, 0<w; <m

I
mine(c) = min[
C C

In equation 3.16, W (w;) is a positive frequency weighting function, and p is a positive

even integer.

3.4 Simulation Result Analysis

The proposed ABC-AMR is used to design Type 3 and Type 4 linear phase FIR
differentiators. The filter specification is given in Table 3.2, and Type 3 filters are of orders
N = 14,26,50 and Type 4 filters are of orders N = 13, 25,49 are designed. In order to
analyze the performance of the ABC-AMR algorithm, results are compared with the
original ABC and its three variants: the gbest-guided ABC algorithm (GABC) [136]; the
best-so-far [138]; the ABC/best/1[141]. In addition, results are also compared with the
Parks-McClellan (PM) algorithm, a classical filter design method.
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The frequency grid for optimization and for peak error value calculation, and ideal
amplitude response are given in Table 3.3. For peak error evaluation, the frequency grid is

chosen to be denser than that of the frequency grid for optimization.

Table 3.2 Type 3 and Type 4 Linear Phase FIR Filter Specifications

Description Type 3 Type 4
C][U] Upper bound of filter coefficients | 0.47 0.61
c].[L] Lower bound of filter coefficients | -0.47 -0.61
N Filter order 14 26 50 13 25 49
K Distinct coefficients 8 14 26 7 13 25
p Least pth value 128 128 64 128 128 128
T Group delay 7 13 25 6.5 12.5 | 245
Limit Scout bee limit 200 | 200 |200 |200 |200 |200
o AMR parameter 1 0.06
B AMR parameter 2 0.1

Table 3.3 Frequency Grid for Optimization and Error Value Calculation

Frequency Grid Ideal Amplitude Response
Type 3 Optimization [0:0.005:0.9] [0:0.005:0.9]
Peak error evaluation | [0:0.001:0.9] [0:0.001:0.9]
Type 4 Optimization [0:0.005:1] [0:0.005: 1]
Peak error evaluation | [0:0.001:1] [0:0.001: 1]

For a fair comparison of performance, the five ABC algorithms are set to the same initial
conditions. The population size SN =50, limit =200 and maximum number of function
evaluation is set as; 100000 for N = 13,14,25, and 26, 200000 for N = 49 and 50. The
initial population for each of the filter designs is generated using equation 3.1, where the
upper bound (cj[U]) and lower bound (cj[L]) of coefficients is set according to Table 3.1. The

number of scout bee is limited to a maximum of one in every iteration.

To evaluate the performance of the ABC-AMR algorithm, peak error values, peak error
location (Fy ), converged iteration number (I7) and minimax error value are compared with
those of the Parks-McClellan (PM) optimal equiripple FIR filter design [11] (by Matlab
function firpm.m), the original ABC algorithm, the gbest-guided ABC algorithm[136], the
best-so-far selection ABC algorithm [138], the global best ABC algorithm [141] and the
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results are given in Table 3.4 and Table 3.5. The simulations are performed using intel core
17-4790, 3.60 GHz with 12GB RAM desktop computer. The results are ranked according

to peak error R, and minimax error Ry . For Type 3 and Type 4 FIR differentiator
designs, the ABC-AMR has peak error rank Ry, = 1 and minimax error rank Ry = 1.

The error ranking indicates that the ABC-AMR always has the lowest minimax and peak
errors for all designed filters. The converged iteration number I indicates that the ABC-
AMR algorithm can always converge to the lowest minimax error with the least CPU time.
The CPU time (in seconds) are the time required by each design to converge to its least
minimax error value. It can be seen that the ABC-AMR algorithm requires the least CPU
time than those of the original ABC algorithm and its three variants. For the ABC-AMR
algorithm, the value of the modification rate is changed adaptively. During the initial stage
of iterations, the adaptive modification rate values are higher and updating all or many of
the design parameters to fully explore the search space; but during the later stage of
iterations, the adaptive modification rate values are lower and updating a few or no design
parameters. For other variants of the ABC algorithm, their modification rates are fixed
throughout optimization thus changing at most a fixed number of design parameters in all
iterations. The PM algorithm requires the least CPU time in each of the designs because it

is based on the Remez exchange algorithm which is a non-evolutionary algorithm.

Figures 3.2-3.13 show the magnitude and error value plots for differentiators of orders N =
13, 25,49, 14, 26,and 50. Magnitude response plot indicates that the ABC-AMR can
design linear phase FIR differentiator with desired magnitude response and equiripple
minimax error in passband. The error convergence plot indicates that the minimax error
decreases rapidly in initial stages and gradually in later stages to search around the

neighborhood of known solutions to find a better solution.
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The half symmetric filter coefficients, h(n) = —h(M — 1 — n) for Type 3 and Type 4

linear phase FIR differentiators using the ABC-AMR and its variants are given in Table

3.6 to Table 3.15.

Table 3.6 Half Symmetric Filter Coefficients of Type 3 Differentiator Using Original ABC Algorithm

h(n) | Filter order N = 14 Filter order N = 26 Filter order N = 50
h(0) | 0.037714736076781 0.004954265024730 | 0.002009877760662
h(1) | -0.030646457946389 | -0.005142636311658 | -0.001962936003393
h(2) | 0.043867404494912 0.007690350241261 | 0.002702320368751
h(3) | -0.063006616462289 | -0.011025642990155 | -0.003715612764887
h(4) | 0.093235497566831 0.015327310488592 | 0.004918063724640
h(5) | -0.150362207508295 | -0.020848200236187 | -0.006233546758396
h(6) | 0.313848202259717 0.027971747369298 | 0.007873408152949
h(7) | 0.000000000000000 -0.037321606415275 | -0.009565069968085
h(8) 0.050014192921637 | 0.011554864554546
h(9) -0.068291703677568 | -0.013713425247137
h(10) 0.097417827390313 | 0.015994776897288
h(11) -0.153257097029880 | -0.018580888154193
h(12) 0.315328318461610 | 0.021273554338286
h(13) 0.000000000000000 | -0.024282180962679
h(14) 0.027567845613665
h(15) -0.031169035563579
h(16) 0.035439986834320
h(17) 20.040264001348586
h(18) 0.046397246036947
h(19) -0.054129634329298
h(20) 0.064833998659169
h(21) -0.080712127820842
h(22) 0.107003047556673
h(23) -0.159867741929711
h(24) 0.318652110954695
h(25) 0.000000000000000
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Table 3.7 Half Symmetric Filter Coefficients of Type 4 Differentiator Using Original ABC Algorithm

h(n) Filter order N = 13 Filter order N = 25 Filter order N = 49

h(0) 0.008264611602191 0.003456458479103 0.001131662874766
h(1) -0.003734160867159 | -0.000931000562800 | -0.000825551624798
h(2) 0.005323149013052 0.001576209070183 0.000359541930270
h(3) -0.008563001766520 | -0.001097322552584 | -0.000197411511262
h(4) 0.016496826494759 0.001522229229158 0.000178128965830
h(5) -0.045258766102300 | -0.001903632624033 | -0.000216197304269
h(6) 0.405500512078587 0.001961829606336 0.000512598346314
h(7) -0.003629656791606 | -0.000594771104760
h(8) 0.005750120979190 -0.000092578681664
h(9) -0.007959226461326 | -0.000632159746196
h(10) 0.015824641136634 0.000748440655474
h(11) -0.045392750674101 | -0.000297826283784
h(12) 0.405388123899742 0.000893869910396
h(13) -0.000616016544671
h(14) 0.001397836740974
h(15) -0.000518928633199
h(16) 0.001654519679030
h(17) -0.001838600059342
h(18) 0.002276457328537
h(19) -0.003225241109209
h(20) 0.005198778418921
h(21) -0.008287336282587
h(22) 0.016488580851259
h(23) -0.044547729139694
h(24) 0.405599491947542
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Table 3.8 Half Symmetric Filter Coefficients of Type 3 Differentiator Using Global Best ABC Algorithm

h(n) Filter order N = 14 Filter order N = 26 Filter order N = 50
h(0) 0.037714736009138 0.004674426070205 0.002152664796011
h(1) -0.030646457789720 | -0.004965705205898 | -0.002107274777169
h(2) 0.043867404499983 0.009029362614518 0.002977840459958
h(3) -0.063006616609127 | -0.011376635083456 | -0.004119921812824
h(4) 0.093235497472416 0.015015536012812 0.005429088813692
h(5) -0.150362207509868 -0.020971347981832 | -0.006984835210369
h(6) 0.313848202229764 0.028793847811993 0.008732118907782
h(7) 0.000000000000000 -0.038025614268367 | -0.010709339351377
h(8) 0.049710001677923 0.012888102615146
h(9) -0.068207792550969 | -0.015249874167740
h(10) 0.098405398965465 0.017813766307454
h(11) -0.153535094502451 -0.020541738180927
h(12) 0.314632861951947 0.023476101659197
h(13) 0.000000000000000 -0.026607031077811
h(14) 0.029995663126626
h(15) -0.033709092440984
h(16) 0.037895451620700
h(17) -0.042752690137101
h(18) 0.048681725063819
h(19) -0.056287618596107
h(20) 0.066720562906411
h(21) -0.082272439369876
h(22) 0.108281166416444
h(23) -0.160667144184671
h(24) 0.319099195823076
h(25) 0.000000000000000
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Table 3.9 Half Symmetric Filter Coefficients of Type 4 Differentiator Using Global Best ABC Algorithm

h(n) Filter order N = 13 Filter order N = 25 Filter order N = 49

h(0) 0.008224495336062 0.003714560943920 | 0.001358938937626
h(1) -0.003819631604500 | -0.000844219812620 | -0.000195168872497
h(2) 0.005301540181976 0.001303180541707 0.000728909070773

h(3) -0.008532369555134 | -0.001292029712979 | -0.000401877288253
h(4) 0.016504191425383 0.001380624610192 | -0.000194379703133
h(5) -0.045236848269014 | -0.001801990478631 | -0.000447296071939
h(6) 0.405522128780396 0.002447324393796 | 0.000648866905644
h(7) -0.003435283644091 | -0.000403099276249
h(8) 0.005195581228609 | 0.000296007917183

h(9) -0.008446820306135 | -0.000360913544612
h(10) 0.016072605578480 | 0.000539755869478
h(11) -0.044903330116540 | -0.000428096993863
h(12) 0.405575314265407 | 0.000666429183279
h(13) -0.000641986366391
h(14) 0.001158207299409
h(15) -0.001230224391820
h(16) 0.001447145485385

h(17) -0.001564822512776
h(18) 0.002620272424253

h(19) -0.003523829967103
h(20) 0.004846977621542
h(21) -0.007966822714279
h(22) 0.016453944602314
h(23) 20.045302200987820
h(24) 0.405106841718536
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Table 3.10 Half Symmetric Filter Coefficients of Type 3 Differentiator Using Best-so-far ABC Algorithm

h(n) Filter order N = 14 Filter order N = 26 Filter order N = 50

h(0) 0.037714736121476 0.004954259527733 -0.000032836966237
h(1) -0.030646457730699 | -0.005142644076803 | -0.000132886675808
h(2) 0.043867404265145 0.007690345957815 0.000594670162447
h(3) -0.063006617025036 | -0.011025643056894 | -0.001256382067019
h(4) 0.093235497182417 0.015327309040087 0.002126595529783
h(5) -0.150362207674508 -0.020848256847276 | -0.002826070041617
h(6) 0.313848202241384 0.027971580836796 0.003839059235563
h(7) 0.000000000000000 -0.037321769301587 | -0.004921526740999
h(8) 0.050014138214706 0.006322080206127
h(9) -0.068291703563541 | -0.008204954658998
h(10) 0.097417826919175 0.010108023416536
h(11) -0.153257096703735 | -0.011895291241129
h(12) 0.315328318546392 0.014117905894228
h(13) 0.000000000000000 -0.017167992661310
h(14) 0.020711081721939
h(15) 20.024417034543224
h(16) 0.028601936480747
h(17) 20.033566791871325
h(18) 0.041014515033587
h(19) -0.047980076612729
h(20) 0.060082956339386
h(21) -0.076950530947972
h(22) 0.104042198831171
h(23) -0.157826070471847
h(24) 0.317792797476610
h(25) 0.000000000000000

60



Table 3.11 Half Symmetric Filter Coefficients of Type 4 Differentiator Using Best-so-far ABC Algorithm

h(n) Filter order N = 13 Filter order N = 25 Filter order N = 49

h(0) 0.007851524961023 0.002206301273539 0.000554713367324
h(1) -0.003837151453875 -0.001989888149987 | -0.000974404720332
h(2) 0.005885549611941 0.001945525719095 0.000579176022998
h(3) -0.008099425356908 -0.000871349385500 | -0.000608190926336
h(4) 0.016445823551601 0.000847765652946 -0.000084377500657
h(5) -0.045901717204137 -0.002593026113114 | -0.000196225732242
h(6) 0.405063346127365 0.002922275640087 0.000225542164776
h(7) -0.001870539119004 | -0.000645997763767
h(8) 0.006380672747193 0.000337599333984
h(9) -0.007744922791641 | -0.000857886312354
h(10) 0.016739464093374 -0.000077314771834
h(11) -0.044798826920954 | -0.000852370706714
h(12) 0.405400275989127 0.000922844421198
h(13) -0.000733090405356
h(14) 0.000845385941315
h(15) -0.000737090063026
h(16) 0.001871503343967
h(17) -0.001913582204346
h(18) 0.001807030605793
h(19) -0.003438095023633
h(20) 0.005377618816994
h(21) -0.008212045233431
h(22) 0.015858611079945
h(23) -0.045511893173979
h(24) 0.405209005225721

61



Table 3.12 Half Symmetric Filter Coefficients of Type 3 Differentiator Using ABC/Best/1 Algorithm

h(n) Filter order N = 14 Filter order N = 26 Filter order N = 50

h(0) -0.037714736164276 | 0.004220039506768 0.001839105420516
h(1) 0.030646457581555 -0.004288276151991 | -0.001910199952512
h(2) -0.043867404512256 | 0.007199752790122 0.003149886559634
h(3) 0.063006616804097 -0.010876656635048 | -0.003953919537754
h(4) -0.093235497256590 | 0.015637756607592 0.005188939125532
h(5) 0.150362207655403 -0.019971948902219 | -0.006704364927861
h(6) -0.313848202233923 0.027302859780655 0.008603755688190
h(7) 0.000000000000000 -0.035986080161137 | -0.010310992382171
h(8) 0.049952503552586 0.012412525242013
h(9) -0.068782874196260 | -0.015087715398807
h(10) 0.097355606114765 0.017339422474736
h(11) -0.153232418301578 -0.019995862873859
h(12) 0.314589340588941 0.022986793678869
h(13) 0.000000000000000 -0.026083225161564
h(14) 0.029586217620524
h(15) -0.033042633225191
h(16) 0.037373435814157
h(17) -0.042439810134593
h(18) 0.048050996709027
h(19) -0.055763240640195
h(20) 0.066436979889549
h(21) -0.082091894225675
h(22) 0.107949454389511
h(23) -0.160306615097844
h(24) 0.319250472974861
h(25) 0.000000000000000
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Table 3.13 Half Symmetric Filter Coefficients of Type 4 Differentiator Using ABC/Best/1 Algorithm

h(n) Filter order N = 13 Filter order N = 25 Filter order N = 49

h(0) 0.008255554448067 0.003290001482898 0.000711829080052
h(1) -0.003764118367036 | -0.000927459053777 | -0.001143547922293
h(2) 0.005327397631421 0.001656340302054 0.000225497378645
h(3) -0.008549461429752 | -0.001291014586894 | -0.000623050252667
h(4) 0.016463064983330 0.001304670229115 0.000176823483357
h(5) -0.045268017757269 | -0.001925551586051 | -0.000100220958177
h(6) 0.405514079881610 0.002473261030463 0.000434827497338
h(7) -0.003160254335341 | -0.000450897482858
h(8) 0.005219359329427 0.000013801901191
h(9) -0.008534704725573 | -0.000673806087883
h(10) 0.016309447504654 0.000661476094253
h(11) -0.044670512112261 | -0.000676693091833
h(12) 0.405611896389999 0.000372303822229
h(13) -0.000657419115955
h(14) 0.001198338948212
h(15) -0.001056419142790
h(16) 0.001600542003052
h(17) -0.001662869289421
h(18) 0.002478121058722
h(19) -0.003356937098225
h(20) 0.004851174768479
h(21) -0.008321459153870
h(22) 0.016497901242642
h(23) -0.044979642057608
h(24) 0.405204708831877
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Table 3.14 Half Symmetric Filter Coefficients of Type 3 Differentiator Using ABC-AMR Algorithm

h(n) Filter order N = 14 Filter order N = 26 Filter order N = 50
h(0) 0.037714736176857 0.004954265018781 -0.001910167610739
h(1) -0.030646457800335 -0.005142636541968 0.001672136644021
h(2) 0.043867404141397 0.007690350125654 -0.002289726027502
h(3) -0.063006617005233 -0.011025643088221 0.002992403272284
h(4) 0.093235497362153 0.015327310486198 -0.003741074729426
h(5) -0.150362207551728 -0.020848200304400 0.004515940240083
h(6) 0.313848202383412 0.027971747495007 -0.005250402589426
h(7) 0.000000000000000 -0.037321606067086 | 0.005893854058011
h(8) 0.050014193374240 -0.006382049157276
h(9) -0.068291703248154 |  0.006631870688049
h(10) 0.097417827781593 -0.006552144938983
h(11) -0.153257096940842 0.006047719642627
h(12) 0.315328318498894 -0.005012048776954
h(13) 0.000000000000000 0.003330449046257
h(14) -0.000868567279514
h(15) -0.002529766108257
h(16) 0.007055912845817
h(17) -0.012967351753279
h(18) 0.020645267217845
h(19) -0.030703784871900
h(20) 0.044250581180524
h(21) -0.063513051960077
h(22) 0.093732312489866
h(23) -0.150750496049649
h(24) 0.314059635244287
h(25) 0.000000000000000
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Table 3.15 Half Symmetric Filter Coefficients of Type 4 Differentiator Using ABC-AMR Algorithm

h(n) Filter order N = 13 Filter order N = 25 Filter order N = 49

h(0) 0.008255554456441 0.003873473894564 0.001857807284670
h(1) -0.003764118423671 | -0.000911167085171 | -0.000247312422273
h(2) 0.005327397697098 0.001030826173696 0.000231224785166
h(3) -0.008549461520826 | -0.001220503836268 | -0.000254024769798
h(4) 0.016463065018200 0.001489876281312 0.000271610748705
h(5) -0.045268017676092 | -0.001881306278383 | -0.000285543084896
h(6) 0.405514079772859 0.002473041630763 0.000328745741485
h(7) -0.003420698035191 | -0.000354708072560
h(8) 0.005071899604802 0.000398652302049
h(9) -0.008337174823228 | -0.000439066664149
h(10) 0.016275604286083 0.000502872526030
h(11) -0.045094556374526 | -0.000575643796129
h(12) 0.405346984265227 0.000665768494149
h(13) -0.000783077632344
h(14) 0.000941385883182
h(15) -0.001134359900530
h(16) 0.001423518084956
h(17) -0.001816444057892
h(18) 0.002412641689390
h(19) -0.003372281187760
h(20) 0.005011515285196
h(21) -0.008298331977075
h(22) 0.016217604219189
h(23) -0.045056663350083
h(24) 0.405298004227175
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3.5 Conclusions

In this chapter, a novel improvement to the ABC algorithm, called the ABC-AMR is
proposed. In the ABC-AMR, the diversity of a search space is adaptively controlled by
increasing the rate of exploration in early stages and increasing the rate of exploitation in
later stages of optimization. To evaluate the performance of the proposed ABC-AMR
algorithm in filter design applications, the original ABC algorithm and its three variants
are used to design linear phase Types 3 and 4 FIR differentiators. Simulation results
indicate that the ABC-AMR can reach lower peak error and minimax error and with smaller
numbers of iterations. Unlike other evolutionary algorithms, the initial population of the
ABC-AMR algorithm needs not be seeded with a good candidate solution, but can be

randomly initialized within a range, and thereby ensuring diversity in a search space.
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CHAPTER 4

SPARSE FIR FILTER DESIGN

Linear phrase FIR filters are widely used in digital signal processing, and communication
and medical imaging due to their inherent stability, and exact linear phase. However, their
implementation cost is high due to large number of arithmetic operations involved. In
direct-form linear phase FIR filters, the number of multipliers and adders is equal to the
length of impulse responses. Computational cost can be minimized if the number of
adder/multiplier units is decreased, which can be achieved by reducing the number of non-
zero coefficients. A sparse FIR filter contains zero coefficients, so that multipliers and
adders corresponding to those zero coefficients can be eliminated, resulting in lower

hardware cost and power consumption.

This chapter is organized as follows: Section 4.1 gives an introduction about sparse filter
design methods, Section 4.2 describes the minimax objective function formulation and
iterative shrinkage algorithm for the design of linear phase sparse FIR filters. Section 4.3
gives a brief description about the constrained ABC-AMR algorithm; simulation results

are described in Section 4.4 and conclusions are given in Section 4.5.

4.1 Introduction

Attempts to reduce the implementation cost includes interpolated and extrapolated FIR

filter design techniques, and frequency response masking digital filter designs etc.

In interpolated FIR filter design method [40], filter structure is cascaded into two sections,
in which first section generates a sparse set of impulse response values with every Lth
sample being non zero and second section uses interpolation technique to generate rest of
the samples. Interpolated finite impulse response filter requires 1/L of the multipliers and
adders of an equivalent FIR filter. Also, two sections can be iteratively [41] designed using
Remez multiple exchange algorithm until the difference between successive stages are
within the given tolerance limits. Frequency masking technique [44]-[45], is used to design
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filters with very narrow transition band width. The basic principle is as follows; each delay
element of the prototype filter is replaced by a given number of delays resulting in a filter
with periodic passbands and very sharp transition bands, and a masking filter is used to
extract desired band. The extrapolated filter design techniques [42],[46] utilize a quasi-
periodic nature of impulse response of the FIR filter, which consists of a center lobe with
the largest magnitude and decreasing side lobes away from the center. Approximating
smaller magnitude side lobe as a scaled version of another side lobe will produce only
small degradation in frequency response. Linear programming approach is used to optimize

scale factors of the side lobe.

Due to advancements in sparse representation, design of sparse filters has gained increasing
attention in recent years. Initially, sparsity of the filter is evaluated as a highly non-convex
lo norm of filter coefficient vector. Finding a global optimum for such kind of problems
are difficult, and an exhaustive search is required for optimal sparse coefficients which
increases the computational complexity for higher order filters. In order to overcome non-
convexity in design problems, an iterative design algorithm based on weighted least
squares approach is proposed in [25]-[26]. Non-convex problem is successively
transformed into a series of constrained sub-problems and these sub-problems are solved
using successive iteration algorithm [27]. When linear programming is used for sparse filter
design [24], initially, the impulse responses of a non-sparse filter is iteratively thinned until
the frequency constraints are violated, and then the impulse responses of the filter are
minimized using [; norm, and finally fixes the coefficients that should be constrained to
zero in the following iterations. Sparse filter design problem can be formulated as a
quadratic constrained problem with the following constraints: weighted least squares
constraint on frequency response; constraint on mean squared error estimation; and
constraint on signal to noise ratio in detection. The quadratic constraints can be either
combined with low complexity backward selection algorithm [28] or exact algorithms
based on branch and bound combinatorial optimization procedure [29]. A joint
optimization approach optimizing both the filter order and sparsity is given in [30], which

balances the filtering performance and implementation efficiency. The objective function
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is formulated as weighted [, norm and iterative reweighted least squares (IRLS) algorithm
is employed to solve the error function. In greedy algorithm, for linear phase sparse filter
design [32], coefficients in which the middle value of its feasible range is closest to zero is
set to zero, whereas all other coefficients are free to change. Discrete optimization
approaches for sparse filter design is explained in [35]-[36]. The [, norm-based
optimization process is non-convex and NP hard, and due to computational complexity,
they are not used in the design of higher order sparse FIR filters. Alternatively, sparse filter
design can be relaxed from [y norm to [; norm. In [34], a novel [; norm-based optimization
is described, in which, instead of selecting all coefficients some of the insignificant non
zero coefficients are chosen to be zero. Recent advancements in [, and [;-based sparse

filter design is described in [31].

With the advancement in the evolutionary computation, various bio-inspired algorithms
like the cuckoo search [38]-[39], and the ABC [37] have been applied to sparse filter
design. The ABC algorithm is a swarm-based metaheuristic search algorithm that
iteratively improves the quality of a solution with respect to its fitness value. In this chapter,

the constrained ABC-AMR algorithm is used to design sparse FIR filters, using [, norm
optimization subject to design constraints. In constrained optimization problems, the Deb’s

tournament selection operator and probabilistic selection scheme is used to select feasible

solutions [135]. In contrast to [; optimization-based methods, which take all coefficients
into minimization, the proposed method keeps some of the significant coefficients

unchanged and identifies locations of zero coefficients that need to be minimized.

4.2 Sparse FIR Filter Design

For Type 1 linear phase FIR filters [1] of filter order N, impulse response consists of
(N + 1) coefficients, represented as,

h = [h(0),h(1),h(2), ... ...., A(N)] 4.1)

Due to even symmetry, impulse response can be stated as,
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N-1
h, =hy_, for n=012,........ - (4.2)

The set of distinct impulse responses h of a Type 1 linear phase FIR filter can be

represented by a more compact coefficient vector c as,
€ =|Cp,C1,C3, ee-.CN (4.3)

where vector c is even symmetric such that,

CO = hN,

2

(4.4)

Cp = Zh%_n = 2h§+n' n=12 ... -y

The frequency response of Nth-order even symmetry linear phase FIR filter is given by,

N
H(eJ'W) = e_f(%)w {CO + ZZ Cn cos(nw)}
n=1

(4.5)
(N
=’ (7)WA(W)
The amplitude response A(w) can be given by,
A(w) = cT cos(w) (4.6)

where cos(w)=[1 cos(wT) cos(ZwT) - COSGWT)]T

Desired amplitude response of A;(w) for Type 1 linear phase lowpass FIR filter is given

by,

1
Ag) = | 7)
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where w), and w; are normalized cut off frequencies of passband and stopband respectively.

In the proposed approach for sparse filter design problem, the number of non-zero
coefficients should be minimized while the amplitude responses A(w) is chosen to be
constrained within the desired passband and stopband tolerance given by,
1-68, <|[EW)I< 146, 0<w; <w,
_65 < |EC(W1)| < 55 W < Wi < T (48)

Wi € O I
where (); denotes union of passband and stopband frequencies of interest.

E.(w) = ep(c) +es(c)

1
I ?
ep(© = (D" wpmliacew)l - aawl ||
for W,(w;) = 0; 0 <w; <w,
(4.9)
I >
es(@ =Y. wiwdllacewol - Aqwl”|

forW,(w;)) =2 0,wy, <w; <m

Wy(w;) = Ws(w;) = 1forw; €

where e, (c) is the passband error response and e;(c) is the stopband error response and

(); denotes union of passband and stopband frequencies of interest.

The [, norm calculates the number of non-zero coefficients. Even though [, optimization
procedure is non-convex, NP hard and difficult to obtain global optimum, /, norm has
certain advantages. The [; norm does not guarantee an optimal solution in constrained
optimization problems. Also, it is difficult to determine the locations of filter coefficients
which can be set to 0. Iterative shrinkage algorithm combined with the constrained ABC-

AMR, identifies the crucial locations for zero coefficients and increases sparsity of the
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designed filter. The proposed constrained ABC-AMR algorithm is shown to be effective

in solving non-convex, non-separable multimodal functions.

4.2.1 [Iterative Shrinkage Algorithm

Initially, two subsets 2 and NZ® are defined within the coefficient set ¢,where Z®

and V" Z2® are indices of zero coefficients and non-zero coefficients of ¢ respectively. They

are initialized as Z2° = {@} and N'Z2° = {0,1 g}

In each iteration, the optimization algorithm is used to solve the below problem,
min [le @],
st1=8, <|[Ew)I < 1+68, 0<w; <w,
—8s S |EW)| < 65 wysw; < (4.10)
¢, =0, vk e 3¢
w; €

where 6, &5 denotes the passband ripple and stopband ripple respectively, ¢, represents

the coefficients chosen for [, optimization in current iteration ¢, =

[Ci1, Cip wre ver wre v Ciz] Where T is defined as,
tt={nlc,(t—1) < M(t—1)} (4.11)

where M(t — 1) is the coefficient threshold value updated in every iteration. For updating
the value of M(t), first a subset of MZ® is defined such that,
Ct = {nlm; <lc, (V)] < my} (4.12)

where [m,, m,] is the search domain and M (t) is calculated as,

min|Ct| ifCt# 0@

M(t—-1)ifCt =0 (+13)

M(t) = {
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After each iteration 2 and M Z® subset of the coefficient indices is defined by,

2® = 2D y{r |c,(t) =0)}
(4.14)
NZ® = gD _ g®

4.3 Constrained Artificial Bee Colony Algorithm

Initially, the ABC algorithm was only applied to unconstrained problems but later it was
extended to constrained optimization problems. The constrained ABC algorithm uses the
Deb’s rule instead of a greedy selection to choose the best solution in a feasible region and
infeasible solutions are discarded based on their violation values. For the design of sparse
filters, the constrained ABC algorithm [135] is combined with the ABC-AMR for faster

convergence.

The algorithm starts with a random initial population according to equation 3.1. In the
employed bee phase, each of the employed bee searches for good solutions in its vicinity
according to equation 3.3. Instead of a greedy selection in the original ABC algorithm, in
the constrained ABC, the best solution is selected between the current solution, x; and new

solution, x;, according the Deb’s rule [135],

x; if (Y, < 0) A (yy, > 0)
Xi =9 Xk if (e, < 0) A (¥a, O)A (i < f) (4.15)
Xi if (Yxi > 0) A (Yxk > O) A (in < (Yxk)

where yy,, Yy, are the violation index values of x; and xy; f;, fi are the objective function

values for the solutions x; and xj, respectively. The fitness value of food locations is

determined by equation 2.4.

The onlooker bees select food sources according to their probability values. The probability

of the food sources can be calculated as follows,
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it;
{ 0.5+ (:;1{:—1> x 0.5 if solution is feasible
p; = 4 k=1 f it

=

L(l — SNL> X 0.5 otherwise
k=1Yk

(4.16)

where fit; and fit, are the fitness value of x; and x,, respectively. Solutions are selected
proportional to their fitness value and inversely proportional to violation values. Similar to
the employed bees, the onlooker bees produce new food locations by applying equation

3.3.

A solution which cannot be improved after predetermined trials becomes a scout bee and

is abandoned. The scout bees will then randomly search for a new solution.

4.4 Design Examples and Results

The constrained ABC-AMR algorithm is combined with iterative shrinkage algorithm to
design sparse Type 1 linear phase lowpass FIR filters and results are compared with other
design methods in literature such as the minimum-increase method [24], and the smallest

coefficient method [24] and the partial I, optimization [33].

The initial coefficients are set using Parks-McClellan (PM) algorithm. The number of food
locations SN is set as 50 and p is set as 128. The constraints set using passband ripple 6y,
and stopband ripple §;. Table 4.1 summarizes the design specifications; sparse filters are
designed for orders N = 60,70,80. Maximum passband attenuation is + 0.5 dB and
minimal stopband attenuation is set as 60 dB. The designs are performed using intel core

17-4790, 3.60 GHz with 12GB RAM desktop computer.

Table 4.1. Sparse FIR Lowpass Filter Specification

Passband region [0, 0.311]

Stopband region [0.5 11, 1]

Filter order N 60,70,80

Maximum passband attenuation R, Within +0.5dB of unity
[my, m,] [107°,1073]
Minimum stopband attenuation Ry 60 dB
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The constraints are set using passband ripple 6,,, and stopband ripple §s. The maximum

passband attenuation Ry, (in dB) is related to the passband ripple &, as,

R
10 201

5 (4.17)

P R
10 720 +1

The minimum stopband attenuation R, (in dB) is related to the stopband ripple J; as,

5 = 10 %20 (4.18)

4.4.1 Sparse FIR Filter of Order N = 60

In this example, sparse FIR filter of order N = 60, is designed using iterative shrinkage
algorithm and the constrained ABC-AMR algorithm. In Table 4.2, passband peak error and
stopband peak error is compared with the results obtained from the minimum-increase
method [24], and the smallest coefficient method [24] and the partial [, optimization [33].
From Table 4.2, for the same sparsity constrained ABC-AMR can achieve better passband

and stopband errors compared to other design methods.

Table 4.2. Peak Error Results of Sparse FIR Filter of Order N = 60

Alg. Passband Peak Error | Stopband Peak Error

Constrained ABC-AMR 0.028201403241469 | 4.491284356122893e-04
Minimum-increase [24] 0.027972285993324 | 2.517087760104883e-04
Smallest coefficient [24] 0.028222427657121 | 5.485674097077593e-04
Partial [; optimization [33] 0.028222427657120 | 5.485674097078625e-04

The minimum coefficient values and the number of zero coefficients of sparse FIR filter of
order N = 60 are given in Table 4.3, constrained ABC-AMR has the lowest coefficient

value compared to other design methods.
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Table 4.3 Minimum Coefficient Value of Sparse FIR Filter of Order N = 60

Alg. Sparsity | Minimum coefficient value
Constrained ABC-AMR 32 0

Minimum-increase [24] 30 1.005784065934075¢-18
Smallest coefficient [24] 32 1.204953400396407¢-17
Partial [, optimization [33] | 32 1.195249450476534e-17

The plots for magnitude response, impulse response, passband and stopband errors of

sparse FIR filter of order N = 60 obtained using constrained ABC-AMR is shown in

Figure 4.1
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Figure 4.1 Magnitude Response, Impulse Response, Passband and Stopband Errors of Sparse FIR Filter of
Order N = 60
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The enlarged impulse responses obtained using constrained ABC-AMR, minimum

increase and partial [; optimization is shown in Figure 4.2.
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Figure 4.2 Enlarged Impulse Response of Sparse FIR Filter of Order N = 60

4.4.2 Sparse FIR Filter of Order N = 70

In this example, sparse FIR filter of order N = 70, is designed using iterative shrinkage
algorithm and the constrained ABC-AMR algorithm. In Table 4.4, passband peak error and
stopband peak error are compared with results obtained from the minimum-increase
method [24], and the smallest coefficient method [24] and the partial I, optimization [33].
From Table 4.4, for the same sparsity constrained ABC-AMR can achieve similar or better

passband and stopband errors compared to other design methods.

Table 4.4. Peak Error Results of Sparse FIR Filter of Order N = 70

Alg. Passband Peak Error | Stopband Peak Error

Constrained ABC-AMR 0.028222468513358 | 4.480700642792157¢-04
Minimum-increase [24] 0.027972285993374 | 2.517087760109814e-04
Smallest coefficient [24] 0.028222427657520 | 5.485674097059533¢-04
Partial [, optimization [33] | 0.028222427657520 | 5.485674097057302¢-04
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The minimum coefficient values and the numbers of zero coefficients of sparse FIR filter
of order N = 70 are given in Table 4.5, constrained ABC-AMR has the lowest coefficient

value compared to other design methods.

Table 4.5 Minimum Coefficient Value of Sparse FIR Filter of Order N = 70

Alg. Sparsity | Minimum coefficient value
Constrained ABC-AMR 42 0

Minimum-increase [24] 40 4.799699851515894e-19
Smallest coefficient [24] 42 7.173038352436877e-18
Partial [; optimization [33] | 42 7.248318064152319¢-18

Figure 4.3 shows the plots for magnitude response, impulse response, passband and
stopband errors of magnitude response for sparse filter for an order N = 70, obtained

using constrained ABC-AMR algorithm.
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Figure 4.3 Magnitude Response, Impulse Response, Passband and Stopband Errors of Sparse FIR Filter of
Order N =70
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The enlarged impulse responses obtained using constrained ABC-AMR, minimum

increase and partial [; optimization is shown in Figure 4.4.
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Figure 4.4 Enlarged Impulse Response of Sparse FIR Filter of Order N = 70

4.4.3 Sparse FIR Filter of Order N = 80

In this example, sparse FIR filter of order N = 80, is designed using the iterative shrinkage
algorithm and the constrained ABC-AMR algorithm. In Table 4.6, passband peak error and
stopband peak error are compared with the results obtained from the minimum-increase
method [24], and the smallest coefficient method [24] and the partial I, optimization [33].
From Table 4.6, for the same sparsity constrained ABC-AMR can achieve similar or better

passband and stopband errors compared to other design methods.

Table 4.6. Peak Error Results of Sparse FIR Filter of Order N = 80

Alg. Passband Peak Error | Stopband peak Error

Constrained ABC-AMR 0.028705964702497 | 9.329212691181199e-04
Minimum-increase [24] 0.027971448361442 | 1.970800923940808e-04
Smallest coefficient [24] 0.028222427657755 | 4.480593261947385¢-04
Partial [; optimization [33] | 0.028706632647080 | 9.318344341936180e-04
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The minimum coefficient values and the number of zero coefficients of sparse FIR filter of
order N = 80 are given in Table 4.7, constrained ABC-AMR has the lowest coefficient

value compared to other design methods.

Table 4.7 Minimum Coefficient Value of Sparse FIR Filter of Order N = 80

Alg. Sparsity | Minimum coefficient value
Constrained ABC-AMR 56 0

Minimum-increase [24] 50 3.597447722312056¢-17
Smallest coefficient [24] 52 7.980770973682628¢-18
Partial [, optimization [33] | 56 6.327944906487736¢-17

Figure 4.5 shows the plots for magnitude response, impulse response, passband and

stopband errors of sparse FIR filter order N = 80 obtained using constrained ABC-AMR.
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Figure 4.5 Magnitude Response, Impulse Response, Passband and Stopband Errors of Sparse FIR Filter of
Order N = 80
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The enlarged impulse responses obtained using constrained ABC-AMR, minimum

increase and partial [; optimization is shown in Figure 4.6.
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Figure 4.6 Enlarged Impulse Response of Sparse FIR filter of Order N = 80

The sparse filter coefficients obtained using the combined iterative shrinkage approach and

the constrained ABC-AMR method is listed in Table 4.8.
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Table 4.8 Filter Coefficients of Sparse FIR Filter of Filter Order N = 60,70, 80

h(n) Filter order N = 60 Filter order N = 70 Filter order N = 80
h(0) 0.000000000000000 0.000000000000000 0.000000000000000
h(1) 0.000000000000000 0.000000000000000 0.000000000000000
h(2) 0.000000000000000 0.000000000000000 0.000000000000000
h(3) 0.000000000000000 0.000000000000000 0.000000000000000
h(4) 0.000000000000000 0.000000000000000 0.000000000000000
h(5) 0.000000000000000 0.000000000000000 0.000000000000000
h(6) 0.000000000000000 0.000000000000000 0.000000000000000
h(7) 0.000000000000000 0.000000000000000 0.000000000000000
h(8) 0.000000000000000 0.000000000000000 0.000000000000000
h(9) 0.000000000000000 0.000000000000000 0.000000000000000
h(10) | 0.000000000000000 0.000000000000000 0.000000000000000
h(11) | 0.000000000000000 0.000000000000000 0.000000000000000
h(12) | 0.000000000000000 0.000000000000000 0.000000000000000
h(13) | 0.001229760122581 0.000000000000000 0.000000000000000
h(14) | 0.001957628258966 0.000000000000000 0.000000000000000
h(15) | 0.000000000000000 0.000000000000000 0.000000000000000
h(16) | -0.003116100726042 | 0.000000000000000 | 0.000000000000000
h(17) -0.001048710518735 | 0.000000000000000 0.000000000000000
h(18) 0.007693412368413 0.001229690709782 0.000000000000000
h(19) 0.011894709063846 0.001957182197884 0.000000000000000
h(20) 0.000000000000000 0.000000000000000 0.000000000000000
h(21) -0.017303208740767 | -0.003113973466924 | 0.000000000000000
h(22) -0.011851694043208 | -0.001044575239062 | 0.000000000000000
h(23) | 0.021051207067630 0.007697807996681 0.000000000000000
h(24) | 0.039220288229915 0.011897609370965 0.000974263193208
h(25) | 0.000000000000000 0.000000000000000 0.000000000000000
h(26) | -0.064915315929322 | -0.017303600595197 | -0.001818077007100
h(27) | -0.054062389098616 | -0.011851953083718 | 0.000000000000000
h(28) | 0.092252992041992 0.021051322404193 0.007238345709738
h(29) | 0.295399045895760 0.039220579689895 0.010783492850610
h(30) | 0.391392195116046 0.000000000000000 0.000000000000000
h(31) -0.064915414757148 | -0.016104522528231
h(32) -0.054062286944487 | -0.011133059084284
h(33) 0.092253213971575 0.020407743523944
h(34) 0.295399421405326 | 0.038315167841337
h(35) 0.391392421193828 0.000000000000000
h(36) -0.064510594576277
h(37) -0.054215769916657
h(38) 0.091974683046617
h(39) 0.296072720787263
h(40) 0.392736793244963
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4.5 Conclusions

In this chapter, the constrained ABC-AMR algorithm has been used together with the
iterative shrinkage algorithm to design minimax sparse linear phase FIR lowpass filters.
As far as the design constraints are not violated, the coefficient values at certain crucial
locations can be set as zero. The design results obtained is compared with other design
methods such as the partial [; optimization [33], the minimum-increase method [24], the
smallest coefficient method [24]. Although other design algorithms can decrease
coefficient values, the constrained ABC-AMR algorithm can reduce impulse responses at
insignificant locations to zero. From the peak error comparison tables, the ABC-AMR
algorithm demonstrates similar or better passband and stopband errors compared to other

design methods.
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CHAPTER 5

MULTIOBJECTIVE APPROACH FOR ASYMMETRIC FIR FILTER DESIGN

Linear phase FIR filters with symmetric/antisymmetric impulse responses are
characterized by long and fixed delay which is undesirable for some applications.

Asymmetric FIR filter design is useful due to the following reasons:

1. The long delay associated with a linear phase FIR filter can be removed through
replacing the linear phase requirement by an approximation of linear phase
requirement in the passband.

ii. A nonlinear phase FIR filter can be designed to simultaneously approximate desired

magnitude and group delay responses.

In this chapter, the multiobjective ABC algorithm is used to design asymmetric FIR filters
to satisfy simultaneously desired magnitude response and group delay response. In the

proposed method, preferences are set a priori using a reference point approach.

The chapter is organized as follows: Section 5.1 gives an introduction about asymmetric
FIR filter design methods; Section 5.2 describes asymmetric FIR filter design problem,
Section 5.3 gives a description about the reference-point-based MOABC, design results are

given in Section 5.4 and conclusions are discussed in Section 5.5.

5.1 Introduction

A literature survey shows that FIR filters with asymmetric filter coefficients can be
designed using several optimization methods. FIR filters with arbitrary magnitude and
phase responses can be designed using iterative reweighted least squares algorithm [55] by
a mixed use of least squares (L,), and Chebyshev (L) optimization algorithms. The
absolute mean square error between frequency responses of deigned filter and desired filter
can be formulated as a quadratic function and can be solved using a set of linear equations

to obtain the optimal filter coefficients [54]. The digital filter with specified stopband gains
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and total stopband energy can be obtained using least squares approach with the stopband
subjected to maximum gain constraints [47]. Nonlinear optimization algorithm based on
the iterative use of the generalized multiple exchange (GME) can be utilized to design
optimal filters that simultaneously meet group delay and magnitude responses
specifications [48]. The optimization of complex error function, for the design of complex
frequency response FIR filter, can be performed according to the L, norm subject to
inequality constraints [49]. Iterative algorithm starting from the Kuhn-Tucker optimality

conditions is used to solve a system of nonlinear equations.

Most of the above mentioned asymmetric FIR filter design methods use a combination of
least square (L,) and Chebyshev (L) norms for all frequency bands. L, norm is easy to
compute and frequently used for various signal processing applications, but they produce
large errors near the discontinuities between two desired responses. The total energy of the
aliased signals must be minimized if an input signal spectrum is wideband and uniformly
distributed. If the passband is narrow, energy can be aliased from wide stopband to narrow
passbands. Even though, the aliased energy can be minimized using least-squares criterion
(L,), the designed filters will have large gains near the edge of their stopband, otherwise
known as the Gibbs phenomenon. Also, L, norm minimizes the amplitude distortion in

passband but fails to optimize the gain and total energy in stopband.

Evolutionary algorithms are capable of handling complex, multimodal design problems,
and hence they can be incorporated into multiobjective optimization problems. Elitist
nondominated sorting genetic algorithm (NSGA) is used to design FIR filters of predefined
amplitude response and group delay characteristics [56]. Three different objective
functions based on passband and stopband amplitude response error, and group delay error
are used. Bio-inspired algorithms such as the ABC algorithm [50], the cuckoo search
algorithm (CSA) [51], the teaching learning-based optimization (TLBO) [52], the harmony
search algorithm (HSA) [59] and iterative self-learning algorithm [60] can be used in the
design of asymmetric FIR filters. In this chapter, the multiobjective ABC algorithm is used
to design asymmetric FIR filters and the design results are compared to the multiobjective

differential evolution.
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5.2 Asymmetric FIR Filter Design [1]

A Nth-order asymmetric FIR filter consists of (N + 1) impulse responses and can be

represented by a distinct coefficient vector c as,
— T
¢ =[cg,¢q,Cp C3 e, CN]

The frequency response H(w) of a FIR filter can be expressed as,

N
Hw) = Z CnZ ™" | o piwT
n=0

N N
= Z cpcos(wnT) —j ) ¢, sin(wnT)

n=0 n=0

= | H(w)|e/*™)

In equation 5.2, the magnitude response |H (w)|is equal to,

|H(w)| = {[Z:=ocn Ccos an]Z + [Z:=0C" sin nWT]Z}

and the group delay of asymmetric FIR filter can be expressed as,

N =

a6(w)
owT

T(w) = —

where 6(w) is the phase response.

The objective function of the magnitude error ep,q,4(c) is defined by,

! 1
enag(© = [ Wl IHW)I = )|

for Vw; €

(5.1)

(5.2)

(5.3)

(5.4)

(5.5)
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where p is a positive even integer; H;(w;) = 1 in passband and H; (w;) = 0 in stopband(s);

and (); denotes the union of frequency bands of interest.

Similarly, the objective function of the group delay error ey4(c) among the passband can

be calculated by,

el

I
eaa@ =Y. Wil = lraull” (56)

for wy, < w; S w,p,

where p is a positive even integer; T, (w) is the desired group delay.

The optimization problem for designing digital FIR filters searches for an optimal
coefficient vector ¢ that minimizes the minimax errors in the magnitude and group delay

responses simultaneously.

5.3 Reference Point-Based Multiobjective ABC Algorithm

A reference point method represents a preference-based multiobjective optimization
approach which directs the search towards the region of interest of the decision maker. The
preference-based methods have various advantages such as computationally efficiency,
faster convergence and better scalability in higher objective space. One of the earliest
approaches in the reference point method is described in [186], in which the optimal
solutions near the reference point Z = (Zy,Zy, ... ..... Z,), is obtained by solving the

scalarizing function s(f (x)),
s(f) = max [w. (f;(x) - 2))] (5.7)

where w; is the weighting vector and f; is objective function values. The reference point
Z; guides the search toward the desired region while weight vector w; provides more
detailed information about the Pareto optimal point. The main drawback of this approach
is that the problem is formulated as single-objective optimization problem and provides

only one solution in each run according to the decision maker’s preferences. If the user is
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dissatisfied with the current solution and procedure is repeated with a new set of reference

points. In practice, several runs of algorithm are required to reach the optimal solutions.

In the reference point dominance-based approach, solutions near the reference point is
preferred while preserving the order induced by the Pareto dominance. The user provides
a set of reference points and for each reference point the normalization Euclidean distance

known as the preference operator [176] is calculated as,

M (@R
dig = Zi=1<w> (5.8)

L

where d;p is the normalization Euclidean distance or the preference operator from
individual I to reference point R; M is the number of objectives; f;™** and ;™" are the
population maximum and minimum objective value of ith objective. The solutions near the
reference point is assigned rank 1, next closet solution is given rank 2 and so on. The

flowchart for the reference point-based MOABC is given in Figure 5.1.

When the reference point-based MOABC is used to design asymmetric FIR filters, the
optimization process search for an optimal coefficient that minimizes both the amplitude
response error and group delay error. The initial population is generated from a uniform
random distribution within the upper and lower limit specified in Table 5.1. The objective
function value is calculated for each food location and nondominated sorting is performed,
finally ranks are assigned based on the preference operator d;z. During each iteration t,

onlooker and employed bees are updated according to equation 3.3.
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Generate initial population x;, i € [1,SN]
Apply preference operator based sorting and update
archive 4,

l:

Generate new solution from current population v; using ABC-AMR

l

Apply dominance criteria to update x; with v;; v; substitutes
x; in the population if, d;z(v; ) < d;p(%;)

Update archive, A;:
» Any dominated solution is removed.
» Nondominated solution is archived based on preference operator

}

. No
Terminate on

reaching

stopping criteria

Pareto front is updated
according to Pareto rank and
the results are displayed.

Figure 5.1 Flowchart of Reference Point-Based MOABC
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The new solution is evaluated against old solution based on its distance from the reference
point,
o = x|, if dp@'],) > dp@x],) 59)
oW, i @) < dp@d|) '

The onlooker bee searches for new food location based on the probability value calculated
using equation 2.5 and the employed bees that cannot be improved after predetermined
number of trials is abandoned as scout bees. The size of the archive is maintained within
the predefined limit using a preference vector operator. On reaching termination criteria,

the top solutions are chosen according to their ranks.

5.4 Design Examples and Results

In this section, asymmetric FIR filters of order 24 and group delay value of 10 are designed
using the reference point-based MOABC. The optimization algorithm simultaneously

optimizes amplitude error response and group delay error response.

The filter coefficients are initialized randomly, and the results are compared to the
reference point-based multiobjective differential evolution algorithm, the obtained results
are favorable to MOABC. A detailed description about the multiobjective differential
evolution algorithm (MODE) is given in [188].

The ABC parameters such as the population size SN = 50, and limit is set as 200. The
parameters for the MOABC and the MODE are given in Table 5.1; frequency grid for
optimization, error calculation, and weights for optimization are given in Table 5.2; filter
specifications are given in Table 5.3; Reference points are set using the tolerance limits in
passband magnitude, stopband magnitude and peak group delay. The designs are
performed using an intel core 17-4790, 3.60 GHz with 12GB RAM desktop computer.
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Table 5.1 Parameters of MOABC and MODE

Symbol | Description Lowpass | Highpass | Bandpass | Bandstop
P Least p th-order 128 128 128 128

SN Colony Size of ABC | 50 50 50 50

N, Population of DE 50 50 50 50

F Scaling factor of DE | 0.5 0.5 0.5 0.5

CR Crossover rate of DE | 0.5 0.5 0.5 0.5

Table 5.2 Frequency Grids for Asymmetric FIR Filter Design

Optimization F, =[0.0.005: 1]
Peak error evaluation F, =[0.0.001: 1]
Frequency weights for 0 <w; < m, W(w;) | 1

Table 5.3 Asymmetric FIR Filter Specifications

Symbol | Description Lowpass | Highpass | Bandpass | Bandstop
Wp1 Passband edge 1 0.3n 0.55n 0.25n 04n

Wyq Stopband edge 1 0.4n 045~ 0.35% 03=m
Wp2 Passband edge 2 - - 0.6m 0.65n
Wi Stopband edge 2 - - 0.7n 0.55n

851 Stopband 1 tolerance limit | 0.05 0.06 0.06 0.06

85 Stopband 2 tolerance limit | - 0.06 -

Op1 Passband 1 tolerance limit | 0.05 0.06 0.06 0.06

Op2 Passband 2 tolerance limit | - - - 0.06

g Group delay tolerance limit | 0.005 0.006 0.006 0.006

5.4.1 Asymmetric FIR Lowpass Filter

Asymmetric FIR lowpass filter of order 24 and group delay 10 is designed using the
proposed reference-point-based MOABC approach and the results are compared to those
of the reference-point-based MODE algorithm. The reference point is set as follows: R; =
[8p1, 651, 84] according to Table 5.3. The three objective functions for minimax error

approximation are formulated as follows,

f1(c) represents the minimax magnitude error in passband,
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1

Qp 128 128
fi© = [Z Ww|IHGw)! - 1] ] (5.10)
i=
f2(c) represents the minimax magnitude error in stopband,
1
! 128|128
f2(0) = [z  WlIHWI] ] .11
=4l
f5(c) represents the minimax group delay error in passband,
; 1
1281128
£@=] Wl - 10 (5.12)
1=

where W (w;) = 1 from equations 5.10 - 5.12.

Magnitude response obtained for asymmetric FIR lowpass filter using the multiobjective
ABC and the multiobjective DE are plotted in Figure 5.2 and Figure 5.3. The Pareto front
approximation for the multiobjective ABC and the multiobjective DE are plotted in Figure
5.4 and Figure 5.5. The upper and lower limits of passband, stopband and group delay
errors of Pareto optimal solutions obtained using the MOABC and the MODE are given in
Table 5.4. Unlike MODE, MOABC has a smaller range for each of the objective functions,
as MOABC tries to improve the solutions near the reference point defined by the user
instead of searching entire pareto front. This reduces the computational cost and

complexity.

Table 5.4 Objective Function Range for Asymmetric FIR Lowpass Filter

MOABC MODE
Pe, e, | 0.052152117007106 | 0.054160533620728
ek, | 0.052001009935788 | 0.036827044396720
Peg, eJ. 10.050737738312313 | 0.053503693033970
ek, 10.050673982376137 | 0.037126763296944
Pegy el, | 0.004373960888387 | 0.626099033120376
ek, | 0.004318531058836 | 0.004165909983975
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Figure 5.2 Magnitude Response, Impulse Response, Passband and Stopband Errors of Asymmetric FIR
Lowpass Filter Using MOABC
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Figure 5.3 Magnitude Response, Impulse Response, Passband and Stopband Errors of Asymmetric FIR
Lowpass Filter Using MODE
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The peak error values from two designs are compared in Table 5.5. Simulation results
indicate that FIR lowpass filter of group delay 10 designed using the multiobjective ABC
algorithm has lower passband peak error, stopband peak error and group delay error in
comparison to those obtained by the multiobjective DE designs. Filter coefficients of
asymmetric FIR lowpass filter of order N = 24 and group delay 10 obtained using the
MOABC and the MODE are listed in Table 5.6

Table 5.5 Peak Error Values of Asymmetric FIR Lowpass Filter

MOABC MODE

Passband peak error 0.052138791166861 | 0.054107564642413
Stopband peak error | 0.050686147474734 | 0.053503693033970
0.004320014372624 | 0.005498552713419

Group delay error

Table 5.6 Coefficients of Asymmetric FIR Lowpass Filter

h(n) MOABC MODE

h(0) | -0.042716129862988 | -0.039669318958197
h(1) | -0.009532115856082 | -0.012020458958296
h(2) | 0.021065732735079 0.024931762696377
h(3) | 0.036477433192541 0.035650920233609
h(4) | 0.011651438615107 0.014025902815955
h(5) | -0.041217814823204 | -0.041809354025453
h(6) | -0.070303617460113 | -0.069082250031345
h(7) | -0.015171539449710 | -0.015559591138835
h(8) | 0.128282573784506 0.130469056416274
h(9) | 0.281875692201088 0.280708282808087
h(10) | 0.349015124922104 0.349929433024378
h(11) | 0.279978387027116 0.282293026185234
h(12) | 0.128396581731314 0.126723515153492
h(13) | -0.013858102405083 | -0.012338432392482
h(14) | -0.070969455028233 | -0.070178727886812
h(15) | -0.040927384153750 | -0.041058175666972
h(16) | 0.012395293905058 0.013442684705968
h(17) | 0.036111131300656 0.039042561037000
h(18) | 0.019695789414305 0.019116744091872
h(19) | -0.013481170730628 | -0.012720784205868
h(20) | -0.027773994531193 | -0.027401753123643
h(21) | -0.015312108416339 | -0.012215226484171
h(22) | 0.003282086782674 0.000941382486533
h(23) | 0.004688277571827 0.005714631773760
h(24) | -0.002918631575345 | -0.002816191307997
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5.4.2 Asymmetric FIR Highpass Filter

Asymmetric FIR highpass filter of order 24 and group delay 10 is designed using the
proposed reference-point-based MOABC approach and results are compared with the
reference-point-based MODE algorithm. Three objective functions are formulated to
represent minimax magnitude error in passband f;(c), minimax magnitude error in
stopband f,(c), and minimax group delay error in passband f5(c). The reference point is

set as follows: R; = [6

»1, 051, 84] according to Table 5.3. The plots of magnitude response,

impulse response, passband and stopband peak errors of the highpass digital filters are
shown in Figure 5.6 and Figure 5.7 respectively. The Pareto front approximation for the

multiobjective ABC and the multiobjective DE are plotted in Figure 5.8 and 5.9.

The upper and lower limits of the minimax passband magnitude error, minimax stopband
magnitude error and minimax passband group delay error of asymmetric FIR highpass

using the MOABC and the MODE are given in Table 5.7.

Table 5.7 Objective Function Range for Asymmetric FIR Highpass Filter

MOABC MODE
Pevp eds 0.061789588849616 | 0.069870090172511
ety 0.061544917669254 | 0.040678252895968
Pegy el 0.062016321116392 | 0.071038091506139
ey 0.061424559156228 | 0.040310924288638
Pegp el 0.006304138820070 | 0.892754974163104
ety 0.005883467242846 | 0.006183613321788

The passband, stopband and group delay peak error values from the two designs are
compared in Table 5.8. Simulation results indicate that FIR highpass filter of group delay
10 designed using the multiobjective ABC algorithm has lower passband peak error,
stopband peak error and group delay error in comparison to those of the multiobjective DE

designs.

Table 5.8 Peak Error Values of Asymmetric FIR Highpass Filter

MOABC MODE
Passband peak error 0.061789588849616 | 0.069870090172511
Stopband peak error | 0.061424559156228 | 0.066432945192353
Group delay error 0.005962542752997 | 0.008932567749717
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Filter coefficients of order N = 24 and group delay 10, asymmetric FIR highpass filter
obtained using the reference-point-based MOABC and the reference-point-based MODE

are listed in Table 5.9.

Table 5.9 Coefficients of Asymmetric FIR Highpass Filter

h(n) MOABC MODE

h(0) | -0.006490631823948 | -0.004767963442825
h(1) | -0.050197039268114 | -0.040107699017188
h(2) | -0.000157367354158 | -0.001654803726508
h(3) | 0.041789006819530 | 0.047333349706460
h(4) | 0.003121072627210 | -0.003273162108325
h(5) | -0.055261575010827 | -0.062107420416884
h(6) | 0.001980086364495 | -0.002428123014813
r(7) | 0.103711906715006 | 0.091613323183115
h(8) | 0.002652593880740 | -0.001232973843750
h(9) | -0.318542092428193 | -0.324801529545916
h(10) | 0.499786604333063 0.507147944217247
R(11) | -0.321364047365022 | -0.321948672387241
R(12) | -0.003426374900522 | 0.005640409768723
R(13) | 0.096449813363240 | 0.093520903730638
h(14) | -0.002947694083502 | -0.004314375769320
h(15) | -0.058522603732333 | -0.063539435238503
h(16) | -0.001674706587845 | -0.007094116461884
h(17) | 0.037296077006058 0.041958958289250
h(18) | 0.002750968283580 | -0.002784913861289
R(19) | -0.037361055794202 | -0.030148661355791
R(20) | 0.008837359851564 | 0.012262341543969
h(21) | 0.008118915422543 0.014994722271082
h(22) | -0.000671996814803 | 0.007293286836324
h(23) | -0.003799469766575 | 0.001415790340192
h(24) | -0.002108536652073 | -0.000442791368306

5.4.3 Asymmetric FIR Bandpass Filter

Asymmetric FIR bandpass filter of order 24 and group delay 10 is designed using the
proposed reference-point-based MOABC approach. The minimax error approximation
functions in the multiobjective space are set as follows, f;(c) represents the minimax
magnitude error in passband, f,(c) and, f5(c) represents the minimax magnitude error in

stopband 1 and stopband 2 respectively, f,(c) represents the minimax group delay error in
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passband. The reference points are set as follows: R; = [8), 851, 852, 84] as given in Table
5.3. The peak error values of asymmetric FIR bandpass for passband magnitude response,
stopband magnitude response and passband group delay using the reference-point-based
MOABC and MODE are given in Table 5.10. The upper and lower peak error limits of
passband magnitude, stopband magnitude and passband group delay using the reference-
point-based MOABC and MODE are obtained as shown in Table 5.11. Design results
indicate that FIR bandpass filter of group delay 10 designed using the multiobjective ABC
algorithm has lower passband magnitude peak error, stopband magnitude peak errors and

passband group delay peak error than the results obtained using the multiobjective DE.

Plots of frequency responses using both the design methods are given in Figure 5.10-Figure

5.11.

Table 5.10 Peak Error Values of Asymmetric FIR Bandpass Filter

MOABC MODE
Passband magnitude error | 0.062797982630476 | 0.065628078408351
Stopband1 magnitude error | 0.060139429882185 | 0.065332461365080
Stopband2 magnitude error | 0.060552848906849 | 0.065877538077204
Group delay error 0.003704585067247 | 0.005968057189008

Table 5.11 Objective Function Range for Asymmetric FIR Bandpass Filter

MOABC MODE

Pe,, ey | 0.062839255867158 | 0.065628078408351
eks | 0.062761387004337 | 0.048775531431478

Peses e, | 0.060221101142016 | 0.065429924019549
ebs; | 0.060030433484600 | 0.049708538297435

Pess, | el, | 0.060618291356963 | 0.065877538077204
els, | 0.060473621200255 | 0.048832081164414

Pecy e, | 0.003704585067247 | 0.315435732758012
ek, | 0.003542782429378 | 0.005968057189008
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Filter coefficients of order N = 24, and group delay 10, FIR bandpass filter designed using

the MOABC and the MODE is shown in Table 5.12.

Table 5.12 Coefficients of Asymmetric FIR Bandpass Filter

h(n) MOABC MODE

h(0) 0.012951482189904 | 0.017297153032816
h(1) | -0.039546034729322 | -0.019474918438111
h(2) | -0.062560878577823 | -0.075960389893364
h(3) 0.028730286568553 | 0.012832480626508
h(4) 0.009447907031255 |  0.005526395023910
h(5) 0.018404819846923 | 0.002444692855810
h(6) 0.119642885613247 | 0.122901120736397
R(7) | -0.053046519147178 | 0.022499578347350
R(8) | -0.269363719466660 | -0.275160082271532
h(9) 0.029817463422804 | -0.085636850847237
R(10) | 0.350490484645877 | 0.323657456051355
R(11) | 0.018193036666201 | 0.142902017171884
h(12) | -0.277762631857184 | -0.246561604531935
R(13) | -0.044698187894366 | -0.110510795927713
R(14) | 0.111818416308811 | 0.096896861498355
R(15) | 0.016849125631122 | 0.030838001527176
R(16) | 0.010148901020572 | 0.010200967771343
h(17) | 0.026808780676231 | 0.037754591511162
h(18) | -0.051813730042961 | -0.035789340080249
h(19) | -0.034217988852655 | -0.0482216883388749
h(20) | 0.025119656957318 | 0.010401246924535
h(21) | 0.006028708903840 | 0.007539636922988
h(22) | 0.004099368158720 | -0.002224379283858
h(23) | 0.002906484316684 | 0.003422404322880
h(24) | 0.000346340260336 | -0.001014117371160

5.4.4 Asymmetric FIR Bandstop Filter

Asymmetric FIR bandstop filter of order 24 and group delay 10 is designed using the
proposed reference-point-based MOABC approach. Objective functions for minimax
errors are formulated as follows; f;(c) and f,(c) represents the minimax magnitude errors
in passband 1 and passband 2 respectively, f5(c) represents the minimax magnitude error

in stopband, f,(c) and f5(c) represents the minimax group delay errors in passband 1 and
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passband 2 respectively. Reference points are set as follows: R; = [8p1, 82, 851,84, 6]

according to Table 5.3. The peak error values obtained are listed in Table 5.13. The upper

and lower peak error limits of passband magnitude, stopband magnitude and passband

group delay obtained using the reference-point-based MOABC and MODE algorithms are

compared in Table 5.14. Simulation results indicate that FIR bandstop filter designed using

the multiobjective ABC algorithm has lower passband magnitude peak errors, stopband

magnitude peak error and passband group delay errors than the results obtained using the

multiobjective DE.

Table 5.13 Peak Error Values of Asymmetric FIR Bandstop Filter

MOABC MODE
Passband 1 magnitude error 0.051215606573326 | 0.056895217471357
Passband 2 magnitude error 0.055797702268403 | 0.061661241102966
Stopband magnitude error 0.061653129912316 | 0.066137076403756
Group delay 1 peak error 0.003098649096721 0.006889124566342
Group delay 2 peak error 0.004373552107509 | 0.006044379455240

Table 5.14 Objective Function Range for Asymmetric FIR Bandstop Filter

MOABC MODE

Peps, el | 0.051266076268417 | 0.066115904535004
eks, | 0.051191984215891 | 0.044067817134488

Peps, e, | 0.055825715188505 | 0.065708665758640
eks, | 0.055727764765201 | 0.043911406326871

Pesy | eY | 0.061670446803766 | 0.066137076403756
els | 0.061648931209908 | 0.044338243703762

Pecy, el | 0.003156622663099 | 0.615125380742207
ekr, | 0.003065476179955 | 0.002986743919777

Pees, e, | 0.004460186281236 | 0.489269490433387
ek, | 0.004365659959170 | 0.004016657752175

Plots of magnitude response, impulse response, passband and stopband errors of the FIR

bandstop filter designed using the MOABC and the MODE algorithms are shown in

Figures 5.12 and 5.13, respectively.
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Filter coefficients of order N = 24, and group delay 10 asymmetric FIR bandstop filter

designed using the MOABC and the MODE is shown in Table 5.15.

Table 5.15 Coefficients of Asymmetric FIR Bandstop Filter

h(n) MOABC MODE

h(0) | -0.018421089920395 | -0.018730097292734
h(1) | -0.045309875930292 | -0.042919072876450
h(2) 0.044877744143236 | 0.041511988287556
h(3) 0.059759471075057 |  0.060665709488127
h(4) | -0.026376962224459 | -0.030077210176051
R(5) | -0.036026794370626 | -0.038482376878884
h(6) 0.003218959716513 |  0.003138745706479
R(7) | -0.075310482282336 | -0.074921970083302
h(8) 0.037134665828635 | 0.033741712326813
h(9) 0.586961490251204 | 0.585658922543081
R(10) | -0.046812134783624 | -0.049314293068551
R(11) | 0.587270992234954 | 0.590724610696998
R(12) | 0.038069700705038 | 0.034422968665259
h(13) | -0.075702872329833 | -0.077238686069151
R(14) | 0.001255180985708 | 0.000367856010122
R(15) | -0.036041595816818 | -0.037139759158003
h(16) | -0.024145950636344 | -0.027212401973508
h(17) | 0.060133315223306 | 0.060730167959274
h(18) | 0.042935368051682 | 0.039277561427109
h(19) | -0.045686019257138 | -0.043609544761427
h(20) | -0.016874170193133 | -0.017331867748600
h(21) | 0.000451675309408 | 0.000603840148797
h(22) | -0.000862221117489 | -0.000559279117441
h(23) | -0.000294168210020 | -0.000346498500380
h(24) | 0.000470336278089 | 0.000011627727241

5.5 Conclusions

In this chapter, asymmetric FIR filters which simultaneously satisfies both magnitude and
group delay specifications are designed using the reference-point-based multiobjective
ABC algorithm. Lowpass, highpass, bandpass, and bandstop filters of order 24 and group
delay of 10 are designed. In the reference-point-based MOABC approach, instead of

approximating the whole Pareto front, the search is directed towards the regions of interest
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of the decision maker. By introducing the preferences of the decision maker during
optimization phase, the computational complexities associated with approximating the
whole Pareto front is reduced. The simulation results confirm that the reference-point-based
MOABC algorithm can be used to obtain lower peak errors in magnitude response and
group delay response than those of the reference-point-based MODE. In contrast to the
differential evolution algorithm, the onlooker bee phase in the ABC algorithm employs a
secondary search in refined regions of the solution space. This ensures that the MOABC

can simultaneously minimize all objective functions towards a better solution.
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CHAPTER 6

MULTIOBJECTIVE APPROACH FOR IIR FILTER DESIGN

FIR filters are inherently stable and has exact linear phase, however they have certain
drawbacks such as higher group delay and it requires more hardware components
compared to infinite impulse response (IIR) filters for the same set of magnitude and group
delay specifications. Also, FIR filters cannot be used in audio signal processing
applications where long delays are undesirable. Although IIR filters can achieve much

better performance than FIR filters, there are some difficulties faced while designing them

such as:

1. IIR filter design is a non-convex optimization problem with many local minima
on error surfaces and thus the global optimum solution is difficult to be found
and verified.

2. If both magnitude and group delay characteristics need to be optimized, stability

constraints must be incorporated into the design procedures. But, when
denominator order is greater than 2, stability domain cannot be expressed as a

convex set in terms of the denominator coefficients.

In this chapter, the preference-point-based multiobjective ABC algorithm is used to design
IIR filters. Physical programming (PP) technique is used to set the preferences and
spherical pruning technique is used to maintain the external archive size. The chapter is
organized as follows: Section 6.1 gives an introduction about IIR filter design methods;
Section 6.2 describes IIR filter design problem formulation, Section 6.3 gives a brief
description about the physical programming approach, the spherical pruning technique and
the preference-point-based MOABC; design results of [IR lowpass, highpass and bandpass

filters are given in Section 6.4 and conclusions are given in Section 6.5.
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6.1 Introduction

Classical design methods of IIR filters include impulse invariant method, matched-z
transformation, and bilinear transformation. Although these methods can design stable IIR
digital filters, these methods can only be applied to transform standard analog filters, such
as lowpass, highpass, bandpass and bandstop filters, into their digital counterparts

satisfying magnitude response characteristic.

Given a prototype lowpass IIR digital filter meeting specified passband and stopband
specifications, spectral transformation [195] is the most common technique for designing
IIR lowpass, highpass, bandpass and bandstop digital filters meeting the same passband
and stopband specifications. Other approaches to design digital filters include linear
transformation of classical LC filters [196], lattice modeling [197], and wave digital filters

[198]-[199].

In [61], an effective method for designing short coefficient wordlength IIR digital filters is
described by first equalizing passband and stopband statistical word lengths before
optimization. Passive second order digital filters can be designed by applying linear
transformation on two-port gyrator circuit [99]-[100], [110] to realize first-order and
second-order multioutput digital filters [101]-[104]. First-order and second-order tunable
and variable passive digital filters [105]-[106], can be designed from passive digital filters
[99]-[100] by changing the values of respective filter coefficients. The work is also
extended to 1-D high-order passive digital filter design [107]-[109] and 2-D passive digital
filter structure [110]. Tunable filters of higher order and sharp cut off frequency can be
designed by introducing analytical expression [108] for filter coefficients of both first-order
and second-order passive digital filter sections or only to second-order section. Adaptive
IIR digital filters [86] can be partially stabilized by using an adaptive feedback gain
resulting in an increase in convergence speed. Adaptive IIR filters can be applied to noise
reduction and echo cancellation. By applying a saturation function such as bipolar ramp
function and bipolar sigmoid function at output of an adaptive IIR digital filter, undesirable
effects of instability arising in the filter can be avoided [87]. IIR filters with equiripple
passband, stopband and linear phase passband can be obtained by using Remez exchange
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algorithm [66]-[67]. The method adopts the combination of a mirror image numerator
polynomial to approximate equiripple magnitude response in passband and stopband.
Furthermore, an all-pole transfer function is used to provide a constant group delay in the
passband. Nearly linear phase IIR filter design can be achieved in [75],which
group delay deviation is minimized under the constraints of maximum passband
attenuation and minimum stopband attenuation. Stability constraint is incorporated in
an optimization problem as a set of linear inequality constraints, by designing the
filter as a cascade of second-order sections. In [71], IIR filter design with a new
stability constraint based on argument principle is introduced. Weighted least square IIR
filters can be designed using partial second-order factorization [76]; and minimax IIR
filters with second-order factor updates is described in [74]; minimax IIR filter design
using semidefinite programming (SDP) relaxation technique [72] and iterative second
order cone programming (SOCP) [73] have been respectively advanced. A review

on recent advancements in FIR filter approximation by IIR filter is presented in [68].

IIR filter design is a multimodal optimization problem, converging to a global optimum is
not often possible using iterative gradient-based search algorithms, as the problem is highly
sensitive to its starting points and requires a continuous and differentiable cost function.
So stochastic and bio-inspired algorithms that are independent of gradient calculation can
be used for designing IIR filters. Evolutionary algorithms such as harmony search
algorithm [77]-[78] and differential evolution algorithm [187] can be applied for IIR filter
design. IIR filters with linear phase passband of lower orders can be designed by local search
operator enhanced multiobjective evolutionary algorithm (LS-MOEA) [79]-[80]. In this
method, each of the IIR filter coefficients is represented as a combination of control and
coefficient genes and optimization process searches for an optimal coefficient with minimum

magnitude and phase response error.

Unlike linear phase FIR filters which involves the optimization of only amplitude response,
IIR filter design requires the simultaneous optimization of magnitude and phase responses,
and thus IIR filter design problem is formulated as multiobjective optimization problem

rather than a single-objective optimization problem. Multiobjective evolutionary
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algorithms such as the multiobjective ABC algorithm [81], the multiobjective teaching
learning-based optimization [82], the multiobjective cuckoo search algorithm [83] can be used
to design higher order IIR filters. In such problems, the designer generates a set of
alternative trade-offs, called Pareto optimal solutions, instead of a single optimum solution.
The set of nondominated solutions are optimal such that none of the solutions in the entire
search space is superior, when all the objectives are considered. Multiobjective decision
making finds numerous applications in the field of engineering design, scientific

experiments and business decision making.

Even though, the numerous solutions present in the Pareto front are optimal, the user needs
only one solution for every practical application. The decision maker will have a region of
interest in the objective space, and the quality of solutions outside those regions are not a
concern for the designer. In the optimization process, a search can be guided towards the
region of interest of the decision maker if the preference information can be incorporated
into the search process. In this chapter, physical programming approach is used to
incorporate the preferences of the decision maker into the multiobjective ABC algorithm.
Using the multiobjective ABC algorithm, various IIR filters have been designed. Since IIR
filters lack inherent stability, stability constraints need to be incorporated in their design

procedure.

6.2 IIR Filter Design [1]

Cascade-form realization of an IIR digital filter with numerator and denominator order

M = N, can be expressed as,

N
2 B2
H(Z) = bO 'r21=1 A:(z)

_, 1—[% (1 + bypz=t + bypz~2) 6.1)
-0 n=1(1+ a,z71 + azpz2)

= Z?fl=0 sz_n
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In equation 6.1, b;;, and a;;,, fori = 1,2 andn = 1 to g are real valued coefficients and b,

is a scaling constant. The coefficients c(m) for m > 0 represents the impulse response
values of the IIR digital filter. The corresponding coefficient vector ¢ consisting of

(2N + 1) distinct coefficients which can be expressed as,

T

Cc = [b11b21a11a21 s blﬁbzﬁalﬂazﬂbo (6.2)
2 2 2 2

The stability triangle of a 2"%-order denominator transfer function A(z) offers a necessary

and sufficient condition to ensure stability which requires,
_2 < a1 < 2
-1<a,<1 (6.3)
—(a1 + 1) < a2 < (a1 - 1)
where A(z) =1+ a,z7 1 +a,z72.
Substituting z = e/¥ into equation 6.1, the frequency response of Nth-order cascade IIR

filter can be expressed as,

N . .
> (1 + bye W + bZne‘JZWT)

n=1(1+ ay,e T + a,, e /2vwT)

HW) = H(2)],_,jwr = by 1_[

_p 1_[§ [1+ X2, bipcos iwT] — j[X2_, bypsin iwT] (6.4)
0] L 1+ 32 aecos iwT] — j[X2, agsin iwT]

= H(w)|e/o
The magnitude response |H(w)| is equal to,
1

Hw)| = [b ll—[% [1+ X%, bipcos iwT]? + [, by sin iwT]?)2 6.5)
W= 150 n=1 {[1 + X2, ajcos iwT]? + [X2, ai,sin iwT]?

The phase response 8(w) can be expressed as,
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O(w) =arg H(w)

N

N 2 .
2 * . by, sin iwT

= Z —tan~t Li ; z : + tan~t
n=1 1+ X7 bipcos iwT

Y2 . apsiniwT (6.6)
14+ Y2, apcos iwT

The group delay can be expressed as,

26 (w)
Tw) = - owT
% (6.7)
Z ac(n) 1 ad(n)
] 1+ c(n)2 owT 1+d(n)? owT
n=
where,
c(n) = Y1 bipsin iwT forn=1 to%
14 Y2, bjpcos iwT
forn=1tox (6.8)
Y2 apsiniwT 2
d(n) = > .
1+ Y, apmcos iwT
Taking partial derivatives of c(n), forn = 1 to %,
dc(n) _ [1+ X7, bincos wWT][EE, ibycos iwT]
owT [1+ X%, bipcos iwT]?
(6.9)
[1+ X2, bipsin iwT][X2, ib,sin iwT]
[1+ X%, bipcos iwT]?
Taking partial derivatives of d(n), form =1 to %,
ad(n) [1+ Y2 amcos iwT][X4, iaj,cos iwT]
owT [1+ X%, apcos iwT]?
(6.10)

[1+ Y2, aj,sin iwT][Y2, ia;,sin iwT]
[1+ X%, ajcos iwT]?

118



The objective function of the minimax magnitude error e, 4(c) is defined by,

1
p
emag© = | > [1H(ew)l = Ho(wp|” 6.11)
W€
for Vw; €

where H;(w;) = 1 in passband and H;(w;) = 0 in stopband(s); and ; denotes union of

frequency bands of interest and p is a positive integer.

Similarly, the objective function of the minimax group delay error eyq(c) among the

passband can be calculated by,
1
ega(c) = Z|T(C, wy) — ta(wy) [P (6.12)
wi
forwy, < w; < wp,

where 74(w) is the desired group delay.

The maximum passband attenuation Ry, (in dB) is related to passband ripple &, as,

5 =10 720-1 (6.13)
10 720+ 1
The minimum stopband attenuation R (in dB) is related to stopband ripple &y as,
—Rg
6‘5 =10 /20 (614)

The multiobjective optimization problem for IIR filter design searches for an optimal
coefficient vector ¢ that minimizes the objective functions e,,(c) and eyq(c)

simultaneously.
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6.3  Physical-Programming-Based Multiobjective ABC Algorithm

The preferences are incorporated into the multiobjective ABC algorithm a priori and
explicitly using the global physical programming approach and the size of the external

archive is updated using the spherical pruning technique.

6.3.1 Physical Programming Approach

The physical programming (PP) [188] is a technique for multiobjective optimization that
formulates the design objectives into an understandable language and enables a designer
to express preferences to each of the objective functions. In this approach, a designer
expresses his preferences related to each objective function with details using the
information available about the problem at the optimization phase. In PP, the decision
maker expresses his preferences using different degrees of desirability: highly desirable
(HD), desirable (D), tolerable (T), undesirable (U) and highly undesirable (HU). There are
eight preference functions classified into 4 soft classes and 4 hard classes [190]. The soft
class functions are as follows: Class 1S (smaller is better), Class 2S (larger is better), Class
3S (value is better), Class 4S (range is better). The hard class functions are as follows:
Class 1H (must be smaller), Class 2H (must be larger), Class 3S (must be equal), Class 4S
(must be in range). The selection of class function by a designer depends on the degree of

sharpness of his preferences. In this design, Class 1S function is chosen to set preferences.

LASS 1S
' CLASS |

HIGHLY DES.
\\1 OLERABLE

\I’)ESIF\’!\BLE
UNDES
HIGHLY UNDES.

i

UNACCEPTABLE

Figure 6.1 1S Class Function: Smaller is the Better [190]
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PP can be used as a selection mechanism to store and replace solutions in the external

archive. Given a set of preferences B with N ranges for M objectives [188].

[9i g -~ 91 ]
92 93 - gév} (6.15)

I Gk - 9N

B =

When N = 5, the preference set can be set using the following different ranges:
HD: Highly desirable if g3, < g (x) < gk

D: Desirable if gk, < g, (x) < g3

T: Tolerable if g2, < g,,(x) < g3,

U: Undesirable if g3, < g,,(x) < g,

HU: Highly undesirable g#, < g,,(x) < g5,

For m th objective, the class function is defined as,

fin (%) if gm(x) > g
Ny (X) =1 fik(x) if gm(x) € [ghY, ... gkl ke[1,2,3 ... ... ... N]  (6.16)
0 if gm(x) < g

Preference function f;X (x) in the range k for the objective function value g,, (x) is defined

as,

Y
Im(X) gm1> 6.17)

fE(x) = ay_ +Aa< —
m k-1 k gﬁl—gﬁll

where,
@y =0; a1 = Aipi; A= 0

Aay = ap —ag—y ;0 =ap1.M; (1<k<N)
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Minimization is performed for soft class as follows,

min j(x) = ni Z s (x) (6.13)
SC m=1

ng. 1s the number of objectives in decision space.

A lower value of class function is always preferred over a higher value. The obtained
solutions in the Pareto front are analyzed using the spherical pruning (SP) algorithm. The
algorithm selects one solution for each spherical sector, according to the norm. This
maintains a diversity in the Pareto front and prevents converging to a single Pareto optimal

solution.

6.3.2  Spherical Pruning Technique

If physical programming (PP) is used as such, it will evolve an entire population to a single
Pareto optimal solution. Therefore, it must be merged with other mechanisms to maintain
diversity in the Pareto front. Spherical pruning can maintain diversity in the Pareto front.
The basic idea of spherical pruning is to analyze the proposed solutions in the current
Pareto front approximation J, by using normalized spherical coordinates from a reference
solution. With such an approach, it is possible to attain a good distribution along the Pareto
front. The algorithm selects one solution for each spherical sector, according to a given

norm or measure.

Given two solutions @*and 8% from a set, @1 has preference in the spherical sector over 62

if,

[Ac(01) = A(OH] AT @I, < 1T, (6.19)

where,

1
y@ll, = (ZZ’=1| /q (0)|p)p is a suitable p-norm, A.(@%) is the spherical sector defined

1 1 *
as A.(0Y) = Bl(+(;), "”'ﬁm+£](0) R A{P is the spherical grid on the m-
Al Am—l
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B.Y-B." Bm—-1"~Bm-1"
o e

limit is defined as BY =[maxp;(J(0)....max B, (J(6)] and BL=
[min 8, (J(6Y) .....min B, (J(8Y)].

dimensional space defined as A{, = ], the upper and lower

In this implementation, spherical pruning mechanism is used to confine the size of the
external archive within the predetermined value. A detailed description about spherical

pruning technique can be seen from [188].

6.3.3 Physical Programming Multiobjective ABC Algorithm

The physical programming multiobjective ABC algorithm follows the steps of single-

objective ABC algorithm, starting with a random initial population X;, i € [1,SN] where
SN, the total number of food locations is generated using equation 2.2. For an N th order

IIR filter, the food source vector is of length (2N + 1) and is in the form of ¢ =

T

bi1by1a41057 ... bﬂbzﬂaﬂazﬂbo where b, is the scaling constant and the limits are
2 2 2 2

set for each of the coefficients to incorporate the stability constraints. Nondominated

sorting is then performed on the population to obtain top solutions, and the initial archive

Ey, 1s generated.

The new solutions in the employed bee phase are generated using the ABC algorithm as
described in equation 2.3 and dominance criteria uses a pareto dominance approach instead

of a greedy selection to replace current food source by a new food source,

¥l i g (i (1)) < 900 (£ (21,))

x| = (6.20)

‘ v, if gpp (fm(”i|t))29pp (fm(xilt))

The fitness value for the food source is calculated as follows,
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1 )
—, if gpp (fm (%], )) >0
fit,, (xilt) _ 1+ g (fm(xlh )) 7 ( ( )) (6.21)

1+ gop (fin (1,)), 16 g (fin (1], )) = 0

where g, ( fm (vilt )) is the global physical programming index of food source v; for the

objective function m. In the onlooker bee phase, a food source is selected according to its
probability value calculated using equation 2.5 and searches for food locations near the
good quality food sources. A solution which cannot be improved after several
predetermined trials becomes a scout bee and is abandoned. The scout bees will then
randomly search for a new solution. Nondominated sorting is performed and best solutions
are archived as E;. The size and diversity of the external archive is maintained using
spherical pruning technique. When the algorithm is terminated, the final Pareto front is
updated as Jp = E;. The flowchart for the physical programming multiobjective ABC is

given in Figure 6.2 and the pseudocode is given in Table 6.1.

Table 6.1 Pseudocode of Physical-Programming-based MOABC

Generate initial population X, with SN individuals;
Evaluate the fitness of initial population Xj;
Apply nondominated sorting criteria on X, to obtain initial Archive Ej;
while stopping criterion do not satisfied do
Read iteration number t;
For all food sources

AR o e

Generate new food sources v |t from current food source x* |t using ABC algorithm
7. Evaluate new food location v'| ,

Using global Physical Programming approach update the population x! |twith vi|t
8. End for

9. Apply dominance on criterion X, to obtain E;;
10.  Apply pruning mechanism to prune E;
1. t=t+1;

12. End while
13. Algorithm terminates, Pareto front Jp is updated by J; = E,.
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Generate initial population Xy; i € [1,SN]
Apply dominance criteria to generate Archive E

A

Generate new solution from current population v; using ABC

l

Apply dominance criteria to update x; with v;;

v; substitutes x; in the population if physical index,
gpp(f(vi )) < gpp(f(xi ))

l

Apply spherical pruning to obtain E;
» Any solution outside region of interest is discarded
» In each spherical sector solution with lowest physical index,

Gop(f (x;)) is archived as E,

}

Terminate on
reaching stopping

criteria No

1 Yes

Pareto front Jp is
displayed and updated as

Jp=E;

Figure 6.2 Flowchart of Physical-Programming-based MOABC
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6.4 Design Examples and Results

In this section, cascade-form IIR lowpass, highpass, bandpass digital filters are designed.
An initialization filter should be chosen such that it satisfies at least one of the objective

function specifications. In this design problem, the initial population x;;, fori = 1to SN

js
and j = 1 to D, is generated using elliptic filter which has the desired amplitude response
but an arbitrary group delay response and the physical programming MOABC searches
for a coefficient vector ¢ that simultaneously minimize the objective function e, 4(c) and

egq(c). For each food source in the solution space, stability is checked for all coefficient
pairs (@, a,y,) for = 1to N / 2 » and any solution that violates the stability criteria given
in equation 6.3 is reverted to the required range.

The parameters of the physical programming MOABC and IIR filter specifications are
given in Table 6.2. The frequency grid for optimization is F, and for error calculation is F,,
and it should be noted that a dense grid is selected for error calculation, but a coarse
frequency grid is used in optimization. All optimizations are performed using an intel core
17-4790, 3.60 GHz with 12GB RAM desktop computer.

To evaluate the performance of the designed filter, maximum passband attenuation R, and

minimum stopband attenuation A; are calculated as,

R, =20log

1+6)
=5, 4B (6.22)
As = —201log &, dB (6.23)

where &), and §; are the passband ripple and the stopband ripple respectively.

The quality of group delay characteristic t, of the filter is measured using maximum group

delay deviation Q, which is defined by,
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— 100(Tmax B Tmin) (6.24)

T

2% Tayg
where,
+ .

Tape = —max Tmin > fmin (6.25)

Tmax = Mr)ne*"'g( T(c,w;) (6.26)
i€Qp

Tmin = Wr%ig (¢, w;) (6.27)
i€Qp

where (1, represents the frequency region of interests in the passband.

Table 6.2 MOABC Parameters and IIR Filter Specifications

Symbol | Description LP HP | BP
CLZ% Upper bound of filter numerator coefficients 8 8 8
c%m Lower bound of filter numerator coefficients -8 -8 8
Cc[zl{]n Upper bound of filter denominator coefficients | 2 2 2
C¢[1L1]n Lower bound of filter denominator coefficients | -2 -2 -2
Cc[llgn Upper bound of filter denominator coefficients | 1 1 1
Cc[sz]n Lower bound of filter denominator coefficients | -1 -1 -1
p Least pth-order 128 128 | 128
W(w;) | Frequency weights for0 <w; <& 1 1 1
M Number of objective functions 2 2 2

P ABC population size 100 100 | 100
Limit Scout bee limit 200 200 | 200
F, Optimization frequency grid [0:0.005: 1]

F, Peak error calculation frequency grid [0:0.001: 1]

The preference range selected for the objective functions are set using the design examples

in [75] and are given in Table 6.3.

Table 6.3 Preferences Range for IIR Filter Designs

Obj. fun. | gp | gm Im Iim Im Im
P | emag 0 [0.015032 | 0.018038 | 0.021646 | 0.025975 | 0.031170
ega 0 [0.019996 | 0.023995 | 0.028794 | 0.034553 | 0.041464
P | €mag 0 | 0.005931 [ 0.007117 | 0.008540 | 0.010248 | 0.012298
ega 0 | 0.004622 | 0.005546 | 0.006655 | 0.007986 | 0.007986
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0 0.076478
0 0.002745

0.091774
0.003294

0.110129
0.003953

0.132155
0.004744

0.158586
0.005693

BP | ®mag

gd

6.4.1 IIR Lowpass Filter

A 10™ order IIR lowpass filter is designed, and filter specification is given in Table 6.4. In
order to evaluate the performance of lowpass filter designed using the physical
programming MOABC, its results are compared with example 6A-2 in [75], and design
results are shown in Table 6.5. Plots of magnitude response, group delay response in
passband of the designed IIR lowpass filter is shown in Figure 6.3 and the pole zero plot is
given in Figure 6.4, red and blue dots indicate, poles and zeros, respectively. The pole zero
plot shows that all 10 poles are inside the unit circle, which ensures that the designed IIR

lowpass filter is stable.

Table 6.4 IIR Lowpass Filter Design Specification

Parameters Values
Filter order N 10
Distinct coefficients 21
Prescribed group delay in passband 7; | 9.79
Passband cutoff frequency w, 0.4
Stopband cutoff frequency w 0.56m

Table 6.5 Simulation Results of [IR Lowpass Filter

Parameters MOABC Design 6A-2 [75]
Peak Error PB 0.011850272132574 | 0.011870695865662
Peak Error SB 0.003161032888287 | 0.003162390333019
Peak Group delay error PB |0.019420941819440 | 0.019996828110962
Max PB ripple (dB) 0.205869948910281 | 0.206224795410127
Min SB attenuation (dB)  [50.003419712266783 | 49.999690524800108
Tavg 9.792987150078961 | 9.794423016597630
Q. 0.167811838090148 | 0.159006931668995

Iteration number

100000

The simulation results indicate that IIR lowpass filter designed using the physical-
programming-based MOABC approach has lower passband peak error, stopband peak
error and group delay error but larger maximum group delay deviation than the design
example 6A-2 [75].
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The pole zero values of IIR lowpass filter designed using the physical-programming-based
MOABC algorithm and the example 6A-2 [75] is given in Table 6.6 and Table 6.7

respectively.

Table 6.6 Poles and Zeros of IIR Lowpass Filter Designed Using MOABC

Poles

Zeros

0.558894210489161 + 0.0844028565939761

-0.385617081323501 + 0.8697552636944041

0.558894210489161 - 0.084402856593976i

-0.385617081323501 - 0.8697552636944041

0.508864518046386 +0.392290143455185i

0.955163900510168 + 1.2729204882195131

0.508864518046386 - 0.3922901434551851

0.955163900510168 - 1.2729204882195131

0.127954755766791 + 0.698350504624347i

-0.803596542847903 + 0.461209386461021i

0.127954755766791 - 0.698350504624347i

-0.803596542847903 - 0.4612093864610211

0.273811070296788 + 0.610040811870065i1

-0.206842243481173 + 0.971443865454256i

0.273811070296788 - 0.6100408118700651

-0.206842243481173 - 0.9714438654542561

0.054270897602955 +0.941925241375190i

1.562291434592744 + 0.501238247609318i

0.054270897602955 - 0.941925241375190i

1.562291434592744 - 0.501238247609318i

Jo

0.007869813458049

Table 6.7 Poles and Zeros of IIR Lowpass Filter Example in 6A-2 [75]

Poles

Zeros

0.055899875082745 + 0.9415957941393531

1.560532836267383 + 0.5000377607698631

0.055899875082745 - 0.9415957941393531

1.560532836267383 - 0.5000377607698631

0.137189014239702 + 0.6945798954140001

0.953953087535561 + 1.2701751724280161

0.137189014239702 - 0.6945798954140001

0.953953087535561 - 1.2701751724280161

0.270300526450330 + 0.6030323210274181

-0.789354534288448 + 0.4509914207525341

0.270300526450330 - 0.6030323210274181

-0.789354534288448 - 0.4509914207525341

0.506904816181278 + 0.3897583734649521

-0.207363157634161 +0.971912241425369i

0.506904816181278 - 0.389758373464952i1

-0.207363157634161 - 0.9719122414253691

0.554307276978376 + 0.0796920140723571

-0.387023183479362 +0.8671775386706891

0.554307276978376 - 0.0796920140723571

-0.387023183479362 - 0.8671775386706891

Jo

0.008027005381132
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The cascade-form representation of filter coefficients of IIR lowpass filter designed using

the MOABC and in example 6A-2 is given in Table 6.8.

Table 6.8 Filter Coefficients of IIR Lowpass Filter Using MOABC and 6A-2 [75]

Section no: | Coefficients | MOABC 6A-2
boy 0.413684486962345 | 1.578709068576896
. byy 0.986486897417032 | 0.826473842394121
Section I = 20.547622140593576 | -1.108614553956733
e 0.447122294364160 | 0.313607374418078
bey 1.607193085695807 | -3.121065672534770
. by 0.858481501836853 | 2.685300495264465
Section2 =~ 20.255909511533583 | -1.013809632362598
s 0.504065846832420 | 0.408864082353862
bis 13.124582869185487 | -1.907906175071123
, bys 2.691994307468313 | 2.523371461871180
Section 3=~ 20.108541795205910 | -0.540601052900625
s 0.890168490666340 | 0.436710354302987
bra 0.771234162647001 | 0.774046366958725
, Dy 0.905174752132577 | 0.901783828125454
Sectiond =~ T1.117788420978322 | -0.274378028479414
trs 0.319486580719526 | 0.501262056741419
by 1.910327801020336 | 0.412834654378671
Sections | b5 2.532664646166801 | 0.987612884176496
o T1.017729036092773 | -0.111799750165491
s 0.412834654378671 | 0.889727435575182
bo 0.007869813458049 | 0.008027005381132

6.4.2 IIR Highpass Filter

A 14" order IIR highpass filter is designed, and filter specification is given in Table 6.9. In
order to evaluate the performance of highpass filter designed using the physical
programming MOABC, its results are compared with example 2A-2 in [75], and the
simulation results are shown in Table 6.10. Plots of magnitude response, group delay
response in passband of designed filter is shown in Figure 6.5. The pole-zero plot is given

in Figure 6.6, red and blue dots indicates, poles and zeros, respectively.
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Table 6.9 1IR Highpass Filter Design Specification

Parameters Values
Filter order N 14
Distinct coefficients 28
Prescribed group delay in passband 7; | 18.026
Passband cut off frequency w;, 0.6m
Stopband cut off frequency wyg 0.4n

Table 6.10 Simulation Results of IIR Highpass Filter

Parameters MOABC Design 2A-2 [75]
Peak Error PB 0.005716078250476 | 0.005726566029806
Peak Error SB 0.000205385627392 | 0.000211346697228

Peak Group delay error

0.005351591479776

0.004622731042623

Max PB ripple (dB) 0.099299531191199 | 0.099481728542779
Min SB attenuation (dB) |73.74859902031003 | 73.50009069236952
Tavg 18.02573366738673 | 18.02299195551251
Q. 0.028368687584933 | 0.026673411553407

Iteration number

200000
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Figure 6.5 Magnitude Response, Group Delay Response, Magnitude Errors and Group Delay Errors of IIR

Highpass Filter Designed Using MOABC
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Figure 6.6 Pole Zero Plot of IIR Highpass Filter Designed Using MOABC

The pole zero plot shows that all the 14 poles are inside the unit circle which ensures that

the designed IIR highpass filter is stable.

The simulation results indicate that the IIR highpass filter designed using the physical-
programming-based MOABC approach has lower passband peak error and stopband peak
error but greater peak group delay error and maximum group delay deviation than the

design example 2A-2 [75].

The pole-zero values of IIR highpass filter designed using the physical-programming-
based MOABC algorithm and in the example 2A-2 [75] are given in Table 6.11 and Table
6.12 respectively. The cascade-form representation of the filter coefficients of IIR highpass

filter designed using the MOABC and in example 2A-2 are given in Table 6.13.
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Table 6.11 Poles and Zeros of IIR Highpass Filter Using MOABC

Poles

Zeros

-0.554670063556222 + 0.4095541607023651

-5.909928045952610 + 0.000000000000000i

-0.554670063556222 - 0.4095541607023651

0.849292628142457 + 0.000000000000000i

-0.465498533338781 + 0.5665079765804451

-0.653199460008026 + 1.235828433557360i

-0.465498533338781 - 0.5665079765804451

-0.653199460008026 - 1.2358284335573601

-0.640180073099612 + 0.2775479203705001

0.335396791617912 + 0.9502643122844101

-0.640180073099612 - 0.2775479203705001

0.335396791617912 - 0.950264312284410i

-0.688147842803370 + 0.088479714553341i

-1.131884600820687 + 0.9367089860981831

-0.688147842803370 - 0.0884797145533411

-1.131884600820687 - 0.9367089860981831

-0.238546026334125 + 0.785066203456379i

0.534685545678780 + 0.8087840380132571

-0.238546026334125 - 0.7850662034563791

0.534685545678780 - 0.808784038013257i

-0.330136515849370 + 0.665451254702361i

-1.676361305137672 + 0.000000000000000i

-0.330136515849370 - 0.6654512547023611

0.769029634344830 + 0.000000000000000i

-0.139084746832294 + 0.9332265562343841

-1.491469749070291 + 0.470065446556223i

-0.139084746832294 - 0.9332265562343841

-1.491469749070291 - 0.4700654465562231

Jo

1.389699269480474e-04

Table 6.12 Poles and Zeros of IIR Highpass Filter in Example 2A-2 [75]

Poles

Zeros

-0.129587030913823 + 0.935354095880280i

-1.109177147262147 + 1.2751836869428451

-0.129587030913823 - 0.9353540958802801

-1.109177147262147 - 1.2751836869428451

-0.228264708820005 + 0.780254340826646i

-1.493205529654857 + 0.2858677508281981

-0.228264708820005 - 0.7802543408266461

-1.493205529654857 - 0.2858677508281981

-0.324813730812861 + 0.6653295809599111

-1.322471208488332 + 0.80551298922963 11

-0.324813730812861 - 0.6653295809599111

-1.322471208488332 - 0.80551298922963 11

-0.452295969146698 + 0.548729032709602i

-0.678177338875631 + 1.3152524745835151

-0.452295969146698 - 0.5487290327096021

-0.678177338875631 - 1.3152524745835151

-0.545696283186623 + 0.4225406570781671

0.914486674064672 + 0.4150336444490051

-0.545696283186623 - 0.4225406570781671

0.914486674064672 - 0.4150336444490051

-0.638885665872786 + 0.259641928762650i

0.331679107800718 + 0.942434670456086i

-0.638885665872786 - 0.2596419287626501

0.331679107800718 - 0.942434670456086i

-0.660579026509467 + 0.068159724572040i

0.530887153916813 + 0.8419629161086771

-0.660579026509467 - 0.0681597245720401

0.530887153916813 - 0.8419629161086771

Jo

4.254845201569976e-004
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Table 6.13 Filter Coefficients of IIR Highpass Using MOABC and 2A-2 [75]

Section Coefficients | MOABC 2A-2
b1 2.263769201641374 | -1.828973348129344
Section 1 b, 2.158586474212092 | 1.008538803066489
a; 1.376295685606741 1.321158053022979
ayq 0.481376113442373 | 0.441010398319544
by, 0.907331670792841 | 2.218354294524278
) b,, 1.289171521519846 | 2.856367379453924
Section 2
a, 0.660273031698741 1.277771331734585
ays, 0.551815491482108 | 0.475588825226353
bis 1.306398920016051 | 2.986411059309736
Section 3 b,s 1.953941451743615 | 2.311383124755535
a3 0.930997066677563 | 1.091392566392120
ay3 0.537620172069827 | 0.476325040370784
by, 5.060635417810152 | 2.644942416976690
Section 4 by, -5.019258322279907 | 2.397781273098042
Ay 1.109340127112445 | 0.904591938273504
Ay 0.475393489954082 | 0.505675195041505
by -1.069371091357560 | -1.061774307833626
Section 5 b,s 0.940020252902844 | 0.990742722296123
ais 0.477092052668251 | 0.649627461636567
as 0.673233150489213 | 0.548167411027867
by -0.670793583235823 | 1.356354677751240
Section 6 bye 1.015493271028951 | 2.189813574862431
a6 1.280360146199224 | 0.456529417637149
Az 0.486863374095814 | 0.660901613669359
by, 2.982939498140583 | -0.663358215601437
Section 7 b,; 2.445443536437899 | 0.998194138629152
a,; 0.278169493664589 | 0.259174061827633
ay; 0.890256372062492 | 0.891680083261421
b, 1.389699269474¢-04 | 4.25484520156¢-04

6.4.3 IIR Bandpass Filter

A 14" order IIR bandpass filter is designed, and filter specification is given in Table 6.14.
In order to evaluate the performance of bandpass filter designed using the physical
programming MOABC, its results are compared with the example 3A-2 in [75], and the
simulation results are shown in Table 6.15. Plots of magnitude response, group delay

response in passband of the designed filter is shown in Figure 6.7. The pole-zero plot is
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given in Figure 6.8, red and blue dots indicates, poles and zeros, respectively. The pole-
zero plot shows that all the 14 poles are inside the unit circle which ensures that the

designed IIR bandpass filter is stable.

Table 6.14 IIR Bandpass Filter Design Specification

Parameters Values
Filter order N 14
Distinct coefficients 28
Prescribed group delay in passband 7, | 25.54
Stopband 1 cut off frequency wy, 0.2n
Passband 1 cut off frequency wy, 0.3n
Passband 2 cut off frequency w;, 0.57
Stopband 2 cut off frequency wy 0.7n

Table 6.15 Simulation Results of IIR Bandpass Filter

Parameters MOABC Design 3A-2 [75]

Peak Error PB 0.058314239202659 0.059398878299075
Peak Error SB 1 0.008545505128267 0.008544664889970
Peak Error SB 2 0.008541613067068 0.008544696148769
Peak Group delay error |0.002741178379249 0.002745356038197
Max PB ripple (dB) 1.014172718247246 1.033080328853921

Min SB 1 attenuation

41.365245217237678

41.366099300855993

Min SB 2 attenuation

41.369202117897160

41.366067525475515

Tavg 25.542425092292156 | 25.542192048749879
Q, 0.001274583887433 0.00126449041859
Iteration number 200000 -

The simulation results indicate that IIR bandpass filter designed using the physical-
programming-based MOABC approach has lower passband peak error, stopband 1 peak
error and group delay error but greater peak stopband 2 peak error and maximum group
delay deviation than the design example 3A-2 [75]. The pole-zero values of IIR highpass
filter designed using the physical-programming-based MOABC algorithm and in the
example 3A-2 [75] are given in Table 6.16 and Table 6.17 respectively. The cascade-form
representation of filter coefficients of IIR bandpass filter designed using the MOABC and
in example 3A-2 are given in Table 6.18.
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Bandpass Filter Designed Using MOABC
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Table 6.16 Poles and Zeros of IIR Bandpass Filter Using MOABC

Poles

Zeros

0.493894608581262 + 0.7025183132623731

0.594972776318648 + 1.0395631202580781

0.493894608581262 - 0.7025183132623731

0.594972776318648 - 1.0395631202580781

0.272178519664595 + 0.7612164475025461

-0.637641776079309 + 1.0549335593852761

0.272178519664595 - 0.7612164475025461

-0.637641776079309 - 1.0549335593852761

0.338827281370153 + 0.7436587666551451

1.560937558290255 + 0.000000000000000i

0.338827281370153 - 0.7436587666551451

1.035267716101418 + 0.000000000000000i

0.124170605143223 + 0.8059427416021341

0.827351999477573 + 0.5576932945186481

0.124170605143223 - 0.8059427416021341

0.827351999477573 - 0.557693294518648i

-0.076643870392857 + 0.890878585508749i

0.307609108908968 + 1.1914035738510671

-0.076643870392857 - 0.8908785855087491

0.307609108908968 - 1.1914035738510671

0.583831851732929 + 0.6877607779105681

0.085275152227543 + 1.2352733960482661

0.583831851732929 - 0.687760777910568i

0.085275152227543 - 1.2352733960482661

0.004906237972598 + 0.840010963297944i

-1.197694016499282 + 0.000000000000000i

0.004906237972598 - 0.8400109632979441

-0.770605696420433 + 0.000000000000000i

Jo

0.002682636337256

Table 6.17 Poles and Zeros of IIR Bandpass Filter in Example 3A-2 [75]

Poles

Zeros

-0.076714645151686 + 0.8908385198174481

1.561666032241332

-0.076714645151686 - 0.8908385198174481

1.034144738442276

0.004716638351661 + 0.8399651055229361

0.828203881706730 + 0.5582237032765601

0.004716638351661 - 0.8399651055229361

0.828203881706730 - 0.558223703276560i

0.583913983795629 + 0.6876309807564871

0.595013662062041 + 1.0393668035417481

0.583913983795629 - 0.6876309807564871

0.595013662062041 - 1.0393668035417481

0.494002366250057 + 0.7024470382733601

0.307695507127380 + 1.191416490283998i

0.494002366250057 - 0.7024470382733601

0.307695507127380 - 1.1914164902839981

0.124245297995792 + 0.8059563672893341

0.085139886669244 + 1.2348581713727861

0.124245297995792 - 0.8059563672893341

0.085139886669244 - 1.2348581713727861

0.338793525086818 + 0.7438348365278641

-0.638208918893237 +1.0547690475955071

0.338793525086818 - 0.7438348365278641

-0.638208918893237 - 1.0547690475955071

0.272050461443023 + 0.761143525390037i

-1.199730733263683

0.272050461443023 - 0.7611435253900371

-0.769532635828309

Jo

0.002680119463696
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Table 6.18 Filter Coefficients of IIR Bandpass Filter Designed Using MOABC and 3A-2 [75]

Section no: | Coefficients | MOABC 3A-2
b1 -1.189945552637296 | -0.361935298977666
Section 1 by, 1.434684085561031 -1.873578733973902
aqq -0.987789217162524 | -0.544100922888031
Ay 0.737463864854648 0.653350919812894
by, 1.275283552158618 -0.264612102613937
. by, 1.519471849318864 -0.795808126401440
Section 2
ai; -0.544357039329189 | -0.248490595989497
ays 0.653531626515206 0.665002560047421
by -1.654703998955147 1.276417837786475
Section 3 b, 0.995533141790602 1.519848367920410
a3 -0.248341210286447 | -0.677587050174312
ays 0.664962041922799 0.668071316676267
bis -0.170550304455085 -0.615391014254765
Section 4 b,s 1.533172214572047 1.514149778427029
a4 -1.167663703465858 -0.009433276704000
Ay 0.813874518730050 0.705563625174430
bis 1.968299712919714 -1.190027324124077
Section 5 b,s 0.922949831683014 1.434324610345065
as -0.009812475945196 | -0.988004732497636
ays 0.705642489631784 0.737470179437766
big -2.596205274391673 -0.170279773338488
. bye 1.615988260948077 1.532123503708188
Section 6
lo PP -0.677654562740306 | 0.15342929030334
Aye 0.667832287823740 0.799478405170950
bi; -0.615218217817936 | -1.656407763413475
Section 7 by, 1.514065839668865 0.997535372573911
aq; 0.153287740785715 -1.167827967592453
ay; 0.799538936986866 0.813791906168922
b, 0.002682636337256 0.002680119463696
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6.5 Conclusions

In this chapter, the physical-programming-based multiobjective ABC algorithm is used to
design cascade-form IIR filters. Three filter examples including IIR lowpass of order 10,
IR highpass filter of order 14 and IIR bandpass filter of order 14 are designed and the
results are compared with the state-of-the-art design methods in [75]. The pole-zero plot of
designed IIR filters have shown that all the poles are within the unit circle and the designed
filters are stable. The physical-programming-based multiobjective ABC algorithm can be
used to design IIR filter problems, which is a non-convex optimization problem requiring
simultaneous optimization of both magnitude and phase responses. The proposed design
method can achieve slightly better or comparable results in terms of peak errors in passband
and stopband, and peak group delay error in passband when compared to other design

methods in [75].
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CHAPTER 7

CONCLUSIONS AND FUTURE DIRECTIONS

In this dissertation, the ability of the ABC algorithm in handling multimodal and
nondifferentiable problems 1is utilized to design digital filters. Single-objective
optimization has been extended into multiobjective space for simultaneous optimization of
magnitude and/or phase characteristics. Different types of digital filters such as Types 3
and 4 linear phase FIR filters, and sparse Type 1 linear phase FIR filters are designed using
the proposed ABC-AMR algorithm. In this chapter, conclusions of this dissertation and

suggestions for future work are presented.

7.1 Conclusions

In Chapter 3, an improved ABC algorithm called the ABC-AMR algorithm is proposed
and used to design Types 3 and 4 linear phase FIR differentiators. The original ABC
algorithm has certain shortcomings due to an insufficient balance between exploration and
exploitation in the search equation, which in turn increases the convergence time in
proportional to the number of parameters of a problem. In the ABC-AMR algorithm,
instead of changing only one parameter in employed and onlooker bee phase, several new
food locations are generated in every iteration. A self-adaptive control parameter known
as the adaptive modification rate (AMR), is introduced which adaptively controls the
number of parameters to be changed in each iteration. The AMR ensures exploration in
initial stages and exploitation in later stages of optimization. The ABC-AMR algorithm is
used to design linear phase Type 3 and Type 4 linear phase FIR differentiators. Given the
desired amplitude response A, (w) of a differentiator, the optimization process searches
for an optimal coefficient vector ¢ that minimizes the weighted minimax objective function
given in equation 3.16. Since linear phase FIR filters have constant group delay,
optimization is formulated as a single-objective optimization problem. Results are

compared, in terms of minimax and peak errors in passband and stopband, iteration time
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and converged iteration number, with respect to the Parks-McClellan (PM) technique, the
original ABC algorithm and its three variants namely the gbest-guided ABC, the best-so-
far selection ABC and the global best ABC. Results indicate that differentiators can be
designed using the proposed ABC-AMR algorithm to reach the lowest minimax errors and
the lowest peak errors with reduced computational time. Unlike other variants of ABC
algorithm, which directs search towards best solutions in the objective space, the ABC-
AMR algorithm explores unknown regions of objective space as well as exploits

neighborhood regions of best solution.

In Chapter 4, sparse FIR filters are designed using the constrained ABC-AMR algorithm.
Compared to conventional FIR filters, design of sparse filters aims at reducing the number
of nonzero coefficients and thereby decreasing the implementation cost by removing the
multiplier units associated with zero coefficients. When using traditional [/, norm-based
optimization, obtaining a global optimum solution is difficult as [, norm is a highly non-
convex problem. The ABC-AMR algorithm is combined with iterative shrinkage algorithm
and [y norm to design sparse filters. The optimization algorithm aims for finding the
positions of zero value coefficients and the filter is designed using constrained minimax
objective function. To evaluate the performance of sparse filter design, the proposed
algorithm is compared to other design methods such as minimum-increase method,
smallest coefficient method and partial [; optimization. Results indicate that the proposed

method can achieve better sparsity and lower peak errors.

In Chapter 5, the reference-based MOABC is used in the design of asymmetric FIR filters.
Objective functions are formulated for magnitude responses in passband(s) and stopband(s)
and for group delay response(s) in passband(s), and all objective functions are
simultaneously optimized. Preferences are incorporated using the reference-point approach
in which the solutions are ranked according to their normalized Euclidean distances from
the reference point. Asymmetric lowpass, highpass, bandpass and bandstop FIR filters are
designed, and the results are compared to the corresponding multiobjective differential
evolution algorithm. The proposed method can result in lower peak errors in stopband and

passband magnitudes as well as lower peak error(s) in passband group delay(s).
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In Chapter 6, IIR filters are designed using the physical-programming-based MOABC
algorithm. The design objective is to find an optimal coefficient vector ¢, which minimizes
magnitude error ep,q,4(c) and group delay error eg4(c) such that the designed filter is the
best approximation as per specifications. IIR filter design is a non-convex problem with
many local optima on error surfaces, and hence multiobjective approach is utilized for
optimization. The preferences of a decision maker are incorporated into optimization
process a priori using the physical programming approach with different degrees of
desirability. The size and diversity of the external archive are maintained using spherical
pruning technique, which selects solutions with the lowest physical index from each
spherical sector. Using the proposed method, IIR lowpass, highpass and bandpass filters
are designed. The design results indicate better peak magnitude error at a small increase in
peak group delay error can be obtained for each of lowpass, highpass and bandpass filters,
in additional the bandpass filter also results in a small increase in stopband 1 peak
magnitude error. Overall, the performance is slightly better or close to those of the state-

of-the-art design methods in [75].

7.2 Suggestions for Future Work

In this dissertation, improvements are applied to the original ABC algorithm for the design
of various types of FIR and IIR filters and the results indicate that the proposed method
can often achieve better results. Continue a future research along this direction would
improve the performance of the ABC algorithm in digital filter design applications. A few

topics for future study are briefly discussed below.

7.2.1 2-D Filter Design

This dissertation work mainly focuses in the design of 1-D filters: Chapter 3 — 1-D linear
phase FIR differentiator, Chapter 4 — 1-D sparse linear phase FIR filters, Chapter 5 -1-D
asymmetric FIR filter, and Chapter 6 — 1-D IIR filters. These design methodologies can be
extended to various designs of 2-D digital filters for image processing and other

applications. Frequency response of 2-D FIR filter with impulse response h(n,, n,) can be

expressed as [1],[112]-[114],
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N;—1Np—1

H(wl'wz) = Z z h(nl,nz),e—f(nlwﬁnzwz)
n1=0 nz=0 (7.1)

M (w1, w,) = |H(wy, wy)|e/0@rw2)

Minimax error is defined by,

m; mp 1
=
Z Z [W(‘UU’ wzk) ||H(Ct' W1, w2k)| - D(a)lj’ wzk)| ]p (7.2)

j=1k=1

where D is the desired magnitude response and c; is the filter coefficient vector.

{1 /(w%k + w3) < w,
0 f(a)fk + wZ,) = w

When evolutionary algorithms, such as genetic algorithm, is applied to 2-D filter design

D(w,, wy) = (7.3)

applications, they suffer from premature convergence and get stuck at local optimum. As
demonstrated for 1-D filter design, the ABC-AMR can be used to overcome these

shortcomings.

7.2.2  Implicit Preference-Based Multiobjective ABC

In multiobjective optimization, a set of optimal solutions known as the Pareto front is
generated in the objective space instead of a single optimum solution. In practice, selecting
a single optimum solution from the Pareto front containing many optimal solutions is
difficult. Incorporating the preferences of a decision maker into optimization by providing
some higher level information will guide the search towards a region of interest in the
objective space. Preferences can be incorporated both explicitly and implicitly, and this
dissertation focuses on two explicit preference-based approaches which can be extended to

implicit methodology such as knee region and nadir point.
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Knee regions are potential part of the Pareto front representing maximal trade-offs between
the objectives [191]. Knee region corresponds to maximum bulge in convex and concave
parts of the Pareto front of minimization and maximization multiobjective problems
respectively. In minimization problems, knee points are defined as the farthest solution
from the extreme line, where the value of objective function is minimum. In contrast to
explicit methods such as the physical programming and the reference point technique, the
reference point in the knee-based approach is picked from the first Pareto front. The
decision maker has no a priori information regarding the number of knee regions in the
Pareto optimal front, and in this case, preferences need to be set interactively [192]. The
extreme line is defined using the extreme solutions in the Pareto front. Distance of each
solution from this extreme line is calculated and then searches for the farthest solutions

situated in the convex parts of the Pareto front. Distance from a given solution P(xp, yp)

to the extreme line L: ax + by + ¢ can be defined as,

(laxp + byp + |

JaZz + p2
d(P,L) = a*+b

laxp + byp + c|
va? + b?

if ax, + by, +¢ <0
(7.4)

otherwise

In a knee-based multiobjective minimization problem, only convex regions are

encouraged, and concave regions are discarded.

The nadir point 2%, is a vector composed with the worst objective value over the Pareto

optimal front P, for minimization problem,
zl = I}rclgg(fm(x), me {12, ... .. ..M} (7.5)

where M is the total number of objective functions [193].

The decision maker could use the nadir point as a form of implicit decision maker’s
preference. For constructing the nadir points, the Pareto optimal is first sorted from

maximum to minimum based on each objective function value. Solutions closer to the
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extreme objective vector gets a higher rank compared to intermediate solutions. Solutions
with the worst objective function value in each generation is defined as the reference points,
which gets updated in every iteration [194]. The nadir point estimation has certain
advantages such as maintaining objective space diversity, and ease of finding extreme
points. These implicit methods can be incorporated into the ABC-AMR to set preferences
for a future study.
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