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ABSTRACT 

Digital filters are often used in digital signal processing applications. The design objective 

of a digital filter is to find the optimal set of filter coefficients, which satisfies the desired 

specifications of magnitude and group delay responses. Evolutionary algorithms are 

population-based metaheuristic algorithms inspired by the biological behaviors of species. 

Compared to gradient-based optimization algorithms such as steepest descent and 

Newton’s like methods, these bio-inspired algorithms have the advantages of not getting 

stuck at local optima and being independent of the starting point in the solution space.  The 

limitations of evolutionary algorithms include the presence of control parameters, problem 

specific tuning procedure, premature convergence and slower convergence rate. The 

artificial bee colony (ABC) algorithm is a swarm-based search metaheuristic algorithm 

inspired by the foraging behaviors of honey bee colonies, with the benefit of a relatively 

fewer control parameters. In its original form, the ABC algorithm has certain limitations 

such as low convergence rate, and insufficient balance between exploration and 

exploitation in the search equations. In this dissertation, an ABC-AMR algorithm is 

proposed by incorporating an adaptive modification rate (AMR) into the original ABC 

algorithm to increase convergence rate by adjusting the balance between exploration and 

exploitation in the search equations through an adaptive determination of the number of 

parameters to be updated in every iteration. A constrained ABC-AMR algorithm is also 

developed for solving constrained optimization problems. 

There are many real-world problems requiring simultaneous optimizations of more than 

one conflicting objectives. Multiobjective (MO) optimization produces a set of feasible 
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solutions called the Pareto front instead of a single optimum solution. For multiobjective 

optimization, if a decision maker’s preferences can be incorporated during the optimization 

process, the search process can be confined to the region of interest instead of searching 

the entire region. In this dissertation, two algorithms are developed for such incorporation. 

The first one is a reference-point-based MOABC algorithm in which a decision maker’s 

preferences are included in the optimization process as the reference point. The second one 

is a physical-programming-based MOABC algorithm in which physical programming is 

used for setting the region of interest of a decision maker.  

In this dissertation, the four developed algorithms are applied to solve digital filter design 

problems. The ABC-AMR algorithm is used to design Types 3 and 4 linear phase FIR 

differentiators, and the results are compared to those obtained by the original ABC 

algorithm, three improved ABC algorithms, and the Parks-McClellan algorithm. The 

constrained ABC-AMR algorithm is applied to the design of sparse Type 1 linear phase 

FIR filters of filter orders 60, 70 and 80, and the results are compared to three state-of-the-

art design methods. The reference-point-based multiobjective ABC algorithm is used to 

design of asymmetric lowpass, highpass, bandpass and bandstop FIR filters, and the results 

are compared to those obtained by the preference-based multiobjective differential 

evolution algorithm. The physical-programming-based multiobjective ABC algorithm is 

used to design IIR lowpass, highpass and bandpass filters, and the results are compared to 

three state-of-the-art design methods. Based on the obtained design results, the four design 

algorithms are shown to be competitive as compared to the state-of-the-art design methods. 

 



viii 

 

 

 

 

 

 

 

 

 

To my 

loving daughter Jenna 

and beloved husband Rojan 

  



ix 

 

ACKNOWLEDGEMENTS 

 

First and foremost, I would like to thank God Almighty for giving me the strength, 

knowledge, ability and opportunity to undertake this research study and to persevere 

and complete it satisfactorily. Without his blessings, this achievement would not have 

been possible. 

I would like to express my sincere gratitude to my advisor Prof. Hon Keung Kwan, for 

his patience, motivation, valuable advice, and support during my graduate studies at the 

University of Windsor; for suggesting the research topics, the ABC algorithm, and for 

providing guidance, feedbacks, rewriting and editing help on my dissertation. I could 

not complete my research work as reported in this dissertation without his help. I am 

also grateful to my Doctoral committee members: Dr. Ziad Kobti, Dr. Huapeng Wu, and 

Dr. Narayan Kar, for their valuable suggestions. I thank the external examiner Dr. Wing-

Kuen Ling for his suggestions and help in improving the dissertation. I would also like 

to thank the departmental graduate secretary, Ms. Andria Ballo for all her help during 

my studies at the University of Windsor. I would like to thank my fellow graduate 

students, especially Dr. Miao Zhang, of the ISPLab for their help and support.  

I would like to express my gratitude and appreciation to my parents for their blessings, 

support and prayers with me in whatever I pursue.  

Lastly, my deepest gratitude goes to my husband Rojan, for his unconditional support 

and optimism. Without his help this dissertation work would have never come to a 

successful completion.  



x 

 

TABLE OF CONTENTS 

Declaration of Co-authorship/ Previous Publication .................................................... iii 

Abstract ............................................................................................................................. vi 

Dedication ....................................................................................................................... viii 

Acknowledgements .......................................................................................................... ix 

List of Tables .................................................................................................................. xiii 

List of Figures ................................................................................................................. xvi 

List of Acronyms ............................................................................................................ xix 

1  Introduction ....................................................................................................................1 

1.1  Introduction to Digital Filter Design ................................................................................................. 1 

1.1.1  Finite Impulse Response Filters ................................................................................................ 1 

1.1.2  Infinite Impulse Response Filters .............................................................................................. 5 

1.2  Limitations of Evolutionary Algorithm in Digital Filter Design ....................................................... 7 

1.2.1 Many Control Parameters and Problem Specific Tuning .......................................................... 8 

1.2.2  Low Convergence Rate ............................................................................................................. 9 

1.2.3  Stuck at Local Optima ............................................................................................................... 9 

1.2.4  Limited Search Space Diversity ................................................................................................ 9 

1.2.5  Deteriorating Quality of Solutions with Increase in Dimensionality ......................................... 9 

1.3  Motivation ......................................................................................................................................... 9 

1.4  Main Contributions ......................................................................................................................... 11 

1.5  Organization .................................................................................................................................... 13 

2  Literature Survey .........................................................................................................14 

2.1  Artificial Bee Colony Algorithm (ABC) ......................................................................................... 15 

2.1.1  Initialization Phase .................................................................................................................. 17 

2.1.2  Employed Bee Phase ............................................................................................................... 17 

2.1.3  Onlooker Bee Phase ................................................................................................................ 18 

2.1.4  Scout Bee Phase ...................................................................................................................... 18 

2.2  Challenges Faced by Variants of ABC Algorithm in Digital Filter Design .................................... 28 



xi 

 

2.2.1  Strong Impact of Local Search and Directed Search ............................................................... 28 

2.2.2  Issues in Obtaining a Global Optimum Solution ..................................................................... 29 

2.2.3  Hybrid ABC ............................................................................................................................ 29 

2.2.4  Diversity of Search Space........................................................................................................ 29 

2.3  Multiobjective Optimization ........................................................................................................... 29 

2.3.1  Concepts and Definitions ........................................................................................................ 30 

2.3.2  Multiobjective Evolutionary Algorithms ................................................................................. 31 

2.4  Limitations of Multiobjective Evolutionary Algorithms ................................................................. 36 

2.4.1  Exponential Increase in Population Size ................................................................................. 36 

2.4.2  Difficult to Select a Single Optimum Solution ........................................................................ 36 

2.4.3  Visualization is Difficult ......................................................................................................... 36 

2.5  Preference-Based Multiobjective Evolutionary Algorithms ........................................................... 36 

2.6  Conclusions ..................................................................................................................................... 39 

3 Linear Phase FIR Differentiator Design .....................................................................40 

3.1  Introduction ..................................................................................................................................... 40 

3.2  ABC Algorithm with Adaptive Modification Rate (ABC-AMR) ................................................... 42 

3.3  Minimax FIR Filter Design ............................................................................................................. 49 

3.3.1  Type 3 Linear Phase FIR Filters [1] ........................................................................................ 49 

3.3.2  Type 4 Linear Phase FIR Filters [1] ........................................................................................ 50 

3.4  Simulation Result Analysis ............................................................................................................. 51 

3.5  Conclusions ..................................................................................................................................... 72 

4 Sparse FIR Filter Design ..............................................................................................73 

4.1  Introduction ..................................................................................................................................... 73 

4.2  Sparse FIR Filter Design ................................................................................................................. 75 

4.2.1  Iterative Shrinkage Algorithm ................................................................................................. 78 

4.3  Constrained Artificial Bee Colony Algorithm ................................................................................ 79 

4.4  Design Examples and Results ......................................................................................................... 80 

4.4.1  Sparse FIR Filter of Order 𝑁 60 ......................................................................................... 81 

4.4.2  Sparse FIR Filter of Order 𝑁 70 ......................................................................................... 83 

4.4.3  Sparse FIR Filter of Order 𝑁 80 ......................................................................................... 85 

4.5  Conclusions ..................................................................................................................................... 89 

 



xii 

 

5 Multiobjective Approach for Asymmetric FIR Filter Design ...................................90 

5.1  Introduction ..................................................................................................................................... 90 

5.2  Asymmetric FIR Filter Design [1] .................................................................................................. 92 

5.3  Reference Point-Based Multiobjective ABC Algorithm ................................................................. 93 

5.4  Design Examples and Results ......................................................................................................... 96 

5.4.1  Asymmetric FIR Lowpass Filter ............................................................................................. 97 

5.4.2  Asymmetric FIR Highpass Filter ........................................................................................... 102 

5.4.3  Asymmetric FIR Bandpass Filter .......................................................................................... 105 

5.4.4  Asymmetric FIR Bandstop Filter .......................................................................................... 108 

5.5  Conclusions ................................................................................................................................... 111 

6 Multiobjective Approach for IIR Filter Design .......................................................113 

6.1  Introduction ................................................................................................................................... 114 

6.2  IIR Filter Design [1] ...................................................................................................................... 116 

6.3  Physical Programming-Based Multiobjective ABC Algorithm .................................................... 120 

6.3.1  Physical Programming Approach .......................................................................................... 120 

6.3.2  Spherical Pruning Technique ................................................................................................. 122 

6.3.3  Physical Programming Multiobjective ABC Algorithm ........................................................ 123 

6.4  Design Examples and Results ....................................................................................................... 126 

6.4.1  IIR Lowpass Filter ................................................................................................................. 128 

6.4.2  IIR Highpass Filter ................................................................................................................ 131 

6.4.3  IIR Bandpass Filter ................................................................................................................ 135 

6.5  Conclusions ................................................................................................................................... 140 

7 Conclusions and Future Directions ...........................................................................141 

7.1  Conclusions ................................................................................................................................... 141 

7.2  Suggestions for Future Work ........................................................................................................ 143 

7.2.1  2-D Filter Design ................................................................................................................... 143 

7.2.2  Implicit Preference-Based Multiobjective ABC .................................................................... 144 

References .......................................................................................................................147 

Appendix A: IEEE Permission to Reprint ..................................................................171 

Vita Auctoris ...................................................................................................................172 



xiii 

 

LIST OF TABLES 

Table 3.1  Pseudocode of ABC-AMR Algorithm ............................................................ 45 

Table 3.2 Type 3 and Type 4 Linear Phase FIR Filter Specifications ............................. 52 

Table 3.3 Frequency Grid for Optimization and Error Value Calculation....................... 52 

Table 3.4  Error Values and Iteration Time for Type 3 Linear Phase FIR Differentiator 54 

Table 3.5  Error Values and Iteration Time for Type 4 Linear Phase FIR Differentiator 55 

Table 3.6  Half Symmetric Filter Coefficients of Type 3 Differentiator Using Original 

ABC Algorithm ................................................................................................................. 56 

Table 3.7  Half Symmetric Filter Coefficients of Type 4 Differentiator Using Original 

ABC Algorithm ................................................................................................................. 57 

Table 3.8  Half Symmetric Filter Coefficients of Type 3 Differentiator Using Global Best 

ABC Algorithm ................................................................................................................. 58 

Table 3.9  Half Symmetric Filter Coefficients of Type 4 Differentiator Using Global Best 

ABC Algorithm ................................................................................................................. 59 

Table 3.10  Half Symmetric Filter Coefficients of Type 3 Differentiator Using Best-so-far 

ABC Algorithm ................................................................................................................. 60 

Table 3.11  Half Symmetric Filter Coefficients of Type 4 Differentiator Using Best-so-far 

ABC Algorithm ................................................................................................................. 61 

Table 3.12  Half Symmetric Filter Coefficients of Type 3 Differentiator Using ABC/Best/1 

Algorithm .......................................................................................................................... 62 

Table 3.13  Half Symmetric Filter Coefficients of Type 4 Differentiator Using ABC/Best/1 

Algorithm .......................................................................................................................... 63 

Table 3.14  Half Symmetric Filter Coefficients of Type 3 Differentiator Using ABC-AMR 

Algorithm .......................................................................................................................... 64 



xiv 

 

Table 3.15  Half Symmetric Filter Coefficients of Type 4 Differentiator Using ABC-AMR 

Algorithm .......................................................................................................................... 65 

Table 4.1. Sparse FIR Lowpass Filter Specification ........................................................ 80 

Table 4.2. Peak Error Results of Sparse FIR Filter of Order 𝑁 60 .............................. 81 

Table 4.3 Minimum Coefficient Value of Sparse FIR Filter of Order 𝑁 60 ............... 82 

Table 4.4. Peak Error Results of Sparse FIR Filter of Order 𝑁 70 .............................. 83 

Table 4.5 Minimum Coefficient Value of Sparse FIR Filter of Order 𝑁 70 ............... 84 

Table 4.6. Peak Error Results of Sparse FIR Filter of Order 𝑁 80 .............................. 85 

Table 4.7 Minimum Coefficient Value of Sparse FIR Filter of Order 𝑁 80 ............... 86 

Table 4.8 Filter Coefficients of Sparse FIR Filter of Filter Order 𝑁 60,70, 80 .......... 88 

Table 5.1 Parameters of MOABC and MODE ................................................................ 97 

Table 5.2 Frequency Grids for Asymmetric FIR Filter Design ....................................... 97 

Table 5.3 Asymmetric FIR Filter Specifications ............................................................. 97 

Table 5.4 Objective Function Range for Asymmetric FIR Lowpass Filter ..................... 98 

Table 5.5 Peak Error Values of Asymmetric FIR Lowpass Filter ................................. 101 

Table 5.6 Coefficients of Asymmetric FIR Lowpass Filter ........................................... 101 

Table 5.7 Objective Function Range for Asymmetric FIR Highpass Filter ................... 102 

Table 5.8 Peak Error Values of Asymmetric FIR Highpass Filter ................................. 102 

Table 5.9 Coefficients of Asymmetric FIR Highpass Filter .......................................... 105 

Table 5.10 Peak Error Values of Asymmetric FIR Bandpass Filter .............................. 106 

Table 5.11 Objective Function Range for Asymmetric FIR Bandpass Filter ................ 106 

Table 5.12 Coefficients of Asymmetric FIR Bandpass Filter ........................................ 108 

Table 5.13 Peak Error Values of Asymmetric FIR Bandstop Filter .............................. 109 



xv 

 

Table 5.14 Objective Function Range for Asymmetric FIR Bandstop Filter ................ 109 

Table 5.15 Coefficients of Asymmetric FIR Bandstop Filter ........................................ 111 

Table 6.1 Pseudocode of Physical-Programming-based MOABC ................................ 124 

Table 6.2 MOABC Parameters and IIR Filter Specifications ........................................ 127 

Table 6.3 Preferences Range for IIR Filter Designs ...................................................... 127 

Table 6.4 IIR Lowpass Filter Design Specification ....................................................... 128 

Table 6.5  Simulation Results of IIR Lowpass Filter ..................................................... 128 

Table 6.6  Poles and Zeros of IIR Lowpass Filter Designed Using MOABC ............... 130 

Table 6.7  Poles and Zeros of IIR Lowpass Filter Example in 6A-2 [75]  .................... 130 

Table 6.8  Filter Coefficients of IIR Lowpass Filter Using MOABC and  6A-2 [75]  .. 131 

Table 6.9 IIR Highpass Filter Design Specification ...................................................... 132 

Table 6.10  Simulation Results of IIR Highpass Filter .................................................. 132 

Table 6.11  Poles and Zeros of IIR Highpass Filter Using MOABC ............................. 134 

Table 6.12  Poles and Zeros of IIR Highpass Filter in Example 2A-2 [75] ................... 134 

Table 6.13  Filter Coefficients of IIR Highpass Using MOABC and 2A-2 [75] ........... 135 

Table 6.14 IIR Bandpass Filter Design Specification .................................................... 136 

Table 6.15  Simulation Results of IIR Bandpass Filter .................................................. 136 

Table 6.16  Poles and Zeros of IIR Bandpass Filter Using MOABC ............................ 138 

Table 6.17  Poles And Zeros of IIR Bandpass Filter in Example 3A-2 [75] ................. 138 

Table 6.18  Filter Coefficients of IIR Bandpass Filter Designed Using MOABC and 3A-2 

[75] .................................................................................................................................. 139 

  



xvi 

 

LIST OF FIGURES 

Figure 1.1 Limitations of Evolutionary Algorithms in Digital Filter Design .................... 8 

Figure 2.1 Schematic Representation of Foraging Behavior of Honey Bees .................. 15 

Figure 2.2 Challenges Faced by Variants of ABC Algorithm in Digital Filter Design ... 28 

Figure 2.3 Pareto Front Approximation ........................................................................... 37 

Figure 3.1 Flowchart of ABC-AMR Algorithm .............................................................. 48 

Figure 3.2 Magnitude Response, Passband Error and Impulse Response of Filter Order 

𝑁 14 .............................................................................................................................. 66 

Figure 3.3 Minimax Error Convergence Curve of Filter Order 𝑁 14 ......................... 66 

Figure 3.4 Magnitude Response, Passband Error and Impulse Response of Filter Order 

𝑁 26 .............................................................................................................................. 67 

Figure 3.5 Minimax Error Convergence Curve of Filter Order 𝑁 26 ......................... 67 

Figure 3.6 Magnitude Response, Passband Error and Impulse Response of Filter Order  

𝑁 50 .............................................................................................................................. 68 

Figure 3.7 Minimax Error Convergence Curve of Filter Order 𝑁 50 ......................... 68 

Figure 3.8 Magnitude Response, Passband Error and Impulse Response of Filter Order 

𝑁 13 .............................................................................................................................. 69 

Figure 3.9 Minimax Error Convergence Curve of Filter Order 𝑁 13 ......................... 69 

Figure 3.10 Magnitude Response, Passband Error and Impulse Response of Filter Order 

𝑁 25 .............................................................................................................................. 70 

Figure 3.11 Minimax Error Convergence Curve of Filter Order 𝑁 25 ....................... 70 

Figure 3.12 Magnitude Response, Passband Error and Impulse Response of Filter Order 

𝑁 49 .............................................................................................................................. 71 

Figure 3.13 Minimax Error Convergence Curve of Filter Order 𝑁 49 ....................... 71 



xvii 

 

Figure 4.1 Magnitude Response, Impulse Response, Passband and Stopband Errors of 

Sparse FIR Filter of Order 𝑁 60 ................................................................................... 82 

Figure 4.2  Enlarged Impulse Response of Sparse FIR Filter of Order 𝑁 60 ............. 83 

Figure 4.3 Magnitude Response, Impulse Response, Passband and Stopband Errors of 

Sparse FIR Filter of Order 𝑁 70 ................................................................................... 84 

Figure 4.4  Enlarged Impulse Response of Sparse FIR Filter of Order 𝑁 70 ............. 85 

Figure 4.5 Magnitude Response, Impulse Response, Passband and Stopband Errors of 

Sparse FIR Filter of Order 𝑁 80 ................................................................................... 86 

Figure 4.6  Enlarged Impulse Response of Sparse FIR filter of Order 𝑁 80 .............. 87 

Figure 5.1 Flowchart of Reference Point-Based MOABC .............................................. 95 

Figure 5.2 Magnitude Response, Impulse Response, Passband and Stopband Errors of 

Asymmetric FIR Lowpass Filter Using MOABC ............................................................ 99 

Figure 5.3 Magnitude Response, Impulse Response, Passband and Stopband Errors of 

Asymmetric FIR Lowpass Filter Using MODE ............................................................... 99 

Figure 5.4 Pareto Front Approximation of Asymmetric FIR Lowpass Filter Using 

MOABC .......................................................................................................................... 100 

Figure 5.5 Pareto Front Approximation of Asymmetric FIR Lowpass Filter Using MODE

......................................................................................................................................... 100 

Figure 5.6 Magnitude Response, Impulse Response, Passband and Stopband Errors of 

Asymmetric FIR Highpass Filter Using MOABC .......................................................... 103 

Figure 5.7 Magnitude Response, Impulse Response, Passband and Stopband Errors of 

Asymmetric FIR Highpass Filter Using MODE ............................................................. 103 

Figure 5.8 Pareto Front Approximation of Asymmetric FIR Highpass Filter Using 

MOABC .......................................................................................................................... 104 



xviii 

 

Figure 5.9 Pareto Front Approximation of Asymmetric FIR Highpass Filter Using MODE

......................................................................................................................................... 104 

Figure 5.10 Magnitude Response, Impulse Response, Passband and Stopband Errors of 

Asymmetric FIR Bandpass Filter Using MOABC ......................................................... 107 

Figure 5.11  Magnitude Response, Impulse Response, Passband and Stopband Errors of 

Asymmetric FIR Bandpass FIR Filter Using MODE ..................................................... 107 

Figure 5.12 Magnitude Response, Impulse Response, Passband and Stopband Errors of 

Asymmetric FIR Bandstop Filter Using MOABC.......................................................... 110 

Figure 5.13  Magnitude Response, Impulse Response, Passband and Stopband Errors of 

Asymmetric FIR Bandstop FIR Filter Using MODE ..................................................... 110 

Figure 6.1 1S Class Function: Smaller is the Better [190] ............................................. 120 

Figure 6.2 Flowchart of Physical-Programming-based MOABC .................................. 125 

Figure 6.3 Magnitude Response, Group Delay Response, Magnitude Errors and Group 

Delay Errors of IIR Lowpass Filter Designed Using MOABC ...................................... 129 

Figure 6.4 Pole Zero Plot of IIR Lowpass Filter Designed Using MOABC ................. 129 

Figure 6.5 Magnitude Response, Group Delay Response, Magnitude Errors and Group 

Delay Errors of IIR Highpass Filter Designed Using MOABC ..................................... 132 

Figure 6.6 Pole Zero Plot of IIR Highpass Filter Designed Using MOABC ................. 133 

Figure 6.7 Magnitude Response, Group Delay Response, Magnitude Errors and Group 

Delay Errors of IIR Bandpass Filter Designed Using MOABC ..................................... 137 

Figure 6.8 Pole Zero Plot of IIR Bandpass Filter Designed Using MOABC ................ 137 

  



xix 

 

LIST OF ACRONYMS 

1-D One-Dimensional 

2-D Two-Dimensional 

ABC Artificial Bee Colony Algorithm 

ABC-AMR  Artificial Bee Colony Algorithm with Adaptive Modification Rate 

CSA Cuckoo Search Algorithm 

dB Decibel 

DE Differential Evolution 

DM Decision Maker 

EA Evolutionary Algorithm 

FIR Finite Impulse Response  

GA Genetic Algorithm 

GABC Gbest guided ABC 

GME Generalized Multiple Exchange 

HSA Harmony Search Algorithm 

IEMO Interactive Evolutionary Multiobjective Optimization 

IIR Infinite Impulse Response 

IRLS Iterative Reweighted Least Squares 

LS-MOEA Local Search Operator Enhanced Multiobjective Evolutionary Algorithm 

MOABC Multiobjective Artificial Bee Colony 

MODE Multiobjective Differential Evolution 

MOEA Multiobjective Evolutionary Algorithm 



xx 

 

MOO Multiobjective Optimization 

NP Nondeterministic Polynomial time 

NSGA Nondominated Sorting Genetic Algorithm 

OL Orthogonal Learning 

PAES Pareto Archived Evolution Strategy 

PM Parks-McClellan 

PP Physical Programming 

PSO Particle Swarm Optimization 

SDP Semidefinite Programming 

SOCP Second Order Cone Programming 

SPEA Strength Pareto Evolutionary Algorithm 

SP Spherical Pruning 

TLBO Teaching Learning-Based Optimization 

  



1 

 

CHAPTER 1 

INTRODUCTION 

 

1.1 Introduction to Digital Filter Design 

Electronic filters are circuits capable of passing certain frequency signals to extract useful 

information. The electronic filters may be analog or digital depending on the components 

used. The analog filters operate on continuous time analog signals, whereas digital filter 

performs mathematical operations on digital signals. Unlike analog filters which requires 

active and passive physical components, the digital filters can be implemented on 

computers.  

Digital filters can be mathematically expressed by the constant coefficient difference 

equation: 

 𝑦 𝑛 𝑏 𝑘 𝑥 𝑛 𝑘 𝑎 𝑘 𝑦 𝑛 𝑘  (1.1)

where 𝑏 𝑘  and 𝑎 𝑘  are the forward tap coefficients and feedback tap coefficients 

respectively. The transfer function of the digital filter can be expressed as, 

 𝐻 𝑧
𝑌 𝑧
𝑋 𝑧

∑ 𝑏 𝑘 𝑧
1 ∑ 𝑎 𝑘 𝑧

 (1.2)

The digital filters can be classified into two categories finite impulse response (FIR) and 

infinite impulse response (IIR) digital filters depending on the length of their impulse 

responses and location of poles. 

1.1.1 Finite Impulse Response Filters 

A finite impulse response filter is based on the feed forward difference equation, which 

means that the output of the system does not depend on the past or future values of output 
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but depends only on the present value of the input. FIR digital filters include asymmetric 

FIR filters and symmetric FIR digital filters.  

The asymmetric FIR filters are a class of causal filters with the difference equation and 

transfer function is as expressed below, 

 𝑦 𝑛 𝑏 𝑘 𝑥 𝑛 𝑘  (1.3)

and 

 𝐻 𝑧
𝑌 𝑧
𝑋 𝑧

𝑏 𝑘 𝑧  (1.4)

 The frequency response of filter can be found by substituting 𝑧 𝑒 , where 𝜔 is the 

frequency of the input signal, 

 𝐻 𝜔 𝑏 𝑒   

 𝑏 cos 𝜔𝑛𝑇 𝑗 𝑏 sin 𝜔𝑛𝑇  

 | 𝐻 𝜔 |𝑒  (1.5)

In equation 1.5, the magnitude response |𝐻 𝑤 |is equal to, 

 |𝐻 𝑤 | 𝑏 cos 𝑛𝑤𝑇 𝑏 sin 𝑛𝑤𝑇  (1.6)

and the phase response 𝜃 𝑤  is equal to, 
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 𝜃 𝑤 𝑡𝑎𝑛
∑ 𝑏 𝑠𝑖𝑛 𝑛𝑤𝑇
∑ 𝑏 𝑐𝑜𝑠 𝑛𝑤𝑇

 (1.7)

From equation 1.7, the group delay 𝜏 𝑤  can be expressed as, 

 𝜏 𝑤
𝜕𝜃 𝑤
𝜕𝑤𝑇

1
1 𝑐

𝜕𝑐
𝜕𝑤𝑇

 (1.8)

where,  

 𝑐
∑ 𝑏 𝑠𝑖𝑛 𝑛𝑤𝑇
∑ 𝑏 𝑐𝑜𝑠 𝑛𝑤𝑇

 (1.9)

The symmetric FIR filters have constant group delay, and the filter coefficients are either 

symmetric or anti symmetric with respect to mid-point. A filter of order 𝑁 or length 𝑀

𝑁 1  is said to be linear phase if it satisfies the following equation, 

 ℎ 𝑛 ℎ 𝑀 1 𝑛  (1.10)

where   𝑛 0,1,2, … … … … … . , 𝑀 1.  

Depending on the type of symmetry, there are four types of linear phase FIR filters; Type 

1, Type 2, Type 3 and Type 4. 

In Type 1 filters, the filter order, 𝑁 𝑀 1  is even and the coefficients are 

symmetrically distributed, 

 ℎ 𝑛 ℎ 𝑀 1 𝑛  (1.11)

where 𝑛 0,1,2, … … … … … . , 𝑀 1   and the frequency response   𝐻 𝜔  is given by, 

 𝐻 𝜔 𝑒 ℎ
𝑀 1

2
2ℎ 𝑛 cos

𝑀 1
2

𝑛 𝜔𝑇  (1.12)
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In Type 2 filters, the filter order, 𝑁 𝑀 1  is odd and the coefficients are symmetrically 

distributed,  

 ℎ 𝑛 ℎ 𝑀 1 𝑛  (1.13)

 where 𝑛 0,1,2, … … … . , 𝑀 1 and the frequency response 𝐻 𝜔  is given by, 

 𝐻 𝜔 𝑒  2ℎ 𝑛 cos
𝑀 1

2
𝑛 𝜔𝑇 (1.14)

In Type 3 filters, the filter order, 𝑁 𝑀 1  is even and the coefficients are anti-

symmetrically distributed, 

 ℎ 𝑛 ℎ 𝑀 1 𝑛  (1.15)

where 𝑛 0,1,2, … … … . , 𝑀 1 and the frequency response 𝐻 𝜔  is given by,  

 𝐻 𝜔 𝑗𝑒  2ℎ 𝑛 sin
𝑀 1

2
𝑛 𝜔𝑇  (1.16)

In Type 4 filters, the filter order, 𝑁 𝑀 1  is odd and the coefficients are anti - 

symmetrically distributed, 

 ℎ 𝑛 ℎ 𝑀 1 𝑛  (1.17)

 where 𝑛 0,1,2, … … … . , 𝑀 1 and the frequency response 𝐻 𝜔  is given by,  

 𝐻 𝜔 𝑗𝑒  2ℎ 𝑛 sin
𝑀 1

2
𝑛 𝜔𝑇  (1.18)
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1.1.2 Infinite Impulse Response Filters 

IIR filters include the following; direct-form general IIR filter; direct-form allpass IIR 

filter; cascade-form general IIR filter and cascade-form allpass IIR filter.  

Direct-form general IIR filter consisting of 𝑀th order numerator and 𝑁th order 

denominator transfer function can be expressed as, 

 𝐻 𝑧
𝐵 𝑧
𝐴 𝑧

∑ 𝑏 𝑘 𝑧
1 ∑ 𝑎 𝑘 𝑧

𝑐 𝑛 𝑧  (1.19)

where 𝐵 𝑧  and 𝐴 𝑧  are polynomials written in ascending powers of 𝑧 , 𝑀 can be 

smaller or larger than 𝑁. The coefficients 𝒄 𝑛  for 𝑛 0 represent the impulse response 

values of the digital filter. The corresponding coefficient vector 𝒄 consisting of 𝑀 𝑁 1 

distinct coefficients can be expressed as,  

 𝒄 𝑏  𝑏 𝑏 … 𝑏 𝑏 𝑎 𝑎 𝑎 … 𝑎 𝑎  (1.20)

Direct-form allpass IIR filter can characterized by a unity magnitude response throughout 

the frequency band and its group delay response is a function of its coefficient values. It 

can be used to equalize the group delay of another digital filter or a system connected in 

cascade. The direct-form transfer function of an 𝑁th-order allpass IIR filter (𝑁 can be even 

or odd) can be expressed as, 

 𝐻 𝑧
∑ 𝑎 𝑧

∑ 𝑎 𝑧
𝑧

∑ 𝑎 𝑧
∑ 𝑎 𝑧

 (1.21)

The coefficient vector 𝒄 consisting of 𝑁 1distinct coefficients can be expressed as, 

 𝒄 𝑎 𝑎 𝑎 … 𝑎 𝑎  (1.22)

The frequency response of a direct-form allpass IIR filter can be evaluated by substituting 

𝑧 𝑒  into its digital transfer function equation 1.21, the magnitude response is given 

as, 
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 |𝐻 𝜔 |=1 (1.23)

Cascade-form general IIR filters can be obtained by combining two or more direct-form 

structures. Assuming both the numerator and denominator transfer function are of same 

order such that 𝑀 𝑁, the cascade-form transfer function of an even 𝑁th order IIR filter 

can be expressed as, 

 𝐻 𝑧 𝑏
𝐵 𝑧
𝐴 𝑧

 (1.24)

 𝑏
1 𝑏 𝑧 𝑏 𝑧
1 𝑎 𝑧 𝑎 𝑧

𝑐 𝑛 𝑧  

where 𝑏 , 𝑏 , 𝑎 ,𝑎  with 𝑛 1 𝑡𝑜  are real valued coefficients, and 𝑏  is a scaling 

constant. The coefficients 𝒄 𝑛  for 𝑛 0 represents the impulse response values of IIR 

filter. The corresponding coefficient vector 𝒄 consisting of 2𝑁 1 distinct coefficients can 

be expressed as, 

 𝒄 𝑏 𝑏 𝑎 𝑎 … 𝑏
,

𝑏
,

𝑎
,

𝑎
,

𝑏  (1.25)

Cascade-form allpass IIR filter of an even 𝑁 th-order can be expressed as,  

 𝐻 𝑧 𝑧
1 𝑎 𝑧 𝑎 𝑧
1 𝑎 𝑧 𝑎 𝑧

 (1.26)

The corresponding coefficient vector 𝒄 consisting of 𝑁 distinct coefficients can be 

expressed as, 

 𝒄 𝑎 𝑎 𝑎 𝑎 … 𝑎 𝑎 … 𝑎
,

𝑎
,

 (1.27)
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The frequency response of a cascade-form allpass IIR filter can be evaluated by substituting 

𝑧 𝑒  into its digital transfer function equation 1.26 and magnitude response is given 

by, 

 |𝐻 𝜔 |=1 (1.28)

Two typical classes of design optimization methods for digital filters are and evolutionary 

optimization [1] and mathematical optimization [2].  A number of useful reference books 

on digital filter design methods are listed under [3]-[7] and a number of general reference 

books on digital signal processing are listed in [8]-[10]. A collection of papers on IIR and 

FIR filter design methods are listed in [11]-[122]. In general, FIR digital filters can be 

subdivided into linear phase FIR digital filters and nonlinear phase FIR digital filters. The 

design of linear phase FIR digital filters is described in [11]-[19]; the design of 

differentiators and integrators are described in [20]-[23]; the design of sparse linear phase 

FIR digital filters is described in [24]-[46]; and the design of nonlinear phase (or general 

or asymmetric) FIR digital filters are described in [47]-[60]. An IIR digital filter can be 

designed to approximate given magnitude response in both passband(s) and stopband(s) 

and linear phase response in passband(s). The design of IIR digital filters are described in 

[61]-[85]and adaptive digital filters in [86]-[93]. The design of variable IIR digital filters 

are described in [94]-110] and variable FIR digital filters is described in [111]. The designs 

of 2-dimensional FIR digital filters are described in [112]-[114] and IIR digital filters are 

described in [115]-[122].  

1.2 Limitations of Evolutionary Algorithm in Digital Filter Design 

Classical methods such as steepest descent and Newton like methods have several 

shortcomings such as sensitivity to initial points, difficulty in analytical calculation of 

Hessian matrix, and optimal step size requirement to minimize the objective function value 

progressively, making it impractical to solve problems with many variables. Evolutionary 

algorithms have benefits over the classical optimization methods and can be applied 

efficiently to solve nondifferentiable, multimodal, non-convex, non-separable problems. 
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Nevertheless, when evolutionary algorithms are used for digital filter design various 

challenges has been faced, Figure 1.1 shows various limitations of evolutionary algorithm 

in digital filter design. 

 

Figure 1.1 Limitations of Evolutionary Algorithms in Digital Filter Design 

1.2.1 Many Control Parameters and Problem Specific Tuning  

Conventional algorithms such genetic algorithm (GA), particle swarm optimization (PSO), 

and differential evolution (DE) contain many control parameters and each of these 

parameters must be tuned to their optimal value for best performance. Modifying each of 

these parameters for filter design application require a tedious task of trial and error run. 

Also, same set of parameters that works well for one problem does not guarantee a global 

optimum for another problem with same algorithm, so problem specific tuning of 

parameters is required in every task. 
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1.2.2 Low Convergence Rate 

Evolutionary algorithms are inspired by the biological process of natural selection and 

mutation, it is a slow process and needs long computation time to reach global optimum. 

1.2.3 Stuck at Local Optima 

Even though it is easy to customize the evolutionary algorithms for any application, it is 

important to choose the best suited algorithm for a given problem. The wrong configuration 

can lead to premature convergence to a local optimum solution and will not yield global 

optimum. 

1.2.4 Limited Search Space Diversity  

In general, for reducing the longer computation time, instead of initializing with a random 

population, optimization process is seeded with a good candidate solution that is previously 

known or created. This process is found to reduce the diversity of search space, especially 

in higher dimension problems. 

1.2.5 Deteriorating Quality of Solutions with Increase in Dimensionality 

When a limited search space is applied to non-convex, non-differentiable, multimodal, 

composite functions the quality of solution deteriorates with increase in dimensionality. In 

filter design applications, peak error value of designed filter cannot be reduced to an 

optimal value with the increase in filter order. 

1.3 Motivation 

Classical optimization methods and conventional evolutionary algorithms have certain 

limitations when applied to digital filter design. In order to overcome these limitations, this 

dissertation focuses on an improved ABC algorithm for the design of optimal FIR and IIR 

digital filters.  

ABC algorithm is a swarm-based search algorithm inspired by the social cognitive 

behavior of honey bees. Basic ABC algorithm works better than most of the conventional 

evolutionary algorithm in terms of peak error values, and it is easy to tune the algorithm 
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towards any specific problem. However, it faces some difficulties such as lower 

convergence rate, getting stuck at local optimum and difficulty in minimizing the peak 

error values of the higher order digital filters. The above said problems are a result of 

insufficient balance between the exploration and exploitation in the search equation. 

Exploration refers to investigating unknown regions in the solution space to discover global 

optimum and exploitation refers to applying knowledge about previous good solution to 

find a better solution. The former occurs at initial stages of optimization while latter at later 

stages of optimization. Though these two techniques contradict each other, a proper 

balance between them is necessary for obtaining optimal results. Many variants of ABC 

algorithm have been developed to address the concerning issues, most of them improves 

the exploitation by directing the search towards the best solution, but this will limit the 

diversity in the search space. As filter design problem is analyzed, in order to lower peak 

error value and satisfy design constraints of higher order filters, new solutions must be 

introduced into the solution space. So, in this dissertation, a novel improvement known as 

adaptive modification rate is introduced to the original ABC algorithm, which mutates the 

parameters in the solution space adaptively. 

Research in the field of evolutionary computation is generally limited to single-objective 

optimization but most of the real-life problems involve optimization of more than one 

competing objectives. Instead of finding a single optimum solution, these types of 

problems with the conflicting objectives can be solved using multiobjective optimization 

(MOO). MOO generates a set of optimal solutions in the objective space, known as Pareto 

front. At the end of optimization process, the decision maker (DM) choose a single solution 

from the Pareto front according to his/her preference. In MOO, there are certain limitations 

encountered as the number of objective increases such as, difficulty in visualization of 

objective space, prominence of nondominated solutions which slows down the 

convergence rate, an exponential increase in population size to meet population diversity. 

If preference of decision maker can be incorporated into optimization process, a preferred 

and smaller set of Pareto optimal solutions near the region of interest can be found. It 

requires the decision maker to suggest a reference direction, a reference point or clues to 
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guide the search toward the region of interest. Different approaches can be used to 

incorporate the decision maker’s preferences into the optimization process. In a posteriori 

methods, preferences can be used at the end after Pareto front has been completely 

determined whereas in a priori methods, preferences are given at the beginning of search 

process which requires the decision maker to have some high-level information about the 

objectives initially. Interactive methods involve the preferences to be set up interactively 

during the optimization process. 

In this dissertation, the preferences are incorporated into multiobjective optimization a 

priori by physical programming approach and reference point-based approach. 

1.4 Main Contributions 

Digital filter design is an approximation problem, in which a designer tries to find a set of 

filter coefficients which provides the best approximation of a desired filter. Even though, 

it is impossible to produce exact magnitude or phase response of desired filter the classical 

methods such as Butterworth and Chebyshev methods can be applied for the design of 

optimal basic filters. Design of filters with arbitrary magnitude and phase response can 

only be formulated as complex approximation problem and can be solved using 

evolutionary algorithms. Using ABC algorithm, improved ABC algorithms and ABC-

AMR algorithm, various digital filters are designed in both single-objective space and 

multiobjective space. The main contributions are listed below:  

 The dissertation provides an in-depth analysis of ABC algorithm based digital filter 

design, its advantages, limitations and modifications to be applied for improving its 

performance in filter design. Initially, an investigation has been performed into the 

modifications available in the literature. Various digital filters are designed using 

basic ABC algorithm, its variants and their error values have been compared.  

 A new and improved ABC known as ABC-AMR is proposed for digital filter design. 

Various digital filters are designed to evaluate the performance of the proposed 

method. Design results from linear phase Type 3 and Type 4 differentiators has been 

published in - H. K. Kwan and R. Raju, “Minimax design of linear phase FIR 
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differentiators using artificial bee colony algorithm,” in Proc. of 8th International 

Conference on Wireless Communications and Signal Processing (WCSP 2016), 

Yangzhou, China, Oct. 13-15, 2016, pp. 1-4. Simulation results indicate that the 

proposed method can be used successfully to design various digital filters. 

 In order to minimize hardware requirement in filter design problems, another class of 

digital filters known as sparse filters are designed using constrained ABC-AMR 

algorithm and iterative shrinkage technique. The work has been published in - R. 

Raju, H. K. Kwan and A. Jiang, “Sparse FIR filter design using artificial bee colony 

algorithm,” in Proc. of IEEE 61st International Midwest Symposium on Circuits and 

Systems (MWSCAS 2018), Windsor, Ontario, Canada, Aug. 2018, pp. 956-959.  Using 

constrained ABC-AMR algorithm, an increase in sparsity of digital filter can be 

achieved. Sparse digital filters can be used in applications where computational cost 

and hardware complexities are critical, because located sparse or zero-valued 

coefficients do not require multiplications. 

 For designing asymmetric FIR filters in a multiobjective space, a user can provide a 

reference point and the search can be directed towards preferred regions in the Pareto 

front by minimizing the normalized Euclidean distance towards the reference point. 

Using the reference-point-based multiobjective ABC, asymmetric FIR filters are 

designed, and the work has been published in - R. Raju and H. K. Kwan, “FIR filter 

design using multiobjective artificial bee colony algorithm,” in Proc. of 2017 IEEE 

30th Canadian Conference on Electrical and Computer Engineering (CCECE 2017), 

Windsor, Ontario, Canada, Apr. 30-May 3, 2017, pp. 1-4. Comparing the obtained 

design results with those obtained by the multiobjective differential evolution, lower 

error values can be obtained.  

 While dealing with multiobjective space, most of the algorithms try to improve 

solutions in Pareto front which are outside the region of interest. Thus, a decision 

maker’s preferences are introduced into the optimization process using a physical 

programming approach. In this approach, a decision maker can set preferences using 
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different degrees of desirability such as highly desirable (HD), desirable (D), tolerable 

(T), undesirable (U) and highly undesirable (HU). Solutions in undesirable (U) and 

highly undesirable (HU) are not considered in the optimization process. Using a 

physical programming method, IIR filters are designed and the work has been 

published in - R. Raju and H. K. Kwan, “IIR filter design using multiobjective 

artificial bee colony algorithm,” in Proc. of 2018 IEEE 31th Canadian Conference on 

Electrical and Computer Engineering (CCECE 2018), Quebec City, Quebec, Ontario, 

Canada, May 13-16, 2018, pp. 1-4. The proposed design method can achieve similar 

or better results when compared to state-of-the-art design methods. 

1.5 Organization  

The dissertation is organized into six chapters:  In Chapter 2, variants of ABC algorithm, 

their advantages and limitations when applied to filter design applications is briefly 

described. The multiobjective evolutionary algorithms and its shortcomings are also 

described in the same chapter.  Chapter 3 proposes an improvement applied to the original 

ABC algorithm, called the ABC-AMR algorithm, which is then used in the design of Type 

3, Type 4 linear phase differentiators and the results are compared to those obtained by 

other variants of the ABC algorithm. In Chapter 4, the constrained ABC-AMR algorithm 

is applied to design sparse filters, and the results are compared with those obtained by other 

design methods in the literature. In Chapter 5, a reference-point approach is used to 

incorporate a decision maker’s preferences into optimization process and a multiobjective 

error function is formulated for the design of asymmetric FIR filters. In Chapter 6, single-

objective ABC algorithm is extended to multiobjective space and the preferences of a 

decision maker are incorporated into optimization process using a physical programming 

approach. This reduces computational complexities by directing a search towards the 

region of interest. Using a physical-programming-based multiobjective ABC, IIR filters 

are designed. Finally, Chapter 7 concludes with the main findings of this dissertation and 

makes suggestions for future research.  
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CHAPTER 2  

LITERATURE SURVEY 

 

Evolutionary algorithms (EA) are population-based metaheuristic search methods that 

imitate the processes of Darwinian Evolution. Given a set of potential solutions, 

evolutionary algorithms apply the principle of survival of the fittest to discover optimal 

solutions in a search space. New individuals in each generation are created by selecting the 

parent individuals from the existing population according to their level of fitness and by 

applying principle of natural genetics. This process will improve the quality of individuals 

in each generation and finally evolve to an optimal solution.  

Evolutionary algorithms are inspired by natural process such as reproduction, selection, 

recombination and mutation. Every individual in the population represents a single possible 

solution of the optimization problem. EA starts with a set of randomly initialized 

population. Fitness value of the solutions is calculated by evaluating the objective function 

for every individual. The individuals with higher fitness value represent the better-quality 

solutions and some of these individuals are chosen to seed the next generation by applying 

recombination or mutation. If optimization criteria or maximum number of generations are 

not met, new generation will be started to produce a new set of individuals. Recombination 

is an operator in which two or more selected individuals are combined to produce one or 

more offsprings. Each offspring is then mutated, and its fitness value is calculated. If a new 

offspring is better than its parents, it is inserted into the current population producing an 

individual in a new generation. This new generation becomes the current population and 

the iterative process repeats until it reaches the optimum solution. 

The evolutionary algorithm can be applied to all types of problems in diverse fields, such 

as economics, arts, engineering, biology, marketing, operations research etc. There are 

many population-based stochastic optimization algorithms based on the principle of 

evolution and some of the popular algorithms are as follows: genetic algorithms (GA) by 
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Holland and Goldberg [123]-[124]; particle swarm optimization (PSO) by Kennedy and 

Eberhart [125]; ant colony optimization (ACO) by Dorigo and Stutzle [126]; differential 

evolution (DE) by Storn and Price [127]; simulated annealing by Kirkpatrick et al. [128].   

2.1  Artificial Bee Colony Algorithm (ABC) 

The ABC algorithm is metaheuristic optimization algorithm defined by Dervis Karaboga 

in 2005 [129], based on collective intelligent biological behavior of honey bee colonies.  

 

Figure 2.1 Schematic Representation of Foraging Behavior of Honey Bees  

Honey bees is an eusocial flying insect characterized by a high level of organization of 

society and division of labor. Every honey bee colony consists of a single queen, hundreds 

of male drones, thousands of female worker bees and numerous developing eggs, larvae 

and pupae. The queen is the only member of the colony who can lay fertilized eggs, capable 

of producing 2000 eggs per day. Workers are female honey bees that are unable to produce 

any fertilized eggs. They forage nectar and pollen, defend against attack and perform 

necessary tasks for the survival of the hive. Drones are male honey bees; whose purpose is 

to mate with the queen, soon after mating they dies. Since bees can’t talk, they perform 
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dances to communicate important messages. “Waggle dance” is performed by a worker 

bee back at the hive to tell other bees about where to find food sources. The dance shows 

the direction of flowers relative to the sun, and bees automatically adjust their dances 

according to changing position of the sun. Speed of the dance indicates how far nectar is 

from the hive. 

Inspired by the foraging behavior of honey bee colonies, Karaboga proposed the ABC 

algorithm [129]-[133] to solve multimodal, multidimensional problems. The foraging 

behavior of honey bees and a schematic diagram for the ABC algorithm is shown in Figure 

2.1. Unlike other optimization algorithms, the ABC algorithm does not need any parameter 

tuning. The ABC algorithm finds the best solution in a search space like worker bees in 

bee hives searching for food sources with the highest amount of nectar. In contrast to other 

heuristic search algorithms, the ABC algorithm showed superior performance and has 

several advantages: strong robustness, fast convergence, high flexibility and fewer control 

parameters. Search strategy of the ABC algorithm is like the standard DE algorithm; 

however, it has a decision making mechanism that decides which areas within the search 

space is required to be surveyed in detail. This strategy discovers new high quality nectar 

sources within a search space while preserving existing good quality solutions.   

The ABC contains three groups: scouts, onlooker bees, and employed bees [129]-[133]. A 

bee carrying out the random search is a scout. A bee going to the food source which has 

been visited previously is called an employee bee. A bee waiting in the dance area is called 

an onlooker bee. The number of food sources is equal to the number of employed or 

onlooker bees. A solution which cannot be improved after several predetermined trials 

becomes a scout bee and is abandoned. The best food source indicates a promising solution 

to an optimization problem and a fitness function is used to evaluate the quality of the 

solution obtained. 

The main phases in the original ABC algorithm is as described below: 
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2.1.1 Initialization Phase 

In initialization phase of the ABC algorithm, initial food locations are generated as a 

uniform random distribution, total number of food locations 𝑆𝑁 is equal to the number of 

employed bees or onlooker bees, 

 𝒙 𝒙 , 𝒙 , 𝒙 , … , 𝒙 , 𝒙  (2.1) 

where 𝒙𝒊 for 𝑖 1 to 𝑆𝑁 is a 1 𝐷 vector generated as,  

 𝑥 𝑐 α 𝑐 𝑐  (2.2) 

where α is a random number in 0,1 , 𝑗 ∈ 1,2, … … … . 𝐷 , 𝑐  and 𝑐  are the upper and 

lower limits of 𝑗th dimension. Each food location is associated with an employed bee which 

exploits current location to find a better food location in its neighborhood. 

2.1.2 Employed Bee Phase 

In employed bee phase, bees search iteratively for food within a population. An employed 

bee first searches for foods in the adjacent region of its current food source, a new food 

location 𝒗  is calculated by, 

 𝑣 𝑥 𝜙 𝑥 𝑥  (2.3) 

where 𝑗 is a randomly selected parameter index; 𝒙  is a randomly selected food source; ϕ  

is a random number within the range [-1,1]. If the fitness value of new food source is better 

than current one, then current food source is replaced by new food source. The fitness value 

is calculated using equation, 

 𝑓𝑖𝑡 𝒙
1

1 𝑓 𝒙
for 𝑓 𝒙 0

1 |𝑓 𝒙 | for 𝑓 𝒙 0
 (2.4) 

where 𝑓 𝒙  is the objective function value at  𝒙 .  
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2.1.3 Onlooker Bee Phase 

When employed bees complete their food search, they pass the information to onlooker 

bees which in turn choose their food sources depending on the probability value calculated 

using,  

 𝑝
𝑓𝑖𝑡 𝒙

∑ 𝑓𝑖𝑡 𝒙
 (2.5)

where  𝑓𝑖𝑡 𝒙  is the fitness value associated with food location and is given by equation 

2.4. Solutions with a higher fitness value has a greater probability of being chosen by 

onlooker bees.  

2.1.4 Scout Bee Phase 

In scout bee phase, a food source that is not improved after several trials, will be changed 

to a scout bee. Scout bees will randomly search for a new solution according to equation 

2.2. 

Numerical comparison of the ABC algorithm with other swarm-based algorithms [131]-

[133], indicate that former can produce better results with benefit of fewer control 

parameters. A review of the ABC algorithm can be found in [134]. As the ABC algorithm 

is free from parameter tuning it is used widely in a variety of practical applications.  

Like other evolutionary algorithms, the ABC algorithm also faces shortcomings such as 

getting trapped in local minima, and slower convergence speed. The above two problems 

are a result of insufficient balance between exploration and exploitation capability of 

search equation in the ABC algorithm. The solution generation equation which produces 

new food source based on the information of the previous solution, is good at exploration 

but poor in exploitation. Accelerating convergence speed and avoiding local optima are 

two most important goals in the ABC research.  

There are many updates applied to the ABC algorithm in recent years to improve its speed, 

convergence rate and diversity in population. Main challenge in improving the 

performance of optimization problems is to find the right balance between exploration and 
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exploitation. To address this concerning issue, numerous ABC variants have been 

developed. These improvements can be divided into two types, primarily new solution 

search equations have been introduced and secondarily, the original ABC is hybridized 

with other techniques. Some of the most popular modifications of the ABC algorithm are 

described below. 

The ABC algorithm in its original version lacks a mechanism to deal with constrained 

optimization problems. Hence, a number of modifications have been applied to the original 

ABC algorithm to improve its performance for specific constrained engineering application 

problems. For constraint handling, the ABC algorithm can be combined with the Deb’s 

rule and a probabilistic selection scheme to determine the optimum solution in the feasible 

region of a search space depending on a violation index value [135]. The first modification 

is made in the solution generation equation in employed and onlooker bee phase by 

changing more than one parameter in each iteration. In the second modification, greedy 

selection in the ABC algorithm is replaced by the Deb’s selection mechanism which 

assigns probability value to solutions based on their fitness value. The probability value for 

each solution is generated according to the following equation,  

 𝑝

⎩
⎪
⎨

⎪
⎧0.5

𝑓𝑖𝑡 𝒙
∑ 𝑓𝑖𝑡 𝒙

0.5 if solution is feasible 

1
𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛

∑ 𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛
0.5 otherwise

 (2.6) 

where 𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛 , is the penalty value of the solution 𝒙  and 𝑓𝑖𝑡 𝒙  is the fitness value 

of the solution 𝒙 . Probability values of infeasible solutions are between 0 and 0.5 while 

those of feasible ones are between 0.5 and 1. By a selection mechanism like roulette wheel, 

solutions are selected probabilistically proportional to their fitness values of feasible 

solutions and inversely proportional to their violation values of infeasible solutions. 

Zhu and Kwong [136] proposed the gbest-guided ABC algorithm by biasing the search 

towards the best solution found so far. The employed and onlooker bee phase equation 2.2 

can be modified as,  
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 𝑣 𝑥 𝜙 𝑥 𝑥 𝜑 𝑥 , 𝑥  𝑖 𝑘 (2.7) 

where 𝑥 ,  is a randomly selected parameter index of global best solution, 𝒙  is 

randomly selected food source, ϕ  is a random number within the range [-1,1], 𝜑 ∈

0, 𝐶  where C is a constant. The value of C is determined through the trial and error method 

by applying it on different benchmark functions.  

Diwold et al. [137] proposed a variation to the gbest-guided ABC algorithm, where a 

random neighbor selection is controlled through the following equation. Let 𝑑 𝒙 , 𝒙  be 

the Euclidean distance between two solutions 𝒙  and 𝒙 , the solution  𝒙  will be chosen 

with probability defined by, 

 𝑝

1
𝑑 𝒙 , 𝒙

∑ 1
𝑑 𝒙 , 𝒙,

 (2.8) 

The closer solution has greater probability of being selected. The idea behind this 

modification is that it is more probable to find a better solution by mutating two good 

solutions close to each other in a solution space. 

The best-so-far selection ABC algorithm [138] exploits the best solution found so far to 

improve convergence speed of the original ABC algorithm. The employed bee phase is 

unaltered as in equation 2.2, while onlooker bee phase is changed as follows, 

 𝑣 𝑥 𝑓𝑖𝑡 𝜙 𝑥 𝑥 , 𝑖 𝑘, 𝑑 1,2 … … 𝐷 (2.9) 

where 𝑗 is a randomly selected dimension, and 𝑓𝑖𝑡  is the fitness value of the best 

solution found so far. Position update is applied to all dimension in onlooker bee phase, 

thus routing candidate solution towards the best solution so far. In scout bee phase, instead 

of choosing a new random solution, perturbation is added to current solution randomly as 

in equation below, 
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 𝑥 𝑥 𝑥 ∗ 𝜙 𝑤
𝑖𝑡𝑒𝑟

𝑖𝑡𝑒𝑟
𝑤 𝑤  (2.10)

where 𝑗 ∈ 1, 𝐷 , 𝑤 , 𝑤  are control parameters to determine the strength of 

perturbation and is fixed as 1 and 0.2 respectively, 𝑖𝑡𝑒𝑟 is current iteration number and 

𝑖𝑡𝑒𝑟  is maximum number of iterations. As per the above equation, as number of 

iterations increases, algorithm is more exploitative than explorative.  

Alatas [139] proposed two new chaotic ABC algorithm by using seven different chaotic 

maps as random number generators to improve convergence characteristics and to prevent 

the ABC algorithm from getting stuck at local solutions. In the chaotic ABC 1, instead of 

using uniform random distribution for population initialization it uses a chaotic map to 

generate solutions. In the chaotic ABC 2, if a solution cannot be improved after  trials, 

algorithm starts chaotic search for  trials around current solution by modifying the 

dimension and accepts new solution if it improves the current one. By combing 

modifications of the chaotic ABC 1 and the chaotic ABC 2, another variant of the ABC 

algorithm called the chaotic ABC 3 is proposed. 

In an improved ABC algorithm [140], the population is initialized using chaotic random 

generator-based on the logistic map. After generating 𝑆𝑁 solutions randomly, a new set of 

𝑆𝑁 solutions are generated by opposition-based population initialization, in which each 

variable is mirrored at the center of search range. From 2 ∗ 𝑆𝑁 solutions the best 𝑆𝑁  

solutions are kept. Also, it modifies the search mechanism in onlooker and employed bee 

phases by incorporating differential evolution-based search. It uses following two 

equations inspired by the DE/best/1 and the DE/rand/1 scheme respectively, 

In the ABC/best/1, equation 2.3 is modified as, 

 𝑣 𝑥 , 𝜙 𝑥 𝑥 ,  (2.11)

In the ABC/rand/1, equation 2.3 is modified as, 
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 𝑣 𝑥 , 𝜙 𝑥 𝑥 ,  (2.12)

where 𝑟1 and 𝑟2 are two random indices different from 𝑖, 𝑥 ,  is the 𝑗 dimension 

randomly chosen from the best solution found so far. In the above equations, equation 2.11 

biases a search towards the best solution in the current population which can improve 

convergence speed but may lead to a premature convergence, whereas equation 2.12 

utilizes explorative property to prevent premature convergence. The above two equations 

are combined to find a new hybridized ABC search mechanism in which, a selective 

probability 𝑝 is used to control the frequency of introducing the ABC/best/1 and the 

ABC/rand/1. The value of selective probability 𝑝 is set as 0.25.  

Inspired by the differential evolution, Gao. et al. [140]-[141] proposed the global best ABC 

algorithm in which a solution search in employed and onlooker looker bee phases is 

directed towards the best solution of the previous iteration. Initial population is generated 

using a chaotic system and opposition-based learning which possesses ergodicity, 

randomness and irregularity to generate initial populations. Sinusoidal iterator is selected, 

and its equation is defined as follows, 

 𝑐ℎ sin 𝜋𝑐ℎ 𝑐ℎ 𝜖 0,1 , 𝑘 0,1,2 … … … … … … . 𝐾    (2.13)

Based on variants from the differential evolution, the employed and onlooker bee phases 

are modified in the ABC/best/1 as follows, 

 𝑣 𝑥 , 𝜙 𝑥 , 𝑥 ,  (2.14)

and in the ABC/best/2 as follows, 

 𝑣 𝑥 , 𝜙 𝑥 , 𝑥 , 𝜙 𝑥 , 𝑥 ,  (2.15)

where 𝑟 , 𝑟 , 𝑟  and 𝑟  are mutually exclusive integers randomly chosen from 1,2, … . . 𝑆𝑁  

and different from base index 𝑖, 𝒙  is the individual vector with best fitness in current 

population and 𝑗 ∈  1,2, … … … … . . 𝐷  is randomly chosen indices and 𝜙  is a random 
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number in range 1,1 . In equation 2.3, the coefficient 𝜙  is a uniform random number 

in [−1, 1] and 𝑥  is a random individual in population, and therefore, a solution search 

dominated by equation 2.3 is random enough for exploration. However, according to 

equation 2.14 or equation 2.15, ABC/best can drive a new candidate solution around the 

best solution of the previous iteration. Therefore, modified solution search equation 

described by above equation can increase exploitation of the ABC algorithm.  

In the Rosenbrock ABC algorithm [142], optimization is carried out in two phases, during 

exploration phase, the ABC algorithm locates regions of attraction and during exploitation 

phase, it uses the adaptive Rosenbrock’s rotational direction method to carry out a local 

search near the best solution. 

In the first modification, fitness function is modified as follows,  

 𝑓𝑖𝑡 2 𝑆𝑃
2 𝑆𝑃 1 𝑟 1

𝑆𝑁 1
 (2.16)

where 𝑆𝑃 ∈ 1.0,2.0  is a parameter called selection pressure, 𝑟  is rank of solution of 𝒙  

in the population. In the second modification, for every 𝑛  cycles of the ABC, a local search 

technique, the Rosenbrock’s rotational direction method, is initiated with the global best 

solution as a starting point. An adaptive step size 𝛿, is defined as a fraction of average 

distance between selected solutions and the best solution achieved so far and is determined 

by following equation, 

 𝛿 0.1
∑ 𝑥 𝑥 ,

𝑚
 (2.17)

where 𝛿  is step size of 𝑗th dimension, 𝑚 is the first 10% of solutions used to calculate step 

size, 𝒙  is the 𝑖th solution after ranking, 𝒙  is the current best solution. A better solution 

obtained from the Rosenbrock’s rotational directional search is used to replace a middle 

positioned solution in the population space. 
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In the incremental ABC [143] with local search method, a new population is added to the 

initial population after every 𝑔 iterations, biased by the members of a current population. 

The employed and onlooker bee phases are modified as follows, 

 𝑣 𝑥 𝜙 𝑥 , 𝑥  (2.18)

The scout bee phase is initialized by biasing towards the global best solution as, 

 𝑥 𝑥 , 𝑅 𝑥 , 𝑥 ,  (2.19)

where 𝑥  is a new solution replacing an abandoned solution and 𝑅  is the bias towards 

the global best solution. When population size is increased, equation 2.3 of the employed 

bee phase is replaced as follows, 

 𝑣 , 𝑥 , 𝜙 𝑥 , 𝑥 ,  (2.20)

where 𝑥 ,  is generated using equation 2.3, 𝑣  is the 𝑗th coordinate biased by the 

global best solution, and 𝜙  is a random parameter. 

In the orthogonal learning-based ABC algorithm [144], a new search equation is used in 

the employed and onlooker bee phases as, 

 𝑣 𝑥 , 𝜙 𝑥 , 𝑥 ,  (2.21)

where 𝑟 , and 𝑟  are mutually exclusive integers randomly chosen from 𝑆𝑁 food locations 

and different from base index 𝑖,  and 𝜙  is the random number in the range 1,1 . In 

equation 2.21, the vectors for generating candidate solutions are selected from the 

population randomly. Consequently, it has no bias in any search direction. As it is guided 

of only one term 𝜙 𝑥 , 𝑥 , , it can easily avoid oscillation phenomenon and 

maximize the search ability of the algorithm. A new candidate solution is generated around 

a randomly selected solution 𝒙 , hence it can bring more information to the search 

equation and produces a more promising candidate solution. The orthogonal learning (OL) 
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strategy-based algorithm (OCABC), combines the ABC algorithm with OL, the 

transmission vector 𝑻  is generated as follows, 

 𝑻 𝒙 𝑟𝑎𝑛𝑑 0,1 𝒙 𝒙  (2.22)

𝑻  and 𝒙  are mixed by making use of the orthogonal learning strategy to obtain a new 

solution 𝒗 , and a greedy selection is applied to select the best solution for the next 

generation. 

In the Gaussian-based ABC algorithm [145], the food search equations in the employed 

and onlooker bee phases are updated as follows, 

 
𝑥 𝑥 ∆.2 𝑟 0.5 𝛽𝛼 𝑖𝑓 𝑟 𝑝 

𝑥 𝑥 ∆.2 𝑟 0.5 2𝛼 𝑖𝑓 𝑟 𝑝 
(2.23)

where 𝑟 , 𝑟  ϵ 0,1  are random numbers from uniform distribution,  

 

∆ 𝑥 𝑥  

𝛽 |𝑠|    

𝛼 0.5 0.25
𝑖𝑡𝑒𝑟

𝑚𝑎𝑥𝑖𝑡𝑒𝑟
 

(2.24)

where 𝑠 is a random number extracted from a gaussian (normal) distribution and 𝑖𝑡𝑒𝑟 and 

𝑚𝑎𝑥𝑖𝑡𝑒𝑟 indicate current iteration and maximum iteration number respectively; 𝑝 is 

responsible for a balance between gaussian and uniform distribution, and smaller values of 

𝑝 seem preferable, indicating a superiority of the gaussian distribution. This method 

improves the performance of the ABC algorithm through a better balance between 

exploration and exploitation of the search space. 

In the ABC algorithm-based on information learning [146], at each generation, the whole 

population is divided into several subpopulations by clustering partition and size of each 

subpopulation is dynamically adjusted based on the last search experience. Furthermore, 
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two search mechanisms are designed to facilitate an exchange of information in each 

subpopulation and between different subpopulations. In the employed bee phase, the search 

equation is updated with the 𝑙𝑏𝑒𝑠𝑡 individual as, 

 
𝑡

𝐹 . 𝑥 , 𝐹 . 𝑥 ,

𝐹 𝐹
 

𝑣 𝑡 ∅ 𝑡 𝑥 ,  

(2.25)

In the onlooker bee phase, the search equation is updated with the 𝑔𝑏𝑒𝑠𝑡 individual as, 

 
𝑡

𝐹 . 𝑥 , 𝐹 . 𝑥 ,

𝐹 𝐹
 

𝑣 𝑡 ∅ 𝑡 𝑥 ,  

(2.26)

where 𝑗 𝜖 1, … . 𝐷  and ∅  is a random number in 1,1 ;  𝑘1 and 𝑘2 are randomly 

selected indices in 1, 𝑆𝑁  such that 𝑘1 𝑘2 𝑖; 𝑙𝑏𝑒𝑠𝑡 and 𝑔𝑏𝑒𝑠𝑡 are the indices of the 

best individuals found by corresponding subpopulation and whole population respectively; 

𝑻𝒊 is a transmission vector; 𝐹𝑟  is fitness ranking of the 𝑖th individual in the current whole 

population from worst to best. Introduction of information about 𝑙𝑏𝑒𝑠𝑡 and 𝑔𝑏𝑒𝑠𝑡 in the 

search equations can guide the search towards promising regions and speed up 

convergence. Thus, the two search mechanisms have stronger exploitation than the original 

ABC. On the other hand, the information of a randomly selected individual 𝒙  in the 

neighborhood is inserted into the transmission vector which can maintain population 

diversity and escape from trapping into local optimum. 

Since the introduction of the ABC algorithm, many ABC variants have been proposed for 

numerical optimization problems. Apart from introduction of new solution search 

equations [136]-[146], another common theme has been the hybridization of ABC 

algorithms with procedures taken from other techniques. By combing local search 

algorithms, the Nelder-mead algorithm (NMA) and the random walk with direction 

technique, Fister et al. [147] proposed the memetic ABC algorithm. The ABC algorithm is 
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also hybridized with the genetic algorithm [148]-[149] and the particle swarm optimization 

[150]-[153]. Inspired by foraging behavior of bacteria, Zhong et al. [154], introduced a 

local search technique in solution update equations of employed and onlooker bee phase. 

The differential evolution [155] and a chaotic operator [156] have been introduced into the 

search equation of the original ABC algorithm to improve its convergence speed. For 

improving movement of a scout bee, mechanisms based on nonlinear interpolated path and 

gaussian movement is proposed by Sharma and Pant [157]. To improve solution search 

equation, Rajasekhar et al. [158] introduced levy probability distributions. The improved 

artificial bee colony algorithm [159] with a new search cycle operator is used to solve 

higher dimensional multimodal problems. Tsai et al. [160] proposed the interactive ABC 

algorithm in which a gravitational force is used to drive the bee movement in onlooker 

phase.  The hybrid simplex ABC algorithm was proposed by Kang et al. [161]by 

integrating the Nelder-mead simplex method into the ABC algorithm. A hybrid swarm 

intelligent approach based on the genetic algorithm and the ABC algorithm was proposed 

by Zhao et al. [162], which combines the parallel computation merit of the genetic 

algorithm with the self-improving ability of the ABC Algorithm by exchanging 

information between bee colony and genetic algorithm population. An improved quantum 

EA was proposed by Duan et al. [163] which uses the ABC algorithm to improve the local 

search ability and escape from trapping into the local optima. The ABC algorithm have 

also been hybridized with the Hooke-jeeves pattern search [164] and the Powell’s method 

[165] to improve its exploitation capability. 

 It has been clear that these modified ABC algorithms can improve performance of the 

ABC algorithm to some extent. However, it is impossible for a method to outperform all 

other algorithms on every problem. For example, some approaches utilize information 

about the best solution to speed up convergence on unimodal functions but gets trapped 

into local optima on multimodal functions. 
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2.2 Challenges Faced by Variants of ABC Algorithm in Digital Filter Design 

The modifications to the original ABC algorithm, in general, improves exploitation 

capability of the search equation but various challenges are faced when they are applied to 

digital filter design. Some of them are listed in Figure 2.2. 

2.2.1 Strong Impact of Local Search and Directed Search 

A local search method can improve the performance of continuous optimization in many 

population-based metaheuristics. Generally, a local search is applied with an initial point 

as the global best solution and finds whether a local search can replace the best solution 

obtained so far. Trade-off between local search and global search is essential for successful 

optimization, because if the effect of local search is too strong then the ABC algorithm-

based optimization is insignificant. Also, in many variants of the ABC algorithm, 

exploitation of search equation is improved by directing the search towards the best 

solution obtained so far, which increases the chance of getting stuck at a local optimum 

and decreases the quality of solutions for higher dimensional problems. 

 

 

Figure 2.2 Challenges Faced by Variants of ABC Algorithm in Digital Filter Design 
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2.2.2 Issues in Obtaining a Global Optimum Solution 

Directing the search towards the best solutions in the solution space makes variables in all 

dimensions comes closer. These types of algorithms can be used to solve problems which 

has same optimum value in all dimensions like 𝑓 𝒙 0,0, … … … … 0 . In some 

variants of the ABC algorithm, their solution update equations are applied to all dimensions 

[138], instead of a single dimension in every iteration. In such cases the variables in each 

dimension will have optimum value in different directions, guiding the search towards the 

best solution will restrict the search in the multi directions, which increases the error value 

and, deteriorates the optimization performance. 

2.2.3 Hybrid ABC 

In addition to incorporating the ABC algorithm with local search heuristics [147], the 

search equation can be updated by incorporating other evolutionary algorithm such as the 

GA [148]-[149], the PSO [150]-[151] into the ABC algorithm. This will improve the 

performance in some benchmark functions, but it requires tuning of the control parameters 

of each of these evolutionary algorithms, which in turn increases the computational cost. 

2.2.4 Diversity of Search Space 

Directing a search towards the best solution will increase exploitation but limits the 

diversity of a search space. When the search is biased towards the neighborhood of best 

solution, it limits exploration of unknown regions in a search space and restricts the 

diversity of a population.  

2.3 Multiobjective Optimization 

Many multiobjective algorithms have been developed in the past decade to deal with 

optimization problems involving more than one objective. In general, a multiobjective 

optimization problem can be stated [166] as, 

 Minimize or Maximize 𝑓 𝒙 , 𝑚 1,2, … , 𝑀 (2.27)
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subject to 

𝑔 𝒙 0, 𝑗 1,2, … . , 𝐽;
ℎ 𝒙 0 𝑘 1,2, … , 𝐾;

𝑥 𝑥 𝑥 𝑖 1,2 … , 𝑛;
 

where 𝑓 𝒙 𝑓 𝒙 , 𝑓 𝒙 , 𝑓 𝒙 , … . , 𝑓 𝒙  represents the 𝑀 objective functions that 

need to be minimized or maximized, 𝑔 𝒙  represents 𝐽 inequality constraints and ℎ 𝒙  

represents 𝐾 equality constraints, (𝑥 , 𝑥 ) represents lower bound and upper bound of 

variables. The solution 𝒙 is a vector of 𝑛 decision variables 𝒙 𝑥 , 𝑥 , 𝑥 , … … . , 𝑥 . 

2.3.1 Concepts and Definitions 

Some of the basic concepts and definitions that are generally used in multiobjective 

optimization are disused below: 

A solution 𝒙  is said to dominate the other solution 𝒙 , if both conditions 1 and 2 are 

true: 

1. The solution 𝒙  is no worse than 𝒙  in all objectives, or 𝑓 𝒙 ≯

𝑓 𝒙    ∀𝑗 ∈ 1,2 … , 𝑀  

2. The solution 𝒙  is strictly better than 𝒙  in at least one objective or 𝑓 𝒙

𝑓 𝒙  for at least one 𝑗 ∈ 1,2 … , 𝑀 .  

where 𝑓 𝒙  is the 𝑗th objective function value of solution 𝒙  to be minimized. 

If for every member 𝒙 in a set 𝑃, there exists no solution 𝒚 dominating any member of the 

set 𝑃, then solutions belonging to the set 𝑃 constitute a locally Pareto optimal set. The set 

of all Pareto optimal solutions is the Pareto set (PS) and the image of PS in the objective 

space is called Pareto front (PF). 

A solution 𝒙  strongly dominates a solution 𝒙  (or 𝒙  𝒙 ), if solution 𝒙  is 

strictly better then solution 𝒙  in all 𝑀 objectives. Among a set of Pareto front solution 

𝑃, the weakly nondominated set of solutions 𝑃  are those that are not strongly dominated 

by other member of the set 𝑃. 
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Multiobjective optimization generally falls into two categories: classical optimization 

methods and evolutionary-based optimization methods. Classical methods use a 

deterministic procedure, which starts from a random initial solution, new solutions are 

generated by searching in new directions based on some transition rule. Unidirectional 

search is performed in each search direction until stopping criteria is reached. The search 

direction is determined using direct methods or gradient-based methods; direct method uses 

objective function values and constraint values directly to determine the search direction 

whereas gradient-based methods use first and/or second-order derivatives of objective 

function/constraint values to control search strategy. The classical methods face a plethora 

of difficulties, some of them are: dependence on initial solution; trapped at local optimum; 

inability to handle problems in discrete search space; and inefficiency on parallel machine. 

While dealing with non-linear, complex real-world optimization problems, classical 

methods are often stuck at local optimum. In addition, classical methods are problem 

specific, as seen with conjugate gradient methods which can effectively solve quadratic 

objective functions but incapable of solving problems with multi optimal solutions.  

2.3.2 Multiobjective Evolutionary Algorithms 

Evolutionary algorithms can alleviate above difficulties of classical methods, and hence 

can be applied to multiobjective optimization problems. Due to metaheuristic-based nature, 

evolutionary algorithms can approximate Pareto front of multiobjective problems.  These 

are known as the multiobjective evolutionary algorithm (MOEA). Some of the popular 

MOEAs are described below. 

In the pareto archived evolution strategy (PAES), Knowles and Corne [167]-[168] 

suggested a simple MOEA using a single parent single offspring evolution strategy. The 

initial offspring population 𝑄  is generated from the parent population 𝑃  randomly. In 

each generation, an offspring is compared with respect to a parent and nondominated 

solutions are obtained. If an offspring dominates a parent, the former is accepted as the 

next parent and iteration continues. On the other hand, if a parent dominates an offspring, 

it is discarded, and a new mutated solution is generated. However, if an offspring and a 
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parent do not dominate each other, the choice between them is made by comparing with an 

archive of best solutions found so far. The offspring is compared with the archive to check 

if it dominates any member of the archive. If it does, the offspring is accepted as the new 

parent and all dominated solutions are eliminated from the archive. If the offspring does 

not dominate any member of the archive, both the parent and the offspring are checked for 

their nearness with the solutions of the archive. If the offspring resides in a least crowded 

region of the objective space among the members of archive, it is accepted as a parent and 

a copy is added to archive. The maximum size of the archive is specified by the user 

initially. Crowding region is maintained by dividing the entire search space 

deterministically into 𝑑  subspaces, where 𝑑 is the depth parameter and 𝑛 is the number of 

decision variables, and by updating subspaces dynamically. Even though the PAES 

algorithm has an advantage of diversity maintenance without any sharing parameter, it is 

highly sensitive to the depth parameter and the number of decision variables.  

In the strength Pareto evolutionary algorithm2 (SPEA2) [169]-[170], elitism is introduced 

to improve convergence properties by including the elite individuals in a gene pool. Also, 

in the SPEA2, since the archive size is predefined, when the number of nondominated 

solutions is less than the predefined archive size, all empty spaces in the archive are filled 

up by dominated individuals. If the archive size exceeds the predefined limit, a truncation 

method is used to eliminate excess nondominated solutions while preserving the boundary 

solutions. The truncate function iteratively removes one solution at a time until the 

predefined limit is reached. The initial population 𝑃  is generated randomly and its 

nondominated members are filled into the initial archive 𝑄 . Then the offspring population 

is generated from the archived solutions. The fitness value is assigned to an offspring after 

considering both population and archive. Each solution 𝒑, from the population 𝑃 and the 

archive 𝑄, is assigned a strength value 𝑠  representing the number of individuals dominated 

by q, 

 𝑠 |𝒒|𝒒 ∈ 𝑃 ∪ 𝑄⋀𝒑 𝒒| (2.28)
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Raw fitness value of an individual is determined by the sum of strengths of its dominator 

solutions in both the archive and the population,  

 𝑅 𝑠
𝒒∈ ,𝒑 𝒒

 (2.29)

High value of 𝑅  means that 𝒑 is dominated by many individuals, and low value of 𝑅  

corresponds to 𝒑 being a nondominated solution. When most solutions nondominate with 

each other, density information is used to discriminate between individuals having identical 

raw fitness. The density estimation uses the 𝑘  nearest neighbor approach, where density 

at any point is a decreasing function of distance to the 𝑘  nearest points. The SPEA2 

preserves boundary solutions by keeping the number of solutions in an external archive 

constant over time. 

The nondominated sorting genetic algorithm I (NSGA-I) have many disadvantages 

including high computational complexities and a lack of elitism. The above problems can 

be eliminated using the NSGA II algorithm, which selects the best population by 

combining the properties of both the parent and the offspring population. The NSGA II 

[171] is the most prominent elitist multiobjective evolutionary algorithm. The general 

principle of the NSGA II is as follows: Initial offspring population 𝑄  is generated by 

applying genetic operator to the parent population 𝑃 . Nondominated sorting is applied 

after combining an offspring population and a parent population.  In naive forecasting 

approach, the first nondominated front in a population is obtained by comparing each 

solution obtained to every other solution in the population. This process is repeated after 

excluding the solutions of previous front to obtain the second nondominated front and so 

on. This process continues until all population members are classified. New parent 

population 𝑃  is filled with individuals from the best nondominated front. Instead of 

discarding solutions that cannot be accommodated in the new parent population, a niching 

strategy is used to choose individuals from the last front which reside in the least crowded 

regions. Crowding distance, a measure to quantify the average distance of one solution to 

its two nearest neighbors in the same front in the NSGA maintains a diversity among the 
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population members. Even though, the NSGA II is considered as one of the powerful 

MOEAs, giving diverse solutions and a better convergence near the true Pareto optimal 

front, it has certain disadvantages when cardinality of the first front exceeds the population 

size, then some of the Pareto optimal solutions will be replaced by the non Pareto optimal 

solutions based only on the crowding distance. 

The ABC algorithm has been extended to multiobjective domain for solving various 

practical design problems. The grid-based multiobjective ABC algorithm [172] is inspired 

by the original ABC algorithm, in which fitness value of solutions generated is calculated 

using the equation as below, 

 𝑓𝑖𝑡 𝒙𝒊
𝑑𝑜𝑚 𝒙

𝐹𝑜𝑜𝑑𝑁𝑢𝑚𝑏𝑒𝑟
 (2.30)

where 𝑑𝑜𝑚 𝒙  is the number of food sources dominated by the food source 𝒙 . Best 

solutions are archived to an external repository, and its size is maintained using the 𝜀 

dominance approach. In this approach, solution space is divided into boxes of size 𝜀 and 

only one nondominated solution is selected from each box. If box contains more than one 

solution, a member close to left corner is retained. On reaching termination criteria, the 

external archive is updated as the Pareto optimal set.  

The hybrid multiobjective ABC algorithm [173] has been applied for optimizing the copper 

strip production by simultaneously optimizing the cost of raw materials and the amount of 

raw materials thrown into furnace. The optimal Pareto front is generated using four 

important multiobjective approaches such as, fast nondominated sorting approach, 

crowded distance estimation, summation of normalized objective values and diversified 

selection. The objective function value of all the members in colony is normalized as 

follows, 

 𝑓 𝒙
𝑓 𝒙 𝑓
𝑓 𝑓

 (2.31)
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where 𝑓 𝒙  is the mth normalized objective value and are summed to obtain a single 

value. New solutions, generated in the employed and onlooker bee phases, are selected 

based on their nondomination ranks and crowding distances. 

For design optimization of laminated composite components, the vector evaluated ABC 

algorithm [174] has been applied to simultaneously optimize the weight of layers, and the 

implementation cost. For 𝑀 objective functions, the entire population is divided into 𝑀 

swarms each of size 𝑛 and each swarm is evaluated according to one objective function 

while information from other swarms determine its motion in the solution space. Each of 

the swarm updates towards the best solution of its respective objective function and finally 

converges to a global optimum solution. The best solution of one swarm is used to calculate 

the new position in another swarm. The position update equation for the 𝑖th individual of 

the 𝑗th swarm is as follows, 

𝐷 𝛼 𝑟 𝑆 1 𝛽 𝐷 𝛾 𝐷𝑏𝑒𝑠𝑡                     (2.32) 

where 𝛼 is the randomness in amplitude of the bee, 𝛽 is the convergence rate, 𝛾 is the 

learning rate, 𝑟 is the random number in the interval 0,1 , 𝑆 is the step size, 𝐷𝑏𝑒𝑠𝑡  is the 

overall best value of fitness function and 𝑘 is the randomly selected neighbor swarm.   

The nondominated sorting-based multiobjective ABC algorithm [175] maintains the best 

and diverse solutions in the Pareto front. The size of the external archive is maintained 

using nondominated sorting and crowding distance techniques. In the employed bee phase, 

if newly generated solution does not dominate old solution 𝑋 , an augmented population 

is generated as follows, 

 𝑈 𝑋 𝑟𝑎𝑛𝑑 0,1 ∗ 1
𝑖𝑡𝑒𝑟
𝑀𝐼𝐶

 (2.33)

where 𝑘 is a randomly chosen dimension, 𝑖𝑡𝑒𝑟 is the current iteration number and 𝑀𝐼𝐶 is 

the maximum number of iterations. 
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2.4 Limitations of Multiobjective Evolutionary Algorithms 

Even though the state-of-the-art multiobjective evolutionary algorithms (MOEA) can 

effectively solve some multiobjective practical design problems, they face some drawbacks 

as described below: 

2.4.1 Exponential Increase in Population Size 

As the number of objective increases, a large fraction of population becomes nondominated 

and in order to maintain diversity [176], the population size must increase exponentially. 

If the population size is not adequate, the solutions will be distant in the objective space. 

New solutions generated using the recombination of their parents will also be far away 

from each other, and thus reaching an optimal solution is difficult. 

2.4.2 Difficult to Select a Single Optimum Solution  

As the number of objective increases, more points are required to represent the Pareto front. 

It is difficult for the decision maker to choose a single optimum solution from the Pareto 

front containing many optimal solutions. 

2.4.3 Visualization is Difficult 

It is difficult to visualize the Pareto front of optimization problems with more than three 

objectives.  

2.5 Preference-Based Multiobjective Evolutionary Algorithms 

Even though the above multiobjective evolutionary algorithms can result in an optimal set, 

from a practical point, a user needs only one solution. From multiple trade-off optimal 

solutions, one solution must be selected by the decision maker using higher level 

information. Figure 2.3 represents the Pareto front approximation of two objective 

functions 𝐽 𝜃  and 𝐽 𝜃 ; blue points represents the Pareto optimal solutions; box 

represents the decision maker’s region of interest, and any solution outside the region of 

interest can be discarded. 
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Figure 2.3 Pareto Front Approximation 

To find a preferred solution, some preference information is needed to guide the search 

towards the region of interest in the Pareto front. If relative preference factor among 

objectives are known for a specific problem, they can be used a posteriori, a priori or 

interactively in the optimization process to obtain feasible solutions in the region of 

interest. The non preference-based methods do not assign any importance to any of the 

objectives, a posteriori methods use the preference information of each objective after 

optimization process, a priori methods use information about the preferences of the 

objectives, that is already known, to find a preferred optimal solution during optimization. 

Interactive methods use preference information progressively during optimization process.   

One of the earliest attempts in the preference-based MOO can be seen in [177], in those 

algorithms, preference information and Pareto dominance are used to find fitness and 

ranking of individuals in population pool. Fuzzy approach can be interactively used to set 

preferences [178], the decision maker can iteratively choose reference points to represent 

preferences until desired results are obtained. The reference point-based multiobjective 

optimization [176] can be used to set preference information in an objective space. 

Preference-based strategy is combined with the elitist nondominated sorting genetic 



 

38 

 

algorithm to simultaneously find the preferred set of solutions near the reference point. 

Instead of finding a single optimum solution, this method finds a set of optimal or near 

optimal solutions near the desired region of the decision maker’s interest. The goal 

programming technique is used in engineering design application to find a single solution 

that satisfies several design goals. Goal programming can be used to solve a multiobjective 

optimization problem by minimizing deviations from individual objectives/goals. In 

contrast to classical methods, this method eliminates the need of assigning individual 

weights to each objective. Goal programming can be incorporated into the NSGA [179] by 

converting each goal into an equivalent objective function of minimizing deviation from 

target. Even though this method can solve non-convex, multimodal optimization problems 

that classical methods cannot solve, it is not effective in finding the Pareto optimal solution. 

Preference information can be incorporated into the NSGA-II [180] by using the biased 

crowding distance approach. Initially all the solutions are projected onto linear hyperplane 

and crowding distance values can be calculated as the ratio of the distances of neighboring 

solutions in the original objective space to those on the projected hyperplane. The preferred 

solutions with larger biased crowding distances are those which lie on the plane parallel to 

the selected hyperplane. This procedure requires a reference direction and a diversity 

control parameter for the optimization process to converge to an optimal solution. 

The interactive evolutionary multiobjective optimization (IEMO) [181] can be used by the 

decision maker to set preferences interactively by incorporating classical decision making 

approaches to the multiobjective optimization procedure. This method has been used to 

generate solutions in region of interest in the Pareto front. In the interactive MOEA [182], 

objective function weights can be changed adaptively by the decision maker depending 

upon the locations of solutions in the current population. This can direct the search towards 

the region of interest in the Pareto front.  

The physical-programming can be combined with a priori preferences [183], [189] to guide 

the search towards a region of interest in the Pareto front. The objective space is partitioned 

into several levels to represent various preferences that represents the decision maker’s 

interests. Designer’s higher level information is converted into preference functions that 
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reflect the decision maker’s interest and meaningful parameters are used for each objective. 

A single-objective function without weights is constructed to convert preferences to 

numbers. This method eliminates time consuming and trial and error procedure of weight 

selection, and instead it selects preference ranges which have the same units as each 

objective function. The preference from the decision maker can be accepted progressively 

[184] in each generation of multiobjective evolutionary algorithms like the NSGA-II to 

guide search towards the most preferred solution of choice. Preference information is used 

to design a monotone value function, which satisfies the decision maker’s preferences, and 

the progressively interactive multiobjective optimization guides the direction of search 

towards a preferred solution.  

Incorporating preferences into the multiobjective ABC algorithm is a less explored area in 

the field of evolutionary computation. More research in this direction is required to include 

the decision maker’s preferences into the ABC algorithm.  

2.6 Conclusions 

Bio-inspired algorithms are becoming a popular research topic as evolutionary 

computation is being applied to solve many real-world problems. Even though these 

algorithms can solve complex multimodal problems, they face many difficulties for 

designing digital filters. Compared to other algorithms, the ABC algorithm has a benefit of 

fewer control parameters but requires a long time for convergence. This chapter gives a 

brief survey on various modifications applied to the ABC algorithm and its limitations 

when applied to filter design problems. Furthermore, single-objective optimization is 

extended to multiobjective domain and prominent methods in multiobjective evolutionary 

algorithms have been described. Limitations involved with an increased number of 

objectives have also been explained. A review on preference-based multiobjective 

optimization and its effectiveness in reducing computation complexity has also been 

presented.   
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CHAPTER 3 

LINEAR PHASE FIR DIFFERENTIATOR DESIGN 

 

In this chapter a novel improvement is applied to the original ABC algorithm to improve 

its performance. The ABC algorithm with adaptive modification rate (called the ABC-

AMR algorithm) is used to design Type 3 and Type 4 linear phase FIR differentiators. 

Minimax method is used to formulate the objective function. To analyze the performance 

of proposed improvement, results are compared with other variants of the ABC algorithm 

such as the gbest-guided ABC, the best-so-far selection ABC and the global best ABC; and 

the Parks-McClellan algorithm. Experimental result indicates that the proposed 

modification can reduce convergence time and minimax errors values.  

This chapter is organized as follows: Section 3.1 gives an overview of linear phase FIR 

differentiator design, Section 3.2 presents the ABC-AMR algorithm based on an adaptive 

modification rate, Section 3.3 provides the minimax formulation of linear phase FIR filters, 

obtained results are discussed in Section 3.4 and conclusions are given in Section 3.5.  

3.1 Introduction 

Differentiator design is an important filter design problem as it forms the building block of 

a diverse range of applications in biomedical engineering, communication systems, digital 

image processing and various other real-world scenarios. The differentiator computes the 

time derivative of any applied signal. The earliest approach for differentiator design 

includes minimax approach and eigenfilter method. Conventionally, digital differentiator 

filters are designed using the McClellan-Park algorithm [11], which can be extended to the 

design of higher order FIR differentiator [12] of any arbitrary length by applying a 

modification to the McClellan, Parks, and Rabiner algorithm, such that the Remez 

exchange method is combined with the minimum weighted Chebyshev error for obtaining 

optimal coefficients. This method results in large error value and fails to converge in the 

design of full band higher order differentiator designs. In [13], a simple and fast eigenfilter 
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method is described to design higher order differentiators. Quadratic error function is 

minimized in frequency band and filter coefficients are obtained by computing eigen vector 

corresponding to the smallest eigen value of a positive definite symmetric matrix. In the 

least square design approach [14], quadratic error function is formulated by calculating 

absolute mean square error between the magnitude response of the ideal and approximating 

differentiator and filter coefficients are obtained by solving a system of linear equations. 

Analytical methods can be used in differentiator design, as it can simplify optimization 

procedure by using the matrix properties of trigonometrical functions. Simple analytic 

closed form relations for the least square design of higher order differentiators [18] can 

reduce computation time as it doesn’t require to solve a system of linear equations. In 

another class of differentiator design, the transfer function of integrator is inverted to obtain 

the corresponding differentiator. An integrator transfer function can be obtained by using 

simple linear interpolation between magnitude responses of different Newton-cotes 

integrators such as rectangular, trapezoidal and Simpson integrators [19]. Digital 

integration techniques [20] like the Schneider kaneshige groutage, trapezoidal rule and the 

rectangular rule, can be interpolated and then modified to design differentiators. 

Conventional algorithms can efficiently solve unimodal problems but in multimodal 

problems, it has certain short comings such as: inability to solve discontinuous, non-

differentiable error function, convergence to a sub optimal solution, unable to find global 

optimum in a large search space, and sensitivity to initial set points.  

Due to the ability of evolutionary algorithms to solve multimodal, non-differentiable 

composite problems, it has been used in recent years for filter design applications. EA-

based algorithms such as the ABC algorithm [15],the teaching -learning-based 

optimization [16] and the cuckoo search algorithm [17] have been applied to digital filter 

designs. Modified particle swarm optimization algorithm [21] have been used to optimize 

mean square error to design digital integrators and differentiators. The results obtained for 

second, third and fourth order differentiators by the proposed algorithm are either superior 

or at par with the basic PSO variants and hybrid techniques. Linear phase second order 

recursive integrators and differentiators can be designed using the genetic algorithm [22], 
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and thus designed digital differentiators have linear phase response over the entire Nyquist 

frequency range including 𝜔 0 radian. Wide band differentiators are designed using 

several optimization techniques such as simulated annealing, genetic algorithms, and 

Fletcher and Powell optimization [23]. And the work emphasizes on designing 

differentiators without relying on inverting integrators of similar order because inverting 

an optimized integrator does not necessarily produce an optimized differentiator. Even 

though these algorithms can design differentiator better than conventional methods, they 

require longer convergence time. As the filter length increases, in order to speed up the 

convergence, most of heuristic/metaheuristic evolutionary optimization algorithms need a 

good candidate solution at initialization. However, it is not always possible to obtain a good 

candidate solution prior to optimization process. Hence, in this chapter an improvement is 

proposed to the original ABC algorithm which eliminates the necessity of seeding initial 

population and linear phase Type 3 and Type 4 differentiators are designed using the ABC-

AMR algorithm. 

3.2 ABC Algorithm with Adaptive Modification Rate (ABC-AMR) 

Even though the original ABC algorithm is efficient in the optimization of multimodal and 

multidimensional basic functions, it has a poor performance on composite and non-

separable functions. These limitations are due to an insufficient balance between 

exploration and exploitation capability of the search equations. Exploring new solutions in 

different regions of a search space is essential in the initial stages of optimization and in 

later stages, algorithm can apply knowledge about previous good solutions to obtain global 

optimum solution.  

Most variants of the ABC algorithm reduce computation time by biasing a search towards 

the direction of the best solution on the assumption that the best solution obtained is 

optimum but since evolutionary algorithms are population-based random search method, 

there is a chance that an algorithm gets stuck at any local optimum solution. So instead of 

incorporating information about the best solution, a novel approach has been proposed, in 
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which a control variable called adaptive modification rate (𝐴𝑀𝑅  is used to determine the 

number of variables updated in each iteration.  

In contrast to many evolutionary algorithms, where an initial population is seeded with a 

previously known good solution, in the proposed method, population is initialized using a 

uniform random distribution, 

 𝑥 𝑐 𝛼 ∗ 𝑐 𝑐  (3.1) 

where   𝑥  denotes 𝑗th dimension of 𝑖th solution, 𝑐  and  𝑐  represents maximum and 

minimum 𝑗th dimension of food source boundaries respectively and α denotes a random 

number in [0,1]. 

Once population is initialized, optimization begins with the employed bee phase, and in 

the original ABC algorithm, the update rate is fixed, producing a new solution, 𝑣 , by 

changing only one parameter of a parent solution 𝒙  as described in equation 2.3. This 

results in a longer convergence time and does not guarantee an optimal solution in filter 

design problems. As seen from Chapter 2, most of the modifications applied to the ABC 

algorithm tries to reduce computational time by biasing a search towards the best solution 

which is beneficial in some applications but in the case of a composite, non-convex design 

problems obtaining a minimal error value is difficult. In higher order filter design problems, 

in order to assure a minimal error value within given design constraints, new mutated 

solutions in the solution space must be explored.  Some research has been done in this 

direction [185], but with a constant modification rate (𝑀𝑅), resulting a limited solution 

space diversity. For each parameter 𝑥 , a uniformly distributed random number, 0 𝑅

1, is produced and if the random number is less than 𝑀𝑅 then the parameter 𝑥  is modified 

as, 

 𝑣
𝑥 ∅ 𝑥 𝑥 , if 𝑅 𝑀𝑅 

𝑥 , otherwise
 (3.2) 
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where 𝑘 ∈  1,2, … … . 𝑆𝑁  is randomly chosen index that is different from 𝑖 and 𝑀𝑅 is the 

constant modification rate which takes value between 0 and 1. A lower value of 𝑀𝑅 may 

cause solutions to improve slowly while a higher value may cause too much diversity in 

the solution space. 

For some problems, a higher value of 𝑀𝑅 is appropriate while in others, a lower value is 

suitable. For this reason, an improvement is proposed such that its value is set to change 

adaptively during each search, called adaptive modification rate 𝐴𝑀𝑅 . This ensures 

exploration in the initial stages of optimization and the value of 𝐴𝑀𝑅 decreases towards 

the end concentrating more on exploitation. This improvement guarantees that inefficient 

sources are modified more while better ones are modified less often. 

The solution update equation in onlooker and employed bee phase and adaptive 

modification rate 𝐴𝑀𝑅  is determined according to the following equation,   

 

𝑣
𝑥 ∅ 𝑥 𝑥 , if 𝑅 𝐴𝑀𝑅 

𝑥  , otherwise
 

𝐴𝑀𝑅 𝑡 1 𝑚𝑖𝑛 1, 𝛽
𝛼

𝜇 𝑡 0.01
 

(3.3) 

where 𝛼 0.06 and 𝛽 0.1 and 𝜇 𝑡  is the ratio of number of successful mutations to 

total number of mutations in the population. The value of 𝛼 and 𝛽 are set in accordance 

with filter design applications in single-objective and multiobjective domain.  

The pseudocode for the ABC-AMR is illustrated in Table 3.1. In this pseudocode, adaptive 

modification rate 𝐴𝑀𝑅 is shown in line number 80, and the ratio of successful mutation  to 

total number of mutation is calculated such that for every position update, if the 

corresponding objective function value is better than the global optimum of current 

population, it is counted as a successful mutation (µ ) and otherwise as a 

unsuccessful mutation (µ ).  

Note that pseudocode in Table 3.1 is for minimization problem and for a maximization 

problem, lines 14, 29 and 53 must be changed from,  
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 𝑓 𝒙 ∗ 𝑓 𝒙 ∗  (3.4) 

to 

 𝑓 𝒙 ∗ 𝑓 𝒙 ∗  (3.5) 

where 𝑓 𝒙 ∗  is the objective function value. 

Table 3.1  Pseudocode of ABC-AMR Algorithm 

Pseudocode Comments 

1 For  𝑖 1: 𝑆𝑁  

2   For j 1: 𝐷  

3          𝑥 𝑐 𝛼 ∗ 𝑐 𝑐  Randomly initialize food sources 

4    Next 𝑗   

5   𝑡𝑟𝑖𝑎𝑙 0 Set the limit counter as 0 

6 Next 𝑖  

7 For  𝑖 1: 𝑆𝑁  

8 If 𝑖 1  

9   For j 1: 𝐷  

10 𝑥 𝑖, 𝑗 𝑥 𝑖, 𝑗  Find best solution in the population 

11   Next 𝑗  

12 𝑓 𝒙 𝑖  𝑓 𝒙 𝑖   

13 Else   

14 If 𝑓 𝒙 𝑓 𝒙   

15 𝒙 𝒙   

16 𝑓 𝒙  𝑓 𝒙  Find the global minimum of the current population 

17 Next 𝑖  

18 Initialize 𝐴𝑀𝑅 Initialize parameters for 𝐴𝑀𝑅 

19 While 𝑖𝑡𝑒𝑟 𝑀𝑎𝑥𝐼𝑡𝑒𝑟  

20 µ 0, µ 0 Initialize values  

21 For  𝑖 1: 𝑆𝑁 For each employed bee 

22   For j 1: 𝐷 For each dimension 

23    Select 𝑥  Randomly select neighboring solution 

24 
𝑣

𝑥   ∅ 𝑥  𝑥 , if 𝑅 A𝑀𝑅
𝑥  ,                     otherwise

 

    where ∅ rand 1,1  

 

Update the position of employed bees 

25     Next 𝑗  
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26 Select 𝑥   

 

If no parameter is changed randomly select a 𝑑 
dimension of the solution.   

27 𝑣 𝑥   ∅ 𝑥  𝑥  Change at least one parameter 

28 Calculate 𝑓 𝒗  Evaluate the quality of solution 𝒗  

29 If 𝑓 𝒗  𝑓 𝒙  Compare between the old and new food position 

30 𝒙 𝒗  Select and replace with best solution. 

31 𝑡𝑟𝑖𝑎𝑙 0 Reset the limit counter 

32 Else  

33 𝑡𝑟𝑖𝑎𝑙 𝑡𝑟𝑖𝑎𝑙 1  

34 End if  

35 If  𝑓 𝒙 𝑓 𝒗   

36 µ µ 1  

37 Else  

38 µ µ 1  

39 End if   

40 Next 𝑖  

41 For  𝑖 1: 𝑆𝑁  

42 

𝑓𝑖𝑡 𝒙

1
1 𝑓 𝒙

 𝑓𝑜𝑟 𝑓 𝒙 0

1 |𝑓 𝒙 | 𝑓𝑜𝑟 𝑓 𝒙 0
 

 

Calculate the fitness value of each food source 

43 
𝑝

𝑓𝑖𝑡 𝒙
𝑠𝑢𝑚 𝑓𝑖𝑡

 
Calculate probability of each food source 

44 Next 𝑖  

45 While 𝑡 𝑆𝑁  

46  Set 𝑖 1  

47  If  𝑟𝑎𝑛𝑑 𝑝   

48        t=t+1  

49      For j 1: 𝐷  

50        Produce 𝑣  using line 24  

51      Next 𝑗  

52   repeat line 29 to 34 Apply selection between 𝒙  and 𝒗  

53   If  𝑓 𝒙𝒃 𝑓 𝒗   

54 µ µ 1  

55   Else  

56 µ µ 1  

57   End if   

58  End if  

59 𝑖 𝑖 1  

60 End while  

61 For  𝑖 1: 𝑆𝑁  

62 If  𝑡𝑟𝑖𝑎𝑙 𝑙𝑖𝑚𝑖𝑡 Abandon the scout bees 
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63 For 𝑗 1: 𝐷  

64          𝑆𝐵 𝑐 𝛼 ∗ 𝑐 𝑐   

65 Next 𝑗  

66 𝑡𝑟𝑖𝑎𝑙 0  

67   repeat line 29 to 34 Apply selection between 𝒙  and 𝑺𝑩  

68 For  𝑖 1: 𝑆𝑁  

69 If 𝑖 1  

70   For j 1: 𝐷  

71 𝒙𝒃 𝑖, 𝑗 𝒙 𝑖, 𝑗  Find best solution in the population 

72   Next 𝑗  

73 𝑓 𝒙 𝑖  𝑓 𝒙 𝑖   

74 Else   

75 If 𝑓 𝒙 𝑓 𝒙   

76 𝒙 𝒙   

77 𝑓 𝒙  𝑓 𝒙  Find the global minimum of the current population 

78 Next 𝑖  

79 𝜇
µ

µ µ
  

80 𝐴𝑀𝑅 𝑖𝑡𝑒𝑟 1 𝑚𝑖𝑛 1, 𝛽
𝛼

𝜇 0.01
  

81 End while Iteration 𝑖𝑡𝑒𝑟 ends 

 

The flowchart for the ABC-AMR algorithm is given in Figure 3.1. 
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Figure 3.1 Flowchart of ABC-AMR Algorithm 
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3.3 Minimax FIR Filter Design   

The transfer function of an 𝑁th-order FIR filter can be expressed as, 

 𝐻 𝑧 ℎ 𝑛 𝑧  (3.6) 

The desired frequency response 𝐻 𝑤  is related to the desired amplitude response 𝐴 𝑤  

by, 

 𝐻 𝑤 𝑗𝑒 𝐴 𝑤 𝑗 𝑒     for 0 𝑤 𝜋 (3.7) 

The parameter τ denotes the group delay.  

The frequency response of an ideal differentiator is given by, 

 𝐴 𝑤

0 at 𝑤 0
𝑤
𝜋

for 0 𝑤 𝜋

1 at 𝑤 𝜋

 (3.8) 

For linear phase FIR digital filter approximation of a fullband digital differentiator, a 

practical range of frequency is given by 0 𝑤 𝑤 𝜋 , where  𝑤  equal to 0.9π for 

Type 3 and for Type 4 𝑤  equal to π. 

3.3.1 Type 3 Linear Phase FIR Filters [1] 

The 𝑀 (𝑀 𝑁 1  impulse responses of Type 3 linear phase FIR filter can be expressed 

as,  

 

𝐡 ℎ 0 , ℎ 1 , , … , ℎ 𝑛 , … , ℎ 𝑀 2 , ℎ 𝑀 1  

ℎ 𝑛 ℎ 𝑀 1 𝑛 for 0,1, 2, 3, … ,
𝑀 1

2
 

(3.9) 

The frequency response of the Type 3 linear phase FIR filter is,  
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𝐻 𝒄, 𝑤 𝑗𝑒 2ℎ 𝑛 sin

𝑀 1
2

𝑛 𝑤𝑇 

                             𝑗𝑒 𝐴 𝒄, 𝑤  

(3.10)

 𝐴 𝒄, 𝑤 𝐜𝐓𝐬𝐢𝐧 𝑤  (3.11)

where, 

 

𝐬𝐢𝐧 𝑤 sin 𝑤𝑇 sin 2𝑤𝑇 sin 3𝑤𝑇 ⋯ sin
𝑀 1

2
𝑤𝑇  

𝒄 𝑐 , 𝑐 , 𝑐 , 𝑐 … … . 𝑐 ; 𝑐 ℎ 0 

  2ℎ 1 , 2ℎ 2 , ⋯ , 2ℎ 2 , 2ℎ 1 , 2ℎ 0  

(3.12)

3.3.2 Type 4 Linear Phase FIR Filters [1] 

For the Type 4 linear phase FIR filter 𝑀 𝑁 1  impulse responses can be expressed as,  

 

𝐡 ℎ 0 , ℎ 1 , ℎ 2 , … , ℎ 𝑛 , … , ℎ 𝑀 2 , ℎ 𝑀 1  

ℎ 𝑛 ℎ 𝑀 1 𝑛 for 𝑛 0,1, 2, 3, … ,
𝑀
2

1  
(3.13)

The frequency response of the Type 4 linear phase FIR filter is given by, 

 
𝐻 𝐜, 𝑤 𝑗𝑒 2ℎ 𝑛 𝑠𝑖𝑛

𝑀 1
2

𝑛 𝑤 𝑇

𝑗𝑒 𝐴 𝐜, 𝑤  

(3.14)

where, 
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𝐴 𝒄, 𝑤 𝐜𝑻 𝐬𝐢𝐧 𝑤  

𝐜 𝑐 , 𝑐 , 𝑐 , 𝑐 , … , 𝑐  

2ℎ
𝑀
2

1 , 2ℎ
𝑀
2

2 , ⋯ , 2ℎ 2 , 2ℎ 1 , 2ℎ 0  

𝐬𝐢𝐧 𝑤 sin
𝑤
2

sin
3𝑤
2

⋯ ⋯ sin
𝑀
2

𝑤  

(3.15)

The group delay of Type 3 and Type 4 Linear phase FIR filter is given by,𝜏 𝑤   

The optimization problem searches for an optimal coefficient vector 𝒄 that minimizes the 

weighted minimax objective function 𝑒 𝐜  with respect to 𝐜 defined by, 

 min
𝐜

𝑒 𝐜 min
𝐜

𝑊 𝑤 |𝐴 𝐜, 𝑤 𝐴 𝑤 |

for 𝑊 𝑤 0; 0 𝑤 𝜋

 (3.16)

In equation 3.16, 𝑊 𝑤  is a positive frequency weighting function, and 𝑝 is a positive 

even integer.  

3.4 Simulation Result Analysis 

The proposed ABC-AMR is used to design Type 3 and Type 4 linear phase FIR 

differentiators. The filter specification is given in Table 3.2, and Type 3 filters are of orders 

𝑁 14, 26, 50  and Type 4 filters are of orders 𝑁 13, 25, 49 are designed. In order to 

analyze the performance of the ABC-AMR algorithm, results are compared with the 

original ABC and its three variants: the gbest-guided ABC algorithm (GABC) [136]; the 

best-so-far [138]; the ABC/best/1[141]. In addition, results are also compared with the 

Parks-McClellan (PM) algorithm, a classical filter design method. 
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The frequency grid for optimization and for peak error value calculation, and ideal 

amplitude response are given in Table 3.3. For peak error evaluation, the frequency grid is 

chosen to be denser than that of the frequency grid for optimization. 

Table 3.2 Type 3 and Type 4 Linear Phase FIR Filter Specifications 

 Description Type 3 Type 4 

𝑐  Upper bound of filter coefficients 0.47 0.61 

𝑐  Lower bound of filter coefficients -0.47 -0.61 

𝑁 Filter order 14 26 50 13 25 49 

𝐾 Distinct coefficients 8 14 26 7 13 25 

p Least pth value 128 128 64 128 128 128 

𝜏 Group delay 7 13 25 6.5 12.5 24.5 

Limit Scout bee limit 200 200 200 200 200 200 

α AMR parameter 1 0.06 

β AMR parameter 2 0.1 

Table 3.3 Frequency Grid for Optimization and Error Value Calculation 

  Frequency Grid Ideal Amplitude Response 

Type 3 
Optimization 0: 0.005: 0.9  0: 0.005: 0.9  

Peak error evaluation 0: 0.001: 0.9  0: 0.001: 0.9  

Type 4 
Optimization 0: 0.005: 1  0: 0.005: 1  

Peak error evaluation 0: 0.001: 1  0: 0.001: 1  
 

For a fair comparison of performance, the five ABC algorithms are set to the same initial 

conditions. The population size 𝑆𝑁 =50, 𝑙𝑖𝑚𝑖𝑡 =200 and maximum number of function 

evaluation is set as; 100000 for 𝑁 13,14,25, and 26, 200000 for 𝑁 49 and 50. The 

initial population for each of the filter designs is generated using equation 3.1, where the 

upper bound (𝑐  and lower bound (𝑐 ) of coefficients is set according to Table 3.1. The 

number of scout bee is limited to a maximum of one in every iteration.  

To evaluate the performance of  the ABC-AMR algorithm, peak error values, peak error 

location (𝐹 ), converged iteration number (𝛤 ) and minimax error value are compared with 

those of the Parks-McClellan (PM) optimal equiripple FIR filter design [11]  (by Matlab 

function firpm.m), the original ABC algorithm, the gbest-guided ABC algorithm[136], the 

best-so-far selection ABC algorithm [138], the global best ABC algorithm [141] and the 
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results are given in Table 3.4 and Table 3.5. The simulations are performed using intel core 

i7-4790, 3.60 GHz with 12GB RAM desktop computer. The results are ranked according 

to peak error 𝑅  and minimax error 𝑅 . For Type 3 and Type 4 FIR differentiator 

designs, the ABC-AMR has peak error rank 𝑅 1 and minimax error rank  𝑅 1. 

The error ranking indicates that the ABC-AMR always has the lowest minimax and peak 

errors for all designed filters. The converged iteration number 𝛤  indicates that the ABC-

AMR algorithm can always converge to the lowest minimax error with the least CPU time. 

The CPU time (in seconds) are the time required by each design to converge to its least 

minimax error value. It can be seen that the ABC-AMR algorithm requires the least CPU 

time than those of the original ABC algorithm and its three variants. For the ABC-AMR 

algorithm, the value of the modification rate is changed adaptively. During the initial stage 

of iterations, the adaptive modification rate values are higher and updating all or many of 

the design parameters to fully explore the search space; but during the later stage of 

iterations, the adaptive modification rate values are lower and updating a few or no design 

parameters. For other variants of the ABC algorithm, their modification rates are fixed 

throughout optimization thus changing at most a fixed number of design parameters in all 

iterations. The PM algorithm requires the least CPU time in each of the designs because it 

is based on the Remez exchange algorithm which is a non-evolutionary algorithm. 

Figures 3.2-3.13 show the magnitude and error value plots for differentiators of orders 𝑁

 13, 25, 49, 14, 26, and 50. Magnitude response plot indicates that the ABC-AMR can 

design linear phase FIR differentiator with desired magnitude response and equiripple 

minimax error in passband. The error convergence plot indicates that the minimax error 

decreases rapidly in initial stages and gradually in later stages to search around the 

neighborhood of known solutions to find a better solution.  
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The half symmetric filter coefficients, ℎ 𝑛 ℎ 𝑀 1 𝑛  for Type 3 and Type 4 

linear phase FIR differentiators using the ABC-AMR and its variants are given in Table 

3.6 to Table 3.15. 

Table 3.6  Half Symmetric Filter Coefficients of Type 3 Differentiator Using Original ABC Algorithm 

ℎ 𝑛  Filter order 𝑁 14 Filter order 𝑁 26 Filter order 𝑁 50 

ℎ 0  0.037714736076781 0.004954265024730 0.002009877760662 

ℎ 1  -0.030646457946389 -0.005142636311658 -0.001962936003393 

ℎ 2  0.043867404494912 0.007690350241261 0.002702320368751 

ℎ 3  -0.063006616462289 -0.011025642990155 -0.003715612764887 

ℎ 4  0.093235497566831 0.015327310488592 0.004918063724640 

ℎ 5  -0.150362207508295 -0.020848200236187 -0.006233546758396 

ℎ 6  0.313848202259717 0.027971747369298 0.007873408152949 

ℎ 7  0.000000000000000  -0.037321606415275 -0.009565069968085 

ℎ 8   0.050014192921637 0.011554864554546 

ℎ 9   -0.068291703677568 -0.013713425247137 

ℎ 10   0.097417827390313 0.015994776897288 

ℎ 11   -0.153257097029880 -0.018580888154193 

ℎ 12   0.315328318461610 0.021273554338286 

ℎ 13   0.000000000000000  -0.024282180962679 

ℎ 14    0.027567845613665 

ℎ 15    -0.031169035563579 

ℎ 16    0.035439986834320 

ℎ 17    -0.040264001348586 

ℎ 18    0.046397246036947 

ℎ 19    -0.054129634329298 

ℎ 20    0.064833998659169 

ℎ 21    -0.080712127820842 

ℎ 22    0.107003047556673 

ℎ 23    -0.159867741929711 

ℎ 24    0.318652110954695 

ℎ 25     0.000000000000000  
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Table 3.7  Half Symmetric Filter Coefficients of Type 4 Differentiator Using Original ABC Algorithm 

ℎ 𝑛  Filter order 𝑁 13 Filter order 𝑁 25 Filter order 𝑁 49 

ℎ 0   0.008264611602191   0.003456458479103     0.001131662874766 

ℎ 1   -0.003734160867159   -0.000931000562800   -0.000825551624798 

ℎ 2   0.005323149013052   0.001576209070183     0.000359541930270 

ℎ 3   -0.008563001766520   -0.001097322552584   -0.000197411511262 

ℎ 4   0.016496826494759   0.001522229229158     0.000178128965830 

ℎ 5   -0.045258766102300   -0.001903632624033   -0.000216197304269 

ℎ 6   0.405500512078587   0.001961829606336     0.000512598346314 

ℎ 7    -0.003629656791606   -0.000594771104760 

ℎ 8    0.005750120979190    -0.000092578681664 

ℎ 9    -0.007959226461326   -0.000632159746196 

ℎ 10    0.015824641136634     0.000748440655474 

ℎ 11    -0.045392750674101   -0.000297826283784 

ℎ 12    0.405388123899742     0.000893869910396 

ℎ 13      -0.000616016544671 

ℎ 14       0.001397836740974 

ℎ 15      -0.000518928633199 

ℎ 16       0.001654519679030 

ℎ 17      -0.001838600059342 

ℎ 18       0.002276457328537 

ℎ 19      -0.003225241109209 

ℎ 20       0.005198778418921 

ℎ 21      -0.008287336282587 

ℎ 22       0.016488580851259 

ℎ 23      -0.044547729139694 

ℎ 24       0.405599491947542 
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Table 3.8  Half Symmetric Filter Coefficients of Type 3 Differentiator Using Global Best ABC Algorithm 

ℎ 𝑛  Filter order 𝑁 14 Filter order 𝑁 26 Filter order 𝑁 50 

ℎ 0   0.037714736009138   0.004674426070205  0.002152664796011 

ℎ 1   -0.030646457789720   -0.004965705205898  -0.002107274777169 

ℎ 2   0.043867404499983   0.009029362614518  0.002977840459958 

ℎ 3   -0.063006616609127   -0.011376635083456  -0.004119921812824 

ℎ 4   0.093235497472416   0.015015536012812  0.005429088813692 

ℎ 5   -0.150362207509868   -0.020971347981832  -0.006984835210369 

ℎ 6   0.313848202229764   0.028793847811993  0.008732118907782 

ℎ 7   0.000000000000000   -0.038025614268367  -0.010709339351377 

ℎ 8    0.049710001677923  0.012888102615146 

ℎ 9    -0.068207792550969  -0.015249874167740 

ℎ 10    0.098405398965465  0.017813766307454 

ℎ 11    -0.153535094502451  -0.020541738180927 

ℎ 12    0.314632861951947  0.023476101659197 

ℎ 13    0.000000000000000  -0.026607031077811 

ℎ 14    0.029995663126626 

ℎ 15    -0.033709092440984 

ℎ 16    0.037895451620700 

ℎ 17    -0.042752690137101 

ℎ 18    0.048681725063819 

ℎ 19    -0.056287618596107 

ℎ 20    0.066720562906411 

ℎ 21    -0.082272439369876 

ℎ 22    0.108281166416444 

ℎ 23    -0.160667144184671 

ℎ 24    0.319099195823076 

ℎ 25     0.000000000000000  
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Table 3.9  Half Symmetric Filter Coefficients of Type 4 Differentiator Using Global Best ABC Algorithm 

ℎ 𝑛  Filter order 𝑁 13 Filter order N 25 Filter order N 49 

ℎ 0   0.008224495336062  0.003714560943920 0.001358938937626 

ℎ 1   -0.003819631604500  -0.000844219812620 -0.000195168872497 

ℎ 2   0.005301540181976  0.001303180541707 0.000728909070773 

ℎ 3   -0.008532369555134  -0.001292029712979 -0.000401877288253 

ℎ 4   0.016504191425383  0.001380624610192 -0.000194379703133 

ℎ 5   -0.045236848269014  -0.001801990478631 -0.000447296071939 

ℎ 6  0.405522128780396  0.002447324393796 0.000648866905644 

ℎ 7   -0.003435283644091 -0.000403099276249 

ℎ 8   0.005195581228609 0.000296007917183 

ℎ 9   -0.008446820306135 -0.000360913544612 

ℎ 10   0.016072605578480 0.000539755869478 

ℎ 11   -0.044903330116540 -0.000428096993863 

ℎ 12   0.405575314265407 0.000666429183279 

ℎ 13    -0.000641986366391 

ℎ 14    0.001158207299409 

ℎ 15    -0.001230224391820 

ℎ 16    0.001447145485385 

ℎ 17    -0.001564822512776 

ℎ 18    0.002620272424253 

ℎ 19    -0.003523829967103 

ℎ 20    0.004846977621542 

ℎ 21    -0.007966822714279 

ℎ 22    0.016453944602314 

ℎ 23    -0.045302200987820 

ℎ 24    0.405106841718536 
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Table 3.10  Half Symmetric Filter Coefficients of Type 3 Differentiator Using Best-so-far ABC Algorithm 

ℎ 𝑛  Filter order 𝑁 14 Filter order 𝑁 26 Filter order 𝑁 50 

ℎ 0   0.037714736121476   0.004954259527733    -0.000032836966237 

ℎ 1   -0.030646457730699   -0.005142644076803   -0.000132886675808 

ℎ 2   0.043867404265145   0.007690345957815     0.000594670162447 

ℎ 3   -0.063006617025036   -0.011025643056894   -0.001256382067019 

ℎ 4   0.093235497182417   0.015327309040087     0.002126595529783 

ℎ 5   -0.150362207674508   -0.020848256847276   -0.002826070041617 

ℎ 6   0.313848202241384   0.027971580836796     0.003839059235563 

ℎ 7   0.000000000000000  -0.037321769301587   -0.004921526740999 

ℎ 8    0.050014138214706     0.006322080206127 

ℎ 9    -0.068291703563541   -0.008204954658998 

ℎ 10    0.097417826919175     0.010108023416536 

ℎ 11    -0.153257096703735   -0.011895291241129 

ℎ 12    0.315328318546392     0.014117905894228 

ℎ 13    0.000000000000000    -0.017167992661310 

ℎ 14       0.020711081721939 

ℎ 15      -0.024417034543224 

ℎ 16       0.028601936480747 

ℎ 17      -0.033566791871325 

ℎ 18       0.041014515033587 

ℎ 19      -0.047980076612729 

ℎ 20       0.060082956339386 

ℎ 21      -0.076950530947972 

ℎ 22       0.104042198831171 

ℎ 23      -0.157826070471847 

ℎ 24       0.317792797476610 

ℎ 25       0.000000000000000  
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Table 3.11  Half Symmetric Filter Coefficients of Type 4 Differentiator Using Best-so-far ABC Algorithm 

ℎ 𝑛  Filter order 𝑁 13 Filter order 𝑁 25 Filter order 𝑁 49 

ℎ 0   0.007851524961023   0.002206301273539     0.000554713367324 

ℎ 1   -0.003837151453875   -0.001989888149987   -0.000974404720332 

ℎ 2   0.005885549611941   0.001945525719095     0.000579176022998 

ℎ 3   -0.008099425356908   -0.000871349385500   -0.000608190926336 

ℎ 4   0.016445823551601   0.000847765652946    -0.000084377500657 

ℎ 5   -0.045901717204137   -0.002593026113114   -0.000196225732242 

ℎ 6   0.405063346127365   0.002922275640087     0.000225542164776 

ℎ 7    -0.001870539119004   -0.000645997763767 

ℎ 8    0.006380672747193     0.000337599333984 

ℎ 9    -0.007744922791641   -0.000857886312354 

ℎ 10    0.016739464093374    -0.000077314771834 

ℎ 11    -0.044798826920954   -0.000852370706714 

ℎ 12    0.405400275989127    0.000922844421198 

ℎ 13      -0.000733090405356 

ℎ 14       0.000845385941315 

ℎ 15      -0.000737090063026 

ℎ 16       0.001871503343967 

ℎ 17      -0.001913582204346 

ℎ 18       0.001807030605793 

ℎ 19      -0.003438095023633 

ℎ 20       0.005377618816994 

ℎ 21      -0.008212045233431 

ℎ 22       0.015858611079945 

ℎ 23      -0.045511893173979 

ℎ 24       0.405209005225721 
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Table 3.12  Half Symmetric Filter Coefficients of Type 3 Differentiator Using ABC/Best/1 Algorithm 

ℎ 𝑛  Filter order 𝑁 14 Filter order 𝑁 26 Filter order 𝑁 50 

ℎ 0   -0.037714736164276   0.004220039506768     0.001839105420516 

ℎ 1   0.030646457581555   -0.004288276151991   -0.001910199952512 

ℎ 2   -0.043867404512256   0.007199752790122     0.003149886559634 

ℎ 3   0.063006616804097   -0.010876656635048   -0.003953919537754 

ℎ 4   -0.093235497256590   0.015637756607592     0.005188939125532 

ℎ 5   0.150362207655403   -0.019971948902219   -0.006704364927861 

ℎ 6   -0.313848202233923   0.027302859780655     0.008603755688190 

ℎ 7   0.000000000000000   -0.035986080161137   -0.010310992382171 

ℎ 8    0.049952503552586     0.012412525242013 

ℎ 9    -0.068782874196260   -0.015087715398807 

ℎ 10    0.097355606114765     0.017339422474736 

ℎ 11    -0.153232418301578   -0.019995862873859 

ℎ 12    0.314589340588941     0.022986793678869 

ℎ 13    0.000000000000000    -0.026083225161564 

ℎ 14       0.029586217620524 

ℎ 15      -0.033042633225191 

ℎ 16       0.037373435814157 

ℎ 17      -0.042439810134593 

ℎ 18       0.048050996709027 

ℎ 19      -0.055763240640195 

ℎ 20       0.066436979889549 

ℎ 21      -0.082091894225675 

ℎ 22       0.107949454389511 

ℎ 23      -0.160306615097844 

ℎ 24       0.319250472974861 

ℎ 25       0.000000000000000  
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Table 3.13  Half Symmetric Filter Coefficients of Type 4 Differentiator Using ABC/Best/1 Algorithm 

ℎ 𝑛  Filter order 𝑁 13 Filter order 𝑁 25 Filter order 𝑁 49 

ℎ 0   0.008255554448067   0.003290001482898     0.000711829080052 

ℎ 1   -0.003764118367036   -0.000927459053777   -0.001143547922293 

ℎ 2   0.005327397631421   0.001656340302054     0.000225497378645 

ℎ 3   -0.008549461429752   -0.001291014586894   -0.000623050252667 

ℎ 4   0.016463064983330   0.001304670229115     0.000176823483357 

ℎ 5   -0.045268017757269   -0.001925551586051   -0.000100220958177 

ℎ 6   0.405514079881610   0.002473261030463     0.000434827497338 

ℎ 7    -0.003160254335341   -0.000450897482858 

ℎ 8    0.005219359329427     0.000013801901191 

ℎ 9    -0.008534704725573   -0.000673806087883 

ℎ 10    0.016309447504654     0.000661476094253 

ℎ 11    -0.044670512112261   -0.000676693091833 

ℎ 12    0.405611896389999     0.000372303822229 

ℎ 13      -0.000657419115955 

ℎ 14       0.001198338948212 

ℎ 15      -0.001056419142790 

ℎ 16       0.001600542003052 

ℎ 17      -0.001662869289421 

ℎ 18       0.002478121058722 

ℎ 19      -0.003356937098225 

ℎ 20       0.004851174768479 

ℎ 21      -0.008321459153870 

ℎ 22       0.016497901242642 

ℎ 23      -0.044979642057608 

ℎ 24       0.405204708831877 
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Table 3.14  Half Symmetric Filter Coefficients of Type 3 Differentiator Using ABC-AMR Algorithm 

ℎ 𝑛  Filter order N 14 Filter order N 26 Filter order N 50 

ℎ 0   0.037714736176857   0.004954265018781    -0.001910167610739 

ℎ 1   -0.030646457800335   -0.005142636541968    0.001672136644021 

ℎ 2   0.043867404141397   0.007690350125654    -0.002289726027502 

ℎ 3   -0.063006617005233   -0.011025643088221    0.002992403272284 

ℎ 4   0.093235497362153   0.015327310486198    -0.003741074729426 

ℎ 5   -0.150362207551728   -0.020848200304400    0.004515940240083 

ℎ 6   0.313848202383412   0.027971747495007    -0.005250402589426 

ℎ 7   0.000000000000000   -0.037321606067086    0.005893854058011 

ℎ 8    0.050014193374240    -0.006382049157276 

ℎ 9    -0.068291703248154    0.006631870688049 

ℎ 10    0.097417827781593    -0.006552144938983 

ℎ 11    -0.153257096940842    0.006047719642627 

ℎ 12    0.315328318498894    -0.005012048776954 

ℎ 13    0.000000000000000    0.003330449046257 

ℎ 14      -0.000868567279514 

ℎ 15      -0.002529766108257 

ℎ 16       0.007055912845817 

ℎ 17      -0.012967351753279 

ℎ 18       0.020645267217845 

ℎ 19      -0.030703784871900 

ℎ 20       0.044250581180524 

ℎ 21      -0.063513051960077 

ℎ 22       0.093732312489866 

ℎ 23      -0.150750496049649 

ℎ 24       0.314059635244287 

ℎ 25      0.000000000000000 

 

 

 

 

 



 

65 

 

 

 

 

Table 3.15  Half Symmetric Filter Coefficients of Type 4 Differentiator Using ABC-AMR Algorithm 

ℎ 𝑛  Filter order 𝑁 13 Filter order 𝑁 25 Filter order 𝑁 49 

ℎ 0   0.008255554456441   0.003873473894564     0.001857807284670 

ℎ 1   -0.003764118423671   -0.000911167085171   -0.000247312422273 

ℎ 2   0.005327397697098   0.001030826173696     0.000231224785166 

ℎ 3   -0.008549461520826   -0.001220503836268   -0.000254024769798 

ℎ 4   0.016463065018200   0.001489876281312     0.000271610748705 

ℎ 5   -0.045268017676092   -0.001881306278383   -0.000285543084896 

ℎ 6   0.405514079772859   0.002473041630763     0.000328745741485 

ℎ 7     -0.003420698035191   -0.000354708072560 

ℎ 8    0.005071899604802     0.000398652302049 

ℎ 9    -0.008337174823228   -0.000439066664149 

ℎ 10    0.016275604286083     0.000502872526030 

ℎ 11    -0.045094556374526   -0.000575643796129 

ℎ 12    0.405346984265227     0.000665768494149 

ℎ 13      -0.000783077632344 

ℎ 14       0.000941385883182 

ℎ 15      -0.001134359900530 

ℎ 16       0.001423518084956 

ℎ 17      -0.001816444057892 

ℎ 18       0.002412641689390 

ℎ 19      -0.003372281187760 

ℎ 20       0.005011515285196 

ℎ 21      -0.008298331977075 

ℎ 22       0.016217604219189 

ℎ 23      -0.045056663350083 

ℎ 24       0.405298004227175 
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Figure 3.2 Magnitude Response, Passband Error and Impulse Response of Filter Order 𝑁 14 

 

Figure 3.3 Minimax Error Convergence Curve of Filter Order 𝑁 14 
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Figure 3.4 Magnitude Response, Passband Error and Impulse Response of Filter Order 𝑁 26 

 
Figure 3.5 Minimax Error Convergence Curve of Filter Order 𝑁 26 
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Figure 3.6 Magnitude Response, Passband Error and Impulse Response of Filter Order  𝑁 50 

 

Figure 3.7 Minimax Error Convergence Curve of Filter Order 𝑁 50 
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Figure 3.8 Magnitude Response, Passband Error and Impulse Response of Filter Order 𝑁 13 

 

Figure 3.9 Minimax Error Convergence Curve of Filter Order 𝑁 13 
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Figure 3.10 Magnitude Response, Passband Error and Impulse Response of Filter Order 𝑁 25 

 

Figure 3.11 Minimax Error Convergence Curve of Filter Order 𝑁 25 
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Figure 3.12 Magnitude Response, Passband Error and Impulse Response of Filter Order 𝑁 49 

 

Figure 3.13 Minimax Error Convergence Curve of Filter Order 𝑁 49 
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3.5 Conclusions 

In this chapter, a novel improvement to the ABC algorithm, called the ABC-AMR is 

proposed. In the ABC-AMR, the diversity of a search space is adaptively controlled by 

increasing the rate of exploration in early stages and increasing the rate of exploitation in 

later stages of optimization. To evaluate the performance of the proposed ABC-AMR 

algorithm in filter design applications, the original ABC algorithm and its three variants 

are used to design linear phase Types 3 and 4 FIR differentiators. Simulation results 

indicate that the ABC-AMR can reach lower peak error and minimax error and with smaller 

numbers of iterations. Unlike other evolutionary algorithms, the initial population of the 

ABC-AMR algorithm needs not be seeded with a good candidate solution, but can be 

randomly initialized within a range, and thereby ensuring diversity in a search space. 
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CHAPTER 4 

SPARSE FIR FILTER DESIGN 

 

 

Linear phrase FIR filters are widely used in digital signal processing, and communication 

and medical imaging due to their inherent stability, and exact linear phase.  However, their 

implementation cost is high due to large number of arithmetic operations involved. In 

direct-form linear phase FIR filters, the number of multipliers and adders is equal to the 

length of impulse responses. Computational cost can be minimized if the number of 

adder/multiplier units is decreased, which can be achieved by reducing the number of non-

zero coefficients. A sparse FIR filter contains zero coefficients, so that multipliers and 

adders corresponding to those zero coefficients can be eliminated, resulting in lower 

hardware cost and power consumption.  

This chapter is organized as follows: Section 4.1 gives an introduction about sparse filter 

design methods, Section 4.2 describes the minimax objective function formulation and 

iterative shrinkage algorithm for the design of linear phase sparse FIR filters. Section 4.3 

gives a brief description about the constrained ABC-AMR algorithm; simulation results 

are described in Section 4.4 and conclusions are given in Section 4.5. 

4.1 Introduction  

Attempts to reduce the implementation cost includes interpolated and extrapolated FIR 

filter design techniques, and frequency response masking digital filter designs etc. 

In interpolated FIR filter design method [40], filter structure is cascaded into two sections, 

in which first section generates a sparse set of impulse response values with every 𝐿th 

sample being non zero and second section uses interpolation technique to generate rest of 

the samples. Interpolated finite impulse response filter requires 1/𝐿 of the multipliers and 

adders of an equivalent FIR filter.  Also, two sections can be iteratively [41] designed using 

Remez multiple exchange algorithm until the difference between successive stages are 

within the given tolerance limits. Frequency masking technique [44]-[45], is used to design 
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filters with very narrow transition band width. The basic principle is as follows; each delay 

element of the prototype filter is replaced by a given number of delays resulting in a filter 

with periodic passbands and very sharp transition bands, and a masking filter is used to 

extract desired band. The extrapolated filter design techniques [42],[46] utilize a quasi-

periodic nature of impulse response of the FIR filter, which consists of a center lobe with 

the largest magnitude and decreasing side lobes away from the center. Approximating 

smaller magnitude side lobe as a scaled version of another side lobe will produce only 

small degradation in frequency response. Linear programming approach is used to optimize 

scale factors of the side lobe.  

Due to advancements in sparse representation, design of sparse filters has gained increasing 

attention in recent years. Initially, sparsity of the filter is evaluated as a highly non-convex 

𝑙  norm of filter coefficient vector. Finding a global optimum for such kind of problems 

are difficult, and an exhaustive search is required for optimal sparse coefficients which 

increases the computational complexity for higher order filters. In order to overcome non-

convexity in design problems, an iterative design algorithm based on weighted least 

squares approach is proposed in [25]-[26]. Non-convex problem is successively 

transformed into a series of constrained sub-problems and these sub-problems are solved 

using successive iteration algorithm [27]. When linear programming is used for sparse filter 

design [24], initially, the impulse responses of a non-sparse filter is iteratively thinned until 

the frequency constraints are violated, and then the impulse responses of the filter are 

minimized using 𝑙  norm, and finally fixes the coefficients that should be constrained to 

zero in the following iterations. Sparse filter design problem can be formulated as a 

quadratic constrained problem with the following constraints: weighted least squares 

constraint on frequency response; constraint on mean squared error estimation; and 

constraint on signal to noise ratio in detection. The quadratic constraints can be either 

combined with low complexity backward selection algorithm [28] or exact algorithms 

based on branch and bound combinatorial optimization procedure [29]. A joint 

optimization approach optimizing both the filter order and sparsity is given in [30], which 

balances the filtering performance and implementation efficiency. The objective function 
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is formulated as weighted 𝑙  norm and iterative reweighted least squares (IRLS) algorithm 

is employed to solve the error function. In greedy algorithm, for linear phase sparse filter 

design [32], coefficients in which the middle value of its feasible range is closest to zero is 

set to zero, whereas all other coefficients are free to change. Discrete optimization 

approaches for sparse filter design is explained in [35]-[36]. The 𝑙  norm-based 

optimization process is non-convex and NP hard, and due to computational complexity, 

they are not used in the design of higher order sparse FIR filters. Alternatively, sparse filter 

design can be relaxed from 𝑙  norm to 𝑙  norm. In [34], a novel 𝑙  norm-based optimization 

is described, in which, instead of selecting all coefficients some of the insignificant non 

zero coefficients are chosen to be zero. Recent advancements in 𝑙  and 𝑙 -based sparse 

filter design is described in [31].  

With the advancement in the evolutionary computation, various bio-inspired algorithms 

like the cuckoo search [38]-[39], and the ABC [37] have been applied to sparse filter 

design. The ABC algorithm is a swarm-based metaheuristic search algorithm that 

iteratively improves the quality of a solution with respect to its fitness value. In this chapter, 

the constrained ABC-AMR algorithm is used to design sparse FIR filters, using 𝑙  norm 

optimization subject to design constraints. In constrained optimization problems, the Deb’s 

tournament selection operator and probabilistic selection scheme is used to select feasible 

solutions [135]. In contrast to 𝑙  optimization-based methods, which take all coefficients 

into minimization, the proposed method keeps some of the significant coefficients 

unchanged and identifies locations of zero coefficients that need to be minimized.  

4.2 Sparse FIR Filter Design  

For  Type  1  linear  phase  FIR  filters  [1]  of  filter  order  𝑁, impulse response consists of 

𝑁 1  coefficients, represented as,  

𝒉 ℎ 0 , ℎ 1 , ℎ 2 , … … . , ℎ 𝑁  (4.1) 

Due to even symmetry, impulse response can be stated as, 
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 ℎ ℎ for 𝑛 0,1,2, … … … … …
𝑁 1

2
 (4.2) 

The set of distinct impulse responses 𝐡 of a Type 1 linear phase FIR filter can be 

represented by a more compact coefficient vector c as,  

 𝐜 𝑐 , 𝑐 , 𝑐 , … . . 𝑐  (4.3) 

where vector 𝐜 is even symmetric such that,  

 

𝑐 ℎ ; 

 𝑐 2ℎ 2ℎ , 𝑛 1,2, … … … … …
𝑁
2

 

(4.4) 

The frequency response of 𝑁th-order even symmetry linear phase FIR filter is given by, 

 
𝐻 𝑒 𝑒 𝑐 𝑐 cos 𝑛𝑤  

𝑒 𝐴 𝑤  

(4.5) 

The amplitude response 𝐴 𝑤  can be given by,  

 𝐴 𝑤 𝐜𝑻 𝐜𝐨𝐬 𝑤  (4.6) 

where  𝐜𝐨𝐬 𝑤 1 cos 𝑤𝑇 cos 2𝑤𝑇 ⋯ cos 𝑤𝑇  

Desired amplitude response of  𝐴 𝑤  for Type 1 linear phase lowpass FIR filter is given 

by, 

 𝐴 𝑤
1 0 𝑤 𝑤
0 𝑤 𝑤 𝜋

 (4.7) 
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where 𝑤  and 𝑤  are normalized cut off frequencies of passband and stopband respectively.  

In the proposed approach for sparse filter design problem, the number of non-zero 

coefficients should be minimized while the amplitude responses 𝐴 𝑤  is chosen to be 

constrained within the desired passband and stopband tolerance given by, 

 

1 𝛿 |𝐸𝒄 𝑤 | 1 𝛿   0 𝑤 𝑤  

𝛿 |𝐸𝒄 𝑤 |  𝛿   𝑤 𝑤 𝜋; 

  𝑤 ∈ Ω  

(4.8) 

where Ω  denotes union of passband and stopband frequencies of interest. 

 

𝐸𝒄 𝑤 𝑒 𝐜 𝑒 𝒄  

𝑒 𝐜 𝑊 𝑤 |𝐴 𝐜, 𝑤 | 𝐴 𝑤

for 𝑊 𝑤 0;  0 𝑤 𝑤

 

𝑒 𝐜 𝑊 𝑤 |𝐴 𝐜, 𝑤 | 𝐴 𝑤

for 𝑊 𝑤 0; 𝑤 𝑤 𝜋 

 

𝑊 𝑤 𝑊 𝑤 1 for 𝑤 ∈ Ω  

(4.9) 

where 𝑒 𝐜  is the passband error response and 𝑒 𝐜  is the stopband error response and 

Ω  denotes union of passband and stopband frequencies of interest. 

The 𝑙  norm calculates the number of non-zero coefficients. Even though 𝑙  optimization 

procedure is non-convex, NP hard and difficult to obtain global optimum, 𝑙  norm has 

certain advantages. The 𝑙  norm does not guarantee an optimal solution in constrained 

optimization problems. Also, it is difficult to determine the locations of filter coefficients 

which can be set to 0. Iterative shrinkage algorithm combined with the constrained ABC-

AMR, identifies the crucial locations for zero coefficients and increases sparsity of the 
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designed filter. The proposed constrained ABC-AMR algorithm is shown to be effective 

in solving non-convex, non-separable multimodal functions. 

4.2.1 Iterative Shrinkage Algorithm 

Initially, two subsets 𝓩  and 𝓝𝓩  are defined within the coefficient set 𝒄,where 𝓩  

and 𝓝𝓩  are indices of zero coefficients and non-zero coefficients of 𝒄 respectively. They 

are initialized as 𝓩 ∅  and 𝓝𝓩 0,1 … … … … … . . 

In each iteration, the optimization algorithm is used to solve the below problem, 

min
𝐜

𝒄

s.t 1 𝛿 |𝐸𝒄 𝑤 |  1 𝛿   0 𝑤 𝑤

𝛿 |𝐸𝒄 𝑤 |  𝛿   𝑤 𝑤 𝜋 

𝑐 0,  ∀𝑘 ∈ 𝒵  

𝑤 ∈ Ω  

(4.10) 

where 𝛿 , 𝛿  denotes the passband ripple and stopband ripple respectively, 𝒄  represents 

the coefficients chosen for 𝑙  optimization in current iteration 𝒄

𝑐 , 𝑐 … … … … . . 𝑐  where 𝜏  is defined as, 

𝜏 𝑛 |𝒄 𝑡 1 𝑀 𝑡 1  (4.11)

where 𝑀 𝑡 1  is the coefficient threshold value updated in every iteration. For updating 

the value of 𝑀 𝑡 , first a subset of 𝓝𝓩 𝒕  is defined such that, 

ℂ 𝑛|𝑚 |𝒄 𝑡 | 𝑚  (4.12)

where 𝑚 , 𝑚  is the search domain and 𝑀 𝑡  is calculated as, 

𝑀 𝑡
min|ℂ | if ℂ ∅
𝑀 𝑡 1 if ℂ ∅

 (4.13)
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 After each iteration 𝓩  and  𝓝𝓩   subset of the coefficient indices is defined by, 

𝓩 𝓩 ∪ 𝜏 |𝒄 𝑡 0  

𝓝𝓩 𝓝𝓩 𝓩  
(4.14)

4.3 Constrained Artificial Bee Colony Algorithm 

Initially, the ABC algorithm was only applied to unconstrained problems but later it was 

extended to constrained optimization problems. The constrained ABC algorithm uses the 

Deb’s rule instead of a greedy selection to choose the best solution in a feasible region and 

infeasible solutions are discarded based on their violation values. For the design of sparse 

filters, the constrained ABC algorithm [135] is combined with the ABC-AMR for faster 

convergence. 

The algorithm starts with a random initial population according to equation 3.1. In the 

employed bee phase, each of the employed bee searches for good solutions in its vicinity 

according to equation 3.3. Instead of a greedy selection in the original ABC algorithm, in 

the constrained ABC, the best solution is selected between the current solution, 𝒙  and new 

solution, 𝒙  according the Deb’s rule [135], 

𝒙

𝒙         if 𝛾𝒙 0 ∧ 𝛾𝒙 0

𝒙 if 𝛾𝒙 0 ∧ 𝛾𝒙 0 ∧ 𝑓 𝑓
 𝒙        if 𝛾𝒙 0 ∧ 𝛾𝒙 0 ∧ 𝛾𝒙 𝛾𝒙

 (4.15)

where 𝛾 , 𝛾 are the violation index values of 𝒙  and 𝒙 ; 𝑓 , 𝑓  are the objective function 

values for the solutions 𝒙  and 𝒙 , respectively. The fitness value of food locations is 

determined by equation 2.4. 

The onlooker bees select food sources according to their probability values. The probability 

of the food sources can be calculated as follows, 
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𝑝

⎩
⎪
⎨

⎪
⎧ 0.5  

𝑓𝑖𝑡
∑ 𝑓𝑖𝑡

0.5 if solution is feasible

1
𝛾

∑ 𝛾
0.5 otherwise

(4.16)

where 𝑓𝑖𝑡  and 𝑓𝑖𝑡  are the fitness value of 𝒙  and 𝒙 , respectively. Solutions are selected 

proportional to their fitness value and inversely proportional to violation values. Similar to 

the employed bees, the onlooker bees produce new food locations by applying equation 

3.3.  

A solution which cannot be improved after predetermined trials becomes a scout bee and 

is abandoned. The scout bees will then randomly search for a new solution.       

4.4 Design Examples and Results 

The constrained ABC-AMR algorithm is combined with iterative shrinkage algorithm to 

design sparse Type 1 linear phase lowpass FIR filters and results are compared with other 

design methods in literature such as the minimum-increase method [24], and the smallest 

coefficient method [24] and the partial 𝑙  optimization [33]. 

The initial coefficients are set using Parks-McClellan (PM) algorithm. The number of food 

locations 𝑆𝑁 is set as 50 and 𝑝 is set as 128. The constraints set using passband ripple 𝛿 , 

and stopband ripple 𝛿 . Table 4.1 summarizes the design specifications; sparse filters are 

designed for orders 𝑁 60, 70, 80. Maximum passband attenuation is  0.5 dB and 

minimal stopband attenuation is set as 60 dB. The designs are performed using intel core 

i7-4790, 3.60 GHz with 12GB RAM desktop computer. 

Table 4.1. Sparse FIR Lowpass Filter Specification 

Passband region [0, 0.3Π] 

Stopband region [0.5 Π, Π] 

Filter order N 60,70,80 

Maximum passband attenuation 𝑅  Within ±0.5dB of unity 

𝑚 , 𝑚  10 , 10  

Minimum stopband attenuation 𝑅  60 dB 
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The constraints are set using passband ripple 𝛿 , and stopband ripple 𝛿 . The maximum 

passband attenuation 𝑅  (in dB) is related to the passband ripple 𝛿  as, 

𝛿
10 1

10 1
(4.17)

The minimum stopband attenuation 𝑅  (in dB) is related to the stopband ripple 𝛿  as, 

𝛿 10 (4.18)

4.4.1 Sparse FIR Filter of Order 𝑵 𝟔𝟎 

In this example, sparse FIR filter of order 𝑁 60, is designed using iterative shrinkage 

algorithm and the constrained ABC-AMR algorithm. In Table 4.2, passband peak error and 

stopband peak error is compared with the results obtained from the minimum-increase 

method [24], and the smallest coefficient method [24] and the partial 𝑙  optimization [33].  

From Table 4.2, for the same sparsity constrained ABC-AMR can achieve better passband 

and stopband errors compared to other design methods. 

Table 4.2. Peak Error Results of Sparse FIR Filter of Order 𝑁 60 

Alg. Passband Peak Error Stopband Peak Error 

Constrained ABC-AMR 0.028201403241469 4.491284356122893e-04 

Minimum-increase [24] 0.027972285993324 2.517087760104883e-04 

Smallest coefficient [24]  0.028222427657121 5.485674097077593e-04 

Partial 𝑙  optimization [33] 0.028222427657120 5.485674097078625e-04 

The minimum coefficient values and the number of zero coefficients of sparse FIR filter of 

order 𝑁 60 are given in Table 4.3, constrained ABC-AMR has the lowest coefficient 

value compared to other design methods. 
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Table 4.3 Minimum Coefficient Value of Sparse FIR Filter of Order 𝑁 60 

Alg. Sparsity Minimum coefficient value 

Constrained ABC-AMR 32 0 

Minimum-increase [24] 30 1.005784065934075e-18 

Smallest coefficient [24] 32 1.204953400396407e-17 

Partial 𝑙  optimization [33] 32 1.195249450476534e-17 

 

The plots for magnitude response, impulse response, passband and stopband errors of 

sparse FIR filter of order 𝑁 60  obtained using constrained ABC-AMR is shown in 

Figure 4.1 

  

Figure 4.1 Magnitude Response, Impulse Response, Passband and Stopband Errors of Sparse FIR Filter of 

Order 𝑁 60  
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The enlarged impulse responses obtained using constrained ABC-AMR, minimum 

increase and partial 𝑙 optimization is shown in Figure 4.2. 

 

Figure 4.2  Enlarged Impulse Response of Sparse FIR Filter of Order 𝑁 60 

 

4.4.2 Sparse FIR Filter of Order 𝑵 𝟕𝟎 

In this example, sparse FIR filter of order 𝑁 70, is designed using iterative shrinkage 

algorithm and the constrained ABC-AMR algorithm. In Table 4.4, passband peak error and 

stopband peak error are compared with results obtained from the minimum-increase 

method [24], and the smallest coefficient method [24] and the partial 𝑙  optimization [33]. 

From Table 4.4, for the same sparsity constrained ABC-AMR can achieve similar or better 

passband and stopband errors compared to other design methods. 

Table 4.4. Peak Error Results of Sparse FIR Filter of Order 𝑁 70 

Alg. Passband Peak Error Stopband Peak Error 

Constrained ABC-AMR 0.028222468513358 4.480700642792157e-04 

Minimum-increase [24] 0.027972285993374 2.517087760109814e-04 

Smallest coefficient [24] 0.028222427657520 5.485674097059533e-04 

Partial 𝑙  optimization [33] 0.028222427657520 5.485674097057302e-04 
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The minimum coefficient values and the numbers of zero coefficients of sparse FIR filter 

of order 𝑁 70 are given in Table 4.5, constrained ABC-AMR has the lowest coefficient 

value compared to other design methods. 

Table 4.5 Minimum Coefficient Value of Sparse FIR Filter of Order 𝑁 70 

Alg. Sparsity Minimum coefficient value 

Constrained ABC-AMR 42 0 

Minimum-increase [24]  40 4.799699851515894e-19 

Smallest coefficient [24]  42 7.173038352436877e-18 

Partial 𝑙  optimization [33] 42 7.248318064152319e-18 

 
Figure 4.3 shows the plots for magnitude response, impulse response, passband and 

stopband errors of magnitude response for sparse filter for an order 𝑁 70 , obtained 

using constrained ABC-AMR algorithm. 

 
Figure 4.3 Magnitude Response, Impulse Response, Passband and Stopband Errors of Sparse FIR Filter of 

Order 𝑁 70 
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The enlarged impulse responses obtained using constrained ABC-AMR, minimum 

increase and partial 𝑙 optimization is shown in Figure 4.4. 

 

Figure 4.4  Enlarged Impulse Response of Sparse FIR Filter of Order 𝑁 70 

 

4.4.3 Sparse FIR Filter of Order 𝑵 𝟖𝟎 

In this example, sparse FIR filter of order 𝑁 80, is designed using the iterative shrinkage 

algorithm and the constrained ABC-AMR algorithm. In Table 4.6, passband peak error and 

stopband peak error are compared with the results obtained from the minimum-increase 

method [24], and the smallest coefficient method [24] and the partial 𝑙  optimization [33]. 

From Table 4.6, for the same sparsity constrained ABC-AMR can achieve similar or better 

passband and stopband errors compared to other design methods. 

Table 4.6. Peak Error Results of Sparse FIR Filter of Order 𝑁 80 

Alg. Passband Peak Error Stopband peak Error 

Constrained ABC-AMR 0.028705964702497 9.329212691181199e-04 
Minimum-increase [24] 0.027971448361442 1.970800923940808e-04 
Smallest coefficient [24]  0.028222427657755 4.480593261947385e-04 

Partial 𝑙  optimization [33] 0.028706632647080 9.318344341936180e-04 
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The minimum coefficient values and the number of zero coefficients of sparse FIR filter of 

order 𝑁 80 are given in Table 4.7, constrained ABC-AMR has the lowest coefficient 

value compared to other design methods. 

Table 4.7 Minimum Coefficient Value of Sparse FIR Filter of Order 𝑁 80 

Alg. Sparsity Minimum coefficient value 

Constrained ABC-AMR 56 0 
Minimum-increase [24]  50 3.597447722312056e-17 
Smallest coefficient [24]  52 7.980770973682628e-18 

Partial 𝑙  optimization [33] 56 6.327944906487736e-17 

 

Figure 4.5 shows the plots for magnitude response, impulse response, passband and 

stopband errors of sparse FIR filter order 𝑁 80  obtained using constrained ABC-AMR. 

 

Figure 4.5 Magnitude Response, Impulse Response, Passband and Stopband Errors of Sparse FIR Filter of 

Order 𝑁 80  
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The enlarged impulse responses obtained using constrained ABC-AMR, minimum 

increase and partial 𝑙 optimization is shown in Figure 4.6. 

 

Figure 4.6  Enlarged Impulse Response of Sparse FIR filter of Order 𝑁 80 

 

The sparse filter coefficients obtained using the combined iterative shrinkage approach and 

the constrained ABC-AMR method is listed in Table 4.8. 
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Table 4.8 Filter Coefficients of Sparse FIR Filter of Filter Order 𝑁 60,70, 80 

ℎ 𝑛  Filter order 𝑁 60 Filter order 𝑁 70 Filter order 𝑁 80 

ℎ 0   0.000000000000000   0.000000000000000   0.000000000000000  

ℎ 1   0.000000000000000   0.000000000000000   0.000000000000000  

ℎ 2   0.000000000000000   0.000000000000000   0.000000000000000  

ℎ 3   0.000000000000000   0.000000000000000   0.000000000000000  

ℎ 4   0.000000000000000   0.000000000000000   0.000000000000000  

ℎ 5   0.000000000000000   0.000000000000000   0.000000000000000  

ℎ 6   0.000000000000000   0.000000000000000   0.000000000000000  

ℎ 7   0.000000000000000   0.000000000000000   0.000000000000000  

ℎ 8   0.000000000000000   0.000000000000000   0.000000000000000  

ℎ 9   0.000000000000000   0.000000000000000   0.000000000000000  

ℎ 10   0.000000000000000   0.000000000000000   0.000000000000000  

ℎ 11   0.000000000000000   0.000000000000000   0.000000000000000  

ℎ 12   0.000000000000000   0.000000000000000   0.000000000000000  

ℎ 13   0.001229760122581   0.000000000000000   0.000000000000000  

ℎ 14   0.001957628258966   0.000000000000000   0.000000000000000  

ℎ 15   0.000000000000000   0.000000000000000   0.000000000000000  

ℎ 16   -0.003116100726042  0.000000000000000   0.000000000000000  

ℎ 17   -0.001048710518735  0.000000000000000   0.000000000000000  

ℎ 18   0.007693412368413   0.001229690709782   0.000000000000000  

ℎ 19   0.011894709063846   0.001957182197884   0.000000000000000  

ℎ 20   0.000000000000000   0.000000000000000   0.000000000000000  

ℎ 21   -0.017303208740767  -0.003113973466924  0.000000000000000  

ℎ 22   -0.011851694043208  -0.001044575239062  0.000000000000000  

ℎ 23   0.021051207067630   0.007697807996681   0.000000000000000  

ℎ 24   0.039220288229915   0.011897609370965   0.000974263193208  

ℎ 25   0.000000000000000   0.000000000000000   0.000000000000000  

ℎ 26   -0.064915315929322  -0.017303600595197  -0.001818077007100  

ℎ 27   -0.054062389098616  -0.011851953083718  0.000000000000000  

ℎ 28   0.092252992041992   0.021051322404193   0.007238345709738  

ℎ 29   0.295399045895760   0.039220579689895   0.010783492850610  

ℎ 30   0.391392195116046   0.000000000000000   0.000000000000000  

ℎ 31    -0.064915414757148  -0.016104522528231  

ℎ 32    -0.054062286944487  -0.011133059084284  

ℎ 33    0.092253213971575   0.020407743523944  

ℎ 34    0.295399421405326   0.038315167841337  

ℎ 35    0.391392421193828   0.000000000000000  

ℎ 36     -0.064510594576277  

ℎ 37     -0.054215769916657  

ℎ 38     0.091974683046617  

ℎ 39     0.296072720787263  

ℎ 40     0.392736793244963  
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4.5 Conclusions 

In this chapter, the constrained ABC-AMR algorithm has been used together with the 

iterative shrinkage algorithm to design minimax sparse linear phase FIR lowpass filters. 

As far as the design constraints are not violated, the coefficient values at certain crucial 

locations can be set as zero. The design results obtained is compared with other design 

methods such as the partial 𝑙  optimization [33], the minimum-increase method [24], the 

smallest coefficient method [24]. Although other design algorithms can decrease 

coefficient values, the constrained ABC-AMR algorithm can reduce impulse responses at 

insignificant locations to zero. From the peak error comparison tables, the ABC-AMR 

algorithm demonstrates similar or better passband and stopband errors compared to other 

design methods. 
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CHAPTER 5 

MULTIOBJECTIVE APPROACH FOR ASYMMETRIC FIR FILTER DESIGN 

 

Linear phase FIR filters with symmetric/antisymmetric impulse responses are 

characterized by long and fixed delay which is undesirable for some applications. 

Asymmetric FIR filter design is useful due to the following reasons: 

i. The long delay associated with a linear phase FIR filter can be removed through 

replacing the linear phase requirement by an approximation of linear phase 

requirement in the passband. 

ii. A nonlinear phase FIR filter can be designed to simultaneously approximate desired 

magnitude and group delay responses. 

In this chapter, the multiobjective ABC algorithm is used to design asymmetric FIR filters 

to satisfy simultaneously desired magnitude response and group delay response. In the 

proposed method, preferences are set a priori using a reference point approach.  

The chapter is organized as follows: Section 5.1 gives an introduction about asymmetric 

FIR filter design methods; Section 5.2 describes asymmetric FIR filter design problem, 

Section 5.3 gives a description about the reference-point-based MOABC, design results are 

given in Section 5.4 and conclusions are discussed in Section 5.5. 

5.1 Introduction  

A literature survey shows that FIR filters with asymmetric filter coefficients can be 

designed using several optimization methods. FIR filters with arbitrary magnitude and 

phase responses can be designed using iterative reweighted least squares algorithm [55] by 

a mixed use of least squares (𝐿 , and Chebyshev 𝐿  optimization algorithms. The 

absolute mean square error between frequency responses of deigned filter and desired filter 

can be formulated as a quadratic function and can be solved using a set of linear equations 

to obtain the optimal filter coefficients [54]. The digital filter with specified stopband gains 



 

91 

 

and total stopband energy can be obtained using least squares approach with the stopband 

subjected to maximum gain constraints [47]. Nonlinear optimization algorithm based on 

the iterative use of the generalized multiple exchange (GME) can be utilized to design 

optimal filters that simultaneously meet group delay and magnitude responses 

specifications [48]. The optimization of complex error function, for the design of complex 

frequency response FIR filter, can be performed according to the 𝐿  norm subject to 

inequality constraints [49]. Iterative algorithm starting from the Kuhn-Tucker optimality 

conditions is used to solve a system of nonlinear equations. 

Most of the above mentioned asymmetric FIR filter design methods use a combination of 

least square (𝐿  and Chebyshev 𝐿  norms for all frequency bands.  𝐿  norm is easy to 

compute and frequently used for various signal processing applications, but they produce 

large errors near the discontinuities between two desired responses. The total energy of the 

aliased signals must be minimized if an input signal spectrum is wideband and uniformly 

distributed. If the passband is narrow, energy can be aliased from wide stopband to narrow 

passbands. Even though, the aliased energy can be minimized using least-squares criterion 

(𝐿 , the designed filters will have large gains near the edge of their stopband, otherwise 

known as the Gibbs phenomenon. Also, 𝐿  norm minimizes the amplitude distortion in 

passband but fails to optimize the gain and total energy in stopband.  

Evolutionary algorithms are capable of handling complex, multimodal design problems, 

and hence they can be incorporated into multiobjective optimization problems. Elitist 

nondominated sorting genetic algorithm (NSGA) is used to design FIR filters of predefined 

amplitude response and group delay characteristics [56]. Three different objective 

functions based on passband and stopband amplitude response error, and group delay error 

are used. Bio-inspired algorithms such as the ABC algorithm [50], the cuckoo search 

algorithm (CSA) [51], the teaching learning-based optimization (TLBO) [52], the harmony 

search algorithm (HSA) [59] and iterative self-learning algorithm [60] can be used in the 

design of asymmetric FIR filters. In this chapter, the multiobjective ABC algorithm is used 

to design asymmetric FIR filters and the design results are compared to the multiobjective 

differential evolution.  
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5.2 Asymmetric FIR Filter Design [1] 

A 𝑁th-order asymmetric FIR filter consists of 𝑁 1  impulse responses and can be 

represented by a distinct coefficient vector 𝐜 as, 

 𝐜 𝑐 , 𝑐 , 𝑐 , 𝑐 , … , 𝑐 𝑻 (5.1) 

The frequency response 𝐻 𝑤  of a FIR filter can be expressed as, 

 

𝐻 𝑤 𝑐 𝑧 |  

𝑐 cos 𝜔𝑛𝑇 𝑗 𝑐 sin 𝜔𝑛𝑇  

| 𝐻 𝜔 |𝑒  

(5.2) 

In equation 5.2, the magnitude response |𝐻 𝑤 |is equal to, 

 

|𝐻 𝑤 | 𝑐 cos 𝑛𝑤𝑇 𝑐 sin 𝑛𝑤𝑇  

(5.3) 

and the group delay of asymmetric FIR filter can be expressed as, 

 𝜏 𝑤
𝜕𝜃 𝑤
𝜕𝑤𝑇

 (5.4) 

where 𝜃 𝑤  is the phase response. 

The objective function of the magnitude error 𝑒 𝐜  is defined by, 

 𝑒 𝐜 𝑊 𝑤 |𝐻 𝑤 | |𝐻 𝑤 |

for ∀𝑤 ∈ Ω

 (5.5) 
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where p is a positive even integer; 𝐻 𝑤 1 in passband and 𝐻 𝑤 0 in stopband(s); 

and Ω  denotes the union of frequency bands of interest. 

Similarly, the objective function of the group delay error 𝑒 c  among the passband can 

be calculated by,  

 𝑒 𝐜 𝑊 𝑤 |𝜏 𝑤 | |𝜏 𝑤 |

for 𝑤 𝑤 𝑤

 (5.6) 

where p is a positive even integer; 𝜏 𝑤  is the desired group delay.  

The optimization problem for designing digital FIR filters searches for an optimal 

coefficient vector 𝐜 that minimizes the minimax errors in the magnitude and group delay 

responses simultaneously. 

5.3 Reference Point-Based Multiobjective ABC Algorithm 

A reference point method represents a preference-based multiobjective optimization 

approach which directs the search towards the region of interest of the decision maker. The 

preference-based methods have various advantages such as computationally efficiency, 

faster convergence and better scalability in higher objective space. One of the earliest 

approaches in the reference point method is described in [186], in which the optimal 

solutions near the reference point 𝒛 𝑧̅ , 𝑧̅ , … … . . 𝑧̅ , is obtained by solving the 

scalarizing function 𝑠 𝑓 𝒙 , 

 𝑠 𝑓 𝒙 max
, ..

𝑤 . 𝑓 𝒙 𝒛  (5.7) 

where 𝑤  is the weighting vector and 𝑓  is objective function values. The reference point 

𝒛  guides the search toward the desired region while weight vector 𝑤  provides more 

detailed information about the Pareto optimal point. The main drawback of this approach 

is that the problem is formulated as single-objective optimization problem and provides 

only one solution in each run according to the decision maker’s preferences. If the user is 
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dissatisfied with the current solution and procedure is repeated with a new set of reference 

points. In practice, several runs of algorithm are required to reach the optimal solutions.  

In the reference point dominance-based approach, solutions near the reference point is 

preferred while preserving the order induced by the Pareto dominance. The user provides 

a set of reference points and for each reference point the normalization Euclidean distance 

known as the preference operator [176] is calculated as, 

 𝑑
𝑓 𝒙 𝑹

𝑓 𝑓
 (5.8) 

where  𝑑  is the normalization Euclidean distance or the preference operator from 

individual 𝑰 to reference point 𝑹; 𝑀 is the number of objectives; 𝑓  and 𝑓  are the 

population maximum and minimum objective value of 𝑖th objective. The solutions near the 

reference point is assigned rank 1, next closet solution is given rank 2 and so on. The 

flowchart for the reference point-based MOABC is given in Figure 5.1.  

When the reference point-based MOABC is used to design asymmetric FIR filters, the 

optimization process search for an optimal coefficient that minimizes both the amplitude 

response error and group delay error. The initial population is generated from a uniform 

random distribution within the upper and lower limit specified in Table 5.1. The objective 

function value is calculated for each food location and nondominated sorting is performed, 

finally ranks are assigned based on the preference operator 𝑑 . During each iteration 𝑡, 

onlooker and employed bees are updated according to equation 3.3.  
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Figure 5.1 Flowchart of Reference Point-Based MOABC 

 

Generate new solution from current population 𝒗   using ABC-AMR 

Apply dominance criteria to update 𝒙  with 𝒗 ; 𝒗 substitutes 

𝒙  in the population if, 𝑑 (𝒗 ) 𝑑 (𝒙 ) 

Terminate on 

reaching 

stopping criteria 

Generate initial population 𝒙 , 𝑖 ∈ 1, 𝑆𝑁  
Apply preference operator based sorting and update 

archive 𝐴  

Update archive, 𝐴 : 
 Any dominated solution is removed.  
 Nondominated solution is archived based on preference operator  

No

Yes 

Pareto front is updated 
according to Pareto rank and 
the results are displayed. 
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The new solution is evaluated against old solution based on its distance from the reference 

point, 

 𝒙
𝒙 𝑖𝑓 𝑑𝐼𝑅(𝒗 ) 𝑑𝐼𝑅(𝒙 )

𝒗 𝑖𝑓 𝑑𝐼𝑅(𝒗 ) 𝑑𝐼𝑅(𝒙 )
 (5.9) 

The onlooker bee searches for new food location based on the probability value calculated 

using equation 2.5 and the employed bees that cannot be improved after predetermined 

number of trials is abandoned as scout bees. The size of the archive is maintained within 

the predefined limit using a preference vector operator. On reaching termination criteria, 

the top solutions are chosen according to their ranks. 

5.4 Design Examples and Results  

In this section, asymmetric FIR filters of order 24 and group delay value of 10 are designed 

using the reference point-based MOABC. The optimization algorithm simultaneously 

optimizes amplitude error response and group delay error response. 

The filter coefficients are initialized randomly, and the results are compared to the 

reference point-based multiobjective differential evolution algorithm, the obtained results 

are favorable to MOABC. A detailed description about the multiobjective differential 

evolution algorithm (MODE) is given in [188].  

The ABC parameters such as the population size 𝑆𝑁 50, and limit is set as 200. The 

parameters for the MOABC and the MODE are given in Table 5.1; frequency grid for 

optimization, error calculation, and weights for optimization are given in Table 5.2; filter 

specifications are given in Table 5.3; Reference points are set using the tolerance limits in 

passband magnitude, stopband magnitude and peak group delay. The designs are 

performed using an intel core i7-4790, 3.60 GHz with 12GB RAM desktop computer.  
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Table 5.1 Parameters of MOABC and MODE 

Symbol Description Lowpass Highpass Bandpass Bandstop 

 𝑝 Least 𝑝 th-order 128 128 128 128 

𝑆𝑁 Colony Size of ABC 50 50 50 50 

𝑁  Population of DE 50 50 50 50 

𝐹 Scaling factor of DE 0.5 0.5 0.5 0.5 

𝐶𝑅 Crossover rate of DE 0.5 0.5 0.5 0.5 

 

Table 5.2 Frequency Grids for Asymmetric FIR Filter Design 

Optimization 𝐹 0.0.005: 1  

Peak error evaluation 𝐹 0.0.001: 1  

Frequency weights for 0 𝑤 𝜋, 𝑊 𝑤  1 

 

Table 5.3 Asymmetric FIR Filter Specifications 

Symbol Description Lowpass Highpass Bandpass Bandstop 

𝑤  Passband edge 1 0.3π 0.55 π 0.25π 0.4 π 

𝑤  Stopband edge 1 0.4π 0.45 π 0.35π 0.3 π 

𝑤  Passband edge 2 - - 0.6π 0.65π 

𝑤  Stopband edge 2 - - 0.7π 0.55π 

𝛿  Stopband 1 tolerance limit 0.05 0.06 0.06 0.06 

𝛿  Stopband 2 tolerance limit -  0.06 - 

𝛿  Passband 1 tolerance limit 0.05 0.06 0.06 0.06 

𝛿  Passband 2 tolerance limit - - - 0.06 

𝛿  Group delay tolerance limit 0.005 0.006 0.006 0.006 

 

5.4.1 Asymmetric FIR Lowpass Filter 

Asymmetric FIR lowpass filter of order 24 and group delay 10 is designed using the 

proposed reference-point-based MOABC approach and the results are compared to those 

of the reference-point-based MODE algorithm. The reference point is set as follows: 𝑅

𝛿 , 𝛿 , 𝛿  according to Table 5.3. The three objective functions for minimax error 

approximation are formulated as follows, 

 𝑓 c  represents the minimax magnitude error in passband, 
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 𝑓 c 𝑊 𝑤 |𝐻 𝑤 | 1  (5.10)

𝑓 c  represents the minimax magnitude error in stopband, 

𝑓 c 𝑊 𝑤 |𝐻 𝑤 |  (5.11)

 𝑓 c  represents the minimax group delay error in passband, 

 𝑓 c 𝑊 𝑤 |𝜏 𝑤 | 10  (5.12)

where 𝑊 𝑤 1 from equations 5.10 - 5.12. 

Magnitude response obtained for asymmetric FIR lowpass filter using the multiobjective 

ABC and the multiobjective DE are plotted in Figure 5.2 and Figure 5.3. The Pareto front 

approximation for the multiobjective ABC and the multiobjective DE are plotted in Figure 

5.4 and Figure 5.5. The upper and lower limits of passband, stopband and group delay 

errors of Pareto optimal solutions obtained using the MOABC and the MODE are given in 

Table 5.4. Unlike MODE, MOABC has a smaller range for each of the objective functions, 

as MOABC tries to improve the solutions near the reference point defined by the user 

instead of searching entire pareto front. This reduces the computational cost and 

complexity. 

Table 5.4 Objective Function Range for Asymmetric FIR Lowpass Filter  

  MOABC MODE 

𝑃𝑒  
𝑒  0.052152117007106 0.054160533620728 

𝑒  0.052001009935788 0.036827044396720 

𝑃𝑒  
𝑒  0.050737738312313 0.053503693033970 

𝑒  0.050673982376137 0.037126763296944 

𝑃𝑒  
𝑒  0.004373960888387 0.626099033120376 

𝑒  0.004318531058836 0.004165909983975 
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Figure 5.2 Magnitude Response, Impulse Response, Passband and Stopband Errors of Asymmetric FIR 

Lowpass Filter Using MOABC 

 

Figure 5.3 Magnitude Response, Impulse Response, Passband and Stopband Errors of Asymmetric FIR 

Lowpass Filter Using MODE 
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Figure 5.4 Pareto Front Approximation of Asymmetric FIR Lowpass Filter Using MOABC 

 

Figure 5.5 Pareto Front Approximation of Asymmetric FIR Lowpass Filter Using MODE 
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The peak error values from two designs are compared in Table 5.5. Simulation results 

indicate that FIR lowpass filter of group delay 10 designed using the multiobjective ABC 

algorithm has lower passband peak error, stopband peak error and group delay error in 

comparison to those obtained by the multiobjective DE designs. Filter coefficients of 

asymmetric FIR lowpass filter of order 𝑁  24 and group delay 10 obtained using the 

MOABC and the MODE are listed in Table 5.6 

Table 5.5 Peak Error Values of Asymmetric FIR Lowpass Filter 

 MOABC MODE 

Passband peak error 0.052138791166861 0.054107564642413 

Stopband peak error 0.050686147474734 0.053503693033970 

Group delay error 0.004320014372624 0.005498552713419 

Table 5.6 Coefficients of Asymmetric FIR Lowpass Filter  

ℎ 𝑛  MOABC MODE 

ℎ 0  -0.042716129862988   -0.039669318958197 

ℎ 1  -0.009532115856082   -0.012020458958296 

ℎ 2  0.021065732735079    0.024931762696377 

ℎ 3  0.036477433192541    0.035650920233609 

ℎ 4  0.011651438615107    0.014025902815955 

ℎ 5  -0.041217814823204   -0.041809354025453 

ℎ 6  -0.070303617460113   -0.069082250031345 

ℎ 7  -0.015171539449710   -0.015559591138835 

ℎ 8  0.128282573784506    0.130469056416274 

ℎ 9  0.281875692201088    0.280708282808087 

ℎ 10  0.349015124922104    0.349929433024378 

ℎ 11  0.279978387027116    0.282293026185234 

ℎ 12  0.128396581731314    0.126723515153492 

ℎ 13  -0.013858102405083   -0.012338432392482 

ℎ 14  -0.070969455028233   -0.070178727886812 

ℎ 15  -0.040927384153750   -0.041058175666972 

ℎ 16  0.012395293905058    0.013442684705968 

ℎ 17  0.036111131300656    0.039042561037000 

ℎ 18  0.019695789414305    0.019116744091872 

ℎ 19  -0.013481170730628   -0.012720784205868 

ℎ 20  -0.027773994531193   -0.027401753123643 

ℎ 21  -0.015312108416339   -0.012215226484171 

ℎ 22  0.003282086782674    0.000941382486533 

ℎ 23  0.004688277571827    0.005714631773760 

ℎ 24  -0.002918631575345   -0.002816191307997 
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5.4.2 Asymmetric FIR Highpass Filter 

Asymmetric FIR highpass filter of order 24 and group delay 10 is designed using the 

proposed reference-point-based MOABC approach and results are compared with the 

reference-point-based MODE algorithm. Three objective functions are formulated to 

represent minimax magnitude error in passband 𝑓 c , minimax magnitude error in 

stopband 𝑓 c , and minimax group delay error in passband 𝑓 c .  The reference point is 

set as follows: 𝑅 𝛿 , 𝛿 , 𝛿  according to Table 5.3. The plots of magnitude response, 

impulse response, passband and stopband peak errors of the highpass digital filters are 

shown in Figure 5.6 and Figure 5.7 respectively. The Pareto front approximation for the 

multiobjective ABC and the multiobjective DE are plotted in Figure 5.8 and 5.9.  

The upper and lower limits of the minimax passband magnitude error, minimax stopband 

magnitude error and minimax passband group delay error of asymmetric FIR highpass 

using the MOABC and the MODE are given in Table 5.7. 

Table 5.7 Objective Function Range for Asymmetric FIR Highpass Filter  

  MOABC MODE 

𝑃𝑒  
𝑒  0.061789588849616 0.069870090172511 

𝑒  0.061544917669254 0.040678252895968 

𝑃𝑒  
𝑒  0.062016321116392 0.071038091506139   

𝑒  0.061424559156228 0.040310924288638 

𝑃𝑒  𝑒  0.006304138820070 0.892754974163104 

𝑒  0.005883467242846 0.006183613321788 

The passband, stopband and group delay peak error values from the two designs are 

compared in Table 5.8. Simulation results indicate that FIR highpass filter of group delay 

10 designed using the multiobjective ABC algorithm has lower passband peak error, 

stopband peak error and group delay error in comparison to those of the multiobjective DE 

designs.  

Table 5.8 Peak Error Values of Asymmetric FIR Highpass Filter 

 MOABC MODE 

Passband peak error 0.061789588849616 0.069870090172511 

Stopband peak error 0.061424559156228 0.066432945192353 

Group delay error 0.005962542752997 0.008932567749717 
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Figure 5.6 Magnitude Response, Impulse Response, Passband and Stopband Errors of Asymmetric FIR 

Highpass Filter Using MOABC 

 

Figure 5.7 Magnitude Response, Impulse Response, Passband and Stopband Errors of Asymmetric FIR 

Highpass Filter Using MODE 
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Figure 5.8 Pareto Front Approximation of Asymmetric FIR Highpass Filter Using MOABC 

 

Figure 5.9 Pareto Front Approximation of Asymmetric FIR Highpass Filter Using MODE 
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Filter coefficients of order 𝑁  24 and group delay 10, asymmetric FIR highpass filter 

obtained using the reference-point-based MOABC and the reference-point-based MODE 

are listed in Table 5.9. 

Table 5.9 Coefficients of Asymmetric FIR Highpass Filter  

ℎ 𝑛  MOABC MODE 

ℎ 0    -0.006490631823948   -0.004767963442825 

ℎ 1    -0.050197039268114   -0.040107699017188 

ℎ 2    -0.000157367354158   -0.001654803726508 

ℎ 3     0.041789006819530    0.047333349706460 

ℎ 4     0.003121072627210   -0.003273162108325 

ℎ 5    -0.055261575010827   -0.062107420416884 

ℎ 6     0.001980086364495   -0.002428123014813 

ℎ 7     0.103711906715006    0.091613323183115 

ℎ 8     0.002652593880740   -0.001232973843750 

ℎ 9    -0.318542092428193   -0.324801529545916 

ℎ 10     0.499786604333063    0.507147944217247 

ℎ 11    -0.321364047365022   -0.321948672387241 

ℎ 12    -0.003426374900522    0.005640409768723 

ℎ 13     0.096449813363240    0.093520903730638 

ℎ 14    -0.002947694083502   -0.004314375769320 

ℎ 15    -0.058522603732333   -0.063539435238503 

ℎ 16    -0.001674706587845   -0.007094116461884 

ℎ 17     0.037296077006058    0.041958958289250 

ℎ 18     0.002750968283580   -0.002784913861289 

ℎ 19    -0.037361055794202   -0.030148661355791 

ℎ 20     0.008837359851564    0.012262341543969 

ℎ 21     0.008118915422543    0.014994722271082 

ℎ 22    -0.000671996814803    0.007293286836324 

ℎ 23    -0.003799469766575    0.001415790340192 

ℎ 24    -0.002108536652073   -0.000442791368306 

5.4.3 Asymmetric FIR Bandpass Filter 

Asymmetric FIR bandpass filter of order 24 and group delay 10 is designed using the 

proposed reference-point-based MOABC approach. The minimax error approximation 

functions in the multiobjective space are set as follows, 𝑓 c  represents the minimax 

magnitude error in passband, 𝑓 c  and, 𝑓 c  represents the minimax magnitude error in 

stopband 1 and stopband 2 respectively, 𝑓 c  represents the minimax group delay error in 
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passband. The reference points are set as follows: 𝑅 𝛿 , 𝛿 , 𝛿 , 𝛿  as given in Table 

5.3. The peak error values of asymmetric FIR bandpass for passband magnitude response, 

stopband magnitude response and passband group delay using the reference-point-based 

MOABC and MODE are given in Table 5.10. The upper and lower peak error limits of 

passband magnitude, stopband magnitude and passband group delay using the reference-

point-based MOABC and MODE are obtained as shown in Table 5.11. Design results 

indicate that FIR bandpass filter of group delay 10 designed using the multiobjective ABC 

algorithm has lower passband magnitude peak error, stopband magnitude peak errors and 

passband group delay peak error than the results obtained using the multiobjective DE.  

Plots of frequency responses using both the design methods are given in Figure 5.10-Figure 

5.11. 

Table 5.10 Peak Error Values of Asymmetric FIR Bandpass Filter 

 MOABC MODE 

Passband magnitude error 0.062797982630476 0.065628078408351 

Stopband1 magnitude error 0.060139429882185 0.065332461365080 

Stopband2 magnitude error 0.060552848906849 0.065877538077204 

Group delay error 0.003704585067247 0.005968057189008 

 

Table 5.11 Objective Function Range for Asymmetric FIR Bandpass Filter 

  MOABC MODE 

𝑃𝑒  
𝑒  0.062839255867158 0.065628078408351 

𝑒  0.062761387004337 0.048775531431478 

𝑃𝑒  
𝑒  0.060221101142016 0.065429924019549 

𝑒  0.060030433484600 0.049708538297435 

𝑃𝑒  𝑒  0.060618291356963 0.065877538077204 

𝑒  0.060473621200255  0.048832081164414 

𝑃𝑒  
𝑒  0.003704585067247 0.315435732758012 

𝑒  0.003542782429378 0.005968057189008 
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Figure 5.10 Magnitude Response, Impulse Response, Passband and Stopband Errors of Asymmetric FIR 

Bandpass Filter Using MOABC 

 

Figure 5.11  Magnitude Response, Impulse Response, Passband and Stopband Errors of Asymmetric FIR 

Bandpass FIR Filter Using MODE 
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Filter coefficients of order 𝑁 24, and group delay 10, FIR bandpass filter designed using 

the MOABC and the MODE is shown in Table 5.12. 

Table 5.12 Coefficients of Asymmetric FIR Bandpass Filter  

ℎ 𝑛  MOABC MODE 

ℎ 0     0.012951482189904   0.017297153032816 

ℎ 1    -0.039546034729322   -0.019474918438111 

ℎ 2    -0.062560878577823   -0.075960389893364 

ℎ 3     0.028730286568553    0.012832480626508 

ℎ 4     0.009447907031255    0.005526395023910 

ℎ 5     0.018404819846923    0.002444692855810 

ℎ 6     0.119642885613247    0.122901120736397 

ℎ 7    -0.053046519147178    0.022499578347350 

ℎ 8    -0.269363719466660   -0.275160082271532 

ℎ 9     0.029817463422804   -0.085636850847237 

ℎ 10     0.350490484645877    0.323657456051355 

ℎ 11     0.018193036666201    0.142902017171884 

ℎ 12    -0.277762631857184   -0.246561604531935 

ℎ 13    -0.044698187894366   -0.110510795927713 

ℎ 14     0.111818416308811    0.096896861498355 

ℎ 15     0.016849125631122    0.030838001527176 

ℎ 16     0.010148901020572    0.010200967771343 

ℎ 17     0.026808780676231    0.037754591511162 

ℎ 18    -0.051813730042961   -0.035789340080249 

ℎ 19    -0.034217988852655   -0.048221688388749 

ℎ 20     0.025119656957318    0.010401246924535 

ℎ 21     0.006028708903840    0.007539636922988 

ℎ 22     0.004099368158720   -0.002224379283858 

ℎ 23     0.002906484316684    0.003422404322880 

ℎ 24     0.000346340260336   -0.001014117371160 

 

5.4.4 Asymmetric FIR Bandstop Filter 

Asymmetric FIR bandstop filter of order 24 and group delay 10 is designed using the 

proposed reference-point-based MOABC approach. Objective functions for minimax 

errors are formulated as follows;  𝑓 c  and 𝑓 c  represents the minimax magnitude errors 

in passband 1 and passband 2 respectively,  𝑓 c  represents the minimax magnitude error 

in stopband, 𝑓 c  and 𝑓 c  represents the minimax group delay errors in passband 1 and 
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passband 2 respectively. Reference points are set as follows: 𝑅 𝛿 , 𝛿 , 𝛿 , 𝛿 , 𝛿  

according to Table 5.3. The peak error values obtained are listed in Table 5.13. The upper 

and lower peak error limits of passband magnitude, stopband magnitude and passband 

group delay obtained using the reference-point-based MOABC and MODE algorithms are 

compared in Table 5.14. Simulation results indicate that FIR bandstop filter designed using 

the multiobjective ABC algorithm has lower passband magnitude peak errors, stopband 

magnitude peak error and passband group delay errors than the results obtained using the 

multiobjective DE.  

Table 5.13 Peak Error Values of Asymmetric FIR Bandstop Filter 

 MOABC MODE 

Passband 1 magnitude error 0.051215606573326  0.056895217471357 

Passband 2 magnitude error 0.055797702268403 0.061661241102966 

Stopband magnitude error  0.061653129912316 0.066137076403756 

Group delay 1 peak error 0.003098649096721 0.006889124566342 

Group delay 2 peak error 0.004373552107509 0.006044379455240 

 

Table 5.14 Objective Function Range for Asymmetric FIR Bandstop Filter  

  MOABC MODE 

𝑃𝑒  
𝑒  0.051266076268417 0.066115904535004 

𝑒  0.051191984215891 0.044067817134488 

𝑃𝑒  
𝑒  0.055825715188505 0.065708665758640 

𝑒  0.055727764765201 0.043911406326871 

𝑃𝑒  𝑒  0.061670446803766 0.066137076403756 

𝑒  0.061648931209908 0.044338243703762 

𝑃𝑒  
𝑒  0.003156622663099 0.615125380742207 

𝑒  0.003065476179955 0.002986743919777 

𝑃𝑒  
𝑒  0.004460186281236 0.489269490433387 

𝑒  0.004365659959170 0.004016657752175 

 

Plots of magnitude response, impulse response, passband and stopband errors of the FIR 

bandstop filter designed using the MOABC and the MODE algorithms are shown in 

Figures 5.12 and 5.13, respectively.   
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Figure 5.12 Magnitude Response, Impulse Response, Passband and Stopband Errors of Asymmetric FIR 

Bandstop Filter Using MOABC 

 

Figure 5.13  Magnitude Response, Impulse Response, Passband and Stopband Errors of Asymmetric FIR 

Bandstop FIR Filter Using MODE 
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Filter coefficients of order 𝑁 24, and group delay 10 asymmetric FIR bandstop filter 

designed using the MOABC and the MODE is shown in Table 5.15. 

Table 5.15 Coefficients of Asymmetric FIR Bandstop Filter  

ℎ 𝑛  MOABC MODE 

ℎ 0    -0.018421089920395 -0.018730097292734 

ℎ 1    -0.045309875930292   -0.042919072876450 

ℎ 2     0.044877744143236    0.041511988287556 

ℎ 3     0.059759471075057    0.060665709488127 

ℎ 4    -0.026376962224459   -0.030077210176051 

ℎ 5    -0.036026794370626   -0.038482376878884 

ℎ 6     0.003218959716513    0.003138745706479 

ℎ 7    -0.075310482282336   -0.074921970083302 

ℎ 8     0.037134665828635    0.033741712326813 

ℎ 9     0.586961490251204    0.585658922543081 

ℎ 10    -0.046812134783624   -0.049314293068551 

ℎ 11     0.587270992234954    0.590724610696998 

ℎ 12     0.038069700705038    0.034422968665259 

ℎ 13    -0.075702872329833   -0.077238686069151 

ℎ 14     0.001255180985708    0.000367856010122 

ℎ 15    -0.036041595816818   -0.037139759158003 

ℎ 16    -0.024145950636344   -0.027212401973508 

ℎ 17     0.060133315223306    0.060730167959274 

ℎ 18     0.042935368051682    0.039277561427109 

ℎ 19    -0.045686019257138   -0.043609544761427 

ℎ 20    -0.016874170193133   -0.017331867748600 

ℎ 21     0.000451675309408    0.000603840148797 

ℎ 22    -0.000862221117489   -0.000559279117441 

ℎ 23    -0.000294168210020   -0.000346498500380 

ℎ 24     0.000470336278089    0.000011627727241 

 

 

5.5 Conclusions  

In this chapter, asymmetric FIR filters which simultaneously satisfies both magnitude and 

group delay specifications are designed using the reference-point-based multiobjective 

ABC algorithm. Lowpass, highpass, bandpass, and bandstop filters of order 24 and group 

delay of 10 are designed. In the reference-point-based MOABC approach, instead of 

approximating the whole Pareto front, the search is directed towards the regions of interest 
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of the decision maker. By introducing the preferences of the decision maker during 

optimization phase, the computational complexities associated with approximating the 

whole Pareto front is reduced. The simulation results confirm that the reference-point-based 

MOABC algorithm can be used to obtain lower peak errors in magnitude response and 

group delay response than those of the reference-point-based MODE. In contrast to the 

differential evolution algorithm, the onlooker bee phase in the ABC algorithm employs a 

secondary search in refined regions of the solution space. This ensures that the MOABC 

can simultaneously minimize all objective functions towards a better solution.  
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CHAPTER 6 

MULTIOBJECTIVE APPROACH FOR IIR FILTER DESIGN 

 

FIR filters are inherently stable and has exact linear phase, however they have certain 

drawbacks such as higher group delay and it requires more hardware components 

compared to infinite impulse response (IIR) filters for the same set of magnitude and group 

delay specifications. Also, FIR filters cannot be used in audio signal processing 

applications where long delays are undesirable. Although IIR filters can achieve much 

better performance than FIR filters, there are some difficulties faced while designing them 

such as: 

1. IIR filter design is a non-convex optimization problem with many local minima 

on error surfaces and thus the global optimum solution is difficult to be found 

and verified.  

2. If both magnitude and group delay characteristics need to be optimized, stability 

constraints must be incorporated into the design procedures. But, when 

denominator order is greater than 2, stability domain cannot be expressed as a 

convex set in terms of the denominator coefficients.  

 

In this chapter, the preference-point-based multiobjective ABC algorithm is used to design 

IIR filters. Physical programming (PP) technique is used to set the preferences and 

spherical pruning technique is used to maintain the external archive size. The chapter is 

organized as follows: Section 6.1 gives an introduction about IIR filter design methods; 

Section 6.2 describes IIR filter design problem formulation, Section 6.3 gives a brief 

description about the physical programming approach, the spherical pruning technique and 

the preference-point-based MOABC; design results of IIR lowpass, highpass and bandpass 

filters are given in Section 6.4 and conclusions are given in Section 6.5. 
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6.1 Introduction  

Classical design methods of IIR filters include impulse invariant method, matched-z 

transformation, and bilinear transformation. Although these methods can design stable IIR 

digital filters, these methods can only be applied to transform standard analog filters, such 

as lowpass, highpass, bandpass and bandstop filters, into their digital counterparts 

satisfying magnitude response characteristic. 

Given a prototype lowpass IIR digital filter meeting specified passband and stopband 

specifications, spectral transformation [195] is the most common technique for designing 

IIR lowpass, highpass, bandpass and bandstop digital filters meeting the same passband 

and stopband specifications. Other approaches to design digital filters include linear 

transformation of classical LC filters [196], lattice modeling [197], and wave digital filters 

[198]-[199]. 

In [61], an effective method for designing short coefficient wordlength IIR digital filters is 

described by first equalizing passband and stopband statistical word lengths before 

optimization. Passive second order digital filters can be designed by applying linear 

transformation on two-port gyrator circuit [99]-[100], [110] to realize first-order and 

second-order multioutput digital filters [101]-[104]. First-order and second-order tunable 

and variable passive digital filters [105]-[106], can be designed from passive digital filters 

[99]-[100] by changing the values of respective filter coefficients. The work is also 

extended to 1-D high-order passive digital filter design [107]-[109] and 2-D passive digital 

filter structure [110]. Tunable filters of higher order and sharp cut off frequency can be 

designed by introducing analytical expression [108] for filter coefficients of both first-order 

and second-order passive digital filter sections or only to second-order section. Adaptive 

IIR digital filters [86] can be partially stabilized by using an adaptive feedback gain 

resulting in an increase in convergence speed. Adaptive IIR filters can be applied to noise 

reduction and echo cancellation. By applying a saturation function such as bipolar ramp 

function and bipolar sigmoid function at output of an adaptive IIR digital filter, undesirable 

effects of instability arising in the filter can be avoided [87]. IIR filters with equiripple 

passband, stopband and linear phase passband can be obtained by using Remez exchange 
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algorithm [66]-[67]. The method adopts the combination of a mirror image numerator 

polynomial to approximate equiripple magnitude response in passband and stopband. 

Furthermore, an all-pole transfer function is used to provide a constant group delay in the 

passband. Nearly linear phase IIR filter design can be achieved in [ 7 5 ] ,which 

group delay deviation is minimized under the constraints of maximum passband 

attenuation and minimum stopband attenuation. Stability constraint is incorporated in 

an optimization problem as a set of linear inequality constraints, by designing the 

filter  as a cascade of  second-order sections. In [71], IIR filter design with a new 

stability constraint based on argument principle is introduced. Weighted least square IIR 

filters can be designed using partial second-order factorization [76]; and minimax IIR 

filters with second-order factor updates is described in [74]; minimax IIR filter design 

using semidefinite programming (SDP) relaxation technique [72] and iterative second 

order cone programming (SOCP) [73] have been respectively advanced. A review 

on recent advancements in FIR filter approximation by IIR filter is presented in [68].  

IIR filter design is a multimodal optimization problem, converging to a global optimum is 

not often possible using iterative gradient-based search algorithms, as the problem is highly 

sensitive to its starting points and requires a continuous and differentiable cost function. 

So stochastic and bio-inspired algorithms that are independent of gradient calculation can 

be used for designing IIR filters. Evolutionary algorithms such as harmony search 

algorithm [77]-[78] and differential evolution algorithm [187] can be applied for IIR filter 

design. IIR filters with linear phase passband of lower orders can be designed by local search 

operator enhanced multiobjective evolutionary algorithm (LS-MOEA) [79]-[80]. In this 

method, each of the IIR filter coefficients is represented as a combination of control and 

coefficient genes and optimization process searches for an optimal coefficient with minimum 

magnitude and phase response error.   

Unlike linear phase FIR filters which involves the optimization of only amplitude response, 

IIR filter design requires the simultaneous optimization of magnitude and phase responses, 

and thus IIR filter design problem is formulated as multiobjective optimization problem 

rather than a single-objective optimization problem. Multiobjective evolutionary 
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algorithms such as the multiobjective ABC algorithm [81], the multiobjective teaching 

learning-based optimization [82], the multiobjective cuckoo search algorithm [83] can be used 

to design higher order IIR filters. In such problems, the designer generates a set of 

alternative trade-offs, called Pareto optimal solutions, instead of a single optimum solution. 

The set of nondominated solutions are optimal such that none of the solutions in the entire 

search space is superior, when all the objectives are considered. Multiobjective decision 

making finds numerous applications in the field of engineering design, scientific 

experiments and business decision making. 

Even though, the numerous solutions present in the Pareto front are optimal, the user needs 

only one solution for every practical application. The decision maker will have a region of 

interest in the objective space, and the quality of solutions outside those regions are not a 

concern for the designer. In the optimization process, a search can be guided towards the 

region of interest of the decision maker if the preference information can be incorporated 

into the search process. In this chapter, physical programming approach is used to 

incorporate the preferences of the decision maker into the multiobjective ABC algorithm. 

Using the multiobjective ABC algorithm, various IIR filters have been designed. Since IIR 

filters lack inherent stability, stability constraints need to be incorporated in their design 

procedure. 

6.2 IIR Filter Design [1] 

Cascade-form realization of an IIR digital filter with numerator and denominator order 

𝑀 𝑁, can be expressed as, 

 

                     𝐻 𝑧 𝑏 ∏  

 𝑏
1 𝑏 𝑧 𝑏 𝑧
1 𝑎 𝑧 𝑎 𝑧

 

                             ∑ 𝒄 𝑧  

(6.1) 
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In equation 6.1, 𝑏  and 𝑎  for 𝑖 1,2 and 𝑛 1 to  are real valued coefficients and 𝑏  

is a scaling constant. The coefficients 𝒄 𝑚  for 𝑚 0 represents the impulse response 

values of the IIR digital filter. The corresponding coefficient vector 𝒄 consisting of 

2𝑁 1  distinct coefficients which can be expressed as, 

 𝒄 𝑏 𝑏 𝑎 𝑎 … . . 𝑏 𝑏 𝑎 𝑎 𝑏  (6.2) 

The stability triangle of a 2nd-order denominator transfer function 𝐴 𝑧  offers a necessary 

and sufficient condition to ensure stability which requires, 

 

2 𝑎 2 

1 𝑎 1 

𝑎 1 𝑎 𝑎 1  

(6.3) 

where  𝐴 𝑧 1 𝑎 𝑧 𝑎 𝑧 . 

Substituting 𝑧 𝑒  into equation 6.1, the frequency response of 𝑁𝑡ℎ-order cascade IIR 

filter can be expressed as, 

 

𝐻 𝑤 𝐻 𝑧 ⌋ 𝑏
1 𝑏 𝑒 𝑏 𝑒
1 𝑎 𝑒 𝑎 𝑒

 

𝑏
1 ∑ 𝑏 𝑐𝑜𝑠 𝑖𝑤𝑇 𝑗 ∑ 𝑏 𝑠𝑖𝑛 𝑖𝑤𝑇
1 ∑ 𝑎 𝑐𝑜𝑠 𝑖𝑤𝑇 𝑗 ∑ 𝑎 𝑠𝑖𝑛 𝑖𝑤𝑇

 

|𝐻 𝑤 |𝑒  

(6.4) 

The magnitude response |𝐻 𝑤 | is equal to, 

 |𝐻 𝑤 | |𝑏 |
1 ∑ 𝑏 𝑐𝑜𝑠 𝑖𝑤𝑇 ∑ 𝑏 𝑠𝑖𝑛 𝑖𝑤𝑇
1 ∑ 𝑎 𝑐𝑜𝑠 𝑖𝑤𝑇 ∑ 𝑎 𝑠𝑖𝑛 𝑖𝑤𝑇

 (6.5) 

The phase response 𝜃 𝑤  can be expressed as, 
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𝜃 𝑤  = arg 𝐻 𝑤  

𝑡𝑎𝑛
∑ 𝑏 𝑠𝑖𝑛 𝑖𝑤𝑇

1 ∑ 𝑏 𝑐𝑜𝑠 𝑖𝑤𝑇
𝑡𝑎𝑛

∑ 𝑎 𝑠𝑖𝑛 𝑖𝑤𝑇
1 ∑ 𝑎 𝑐𝑜𝑠 𝑖𝑤𝑇

 
(6.6) 

The group delay can be expressed as, 

 

𝜏 𝑤
𝜕𝜃 𝑤
𝜕𝑤𝑇

 

1
1 𝑐 𝑛

𝜕𝑐 𝑛
𝜕𝑤𝑇

1
1 𝑑 𝑛

𝜕𝑑 𝑛
𝜕𝑤𝑇

 

(6.7) 

where,  

 

𝑐 𝑛
∑ 𝑏 𝑠𝑖𝑛 𝑖𝑤𝑇

1 ∑ 𝑏 𝑐𝑜𝑠 𝑖𝑤𝑇
 

𝑑 𝑛
∑ 𝑎 𝑠𝑖𝑛 𝑖𝑤𝑇

1 ∑ 𝑎 𝑐𝑜𝑠 𝑖𝑤𝑇
 

for 𝑛 1 𝑡𝑜  

for 𝑛 1 𝑡𝑜  (6.8)

Taking partial derivatives of 𝑐 𝑛 , for 𝑛 1 𝑡𝑜 ,  

 

𝜕𝑐 𝑛
𝜕𝑤𝑇

 
1 ∑ 𝑏 𝑐𝑜𝑠 𝑖𝑤𝑇 ∑ 𝑖𝑏 𝑐𝑜𝑠 𝑖𝑤𝑇

1 ∑ 𝑏 𝑐𝑜𝑠 𝑖𝑤𝑇

1 ∑ 𝑏 𝑠𝑖𝑛 𝑖𝑤𝑇 ∑ 𝑖𝑏 𝑠𝑖𝑛 𝑖𝑤𝑇
1 ∑ 𝑏 𝑐𝑜𝑠 𝑖𝑤𝑇

 

(6.9) 

Taking partial derivatives of 𝑑 𝑛 ,  for 𝑚 1 𝑡𝑜 , 

 

𝜕𝑑 𝑛
𝜕𝑤𝑇

1 ∑ 𝑎 𝑐𝑜𝑠 𝑖𝑤𝑇 ∑ 𝑖𝑎 𝑐𝑜𝑠 𝑖𝑤𝑇
1 ∑ 𝑎 𝑐𝑜𝑠 𝑖𝑤𝑇

1 ∑ 𝑎 𝑠𝑖𝑛 𝑖𝑤𝑇 ∑ 𝑖𝑎 𝑠𝑖𝑛 𝑖𝑤𝑇
1 ∑ 𝑎 𝑐𝑜𝑠 𝑖𝑤𝑇

 

(6.10)
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The objective function of the minimax magnitude error 𝑒 𝐜  is defined by, 

 𝑒 𝐜 |𝐻 c, 𝑤 | 𝐻 𝑤
∈

for ∀𝑤 ∈ Ω

 (6.11)

where 𝐻 𝑤 1 in passband and 𝐻 𝑤 0 in stopband(s); and Ω  denotes union of 

frequency bands of interest and 𝑝 is a positive integer. 

Similarly, the objective function of the minimax group delay error 𝑒 𝐜  among the 

passband can be calculated by,  

 𝑒 𝐜  |𝜏 𝐜, 𝑤 𝜏 𝑤 |

for 𝑤 𝑤 𝑤

 (6.12)

where 𝜏 𝑤  is the desired group delay.  

The maximum passband attenuation 𝑅  (in dB) is related to passband ripple 𝛿  as, 

 𝛿
10 1

10 1
 (6.13)

The minimum stopband attenuation 𝑅  (in dB) is related to stopband ripple 𝛿  as, 

 𝛿 10  (6.14)

The multiobjective optimization problem for IIR filter design searches for an optimal 

coefficient vector 𝐜 that minimizes the objective functions 𝑒 𝐜  and 𝑒 𝐜  

simultaneously.     
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6.3 Physical-Programming-Based Multiobjective ABC Algorithm 

The preferences are incorporated into the multiobjective ABC algorithm a priori and 

explicitly using the global physical programming approach and the size of the external 

archive is updated using the spherical pruning technique. 

6.3.1 Physical Programming Approach 

The physical programming (PP) [188] is a technique for multiobjective optimization that 

formulates the design objectives into an understandable language and enables a designer 

to express preferences to each of the objective functions. In this approach, a designer 

expresses his preferences related to each objective function with details using the 

information available about the problem at the optimization phase. In PP, the decision 

maker expresses his preferences using different degrees of desirability: highly desirable 

(HD), desirable (D), tolerable (T), undesirable (U) and highly undesirable (HU). There are 

eight preference functions classified into 4 soft classes and 4 hard classes [190]. The soft 

class functions are as follows: Class 1S (smaller is better), Class 2S (larger is better), Class 

3S (value is better), Class 4S (range is better). The hard class functions are as follows: 

Class 1H (must be smaller), Class 2H (must be larger), Class 3S (must be equal), Class 4S 

(must be in range). The selection of class function by a designer depends on the degree of 

sharpness of his preferences. In this design, Class 1S function is chosen to set preferences. 

 

 

Figure 6.1 1S Class Function: Smaller is the Better [190] 
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PP can be used as a selection mechanism to store and replace solutions in the external 

archive. Given a set of preferences 𝔅 with 𝑁 ranges for 𝑀 objectives [188]. 

 𝔅

⎣
⎢
⎢
⎡ 𝑔 𝑔 …

𝑔 𝑔 …
… … …

𝑔
𝑔
…

𝑔 𝑔 … 𝑔 ⎦
⎥
⎥
⎤
 (6.15)

When 𝑁 5, the preference set can be set using the following different ranges:   

HD: Highly desirable if 𝑔 𝑔 𝒙 𝑔  

D: Desirable if  𝑔 𝑔 𝒙 𝑔  

T: Tolerable if 𝑔 𝑔 𝒙 𝑔  

U: Undesirable if 𝑔 𝑔 𝒙 𝑔  

HU: Highly undesirable 𝑔 𝑔 𝒙 𝑔  

For 𝑚 th objective, the class function is defined as, 

 𝑛 𝒙
𝑓 𝒙                   𝑖𝑓𝑔 𝒙 𝑔

𝑓 𝒙           𝑖𝑓𝑔 𝒙 ∈ 𝑔 , … … 𝑔 , 𝑘𝜖 1,2,3 … … … 𝑁

0                              𝑖𝑓 𝑔 𝒙 𝑔

 (6.16)

Preference function 𝑓 𝒙  in the range 𝑘 for the objective function value 𝑔 𝒙  is defined 

as,  

 𝑓 𝒙 𝛼 ∆α
𝑔 𝒙 𝑔

𝑔 𝑔
 (6.17)

where, 

𝛼 0; 𝛼 𝛼 ;    𝛼 ≥ 0 

∆𝛼 𝛼 𝛼    ; 𝛼 𝛼 . 𝑀;   1 𝑘 𝑁  
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Minimization is performed for soft class as follows, 

 min
𝒙

𝐽 𝒙
1

𝑛
𝑛 𝒙  (6.18)

 𝑛  is the number of objectives in decision space. 

A lower value of class function is always preferred over a higher value. The obtained 

solutions in the Pareto front are analyzed using the spherical pruning (SP) algorithm. The 

algorithm selects one solution for each spherical sector, according to the norm. This 

maintains a diversity in the Pareto front and prevents converging to a single Pareto optimal 

solution. 

6.3.2    Spherical Pruning Technique  

If physical programming (PP) is used as such, it will evolve an entire population to a single 

Pareto optimal solution. Therefore, it must be merged with other mechanisms to maintain 

diversity in the Pareto front. Spherical pruning can maintain diversity in the Pareto front. 

The basic idea of spherical pruning is to analyze the proposed solutions in the current 

Pareto front approximation 𝐽∗  by using normalized spherical coordinates from a reference 

solution. With such an approach, it is possible to attain a good distribution along the Pareto 

front. The algorithm selects one solution for each spherical sector, according to a given 

norm or measure. 

Given two solutions 𝜽 and 𝜽  from a set, 𝜽  has preference in the spherical sector over 𝜽  

if, 

 Λ 𝜽 Λ 𝜽 ⋀ ‖ 𝐽 𝜽 ‖ ‖ 𝐽 𝜽 ‖  (6.19)

where, 

 ‖𝐽 𝜽 ‖ ∑ 𝐽 𝜽  is a suitable p-norm, Λ 𝜽  is the spherical sector defined 

as Λ 𝜽 𝜽
∗ , … … … … … … … . , 𝜽

∗ , Λ
∗

 is the spherical grid on the m- 
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dimensional space defined as Λ , … … , , the upper and lower 

limit is defined as 𝜷 max 𝛽 𝐽 𝜽 … … max 𝛽 𝐽 𝜽  and 𝜷

min 𝛽 𝐽 𝜽 … . . min 𝛽 𝐽 𝜽 .  

In this implementation, spherical pruning mechanism is used to confine the size of the 

external archive within the predetermined value. A detailed description about spherical 

pruning technique can be seen from [188]. 

6.3.3 Physical Programming Multiobjective ABC Algorithm 

The physical programming multiobjective ABC algorithm follows the steps of single-

objective ABC algorithm, starting with a random initial population 𝑿 ,  𝑖 ∈ 1, 𝑆𝑁  where 

𝑆𝑁, the total number of food locations is generated using equation 2.2. For an 𝑁 th order 

IIR filter, the food source vector is of length 2𝑁 1  and is in the form of 𝒄

𝑏 𝑏 𝑎 𝑎 … . . 𝑏 𝑏 𝑎 𝑎 𝑏 where 𝑏  is the scaling constant and the limits are 

set for each of the coefficients to incorporate the stability constraints. Nondominated 

sorting is then performed on the population to obtain top solutions, and the initial archive 

𝐸 , is generated.  

The new solutions in the employed bee phase are generated using the ABC algorithm as 

described in equation 2.3 and dominance criteria uses a pareto dominance approach instead 

of a greedy selection to replace current food source by a new food source, 

 𝒙
𝒙   𝑖𝑓 𝑔 𝑓 𝒗 𝑔 𝑓 𝒙  

𝒗   𝑖𝑓 𝑔 𝑓 𝒗 𝑔 𝑓 𝒙  
 (6.20)

The fitness value for the food source is calculated as follows, 
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 𝑓𝑖𝑡 𝒙

⎝

⎜
⎛

1

1 𝑔 𝑓 𝒙 |  
, if 𝑔 𝑓 𝒙  0

1 𝑔 𝑓 𝒙 , if 𝑔 𝑓 𝒙  0
⎠

⎟
⎞

 (6.21)

where 𝑔 𝑓 𝒗   is the global physical programming index of food source 𝒗  for the 

objective function 𝑚. In the onlooker bee phase, a food source is selected according to its 

probability value calculated using equation 2.5 and searches for food locations near the 

good quality food sources. A solution which cannot be improved after several 

predetermined trials becomes a scout bee and is abandoned. The scout bees will then 

randomly search for a new solution. Nondominated sorting is performed and best solutions 

are archived as 𝐸 . The size and diversity of the external archive is maintained using 

spherical pruning technique. When the algorithm is terminated, the final Pareto front is 

updated as 𝐽∗ E . The flowchart for the physical programming multiobjective ABC is 

given in Figure 6.2 and the pseudocode is given in Table 6.1.  

Table 6.1 Pseudocode of Physical-Programming-based MOABC 

1. Generate initial population 𝑋  with 𝑆𝑁 individuals; 
2. Evaluate the fitness of initial population 𝑋 ; 
3. Apply nondominated sorting criteria on 𝑋  to obtain initial Archive 𝐸 ; 
4. while stopping criterion do not satisfied do 
5. Read iteration number 𝑡; 
6.   For all food sources 

     Generate new food sources  𝒗  from current food source 𝒙  using ABC algorithm 

7.      Evaluate new food location 𝒗  

     Using global Physical Programming approach update the population   𝒙 with 𝒗  

8.   End for 
9.     Apply dominance on criterion 𝑋  to obtain 𝐸 ; 
10.     Apply pruning mechanism to prune 𝐸  
11.     𝑡 t 1; 
12. End while 

13. Algorithm terminates, Pareto front  𝐽  is updated by 𝐽∗ 𝐸 . 
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Generate new solution from current population 𝒗𝒊 using ABC 

Apply dominance criteria to update 𝒙  with 𝒗 ; 

𝒗𝒊 substitutes 𝒙𝒊 in the population if physical index, 

𝑔 (f(𝒗𝒊 )) 𝑔 (f(𝒙𝒊 )) 

Pareto front 𝐽∗  is 
displayed and updated as  

𝐽∗ E  

Terminate on  
reaching stopping 

criteria  

Generate initial population 𝑿 𝑖 ∈ 1, 𝑆𝑁  
Apply dominance criteria to generate Archive 𝑬𝟎 

Apply spherical pruning to obtain 𝐸  
 Any solution outside region of interest is discarded 
 In each spherical sector solution with lowest physical index, 

𝑔 (f (𝒙𝒊 )) is archived as 𝐸

No 

Yes 

Figure 6.2 Flowchart of Physical-Programming-based MOABC 
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6.4 Design Examples and Results 

In this section, cascade-form IIR lowpass, highpass, bandpass digital filters are designed. 

An initialization filter should be chosen such that it satisfies at least one of the objective 

function specifications. In this design problem, the initial population 𝑥 , for 𝑖 1 to 𝑆𝑁 

and 𝑗 1 to 𝐷, is generated using elliptic filter which has the desired amplitude response 

but an  arbitrary group delay response and the physical programming MOABC searches 

for a coefficient vector 𝒄 that simultaneously minimize the objective function 𝑒 𝐜  and 

𝑒 𝐜 . For each food source in the solution space, stability is checked for all coefficient 

pairs 𝑎 , 𝑎  for 1 to 𝑁
2 , and any solution that violates the stability criteria given 

in equation 6.3 is reverted to the required range.  

The parameters of the physical programming MOABC and IIR filter specifications are 

given in Table 6.2. The frequency grid for optimization is 𝐹  and for error calculation is 𝐹 , 

and it should be noted that a dense grid is selected for error calculation, but a coarse 

frequency grid is used in optimization. All optimizations are performed using an intel core 

i7-4790, 3.60 GHz with 12GB RAM desktop computer. 

To evaluate the performance of the designed filter, maximum passband attenuation 𝑅  and 

minimum stopband attenuation 𝐴  are calculated as, 

 𝑅 20 log  dB (6.22)

 𝐴 20 log 𝛿  dB (6.23)

where 𝛿  and 𝛿  are the passband ripple and the stopband ripple respectively. 

The quality of group delay characteristic 𝜏,  of the filter is measured using maximum group 

delay deviation 𝑄  which is defined by,  
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𝑄
100 𝜏 𝜏

2 ∗ 𝜏
 

(6.24)

where,  

where Ω  represents the frequency region of interests in the passband. 

Table 6.2 MOABC Parameters and IIR Filter Specifications 

Symbol Description LP HP BP 

𝑐  Upper bound of filter numerator coefficients 8 8 8 

𝑐  Lower bound of filter numerator coefficients -8 -8 8 

𝑐  Upper bound of filter denominator coefficients 2 2 2 

𝑐  Lower bound of filter denominator coefficients -2 -2 -2 

𝑐  Upper bound of filter denominator coefficients 1 1 1 

𝑐  Lower bound of filter denominator coefficients -1 -1 -1 

𝑝 Least 𝑝th-order 128 128 128 

𝑊 𝑤  Frequency weights for 0 𝑤 𝜋 1 1 1 

𝑀 Number of objective functions 2 2 2 

𝑃 ABC population size 100 100 100 

𝐿𝑖𝑚𝑖𝑡 Scout bee limit 200 200 200 

𝐹  Optimization frequency grid 0: 0.005: 1  

𝐹  Peak error calculation frequency grid 0: 0.001: 1  

The preference range selected for the objective functions are set using the design examples 

in [75] and are given in Table 6.3. 

Table 6.3 Preferences Range for IIR Filter Designs 

 Obj. fun. 𝑔  𝑔  𝑔  𝑔  𝑔  𝑔  

LP 𝑒  0 0.015032 0.018038 0.021646 0.025975 0.031170 

𝑒  0 0.019996 0.023995 0.028794 0.034553 0.041464 

HP 𝑒  0 0.005931 0.007117 0.008540 0.010248 0.012298 

𝑒  0 0.004622 0.005546 0.006655 0.007986 0.007986 

𝜏
𝜏 𝜏

2
 (6.25)

𝜏 max
∈

𝜏 c, 𝑤  (6.26)

𝜏 min
∈

𝜏 c, 𝑤  (6.27)
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BP 𝑒  0 0.076478 0.091774 0.110129 0.132155 0.158586 

𝑒  0 0.002745 0.003294 0.003953 0.004744 0.005693 

 

6.4.1 IIR Lowpass Filter 

A 10th order IIR lowpass filter is designed, and filter specification is given in Table 6.4. In 

order to evaluate the performance of lowpass filter designed using the physical 

programming MOABC, its results are compared with example 6A-2 in [75], and design 

results are shown in Table 6.5. Plots of magnitude response, group delay response in 

passband of the designed IIR lowpass filter is shown in Figure 6.3 and the pole zero plot is 

given in Figure 6.4, red and blue dots indicate, poles and zeros, respectively.  The pole zero 

plot shows that all 10 poles are inside the unit circle, which ensures that the designed IIR 

lowpass filter is stable.  

Table 6.4 IIR Lowpass Filter Design Specification 

Parameters Values 

Filter order 𝑁 10 

Distinct coefficients 21 

Prescribed group delay in passband 𝜏  9.79 

Passband cutoff frequency 𝑤  0.4π 

Stopband cutoff frequency  𝑤  0.56π 

Table 6.5  Simulation Results of IIR Lowpass Filter 

Parameters  MOABC Design 6A-2 [75] 

Peak Error PB  0.011850272132574 0.011870695865662 

Peak Error SB  0.003161032888287 0.003162390333019 

Peak Group delay error PB  0.019420941819440  0.019996828110962 

Max PB ripple (dB)  0.205869948910281 0.206224795410127 

Min SB attenuation (dB)  50.003419712266783 49.999690524800108 

𝜏   9.792987150078961 9.794423016597630 

𝑄    0.167811838090148 0.159006931668995 

Iteration number  100000 - 

The simulation results indicate that IIR lowpass filter designed using the physical- 

programming-based MOABC approach has lower passband peak error, stopband peak 

error and group delay error but larger maximum group delay deviation than the design 

example 6A-2 [75].   
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Figure 6.3 Magnitude Response, Group Delay Response, Magnitude Errors and Group Delay Errors of IIR 

Lowpass Filter Designed Using MOABC 

 

Figure 6.4 Pole Zero Plot of IIR Lowpass Filter Designed Using MOABC 
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The pole zero values of IIR lowpass filter designed using the physical-programming-based 

MOABC algorithm and the example 6A-2 [75] is given in Table 6.6 and Table 6.7 

respectively. 

Table 6.6  Poles and Zeros of IIR Lowpass Filter Designed Using MOABC  

Poles Zeros 

 0.558894210489161 + 0.084402856593976i  -0.385617081323501 + 0.869755263694404i 

  0.558894210489161 - 0.084402856593976i  -0.385617081323501 - 0.869755263694404i 

  0.508864518046386 + 0.392290143455185i   0.955163900510168 + 1.272920488219513i 

  0.508864518046386 - 0.392290143455185i   0.955163900510168 - 1.272920488219513i 

  0.127954755766791 + 0.698350504624347i  -0.803596542847903 + 0.461209386461021i 

  0.127954755766791 - 0.698350504624347i  -0.803596542847903 - 0.461209386461021i 

  0.273811070296788 + 0.610040811870065i  -0.206842243481173 + 0.971443865454256i 

  0.273811070296788 - 0.610040811870065i  -0.206842243481173 - 0.971443865454256i 

  0.054270897602955 + 0.941925241375190i   1.562291434592744 + 0.501238247609318i 

  0.054270897602955 - 0.941925241375190i   1.562291434592744 - 0.501238247609318i 

𝑔  0.007869813458049 

 

Table 6.7  Poles and Zeros of IIR Lowpass Filter Example in 6A-2 [75] 

Poles Zeros 

0.055899875082745 + 0.941595794139353i 1.560532836267383 + 0.500037760769863i 

0.055899875082745 - 0.941595794139353i 1.560532836267383 - 0.500037760769863i 

0.137189014239702 + 0.694579895414000i 0.953953087535561 + 1.270175172428016i 

0.137189014239702 - 0.694579895414000i 0.953953087535561 - 1.270175172428016i 

0.270300526450330 + 0.603032321027418i -0.789354534288448 + 0.450991420752534i 

0.270300526450330 - 0.603032321027418i -0.789354534288448 - 0.450991420752534i 

0.506904816181278 + 0.389758373464952i -0.207363157634161 + 0.971912241425369i 

0.506904816181278 - 0.389758373464952i -0.207363157634161 - 0.971912241425369i 

0.554307276978376 + 0.079692014072357i -0.387023183479362 + 0.867177538670689i 

0.554307276978376 - 0.079692014072357i -0.387023183479362 - 0.867177538670689i 

𝑔  0.008027005381132 
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The cascade-form representation of filter coefficients of IIR lowpass filter designed using 

the MOABC and in example 6A-2 is given in Table 6.8. 

Table 6.8  Filter Coefficients of IIR Lowpass Filter Using MOABC and 6A-2 [75] 

Section no: Coefficients MOABC  6A-2 

Section 1 

𝑏  0.413684486962345 1.578709068576896 

𝑏  0.986486897417032 0.826473842394121 

𝑎  -0.547622140593576 -1.108614553956733 

𝑎  0.447122294364160 0.313607374418078 

Section 2 

𝑏  1.607193085695807 -3.121065672534770 

𝑏  0.858481501836853 2.685300495264465 

𝑎  -0.255909511533583 -1.013809632362598 

𝑎  0.504065846832420 0.408864082353862 

Section 3 

𝑏  -3.124582869185487 -1.907906175071123   

𝑏  2.691994307468313 2.523371461871180 

𝑎  -0.108541795205910 -0.540601052900625 

𝑎  0.890168490666340 0.436710354802987 

Section 4 

𝑏  0.771234162647001 0.774046366958725 

𝑏  0.905174752132577 0.901783828125454 

𝑎  -1.117788420978322 -0.274378028479414 

𝑎  0.319486580719526 0.501262056741419 

Section 5 

𝑏  1.910327801020336 0.412834654378671 

𝑏  2.532664646166801 0.987612884176496 

𝑎  -1.017729036092773 -0.111799750165491 

𝑎  0.412834654378671 0.889727435575182 

 𝑏  0.007869813458049 0.008027005381132 

 

6.4.2  IIR Highpass Filter 

A 14th order IIR highpass filter is designed, and filter specification is given in Table 6.9. In 

order to evaluate the performance of highpass filter designed using the physical 

programming MOABC, its results are compared with example 2A-2 in [75], and the 

simulation results are shown in Table 6.10. Plots of magnitude response, group delay 

response in passband of designed filter is shown in Figure 6.5. The pole-zero plot is given 

in Figure 6.6, red and blue dots indicates, poles and zeros, respectively. 
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Table 6.9 IIR Highpass Filter Design Specification 

Parameters Values 

Filter order 𝑁 14 

Distinct coefficients 28 

Prescribed group delay in passband 𝜏  18.026 

Passband cut off frequency 𝑤  0.6π 

Stopband cut off frequency  𝑤  0.4π 

Table 6.10  Simulation Results of IIR Highpass Filter  

Parameters  MOABC Design 2A-2 [75] 

Peak Error PB  0.005716078250476 0.005726566029806 

Peak Error SB  0.000205385627392 0.000211346697228 

Peak Group delay error  0.005351591479776 0.004622731042623 

Max PB ripple (dB)  0.099299531191199 0.099481728542779 

Min SB attenuation (dB)  73.74859902031003 73.50009069236952 

𝜏   18.02573366738673 18.02299195551251 

𝑄   0.028368687584933 0.026673411553407 

Iteration number  200000 - 

 
Figure 6.5 Magnitude Response, Group Delay Response, Magnitude Errors and Group Delay Errors of IIR 

Highpass Filter Designed Using MOABC 

 



 

133 

 

 
Figure 6.6 Pole Zero Plot of IIR Highpass Filter Designed Using MOABC 

 

The pole zero plot shows that all the 14 poles are inside the unit circle which ensures that 

the designed IIR highpass filter is stable.  

The simulation results indicate that the IIR highpass filter designed using the physical- 

programming-based MOABC approach has lower passband peak error and stopband peak 

error but greater peak group delay error and maximum group delay deviation than the 

design example 2A-2 [75].   

The pole-zero values of IIR highpass filter designed using the physical-programming-

based MOABC algorithm and in the example 2A-2 [75] are given in Table 6.11 and Table 

6.12 respectively. The cascade-form representation of the filter coefficients of IIR highpass 

filter designed using the MOABC and in example 2A-2 are given in Table 6.13. 
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Table 6.11  Poles and Zeros of IIR Highpass Filter Using MOABC  

Poles Zeros 

-0.554670063556222 + 0.409554160702365i  -5.909928045952610 + 0.000000000000000i 

 -0.554670063556222 - 0.409554160702365i   0.849292628142457 + 0.000000000000000i 

 -0.465498533338781 + 0.566507976580445i  -0.653199460008026 + 1.235828433557360i 

 -0.465498533338781 - 0.566507976580445i  -0.653199460008026 - 1.235828433557360i 

 -0.640180073099612 + 0.277547920370500i   0.335396791617912 + 0.950264312284410i 

 -0.640180073099612 - 0.277547920370500i   0.335396791617912 - 0.950264312284410i 

 -0.688147842803370 + 0.088479714553341i  -1.131884600820687 + 0.936708986098183i 

 -0.688147842803370 - 0.088479714553341i  -1.131884600820687 - 0.936708986098183i 

 -0.238546026334125 + 0.785066203456379i   0.534685545678780 + 0.808784038013257i 

 -0.238546026334125 - 0.785066203456379i   0.534685545678780 - 0.808784038013257i 

 -0.330136515849370 + 0.665451254702361i  -1.676361305137672 + 0.000000000000000i 

 -0.330136515849370 - 0.665451254702361i   0.769029634344830 + 0.000000000000000i 

 -0.139084746832294 + 0.933226556234384i  -1.491469749070291 + 0.470065446556223i 

 -0.139084746832294 - 0.933226556234384i  -1.491469749070291 - 0.470065446556223i 

𝑔   1.389699269480474e-04 

 

Table 6.12  Poles and Zeros of IIR Highpass Filter in Example 2A-2 [75] 

Poles Zeros 

-0.129587030913823 + 0.935354095880280i -1.109177147262147 + 1.275183686942845i 

-0.129587030913823 - 0.935354095880280i -1.109177147262147 - 1.275183686942845i 

-0.228264708820005 + 0.780254340826646i -1.493205529654857 + 0.285867750828198i 

-0.228264708820005 - 0.780254340826646i -1.493205529654857 - 0.285867750828198i 

-0.324813730812861 + 0.665329580959911i -1.322471208488332 + 0.805512989229631i 

-0.324813730812861 - 0.665329580959911i -1.322471208488332 - 0.805512989229631i 

-0.452295969146698 + 0.548729032709602i -0.678177338875631 + 1.315252474583515i 

-0.452295969146698 - 0.548729032709602i -0.678177338875631 - 1.315252474583515i 

-0.545696283186623 + 0.422540657078167i 0.914486674064672 + 0.415033644449005i 

-0.545696283186623 - 0.422540657078167i 0.914486674064672 - 0.415033644449005i 

-0.638885665872786 + 0.259641928762650i 0.331679107800718 + 0.942434670456086i 

-0.638885665872786 - 0.259641928762650i 0.331679107800718 - 0.942434670456086i 

-0.660579026509467 + 0.068159724572040i 0.530887153916813 + 0.841962916108677i 

-0.660579026509467 - 0.068159724572040i 0.530887153916813 - 0.841962916108677i 

𝑔  4.254845201569976e-004 
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Table 6.13  Filter Coefficients of IIR Highpass Using MOABC and 2A-2 [75] 

Section Coefficients MOABC   2A-2 

Section 1 

𝑏  2.263769201641374 -1.828973348129344 

𝑏  2.158586474212092 1.008538803066489 

𝑎  1.376295685606741 1.321158053022979 

𝑎  0.481376113442373 0.441010398319544 

Section 2 

𝑏  0.907331670792841 2.218354294524278 

𝑏  1.289171521519846 2.856367379453924 

𝑎  0.660273031698741 1.277771331734585 

𝑎  0.551815491482108 0.475588825226353 

Section 3 

𝑏  1.306398920016051 2.986411059309736 

𝑏  1.953941451743615 2.311383124755535 

𝑎  0.930997066677563 1.091392566392120 

𝑎  0.537620172069827 0.476325040370784 

Section 4 

𝑏  5.060635417810152 2.644942416976690 

𝑏  -5.019258322279907 2.397781273098042 

𝑎  1.109340127112445 0.904591938273504 

𝑎  0.475393489954082 0.505675195041505 

Section 5 

𝑏  -1.069371091357560 -1.061774307833626 

𝑏  0.940020252902844 0.990742722296123 

𝑎  0.477092052668251   0.649627461636567 

𝑎  0.673233150489213 0.548167411027867 

Section 6 

𝑏  -0.670793583235823 1.356354677751240 

𝑏  1.015493271028951 2.189813574862431 

𝑎  1.280360146199224 0.456529417637149 

𝑎  0.486863374095814 0.660901613669359 

Section 7 

𝑏  2.982939498140583 -0.663358215601437 

𝑏  2.445443536437899 0.998194138629152 

𝑎  0.278169493664589 0.259174061827633 

𝑎  0.890256372062492 0.891680083261421 

 𝑏  1.389699269474e-04 4.25484520156e-04 

 

6.4.3 IIR Bandpass Filter 

A 14th order IIR bandpass filter is designed, and filter specification is given in Table 6.14. 

In order to evaluate the performance of bandpass filter designed using the physical 

programming MOABC, its results are compared with the example 3A-2 in [75], and the 

simulation results are shown in Table 6.15. Plots of magnitude response, group delay 

response in passband of the designed filter is shown in Figure 6.7. The pole-zero plot is 
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given in Figure 6.8, red and blue dots indicates, poles and zeros, respectively. The pole-

zero plot shows that all the 14 poles are inside the unit circle which ensures that the 

designed IIR bandpass filter is stable.  

Table 6.14 IIR Bandpass Filter Design Specification 

Parameters Values 

Filter order 𝑁 14 

Distinct coefficients 28 

Prescribed group delay in passband 𝜏  25.54 

Stopband 1 cut off frequency  𝑤  0.2π 

Passband 1 cut off frequency 𝑤  0.3π 

Passband 2 cut off frequency 𝑤  0.5π 

Stopband 2 cut off frequency  𝑤  0.7π 

 

Table 6.15  Simulation Results of IIR Bandpass Filter 

Parameters  MOABC Design 3A-2 [75] 

Peak Error PB  0.058314239202659 0.059398878299075 

Peak Error SB 1  0.008545505128267 0.008544664889970 

Peak Error SB 2  0.008541613067068 0.008544696148769 

Peak Group delay error  0.002741178379249 0.002745356038197 

Max PB ripple (dB)  1.014172718247246 1.033080328853921 

Min SB 1 attenuation  41.365245217237678 41.366099300855993 

Min SB 2 attenuation  41.369202117897160 41.366067525475515 

𝜏   25.542425092292156 25.542192048749879 

𝑄 0.001274583887433 0.00126449041859 
Iteration number  200000 - 

The simulation results indicate that IIR bandpass filter designed using the physical- 

programming-based MOABC approach has lower passband peak error, stopband 1 peak 

error and group delay error but greater peak stopband 2 peak error and maximum group 

delay deviation than the design example 3A-2 [75].  The pole-zero values of IIR highpass 

filter designed using the physical-programming-based MOABC algorithm and in the 

example 3A-2 [75] are given in Table 6.16 and Table 6.17 respectively. The cascade-form 

representation of filter coefficients of IIR bandpass filter designed using the MOABC and 

in example 3A-2 are given in Table 6.18. 
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Figure 6.7 Magnitude Response, Group Delay Response, Magnitude Errors and Group Delay Errors of IIR 

Bandpass Filter Designed Using MOABC 

 

Figure 6.8 Pole Zero Plot of IIR Bandpass Filter Designed Using MOABC 
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Table 6.16  Poles and Zeros of IIR Bandpass Filter Using MOABC  

Poles Zeros 

 0.493894608581262 + 0.702518313262373i 0.594972776318648 + 1.039563120258078i 

  0.493894608581262 - 0.702518313262373i   0.594972776318648 - 1.039563120258078i 

  0.272178519664595 + 0.761216447502546i  -0.637641776079309 + 1.054933559385276i 

  0.272178519664595 - 0.761216447502546i  -0.637641776079309 - 1.054933559385276i 

  0.338827281370153 + 0.743658766655145i   1.560937558290255 + 0.000000000000000i 

  0.338827281370153 - 0.743658766655145i   1.035267716101418 + 0.000000000000000i 

  0.124170605143223 + 0.805942741602134i   0.827351999477573 + 0.557693294518648i 

  0.124170605143223 - 0.805942741602134i   0.827351999477573 - 0.557693294518648i 

 -0.076643870392857 + 0.890878585508749i   0.307609108908968 + 1.191403573851067i 

 -0.076643870392857 - 0.890878585508749i   0.307609108908968 - 1.191403573851067i 

  0.583831851732929 + 0.687760777910568i   0.085275152227543 + 1.235273396048266i 

  0.583831851732929 - 0.687760777910568i   0.085275152227543 - 1.235273396048266i 

  0.004906237972598 + 0.840010963297944i  -1.197694016499282 + 0.000000000000000i 

  0.004906237972598 - 0.840010963297944i  -0.770605696420433 + 0.000000000000000i 

𝑔   0.002682636337256 

 

Table 6.17  Poles and Zeros of IIR Bandpass Filter in Example 3A-2 [75] 

Poles Zeros 

-0.076714645151686 + 0.890838519817448i 1.561666032241332 

-0.076714645151686 - 0.890838519817448i 1.034144738442276 

0.004716638351661 + 0.839965105522936i 0.828203881706730 + 0.558223703276560i 

0.004716638351661 - 0.839965105522936i 0.828203881706730 - 0.558223703276560i 

0.583913983795629 + 0.687630980756487i 0.595013662062041 + 1.039366803541748i 

0.583913983795629 - 0.687630980756487i 0.595013662062041 - 1.039366803541748i 

0.494002366250057 + 0.702447038273360i 0.307695507127380 + 1.191416490283998i 

0.494002366250057 - 0.702447038273360i 0.307695507127380 - 1.191416490283998i 

0.124245297995792 + 0.805956367289334i 0.085139886669244 + 1.234858171372786i 

0.124245297995792 - 0.805956367289334i 0.085139886669244 - 1.234858171372786i 

0.338793525086818 + 0.743834836527864i -0.638208918893237 + 1.054769047595507i 

0.338793525086818 - 0.743834836527864i -0.638208918893237 - 1.054769047595507i 

0.272050461443023 + 0.761143525390037i -1.199730733263683 

0.272050461443023 - 0.761143525390037i -0.769532635828309 

𝑔  0.002680119463696 
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Table 6.18  Filter Coefficients of IIR Bandpass Filter Designed Using MOABC and 3A-2 [75] 

Section no: Coefficients MOABC  3A-2 

Section 1 

𝑏  -1.189945552637296 -0.361935298977666 

𝑏  1.434684085561031 -1.873578733973902 

𝑎  -0.987789217162524 -0.544100922888031 

𝑎  0.737463864854648 0.653350919812894 

Section 2 

𝑏  1.275283552158618 -0.264612102613937 

𝑏  1.519471849318864 -0.795808126401440 

𝑎  -0.544357039329189 -0.248490595989497 

𝑎  0.653531626515206 0.665002560047421 

Section 3 

𝑏  -1.654703998955147 1.276417837786475 

𝑏  0.995533141790602 1.519848367920410 

𝑎  -0.248341210286447 -0.677587050174312 

𝑎  0.664962041922799 0.668071316676267 

Section 4 

𝑏  -0.170550304455085 -0.615391014254765 

𝑏  1.533172214572047 1.514149778427029 

𝑎  -1.167663703465858 -0.009433276704000 

𝑎  0.813874518730050 0.705563625174430 

Section 5 

𝑏  1.968299712919714 -1.190027324124077 

𝑏  0.922949831683014 1.434324610345065 

𝑎  -0.009812475945196 -0.988004732497636 

𝑎  0.705642489631784 0.737470179437766 

Section 6 

𝑏  -2.596205274391673 -0.170279773338488 

𝑏  1.615988260948077 1.532123503708188 

𝑎  -0.677654562740306 0.15342929030334 

𝑎  0.667832287823740 0.799478405170950 

Section 7 

𝑏  -0.615218217817936 -1.656407763413475 

𝑏  1.514065839668865 0.997535372573911 

𝑎  0.153287740785715 -1.167827967592453 

𝑎  0.799538936986866 0.813791906168922 

 𝑏  0.002682636337256 0.002680119463696 
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6.5 Conclusions  

In this chapter, the physical-programming-based multiobjective ABC algorithm is used to 

design cascade-form IIR filters. Three filter examples including IIR lowpass of order 10, 

IIR highpass filter of order 14 and IIR bandpass filter of order 14 are designed and the 

results are compared with the state-of-the-art design methods in [75]. The pole-zero plot of 

designed IIR filters have shown that all the poles are within the unit circle and the designed 

filters are stable. The physical-programming-based multiobjective ABC algorithm can be 

used to design IIR filter problems, which is a non-convex optimization problem requiring 

simultaneous optimization of both magnitude and phase responses. The proposed design 

method can achieve slightly better or comparable results in terms of peak errors in passband 

and stopband, and peak group delay error in passband when compared to other design 

methods in [75].  
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CHAPTER 7 

CONCLUSIONS AND FUTURE DIRECTIONS 

 

In this dissertation, the ability of the ABC algorithm in handling multimodal and 

nondifferentiable problems is utilized to design digital filters. Single-objective 

optimization has been extended into multiobjective space for simultaneous optimization of 

magnitude and/or phase characteristics. Different types of digital filters such as Types 3 

and 4 linear phase FIR filters, and sparse Type 1 linear phase FIR filters are designed using 

the proposed ABC-AMR algorithm. In this chapter, conclusions of this dissertation and 

suggestions for future work are presented. 

7.1 Conclusions 

In Chapter 3, an improved ABC algorithm called the ABC-AMR algorithm is proposed 

and used to design Types 3 and 4 linear phase FIR differentiators. The original ABC 

algorithm has certain shortcomings due to an insufficient balance between exploration and 

exploitation in the search equation, which in turn increases the convergence time in 

proportional to the number of parameters of a problem. In the ABC-AMR algorithm, 

instead of changing only one parameter in employed and onlooker bee phase, several new 

food locations are generated in every iteration. A self-adaptive control parameter known 

as the adaptive modification rate 𝐴𝑀𝑅), is introduced which adaptively controls the 

number of parameters to be changed in each iteration. The 𝐴𝑀𝑅 ensures exploration in 

initial stages and exploitation in later stages of optimization. The ABC-AMR algorithm is 

used to design linear phase Type 3 and Type 4 linear phase FIR differentiators. Given the 

desired amplitude response 𝐴 𝑤  of a differentiator, the optimization process searches 

for an optimal coefficient vector 𝒄 that minimizes the weighted minimax objective function 

given in equation 3.16. Since linear phase FIR filters have constant group delay, 

optimization is formulated as a single-objective optimization problem. Results are 

compared, in terms of minimax and peak errors in passband and stopband, iteration time 
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and converged iteration number, with respect to the Parks-McClellan (PM) technique, the 

original ABC algorithm and its three variants namely the gbest-guided ABC, the best-so-

far selection ABC and the global best ABC. Results indicate that differentiators can be 

designed using the proposed ABC-AMR algorithm to reach the lowest minimax errors and 

the lowest peak errors with reduced computational time. Unlike other variants of ABC 

algorithm, which directs search towards best solutions in the objective space, the ABC-

AMR algorithm explores unknown regions of objective space as well as exploits 

neighborhood regions of best solution. 

In Chapter 4, sparse FIR filters are designed using the constrained ABC-AMR algorithm. 

Compared to conventional FIR filters, design of sparse filters aims at reducing the number 

of nonzero coefficients and thereby decreasing the implementation cost by removing the 

multiplier units associated with zero coefficients. When using traditional 𝑙  norm-based 

optimization, obtaining a global optimum solution is difficult as 𝑙  norm is a highly non- 

convex problem. The ABC-AMR algorithm is combined with iterative shrinkage algorithm 

and  𝑙  norm to design sparse filters. The optimization algorithm aims for finding the 

positions of zero value coefficients and the filter is designed using constrained minimax 

objective function. To evaluate the performance of sparse filter design, the proposed 

algorithm is compared to other design methods such as minimum-increase method, 

smallest coefficient method and partial 𝑙  optimization. Results indicate that the proposed 

method can achieve better sparsity and lower peak errors. 

In Chapter 5, the reference-based MOABC is used in the design of asymmetric FIR filters. 

Objective functions are formulated for magnitude responses in passband(s) and stopband(s) 

and for group delay response(s) in passband(s), and all objective functions are 

simultaneously optimized. Preferences are incorporated using the reference-point approach 

in which the solutions are ranked according to their normalized Euclidean distances from 

the reference point. Asymmetric lowpass, highpass, bandpass and bandstop FIR filters are 

designed, and the results are compared to the corresponding multiobjective differential 

evolution algorithm. The proposed method can result in lower peak errors in stopband and 

passband magnitudes as well as lower peak error(s) in passband group delay(s). 
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In Chapter 6, IIR filters are designed using the physical-programming-based MOABC 

algorithm. The design objective is to find an optimal coefficient vector c, which minimizes 

magnitude error 𝑒 𝒄  and group delay error 𝑒 𝒄  such that the designed filter is the 

best approximation as per specifications. IIR filter design is a non-convex problem with 

many local optima on error surfaces, and hence multiobjective approach is utilized for 

optimization. The preferences of a decision maker are incorporated into optimization 

process a priori using the physical programming approach with different degrees of 

desirability. The size and diversity of the external archive are maintained using spherical 

pruning technique, which selects solutions with the lowest physical index from each 

spherical sector. Using the proposed method, IIR lowpass, highpass and bandpass filters 

are designed. The design results indicate better peak magnitude error at a small increase in 

peak group delay error can be obtained for each of lowpass, highpass and bandpass filters, 

in additional the bandpass filter also results in a small increase in stopband 1 peak 

magnitude error. Overall, the performance is slightly better or close to those of the state-

of-the-art design methods in [75].   

7.2 Suggestions for Future Work 

In this dissertation, improvements are applied to the original ABC algorithm for the design 

of various types of FIR and IIR filters and the results indicate that the proposed method 

can often achieve better results. Continue a future research along this direction would 

improve the performance of the ABC algorithm in digital filter design applications. A few 

topics for future study are briefly discussed below. 

7.2.1 2-D Filter Design 

This dissertation work mainly focuses in the design of 1-D filters: Chapter 3 – 1-D linear 

phase FIR differentiator, Chapter 4 – 1-D sparse linear phase FIR filters, Chapter 5 -1-D 

asymmetric FIR filter, and Chapter 6 – 1-D IIR filters. These design methodologies can be 

extended to various designs of 2-D digital filters for image processing and other 

applications. Frequency response of 2-D FIR filter with impulse response h 𝑛 , 𝑛  can be 

expressed as [1],[112]-[114], 
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𝐻 𝜔 , 𝜔 h 𝑛 , 𝑛 . 𝑒  

𝑀 𝜔 , 𝜔 |𝐻 𝜔 , 𝜔 |𝑒 ,  

(7.1) 

Minimax error is defined by, 

 W 𝜔 , 𝜔 𝐻 𝒄 , 𝜔 , 𝜔 D 𝜔 , 𝜔  (7.2) 

where 𝐷 is the desired magnitude response and 𝒄  is the filter coefficient vector. 

 D 𝜔 , 𝜔

⎩
⎨

⎧1                           𝜔 𝜔 𝜔  

0                           𝜔 𝜔 𝜔
 (7.3) 

When evolutionary algorithms, such as genetic algorithm, is applied to 2-D filter design 

applications, they suffer from premature convergence and get stuck at local optimum. As 

demonstrated for 1-D filter design, the ABC-AMR can be used to overcome these 

shortcomings.  

7.2.2 Implicit Preference-Based Multiobjective ABC 

In multiobjective optimization, a set of optimal solutions known as the Pareto front is 

generated in the objective space instead of a single optimum solution. In practice, selecting 

a single optimum solution from the Pareto front containing many optimal solutions is 

difficult. Incorporating the preferences of a decision maker into optimization by providing 

some higher level information will guide the search towards a region of interest in the 

objective space. Preferences can be incorporated both explicitly and implicitly, and this 

dissertation focuses on two explicit preference-based approaches which can be extended to 

implicit methodology such as knee region and nadir point.  



 

145 

 

Knee regions are potential part of the Pareto front representing maximal trade-offs between 

the objectives [191]. Knee region corresponds to maximum bulge in convex and concave 

parts of the Pareto front of minimization and maximization multiobjective problems 

respectively. In minimization problems, knee points are defined as the farthest solution 

from the extreme line, where the value of objective function is minimum. In contrast to 

explicit methods such as the physical programming and the reference point technique, the 

reference point in the knee-based approach is picked from the first Pareto front. The 

decision maker has no a priori information regarding the number of knee regions in the 

Pareto optimal front, and in this case, preferences need to be set interactively [192]. The 

extreme line is defined using the extreme solutions in the Pareto front. Distance of each 

solution from this extreme line is calculated and then searches for the farthest solutions 

situated in the convex parts of the Pareto front. Distance from a given solution 𝑃 𝑥 , 𝑦  

to the extreme line 𝐿: 𝑎𝑥 𝑏𝑦 𝑐 can be defined as, 

 𝑑 𝑃, 𝐿

⎩
⎪
⎨

⎪
⎧|𝑎𝑥 𝑏𝑦 𝑐|

√𝑎 𝑏
if 𝑎𝑥 𝑏𝑦 𝑐 0

|𝑎𝑥 𝑏𝑦 𝑐|

√𝑎 𝑏
otherwise 

 (7.4) 

In a knee-based multiobjective minimization problem, only convex regions are 

encouraged, and concave regions are discarded. 

The nadir point 𝒛  is a vector composed with the worst objective value over the Pareto 

optimal front P, for minimization problem,  

 𝒛 max
∈

𝑓 𝒙 ,   𝑚 ∈ 1,2, … … … … … 𝑀  (7.5) 

where 𝑀 is the total number of objective functions [193]. 

The decision maker could use the nadir point as a form of implicit decision maker’s 

preference. For constructing the nadir points, the Pareto optimal is first sorted from 

maximum to minimum based on each objective function value. Solutions closer to the 
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extreme objective vector gets a higher rank compared to intermediate solutions. Solutions 

with the worst objective function value in each generation is defined as the reference points, 

which gets updated in every iteration [194]. The nadir point estimation has certain 

advantages such as maintaining objective space diversity, and ease of finding extreme 

points. These implicit methods can be incorporated into the ABC-AMR to set preferences 

for a future study.   
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