109 research outputs found

    Combining Passivity-Based Control and Linear Quadratic Regulator to Control a Rotary Inverted Pendulum

    Get PDF
    In this manuscript, new combination methodology is proposed, which named combining Passivity-Based Control and Linear Quadratic Regulator (for short, CPBC-LQR), to support the stabilization process as the system is far from equilibrium point. More precisely, Linear Quadratic Regulator (for short, LQR) is used together with Passivity-Based Control (for short, PBC) controller. Though passivity-based control and linear quadratic regulator are two control methods, it is possible to integrate them together. The combination of passivity-based control and linear quadratic regulator is analyzed, designed and implemented on so-called rotary inverted pendulum system (for short, RIP). In this work, CPBC-LQR is validated and discussed on both MATLAB/Simulink environment and real-time experimental setup. The numerical simulation and experimental results reveal the ability of CPBC-LQR control scheme in stabilization problem and achieve a good and stable performance. Effectiveness and feasibility of proposed controller are confirmed via comparative simulation and experiments

    Nonlinear control systems laboratory

    Get PDF

    On Stabilization of Cart-Inverted Pendulum System: An Experimental Study

    Get PDF
    The Cart-Inverted Pendulum System (CIPS) is a classical benchmark control problem. Its dynamics resembles with that of many real world systems of interest like missile launchers, pendubots, human walking and segways and many more. The control of this system is challenging as it is highly unstable, highly non-linear, non-minimum phase system and underactuated. Further, the physical constraints on the track position control voltage etc. also pose complexity in its control design. The thesis begins with the description of the CIPS together with hardware setup used for research, its dynamics in state space and transfer function models. In the past, a lot of research work has been directed to develop control strategies for CIPS. But, very little work has been done to validate the developed design through experiments. Also robustness margins of the developed methods have not been analysed. Thus, there lies an ample opportunity to develop controllers and study the cart-inverted pendulum controlled system in real-time. The objective of this present work is to stabilize the unstable CIPS within the different physical constraints such as in track length and control voltage. Also, simultaneously ensure good robustness. A systematic iterative method for the state feedback design by choosing weighting matrices key to the Linear Quadratic Regulator (LQR) design is presented. But, this yields oscillations in cart position. The Two-Loop-PID controller yields good robustness, and superior cart responses. A sub-optimal LQR based state feedback subjected to H∞ constraints through Linear Matrix Inequalities (LMIs) is solved and it is observed from the obtained results that a good stabilization result is achieved. Non-linear cart friction is identified using an exponential cart friction and is modeled as a plant matrix uncertainty. It has been observed that modeling the cart friction as above has led to improved cart response. Subsequently an integral sliding mode controller has been designed for the CIPS. From the obtained simulation and experiments it is seen that the ISM yields good robustness towards the output channel gain perturbations. The efficacies of the developed techniques are tested both in simulation and experimentation. It has been also observed that the Two-Loop PID Controller yields overall satisfactory response in terms of superior cart position and robustness. In the event of sensor fault the ISM yields best performance out of all the techniques

    Performance of optimal hierarchical type 2 fuzzy controller for load–frequency system with production rate limitation and governor dead band

    Get PDF
    AbstractControlling load–frequency is regarded as one of the most important control-related issues in design and exploitation of power systems. Permanent frequency deviation from nominal value directly affects exploitation and reliability of power system. Too much frequency deviation may cause damage to equipment, reduction of network loads efficiency, creation of overload on communication lines and stimulation of network protection tools, and in some unfavorable circumstances, may cause the network collapse. So, it is of great importance to maintain the frequency at its nominal value.It would be useful to make use of the type 2 fuzzy in modeling of uncertainties in systems which are uncertain. In the present article, first, the simplified 4-block type-2 fuzzy has been used for modeling the fuzzy system. Then, fuzzy system regulations are reduced by 33% with the help of hierarchy fuzzy structure. The simplified type-2 fuzzy controller is optimized using the Cuckoo algorithm. Eventually, the performance of the proposed controller is compared to the Mamdani fuzzy controller in terms of the ISE, ITSE, and RMS criteria

    Lifting and stabilizing of two-wheeled wheelchair system using interval type-2 fuzzy logic control based spiral dynamic algorithm

    Get PDF
    The current study emphasizes on improving an interval type-2 fuzzy logic control (IT2FLC) system through the use of spiral dynamics algorithm (SDA) optimization in stabilizing a transformational two-wheeled wheelchair. The main contribution of this research is to reduce vibrations while performing the lifting and stabilization of a wheelchair from its standard four-wheeled to two-wheeled transformation. IT2FLC based SDA was used to enhance the system’s stability performance by obtaining the optimized value for input and output controller gains and IT2FLC parameters for IT2FLC. System modeling was done through development within the SimWise 4D software environment, which was then integrated with MATLAB/SIMULINK for control purposes. The proposed algorithm has demonstrated improved tilt angle performance with reduced noise and lower torque when various disturbances were applied, as compared to a system solely controlled by IT2FLC without any optimization. Moreover, the proposed algorithm has also comprehensively outperformed previous controllers in terms of system’s stability, further demonstrated its superiority as a system controller within transformational wheelchairs

    DEVELOPMENT AND CONTROL OF AN UNDERACTUATED TWO-WHEELED MOBILE ROBOT

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Goal-Based Control and Planning in Biped Locomotion Using Computational Intelligence Methods

    Get PDF
    Este trabajo explora la aplicación de campos neuronales, a tareas de control dinámico en el domino de caminata bípeda. En una primera aproximación, se propone una arquitectura de control que usa campos neuronales en 1D. Esta arquitectura de control es evaluada en el problema de estabilidad para el péndulo invertido de carro y barra, usado como modelo simplificado de caminata bípeda. El controlador por campos neuronales, parametrizado tanto manualmente como usando un algoritmo evolutivo (EA), se compara con una arquitectura de control basada en redes neuronales recurrentes (RNN), también parametrizada por por un EA. El controlador por campos neuronales parametrizado por EA se desempeña mejor que el parametrizado manualmente, y es capaz de recuperarse rápidamente de las condiciones iniciales más problemáticas. Luego, se desarrolla una arquitectura extendida de control y planificación usando campos neurales en 2D, y se aplica al problema caminata bípeda simple (SBW). Para ello se usa un conjunto de valores _óptimos para el parámetro de control, encontrado previamente usando algoritmos evolutivos. El controlador óptimo por campos neuronales obtenido se compara con el controlador lineal propuesto por Wisse et al., y a un controlador _optimo tabular que usa los mismos parámetros óptimos. Si bien los controladores propuestos para el problema SBW implementan una estrategia activa de control, se aproximan de manera más cercana a la caminata dinámica pasiva (PDW) que trabajos previos, disminuyendo la acción de control acumulada. / Abstract. This work explores the application of neural fields to dynamical control tasks in the domain of biped walking. In a first approximation, a controller architecture that uses 1D neural fields is proposed. This controller architecture is evaluated using the stability problem for the cart-and-pole inverted pendulum, as a simplified biped walking model. The neural field controller is compared, parameterized both manually and using an evolutionary algorithm (EA), to a controller architecture based on a recurrent neural neuron (RNN), also parametrized by an EA. The non-evolved neural field controller performs better than the RNN controller. Also, the evolved neural field controller performs better than the non-evolved one and is able to recover fast from worst-case initial conditions. Then, an extended control and planning architecture using 2D neural fields is developed and applied to the SBW problem. A set of optimal parameter values, previously found using an EA, is used as parameters for neural field controller. The optimal neural field controller is compared to the linear controller proposed by Wisse et al., and to a table-lookup controller using the same optimal parameters. While being an active control strategy, the controllers proposed here for the SBW problem approach more closely Passive Dynamic Walking (PDW) than previous works, by diminishing the cumulative control action.Maestrí

    Fuzzy Controllers

    Get PDF
    Trying to meet the requirements in the field, present book treats different fuzzy control architectures both in terms of the theoretical design and in terms of comparative validation studies in various applications, numerically simulated or experimentally developed. Through the subject matter and through the inter and multidisciplinary content, this book is addressed mainly to the researchers, doctoral students and students interested in developing new applications of intelligent control, but also to the people who want to become familiar with the control concepts based on fuzzy techniques. Bibliographic resources used to perform the work includes books and articles of present interest in the field, published in prestigious journals and publishing houses, and websites dedicated to various applications of fuzzy control. Its structure and the presented studies include the book in the category of those who make a direct connection between theoretical developments and practical applications, thereby constituting a real support for the specialists in artificial intelligence, modelling and control fields

    Feedback control by online learning an inverse model

    Get PDF
    A model, predictor, or error estimator is often used by a feedback controller to control a plant. Creating such a model is difficult when the plant exhibits nonlinear behavior. In this paper, a novel online learning control framework is proposed that does not require explicit knowledge about the plant. This framework uses two learning modules, one for creating an inverse model, and the other for actually controlling the plant. Except for their inputs, they are identical. The inverse model learns by the exploration performed by the not yet fully trained controller, while the actual controller is based on the currently learned model. The proposed framework allows fast online learning of an accurate controller. The controller can be applied on a broad range of tasks with different dynamic characteristics. We validate this claim by applying our control framework on several control tasks: 1) the heating tank problem (slow nonlinear dynamics); 2) flight pitch control (slow linear dynamics); and 3) the balancing problem of a double inverted pendulum (fast linear and nonlinear dynamics). The results of these experiments show that fast learning and accurate control can be achieved. Furthermore, a comparison is made with some classical control approaches, and observations concerning convergence and stability are made
    corecore