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ADbstract

The Cart-Inverted Pendulum System (CIPS) is a classica benchmark control problem. Its
dynamics resembles with that of many rea world systems of interest like missile launchers,
pendubots, human walking and segways and many more. The control of this system is
challenging as it is highly unstable, highly non-linear, non-minimum phase system and under-
actuated. Further, the physical constraints on the track position control voltage etc. also pose
complexity inits control design.

The thesis begins with the description of the CIPS together with hardware setup used for
research, its dynamics in state space and transfer function models. In the past, a lot of research
work has been directed to develop control strategies for CIPS. But, very little work has been
done to validate the developed design through experiments. Also robustness margins of the
developed methods have not been analysed. Thus, there lies an ample opportunity to develop

controllers and study the cart-inverted pendulum controlled system in real-time.

The objective of this present work is to stabilize the unstable CIPS within the different physical
constraints such as in track length and control voltage. Also, simultaneously ensure good
robustness. A systematic iterative method for the state feedback design by choosing weighting
matrices key to the Linear Quadratic Regulator (LQR) design is presented. But, this yields
oscillations in cart position. The Two-Loop-PID controller yields good robustness, and superior
cart responses. A sub-optimal LQR based state feedback subjected to H., constraints through
Linear Matrix Inequalities (LMIs) is solved and it is observed from the obtained results that a
good stabilization result is achieved. Non-linear cart friction is identified using an exponential
cart friction and is modeled as a plant matrix uncertainty. It has been observed that modeling the
cart friction as above has led to improved cart response. Subsequently an integral sliding mode
controller has been designed for the CIPS. From the obtained simulation and experiments it is
seen that the ISM vyields good robustness towards the output channel gain perturbations. The

efficacies of the developed techniques are tested both in simulation and experimentation.

It has been also observed that the Two-Loop PID Controller yields overall satisfactory response
in terms of superior cart position and robustness. In the event of sensor fault the ISM yields best

performance out of all the techniques.
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Chapter 1

| ntroduction

The International Federation of Automatic Conti&lAC) Theory Committee in the year
1990 has determined a set of practical design enoblthat are helpful in comparing new and
existing control methods and tools so that a megunincomparison can be derived. The
committee came up with a set of real world conprablems that were included as “benchmark
control problems”. Out of which the cascade ine@rpendula control problem is featured as

highly unstable, and the toughness increases natiease in the number of links.

The simplest case of this system is the cart- singterted pendulum system. It also has very
good practical applications right from missile labars to segways, human walking, luggage
carrying pendubots, earthquake resistant buildegjgh etc. The Inverted Pendulum dynamics
resembles the missile or rocket launcher dynamnscgsacenter of gravity is located behind the
centre of drag causing aerodynamic instability.

L o

Bicycle

Segw ay "
Pendulum Robot

ﬂ%\

Building under action of Earthquake

Inverted Pendulum System

Rocket Launching

Biped Locomotion

Fig.1.1.Inverted Pendulum like systems
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1.1. Introduction to Inverted Pendulum Control Problem

The stabilization of inverted pendulum is a claslsleenchmark control problem. It is a simple
system in terms of mechanical design only congistina D.C. Motor, a pendant type pendulum,
a cart, and a driving mechanism. Fig.1.1.shows liheic schematic for the cart-inverted

pendulum system

I nverted Pendulum

Sprocket Wheel
Toothed Belt Cart

D.C. Motor

Fig.1.2.Inverted Pendulum system Schematic

The Inverted Pendulum is a single input multi otut(®IMO) system with control voltage as
input, cart position and pendulum angle as outplten though the system is simple from
construction point of view, but there lies a lot obntrol challenge owing to following

characteristics .

« Highly Unstable — The inverted position is the point of unstalrjeikbrium as can be seen
from the non-linear dynamic equations.

« Highly Non-linear — The dynamic equations of the CIPS consists oflimear terms.

< Non-minimum phase system — The system transfer function of CIPS containbtrizgand
plane zeros, which affect the stability margindudmng the robustness.

« Underactuated — The system has two degrees of freedom of mdtidronly one actuator
l.e. the D.C. Motor. Thus, this system is undeuat#td. This makes the system cost-

effective but the control problem becomes challeggi



Additionally there are constraints imposed by tréakgth, control voltage etc. These make the
problem still more complex. This control problenratts attention explains the various control
approaches that is in attempt to stabilize thealnstsystem.

1.2. Inverted Pendulum Systems

1.2.1. Inverted Pendulum Dynamics

This section derives the dynamics of inverted pandudynamics from the Newton’s laws of
motion. The mechanical system has Two Degreeseetibm (DOF), the linear motion of the
cart in the X-axis, the rotational motion of thendalum in the X-Y plane. Thus there will be

two dynamic equations.

Fig.1.3 shows the parametric representation of Itiverted Pendulum system. Letbe the

distance in m from the Y-axis, artbe the angle in rad w.r.t vertical.

Y-AXxis

)

v

X- Axis

A
A 4

Mg

Fig.1.3. Parametric representation of the Inver®ehdulum System

Following is the list of parameters used in the\dgion of Inverted Pendulum dynamics



M — Mass of cart in kg

m — Mass of Pendulum in kg

J — Moment of Inertia of pendulum in kg?m
L — Length of Pendulum in m

b — Cart friction coefficient in Ns/m

g — Acceleration due to gravity in r/s

Let us first analyze the free body diagram (FBD)h&f cart as in Fig.1.4.

A

P

e
v

Mg B

R1
R2

Fig.1.4. Free Body Diagram of the Cart

In Fig.1.4. only the horizontal forces are consgdin the analysis as they only give information
about the dynamics since the cart has only lineztram.

Ma =F+N-B (1.1)
Here a,is the acceleration in the horizontal direction.

The horizontal reactiomN is given by the horizontal force due to the peandubn the cart. This
is given by



2

N :m%(ﬁ Lsin@)= mix+ rd lco¥- nP § Lsird (1.2)

M oment

cht

ma

v

Fig.1.5. Free Body Diagram of Pendulum

Considering the FBD of the pendulum in Fig.1.5bdical reactiorP is given by the weight of
the pendulum on the cart. Letcos@ be the displacement of pendulum from the pivot.nhe

is given by

d2
P+ mg= m—( Lcos@
9= My ( 100s6) 1.3)

— P =mLAsind+ mL@) cof— mc

In Fig.1.5.the moment due to the reaction foreesd N are resolved into X and Y directions.
Y/

cmt

is the velocity of centre of masd/,is the velocity of poinOin the X direction. Summing

the moments across the center we get
—~NLcosd- PL sirf = J@ (1.4)
Substitution of (1.2) and (1.3) in (1.4) yields

mLxcosd— (mE + J¥ = - mgLsird (1.5)



After substituting (1.2) in (1.1) we get
. mL . : . ;
6=—{(F -bxX)cosd-mLEY cod si@+ M+ M ) snﬁ?} (1.6)
o
By solving (1.5) and (1.6) fok we get after simplification
X=£{(J + ml)( F- bx- mB?sing)+ mt gind 0039} (1.7)
o

The parameterin (1.6) and (1.7) is given by
o=ml*(M+mcos @)+ J(M+ m) (1.8)

Equations (1.6) and (1.7) are the dynamic equattbas describe the cart-pendulum system
dynamics. Next section deals with the linear mathiteral model for the inverted pendulum

system
1.2.2. Linear Mathematical Mode€

A mathematical model can be defined as a set ohenadtical equations that purports to
represent some phenomenon in a way that giveshinsitgp the origins and the consequences of
the behavior of the system [4} is a well known fact that more accurate the nhadere

complex the equations will be. It is always dedeaip have a simple model as it is easy to

understand. So we need to strike a balance betaesemacy and simplicity.

It can be seen that the equations (1.6) to (18han-linear. In order to obtain a linear model the
Taylor series expansion can be used to converhdinelinear equations to linear ones; finally

give a linear model that will be helpful in lineaontrol design.

Please note that the system has two equilibriumtpaine is the stable i.e. the pendant position
and the other one is the unstable equilibrium piogntthe inverted position. For our purpose we
need to consider the second one as we requirénttes iImodel about this point. So, we assume a

very small deviatiord from the vertical.



6=0
sind=6

cosf=1 (1.9)
& =0
Linearizing (1.6) to (1.8) using (1.9)
9:%"{(F—bx)+(M+m) &} (1.10)
,_ 1 2 :
x:;{(\]+ mL)(F— by + E@} (1.11)

Hereo' = MmL* + J( M+ m).

Inorder to obtain the state model we are assuniiegstates to be as the cart posikigrcart

linear velocityx, pendulum anglé, pendulum angular velocig). The state space is of the form

X = AX+ Bu (1.12)

The state space for the Inverted Pendulum systetntégned as [1]

0 1 0 0 0
X (J+ml_2)b n 2g 0 X (J+ml_2)
NE o o ol 9 F (1.13)
g |0 0 0 1|6 0
g 0 —(mLb)  mgl{ M+ n) 0 & mL
L o' o i L J
The output equation is given by
X
(1 0 0 Ofx (1.14)
Yo o1 06 '
0



We neglect the cart friction coefficient and thus @btain a simplified transfer function in (1.15)

and (1.16). The transfer function is given frontetpace

X(s)_ Kacmaror{(“m'-z)sz 'mgl} (1.15)
U(s) ™ &((9(m+m)+MmE) § -mgl( M+
Q(S) _ Kactuator{mL§} (116)

U(s) SZ((J(m+M)+MmL2)§ -mgl( M+n)|)

The actuator gairK is assumed to be a simple gain that converts oliadprce.

actuator

The following is the parameter table that givesuhkie of the various parameters that has been
adopted from the Feedback Digital Pendulum ManBijal [

Table.1.1.Inverted Pendulum System Parameters|[3]

Parameter Value

Mass of Cart, M 2.4 kg
Mass of Pendulum, m 0.23kg
Moment of Inertia of Pendulum, J 0.099kg-m*
Length of Pendulum, L 04m
Cart Friction Coefficient, b 0.05 Ns/m
Acceleration dueto gravity, g 9.81 m/s®
Actuator Gain , K actuator 15

After substitution of parameters from Table 1.1 skete model and the transfer function model is

obtained as
x] [o 1 0 0][x 0
X! |0 0 0.238 X 5.84
= + u (1.17)
gl |lo o o0 1|6 0
6| |0 0 6.807 2] 3.95

The transfer functions in (1.15) and (1.16) aressituted by the values in Table.1.1 we obtain



_ 5.8416’ - 6.8068) 5.84

U(s) <($-6.807) g (1.18)

0(s) 3.957%7 3.957

U(s) €(2-6.807) (- 6.807 (1.19)

Due to the approximate cancellation of the modebath the transfer functions it is seen that
both the feedbacks are necessary for all modes #vailable for control. Next section explains

the construction and working of the experimentalise
1.2.3. Experimental Setup

The setup consists of the following are the reqoéets [2]

PC with PCI-1711 card

Feedback SCSI Cable Adaptor

Digital Pendulum Controller

DC Motor (Actuator)

Cart

Pendant Pendulum with weight
Optical encoders with HCTL2016 ICs

Track of 1m length with limit switches.

© © N o gk~ w NP

Adjustable feet with belt tension adjustment.
10. Software: MATLAB, SIMULINK, Real-Time Workshop, ADXNTECH PCI-1711
device driver, Feedback Pendulum Software.

11.Connection cables and wires.

The heart of the experimental setup is a cart apeéralant pendulum. The cart has four
wheels to slide on the track. There are two coupkdant pendulums; they have a pendant
or bob that would make the pendulum more unstdidé is because it shifts the centre of
gravity to a higher level to the reference. The carthe rail and is driven by a toothed belt
which is driven by DC Motor. The motor drives thartcin a velocity proportional to the

applied control voltage.



T | cart & angle sensor
/

i
[ 3

¥
\

&

limit switch/
—— it switch
& position sensor

L]
s, control ‘k\ﬂea_s__urernent -
i
I._.-'"
control
_ alghorithms

DC motor & interface

Fig.1.6.Feedback’s Digital Pendulum Experimentalupeschematic [3]

The motion of the cart is bounded mechanically additionally for safety is improved by
limit switches that cuts off power when the camsses them. Fig.1.7.shows the cutaway
diagram showing the mounting of the sensors. Theapencoders have a light source and
light detector and in between there is a rotatirgg.dOptical encoders are widely used in
robotics, manufacturing, medical industry etc. Ai@l encoders outputs a pair of digital
square signals 9@part i.e. quadrature to one another which conheyshaft's position
change, as well as the direction of rotation. The&tional speed of the shaft can be
determined from the encoder output. Longer is thgod of the digital wave, slower the

encoder turning. The resolution of the encoderei®mnined by the slit density of encoder
wheel counts per revolution.

10



enccder

CART

DC-MOTOR

Fig.1.7.Cutaway Diagram Showing sensors and theuming [2]

Pendulum arms Centre point

Sprocket wheel

belt

'_Motor Mounting

Plate

Arm figing screw

Beil tension
adjustment bolts

\. Ribbon cable

Adjustable feet

Fig.1.8.Digital Pendulum Mechanical Setup [2]
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=> LED Photo Detector

Optical Encoder
Channel
ﬂ oaman 1 L) L L

\ Encoded Signal

O O

Inverted Pendulum

Fig.1.9.0ptical Encoder operating principle

Fig 1.9. shows the operating principle of an opteracoder. The real time implementation of
controller does not require building a new reaktigystem. Already there exists a framework
the can be edited as required. The required cdertroan be designed in SIMULINK and
suitably tested in experiment through the Real-TiWlerkshop and control an external

process through the PCI card.

The control algorithm and the A/D and D/A convest@perate according to time pulses
generated by the clock. The time between two cartsec pulses is called the sampling
time.The clock delivers an interrupt and the IniptrService Routine (ISR). It is during this
ISR that A/D delivers the discrete representatibthe sensor measurement and based on
this control algorithm calculates the required cointalue. At the end of the ISR the value is

set in the D/A until the next sampling interval.

12



i &
— ND 4"’. cantrel aigorithm | L, DIH'A "',. process I

COMMERRr

Clock

PC

Fig.1.10.Computer based Control Algorithm [3]

The next section tries to explain how the SIMULINKd the Real-Time Workshop seamlessly
integrate with the hardware.

1.2.4. Real-Time Workshop

The Real-Time Workshop is an extension of SIMULINi&at has rapid prototyping ability for

real-time software applications [5]. It has thddaling features

€ Automatic code generation tailored for various ¢aqgatforms.
€ A rapid and direct path from system design to impatation.
€ Seamless integration with MATLAB and SIMULINK.

€ A simple graphical user interface.

€ An open architecture and extensible make process.

The toolbox has an automatic program building psecéor real-time processes. Fig.1.11

explains the process diagrammatically. A high lexdile controls this build process.

13



Simulink

M odel.mdl
e e
1 Real-Time Workshop I
1 A 4 i
I TLC Program: Real-Time Wor kshop Build 1
; .
. % System target file '
' & Block target files model.rtw !
I <% Inlined S 1
. function target ( e ;
: files .| Target Logic .

% Target Language Compiler :
! Compiler \ !
1 function library 1
" model.c ,
! Run-timeinterface r < model.mk !
! support files ' Make l ' I
I I
1 1
L lllllllllllllllllllllll e m—— o mEm E S R . e Y R F R R W -

A 4
[ Model .exe ]

Fig.1.11.Real-Time Workshop working schematic [5]

Following are the steps in the real time build gsxc[5]

1. Real-Time Workshop analyses the block diagram amdpdes it into an intermediate
hierarchical representation of the foradel.rtw.

2. The Target Language Compiler (TLC) reads itiadel.rtw and converts it into C code
that is placed in the build directory within the MIBAB working directory.

3. The TLC constructs a makefile from an appropriarget makefile template and places

in the build directory.

14



4. The system make utility reads the makefile to cdenflie source code and links object

files and libraries and generate an executablerfddel .exe.

This simple executable file is easily understoochbydware as it is in binary. Thus the control
algorithm in high level language is seamlessly ested into an executable program by the
toolbox. The next section introduces the practmablems that need to be addressed while

designing any controller to inverted pendulum syste
1.2.5. Physical Constraintson Inverted Pendulum Experimental Setup

The real inverted pendulum is a highly non-linegstem as is evident from the derived
mathematical model. Inorder, to reduce the modehpiexity it is advisable to linearize the
model. But, this produces an additional constraimtthe Region of Attraction of the initial
Pendulum angle value due to model linearizatiore ffack is of limited length of 1m, with limit
switches placed at 0.1m from either edge. So anyraiter must stabilize the system within this

length otherwise the limit switches trip making 8ystem unstable.

It is well known that, practically motors have dtage range and torque limit, there is a limit of
+ 2.5 V. So to ensure safety we have used a smtmrbtock that will limit this range. There

should be also trade-off between the choice of dagnpetween the position and angle. In
literature there is sufficient evidence that the &introl in Inverted Pendulum leads to friction

induced limit cycles (stick-slip friction) [6], [7]

1.3.Literature Review: Control Strategies applied to Cart-Inverted

Pendulum system

The inverted pendulum since is an important corgroblem which the researchers have been
trying to solve worldwide for last few decades. thigally, the Inverted Pendulum was used
first by seismologists in design of a “seismometarthe year 1844 in Great Britain. Since, the
system is inherently in unstable equilibrium wheoumted on a stiff wire it can sense even the

slightest of vibrations.

Linear Quadratic Regulator (LQR) for inverted peodu is simplest of all linear control

techniques. It is equivalent to a two loop PD conttesign. In [8], stabilization of the cart-
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pendulum system was carried out by linearizatiothefstate model and designing a LQR after
swing-up by an energy based controller. The vefcstitites were less penalized compared to the
position states in [6] so that the resulting staéd system will have almost zero position as a

zero velocity is only a secondary priority. Thigilowill lead to an almost upright system.

There are two sets of poles one set is fast aret gt is slow, the fast set of poles determine the
angle dynamics and the slow set of poles deterntimegosition dynamics. The cart position
error always overshoots initially to catch up witte falling pendulum. Only after the rod is
stabilized the position comes back to origin [9The effect of Inverted Pendulum under the
linear state feedback has been analyzed in [18]d$imamic equations indicate the existence of
stability regions in four dimensional state-spacel an algorithm has been developed that
transforms the four dimensional state space teethmnensional space. In [11], a tutorial has
been presented wherein, the concept of digitalrobaystem design by pole placement with and

without state estimation has been introduced.

A dynamic H, compensation has been designed in [12] by consgleiry friction and
implemented in the Inverted Pendulum system. Irl,[1{8 authors have designed a robust

periodic controller with zero placement capabifiy an Inverted Pendulum system.

A comparison of performances various controllées D, Siding Mode, Fuzzy, Expert Systems
and Neural Network has been attempted in [14]. ddmaparison between various energy based
swing up methods that swing the pendant pendulumvierted pendulum has been attempted in
[15], a special emphasis on the robustness of niimrime solutions is also presented. Various
non-linear control methods have also been develdpedhe inverted pendulum stabilization
problem. An Energy-speed-gradient method basedallari Structure controller has been
designed and analyzed in [16] with global attrattiis guaranteed. A smooth feedback control
law has been presented for almost global stabibzadf inverted pendulum is given in [17],
ensures asymptotic stability too. A Continuous ti8legling mode Control and Discrete Time
Sliding mode controller has designed for an Inwkrfeendulum system applied to an
experimental setup with the help of a computer.[18] method of Controlled Lagrangian has
been developed for symmetrical systems; methodnetik shaping is used to derive the control
law and has been applied to inverted pendulum9h [A combined controller for both swing up

and stabilization has been attempted in [20] usipgt-output linearization, energy control and

16



singular perturbation theory. A hybrid controlles designed in [21] that ensures global
stabilization, this approach has a linear contrdlbe stabilization, a linear cart controller and a
combination of various bang-bang controllers foringaup in minimum time. A non-linear

controller is described in [22], in which the caler swings up the pendulum from the pendant
position and stabilizes the pendulum in the unsta&gluilibrium and simultaneously restricts the
cart excursion on the track. A simple controller balancing the inverted pendulum to the upper
equilibrium point and minimize the cart positionzero is discussed in [23]. A near optimal
controller, non-linear control law has been desighased on linear quadratic optimal control

yielding a near optimal gain schedule.

An implementation of intermittent lineanagratic predictive pole-placement control is
experimentally shown in [25] to achieve good perfance when controlling a prestabilised
inverted pendulum. A fuzzy based adaptive slidimgde controller is designed in [26], this
controller automatically compensates for the plaan-linearity and tracks the cart-inverted
pendulum system. An indirect adaptive Lyapunov Bdeezy controller is described in [27], the

design is verified for the cart-inverted pendulunsimulation.

A self organizing fuzzy controller is designed #8], and it is verified for an inverted pendulum
system. Stability analysis for a Fuzzy model basedlinear control using genetic algorithm
with arithmetic crossover and non-uniform mutatibased on Lyapunov’s stability theorem
with a smaller number of Lyapunov conditions isegivin [29] applied to inverted pendulum.
Using exhaustive simulations a multi-local lineaséd Tagaki-Sugeno type in [30], this derived
controller is found to ensure global stabilizatemd ensures stability of inverted pendulum in
zero gravity condition in [31]. In this a two cooller has been suggested there is a fuzzy swing-

up controller for swing up, sliding two positionrtoollers.

The choice of scaling factors in the design of Julzigic controllers as the performance of fuzzy
logic based PID controllers greatly depended osah&he paper presents various methods for
estimating scaling parameters for inverted pendulsing artificial intelligence in [32], based
on ITAE criterion. Actuator saturation is of prirmaportance in design of control system design
applied to experimental inverted pendulum systdns has been addressed with the help of
Tagaki- Sugeno type Fuzzy logic based gain schegludilgorithm in [33], the modeling
uncertainty is considered as a norm bounded unirtdhe problem of defining the region of
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attraction for T-S fuzzy systems based on norstale feedback is defined with the help of
Linear Matrix Inequalities (LMIs). A new fuzzy logicontroller based on Single Input Rule
Modules (SIRMs) dynamically connected inference ulesl in [34]. The SIRMs are

dynamically switched between the two modules omeaf@ular position and the other for cart

position, the controller switching takes place vathigher priority towards angular position.

A Model Adaptive Reference Fuzzy Controller (MARHR®@)[35] wherein the fuzzy knowledge

base is modified according to the error generateuah the reference model and the actual plant.
The stability of such a system is ensured in Lyapusnalysis, in simulation it has been shown
that in case of zero disturbances the states cgauerthe origin but in the case of continuous

excitation it is asymptotically stable.

It is difficult always to depict the control struce of a learning control system so in [36] the
authors have attempted a three-phased framework lieasrning based dynamic control system.
The control law parameters are derived using Genglgorithm using lookup tables. An
inverted pendulum is used to verify the reliabiliyyd robustness of the method. A self
generating fuzzy logic controller is designed wiitle help of Genetic Algorithm (GA) in [37].
Each parameter of the fuzzy logic controller iseinvith the help of a fithess function to guide

the searching algorithm.

An interesting work using extended Kalman Filter [88] for sensor failure detection and
identification, the algorithm is used to estimdte fault related parameter. A realistic evaluation
of this algorithm is carried out on an inverted ghelam system. The failure test is authenticated
by applying various types of failures. An expennta work is carried out in order to study the
effect of delay on a Wireless Networked Controlteys (WNCS) with application to a cart-
inverted pendulum setup in [39], a new Gaussianahfodt delay analysis is used together with
Dynamic Matrix Control (DMC) and LQ control togethavith multiple observers. The
advantages and drawbacks of using a vision basstbéek is demonstrated with the help of a
fuzzy logic based Inverted pendulum control in [48] Fuzzy Logic Controller (FLC) is used in
[41] to combine an Sliding Mode Control (SMC) basadng up controller and a State Feedback

based stabilization controller and the advantagesad by this control is also demonstrated.
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An algorithm is defined to handle time delays ideadback control loop in which both the
control loops with different measurement signaletigh variable time delays and packet loss in
[42], an algorithm is developed to estimate randiome delay and its effects are illustrated on an
inverted pendulum setup . The presence of trahsssgrload can cause unpredictable behavior
in computer control systems, this problem is ugualtreasing the activation period intervals in
which the control law is updated this will cost tbentrol performance. In [43] a new elastic
scheduling method has been proposed in which tleglaad is completely eliminated and

effectiveness is demonstrated in a real invertedipleim set up.

1.4. Objectivesof the Thesis

» To stabilize the unstable cart-pendulum system kameously meeting the physical
constraints imposed.

» To identify the non-linear cart friction that whble helpful in reducing the modeling error
and will decrease the stick-slip oscillations ¢ina memory).

» To develop various stabilizing controllers like ear Quadratic Regulator (LQR), Two-
Loop-PID, State feedback design by sub-optimal L€MRjected to H constraints and
Integral Sliding Mode (ISM) design by pole placemen

» The robustness of all these compensated schemesahsy be analysed in respective

chapters.

1.5. Organisation of the Thesis

The thesis contains six chapters as follows

. Chapter 1 — Introduces the classical Inverted Pendulum @bpitoblem, its dynamics, its
mathematical model both in state space and trarfsfiection. It also describes the
experimental setup. It also describes the intemnalietween the hardware (experimental
setup), MATLAB, SIMULINK, REALTIME WORKSHOP. The dpter describes the
basic problems faced in its implementation.

. Chapter 2- Describes the Linear Quadratic Regulator basate seedback control law
design. It describes the logic used in weight seleof the weighted matrices key to the
LQR design. The chapter ends with the simulatiah @perimental results obtained, and a

robustness analysis is also presented in the end.
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Chapter 3 — This chapter deals with the design of two lodp Bontroller using pole
placement. The key to the design is the derivatibthe pole placement equation. The
chapter concludes with the responses obtained tim ¥imulation and through experiment
together with the robustness verification at the. en

Chapter 4 — The chapter begins with the explanation of cpteéehind feedback,
robustness, various sensitivity functions, conadpi., in control design. It then goes on to
derive the Linear Matrix Inequalities (LMIs) for Iswptimal LQR, H based state
feedback, maximum control signal magnitude. Themhioes and then solves these
objectives together for the inverted pendulum aargroblem using the YALMIP toolbox.
The chapter ends with the results obtained in strarl and real-time and also
demonstrates the result of various robustness tests

Chapter 5 —The chapter then goes on to explain the condejpttegral sliding mode and
its design by pole placement. A complete sectioteioted towards on how the effect of
dynamic friction is modeled as a plant matrix utmety. The design starts with the
derivation of control law, then the law is appligxthe inverted pendulum stabilization
problem and the result and analysis are shown.

Chapter 6 — Draws conclusions on the various works preseatet! aptly suggests the

scope of future work.
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Chapter 2

Linear Quadratic Regulator (L QR) design applied to cart-

inverted pendulum system

LQR algorithm in comparison with conventional pplacement method automatically chooses
closed loop according to the weights which in tdapend on system constraints. The chapter
presents a brief description of the LQR concept phints to be kept in mind before designing
an LQR based state feedback are also given. Sinee;hoice of the LQR is the key towards
LQR design, a systematic weight selection for theSCis presented. The detailed analysis of

the simulation and experimental results is presente
2.1. Linear Quadratic Regulator

The LQR is one of the most widely used static staeglback methods, primarily as the LQR
based pole placement helps us to translate therpghce constraints into various weights in the
performance index. This flexibility is the sole sea for its popularity. As seen in Chapter 1 the
cart-inverted pendulum system has many physicattcaints both in the states and in the control
input. Hence, the LQR design is attempted. The cghoif the quadratic performance indices
depends on physical constraints and desired cllosgdperformance of the control system. Any
state feedback can be generalized for an LTI systegiven below:

X = Ax+ Bu

y=Cx 2.1)

If all the n states are available for feedback #r&dstates are completely controllable then there

is a feedback gain matrix K, such that the stagelfack control input is given by
u=-K(x-x,) (2.2)
Let x, be the vector of desired states. The closed Igaprdics using (2.2) in (2.1) becomes

% = (A- BK) x+ BKx (2.3)
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Choice ofK depends on the desired pole locations where darda to place the poles such that
the desired control performance be achieved. Incdse of LQR the control is subjected to a
Performance Index (PI1) or Cost Functional (CF) gilag

Jz%[z(tf)— WOIT ROLED - ¢ ] +

%j{[z— A" Qz y+ d Ry dt (2.4)

Herez is them dimensional reference vector ands anr dimensional input vector. If all the
states are available in the output for feedback thdbecomesh. Since, the performance index
(2.4) is in terms of quadratic terms of error andtool it is called as quadratic cost functionél. |
our objective is to keep the system state to nedr then it is called as a state regulator system.
Here the unwanted plant disturbances that nee@ t@jected e.g. Electrical Voltage Regulator
System. If it is desire to keep the output or stagar a desired state or output it is called a
tracking system as for example an antenna conysiesy where tracking of an aircraft is the

requirement.

In (2.4), the matribxQ is known as the error weighted matifikjs the control weighted matrik,
is known as the terminal cost weighted matrix. Tdllowing points may be noted for the LQR
implementation

» All the weighted matrices are symmetric in nature.

* The error weighted matrixQ is positive semi-definite as to keep the errorasqd
positive. Due to quadratic nature of Pl, more aitenis being paid for large errors than
small ones. Usually it is chosen as a diagonalirmatr

» The control weighted matrik is always positive definite as the cost to paydantrol is
always positive. One has to pay more cost for roorgrol.

* The terminal cost weighte(t;) is to ensure that the error e(t) reaches a srahlevin a

finite timet; .So the matrix should always be positive seminitef

Usually an Infinite Time LQR problem is of moreengst where the final end cd«y) is zero.
In this case the Pl in (2.4) becomes
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{x'Qx+u Ry d (2.5)

N |~

-]
t

0

By applying Pontryagin’s Maximum Principle on thpen loop system an optimal solution for

the closed loop system we is obtained followingatiquns are resulted

X=Ax+ By X})= %
A=-Qx= ANA(t)=0 (2.6)
Ru+ BA=0

Since all the equations in (2.6) are linear thesebe connected by
A =Px (2.7)

By substituting for4 from (2.6) and then substituting forfrom (2.6) and using (2.7) by

substituting forufrom (2.6) we get
PAx+ A Px+ Qx PBR B Px BO (2.8)
This is called Matrix Riccati Equation. The steatigte solution is given by
PA+ A P+ Q- PBR' B R0 (2.9)

The above equation is called Algebraic Riccati &mun (ARE). The optimal state feedback is

obtained fromRu+ B'A =0as

u=-R'B Px

- CKx (2.10)

The static gain vectoK is called Kalman gain.

2.1.1. Featuresof LOR

« As the feedback is static the closed loop systameras the system is same as the open
loop plant.

% The LQR ensures infinite gain margin and phase imaygater than or equal to 66n
the output side [45], [58], [59].
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« In the case when we want to minimize output theghtilg matrix Q becomes

Q=C"'QC whereQ is the auxillary weighting matrix.
2.2.LQR Control Design

The choice of Q and R is very important as the @HdDR state feedback solution depends on
their choice. Usually they are chosen as identiiyes and are successively iterated to obtain the
controller parameter. In [48ryson’s Rulds also available for constrained system, theresse

of the rule is just to scale all the variables stict the maximum value of each variable is one .

Ris chosen as a scalar as the system is a sirmiésgstem.

d X
dx
X
Inverted ) >
Pendulum
System =
J 0
d
dx |
6
-1
LOR
State
Feedback
Gains

Fig.2.1.Linear Quadratic Regulator applied to Intest Pendulum System

The excitation due to initial condition is refledten the states can be treated as an undesirable
deviation from equilibrium position. If the systesescribed by (2.1) is controllable then it is

possible to drive the system into its equilibriuoirp. But it is very difficult to keep the control
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signal within bound as chances are such that th&alcsignal would be very high which will

lead to actuator saturation and would require fbghdwidth designs in feedback that might
excite the unmodelled dynamics [45]. Hence, iumnegl to have a trade-off between the need for
regulation and the size of the control signal.ah de seen that the choice of control weighting
matrix R comes handy in keeping the control signal mageitsihall. It can be seen that larger

the weight orR the smaller is the value of the control signal.

The logic behind choice of weights Qf(usually chosen as a diagonal matrix) is relatinag the
state that requires more control effort requiresan@eightage than the state that requires less
control. It may be useful to note the limitatiofd @R design [45]:

» Full state feedback requires all the states tovadlable; this limits the use of LQR in
flexible structures as such systems would infimtenber of sensors for complete state
feedback.

* The LQR is an optimal control problem subjectectéatain constraints so the resultant
controller usually do not ensure disturbance reacts it indirectly minimizes the
sensitivity function, reduction in overshoot duritigcking, stability margins on the
output side etc.

» Optimality does not ensure performance always.

* LQR design is entirely an iterative process thatthes LQR doesn’t ensure standard
control system specifications, even though it pilesioptimal and stabilizing controllers.

Hence, several trial and error attempts is requimezhsure satisfactory control design.

The following is the algorithm that has been usedhie LQR control design for cart-inverted

pendulum system described in Chapter 1.
Algorithm # 2.1:

1. ChooseQ=diag(q, g, g, q) as the A matrix igtx4 matrix, whereg, corresponds to
weight on cart positiong, is weight corresponding to cart linear velocity,is the
weight corresponding to the pendulum angle, gndorresponds to the angular velocity.

2. Since, the constraint on cart position is diffidoltmeet, we choosg> q,, g, g,.
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3. As the pendulum begins to fall the linear veloafythe cart should change rapidly to
prevent this, sq, > q,.

4. Due to the physical constraints imposed on thedpkeim angle and cart position we
choosey, > q,, ¢;> q,.

5. As there is constraint on control we choBse 1.

6. Chooseq, =500q,q, = 20q,q,= 2079, = candR=10".

After several iterations it is found that at théues q =100,r = 4gives satisfactory performance.

The optimal feedback gains are found out to be

K,=-2.2361K,=-2.720%,= 17.520R,= 6.77 (2.11)
The closed loop poles are found out te-P8862+ 2.1606~ 2.58 0.14i.
2.3. Results and Discussion

Both, the simulation and experiment are conductgdgua second order derivative filter F of
cutoff frequency 100 rad/s and damping ratio 01%e simulation and experimental results are

shown below.
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Fig 2.2.LQR state feedback simulation result
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The experimental result is obtained as in Fig.R.i3. seen that the cart position shows undesired
oscillations. This may be due to low frequency adisat is not filtered by the filter or due to

non-linear friction behavior that causes frictioemory like behavior.
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Fig 2.3.Experimental result for LQR state feedback

In order to observe the input side gain tolerahilihe gain is decreased and the lower side gain
margin of the LQR compensated system is found out.
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Fig.2.4.Effect of decrease in gain on the LQR corepted system
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At a gain of 0.45 it is seen that the system ishenverge of exceeding the track limit

of increase in gain has been given in Fig.2.5.
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Fig.2.5.Effect of increase in gain on the LQR conga¢ed system

. The effect

It can be seen that at an input gain perturbatio®.® the system becomes just unstable. In

Fig.2.6.the effect of delay has been analyzed. hsbeen done with the help of the transport
delay block in SIMULINK by inserting this block on the input side of thé>Sl
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Fig.2.6.Effect of increase in delay on the LQR cengated system
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From Fig.2.6. it is evident that the system becoiuss unstable just at a delay 0.02s. The

multichannel gain perturbation has been analyzdedgrR.7.
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Fig.2.7.Effect of Multichannel gain perturbation tire LQR compensated system

On the output side of the CIPS the effect of gaanation of a multi output system is analyzed
with the help of concept of diagonal uncertainty.this method a gain perturbation ofis
assumed in each channel. A perturbatiod-®don the cart position channel afe o on the
pendulum angle channel is introduced. To studyefffiect of O is varied a range from a value

less than +1 to a value greater than -1. Thisganfgis the tolerable multi channel gain
margin.

A summary of the various robustness margins haga bammarized into Table 2.1.

Table.2.1.Summary of LQR Controller Robustnessyaisal

Environment Gain Margin Delay Margin | Multichannel
(Lower side, (s) Gain
Upper side) Perturbation
o
Simulation (0.5,4.99) 0.05 (0,0.2)
Experimental (0.4518,2.18) 0.02 (0,0.4)
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It can be inferred from Table 2.1.that the robus$nef the control scheme is well in the range of
admissible margin of (0.5, 2) gain margin rangee Becond order filter transfer function is

given as

10000
F(s) ==
s“+70.7s+ 1000(

(2.12)

2.4. Chapter Summary

The chapter begins with a very basic explanatiothefLinear Quadratic Regulator (LQR) how
it is employed in stabilization of inverted pendulgproblem is justified. Various points that need
to be considered in the design of LQR are alsoigeak Subsequently, the chapter presents an
algorithm for selection of LQR weights. The chaptancludes with the simulation and

experimental results. Also the robustness analygpsesented.
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Chapter 3

Two Loop Proportional Integral Derivative (PID) Controller

Design

The PID controllers are hugely popular owing toirtlsmplicity in working. These controllers
are also easy to implement with the help of elextrcomponents. There are several PID tuning
methods available in literature like Ziegler-Nickohethod, relay method for non-linear systems,

here a pole placement method is presented.

3.1. Introduction

The concept of feedback has revolutionized the gm®ccontrol industry. The concept of

feedback is really simple. It involves the case miveo or more dynamic systems are connected
together such that, each system affects the otitethee dynamics is strongly coupled. The most
important advantage of feedback is that it makesctintrol insensitive to external disturbances

and variation of parameters of system.

K
S
+
r e + u y
ﬂ K, > P(s)
A
- +
KgyS

Fig.3.1. Smplified Sructure of a PID feedback control system
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The control signaliis entirely based on the error generaed’he command inputis also
called the set-point weighting in process conti@rature. The mathematical representation of

the control action is [47]

esr-y
u=K,e+K [e dt+Kdd—e (3.1)
dt

It is seen that with the increase in the valueropprtional gainK the value of error becomes
greatly reduced but the response becomes highiffabsty. But, with a constant steady state
error. Integral ternK, ensures that the steady state error is zerohegprocess output will agree
with the reference in its steady state. But, lavgkies of the integral gain would make the
control input sluggish leading to unsatisfactoryfmenance. The role of the derivative gaf

is to damp the oscillatory behavior of the procestput. Use of high value df, may lead to

instability. So, in order to achieve satisfactomrfprmance we need to choose these values
wisely. There exist many tuning rules out of whiglegler-Nichols tuning is the most popular

one.

Initially, the on-off type of feedback control wasdely used. But, due to high oscillatory nature
of output response the on-off type feedback coletr@ind due to overreaction of control action,
gave way to the P type controller. The controlactin the case of P type feedback will be

directly proportional to the error generated. AgiarK will reduce sensitivity to load
disturbance, but increases measurement noise tmicé:oprbe is a tradeoff between these

two conflicting requirements. It may be noted tha problem of high gain feedback causes

instability in closed loop. The upper limit of higiain is determined by the process dynamics.

The Integral action has been a necessary evilntraldoops. It has the advantage of guaranteed
zero steady state error, but at the cost of sliiggositrol signal. The derivative action on the
other hand improves transient response as it actherate of change of error. It improves the

closed loop stability. The choice #f,is also very crucial, initially increase in its uel will

increase damping but a high value will eventuaéigréase the damping.
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3.2. Two-loop PID Controller design

It is seen in Chapter 2 that the LQR controlleribith undesirable sustained oscillations in the
cart response that can be prevented in the 2-ldBpcBntroller. The following is the block

diagram for the two-loop PID controller for the gred Pendulum system is shown in Fig.3.2.

The following is the controller structure shownkedow, herer) denotes proportional gain for

the controlleC, .

Kis’+K s+K!
Cl = S (32)

Kis*+Kls+K?
C,= (3.3)

A 4

v

X(s)/U(s)
——

P>
CEEEEE—

Pl 0(9)/U(9)

v

Controller Inverted Pendulum Systen

Fig.3.2. Two-loop PID Controller Scheme for the Inverted Pendulum System
Let the plant transfer function be of the form g).and (1.19)

X(s)_b _5841

U(s) s¢ & (34)
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6s) _ b, _ 3.957
U(s) s°-a*> s°-6.807

(3.5)

The characteristic equation for the two loop PlDteoaller is given as below
1-BC,+PC,=0 (3.6)

Substituting the values f#, P,,C, and C,in (3.6) one obtains the following characteristic

equation

12 1 1 2 2
1_%de tKs*tKS b Kis*+Ks+K, 0

3.7
S S (s°-a? S S

Simplifying (3.7) yields the following equation
S HBK YRS (AT bK KNS (DK A bR EK I

+(a’hK;)s+(@hK) =0

Since, the characteristic equation [$ &der, it can be compared to the desired chaistiter
equation of the form

S +p,s'+p,s’+ps’+ps+p,=0 (3.9)
Comparing (3.8) and (3.9) gives
_ KA }
- 0 0 b 0 O K‘j P,
0O -b 0 O0b O Kfl’ p, +a’
a0 b 0 0 b b= p (3.10)
0 ab 0 0 0 O Kg P,
0 0 a¥h 0 0 O] & ps

Therefore, the two-loop PID Controller design candonverted to a pole placement problem.
But, there are six unknowns and five equations tius required to choose one variable

arbitrarily. This will make the matrix in (3.10)vartible. One can choose the LQR dominant
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poles in Chapter 2 for pole placement. It can bensthat the value oK? can be chosen

arbitrarily. Choos&? =10. We have chosen the desired pole polynomial as

S +26.45"+ 218.68°+ 8718+ 1721s§ 13437 (3.11)

The gains of the PID controller are obtained fra8nlQ) as foIIowé(é =43.3K'= 33.79€

Ky =2.254K} = 120.9<?= 247. Since, ideal PID controllers are not physicadglizable as

the transfer function is improper; one has to im@at it by using a filtered PID; otherwise, the

derivative will lead to derivative noise. Varioutats were carried out with different values of

KZ, but it was found that there was no significanpiavement in the closed loop system

response.
3.3. Result and Discussions

Fig.3.3. presents the simulation results for caifon, pendulum angle and control voltage

respectively for an initial angle of 0.1 rad.
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Time, s

Fig.3.3. Smulation result of Two-Loop PID Controller
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The experiment only involves stabilization and mong up. So the plot of angle begins from
3.14 rad. Fig.3.4 shows the experimental results Iseen that since the setup is non-linear
therefore we have find out the region of attraci®seeen that the range of théits found that in

simulation it is—0.35rad << 0.3Fad and —0.48rad <8< 0.48ad experimentally. A second
order filter havingé =0.35and the natural frequenay, =100rad /sis used which gives better

sensor noise rejection.
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Time, s

Fig.3.4. Experimental result of Two-Loop PID Controller

Figure 3.5.shows the experimental result for dessresn gain until the system becomes
marginally stable. It can be seen that the systets gmost in the verge of breaching the track
limit of £ 0.3 m at a decrease in gain of 0.2.
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Fig.3.5. Experimental result for decreasein gain

In Figure.3.6.the experimental result for increas@ain has been illustrated. The system cart
position exceeds the limit at Gain of 5.
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Fig.3.6. Experimental result for increasein gain

In order to determine the phase margin experimigntaé concept of delay margin has been
utilized. The use of this concept has been impleéatein the SIMULINKwith the help of
transport delay block. Fig.3.7.shows the experimemisult for the delay margin analysis.
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Fig.3.7. Experimental result for increase in delay

It can be seen that the increase in delay causessixe oscillation in pendulum angle response.
These oscillations are also evident in the contaltage response and in the cart position
response too

On the output side, we have a multi output systemhave analyzed the effect of gain variation
with the help of concept of diagonal uncertaintythis method we assume that we have a gain
perturbationd in each channel. A perturbation bf don the cart position channel afie¢t & on

the pendulum angle channel is introduced. To sthdyeffect ofd we vary the value of it in a
range from a value less than +1 to a value greéhger -1. This range adis the tolerable multi

channel gain margin.
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Fig.3.8.Multichannel gain perturbation analysis applied to PID compensation (Experimental)
A summary of the various robustness margins has s@@mmarized into Table 3.1.

Table.3.1.Summary of Robust-2-Loop PID Controller Robustness Analysis

Environment Gain Margin Gain Crossover Delay Margin Calculated | Multichannel
(Lower side, Frequency(wmg) ©) Phase Gain
Upper side) (rad/s) Margin Perturbation
(deg) 1)
Simulation (0.2238,2.2) 274 0.034 53.3 (-0.6,+0.174)
Experimental (0.2,5) Fkkkk 0.04 62.7 (-0.4, +0.25)

It can be seen that the robustness of the corthamse is well in the range of admissible margin
of (0.5,2) gain margin range and the phase m&@in

3.4. Chapter Summary

The chapter introduces the concept of PID contnal igs relevance in solving practical control
issues. Then it develops a method for Two-Loop-Eddtrol design by pole placement. The
LQR dominant poles from Chapter 2 are chosen fte ptacement. The design is seen to have

sufficient nominal robustness.
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Chapter 4

Sub-optimal LQR based state feedback subjected to H,
constraints

4.1. Introduction

It is very common in control systems to come acresglirements that are conflicting among
themselves. This can be like rise time, overshgaiy margin, phase margin etc meeting them
simultaneously. Such, contradictory requiremenésraet by multi-objective optimization. This
can be met my methods like convex optimization gadetic algorithms etc. Such a common
contradictory optimization encountered in contrgl that between sensitivity norm and
complimentary sensitivity norm. In the next subtmecr we will explain the two sensitivity

norms and their significance.
4.1.1. Robustness

The ultimate aim of all control system designertoislesign a control system that will work in
the real environment. This means that the systerstrha less sensitive towards operating
conditions, load changes etc. For example in thee ad cart-inverted pendulum the system
should be less sensitive to external disturbanoeefapplied. In another situation where in the
controller must act irrespective of the model utaiaties that might have arisen. The ability of a

control system to operate satisfactorily in sudliséic situation is called as robustness.
4.1.2. Feedback Properties

The inputs to a typical feedback system in Fig.. 4fe the reference input the process
disturbanced. All the remaining signals can be consideredassible outputs. Various transfer

functions can be defined to relate between thewartinput and output signals.

The system has three transfer function blocks sgmténg the planP, a feedback controlleC
and a feedforward controll&. The transfer function€ andF together define the control law. It

is always desired to find out how the error signial related to the input signals.
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Fig.4.1. Typical schematic for a feedback control system

Transfer functions of a feedback control system dgegved under the assumption of that all
signals are bounded exponentially. Solving by bld@gram reduction, the following equation
for e can be obtained

F 1 PC
e= r— n- d
1+PC  1+PC  1+PC

(4.2)
=G, r+G,n+G,d

4.1.2.1 Sensitivity Functions and L oop goals

From the design point of view it is desirable tcalgme the loop transfer functian= PC .
Ultimately the design procedure is simplified f@esifying the design requirements in terms of
properties of.. There are two undesirable inputs, one is the thatirbanced that makes the
output deviate from the reference, while the messent noise corrupts the information given

by the sensors. Thus, the process has three idpuits and the measured output

In case of systems where only pure error feedbackseF =1 the system is characterized by

the four transfer functions as given below
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S N

T1+PC  1+L 1+ PC

(4.2)
_PC _ L . C
1+PC 1+L 1+ PC

Here PS is the input sensitivity function (load sensityitCS is the noise sensitivity function
(output sensitivity) Sis the sensitivity function and is the complimentary sensitivity function.
S relates between the measured signaand the disturbance input The complimentary
sensitivity functionT relates between the error sigeand the measurement noiseThese two

are very important in loop design.
The following are the desired loop goals

» Disturbance Rejection- Sensitivity function S mbstkept low to minimize the effect of
disturbance in output.

» Tracking- Sensitivity function S must be kept lowv feducing tracking error.

»= Noise Suppression- Complimentary sensitivity fumetll must be kept small in order to

have minimum effect of noise on output and errors.

The most important point that may be noted is fbaigood tracking and disturbance rejection
low Sis desirable but for good noise rejection [®vis desired. But both transfer functions add
upto unity so both cannot simultaneously be zerpld is shown in Fig. 4.2. which depicts the
desirable gain plot for the loop transfer functioh a feedback control system. The gain
crossover frequency, and the slope determine the robustness of the closed loop system.
high value ofL at low frequency ensures good load disturbancetiejeand excellent tracking

properties; a low value of at high frequency ensures attenuation of high ®egy sensor

noise. Fig.4.3.shows plots for the sensitivity @othplimentary sensitivity transfer functions of

loop transfer function.
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Fig.4.3.Typical Sensitivity Transfer Function Sand Complimentary Sensitivity Transfer Function
T plots

The crossover region is very critical in case dfustness as this is the region wherein the loop

transfer function magnitude changes from valuestgrethan 1 to values less than 1. It is
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important to note that in this region neitl@&mor T is small. In case of minimum phase plants the
poles and zeros can be changed more or less atovalbbtain desire® andT plots. But, in the
case of non-minimum phase plants the disturbaneetien ability is limited by bandwidth
limitation imposed by the Right Hand Plane zeroseki to the origin [48]. In the case of
Complimentary sensitivity transfer functioh bandwidth is limited by the Right Hand Plane

pole, it is the frequency above whitrstarts to roll off [48].
4.2.H, Control: A brief review
TheH., norm of any transfer functio@(s) is defined as

L. =sudG (o) @)

which is the peak of the Bode magnitude plot of tla@sfer function. Usually a packed matrix

notation to represent the transfer function inesggtace as given below

G(s)=C(sl -A7'B+D

[A]B (4.4)
“ICc|D

Fig.4.4. depicts a block diagram of the €bntrol system

, 4 A .

W z
—» —»
P
—

n ¥
K

Fig.4.4. Generalized block diagram of H,, control system

This generalized structure is used to cast allrmédion about the system into a comprehensive

structure. The generalized plaftis assumed to be linear and time-invariant, adl aquired
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information including system dynamics, actuatoraiyics, perturbation models etc are included
in P. The sensor measurements providing feedback endnyy, the inputs generated by the
controller is given by, w represents the exogenous inputs to the systemnitiatie reference
commands, disturbances, sensor noise, fictitiogsass that leads to model uncertainties. The
signal z includes the signals we wish to control which tenperformance measure variables,
tracking errors, plant outputs and actuator sigttzdé cannot be arbitrarily large and fast. The

mathematical representation for the system in Fgid as given below

z=P,w+P,u
y=R,w+P u (4.5)
u=Ky

The closed-loop transfer function between regulatgguts and exogenous inputs is obtained as
y=PR,w+P, Ky (4.6)
On solving fory in (4.6) and findingi in (4.5) terms ofv gives
u=Ky=K@-PR,K)*R,w (4.7)

The general control problem can be defined in fileimework is to synthesize a controller such
that to keep the value afsignal low in the presence of exogenous inputd we choose such
as those variables that we want to keep low inpiiesence of external disturbance. Thus, the

control problem would reduce to one in which we {eldike to reduce the “size” of,,(s) small

as possible. Inorder to measure the “size” of aagsfer matrix in physically meaningful sense
we use théH,, norm. This is the most commonly used measure akltm®rm gives the largest

possible amplification over all frequency ranges dounit sinusoidal input signal, or in other
words it gives the largest possible energy incrdsst&veen the input and output of a given

system [45].

By using equations from (4.5) to (4.7),,(s) can be obtained as

T,=P,+P,K1- PWK)_1 Puw (4.8)
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The above expression is called as Linear Fractidmahsformation (LFT) of P and K.

The plant can also be represented by the folloviong

X=Ax+Bw+B,u
z=Cx+D,w+D,u (4.9)
y =Cx+Dw+ D,

The packed matrix notation f&(s) is given by

P(s) = (4.10)
4.3. Linear Matrix Inequalities: Brief Introduction
A Linear Matrix Inequality (LMI) is of the form [49

F)2F,+3 xF >0, 4.11)

i=1

Where x[OR" is the variable and the matricéds =F' OR™,i=0,..../m are given. The

inequality sign in (4.11) means thii(x) is positive definite.

Nonlinear (Convex) Inequalities are converted ink® using Schur compliment defined by the
Lemma #4.1.

Lemma#4.1. Schur Lemma

The LMI as given below

{Q(XZ S(X)} >0 (4.12)
S(x)'  R(X)
whereQ(x) =Q(x)", R(x) = R(x)" and S(x) depends affinely orxis equivalent to

R(X) >0, Q(X)-S(X)R(X)™"S(x)" >0 (4.13)
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Or in other words any matrix inequality of the fonm(4.13) can be represented as in (4.12).
The LMI equation in (4.11) gives rise to two kinofsquestions

« The LMI feasbility problem amounts to testing whether there exists real bbsa
AT ,X,such that (4.11) holds.

/7

< The LMI optimization problem amounts to minimizinghe cost function

C(X) =CX +eeeee c,x,overall x,...... , % that satisfy the constraint in (4.11).

The classical linear programs fit into this forreasily. The quadratic programs and some cases
of convex quadratically constrained quadratic paotg can be reformed into this setting. In the
case of control, most of the LMIs involve matrixriedles than vector variables. That means

that most of the inequalities can be consideragti@form
F(X)>0 (4.14)

Where F(x) is an affine function of the forf(x) =F, +T(x) and F, is fixed andT(x)is a

linear map. Thus affine functions are linear maps pome offset.

Various design specifications are converted intol lddnstraints to be used in State feedback
Control design.

4.4. LMI| Formulation for LQR

The LQR control problem has been dealt in detalCiapter 2. In this section we try to recast

the same problem is recast to deal with multi-abjecconstrained optimization.

For an LTI system

X=Ax+Bu
(4.15)
y =Cx
The LQR Performance index is
J= j: (X'Qx+Uu"Ru) dt (4.16)
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The problem amounts to finding an optimal statellfi@ek gairkK . The cost depends on the

trajectory of x(t) so the problem would be to find out the worst guesJ for the worst case of

X(t) i.e., to find out the optimal cosf' Px, .
LMI # 1 Linear Quadratic Regulator
Statement: The LQR control problem is rephrased into an LMInais (x" (O)Is‘lx(O)) subject to

AP+PAT +BY+Y'BT P YT
P Q' 0 |s0P>0 (4.17)
Y 0 -R?

whereY = -KPand P=P™*
Proof
The LQR problem is recast into the following objeemin (x" (0)Px (0))subjected to

P>0, (A-BK) P+P(A-BK)+Q+K'RK <0 (4.18)
Since P >0, consequentlys >0so that

P=P? K=-YP?! (4.19)

Substitutinglf’ andy instead ofP and K in (4.18) we get the following

PA" +Y'B" + AP+BY +PQP+Y'RY <0, P>0 (4.20)
Applying Schur Lemma (Lemma # 4.1) we get

AP+PA"+BY+Y'BT P YT

P -Q* 0 |<0P>0 (4.21)
Y 0 -R!
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In many practical problems it is always advisablsdlve for a sub-optimal LQR design wherein

the cost is to be minimized below a specified vatueThis problem is stated as a matrix

inequality as
X" (0)P*x(0)< y (4.22)

By applying Schur Lemma again we get the LMI

{ v XTEO)}ZO (4.23)
x(0) P

By solving the LMIs in (4.21) and (4.23) simultansty a sub-optimal LQR solution is obtained.
4.5. LMI| Formulation for H,,

It is well known that theH,, norm of a transfer function measures the systemtioptput gain

for finite energy. Or in other words it gives thargest Singular Value Norm for a finite Root
Mean Square (RMS) input signal across frequencgingular value norm. This constraint is
helpful in realizing good performance in case ofapaeter uncertainty hence ensures robust
stability [50]. For the system in (9) the maximumggilar value for the transfer function is given

as

ITal, <0 (4.24)

LMI # 2 Bounded Real Lemma

The statement in (24) can be recast as follows

Statement: If the closed loop system in (10) is stable tHem inequality in (4.24) can be recast
into an LMI as given below [49]
AP+BY+PA"+Y'B" PB C’

B,"P -gl 0 |<0 (4.25)
C 0 -ol
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whereY =—KPand P = P
Proof

For a system if the packed matrix notation is gibgri49]

_[A|B
T(s _{C o} (4.26)

Let us define a Hamiltonian matrid such that

A R
H—[Q —AT} (4.27)

An Riccati operation orH yields a stabilizing solutionX as X =Ric(H) for the Riccati

Equation given as
ATX +XA-XRX +Q=0 (4.28)

In order to minimize thél,, norm of T it would be enough to minimize the packed systenrima

below a particulaw > 0
lcsl -A1B| <o (4.29)
To minimize this it is enough to minimize the lwsen overo .
[T|, <oif and only if
A (T(=9)"T(s)-0?1) <0 OsOC® (4.30)
If and only if

detT s)' T (s)-o°l )z 0, OsOC° (4.31)
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If and only if

A-sl 0 B
det | -C'C -A"-sl | 0 ||#0,0s0C° (4.32)
0 B" | -0’
If and only if
A  BB'/o?
def| "7 g % 0 osoce (4.33)
-C'C -A
If and only if
A BB'/o?
4.34
& ") 2

has no eigenvalues ii°or else it will lead to an internal instability.

The above statement can be stated by the inequality
ATP+PA+0?PB B P+C'C<0, P>0 (4.35)

The above inequality can be converted into Schunrba and the following LMI can be

obtained
AP+PA+C'C PB,
. <0 (4.36)
B, P -0’
Applying Schur Lemma to (4.36) one gets
A'P+PA PB T
. w4l C o*[C 0]<0 (4.37)
B,/P -0l 0
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Applying Schur Lemma again to (4.37), replacing rtiegtrices by the closed loop equivalent and
substitutingY = —-KP andP =P

AP+BY +PA +Y'BT PB, C'
B, -ol 0 |<0 (4.38)
C 0 -ol

4.6. LMI formulation for maximum control signal

Considering the physical limitation of control sa® or else will lead to actuator saturation
which is undesirable. The saturation of actuatahislead to undesirable non-linear behavior of

the control system. So we consider the followinglLM
LMI # 3 Maximum Control Signal

Statement :If u__,is maximum control signal amplitude of availabletol signal for allt > 0

P Y
M -

Proof
Theorem # 1- Quadratic Stability of I nvariant Ellipsoids
Statement: Let H denote the ellipsoid centered at originsisaid to be invariant if

1. For every trajectory of a dynamic system(t,) JH impliesx ¢ )0 H ,0t >t .

2. PsatisfiesA'P+PA<0

We assume that the control signalis —Kx ==Y *( If*) “!is the solutions to the LMIs in (4.17)

and (4.25) an&” (0)P - 1x(0)< 1. From the theorem of quadratic stability we get fibllowing

statement
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maxut )’ = ma>HYP x(u

t=0

< max
xOH

— max(ls‘l’zx )T (Y|5—1/2 )T (YIS_ 1/2)(|5— vz )
< A (P27 (YR (YB35

YP_ x ¢ i‘ - nD]HaXms—l/zF“,—l/zx j ms- 1/z|3— 3, :

(4.40)

max(wP‘“) (YP9)XP7x)
((YP—1/2) (YP 1/2)) <u?

max max

Applying Schur Lemma to (4.40) we get the LMI
S T
{P Y } >0 (4.41)

Y U,

The LMlIs in (4.17), (4.25) and (4.39) were solvent the Inverted Pendulum Stabilization
Control Problem using the YALMIP toolbox and MATLAB he next section describes how to
obtain the disturbance model for the physical sysis of the form in (4.9).

4.7. Perturbation Model for an Inverted Pendulum System

We consider two fictitious disturbance forces agglio the inverted pendulum system one is the

disturbance model applied to the pendutym and a disturbance applied to the ahrt Now,

we simplify the system model by considering onlgttthese fictitious forces are applied. Let
these forces produce a small perturbatibd, Ax in pendulum angle and cart position

respectively. Consider the disturbance schematiegr.5.

Let us assume that

X () = X(s) +AX(S)

_ (4.42)
6(s) =6(s) +AH(s)
Substituting the values for the transfer functiargsget the following equations
AX=0.3894],
(4.43)

A6 =0.26381 + 6.80RE
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+ X(s)

X(s) X

T~ F(s)

U(s) NG F(s)

L~

Actuator Gain
+ 6(s) 6
n® F(s)
d

Fig 4.5. Disturbance Model for an Inverted Pendulum System

We assume thatax(Ad)= 6. Hence, we get the following system matrices

01 0 0 0
0 0 0.238 5.84
A= ,B=
00 0 1 0
0 0 2*6.807 O 3.95
(4.44)
0 0 1 000
0.3894 0
= ,C=
Sw 0 0

0 0.2638

4.8. YALMIP Toolbox: A smplified optimization solver

The YALMIP toolbox was developed by J.Lofberg eaily 2001. The semi-definite
programming (SDP) and the Linear Matrix InequaditiédMIs) were the two important
contributions to the system and control theoryha tast decade [51]. The YALMIP toolbox
makes the development of optimization problem inegal and control based SDP in particular

is simplified. By learning only a minimum of thremmmands one could get most of the
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optimization problems. YALMIP can be flexible sotseof the designers choice. It can be either
free solvers or any commercially available solverBhe YALMIP developers a free tutorial on
their toolbox in YALMIP/wiki.

4.9. Reaults and Discussions

In chapter 2, an algorithm and logic for choosihg LQR weights for constrained LQR control
problem were presented. We cho@sediag([20,30,5,1] , R= . The sub-optimal control cost
was chosew=100. The upper bound on the-norm of T was also chosen as=150. The
upper bound on the control signal,, was chosen as 2V. The above choices obtained a

satisfactory system performance.

The following is the solution obtained by using ¥LMIP solver

K'=[-13.88, -16.79, 125.35 34| (4.45)

And the sub-optimal costs were obtained/as 50.5143« 100g = 72.& 1t

The following is the simulation result for an iaitpendulum angle of 0.1 rad.

Angle, rad
=
g o
o @ =
E‘(

Control Voltage Vs Time
T T T T

Control Voltage, V

1 2 3 4 5 5} 7 a 9 10
Time, s

Fig.4.6.Smulation result for the constrained sub-optimal LQR problem
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Fig.4.7.shows the experimental results obtainech fsab-optimal LQR.
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Fig 4.7.Experimental result for the constrained sub-optimal LQR problem

The robustness analysis has also been carried oouthis developed scheme. It would be
interesting to note that the need to know that,thérethe compromise in the LQR cost has given
way to better performance in robustness or nobmparison with LQR.
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Fig 4.8.Experimental result for decrease in input gain the constrained sub-optimal LQR problem

The system just exceeds the track safety limitgdia of 0.05 as can be seen in Fig.4.8.
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Fig 4.9.Experimental result for increasein input gain the constrained sub-optimal LQR problem

It can be seen in Fig.4.9.that the system breattteesrack limit at 0.4 m at a gain of 2.4.The
effect of delay has also been analyzed in Fig.4TH® system is less tolerable to delay in

comparison to LQR in Chapter 2. The system becamstable at a delay of 0.01s.
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Fig 4.10.Experimental result for increase in input delay the constrained sub-optimal LQR
problem
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On the output side, we have a multi output systemhave analyzed the effect of gain variation
with the help of concept of diagonal uncertaintythis method we assume that we have a gain
perturbationdin each channel. A perturbation b¥ don the cart position channel afid 0 on

the pendulum angle channel is introduced. To sthdyeffect ofd we vary the value of it in a
range from a value less than +1 to a value greéhger -1. This range adis the tolerable multi

channel gain margin.
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Fig 4.11.Experimental result for output Multichannel gain n the constrained sub-optimal LOQR

problem

The multi channel tolerability is better than LQRahapter 2. The robustness analysis has been
summarized in Table 4.1.

Table.4.1.Summary of Sub-optimal LQR Robustness Analysis

Environment Gain Margin Delay Margin | Multichannel
(Lower side, (s) Gain
Upper side) Perturbation
o
Simulation (0.02,1.698) 0.02 (0,+0.17)
Experimental (0.04,2,39) 0.01 (-.05,+0.065
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4.10. Chapter Summary

The chapter begins with the concept of robustriBiss.various sensitivity transfer functions are
introduced and the design constraints. Then, tlagtein explains the concept of.HSince, the
sensitivity transfer function and complimentaryngger function are contradictory there is a need
for convex optimization using LMIs. A set of thré#lls one for Linear Quadratic Regulator
(LQR), second one for fbased on Bounded Real Lemma, and a third one fasti@ining the
control input together with proof. A perturbatiorodel of cart-inverted pendulum is presented.
An introduction to YALMIP toolbox is presented whids used to solve the optimization
problem. The sub-optimal LQR shows less robustoesgpared to optimal LQR in Chapter 2
towards loop parameter variations. The chapterlodes with the simulation, experimental and

robustness results have been given.

59



Chapter 5

Integral Sliding Mode (ISM) Controller for the Inverted
Pendulum System

5.1. Introduction

The integral action in the sliding mode helps idugng tracking errors [52].The SMC is known
for its good performance in systems with matchedeuainty and disturbances even model
uncertainties but at the cost of control chatteramgl a reaching phase in which the system
dynamics is vulnerable towards uncertainties [B3]most mechatronic systems, it required to
have compensation against uncertainties right ftoeenbeginning. The ISM offers very good
disturbance compensation and retains the full oodfethe uncompensated system. The next

section presents ISM design by pole placement.
5.2. Integral Sliding Mode (ISM) by Pole placement derivation

The integral sliding mode control has several athgas over ideal sliding mode control which

are stated as:

« ISM ensures zero steady state error due to inharegral action.
« Lack of robustness for conventional sliding modetoa towards unmatched perturbation
< In the reaching phase conventional sliding modesassitive even towards matched

perturbation.

The sliding variable in Integral Sliding mode isvdped as an integral of output error tracking.
The proposed Integral Sliding mode controller aobse system accuracy and robustness.

Consider, a dynamical non-minimum phase plant efftihm

%(t) = (A+ AA)X(L) + bu(t) + B, w(t) + f (t)
= AX(t)+ bu(t) + &(x, t) (5.1)
y(t) = Cx(t)
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AA is the uncertainty in the plag) matrix, f (t)is the unmatched disturbandg, w(t) is the

matched disturbance. The uncertainties can be eduplo a single functiofi(x,t).

Discontinuous Control

— d X
dx
L+ Inverted | = t |—
C Pendulum gx”‘(j)edt ) —l
7 System 3
+ 0
d Relay
1 «
. 9
Switching Surface (o)
State
Continuous Control Eeedback
Gains
Fig.5.1. Integral Siding Mode Schematic Block Diagram
Sliding Variable:
Definition 5.1: Let the sliding surface is defined as
_t
o(t) =ox(t) + A [edt (5.2)
0

where
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Je=| (5.3)

For regulator problery, =0.
Control Signal
u=u, +u, (5.4)
Equivalent control signal on sliding modg can be obtained for the sliding condition as
o(t)=0 (5.5)
Substituting (5.1) and (5.4) in (5.5) one obtains
Uo (t) == (gb) ™ (AX(1) + ACx(1) + é(x.1) (5.6)
Stability Analysis
The closed loop system is obtained by substitutiegequivalent dynamics (5.6) in (5.2)
X(t) = Ax(t) ~b(gb) ~ GAX(t) ~b(gb) " ACx(t) + €(x,t) ~b(gb) " GE(x.) (5.7)
The equivalent closed logpmatrix is given ash,,
A, = A-Db(gb) ™ (gA+AC) (5.8)
Equation in (5.7) can be modified in the state bzt form as

x(t) = (A+ bFeq)x(t)+{In ~b(gb)™ g} E(xt) (5.9)

The state feedback,, can be obtained by pole-placement technique. tabilisy, we need to

ensure that
eig(A+bF,) <0 (5.10)
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Theorem 5.1.
Assumptions#1.1.: If there exists a known positive constansuch that

€ 0| < (5.11)
Where |(.)| denotes the Standard Euclidean norm

Statement: If ||F(t)||s¢={|n—b(§b)_l§},u, then the uncertain system in (5.1) is stable

boundedly on the sliding surfaegt) =0. The proof of this relation is given in Appendix A
Equation in (A.6) can be simplified to

VA(®) = A0 (Q) XN + 2P (V)] (5.12)
Lemma5.1

If the system in (5.9) if the uncertainty in thes®m satisfies the matching condition , i.e.
rank (b | &(x,t)) =rank(b) (5.13)
The system in (5.9) can be simplified into
%(t) = (A+bF, ) x(t) (5.14)
Let us assume the control law as
u(t) = —(gb)*{ GAX(t) + ACx(t)} - (gb) " (7 +ag]) sanE) (5.15)
Theorem5.2

Statement: The hitting condition is satisfied by the slidingrace o{(t) if we can prove that
a(t)o(t) <-n|o(t) (5.16)

Proof
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Let us assume a Lyapunov candidate function provaig) # 0

V.0 =2 (o)’ (5.17)
It is known that the iflé(x,t)] < u
gé(x.t)<|gé(x.n) =(al|lé(x.t) <|a|u (5.18)
For stability
V,(t) <0 (5.19)

We tighten the constraint for finite time reachapibf the system trajectory in sliding surface
ot)o(t) < —/7|a(t)| (5.20)
Taking the derivative of the sliding surface

o(t) = gr(t) + ACx(t)

< _ (5.21)
= g{ AX(t) +bu(t) + £(x, 1)} + ACX(t)

Substituting (5.15) in (5.21) we get

o (t) = gAx+ go{ ~(ab) *{ GAX(t) + ACx(D)} - (ab) (7 + w|gl) sane € )} + T (x £ }+ ACx ¢)
= GAX(t) = GAX(t) - ACx(t) ~/75gn@ € ))- [g] sgné (¥ G Kt ¥ ACx () (5.22)
= gé(xt)~7sgn@ €))- 4(g| sgng 1))

We now obtain

o()o(t) = a(t)E(x ) ~nat)sane ¢ ))- u[alo €)sgng ()

5.23
< ool 4-nlo)|- ufgllo)| = 1|ow) &2

Hence the theorem is proved and reachability edsure
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Sliding Variable Design by Pole placement

Let us assume that for a SIMO with m outputs therdd characteristic polynomial

d(s) = By () + K,z () +++-+ K2, () (5.24)
G,(s)
Here K :[Kl Km] andG(s)=| : |,G(9)= Z.A(S)
G.(9) p(s)

If we consider a unity feedback SIMO (Single-Inpdirti-Output) system then the characteristic

equation is
A(s) =1+ K (G(s)) (5.25)

Theorem 5. 3

Statement: The system poles in (5.9) are identical to the attaristic roots in (5.25)

K=A(gb)™ (5.26)
Proof

The poles of the system (5.7) by solving the eigéms in (5.8)

d(s) :\sl —A+b(qb)-l(gA+/TC><)\

_ _ (5.27)
={1+7(@) "G} =0
It can be easily shown that by substituting (5i87p.26)
d(s) =1+ K (G(s)) (5.28)

Hence we can show that (5.28) and (5.25) are thne.sa
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The polynomialp(s) is the open loop pole polynomial. It should beedothat by the intrinsic

property of the sliding mode one pole is alwayethin the origin [54], this will also ensure

zero steady state property of the sliding mode.

The desired open loop pole polynomial is given by

f)d (s)=s"+ pn_lsn—1+ -+ PpS (5.29)
And associated coefficient vector is
h=[p - B 1 (5.30)

Lemmab.2.

Suppose the system in (5.1) is completely contotdldghen there exists a transformation matrix

T such that through the transformation

z=Tx (5.31)
Where
&
T= e”:A M=[b Ab - ATb|M7'=[g e - g] (5.32)
enAr'I—l

The system in (5.1) can be transformed into

7= Az+bu+T¢&

_ (5.33)
y=Cz

where(A,B,é) is the controllable canonical form(o4,b,C).

Theorem 5.4.

Statement: Let the transformation of be given as in (5.31) and the desired coefficieator h

be given as in (5.30) then the transformation is
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g=hT (5.34)
The polynomial p(s) is same a@, (s) in (5.29).
Proof

By using (5.31) and (5.33) in (5.27) we get

p(s) = det{ sl -T*AT +T‘1b(gT‘1b)_l gT‘lAT}

(5.35)
- de{si - A+b(3b) " oA
[0 1 0 0 |
0O 0 1 . :
p(s)=det sl —=|: . . - : = py(9) (5.36)
0O O 0 1
_0 - ﬁl - ﬁn—Z - ﬁn—l_

5.3. ISM design applied to Cart-Pendulum System

The schematic for ISM applied to Cart-Inverted Reuch is shown in Fig.5.1. The friction was
ideally assumed to be non-existing but, in realigy friction is highly non-linear that may lead to
limit cycle like behaviour called as stick-slip d&tions. In order to incorporate this non-linear
behaviour we have tried to identify the frictioriaran exponential friction model as suggested in
[55] the linear approach to friction can cause an unalelei unstable, limitcycle like behaviour in
practical systems like the speed governors. A lrasidel for this kind of stick-slip behaviour was

also proposed.
5.3.1. Dynamic Cart Friction asan uncertainty in Plant Matrix

The combination of all Coulomb, viscous, static étribeck effect can be combined to an

exponential form [56is given by
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. Fauic » if X=0 37
friction — _(ﬂc+(/'15_/'1c)e(_aX))FN Sgr(X)—fX ,If XZE ( ( . )

Hereu,, 1, , € are the coefficients of static, Coulomb and viscéudion which are estimated
experimentallyF is the normal force which is the weight of the systa is the ratio between

the form factor and the Stribeck velocity obtaitiebugh curve fitting of experimental data

The experiment is conducted under the assumptiainftiction exists between the cart and the
track only. We also assume that the applied voltagenearly converted into force by the

formula

E

applied = K V (538)

actuator

The details to find out the Coulomb and viscoustitth has been given in [56] detail. The

pendulum needs to be detached initially due toabeve mentioned assumption so thqt
depends only on the cart mass. The method meuntiomd56] was used to find out the
U, =0.283, £ =0and 1, =0.04340<In order, to find out the value af we need to conduct an
experiment by applying a slow varying ramp voltagene direction so thaﬂgn(x) = Jand one

obtains the corresponding position, filtered valand filtered acceleration data shown in
Figure 5.2 .

The cart velocity and acceleration data was obththeough differentiation of the position data.

Since, the differentiation of output signals getesdot of noise in the data a Butterworth filter

of natural frequencyy, =100rad /sand damping ratif.35 is used to filter out noisy data. This

filter is available in [3]. We have obtained thition force data by assuming that the friction is

the difference between the applied fofgg,, and the resultant force on the cart obtained by

multiplying the cart mass with the instantaneousebsration.

By using theEazyfit ToolboxX®[57], we have obtained the non-linear friction as

Frin = —(0.2833+( 0.043404 02833 €™  23.445¢} (5.39)
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Then we assume that the effect of friction is aonaaly or uncertainty inA matrix. The non-
linear equations in (1.6) and (1.7) can be lineatiby using Jacobian linearization method we

obtain the plant uncertainty matrixA as given in (5.40) by replacing the discontinunty5.39)

with tanh(X) .
00 0 0
0 0 -1.7184
AA= (5.40)
00 0 0
0 0 -2.53662
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Figure 5.2 (a) Cart position Vs Voltage, (b) Cart Velocity Vs Voltage,(c) Cart Acceleration Vs
Voltage, (d) Calculated Cart Friction Vs Velocity

5.3.2. Control Law parametersfor Cart-lnverted Pendulum

By using the system state model (1.17), the planertainty matrix(5.40), applying theorems

from Theorem 5.1 to Theorem 5.4. the complete ISM surface can be obtained as follows
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X
o(t) =[-2.7209 -1.2742 6.7791 2.13 +j[ -2.1831 154%% (5.41)

. I %

The complete control law is obtained from (5.36)3() and (5.34) as

u=[2.1831 2.7209 -26.4672 67j - sof (5.42)

Q. X X

5.4. Results and Discussions

Fig.5.3. gives simulation result (initial angle @fL rad).Figure 5.4 gives the experimental result
for the cart-inverted pendulum system. The ISM hasn implemented by replacing signum

function with saturation which is its continuouspegximation in order to reduce chattering. It

can be seen in Fig. 5.4. that the cart positiondsaglations due to friction memory.
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Figure 5.3. Smulation result for 1SM applied to Cart-Inverted Pendulum (Initial Angle 0.1 rad)
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The ISM is designed by pole-placement by choosing LQR poles it shows superior
performance in terms of more damped cart posit&xillatory response. This has been clearly

seen from Fig.5.5.

Position ¥s Time
0.4 T T T T

02 =

Position, m
o
T
é

02

0.4 I 1 I I I
o =] 10 15 20 25 30

Time,s

Angle Vs Time
T

Angle, rad
o K
/
|

1
o 5 10 15 20 25 30
Time, s

Control Voltage Vs Time
10 T T T T

Control voltage, ¥
(=]

10 1 I 1 1 1
o =] 10 15 20 25 30
Time, s

Fig.5.4. Experimental result for 1ISM applied to Cart-Inverted Pendulum
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Fig.5.5. Comparison between the cart position responses of ISM and LOQR

Fig.5.6.shows the simulation and experimental $wiig surfaces and phase portraits of the cart

position and pendulum angle. From Fig.5.6 (b) it b& seen that there is chattering which is
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clearly visible in the experimental switching swda The effect of discretization of control
algorithm can be seen in the Fig.5.6 (d) and Feg(®. which are the phase portraits of cart
position and pendulum angle respectively
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Fig.5.6. Siding Surface Vs Time in Smulation (a) and Experiment (b), Phase Potrait of Cart
Position Smulation (c)and Experiment (d), Phase Potrait of Pendulum Angle in Smulation (€)

and Experiment (f)

This chapter also describes the robustness anabfsihe designed control scheme. The

robustness towards output side multi channel gaitugoation in Fig.5.7.

72



The range of multichannel gain perturbatiois of same structure as used in Chapter 2, is
obtained as [-0.2, +0.2] from simulation and [-Q.26.7] from experiment.
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5.5. Chapter Summary

Fig.5.7 .Multichannel Gain Perturbation applied to ISM

The chapter presents the ISM design for cart-iegegendulum system. The non-linear cart
friction is identified into an exponential modeldaits effect on the plant matrix is modeled as a
model uncertainty. The mathematically derived aardfgorithm for ISM are applied to the cart-
inverted pendulum, it shows that compensated syst@mtolerate more perturbation on the
output side when compared to LQR, PID and sub-at®R.
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Chapter 6

Conclusions and Suggestions for Future Work

6.1. Conclusions

The thesis presents a number of control approashes as LQR, Two-Loop PID Controller,
Sub-optimal LQR, and ISM. These design methods hasen successful in meeting the
stabilization goal of the CIPS, simultaneously Sfging the physical constraints in track limit
and control voltage. The LQR, Two-Loop-PID and ISie successful in ensuring good
robustness on the input side of the CIPS. The 18M Bwo-Loop-PID give good tolerability
towards multichannel gain variation on the outputes Due to the non-linear cart friction
behavior there is a deviation from the ideal betvathat leads to undesired stick slip oscillations
mainly in state feedback based control methods. dinear Quadratic Regulator (LQR) weight
selection for the cart-inverted pendulum has begstematically presented together with
robustness analysis. The choice of LQR is well kmdiat unlike ordinary state feedback the
LQR solution obtained after LQR weight selectiontomoatically takes care of physical
constraints. The LQR poles guarantee minimum roi@sst of + 6 dB gain margin and’ghase
margin.

Due to the undesired oscillations in the cart oesp a Two-Loop-PID controller design was
attempted. This approach yielded a nominally roblesign with reduced cart oscillations.

A different approach for stabilization through st&edback has been attempted by designing a
sub-optimal LQR subjected ttonstraints. As it is well known that the LQR hasw poor
disturbance rejection property, an, ebnstraint might yield a good disturbance rejectidhis
solution is only possible through a sub-optimaugoh.

To increase the robustness in the multichanngubdide gain perturbations an Integral Sliding
Mode (ISM) controller designed by pole placementhod. The ISM poles are placed at the
LQR poles, but give superior damped response inpoeition.

6.2. Thesis Contributions

The following are the contributions of the thesis
« A systematic algorithm for weight selection for L@Rte feedback has been proposed.
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< A Two-Loop-PID controller is designed by pole plawnt approach. The design is based
on dominant LQR poles. This has led to improved iezponse with damped oscillations.

« A state feedback control design by sub-optimal L€dRjected to H is designed for cart-
inverted pendulum.

« Integral Sliding Mode (ISM) via pole placement aijan yields better robustness on the
output channel than LQR and superior cart positesponse than LQR.

+ Real-time control issues of some of the developgoriéhms such as LQR, Two-Loop-PID
controller, sub-optimal LQR state feedback subpckg, constraints, ISM have been
analysed.

« Since the Two-Loop PID shows damped oscillationsthe position response, it is
preferable in the case of nominal operation it barused even under perturbed condition
also. This controller also satisfies the nominalusiness.

« Inthe event of sensor fault the ISM is found teegsuperior performance.

« Also the robustness of all the developed desigrss been verified in simulation and

through experiments.
6.3. Suggestions for Future Work

A. Effect of Discretization of Control Algorithm

All the developed designs are implemented in R@akTwith the help of SIMULINK and Real-
Time Workshop installed in a computer. Since, tbmputer is digital all the measured signals
and the calculated control signals are also diditalthis effect of discretization needs on the
closed loop system performance also need to bedmyed in design.

B. Friction Modelling and Advanced Control Design

The non-linear friction model used in Chapter Ta#led as exponential friction model. Other
friction models may also be used to identify the-tioear cart friction. This will yield a more
accurate non-linear friction model. Further, thietion of the servo mechanism may also be
considered. Other advanced control algorithms sisckensitivity weighted LQR and LQR with
weighted cost functionals , double integral slidmgde etc., may be attempted.
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Appendix A

Statement: If ||F(t)||s¢={ln—b(§b)_l§},u, then the uncertain system in (5.1) is stable

boundedly on the sliding surface o(t) =0.

Proof:

Let us assume that

A=(A+bF,)
. (A1)
r={1,-b(g)" g} &(x1)
We can rewrite (5.9) as
X(t) = Ax(t) + I (t) (A.2)
Let us consider the Lyapunov Function
V,(t) = X" (t)Px(t) (A.3)
P isasolution of the equation in (A.4) and Q is apositive definite symmetric matrix
A'P+PA=-Q (A.4)
Derivative of (A.4) gives
V,(t) = X" (t) Px(t) + X" (t) Px(t)
- - (A.5)
=X (O ATP+PA} x(t) + T (1) Px(t) + X" () PT (1)
Substituting (A.4) in (A.5) one obtains
V,(t) == X" (1)Qx(t) + T (t)Px(t) + X" (t)Pr (t) (A.6)

Equation in (A.6) can be simplified to
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V;(t) = Ao (Q) X[ + 262 P [ x(0)] (A7)

Since, A,;, (Q) >0 which leads to the condition V;(t) <0 for al tandxOB°(e), where B°(¢) is

24|P|

the complement of the closed ball B(¢) and centred at x =0with radius given by £ = g (Q)

Hence the system is boundedly stable.
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