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Summary

The two-wheeled mobile robot (2WMR), which consists of two wheels in parallel and an inverse

pendulum, is inherently unstable. In this thesis, the control objective is to use only one actuator

to perform position or velocity control of the wheels while balance the pendulum. This type of

system is defined as an underactuated system, with fewer actuators than the number of indepen-

dent variables to be controlled. For control of underactuated systems, many of the conventional

control designs for fully actuated systems are not applicable. In addition, various uncertainties

such as the joint and the ground frictions, the varying slope angle of the ground, etc., exist in the

2WMR system, which makes the control difficulty arise, especially when the uncertain part has

unmatched components that are not in the control range space. To sum up, the 2WMR system is

a nonlinear, unstable and underactuated system with uncertainties, thus the control system design

is challenging and robustness should be one of the main concerns in the design.

In this thesis, five different control schemes are proposed for control of the underactuated 2WM-

R, which are also applicable to similar underactuated mechanical systems.

First, a linear controller based on linear matrix inequality (LMI) method is studied. The de-

sign of linear controller for nonlinear system is often based on a linearized model around the

desired equilibrium, i.e., the nonlinear terms and uncertainties are just ignored in the control

design. In this work, the nonlinear terms and uncertainties are taken into consideration in the

linear controller design. The LMI approach is employed to obtain the feedback gains for the

linear controller. Lyapunov method is applied to investigate the stability region of the 2WRM

system under the linear control. The Lyapunov function and the feedback gains are obtained

concurrently, which can reveal a fairly accurate stability region.
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Second, an SMC with a linear sliding surface is studied. The SMC law is derived by using

Lyapunov theory, which guarantees the finite reaching time of the sliding surface and leads to a

sliding manifold with all the matched uncertainties rejected. To stabilize the sliding manifold, the

controller parameters should be chosen appropriately. By transforming the sliding mode design

into a nominal linear controller design for control of a nominal 2WMR system, the controller

parameters are easier to be determined. Furthermore, the proposed SMC can incorporate various

linear control design methods and thus leads to a stable sliding manifold, which inherits the same

properties as that of the aforementioned nominal system under the linear control.

Third, an integral sliding mode control is designed. The sliding mode exists from the very

beginning, therefore the system is more robust against perturbations than the other SMC systems

with reaching phase. The ISMC has an extra degree of freedom in control when sliding mode

is achieved. We utilize this extra degree of freedom to implement a linear nominal controller,

which is found adequate in stabilizing the sliding manifold. The implemented ISMC, with an

integral sliding surface and a switching term, is able to completely nullify the influence from the

matched uncertainties. The linear nominal controller is designed to stabilize the sliding manifold

that is subject to unmatched uncertainties.

Next, a Takagi-Sugeno type fuzzy logic controller is proposed. The FLC design is based on both

human experience and information of the 2WMR dynamic model. The FLC structure including

the fuzzy labels, membership functions, and inference is chosen based on heuristic knowledge

about the 2WMR. The output parameters of the FLC are determined by comparing the output

of the FLC with a linear controller at certain operating points, which avoids the difficulty and

tediousness in manual tuning. The new FLC outperforms a linear controller because it provides

varying feedback gains, which are adapted to the current states of the 2WRM. Compared with

FLCs designed in other existing works, the proposed FLC has fewer fuzzy rules and parameters
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to be determined, which implies a simpler and more realizable design for real implementation.

The proposed FLC is successfully implemented on the real-time platform and shows effective-

ness.

To the end, a synthesized FLC is developed without incorporating any model-based controller,

and hence an accurate mathematic model is not required. The synthesized design consists of

three phases: determination of the FLC structure through heuristic knowledge about the 2WMR;

quantitative determination of the output parameters for stabilization of the 2WMR; and tuning

of the FLC output parameters using iterative learning tuning (ILT). The main idea behind the

proposed methodology is to maximize the utilization of all the information available, which

is achieved by combining partially model-based and partially model-free designs, and hence

improve the FLC performance.
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under SMC. The 2WMR is placed on a flat surface. The reference trajectory

(2.14) is applied. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.11 Experimental testing results for setpoint task: time responses of u and σ under

SMC. The 2WMR is placed on a flat surface. The reference trajectory (2.14) is

applied. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.1 Time responses of x, θ and u under ISMC. In simulations, system is considered

with the joint friction τ f = 0.2θ̇ +0.3sgn(θ̇), which is a matched uncertainty. . . 75



List of Figures XVI

5.2 Time responses of x, θ and u under ISMC with and without the compensation

term γc. In simulations, system is considered in presence of the joint friction

τ f = 0.2θ̇ + 0.3sgn(θ̇), and the ground friction fr = 0.5ẋ+ sgn(ẋ) which is a
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u under FLC with θr = 0, τs = 0. The mobile robot travels on flat surface. The

reference trajectory (2.14) is applied. . . . . . . . . . . . . . . . . . . . . . . . . 97

6.7 Experimental testing results for setpoint task: time responses of x, ẋ, θ , θ̇ and u
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Chapter 1

Introduction

1.1 Backgrounds and Motivations

Systems that have fewer control inputs than the degrees of freedom (DOF) to be controlled

are defined as underactuated systems. Control of underactuated systems is a popular research

topic due to its wide range of applications in robotics, underwater vehicles, aerospace vehicles,

etc. [2,21,23,45]. From practical concerns such as cost reduction or weight reduction, many sys-

tems are designed to be underactuated. Some systems become underactuated when actuator fail-

ure occurs. As benchmark examples of nonlinear and underactuated systems, the cart-pendulum

is often used to demonstrate and verify the effectiveness of control algorithms.

In recent years, the control of 2WMR or two-wheeled inverted pendulum (2WIP) has attract-

ed attentions from both researchers and engineers. However, most of the published works are

based on theocratical analysis and results are obtained by simulations, only few have implement-

ed the proposed control schemes on real time platforms. The well known commercial product,

two-wheeled SEGWAY, is a popular personal transporter. For research and education purposes,

prototypes and products of two-wheeled mobile vehicle or robot have been designed in univer-

sities and research institutes [1, 12–14, 26, 28, 47, 64, 65, 68, 71]. The 2WMR usually consists of

two actuated wheels in parallel and an unactuated inverse pendulum. The control objective of

1
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the 2WMR is to perform position or velocity control of the wheels while stabilize the pendulum

around the upright position that is an unstable equilibrium point.

Due to the difference in system configuration, underactuated 2WMRs can be classified in-

to the class without input coupling where the actuator is mounted on the wheel (class A), and

the class with input coupling where the actuator is mounted on the pendulum or chassis (class

B). The class A is more complex in mechanical construction but easier in controller design ow-

ing to the absence of input coupling between the wheel and pendulum. In contrast, the class B

is easier in mechanical construction but more challenging in controller design due to the input

coupling between the wheel and the pendulum. Current research works mostly focus on study-

ing underactuated systems without input coupling, however, the proposed methods have limited

applications.

Figure 1.1: Prototype of the two-wheeled mobile robot.

This thesis is devoted to the development and control of a 2WMR with input coupling. A

prototype of 2WMR is built in our lab as shown in Fig. 1.1. The lower part of the 2WMR consists

of two wheels in parallel. The upper part of the 2WMR is a designed steel-frame, where all the

electrical components are fixed. The frame can be regarded as an inverted pendulum. The motor

shaft coupler is fixed at the center of the wheel and the motor housing is rigidly connected to

the pendulum, thus the torque generated by the motor directly acts on both the wheels and the
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pendulum with the same size but opposite directions, which results in the input coupling of the

2WMR system.

The control of inverted pendulum and similar underactuated mechanical systems is a rather

challenging problem even no uncertainties are considered existing in the systems, thus, the

problem has attracted much attention from researchers whose interest are in the field of con-

trol theory. In plenty of theoretical works, stabilizing algorithms based on Lyapunov theo-

ry, passivity, feedback linearization, etc., are developed for underactuated mechanical system-

s [20,24,25,31,32,50,67]. The effectiveness of the proposed controllers are verified through sim-

ulations. However, these controllers may not function well on real-life underactuated mechanical

systems. First, the controller design and stability prove are based on the accurate mathematical

models, however, there exists model mismatch between the nominal mathematical models and

the real-life plants. Second, some of the control algorithms are too complicated to implemen-

t. By realizing the fact that uncertainties could affect system performance or even devastate

system stability, researchers are motivated to explore robust control designs for underactuated

systems [3, 29, 37, 48, 49, 57, 61, 81].

Linear controller is widely used in industrial applications due to its easiness in algorithm

computing and parameter tuning. In [26, 47, 64, 65, 68], full-state feedback linear controller

is implemented on the 2WMRs. In [47, 68], the feedback gains for the linear controller are

obtained through linear quadratic regulator (LQR) method and further manually tuned during

experimental testings. In [26], pole-placement method is used to obtain the feedback gains for

the linear controller. In [64, 65], the feedback gains for the linear controller are tuned manually.

For control of nonlinear system, the design of a linear controller is often based on a linearized

model of the nonlinear system around the desired equilibrium point. Therefore, the linear con-

troller may become ineffective when the system states are away from the desired equilibrium
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point or when the system is in presence of uncertainties. Nevertheless, it would be meaningful to

explore the stability region of the nonlinear and uncertain system when it is under the linear con-

trol. Generally, linear controller with larger feedback gains provides better robustness. However,

implementation of linear controller with high feedback gains requires the system sampling fre-

quency to be high enough, which implies the need of high-performance hardware components,

such as the sensors and the control board. Furthermore, considering that the motor capacity is

limited, linear controller with large feedback gains could result in control signal saturation when

system states are away from the desired equilibrium, which would devastate the effectiveness

of the controller. The limited robustness of the linear controller motives researchers to explore

nonlinear robust control methods for underactuated systems.

As one of the well known robust control techniques, sliding mode control method is often

employed for controlling systems with uncertainties and has been successfully applied to many

practical systems, including underactuated systems [3, 29, 36, 48, 49, 57, 61, 81]. The SMC was

originally proposed in the early 1950s and developed since then [72–75, 82–84, 86, 87]. In SMC

design, first a sliding surface is specified, on which system generates desired trajectory. Next,

a discontinues control law is derived to make the system trajectory reach the sliding surface in

a finite time and maintain on the surface afterwards. The main advantages of the SMC are: (1)

SMC is applicable to systems with various type of uncertainties, as long as the upper bounds

of the uncertainties are known, in other words, the SMC design requires less information of the

uncertainties in comparison with classical control techniques. (2) In the ideal sliding mode, all

uncertainties which are in the control range space, namely, matched uncertainties, are nullified.

In standard SMC design for full actuated system, it is straightforward to conclude the con-

vergence of the system states when system is in the sliding mode. However, for underactuated

system, the standard SMC design and stability analysis are not applicable because the system
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has fewer inputs than the independent variables to be controlled. As a result, a nonlinear sliding

manifold or in general an internal dynamics must be stabilized by the proper selection of the

sliding surface coefficients. In [3, 29, 48, 49], coupled sliding mode control laws along with a

linear coupled sliding surface are proposed for controlling of the underactuated system, where

the coupled linear sliding surface is designed by incorporating multiple independent state vari-

ables into a scalar sliding surface. The single actuator can thus be used to manipulate the scalar

sliding surface. Conclusions regarding the convergence of the states, however, can not be drawn

directly from the convergence of the sliding surface due to the presence of the sliding manifold

or the internal dynamics, thus the stability of the sliding motion governed by the sliding manifold

should be further investigated, namely, the sliding surface design is required. In [29,48,49], sta-

ble sliding manifolds are obtained with appropriately selected sliding surface coefficients. In [3],

a stabilizing control law is assumed existing.

Other types of SMC for controlling underactuated systems have been discussed in [36, 57,

61, 81]. In [81], a SMC design based on the cascade normal form [45] is proposed, and the

validity holds under certain assumptions. However, the 2WMR studied in our work does not

meet these assumptions. Second-order SMC designs for underactuated systems are discussed

in [36, 57, 61]. The drawback of the second-order SMC is that its design requires the derivative

of the sliding surface, hence the derivative signals of all system states, to be available, which is

generally difficult if the system is with model uncertainties. In [36], the second-order SMC is

designed for system without any uncertainties. In [57, 61], the second-order SMC design and

system stability analysis are based on the assumption that all state derivatives are available.

Design of optimal SMC algorithms has attracted particular interests recently [6–8, 41, 43,

46, 52, 77]. In a typical SMC design, stability is the only concern in the switching surface de-

sign. The optimal SMC design aims at achieving both robust and optimal control, thus shows
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the superiority in practical applications. However, no results about optimal SMC design for un-

deractuated system have been shown in the existing works. Thus it would be meaningful and

interesting to explore optimal or suboptimal SMC designs for underactuated systems.

Another good alternative for handling system with uncertainties is the fuzzy logic technique.

One major feature of a fuzzy system is its capability of processing vague information in a logic

manner. A fuzzy system is essentially a knowledge based system, which uses fuzzy sets and

fuzzy rules to describe the relationships between the inputs and the outputs. The fuzzy sets use

linguistic variables, rather than quantitative variables, to represent imprecise concepts, thus the

design provides a user-friendly interface. The fuzzy rules, which describe the operation of fuzzy

sets in the form of approximate reasoning, function as a decision maker with powerful reasoning

capabilities, thus the designers’ knowledge can be incorporated directly in the design. In the

control area, fuzzy systems have been widely used for system modeling and control [27, 38, 39,

70].

The application of the fuzzy logic technique in controller design, known as fuzzy logic con-

trol (FLC), has been widely employed for controlling systems with uncertainties. FLC offers

a nonlinear controller with robustness for systems with parametric and functional uncertainties,

as well as disturbances [5, 38, 42, 70]. The FLC design provides flexibility in structure design

and parameter selection, thus it can be easily incorporated with other control methods, such as

adaptive control [38,44], genetic algorithms [42], learning control [16], linear LQR control [69],

and H2 and H∞ control [17]. FLC design based on human experience and experts’ knowledge

is generally model-free, which is complementary to model-based control design. However, for

systems with complicated dynamic behaviors, such as underactuated mechanical systems, the hu-

man knowledge could be not enough to accomplish the FLC design, which motivates researchers

to synthesize model based control methods in the FLC design.
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Another important application of the fuzzy system is system modeling. Fuzzy systems are

theoretically capable of uniformly approximating any continuous real function to any degree of

accuracy, i.e., any nonlinear system can be represented by a fuzzy system. Based on the obtained

fuzzy model, control algorithms can be further designed. The use of fuzzy approximations avoids

the need to derive the mathematical model of the system to be controlled. However, to generate

an approximated mathematical model with enough accuracy, the fuzzy system needs to use a

large number of fuzzy rules, which is not desirable in real implementations.

Application of model-free FLC design for real platforms could be problematic considering

the large number of fuzzy rules and controller parameters to be determined and the limited heuris-

tic knowledge for complex dynamics for systems such as underactuated systems. It is motivated

to synergize a model-free design with heuristic knowledge and a model-based design with an

available plant model, so that all information relevant to the system can be fully utilized in FLC

design. Most importantly, to make the developed control algorithms be simple and easy to apply,

the number of fuzzy rules and parameters to be determined should be minimized.

A major difficulty in the design and implementation of nonlinear controllers, such as SMC

and FLC, is the determination and tuning of the controller parameters. To make the nonlinear

control algorithms be simple and easy to implement, it is motivated to find systematic methods

for choosing and tuning controller parameters.

1.2 Statement of Contributions

This thesis focuses on linear and nonlinear controllers design for an underactuated 2WMR

with input coupling. The developed methods can also be extend to a class of underactuated

system with or without input coupling. Real-time implementation of the proposed controllers

are also addressed. In this section, the contributions of this thesis are briefly summarized as
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below:

1. In Chapter 2, development and modeling of an underactuated 2WMR prototype with

input coupling is presented. Essentially, the developed 2WMR can be regarded as a 2-D

unicycle system with the lateral stability guaranteed. The mathematic model of the 2WMR

is derived and internal dynamic analysis is presented. Design of reference signals are

discussed for 2WMR under different control objectives and different travel circumstances.

2. In Chapter 3, a linear state-feedback controller, simple and realizable, is found adequate

in stabilizing the nonlinear 2WMR system in a wide range around the equilibrium. How-

ever, it is extremely difficult to verify the effectiveness of such a linear state feedback for

systems in the presence of nonlinearity and uncertainties. A main contribution of this part

of work is to explore the design issue and effectiveness of the linear controller for the un-

deractuated 2WMR. Two alternative methods are introduced to obtain the feedback gains

for the linear controller, one is based on LQR to achieve a optimal design and the other is

based on Linear Matrix Inequality (LMI) approach to achieve a robust design. Lyapunov

method is employed to analyze the stability region of the closed-loop 2WMR system when

linear controller is applied.

3. In Chapter 4, a sliding mode controller (SMC) is proposed. When designing the SM-

C for the 2WMR, various uncertainties are taken into consideration, including matched

uncertainties such as the joint friction, and unmatched uncertainties such as the ground

friction, payload variation, or road slope. The SMC proposed is capable of handling sys-

tem uncertainties and applicable to general underactuated systems with or without input

coupling. For sliding surface design, the selection of the sliding surface coefficients is in

general a sophisticated design issue because those coefficients are non-affine in the sliding
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manifold. In this work, the sliding surface design is transformed into a linear controller

design, which is simple and systematic. By virtue of the systematic design, various linear

control techniques, such as linear quadratic regulator (LQR) or linear matrix inequality

(LMI), can be incorporated in the sliding surface design to achieve optimality or robust-

ness for the sliding manifold. The effectiveness of the SMC is verified through intensive

simulations and experimental testings.

4. In Chapter 5, a novel implementation of an integral sliding mode controller (ISMC)

on the 2WMR is presented. It is the first time that integral sliding mode control method

is successfully applied to a real-time platform of 2WMR and several critical issues are

addressed. Similarly as in Chapter 4, when designing the ISMC for the 2WMR, vari-

ous uncertainties are taken into consideration, including matched uncertainties such as the

joint friction, and unmatched uncertainties such as the ground friction, payload variation,

or road slope. ISMC is suitable for control of the underactuated 2WMR because ISM-

C provides an extra degree of freedom in control when sliding mode is achieved. We

utilize this extra degree of freedom to implement a linear nominal controller, which is

found adequate in stabilizing the sliding manifold in a wide range around the equilibrium.

The implemented ISMC, with an integral sliding surface and a switching term, is able to

completely nullify the influence from the matched uncertainties. The implemented linear

nominal controller, which is a linear quadratic controller (LQR), is stabilizing the sliding

manifold that is subject to unmatched uncertainties. The effectiveness of ISMC is verified

through intensive simulation and experiment results.

5. Chapter 6 presents a novel implementation of a Takagi-Sugeno (T-S) type fuzzy logic

controller (FLC) on the 2WMR. The novelties of this chapter lie in three aspects. First,

the FLC is a synthesized design which utilizes both heuristics knowledge and model infor-
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mation of the 2WMR system. The FLC structure including the fuzzy labels, membership

functions, and inference is chosen based on heuristic knowledge about the 2WMR. The

output parameters of the FLC are determined by comparing the output of the FLC with a

linear controller at certain operating points, which avoids the difficulty and tediousness in

manual tuning. The linear controller is designed based on a linearized model of the 2WMR

system. Second, the proposed FLC is a simple and realizable design for real implementa-

tion. Only two fuzzy labels are adopted for each fuzzy variable. Sixteen fuzzy rules are

used with eight output parameters and four range parameters for the membership functions

to be determined. Third, the proposed FLC is successfully implemented on the real-time

2WMR for regulation and setpoint control tasks. Satisfactory responses are achieved not

only when the 2WMR travels on a flat surface but also on an inclined surface. Through

comprehensive experimental-based investigations, the effectiveness of the proposed FLC

is validated, and the FLC shows superior performance than the existing methods.

6. In Chapter 7, we propose synthesized design of a FLC for control of the underactuated

2WMR. The synthesized design consists of three phases. First, the FLC structure including

the number of rules, membership functions, inference and parametric relations, are chosen

based on heuristic knowledge about the 2WMR. Second, on the basis of a linearized model

and linear feedback, the FLC output parameters are determined quantitatively for stabiliza-

tion of the 2WMR. Third, the FLC output parameters are tuned using an iterative learning

tuning (ILT) algorithm, which minimizes an objective function that specifies the desired

2WMR performance. The rationale for the synthesized FLC design is full utilization of

the available information, which is achieved by combining model-based and model-free

designs, and hence improves the FLC performance. We minimize the number of FLC

rules and fuzzy labels. Six rules are used for regulation or setpoint tasks, whereas ten rules
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are used with extra integral control to eliminate steady-state errors induced by system un-

certainties and disturbances. Only two fuzzy labels are adopted for each fuzzy variable.

The ILT process consists of two phases, exploration for stabilization and exploitation for

better performance. The effectiveness of the proposed FLC is validated using intensive

simulations and comparisons.

1.3 Thesis Outline

The thesis is organized as follows.

In Chapter 2, the detailed description of the 2WMR system is presented, including the hard-

ware architecture and system dynamic model. Control objective for the 2WMR and references

design are given.

In Chapter 3, a linear controller is proposed and two alternative methods are introduced to

obtain the feedback gains for the linear controller. The effectiveness of the linear controller is

investigated through simulations and experiment testings.

In Chapter 4, an SMC with a linear sliding surface is proposed and successfully implemented

on the 2WMR platform.

In Chapter 5, an SMC with an integral-type sliding surface, i.e., an ISMC, is proposed and

successfully implemented on the 2WMR platform.

In Chapter 6, a Takagi-Sugeno type FLC is proposed and successfully implemented on the

2WMR platform.

In Chapter 7, synthesized design of an FLC for velocity control of the 2WMR is presented.

In Chapter 8, the work of this thesis is summarized and recommendations are made on pos-

sible directions of the future research.



Chapter 2

Hardware Development and Problem

Formulation

2.1 Introduction

In this chapter, hardware description of the 2WMR platform is presented in Section 2.2.

Section 2.3 focuses on the modeling and analysis of the 2WMR dynamic model. It is shown

that the internal dynamic of the 2WMR system is inherently unstable, which is consistent with

the nature of the inverse pendulum. In Section 2.4, design of reference signals is discussed for

2WMR under different control objectives and different travel circumstances.

2.2 Hardware Description of the 2WMR Platform

Fig.2.1 shows the overview of the hardware system and Fig.2.2 shows the main electrical

components used for building the 2WMR.

The inertia measurement unit (IMU) combo board v1 (Sparks Fun Electronics) is used to

measure the pendulum tilting angular and the pendulum angular velocity, which is equipped with

an accelerometer (ADXL320) with a range of +/− 5 g and a rate gyro (ADXRS613) capable

of measuring up to +/− 150◦/s. The IMU sensor produces analogue output signals between

12
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Figure 2.1: System overview for the 2WMR.

Figure 2.2: Main electrical components for the 2WMR.
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0 V to 5 V, hence, the analogue-to-digital conversion (ADC) is needed to generate digital signals

that the main control unit (MCU) can process. In addition, the combo board also has a built-in

low-pass filter (LPF) for both the accelerometer and rate gyro with cut-off frequency of 500 Hz

and 40 Hz, respectively.

The brushless DC motor (Maxon Eci-40), which acts as the only actuator, generates the

required torque to drive the wheels while balance the pendulum. The brushless DC motor is

controlled by a four quadrant motor driver (Maxon DEC 70/10), which could also be regarded as

an amplifier. The motor driver works under the mode of torque control, and the torque constant

of the motor is 16.9 m·Nm/A. A gear box is mounted to the motor, which has a gear reduction

ratio of 132 : 1 with gear efficiency of 80%.

To obtain the position and velocity information of the wheels, a three-channel magnetic

encoder is fixed on the motor. The encoder has a resolution of 500 counts per turn (CPT). By

coupling the encoder and reduction gear with the motor, the resultant resolution is equivalent of

(500×132) CPT.

The MCU (Renesas micro-controller SH7216) is used to process the data measured by the

sensors, compute the control signal according to the designed control algorithm and generate a

PWM signal for the motor driver. Renesas SH7216-FPU is a 32-bit micro-controller, which is

capable of operating with a maximum frequency of 200 mHz and has a floating-point unit (FPU),

1 mb of ROM and 128 kb of RAM. The MCU used meets the requirement for computation with

maintaining a sufficiently high sampling frequency, which is 100 Hz in the implementation. The

MCU can be programmed with C and C++ language.

The battery (14.8 V, 2700 mAh Li-Po) is fed to two voltage regulators to produce constant

12 V for the motor driver and 5 V for the micro-controller and the IMU.
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2.3 Modeling and Analysis of the 2WMR System

2.3.1 Modeling of the 2WMR

Figure 2.3: Model of the 2WMR.

Fig. 2.3 shows the model of the 2WMR. The wheel motion is defined along the surface. The

wheels displacement and velocity are denoted by x and ẋ respectively, with rightward as positive

direction. ϕ is the angular rotation of the wheels with clockwise as positive direction, we have

ϕ = x /r , where r is the radius of the wheel. θ is the tilting angle of the pendulum with the upright

position as zero point and clockwise rotation as positive direction. θ̇ is angular velocity of the

pendulum. φ is the slope angle of the inclined road, for traveling on flat surface, φ=0. fr is the

friction between the wheels and the ground. τ is the torque generated by the motor and acting

on the wheels with clockwise rotation as positive direction, which is also the control input u to

the system. Note that the motor driving the wheel is directly mounted on the pendulum, there is

a reaction torques −τ applied to the pendulum. τ f is the joint friction, which also acts on both

the wheel and the pendulum as τ f and −τ f respectively. Other system parameters are as:

mw = 1.551 kg: the mass of the wheels;

mp = 1.6 kg: the mass of the pendulum;

Iw = 0.005 kg×m2: the rotation inertia of the wheels;
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Ip = 0.027 kg×m2: the rotation inertia of the pendulum;

r = 0.08 m: the radius of the wheel;

l = 0.13 m: the distance between Center of Gravity (COG) of the pendulum and the center

of the wheel;

g = 9.81 m/s2: the acceleration of gravity.

Lagrangian mechanics method is used to derive the mathematical model of the 2WMR sys-

tem (refer to Appendix A.1), which leads to a second-order nonlinear model given by

aẍ+bθ̈ −mpl sin(θ +φ) θ̇ 2 + sinφ(mp +mw)g =
1
r
(τ + τ f − r fr), (2.1)

bẍ+ cθ̈ −mplgsinθ =−τ − τ f , (2.2)

where a = mw +mp +
Iw

r2 , b = mpl cos(x3 +φ) and c = Ip +mpl2.

For 2WMR with input coupling, the control input τ exists in both the wheel and the pendulum

motion equations (2.1)(2.2). While for 2WMR without input coupling, τ only exists in motion

equation of the wheel subsystem (2.1).

Four state variables are defined to describe the 2WMR system, the position and velocity of

the wheels, the tilting angular and angular velocity of the pendulum, as x = [x1, x2, x3, x4]
T =

[x, ẋ, θ , θ̇ ]T . The state-space model of the 2WMR is


ẋ1

ẋ2

ẋ3

ẋ4

 =


x2

f1 (x)

x4

f2 (x)

+


0

g1 (x)

0

g2 (x)

(u+dm)+


0

du1 (x)

0

du2 (x)


(2.3)

y = [x1, x3]
T ,
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where

f1 =
mpl

ac−b2

[
cx4

2 sin(x3 +φ)−bgsinx3
]
−

c(mp +mw)gsinφ
ac−b2 ,

f2 =
mpl

ac−b2

[
−bx4

2 sin(x3 +φ)+agsinx3
]
+

b(mp +mw)gsinφ
ac−b2 ,

g1 =
1
r

c
ac−b2 +

b
ac−b2 ,

g2 =
1
r

−b
ac−b2 +

−a
ac−b2 ,

dm = τ f ,

du1 =
−c

ac−b2 fr,

du2 =
b

ac−b2 fr,

and b = mpl cos(x3 +φ).

2.3.2 Equilibrium Point Analysis

At the equilibrium point, the wheel acceleration is zero (ẍ = 0), the pendulum angular veloc-

ity and acceleration are zero (θ̇ = 0, θ̈ = 0), meanwhile the joint friction does not exist (τ f = 0),

the dynamic equations (2.1)(2.2) become

sinφ(mp +mw)g =
1
r
(τ − r fr), (2.4)

−mplgsinθ = −τ . (2.5)

From the above equations, the pendulum equilibrium point is

θe = arcsin
r sinφ(mp +mw)g+ r fr

mplg
. (2.6)

For the 2WMR with input coupling, when it is stabilized on a inclined surface (φ ̸= 0) or

traveling at a constant velocity ( fr ̸= 0), a torque, denoted as τs, should be provided to overcome

the effect of gravity or the ground friction, meanwhile, the reaction torque −τs acts on the pen-

dulum. The balance of the pendulum can be reached only when the total torque acting on the



Chapter 2. Hardware Development and Problem Formulation 18

pendulum is zero. Thus, the pendulum tilts rightward or leftward from the upright position such

that the torque resulted from the gravity of the pendulum equals to the reaction torque −τs but

with the opposite direction.

Remark 2.1 For the 2WMR with input coupling, the equilibrium of the pendulum varies with

respecting to the slope angle of the traveling surface and the ground friction, as shown in (2.6).

For 2WMR system without input coupling, the equilibrium of the pendulum keeps at the upright

position, i.e., θe = 0, which is irrelevant to the traveling circumstance.

The pendulum equilibrium position is essentially determined by the mechanical configura-

tion of the 2WMR platform and is irrelevant to the controller applied or control tasks specified.

For different applications of the 2WMR, different mechanical design should be adopted.

2.3.3 Internal Dynamic Analysis

In order to transform the state space model into a companion form, define new state variables

z = [z1,z2,z3,z4]
T=[x1,x2,x3,g2x2 −g1x4]

T . The new state space model in Z coordinates is
ż1

ż2

ż3

ż4

 =


z2

h1(z)

h2(z)

h3(z)

+


0

g1(z)

0

0

u, (2.7)

y = [z1, z3].

where

h1(z) =
c

ac−b2 mplh2
2 sin(z3 +φ)−

bmplgsinz3

ac−b2 −
c(mp +mw)gsinφ

ac−b2 ,

h2(z) =
g2(z3)z2 − z4

g1(z3)
,

h3(z) = −
mpl sinz3

ac−b2 (h2
2 +

g
r
)+

(mp +mw)gsinφ
ac−b2 − ∂g1

∂ z3
h2

2 +
∂g2

∂ z3
h2z2,

and g1(z3) = g1(x3), g2(z3) = g2(x3), b(z3) = b(x3), c(z3) = c(x3).
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From (2.7), we can see that z1, z2 is in companion form and (z3,z4) sub-dynamics is not

related with the control input u directly. Thus z3 and z4 form an internal dynamics ż3

ż4

=

 h2(z)

h3(z)

 .
If the internal dynamics of the system is stable, the 2WMR can be controlled to follow up arbi-

trary trajectory by using feedback linearization. Due to the nonlinearity in the internal dynamics,

it is not easy to derive stability conditions that are state dependent. Let z1 = z2 = 0, the zero

dynamics is

ż3 = − z4

g1
(2.8)

ż4 = −
mpl sinz3

ac−b2

((
−z4

g1

)2

+
g
r

)
+

(mp +mw)gsinφ
ac−b2 − ∂g1

∂ z3
(
−z4

g1
)2 (2.9)

Now we show the zero dynamics has an unstable equilibrium around θ = θ̇ = 0. Linearizing

the zero dynamics around the equilibrium z3 = z4 = 0 in (2.8), (2.9) with sinz3 = z3, cosz3 = 1,

z2
4 = 0, and assume the 2WMR travels on a flat surface (φ=0), we have

ż3 = − z4

g1
(2.10)

ż4 = −
mplgz3

r (ac−b2)
(2.11)

where g1, a, b, c are all positive constants.

For system (2.10) (2.11),

(z3,z4) = (0,0)

is the equilibrium point, but as

g1 > 0,

mplgz3

r (ac−b2)
> 0,

the system is inherently unstable at the equilibrium point, that is, the zero dynamics of the 2WMR

system is unstable.
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2.4 Control Objective and References Design

2.4.1 Control Objective

The control objective is to achieve position or velocity control of the wheels, while balance

the pendulum at the unstable equilibrium (θ=θe, θ̇ = 0). The reference signal for the system

state vector x is chosen as r = [xr, vr, θr, 0]T with ẋr = vr. We obtain the error state vector as

e = [e1, e2, e3, e4]
T = x− r = [x1 − xr, x2 − vr, x3 −θr, x4]

T . Now the control objective is to

ensure the convergence of e. The error dynamic model of the 2WMR is obtained as

ė = η(e)+g(e)[u+dm(e, t)]+du(e, t), (2.12)

where η is the system nonlinear term, dm is the lumped matched uncertainties, du is the lumped

unmatched uncertainties. We have

η(e) = [e2, η1(e), e4, η2(e)]T ,

g(e) = [0, g1(e), 0, g2(e)]T ,

dm(e, t) = τ f ,

du(e, t) = [0, du1(e, t), 0, du2(e, t)]T ,

where

η1 =
mpl

ac−b2

[
ce4

2 sin(e3 +θr +φ)−bgsin(e3 +θr)
]
−

c(mp +mw)gsinφ
ac−b2 − v̇r,

η2 =
mpl

ac−b2

[
−be4

2 sin(e3 +θr +φ)+agsin(e3 +θr)
]
+

b(mp +mw)gsinφ
ac−b2 ,

g1 =
1
r

c
ac−b2 +

b
ac−b2 ,

g2 =
1
r

−b
ac−b2 +

−a
ac−b2 ,

du1 =
−c

ac−b2 fr,

du2 =
b

ac−b2 fr,
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and b = mpl cos(e3 +θr +φ).

In the following chapters, control system design and stability analysis are based on the dy-

namics model formulated in (2.12), which can also be used to describe general underactuated

systems (refer to Appendix A.2). Thus, the controllers designed for the 2WMR system are ex-

tendable to general underactuated systems with or without input coupling.

2.4.2 Trajectory Planning for the Wheel

Without loss of generality, in this thesis, we consider regulation and setpoint control tasks for

the 2WMR. For regulation task, the references for the wheel position and velocity are as xr = 0

and vr = 0, respectively. For setpoint control, the 2WMR is supposed to reach a desired position

xd and stop there. For classical setpoint control task, a step signal is used as the reference.

However, in real implementation, using a step function as the desired trajectory for the 2WMR

would generate a large initial control signal due to the large initial position error, which yields

a strong impact to the 2WMR and leads to unstable motion. To avoid the undesired impact, we

convert the setpoint task into trajectory tracking task. High-order polynomials are sometimes

used for computing a smooth trajectory [47], however, in this work, we simply use a linear

segment and two parabolic blends to construct a smooth trajectory for the 2WMR, which also

yields a smooth reference signal for the wheel velocity. The reference inputs are computed by

the following equations and shown in Fig. 2.4.

vr(t) =



vm

t1
t 0 < t < t1,

vm t1 ≤ t ≤ t2,

vm − vm

t3 − t2
(t − t2) t2 ≤ t ≤ t3,

0 t3 ≤ t ≤ ts,

(2.13)

xr(t +Ts) =

 xr(t)+ vrTs if xr(t)< xd

xd if xr(t)≥ xd

, (2.14)
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where xd is the desired setpoint, Ts is the sampling time.

The planned reference signals for the wheel position and velocity yield zero initial position

and velocity errors, which are desirable in feedback control design. According to Fig. 2.4, the

2WMR is supposed to move forward consistently and reach the setpoint xd = 1.5 m around

t = t3 = 16 s.
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Figure 2.4: Reference signals for wheel velocity and position as described in (2.13)(2.14) with

t1 = 1 s, t2 = 15 s, t3 = 16 s, ts = 20, vm = 0.1 m/s, xd = 1.5 m.

2.4.3 Reference Position for the Pendulum

For regulation and setpoint control tasks, the 2WMR finally stops at the original position or

the desired setpoint, and the ground friction disappears, i.e., fr = 0. The pendulum equilibrium

position (2.6) becomes

θe = arcsin
r sinφ(mp +mw)

mpl
.

To achieve a zero steady-state error for the pendulum angle, the reference position for the pen-

dulum is chosen as θr = θe, that is

θr = arcsin
r sinφ(mp +mw)

mpl
. (2.15)

The above θr is applicable only if the system parameters involved are known. For 2WMR travels

on a flat surface, θr = 0 since φ = 0.
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2.5 Conclusion

In this chapter, the particular characteristics of the underactuated 2WMR system are investi-

gated, according to which, references for both the wheel and the pendulum are designed.



Chapter 3

Design and Investigation of a Linear

Controller

3.1 Introduction

Linear feedback controllers are by far the most widely adopted controllers in industry owing

to their intuitiveness and relative simplicity. In fact, although linear controllers are relatively

simple to use, they are able to provide a satisfactory performance in a wide range of process

control tasks.

For control of the underactuated 2WMR, as the pendulum is inherent unstable, full state

feedback control is indispensable. In linear feedback control design, the most important issue

is how to choose the feedback gains. In [47, 62, 68], LQR method is adopted, which is based

on a linearized model of the wheeled inverted pendulum. The linearized model is obtained by

assuming the pendulum stays around the desired equilibrium point and no uncertainties exist

in the system. The results shown in [62, 68] indicates that the linear controller can work when

the pendulum stays in a limited region around the equilibrium, i,e., the linear controller may

become ineffective when the pendulum is away from the desired equilibrium point or the system

is in presence of uncertainties. Thus, robustness should be addressed in the controller design.

24



Chapter 3. Design and Investigation of a Linear Controller 25

Furthermore, it would be meaningful to explore the stability region of the closed-loop 2WMR

system when it is under linear control.

In this chapter, first, linear controller design based on LQR method is introduced and guide-

lines are provided on how to the select the weighting matrices Q and R. Second, a linear feedback

controller based on LMI method is proposed to achieve a robust control, furthermore, Lyapunov

method is employed to analyze the stability region of the closed-loop 2WMR system.

The chapter is organized as the following. In Section 3.2, the design of optimal linear con-

troller based on LQR is presented. In Section 3.3, the robust linear controller based on LMI is

proposed and stability region of the closed-loop system is discussed. In Section 3.4, simulation

based studies are presented. Section 3.5 shows the implementation of the linear controller on the

2WMR. Conclusions are drawn in Section 3.6.

3.2 Optimal Linear Controller Based on LQR

The LQR design is based on a linearized dynamic model, which is obtained by linearizing

the nonlinear error dynamic model (2.12) about the unstable equilibrium point. By assuming that

sine3 ≈ e3, e4
2 ≈ 0, cose3 ≈ 1, fr ≈ 0, τ f ≈ 0, and φ is known, we have


ė1

ė2

ė3

ė4

=



0 1 0 0

0 0
−b0mplgcosθr

ac−b0
2 0

0 0 0 1

0 0
amplgcosθr

ac−b0
2 0


︸ ︷︷ ︸

A0


e1

e2

e3

e4

+


0

g1,0

0

g2,0


︸ ︷︷ ︸

g0

(u+ηm), (3.1)

where

ηm =−r(mp +mw)gsinφ ,
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and

g1,0 =
c

r(ac−b0
2)

+
b

ac−b0
2 ,

g2,0 =
−b0

r(ac−b0
2)

+
−a

ac−b0
2 ,

with b0 = mpl cos(φ +θr) and θr is as (2.15).

The term ηm reflects the effect of the gravity when the 2WMR travels on an inclined surface.

As we have discussed in Section 2.3.3, a constant torque τs should be provided to overcome the

effect of the gravity. It can be seen that ηm is matched to the control input and can be compensated

directly by letting τs =−ηm = r(mp+mw)gsinφ . Note that, in steady state, r(mp+mw)gsinφ =

mplgsinθe, thus, we also have τs = mplgsinθe.

The control law is designed as:

u = ulc + τs = ulc −ηm, (3.2)

and

ulc =−k1e1 − k2e2 − k3e3 − k4e4 =−ke,

where k = [k1, k2, k3, k4].

The LQR design aims to minimize the following performance index

JLQR =
1
2

∫ ∞

0
(eT Qe+Rulc

2)dt. (3.3)

with Q ≥ 0 and R > 0.

The solution for the optimal control gain is as

k = R−1g0
T P1, (3.4)

where P1 is the solution of the following Riccati equation

P1A0 +A0
T P1 −P1g0R−1g0

T P1 +Q = 0.
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In this work, we choose the weighting matrix as Q = diag{q1, q2, q3, q4}, and R a scalar,

where qi and R are the weighting factors for ei (i = 1,2,3,4) and ulc respectively.

The relative values of qi represent the relative weighting among ei. If q1 is bigger than q2,

there is higher penalty on error e1 than e2 and control tries to make smaller e1
2 than e2

2, and vice

versa. For control of the 2WMR system, the main objective is the convergence of e1 and e3, thus

it is nature to select q1 and q3 to be relatively larger than q2 and q4. Furthermore, considering that

the balancing of the pendulum is more important than the tracking performance of the wheel, it

is reasonable to select q3 and q4 to be relatively larger than q1 and q2, respectively.

The relative value of the weighting matrix Q and R expresses the relative importance of

keeping e and ulc near zero. If we place more importance on the convergence of e, then we

can select Q to be relatively large to R, and so forth. Although we are interested in minimizing

JLQR in (3.3), the actual value of JLQR is usually not of interest, which also means that we can

set either Q or R to be fixed for the convenience of parameter tuning because it is their relative

weight that is important. In this work, since Q is matrix and R is a scalar, it is better to fix Q and

tune R to achieve desired performance. A smaller R results in a larger feedback gain and faster

convergence of e, however, a larger magnitude of ulc. Thus, the selection of R should achieve a

compromise between these effects.

3.3 Robust Linear Controller Based on LMI

In this section, the linear controller design will be based on LMI and Lyapunov method. The

obtained feedback gain is a robust solution.

For control of the 2WMR system, when the slope angle φ is known to the designer, the

pendulum reference position θr is set as (2.15). Represent the nonlinear dynamic model (2.12)
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in the following form

ė = A(e)e+g(e)(u+ηm)+ϕ(e, t), (3.5)

where

A(e) =



0 1 0 0

0 0
−bmplgcosθr

ac−b2
sine3

e3
0

0 0 0 1

0 0
amplgcosθr

ac−b2
sine3

e3
0


, g(e) =


0

g1(e)

0

g2(e)

 ,

ϕ(e, t) =



0
cmple4

2 sin(e3 +θr +φ)
ac−b2 −

bmplg(cose3 −1)sinθr

ac−b2 +g1dm +du1

0

−
bmple4

2 sin(e3 +θr +φ)
ac−b2 +

amplg(cose3 −1)sinθr

ac−b2 +g2dm +du2


. (3.6)

For control of the 2WMR system, when the slope angle φ is unknown to the designer, the

pendulum reference position θr is set as zero. The nonlinear dynamic model (2.12) becomes

ė = A(e)e+g(e)u+ϕ(e, t) (3.7)

with

ϕ(e, t) =



0
cmple4

2 sin(e3 +φ)
ac−b2 −

c(mp +mw)gsinφ
ac−b2 +g1dm +du1

0

−
bmple4

2 sin(e3 +φ)
ac−b2 +

b(mp +mw)gsinφ
ac−b2 +g2dm +du2


. (3.8)

For (3.5), the control law is designed as (3.2), which is a linear controller plus a compensation

term. While for (3.7), a pure linear controller is used. By applying the proposed controllers, (3.5)

and (3.7) become as

ė = A(e)e+g(e)(−ke)+ϕ(e, t)

with ϕ(e, t) expressed in (3.6) and (3.8), respectively.

Let k = wP, the above equation becomes

ė = A(e)e−g(e)wPe+ϕ(e, t). (3.9)
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Next, we express A(e) and g(e) as A0 +δA(e) and g0 +δg(e), (3.9) becomes

ė = (A0 +δA)e− (g0 +δg)wPe+ϕ(e, t), (3.10)

and δA = A(e)−A0, δg = g(e)−g0.

Define a Lyapunov function V = eT P2e. Differentiating V with respect to t yields

V̇ = ėT P2e+ eT P2ė

= [(A0 +δA)e− (g0 +δg)wP2e+ϕ ]T P2x+ eT P2[(A0 +δA)e− (g0 +δg)wP2e+ϕ ].

Next we discuss the determination of feedback gains and stability of the closed loop by

classifying ∥ ϕ ∥ into three scenarios.

Scenario 1. ∥ϕ∥ is of equal or higher order in the state such that ∥ϕ∥ → 0, ∀t ∈ R+ as ∥e∥ → 0,

i.e., ϕ is a vanishing term. Assume ϕ can be expressed as D(e, t)e, we have

V̇ = eT [(A0 +δA+D−g0wP2 −δgwP2)
T P2 +P2(A0 +δA+D−g0wP2 −δgwP2)]e.

For V̇ < 0, we have the following sufficient condition

(A0 +δA+D−g0wP2 −δgwP2)
T P2 +P2(A0 +δA+D−g0wP2 −δgwP2)< 0. (3.11)

Pre and post multiplying P2
−1, and define P̄2 = P2

−1, yields

P̄2A0
T +A0P̄2 −wT g0

T −g0w−wT δgT −δgw+ P̄2(δA+D)T +(δA+D)P̄2 < 0. (3.12)

Using Young’s inequality, we have

P̄2(δA+D)T +(δA+D)P̄2 ≤ (δA+D)(δA+D)T + P̄2
2

−wT δgT −δgw ≤ δgδgT +W TW ≤ µ1(e)I +wT w

where µ1(e) is the singular value of δgδgT .

Define µ2(e), µd(e, t) the singular values of δAδAT , DT D and assume µd is uniformly bounded
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by µ3(e, t), we have

(δA+D)(δA+D)T = δAδAT +DDT +δADT +DδAT ≤ 2(µ2 +µ3)I

As a result, (3.12) becomes

P̄2A0
T +A0P̄2 −wT g0

T −g0w+ P̄2
2
+(µ1 +2µ2 +2µ3)I +wT w < 0. (3.13)

Define µ = µ1 +2µ2 +2µ3, and we case the above inequality in LMI form as

max µ


µI + P̄2A0

T +A0P̄2 −wT g0
T −g0w P̄2 wT

P̄2 −I 0

w 0 −I

< 0

−P̄2 < 0

. (3.14)

The above LMIs can be solved numerically in the following manner. We increase the value of µ

from zero in a fixed step, and check whether there is a feasible solution of LMI (4.27). We repeat

the task until (4.27) has no solution. The final feasible solution is the optimal feedback gains k.

Solving the above LMIs, we can obtain the optimal feedback gain matrix k and the positive

matrix P2 concurrently. The matrix P2 will be used in the following stability analysis. We will

find that the matrix P2 obtained in this way can help us to find a more accurate stability region

compared with a P2 obtained through solving a Lyapunov equation as A0
T P2 +P2A0 =−Q with

an arbitrarily selected positive matrix Q.

Define a domain BR by BR = {e ∈ R2(m+n) | ∥e∥2 < α} and V̇ (e) < 0 in BR −{0}. If the

LMI (3.13) stands for e ∈ R2(m+n), the closed loop system is globally asymptotically stable.

Remark 3.1 If BR ̸=R2(m+n), the system is locally attractive. In (3.13), µ1, µ2 and µ3 are related

with e. With the maximum µ we obtained when solving (4.27), we can explore the region of e to
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satisfy (3.13), which makes V̇ < 0. However, it is too conservative. Therefore, we propose the

following numerical method to explore a less conservative BR. We go back to (3.11), and BR can

be expanded step by step from e = 0 by checking the eigenvalues of the close-loop system matrix

(A− gk)T P2 +P2(A− gk)+P2
2 + µ3I, until an eigenvalue becomes non-negative. A trade-off

between the programming time and accurate of the stability range should be made when we

choose the length of each step.

Remark 3.2 For different size of ϕ , BR is different. As ϕ increases, µ3 increases, hence the

region BR becomes smaller.

Remark 3.3 The region of attraction (ROA) exists and can be estimated [35]. A simple estima-

tion is provided by the set

Ωw = {e ∈ R2(m+n) |V (e)≤ w} (3.15)

when Ωw is bounded and contained in BR. The largest set Ωw that we can determine is by

choosing

w < min
∥e∥=α

V (e) = λmin(P2)α2

The relationship between BR and ROA is shown in Fig. 3.1 (a).

Figure 3.1: Stability Region.

Scenario 2. Assume that ∥ϕ∥ is of lower order in the state such that ∥ϕ∥
/
∥e∥ → 0, ∀t ∈ R+ as
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∥e∥→ ∞ and ∥ϕ∥2 is uniformly bounded by ϕb.

V̇ = eT{(A0 +δA−g0wP2 −δgwP2)
T P2 +P2(A0 +δA−g0wP2 −δgwP2)}e+ϕ T P2e+ eT P2ϕ .

Choose a positive definite matrix Z = β I and solve the following LMI

(A0 +δA−g0wP2 −δgwP2)
T P2 +P2(A0 +δA−g0wP2 −δgwP2)<−Z, (3.16)

we have

V̇ ≤−β∥e∥2
2 +2λmax(P2)∥e∥2 ·ϕb. (3.17)

Apply Young’s inequality, the LMI problem (3.16) changes into

P̄2A0
T +A0P̄2 −wT g0

T −g0w+ P̄2
2
+(µ1 +µ2 +β )I +wT w < 0

Further, check the conservative Lyapunov stable region BR using the similar method as we dis-

cussed for scenario 1. BR can be expanded step by step from states e = 0 by checking the

eigenvalues of the close-loop system matrix (A− gk)T P2 +P2(A− gk)+Z, until an eigenvalue

becomes non-negative. The region of attraction Ωw can also be estimated as (3.15). Denoting

M =

{
e ∈ R2(m+n)

∣∣∣∣ ∥e∥2 >
β

2λmax(P2)ϕb

}
,

We have that V̇ < 0 at the region {M∩BR}.

In this scenario, the closed-loop system may not be asymptotically stable or attractive at

the origin because V̇ > 0 may happen in a neighborhood around the origin. Nevertheless, if

BR is R2(m+n), the closed-loop system is globally uniformly ultimately bounded in the region

{R2(m+n) −M}. If BR is a bounded region, and {R2(m+n) −M} is a subset of Ωw, any state

originating in Ωw will be bounded. BR, ROA and {R2(m+n)−M} are described in Fig. 3.1 (b).

Scenario 3. In general, ∥ϕ∥ may not belong to any of the above cases but be their combinations.

For instance, ∥ϕ∥ ≤ c1 + c2∥e∥+ c3∥e∥2. In such circumstances, we can express the equal and
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higher order part as De. The robust stability can be established through the method introduced

in the scenario 2, while the LMI (3.16) should take D into consideration as is done in (3.11).

3.4 Numerical Validations

Simulations were conducted to verify the effectiveness of the proposed control scheme. For

simulation, fr is modeled as a combination of viscous friction and Coulomb friction, that is,

fr = fvẋ+ fcsgn(ẋ). Similarly, τ f is modeled as τ f = τvθ̇ +τcsgn(θ̇). Both frictions are vanishing

terms and assumed to be unknown. Setpoint control of the wheel position is considered, and the

pre-planned trajectory is as (2.14).

3.4.1 Linear Controller for System Without Uncertainties

First, the 2WMR system is considered in absence of uncertainties, i.e., fr = 0, τ f = 0 and all

the system parameters are known.

Case 1. In this case, we consider that the 2WMR travels on a flat surface, i.e., φ = 0. Initial

states for the 2WMR system are x = [0, 0, 0.1, 0]T . LQR method is used to design the feedback

gains. Choose {q1, q2, q3, q4} = {50, 0.1, 500, 1}, R = 0.8. We obtain the feedback gains as

k = [−7.9057, −10.7948, −29.9739, −3.1183]. The simulation results are shown in Fig. 3.2.

The wheel reaches the desired setpoint smoothly with a small overshoot, the pendulum angular

stays around zero.

Case 2. In this case, the 2WMR traveling on an inclined surface is considered. The slope

angle is known as φ = π
/

15 rad . Initial states for the 2WMR system are x = [0, 0, 0.1, 0]T .

Refer to (2.15), the reference position for the pendulum is θr = 0.2547 rad. Feedback gains for

the linear controller, k = [−7.9057, − 10.9223, − 29.9289, − 3.1491], are obtained based on

LQR method, where Q and R are chosen the same as in Case 1. The simulation results are shown

in Fig. 3.3. The wheel reaches the desired setpoint smoothly with a small overshoot, while the
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Figure 3.2: Case 1: time responses of x, θ and u under LQR based linear control. The 2WMR

travels on a flat surface and the system is in absence of any uncertainties.

pendulum is balanced at the new equilibrium point θe = θr = 0.2547 rad. It is also observed that

the control input is a positive constant when the 2WMR finally balances at the desired position.

The simulation results are consistent with the theoretical analysis in Subsection 2.4.
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Figure 3.3: Case 2: time responses of x, θ and u under LQR based linear control. The 2WMR

travels on an inclined surface with known slope angle φ = π
/

15 and the system is in absence of

any uncertainties.

Case 3. In this case, we consider that the 2WMR travels on a flat surface, i.e., φ = 0. The

LMI method is used to obtain the feedback gains for the linear controller. Numerical method

is applied to solve the LMIs (4.27). µ is increased from 0 with step equals 0.005 until no

feasible solution for (4.27). The maximum µ is 0.42 and the corresponding feedback gains are
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Figure 3.4: Case 3: time responses of x, ẋ, θ and θ̇ under LMI based linear control. The 2WMR

travels on a flat surface and the system is in absence of any uncertainties.
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Figure 3.5: Case 3: time responses of u under LMI based linear control. The 2WMR travels on

a flat surface and the system is in absence of any uncertainties.
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k = 103 × [−0.9416, −1.0350, −1.6971, −0.1804], which are quite large. Instead we choose

a more suitable solution as k = [−22.1976, −25.4919, −45.0711, −5.4233], at µ = 0.37, and

the corresponding solution for P2 is as

P2 =


21.7333 23.0408 37.0954 4.1368

23.0408 26.1911 42.4524 4.7148

37.0954 42.4524 72.2187 7.7847

4.1368 4.7148 7.7847 0.8886

.

By applying the obtained P2 and k and using the proposed method introduced in Remark 3.1,

a conservative region of BR is obtained as BR = {|e3| < 1.48}. By simulations, we find that the

actual working range is even larger. Fig. 3.4 shows the responses of the 2WMR and Fig. 3.5

shows the control profile. The initial states of the 2WMR are x = [0, 0, π/2, 0]T . The pendulum

is stabilized at the upright position within 5 seconds and the 2WMR finally reaches the desired

setpoint. During the time interval t = 0 ∼ 3 s, the control priority is given to achieve the swing

up of the pendulum. It is noted that a large initial control signal is generated and the speed of

the wheels goes up to 8.5582 m/s. However, these responses are unlikely to appear in practice

because the capacity of the actuator is physically limited.

3.4.2 Linear Controller for System With Uncertainties

Case 4. In this case, we consider the 2WMR system in presence of the joint friction τ f . The

LMI based linear controller is applied to control the 2WMR and the feedback gains are chosen

the same as in Case 3. As we have stated in Remark 3.2, the system stability region is related

with the size of ϕ . As the frictions increase, the system response could become unsatisfactory.

Fig. 3.6 shows the responses of the 2WMR when the joint friction is τ f = 0.04θ̇ +0.06sgn(θ̇).

For a clear observation, the tracking error of the wheel position e1 instead of x1 is plotted in the

first graph of Fig. 3.6. We can see that the pendulum can still be stabilized at the upright position

and the tracking error of the wheel position converges to zero finally.
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Next, a larger joint friction, τ f = 0.2θ̇ +0.3sgn(θ̇), is considered existing in the system, and

the simulation results are shown in Fig. 3.7. It is found that the pendulum and the wheel keep

vibrating around the desired positions, which are not satisfactory responses and indicates the

limited robustness of the linear controller.
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Figure 3.6: Case 4: time responses of e1, θ and u under LMI based linear control. In simulations,

system is considered in presence of the joint friction τ f = 0.04θ̇ +0.06sgn(θ̇).

0 10 20 30
−0.04

−0.02

0

0.02

0.04

time (s)

W
h
ee

l
P
o
si

ti
o
n

er
ro

r
e
1

(m
)

 

 

0 10 20 30
−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

time (s)

P
en

d
u
lu

m
T

il
ti

n
g

A
n
g
u
la

r
θ

(r
a
d
)

 

 

0 10 20 30
−0.4

−0.2

0

0.2

0.4

0.6

time (s)

C
o
n
tr

o
l
S
ig

n
a
l
u

(N
·
m

)

Figure 3.7: Case 4: time responses of e1, θ and u under LMI based linear control. In simulations,

system is considered in presence of the joint friction τ f = 0.2θ̇ +0.3sgn(θ̇).

Case 5. In this case, we consider the 2WMR system in presence of the ground friction fr.

The feedback gains for the linear controller are the same as in Case 4. Simulation results are

shown in Fig. 3.8 and Fig. 3.9. The tracking error of the wheel position converges to zero at

t = 20 s and the pendulum is balanced at the upright position. At the time interval 5 ∼ 15 s ,

the 2WMR reaches a steady state that the 2WMR travels with the constant speed 0.1 m/s, the
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pendulum is balanced at θ = 0.0125 rad and the tracking error of the wheel position exists. In

Case 1, the system is in absence of frictions. When the 2WMR travels with a constant speed,

the equilibrium position of the pendulum is θ = 0 and the tracking error of the wheel position is

zero.

The results obtained in Case 5 are consistent with the analysis in Section 2.3.2. When fr ̸= 0,

the equilibrium of the pendulum is not the upright position, but related with the size of the

ground friction. τs = r fr is provided to overcome the effect of the ground friction. Since the

ground friction is unknown to the designer, θr = 0 is used in the controller design, which yields

e3 = θ − θr ̸= 0 and e1 = (τs − k3e3)
/

k1 ̸= 0. Although the ground friction brings a tracking

error of the wheel position during the traveling, the system performance is still satisfactory.

When the 2WMR stops at the desired setpoint at t = 20 s, the ground friction disappears, so does

the tracking error of the wheel position.
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Figure 3.8: Case 5: time responses of x, ẋ, θ and θ̇ under LMI based linear control. In simula-

tions, system is considered in presence of the ground friction fr = 0.2ẋ+0.3sgn(ẋ).
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Figure 3.9: Case 5: time responses e1 and u under LMI based linear control. In simulations,

system is considered in presence of the ground friction fr = 0.2ẋ+0.3sgn(ẋ).

3.5 Implementation and Experiment Results

In simulations, an ideal model of the 2WMR is used and the control input is assumed to be

unlimited. To stabilize the 2WMR system, the feedback gains can be chosen in a wide range as

long as A0−g0k is Hurwitz, and the linear controller with higher gains provides better robustness.

However, considering the existence of mismatch between the real-time system model and the

mathematical model (2.1)(2.2), the feedback gains obtained from simulations may not function

well on the real-time platform, thus need to be adjusted through experimental testings on the

2WMR prototype. For implementation, we consider a simple regulation task that is to balance

the robot at the original position on a flat surface, i.e., xr = 0, vr = 0, and φ = 0.

By applying the linear controller with the feedback gains obtained from simulations, strong

vibrations are observed, which can be explained as the following. For systems having backlash

in the driving mechanism, large feedback gains could easily incur vibrations [68]. In our 2WMR

system, the backlash is produced by the gearbox. To reduce or avoid vibrations, feedback gains

for the velocity terms, k2 and k4, should be minimized [68]. From experimental testing, we

observe that the system vibration reduces significantly as k2 and k4 decrease. It is also found

that large feedback gains are necessarily needed for the position terms, including the tracking
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error of the wheel position and the pendulum angle. If k3 is too small, the pendulum could easily

fall down because the torque generated by the motor is not enough to overcome the effect of the

gravity. If k1 is too small, the position control of the wheels fails that a steady state error exists

in the wheel position response.
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Figure 3.10: Experimental testing results for regulation task: time responses of x, ẋ, θ , θ̇ and u

under the linear controller with feedback gains as k = [−10, −0.5, −35, −1.5]. The 2WMR

is placed on a flat surface.

Fig. 3.10 shows the experimental results for 2WMR system under the linear controller with

feedback gain as k = [−10, −0.5, −35, −1.5], it can be seen that the 2WMR is stabilized at

the first few seconds, however, becomes unstable in 10 seconds. From the response of the wheel

velocity ẋ, it is observed that the maximum speed that the wheels can achieve is around 0.4 m/s.
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Figure 3.11: Experimental testing results for regulation task: time responses of x, ẋ, θ , θ̇ and u

under the linear controller with feedback gains as k = [−20, −1.0, −70, −3]. The 2WMR is

placed on a flat surface.
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To achieve a better performance, larger feedback gains k = [−20, −1, −70, −3] are used.

Each feedback gain is twice as that used in the preceding testing. The experiment results are

shown in Fig. 3.11. Compared with the results in the preceding testing, the responses of the

2WMR are improved. In the time interval 0 ∼ 15 s, the 2WMR can be consistently stabilized

around the initial position. At t = 15 s, we push the 2WMR to the right about 0.22 m away

from the origin, which can be considered as a disturbance to the system. After that, the system

becomes unstable. It can be seen that the linear controller provides limited robustness to the

exceptional disturbance, even when high gains are applied.

Next, balancing of the 2WMR on an inclined surface is considered. First, the control law

in (3.2) is applied with θr = 0 and τs = 0. The experiment results are shown in Fig. 3.12 and

Fig. 3.13. At the beginning, due to the effect of gravity, the 2WMR moves down along the slope.

In about 25 seconds, the 2WMR is stabilized at x = 0.4 m. The pendulum balance position is

θe = 0.135 rad. From Fig. 3.13, it can be seen that after the 2WMR reaches a steady state, the

average value of the control signal is positive.

To eliminate the steady state errors, θr = θe = 0.135 rad and τs = mplgsinθe = 0.2746 N·m

is applied. The results are shown in Fig. 3.14 and Fig. 3.15. The pendulum is initially placed

around the equilibrium position. The 2WMR slightly moves down along the slope and finally is

stabilized around the original position. The pendulum balances around θe = 0.135 rad.

Images of the stabilized 2WMR are shown in Fig. 3.16, we can see that the pendulum bal-

ances at the upright position when it is placed on the flat surface but tilts rightward a bit when

it is balanced on the inclined surface. The experiment results are consistent with the theoretical

analysis in section 2.3.2.



Chapter 3. Design and Investigation of a Linear Controller 43

0 20 40 60
−0.5

−0.4

−0.3

−0.2

−0.1

0
x

(m
)

time (s)
0 20 40 60

−0.05

0

0.05

0.1

0.15

0.2

θ
(r

a
d
)

time (s)

0 20 40 60
−0.4

−0.2

0

0.2

0.4

ẋ
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Figure 3.12: Experimental testing results for regulation task: time responses of x, ẋ, θ and θ̇

under the linear controller (3.2) with τs = 0, θr = 0 and the feedback gains as k = [−20, −

1.0, −70, −3]T . The 2WMR is placed on an inclined surface.
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Figure 3.13: Experimental testing results for regulation task: time responses of u under the linear

controller (3.2) with τs = 0, θr = 0 and the feedback gains as k = [−20, −1.0, −70, −3]. The

2WMR is placed on an inclined surface.
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Figure 3.14: Experimental testing results for regulation task: time responses of x, ẋ, θ and

θ̇ under the linear controller (3.2) with τs = 0.135, θr = 0.2746 and feedback gains as k =

[−20, −1.0, −70, −3]. The 2WMR is placed on an inclined surface.
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Figure 3.15: Experimental testing results for regulation task: time responses of u under the linear

controller with (3.2) with τs = 0.135, θr = 0.2746 and feedback gains as k = [−20, − 1.0, −

70, −3]. The 2WMR is placed on an inclined surface.

Figure 3.16: Images for regulation tasks. The 2WMR balanced on the flat and the inclined

surface.
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3.6 Conclusion and Discussion

The linear controller shows effectiveness in stabilizing the 2WMR. However, the robustness

is limited. Differences between the simulation based validation and experiment based validation

are observed. These discrepancies between the simulated and actual performance can be high-

lighted by following main factors which have not been considered in the simulations: (i) effects

of discretization; (ii) dynamic model of the actuator system; (iii) presence of noises in the sensor

signals; (iii) existence of the gear backlash.



Chapter 4

A Sliding Mode Controller with Linear

Sliding Surface

4.1 Introduction

SMC is a well known robust control approach for system in presence of model uncertainties

and has been studied for control of wheeled inverted pendulum and similar underactuated me-

chanical systems [3, 29, 36, 48, 49, 57, 61, 81]. SMC utilizes a discontinuous control law to drive

system state trajectory into a designer specified sliding surface and to maintain the system state

trajectory on this surface for all the subsequent time. In standard SMC design for full actuated

system, it is straightforward to conclude the convergence of the system states when system is

in the sliding mode. However, for underactuated system, the standard SMC design and stability

analysis are not applicable because the system has fewer inputs than the independent variables

to be controlled. As a result, a nonlinear sliding manifold or in general an internal dynamic must

be stabilized by proper selection of the sliding surface coefficients.

In this chapter, an SMC along with a linear sliding surface is proposed for control of the

2WMR system. The linear sliding surface is constructed by combining the two states of the

wheel and two states of the pendulum in a linear form [3, 29, 48, 49], which brings four coeffi-

46
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cients associated with the four states. The SMC law is derived by using Lyapunov theory, which

guarantees the finite reaching time of the sliding surface and leads to a sliding manifold with all

the matched uncertainties rejected. In the sliding mode, the sliding motion is determined by the

four coefficients, however, in a complex and highly nonlinear form. Therefore, it is difficult to

directly choose or tune the coefficients to achieve the desired sliding motion. To simplify the

sliding surface design, the sliding manifold is linearized around the desired equilibrium point of

the pendulum. Through a mathematical transformation, it is shown that the linearized sliding

manifold is equivalent to a normal linear system that is under a full state linear feedback control

with the freedom in choosing feedback gains. Now the sliding surface design becomes a nominal

linear controller design, which is simple, systematic, and furthermore provides one extra degree

of freedom in control. In this work, this degree of freedom is utilized to implement optimal or

robust linear control techniques. Two alternative methods are adopted for the nominal linear

controller design. One is based on LQR method, which leads to a stable sliding manifold that

also exhibits optimality in terms of fast tracking convergence and low control cost. The other is

based on LMI method and the resulting sliding manifold exhibits robustness with respecting to

various unmatched uncertainties.

The main contributions of this chapter are summarized as follows.

(i) An SMC is proposed to control an underactuated 2WMR system in the presence of both

matched and unmatched uncertainties. The proposed control methods and the obtained results

can be extended to general underactuated systems with or without input coupling;

(ii) To avoid the difficulty in directly choosing the sliding surface coefficients, a new sliding

surface design method is proposed. The sliding surface design is transformed into a nominal

linear control design, which is simple, systematic and furthermore provides one extra degree of

freedom in control. By utilizing the extra degree of freedom, various linear control techniques
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can be incorporated in the SMC design. The resulting sliding manifold exhibits desirable prop-

erties besides stability, such as optimality and robustness. The existing works on SMC design

for underactuated systems only focused on the stabilization of the sliding manifold.

The remainder of this chapter is organized as follows. In Section 4.2, the design of an SMC

with a linear sliding surface is detailed. In Section 4.3, the sliding surface design is discussed. In

Section 4.4, simulation based case studies are presented. Section 4.5 presents the implementation

of the proposed SMC on the 2WMR platform. Conclusions are drawn in Section 4.6.

4.2 Sliding Mode Controller Design

4.2.1 SMC Design for System with Unmodeled Frictions

Recall the error dynamic model of the 2WMR in (2.12),

ė = η(e)+g(e)[u+dm(e, t)]+du(e, t), (4.1)

where η is the system nonlinear term, dm is the lumped matched uncertainties, du is the lumped

unmatched uncertainties.

The following linear sliding surface is proposed

σ = ce = 0 (4.2)

where c is a constant row vector, and cg is uniformly invertible.

The SMC law is

u =−cη +ρsgn(σ)

cg
(4.3)

where sgn(·) is a signum function and

ρ = ρm +ρu +ρ0, (4.4)

with ρm ≥ |cgdm|, ρu ≥ |cdu|, and ρ0 is a positive constant.
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Theorem 4.1 Under the SMC law (4.3), the 2WMR system can reach the defined sliding surface

(4.2) in a finite time and maintain on it afterwards. In the sliding mode, the matched uncertainties

will be completely nullified. Furthermore, we have the freedom to choose the vector c to stabilize

the sliding manifold and meanwhile achieve other desirable properties.

Proo f : The derivative of σ is as

σ̇ = cė = cη + cg(u+dm)+ cdu. (4.5)

A quadratic Lyapunov function candidate is chosen as

V1 =
1
2

σ 2. (4.6)

Differentiating V1 with respect to time t yields

V̇1 = σσ̇

= σ [cη + cg(u+dm)+ cdu] . (4.7)

Substituting the control law (4.3) into (4.7), we have

V̇1 = σ [−ρsgn(σ)− cgdm − cdu]

≤ −ρ0|σ |< 0,

which implies a finite reaching time to the sliding surface, σ = 0, and the reaching time can be

calculated as treach ≤ |σ(0)|
/

ρ0 .

We can see that, under the same ρ0, the reaching time treach reduces as |σ(0)| decreases.

As we stated in Section 2, the absolute values of the initial e1 and e2 are zero by applying the

planned trajectory (2.13)(2.14), which yields a small |σ(0)|. Therefore, the sliding surface can

be reached in a fairly short time.
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After reaching the sliding surface, the system is in sliding mode and σ = 0, σ̇ = 0. Accord-

ingly the equivalent control is derived from σ̇ = 0, as

ueq(t) =−cη
cg

−dm − cdu

cg

Define ed = [e1,d , e2,d , e3,d , e4,d ]
T as the state vector in the sliding mode, and substitute the

above ueq(t) into (4.1), one obtains the sliding manifold as

ėd = η(ed)+g(ed)(−
cη
cg

)+deq (4.8)

where

deq =

(
I − gc

cg

)
du. (4.9)

In the sliding manifold, the matched uncertainty dm is completely nullified. Furthermore, we

have the freedom to choose the vector c to stabilize the sliding manifold and meanwhile achieve

other desirable properties, such as robustness, optimality, etc. Q.E.D.

4.2.2 SMC Design for System with Parameter Variations

From the practical point of view, the load of the pendulum mp and slope angle of the traveling

surface φ are most likely to vary. The system dynamic model with parameter uncertainties is

expressed as:

ė = η(e)+∆η(e,p)+ [g(e)+∆g(e,p)](dm +u)+du(e, t), (4.10)

where η and g are known nominal parts, p represents the uncertain parameters, ∆η and ∆g

are uncertain parts. Define constants mp,0, φ0 the estimation values of mp and φ , respectively.

The known parts are η=η(e,mp,0,φ0) and g=g(e,mp,0,φ0), respectively. The unknown parts are

∆η = η(e,mp,φ)−η(e,mp,0,φ0) and ∆g = g(e,mp,φ)−g(e,mp,0,φ0), respectively.

The SMC in (4.3) is applied with the following switching gain

ρ =
1
εb
(ρm +ρu +ρ0), (4.11)
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where

ρm ≥ |c(g+∆g)dm| , ρu ≥ |cdu|+ |c∆η |+
∣∣∣∣c∆gcη

cg

∣∣∣∣ , and ρ0 > 0.

Theorem 4.2 For system with parameter uncertainties, under the SMC law (4.3) with the switch-

ing gain (4.11), the 2WMR system can reach the sliding surface (4.2) in a finite time and maintain

on it afterwards, under the condition |c∆g(cg)−1|< 1− εb (εb > 0). In the sliding mode, the de-

sirable properties stated in Theorem 4.1 also hold.

Proo f : Differentiating the sliding surface (4.2) with respect to time using (4.10) one obtains

σ̇(t) = cė = c(η +∆η)+ c(g+∆g)(u+dm)+ cdu. (4.12)

Substituting the SMC law (4.3) into the above we have

σ̇(t) = c(η +∆η)+ c(g+∆g)
[
−cη +ρsgn(σ)

cg
+dm

]
+ cdu

= −ρsgn(σ)− c∆g
cg

ρsgn(σ)+ c(g+∆g)dm + c(du +∆η)− c∆g
cg

cη .

Differentiating the non-negative quadratic function in (4.6) with respect to time t yields

V̇1 = σσ̇

= σ
[
−ρsgn(σ)− c∆g

cg
ρsgn(σ)+ c(g+∆g)dm + c(du +∆η)− c∆g

cg
cη
]

≤ −ρ|σ |+ρ|σ | ·
∣∣∣∣c∆g

cg

∣∣∣∣+ |σc(g+∆g)dm|+ |σcdu|+ |σc∆η |+
∣∣∣∣c∆g

cg
cησ

∣∣∣∣
= −|σ |

(
ρ −

∣∣∣∣c∆g
cg

∣∣∣∣ρ −|c(g+∆g)dm|− |cdu|− |c∆η |−
∣∣∣∣c∆g

cg
cη
∣∣∣∣)

≤ −|σ |
(

εbρ −|c(g+∆g)dm|− |cdu|− |c∆η |−
∣∣∣∣c∆g

cg
cη
∣∣∣∣) .

Substituting the switching gain in (4.11) to the above inequality, we have

V̇1 ≤−ρ0|σ |< 0.



Chapter 4. A Sliding Mode Controller with Linear Sliding Surface 52

Similarly, we conclude that the sliding surface can be reached in a finite time as treach ≤ |σ(0)|
/

ρ0 .

In the sliding mode, the equivalent control is derived from σ̇ = 0, which is

ueq(t) =−c(η +∆η)

c(g+∆g)
−dm − cdu

c(g+∆g)
.

Substituting the above ueq(t) into (4.10), one obtains the sliding manifold as (4.8) with

deq =

[
I − (g+∆g)c

c(g+∆g)

](
du +∆ηu +g

cη
cg

)
. (4.13)

In the sliding manifold, the matched uncertainty dm is completely nullified. Sliding motion is

determined by the vector c. Q.E.D.

4.3 Sliding Surface Design

Under the proposed SMC in (4.3), the 2WMR system can reach the switching surface in a

finite time. When the system is in sliding mode, from (4.8), we can see that the sliding motion

is directly determined by the vector c. In [29, 48, 49], the stabilization of the sliding manifold

is achieved by choosing the switching surface coefficients according to several established con-

straints. However, since the vector c affects the system performance in a complicated manner, it

is hard to predict the system responses from the information of c, which is the main drawback of

the existing sliding surface designs. Another major drawback or difficulty in the sliding surface

design is the non-affine structure of the sliding manifold in the coefficients c, as shown in (4.8).

To avoid the drawbacks, in this work, the sliding surface coefficients are determined indirectly,

by transforming the coefficients determination problem into a nominal linear controller design.

Hence the sliding surface design becomes simple, systematic, and furthermore provides one ex-

tra degree of freedom in control. Feedback gains for the nominal controller can be determined

through various systematic linear control design methods, which makes the system responses

predictable. In the transformation, relations are established between the sliding surface coeffi-
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cients and the feedback gains. With the obtained feedback gains, the sliding surface coefficients

can be determined.

4.3.1 Problem Transformation

We linearize the sliding manifold (4.8) around the desired equilibrium point by assuming

e3,d ≈ 0, sine3,d ≈ e3,d and e4,d
2 ≈ 0. The obtained linearized sliding manifold is

ėd =


0 1 0 0

0 0 a23 0

0 0 0 1

0 0 a43 0


︸ ︷︷ ︸

A

ed +


0

g1,0

0

g2,0


︸ ︷︷ ︸

g0

u0 +

(
I − g0c

cg0

)
du︸ ︷︷ ︸

deq,0

, (4.14)

with

a23 =−
b0mplgcosθr

ac−b0
2 ,

a43 =
amplgcosθr

ac−b0
2 ,

g1,0 =
c

r(ac−b0
2)

+
b0

ac−b0
2 ,

g2,0 =
−b0

r(ac−b0
2)

− a
ac−b0

2 ,

b0 = mpl cos(φ +θr),

and the system control input is as

u0 =− c1

c2g1,0 + c4g2,0
e2,d −

c2a23 + c4a43

c2g1,0 + c4g2,0
e3,d −

c3

c2g1,0 + c4g2,0
e4,d . (4.15)

When the 2WMR system is in the sliding mode, we have σ = c1e1,d +c2e2,d +c3e3,d +c4e4,d = 0,

thus,

e1,d =−c2

c1
e2,d −

c3

c1
e3,d −

c4

c1
e4,d . (4.16)
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Let

c1

c2g1,0 + c4g2,0
= k2 −

k1

c1
c2, (4.17)

c2a23 + c4a43

c2g1,0 + c4g2,0
= k3 −

k1

c1
c3, (4.18)

c3

c2g1,0 + c4g2,0
= k4 −

k1

c1
c4, (4.19)

the system control input (4.15) can be rewritten as

u0 = −(k2 −
k1

c1
c2)e2,d − (k3 −

k1

c1
c3)e3,d − (k4 −

k1

c1
c4)e4,d

= k1(
c2

c1
e2,d +

c3

c1
e3,d +

c4

c1
e4,d)− k2e2,d − k3e3,d − k4e4,d

= −k1e1,d − k2e2,d − k3e3,d − k4e4,d . (4.20)

To stabilize the nominal linear system, i.e., the linearized sliding manifold (4.14), various lin-

ear controller design methods could be applied to obtain the feedback gains k = [k1, k2, k3, k4],

and c1 ∼ c4 can be solved from relations (4.17)∼(4.19).

Remark 4.1 The four coefficients c1 ∼ c4 are constrained by three equations (4.17)∼(4.19),

therefore there are innumerable solutions of c for a given k. However, from (4.17)∼(4.19), it can

be concluded that the ratios between c1 ∼ c4 are fixed. In this work, we choose c1 be the free

parameter, then c2 ∼ c4 can be decided from (4.17)∼(4.19) once c1 is set.

4.3.2 Nominal Linear Controller Design

Two alternative linear control design methods are introduced in this work.

When the 2WMR travels in a safe environment, a LQR based optimal linear controller is

adopted to achieve an stable and optimal sliding manifold. The optimal control gain is as

k = R−1g0
T P1,

where P1 is the solution of the following Riccati equation

P1A+AT P1 −P1g0R−1g0
T P1 +Q = 0.
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where Q is the weight matrix for the error states e and R is the weighting factor for the control

input. The details of the LQR based optimal design has been discussed in Section 3.3, thus is

omitted here.

When the 2WMR travels in a severe environment with various uncertainties, robustness of the

system is the main concern, thus a LMI based robust design is employed to address unmatched

uncertainties.

Let k = wP, we have u0 =−wPe. The nominal linear system (4.14) becomes

ėd = Aed −g0wPed +deq,0. (4.21)

Define a Lyapunov function V2 = eT
d Ped , differentiating V2 with respect to t yields

V̇2 = ėT
d Ped + eT

d Pėd

= (Aed −g0wPed +deq,0)
T Ped + eT

d P{Aed −g0wPed +deq,0} (4.22)

= eT
d [(A−g0wP)T P+P(A−g0wP)]ed +dT

eq,0Ped + eT
d Pdeq,0. (4.23)

For deq,0 = 0, to make V̇2 < 0, we have the following sufficient condition

(A−g0wP)T P+P(A−g0wP)+µI < 0, (4.24)

with µ ≥ 0.

Assume the unmatched uncertainties deq,0 is bounded by β1∥ed∥+β2 with (β1, β2 > 0), we have

dT
eq,0Ped + eT

d Pdeq,0 ≤ 2λmax(P)(β1∥ed∥2
2 +β2∥ed∥2), (4.25)

thus

V̇2 <−µ∥ed∥2
2 +2λmax(P)(β1∥ed∥2

2 +β2∥ed∥2).

For system with only vanishing unmatched uncertainties, i.e., β1 ̸= 0 and β2 = 0, we have V̇ <

0 if β1 < µ
/

2λmax(P) . It can be concluded that the desired equilibrium ed = 0 is locally asymp-

totically stable. For system with both vanishing and non-vanishing unmatched uncertainties, i.e.,
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β1 ̸= 0 and β2 ̸= 0, we have V̇2 is negative outside the set
{
∥ed∥ ≤ 2β2λmax(P)

/
[µ −2β1λmax(P)]

}
,

under the condition that β1 < µ
/

2λmax(P) . We can conclude that ∥ed∥ is ultimately bounded by

∥ed∥ ≤
2β2λmax(P)

µ −2β1λmax(P)
=

β2
µ

2λmax(P)
−β1

.

Based on the above analysis, we seek for solutions of w and P which can maximize µ
/

2λmax(P)

such that the system could be robust against unmatched uncertainties, meanwhile the ultimate

bound of ∥ed∥ can be minimized.

Pre and post multiplying (4.24) by P−1, and letting P̄ = P−1, we have

P̄AT +AP̄−wT g0
T −g0w+µP̄2 < 0, (4.26)

which can be casted in the LMI form as

max
µ

2λmax(P)

 P̄AT +AP̄−wT g0
T −g0w √µP̄

√µP̄ −I

< 0

−P̄ < 0

. (4.27)

The above LMIs can be solved numerically.

4.4 Numerical Validations and Discussions

For simulation, fr is modeled as fr = fvẋ+ fcsgn(ẋ), where fv = 0.2 and fc = 0.3. τ f is

modeled as τ f = τvθ̇ + τcsgn(θ̇), where τv = 0.2 and τc = 0.3. Both frictions are vanishing

terms and assumed to be unknown. From the dynamic equation (2.12), it is evident that τ f is the

matched uncertainty to the control input while fr is the unmatched uncertainty. Initial states for

the 2WMR system are x = [0,0,0.1,0]T .

Case 1. In this case, a linear controller based on LQR method, is applied to the 2WMR

system with and without the joint friction τ f . The 2WMR travels on a flat surface. Choose
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Figure 4.1: Case 1: time responses of x, θ and u under linear controller based on LQR. The

2WMR travels on a flat surface. System with and without the joint friction τ f are considered.

{q1, q2, q3, q4}= {50, 0.1, 500, 1}, R= 0.8. We obtain the feedback gains as k= [−7.9057, −

10.7948, − 29.9739, − 3.1183]. The results are shown in Fig. 4.1. For the 2WMR system

without the joint friction, the LQR based linear controller shows effectiveness that the wheel

reaches the desired setpoint smoothly with a small overshoot, and the pendulum angle stays

around zero. However, the LQR based linear controller can not function well when the joint

friction exists in the 2WMR system. The pendulum and the wheel keep vibrating around the

desired positions, which are not satisfactory responses.

Case 2. In this case, we consider only the joint friction τ f exists in the 2WMR system, which

is a matched uncertainty. The 2WMR travels on a flat surface. SMC is applied with parameters

designed as the following. Refer to (2.15), the reference position for the pendulum is θr = 0

since φ = 0, the switching gain is ρ = 0.1+ |cg|(0.3+0.2|x4|). Feedback gains for the nominal

controller u0 are obtained based on LQR method.

(a). To compare the 2WMR responses under the SMC and the LQR based linear controller,

the weighting matrices Q and R are chosen the same as in Case 1. The feedback gains are

obtained as k= [−7.9057, −10.7948, −29.9739, −3.1183]. Set c1 = 1, solving (4.17)∼(4.19)

yields [c2, c3, c4] = [1.330530, 3.454665, 0.2738175]. The results are shown in Fig. 4.2. The
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2WMR reaches the desired setpoint smoothly and stays still afterwards, the pendulum is balanced

at θe = 0 and the control signal shows switching behavior. The sliding surface is reached at

t = 0.87 s, which is a fairly short time.

Comparing the results in Case 2 (a) with the results in Case 1 when τ f = 0, the performances

are almost the same in terms of tracking error profiles and control profiles. However, in Case 1

the control system is directly designed by LQR, whereas in Case 2 (a), the control system is first

designed by SMC in order to eliminate the effect caused by the matched uncertainty, and then

the sliding surface is designed by LQR for the sliding manifold. Thus our new SMC approach

achieves both robust and optimal properties.
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Figure 4.2: Case 2 (a): time responses of x, θ , u and σ under SMC. The 2WMR travels on a flat

surface. Only matched uncertainty, the joint friction τ f = 0.2θ̇ +0.3sgn(θ̇), exists in the system.

R = 0.8 is used in SMC design.

(b). To illustrate our discussion in Section 4 that the selection of the weighting matrices

directly affects the system performance, we select the weighting matrix Q to be the same as in

Case 2 (a), while the weighting factor for the control input to be R = 0.08, which is smaller

than the one used in Case 2 (a). The obtained feedback gains are k = [−25.0000, −33.7972, −

90.3320, −8.6977], which are larger than in Case 2 (a). Let c1 = 1, solving (4.17)∼(4.19) yields

[c2, c3, c4] = [1.307674, 3.338392, 0.200306]. The results are shown in Fig. 4.3. The 2WMR

is stabilized and reached the desired setpoint. We can see the switching amplitude of the control
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Figure 4.3: Case 2 (b): time responses of x, θ , u and σ under SMC. The 2WMR travels on a flat

surface. Only matched uncertainty, the joint friction τ f = 0.2θ̇ +0.3sgn(θ̇), exists in the system.

R = 0.08 is used in SMC design.

signal in Case 2 (b) is much larger than the one in Case 2 (a), which is due to the higher feedback

gains used for the nominal linear controller in Case 2 (b). The results are consistent with the

discussions in Section 4.

It is noticeable that the vector c used in Case 2 (b) is quite close to the one in Case 2 (a). In

other words, a minor change of the vector c might lead to large changes in the system responses

and the changes are unpredictable, which indicates the difficulty in tuning the vector c directly

to achieve desired responses and shows the drawback of the the existing sliding surface designs.

With our proposed design method, the sliding surface coefficients are determined indirectly. The

sliding manifold is determined by the feedback gains of the nominal linear controller, which can

be tuned in a systematic way. For instance, in the LQR design, we can choose more of control

penalty in the weighting factor for the control input, so as to prevent overlarge control signals.

The advantage of our proposed method is immediately obvious.

Case 3. In this case, we consider both frictions, τ f and fr, exist in the 2WMR system, i.e., the

system is in the presence of both matched and unmatched uncertainties. The 2WMR travels on a

flat surface. SMC is applied with ρ = 0.1+ |cg|(0.3+0.2|x4|)+ |(−cc2+bc4) / (ac−b2)| ·(0.3+

0.2|x2|), and all other parameters the same as in Case 2. The results are shown in Fig. 4.4. The
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2WMR reaches the desired setpoint and the pendulum is finally balanced at the upright position,

i.e., θe = 0, which indicates that the proposed SMC is also robust to unmatched uncertainties.
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Figure 4.4: Case 3: time responses of x, θ , u and σ under SMC. The 2WMR travels on a flat

surface. Both matched uncertainty, the joint friction τ f = 0.2θ̇ + 0.3sgn(θ̇), and unmatched

uncertainty, the ground friction fr = 0.2ẋ+0.3sgn(ẋ), exist in the system.
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Figure 4.5: Case 4: time responses of x, θ , u and σ under SMC. The 2WMR travels on an

inclined surface with known slope angle φ = π
/

15. Both matched uncertainty, the joint friction

τ f = 0.2θ̇ + 0.3sgn(θ̇), and unmatched uncertainty, the ground friction fr = 0.2ẋ+ 0.3sgn(ẋ),

exist in the system.

Case 4. In this case, the 2WMR traveling on an inclined surface is considered. The s-

lope angle is known as φ = π
/

15 rad . Both frictions τ f and fr exist in the system. SM-

C is applied with parameters designed as the following. Refer to (2.15), the reference po-

sition for the pendulum is θr = 0.2547 rad. Feedback gains k = [−7.9057, − 10.7535, −

30.0154, − 3.1275] for the nominal controller u0 are obtained based on LQR method, where
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Q and R are chosen the same as in Case 1. Next, let c1 = 1, solving (4.17)∼(4.19) yields

[c2, c3, c4] = [1.327784, 3.470293, 0.283022]. The switching gain is the same as in Case 3.

The results are shown in Fig. 4.5, the unicycle reaches the desired setpoint, while the pendu-

lum is balanced at the new equilibrium point θe = θr = 0.2547 rad. The simulation results are

consistent with the theoretical analysis in Subsection 2.4.
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Figure 4.6: Case 5: time responses of x, θ , u and σ under SMC. The 2WMR travels on an

inclined surface with unknown slope angle. Both matched uncertainty, the joint friction τ f =

0.2θ̇ +0.3sgn(θ̇), and unmatched uncertainty, the ground friction fr = 0.2ẋ+0.3sgn(ẋ) exist in

the system.

Case 5. In this case, the 2WMR travels on the same surface as in Case 4. However, the s-

lope angle is assumed to be unknown to the designer, thus φ0 = 0 and θr = 0 are used in the

controller design. Both frictions τ f and fr exist in the system. SMC is applied. Feedback

gains k = [−7.4802, − 11.2445, − 26.9865, − 5.5473] for the nominal controller u0 are ob-

tained based on LMI method. Next, let c1 = 1, solving (4.17)∼(4.19) yields [c2, c3, c4] =

[1.241766, 2.113164, 0.1890710]. The results are shown in Fig. 4.6. The pendulum is bal-

anced at the new balanced position θe, which is around θ = 0.2547 rad, thus steady state error

for e3 exist as e3,s = θe − θr ̸= 0. From σ = ce = 0, steady-state error for e1 also exist as

e1,s = −c3e3,s / c1 = −0.5382 m, which meets the simulation results. Comparing the results in

Case 4 and Case 5, we can see the necessity of adjusting the reference position of pendulum
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when the 2WMR travels on an inclined surface. θr cannot be computed according to (2.15) if

system parameters involved are unknown. When task repeats, we obtain θr = θe, which can be

incorporated in the controller design to eliminate steady-state errors.

4.5 Implementation and Experiment Results

4.5.1 Regulation Task

For implementation, we start with the regulation control of the 2WMR. The robot is placed

on a flat surface. SMC is applied. The sliding surface coefficients are chosen according to the

results obtained in simulations, as c = 0.25× [1, 1.33, 3.45, 0.27]. However, strong vibrations

are observed in the system responses. As we explained in the previous chapter, the vibration

is mainly due to the existence of backlash. To reduce the vibration, the feedback gains for the

velocity terms should be reduced. After adjustment, satisfactory results are obtained and the

experiment results are shown in Fig. 4.7 and Fig. 4.8. By applying the SMC, the 2WMR stays

around the original place and the pendulum is balanced around θ = 0. The value of the defined

sliding surface σ keeps around zero.
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Figure 4.7: Experimental testing results for regulation task: time responses of x, θ , ẋ and θ̇ under

SMC. The 2WMR is placed on flat surface.
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Figure 4.8: Experimental testing results for regulation task: time responses of u and σ under

SMC. The 2WMR is placed on flat surface.
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Figure 4.9: Experimental testing results for regulation task: time responses of x, θ , ẋ and θ̇ under

SMC. The 2WMR is placed on flat surface. A disturbance is added to the system at t = 10 s.

Similarly as we did in the previous chapter, a testing is conducted to check the robustness of

the SMC. As shown in Fig. 4.9, we push the 2WMR to the right about 0.22 m at t = 10 s, which

can be considered as an exceptional disturbance to the system. We can see that the 2WMR is

finally stabilized at the initial position even a disturbance is added to the system, which indicates

that SMC provides a better robustness than the linear controller. However, the transient response

is still not satisfactory that the response of the wheel position shows oscillation and the settling
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time is around 30 seconds. The reason is that when the exceptional disturbance is added to the

system, the system no long stays on the sliding surface. In such a situation, the system responses

are hardly predictable or even may become unstable.

4.5.2 Reaching a Setpoint

We consider the mobile robot travels on a flat surface, i.e., φ = 0. The reference trajectory

for the 2WMR is the same as in simulations. SMC is applied and the sliding surface coefficients

are chosen the same as for the regulation task. Experiment results are shown in Fig. 4.10 and

Fig. 4.11. The 2WMR reached the desired setpoint x = 1.5 m and stays there afterwards. The

pendulum is stabilized around the upright position. SMC shows effectiveness for setpoint control

of the 2WMR system.
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Figure 4.10: Experimental testing results for setpoint task: time responses of x, θ , ẋ and θ̇ under

SMC. The 2WMR is placed on a flat surface. The reference trajectory (2.14) is applied.
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Figure 4.11: Experimental testing results for setpoint task: time responses of u and σ under

SMC. The 2WMR is placed on a flat surface. The reference trajectory (2.14) is applied.

4.6 Conclusion

In this chapter, a novel design of SMC is presented. First, a linear sliding surface and the

SMC are introduced. The system reaches the sliding surface in a finite time under the proposed

SMC. Next, after the system reaches the sliding surface, the sliding surface design is discussed,

which mainly focuses on choosing the sliding surface coefficients to stabilize the sliding mani-

fold. To avoid the complexity on tuning the coefficients directly, we transform the problem into

a simple nominal linear controller design problem, which not only simplifies the tuning process,

but also provides one extra degree of freedom in control. By utilizing the extra degree of free-

dom, optimal and robust linear control techniques are incorporated in the SMC design. Intensive

simulations and experiment testings are conducted to verify the effectiveness of the proposed

SMC and satisfactory results are achieved.



Chapter 5

A Sliding Mode Controller With

Integral Sliding Surface

5.1 Introduction

Design of SMC with linear sliding surface was discussed in the previous chapter. In this

chapter, we propose an ISMC for the 2WMR. Integral-type sliding mode designs are proposed

for controlling systems with both matched and unmatched uncertainties [10, 11, 76]. The sliding

mode exists from the very beginning, therefore the system is more robust against perturbations

than the other SMC systems with reaching phase. The ISMC is constructed by a nominal control

part and a switching term. With the switching term, the matched uncertainties can be perfectly

rejected. With the freedom to design a nominal control for the sliding manifold, ISMC can

be easily incorporated with other robust control methods, such as LMI, H∞, LQR, etc., to deal

with the unmatched uncertainties. Furthermore, ISMC provides one more degree of choosing an

appropriate projection matrix to reduce the effect of the unmatched uncertainties. In [11], the

selection of the projection matrix is discussed for systems with constant input matrix.

First, we define a integral-type sliding surface and derive the control law by using Lyapunov

theory. The sliding mode exists from the beginning and will be maintained. The resulting slid-

66
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ing manifold is still underactuated, the resulting sliding manifold includes unmatched nonlinear

terms and uncertainties, as well as a nominal controller. Considering the feasibility and simple-

ness in real implementation, a linear controller is adopted as the nominal controller. It is found

that the linear controller is adequate to stabilize the sliding manifold around the equilibrium.

For setpoint control, undesired motions are observed in the real implementation, such as

traveling backward or stopping for a short time during the traveling. To improve the system

performance and obtain a smoother response, an algorithm is proposed to modify the pre-planned

reference trajectory (2.14). With applying the modified reference trajectory, the 2WMR not only

travels more smoothly but also arrives the setpoint in a shorter time. Steady state of the system is

analyzed and zero steady state error for the wheel position is achieved by adding a compensation

term in the nominal controller design. The value of the compensation term is obtained through

a data-based approach and avoids the need of precise model information, which is impossible to

obtain in practical.

The remainder of this chapter is organized as follows. In Section 5.2, the ISMC design is

detailed. In Section 5.3, intensive simulation investigations are conducted to verify the effective-

ness of the proposed ISMC. In Section 5.4, the implementation of ISMC on the real platform is

given. Conclusions are drawn in Section 5.5.

5.2 Integral Sliding Mode Control Design

The following nonlinear integral-type sliding surface is proposed in [10] to handle systems

with matched and unmatched uncertainties,

σ(e, t) = se(t)− se(t0)−
∫ t

t0
[sη(e)+ sg(e)κ(x, t)]dτ = 0 (5.1)

where κ(e, t) is a nominal control, s is a 4× 1 projection vector with freedom to design, and

sg(e) ̸= 0. Here we define s = [s1, s2, s3, s4], to satisfy sg(e) ̸= 0, we have cs2 −bs4 ̸= 0.
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5.2.1 ISMC for System with Unmodeled frictions

First, we investigate the effect of frictions to the 2WMR system. As we stated in Chap-

ter 4, the joint friction τ f is a matched uncertainty, while the ground friction fr is an unmatched

uncertainty. Recall the error dynamic model of the 2WMR in (2.12),

ė = η(e)+g(e)[u+dm(e, t)]+du(e, t), (5.2)

where η is the system nonlinear term, dm is the lumped matched uncertainties, du is the lumped

unmatched uncertainties.

The control law is designed as

u(t) = κ(e, t)−ρ(e, t)sgn(sgσ) (5.3)

where the switching gain function is

ρ = ρm +ρu +ρ0, (5.4)

ρm is the upper bound of the matched uncertainty dm, ρu is the upper bound of {sg}−1 sdu, ρ0 is

a positive constant.

Theorem 5.1 With the nonlinear integral-type sliding surface (5.1) and the controller (5.3),

the global attractiveness of the sliding manifold is achieved. In the sliding mode, the matched

uncertainties will be completely nullified. Further, the influence of unmatched uncertainties can

be reduced with an extra degree of freedom provided by the vector s.

Proo f : Differentiating the sliding surface (5.1) with respect to time t using (5.2) one obtains

σ̇(t) = sė(t)− sη(e)− sg(e)κ(e) = sg(dm +
sdu

sg
+u−κ). (5.5)

We choose a non-negative quadratic function V = σ 2
/

2. Differentiating V with respect to time

t yields

V̇ = σσ̇ .
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Substituting σ̇ in equation (5.5) into the above we have

V̇ = σsg
(

dm +
sdu

sg
+u−κ

)
. (5.6)

Substituting the ISMC law (5.3) into the above we obtain

V̇ = σsg
[

dm +
sdu

sg
−ρsgn(sgσ)

]
≤ |σsg|

(
|dm|+

∣∣∣∣sdu

sg

∣∣∣∣−ρ
)

≤ −ρ0|σsg|< 0.

Since σ(e(t0), t0) = 0, we can conclude that the controller (5.3) using the gain function (5.4)

guarantees that the sliding mode σ = 0 can be maintained ∀t ∈ [t0,∞).

In the sliding mode, σ(t) = 0, σ̇(t) = 0, and define ed as the state vector in the sliding mode.

The equivalent control is derived from σ̇ = 0, which is

ueq(t) = κ −dm − sdu

sg
.

Substituting the above ueq(t) into (5.2), one obtains the sliding manifold

ėd(t) = η(ed)+g(ed)κ(ed)+δ , (5.7)

where the matched uncertainty dm is completely nullified, and

δ =


0

δ1

0

δ2

=

(
I − gs

sg

)
du =

g2du1 −g1du2

s2g1 + s4g2


0

s4

0

−s2

 . (5.8)

We can choose s2 and s4 to minimize the effect of the unmatched uncertainties δ in the sliding

manifold. Referring to (5.8), when s2 = 0 and s4 ̸= 0, the unmatched uncertainties in the sliding

manifold only exist in the wheel subsystem, when s4 = 0 and s2 ̸= 0, the unmatched uncertainties

only exist in the pendulum subsystem. Since the pendulum subsystem is much more sensitive to

uncertainties than the wheel subsystem, it is preferred to choose s = [0, 0, 0, s4] and s4 ̸= 0.

Q.E.D.
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5.2.2 ISMC for System with Parameter Uncertainties

Similarly as in Chapter 4, we consider that the parameter uncertainties exist in the 2WMR

system. Recall the system dynamic model with parameter uncertainties, as in Section 4.2.2,

ė = η(e)+ [g(e)+∆g(e,p)](dm +u)+du +∆η(e,p), (5.9)

where η and g are known nominal parts, p represents the uncertain parameters, ∆η and ∆g are

uncertain parts. Define constants mp,0, φ0 the estimation value of mp and φ , the known parts are

η=η(e,mp,0,φ0), g=g(e,mp,0,φ0). The unknown parts are ∆η = η(e,mp,φ)−η(e,mp,0,φ0),

and ∆g = g(e,mp,φ)−g(e,mp,0,φ0).

Remark 5.1 The sliding surface (5.1) is applied. The projection vector s could be chosen to

make the sign of s(g+∆g) be available and fixed. For example, with choosing s = [0, 0, 0, s4],

we have sgn[s(g+∆g)] = sgn[s4 ·g2(e,mp,φ)] =−sgn(s4) since g2(e,mp,φ)< 0.

The ISMC in (5.3) is applied and the switching gain function is as (5.4) with

ρm ≥ |dm| , (5.10)

ρu ≥
∣∣∣∣ sdu

s(g+∆g)

∣∣∣∣+ ∣∣∣∣ s∆η
s(g+∆g)

∣∣∣∣+ ∣∣∣∣ s∆gκ
s(g+∆g)

∣∣∣∣ . (5.11)

Theorem 5.2 For system with parameter uncertainties, the sliding surface (5.1) and the ISMC

(5.3) with a modified switching gain guarantee the existence of the sliding mode. In the sliding

mode, the desirable properties stated in Theorem 5.1 also hold.

Proo f : Differentiating the sliding surface (5.1) with respect to time using (5.9) one obtains

σ̇(t) = sė(t)− sη(e)− sg(e)κ(e)

= [s(g+∆g)]
{

s(du +∆η)− sgκ
s(g+∆g)

+u+dm

}
. (5.12)
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We choose a non-negative quadratic function V = σ 2
/

2. Differentiating V with respect to time

t yields

V̇ = σσ̇

= σ [s(g+∆g)]
{

s(du +∆η)− sgκ
s(g+∆g)

+u+dm

}
.

Substituting the SMC law (5.3) with the modified gains (5.10)(5.11) into the above we obtains

V̇ = σ [s(g+∆g)]
{

dm +
sdu + s∆η
s(g+∆g)

+
s∆gκ

s(g+∆g)
−ρsgn(sgσ)

}
≤ |σs(g+∆g)|

{
|dm|+

∣∣∣∣ sdu

s(g+∆g)

∣∣∣∣ + ∣∣∣∣ s∆η
s(g+∆g)

∣∣∣∣+ ∣∣∣∣ s∆gκ
s(g+∆g)

∣∣∣∣−ρ
}

≤ −ρ0|σs(g+∆g)|< 0.

Since σ(x(t0), t0) = 0, we can conclude that the sliding mode σ = 0 can be maintained ∀t ∈

[t0,∞).

In the sliding mode, the equivalent control is derived from σ̇ = 0, which is

ueq(t) =
sg

s(g+∆g)
κ −dm − s(du +∆η)

s(g+∆g)
.

Substituting the above ueq(t) into (5.9), one obtains the sliding manifold as (5.7) with

δ =

[
I − (g+∆g)s

s(g+∆g)

]
[∆η +du −gκ]. (5.13)

Q.E.D.

5.2.3 Linear Controller Design for the Sliding Manifold

The obtained sliding manifold (5.7) is still nonlinear and underactuated with the nominal

controller κ to be further designed. Considering the feasibility and simpleness in real implemen-

tation, a linear controller is employed, as

κ =−ke, (5.14)
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where k = [k1, k2, k3, k4].

The methods introduced in Chapter 3 can be directly applied to obtain the feedback gains for

the linear controller.

5.2.4 Steady State Analysis

We define the steady state error vector as es = [e1,s, e2,s, e3,s, e4,s]
T . When the 2WMR

system enters steady state, from (2.6), we have the equilibrium point of the pendulum as

θe = arcsin
r sinφ(mp +mw)g+ fr

mplg
. (5.15)

In steady state, e2,s = 0, e4,s = 0, the nominal controller (5.14) becomes

κ =−k1e1,s − k3e3,s. (5.16)

Substituting the above equation to the sliding manifold (5.7), we have

η1 +g1(−k1e1,s − k3e3,s)+δ1 = 0, (5.17)

η2 +g2(−k1e1,s − k3e3,s)+δ2 = 0. (5.18)

Refer to (5.8), for s = [0, 0, 0, s4], we have δ2 = 0 in (5.18), thus

e1,s =
η2

g2k1
− k3e3,s

k1
, (5.19)

where

η2 =
amplgsinθe

ac−b2 +
b(mp +mw)gsinφ

ac−b2 , (5.20)

g2 =
1
r

−b
ac−b2 +

−a
ac−b2 , (5.21)

with b = mpl cos(θe +φ).

It is reasonable to choose θr = θe which makes e3,s = 0. The steady state error for the wheel

position (5.19) becomes as

e1,s =
η2

g2k1
. (5.22)
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Refer to (5.20), when θe ̸= 0 or φ ̸= 0, we have η2 ̸= 0, yields e1,s ̸= 0, which is undesirable.

Generally integral control could be applied to deal with the steady state error. However, con-

sidering that various time-varying measurement noise or disturbances exist in the real testing

environment, the integral control may not function well.

In this work, to achieve a satisfying response with zero steady state error for the wheel

position, i.e., e1,s = 0, we add a compensation term βc to the nominal controller in (5.14), the

new nominal controller is as

κ =−ke+βc, (5.23)

in steady state,

κ =−k1e1,s − k3e3,s +βc. (5.24)

Substituting the above equation to the sliding manifold (5.7) and applying e3,s = 0, now we have

e1,s =
η2 +g2βc

g2k1
. (5.25)

To make e1,s = 0, we have

βc =−η2

g2
. (5.26)

Refer to (5.15) and (5.26), it is noted that the accurate model information is required to obtain

θr and βc. However, in (5.15), the friction fr and slope φ are not known precisely, thus the value

of θe cannot be calculated directly and the value of η2
/

g2 in (5.26) is also not available.

Instead, in this work, we seek a data-based approach to determine the suitable θr and βc that

make e1,s = 0, e3,s = 0. First, θr = 0 and βc = 0 are applied in the controller design. e1,s|(θr=0,βc=0)

and θe are obtained from simulation or experiment results. We have e3,s|(θr=0,βc=0) = θe−0= θe,

(5.19) becomes

e1,s|(θr=0,βc=0) =
η2

g2k1
− k3θe

k1
,
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yields

η2

g2
= k1e1,s|(θr=0,βc=0)+ k3θe. (5.27)

As we stated in Remark 2.1, θe is fixed and irrelevant to controller parameters or control tasks

if the 2WMR travels under the same circumstance. Refer to (5.20)(5.21), we conclude the value

of η2
/

g2 is also irrelevant from controller parameters or control tasks. Substituting (5.27) to

(5.26), the compensation term becomes

βc =−k1e1,s|(θr=0,βc=0)− k3θe.

Submitting the above equation to (5.23), we have

κ = −k1e1 − k2e2 − k3(x3 −θe)− k4e4

−k1e1,s|(θr=0,βc=0)− k3θe,

that is

κ =−k1e1 − k2e2 − k3x3 − k4e4 + γc, (5.28)

where γc =−k1e1,s|(θr=0,βc=0).

We can find that in the nominal controller design, the information of θe is no longer needed

while the information of e1,s|(θr=0,βc=0) is still needed. Note that expression of the nominal

controller in (5.23) with (θr = 0, βc = 0) is the same as the one in (5.28) with γc = 0, we have

γc =−k1e1,s|γc=0. (5.29)

For the convenience of expression in the later work, γc is regarded as the final form of the com-

pensation term.

5.3 Numerical Validations

Simulations were conducted to verify the effectiveness of the proposed control scheme, as

well as obtain suitable controller parameters before proceeding with the experiments. For simu-
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lation, frictions fr and τ f are modeled the same as in Section 4.4, i.e., fr = fvẋ+ fcsgn(ẋ), where

fv = 0.2, fc = 0.3, and τ f = τvθ̇ + τcsgn(θ̇), where τv = 0.2, τc = 0.3.

5.3.1 ISMC for System With Matched Uncertainties

First, we consider only the joint friction exists in the system, which is a matched uncertainty.

The 2WMR travels on a flat surface, i.e., φ = 0. The initial states of the mobile robot are

as x = [0, 0, 0.1, 0]T . ISMC is applied with s = [0, 0, 0, 1], ρ = 0.1+ 0.2|x4|+ 0.3. The

parameters for the nominal controller (5.28) are as θr = 0, γc = 0 and k= [−7.0711, −9.6708, −

27.0228, −2.8418], which is obtained through LQR method by choosing Q = {50, 0.1, 500, 1}

and R = 1.

The simulation results are shown in Fig. 5.1. The 2WMR reaches the desired setpoint s-

moothly and the pendulum is balanced at θe = 0. The 2WMR responses are almost the same

as in Fig. 3.2 despite the presence of the joint friction τ f , which demonstrates the effective-

ness of ISMC in rejecting matched uncertainties. It is noted that control signal shows switching

behavior.
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Figure 5.1: Time responses of x, θ and u under ISMC. In simulations, system is considered with

the joint friction τ f = 0.2θ̇ +0.3sgn(θ̇), which is a matched uncertainty.
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5.3.2 ISMC for System With both Matched Uncertainties and Unmatched Uncer-

tainties

Two type of unmatched uncertainties exist in the system, one is due to the external distur-

bance and the other is due to the uncertain system parameters.

First, we consider the 2WMR system with the ground friction fr and the joint friction τ f .

ISMC is applied with ρ = 0.1+ 0.2|x4|+ 0.3+ br
/
(b+ar) (0.5|x2|+ 1) and the nominal con-

troller in (5.28). Other control parameters are chosen the same as in the preceding simula-

tion. Applying γc = 0 in (5.28), from the simulation results, we found that the pendulum is

balanced at the equilibrium point θe = 0.018 rad. The steady state error of the wheel position

is e1,s|γc=0 = −0.0637 m. Next, γc = −0.4504 is computed according to (5.29) and applied in

(5.28). The simulation results for the two cases, with and without the compensation term γc, are

shown in Fig. 5.2. We can see that with the compensation, the 2WMR tracks the reference better

and reaches the given setpoint 1.5 m smoothly, which shows the effectiveness of the ISMC with

the compensation term γc.
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Figure 5.2: Time responses of x, θ and u under ISMC with and without the compensation term

γc. In simulations, system is considered in presence of the joint friction τ f = 0.2θ̇ +0.3sgn(θ̇),

and the ground friction fr = 0.5ẋ+ sgn(ẋ) which is a unmatched uncertainty.

Next, the system under parameter uncertainty is considered. We assume that the mobile

robot travels on an inclined surface. φ0 = 0 is used in sliding surface and controller design,
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whereas the actual slope is φ = π/15 rad. The frictions are also considered existing in the

system. ISMC is applied with the nominal controller in (5.28). Similarly, first γc = 0 is used in

(5.28). From the simulation results, we found that the pendulum is balanced at the equilibrium

point θe = 0.275 rad. The steady state error of the wheel position is e1,s|γc=0 = −0.9991 m.

Next γc = −7.0647 is computed according to (5.29) and used in (5.28). The simulation results

for the two cases, with and without the compensation term γc, are shown in Fig. 5.3. ISMC

shows the robustness to parameter uncertainties and a better response is achieved with adding

the compensation term.
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Figure 5.3: Time responses of x, θ and u under ISMC with and without the compensation term γc.

In simulations, system is considered with the unmatched uncertainties caused by the uncertain

of φ .

5.4 Implementation and Experiment Results

5.4.1 Regulation Task

For implementation, we start with a simple regulation control task that is to balance the robot

at the original position. First, the robot is placed on a flat surface. ISMC is applied with ρ = 0.2.

The projection vector is selected as s = [0, 0, 0, 0.05]. The nominal linear controller κ = −ke

is with k = [10, 0.5, 35, 3]. The experiment results are shown in Fig. 5.4. We can see that the

linear controller fails to stabilize the 2WMR system. By applying the ISMC, the 2WMR stays
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Figure 5.4: Experimental testing results for regulation task: time responses of x, θ , ẋ and θ̇ under

ISMC and linear controller. The 2WMR is placed on a flat surface.

around the original place and the pendulum is balanced around θ = 0.

Similarly as we did in the previous chapters, a testing is conducted to check the robustness

of the SMC with respecting to an exceptional disturbance. The experiment results are shown

in Fig. 5.5. At t = 18 s, we push the 2WMR to the right about 0.15 m. The 2WMR is finally

stabilized around the original position, however, the transit responses show oscillations.
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Figure 5.5: Experimental testing results for regulation task: time responses of x, θ , ẋ and θ̇ under

ISMC. The 2WMR is placed on a flat surface. A disturbance is added to the system at t = 18 s.

Next, the 2WMR is placed on an inclined surface and the slope angle φ is unknown. ISMC
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is applied with the nominal linear controller controller in (5.28). For the first trial, we set γc = 0.

The pendulum is balanced around θe = 0.1 rad, however, steady state error of the wheel position

exists, and e1,s|γc=0 = 0.35 m. For the second trial, we use γc =−3.5, which is computed accord-

ing to (5.29). Experiment results for the two cases, with and without the compensation term, are

shown in Fig. 5.6. The steady state error for the wheel position is eliminated under ISMC with

the compensation term, which is consistent with the theoretical analysis and simulation results.
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Figure 5.6: Experimental testing results for regulation task: time responses of x, θ and u under

ISMC with and without the compensation term γc. The 2WMR is placed on an inclined surface.

5.4.2 Reaching a Setpoint

First, we consider the 2WMR travels on a flat surface, i.e., φ = 0. The references for the

wheel position and velocity are the same as used in simulations. ISMC is applied with θr = 0,

γc = 0. All other controller parameters are chosen the same as for the regulation task. The

experiment results are shown in Fig. 5.7. The 2WMR reaches the desired setpoint and stays

there afterwards. ISMC shows the effectiveness for setpoint control of the 2WMR system.

However, the response of the wheel position is not satisfactory because the backward motion

exists. When the real position of the 2WMR x1 surpasses the given reference xr, the 2WMR

would stop for a while or travel backwards, to make |x1 − xr|, i.e., |e1| become smaller, which

is natural in feedback control system. However, considering that our objective for the 2WMR is
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Figure 5.7: Experimental testing results for setpoint task: time responses of x, θ and u under

ISMC. The 2WMR travels on a flat surface. The reference trajectory (2.14) is applied.

traveling forward to arrive the desired position, these motions are not desired.

To improve the 2WMR performance, especially the response of the wheel position, we pro-

pose a modified reference trajectory xr,n for the wheel position as the following.

xr,n(t +Ts) =


xr,n(t)+ vrTs if x1(t)≤ xr,n(t)< xd

x1(t)+ vrTs if xr,n(t)< x1(t)< xd

xd if xr,n(t)≥ xd or x1(t)≥ xd

. (5.30)

The idea is to avoid the undesired backward motion. The modified reference trajectory xr,n

is adaptive in the sense that it is updated according to the current position of the 2WMR. When

the wheel position x1 surpasses the given reference xr,n, we regard x1 as the new starting point to

generate the reference for the next sampling time, thus the error between the real position of the

wheel and the reference, e1 = xr,n(t +Ts)−x1(t) = vrTs, is guaranteed to be positive. As a result,

the undesired backward motion is avoided and the 2WMR performance is improved.

Another test is conducted with applying the modified reference trajectory, and the design of

ISMC is the same as in the preceding test. Experiment results are shown in Fig. 5.8. We can see

that the response is much smoother and the 2WMR arrives the desired position in a shorter time.

Next, we consider the 2WMR travels on an inclined surface and the slope angle φ is un-

known. ISMC is applied with the nominal linear controller controller in (5.28). For the first trial,
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Figure 5.8: Experimental testing results for setpoint task: time responses of x, θ and u under

ISMC. The mobile robot travels on a flat surface. Modified reference trajectory (5.30) is applied.

we set γc = 0, the experiment results are shown in Fig. 5.9. The pendulum is balanced around

0.05 rad. However, steady state error exists for the wheel position, and e1,s|(θr=0,γc=0) = 0.17 m.
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Figure 5.9: Experimental testing results for setpoint task: time responses of x, θ and u under

ISMC with γc = 0. The 2WMR travels on an inclined surface with φ = 2.5◦. The reference

trajectory (2.14) is applied.

For the second trial, γc = −1.7 is computed according to (5.29) and applied in (5.28). The

experiment results are shown in Fig. 5.10. Compared with the results in Fig. 5.9, we can see the

robot tracks the given reference better and reaches the desired position without steady state error.

However, the trajectory of the wheels x1 is not smooth enough.

To obtain a smoother and faster response, similarly, the new reference (5.30) is used. ISMC

applied is the same as in the preceding test. The experiment results are shown in Fig. 5.11. A
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Figure 5.10: Experimental testing results for setpoint task: time responses of x, θ and u under

ISMC with γc = 0.17. The 2WMR travels on an inclined surface with φ = 2.5◦. The reference

trajectory (2.14) is applied.

much smoother and faster response is observed.
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Figure 5.11: Experimental testing results for setpoint task: time responses of x, θ and u under

ISMC with γc = 0.17. The 2WMR travels on an inclined surface with φ = 2.5◦. Modified

reference trajectory (5.30) is applied.

5.5 Conclusion

In this chapter, an ISMC is proposed. The sliding mode exists from the very beginning, there-

fore the system is more robust against uncertainties than the other SMC systems with reaching

phase. The ISMC is constructed by a nominal control part and a switching term. With the switch-

ing term, the matched uncertainties are perfectly rejected. With the freedom to design a nominal
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control for the sliding manifold, ISMC is incorporated with a linear controller. Strategies have

been proposed to handle many practical problems regarding the implementation such as the ref-

erence trajectory design, eliminating the steady state error, rejecting the effect caused by the

matched uncertainty and reducing the effects caused by the unmatched uncertainties. Simulation

and experiment results are provided to validate the effectiveness and robustness of the ISMC.



Chapter 6

A Takagi-Sugeno Type Fuzzy Logic

Controller

6.1 Introduction

Fuzzy logic control approach has been widely used in robotics control and applications as

it provides user-friendly interface for controller design. In FLC design, the knowledge of the

designers can be incorporated directly as a set of fuzzy rules. FLC design is in general model

free, which is complementary to model-based control design. FLC offers a nonlinear controller

with robustness for systems with parametric and functional uncertainties, as well as disturbances.

The FLC design provides the flexibility in structure design and parameter selection, thus it can

be easily incorporated with other control methods, such as LMI [28], sliding mode control [39],

etc.

In [28], a fuzzy traveling and position control algorithm is proposed for a 2WMR without

input coupling. The wheel position or position tracking error, is not used for computing the

control input. The position control of the 2WMR is achieved through specifying a reference

angle for the pendulum. The reference angle is the output of a fuzzy system, which has the inputs

as the tracking error of the wheel position and the wheel velocity. Based on human experience,

84
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forty-nine fuzzy rules are established to describe the relationship between the wheel states and

the pendulum reference angle. For 2WMR without input coupling, the pendulum equilibrium

position is always the upright position, while for 2WMR with input coupling, the equilibrium of

the pendulum varies with respecting to the slope angle of the traveling surface and the ground

friction. During the traveling, the ground friction is unknown to the designer, thus it is difficult

to specify the value of the desired pendulum angle that could result in the desired motion of the

wheels. As a result, the FLC proposed in [28] is limitedly applicable to the 2WMR without input

coupling. In this work, to achieve the position control of the 2WMR, a Takagi-Sugeno (T-S) type

FLC using full-state feedback is proposed. All the available states, including the wheel position,

the wheel velocity, the pendulum tilting angle and the pendulum angle velocity, are used for

feedback. The proposed FLC is applicable to 2WMR with or without input coupling. There are

four inputs to the FLC and each of them is associated with two fuzzy labels, which yields in total

16 fuzzy rules in the FLC design.

A difficulty in FLC design is the lengthy tuning process for FLC parameters, which is usually

trial and error in nature. There are two groups of controller parameters in the proposed FLC: the

four range parameters for the fuzzy sets of four input variables, and eight output parameters for

the output of the sixteen rules, considering the symmetry between the fuzzy rules. The range

parameters are chosen using heuristic knowledge such as physical boundaries of input variables.

The eight FLC output parameters cannot be easily decided through empirical investigation, be-

cause they jointly determine the control effectiveness and any change of a single parameter would

affect the overall system response. It is difficult to make clear the relations among the eight pa-

rameters because the underacuated 2WRM system shows complex behaviors. The limitation of

the heuristic knowledge motivates us to explore partially model-based design. Considering that

the FLC is essentially a state feedback controller with varying feedback gains, we introduce a
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simple method by aligning the FLC output with a linear feedback control output at eight partic-

ular operating points of the four dimensional state space, where each operating point represents

a specific scenario with only one rule being activated while remaining fifteen rules are inhibited.

As such, each time we can determine one FLC output parameter. The linear controller is de-

signed based on a linearized model of the 2WMR and feedback gains are first obtained through

LQR method by simulation and later manually tuned during the implementation, as in [68].

The main contributions of this chapter are summarized as follows.

(i) An FLC is proposed for real time control of the 2WMR. The designed FLC is also applica-

ble to underactuated systems without input coupling, such as the 2WMR prototype built in [28].

Compared with FLC designed in [28], the proposed FLC has fewer fuzzy rules and parameters

to be determined, which implies a simpler design.

(ii) The proposed FLC is a synthesized design which utilizes both the human knowledge

and the model information. The FLC structure and membership function is determined using

heuristic knowledge. The FLC output parameters are determined based on the output of a linear

controller by specifying the 2WMR system states at sixteen particular operating points in the 4D

state space, which avoids the difficulty in manual tuning. The new FLC outperforms a linear

controller since it provides varying feedback gains that are desirable for real-time control of the

2WMR platform. Compared with the model-free designs in [12, 13, 71], the FLC is simpler in

mathematics, furthermore, it provides a user-friendly design interface, thus is easy to understand.

The remainder of this chapter is organized as follows. In Section 6.2, the design procedure

of the FLC is detailed. In Section 6.3, the implementation of FLC on the real platform is given.

Conclusions are drawn in Section 6.4.
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6.2 The FLC Design

We adopt T-S type FLC for the simplicity of controller structure and easiness in the FLC

parameter tuning. With full-state feedback, we have four inputs to FLC. For each input we use

two fuzzy labels, Positive (P) and Negative (N), for fuzzification. Therefore there are in total

24 = 16 fuzzy rules.

6.2.1 The Structure of FLC

The four error states (e1, e2, e3, e4) are the inputs to the FLC. Each of the 4 input variables

is associated with two fuzzy sets P and N, respectively, and the degree to which set they belong

to is determined by membership function illustrated in Fig. 6.1.

 

 

PositiveNegative

m
i

−m
i 0

1

0

Figure 6.1: Membership function used for FLC. The range of inputs is specified by an interval

[−mi,mi], i = 1,2,3,4. Two fuzzy sets, denoted by P and N, are described by their membership

functions, respectively. The membership function of P is a smooth curve described by a function

as (6.1). The membership function of N is the complementary to that of P.

A built-in membership function in the Matlab toolbox, named as S-shaped membership func-

tion, is used to represent fuzzy set P and given as below,

µP (ei) =



0 (ei <−mi)

2
(

ei +mi

2mi

)2

(−mi ≤ ei ≤ 0)

1−2
(

mi − ei

2mi

)2

(0 ≤ ei ≤ mi)

1 (ei > mi)

, (6.1)
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where µP is the matching degree to fuzzy set P. The matching degree to fuzzy set N, denoted as

µN , is complementary to µP, i.e., µN = 1−µP. The fuzzy set N is represented by another built-in

membership function in the matlab toolbox, named as Z-shaped membership function, which is

complementary to the S-shaped membership function.

There are three reasons to employ the Z-shaped and S-shaped membership functions. First,

the Z-shaped and S-shaped membership functions are appropriate to represent the concepts of

positive and negative. Second, the Z-shaped and S-shaped membership functions are second-

order polynomials, which are suitable for the implementation of the FLC because of their easi-

ness in computing. Third, the FLC using S-shape and Z-shaper membership functions provides

varying gains that are desirable for control of the 2WMR. The third point will be explained later.

Range parameters [m1, m2, m3, m4] are determined by taking the physical constraints of

the 2WMR system into consideration. m1 specifies the range of e1, the tracking error of the

wheel position. Considering that the radius of the wheel is 0.08 m, we assume that the maximum

allowable tracking error of the wheel position is around the wheel circumference 0.5 m, thus m1

is chosen to be 0.5 m. m2 specifies the range of e2, the tracking error of the wheel speed. Through

experimental investigation, we found that the maximum wheel speed is around 0.45 m/s under

the capacity of the DC-motor used. However, it is also noted that when the 2WMR travels at the

maximum speed, the system normally become unstable, hence m2 is chosen to be 0.35 m/s. m3

specifies the range of pendulum angular displacement. We consider the pendulum moves within

a safe range around the balanced position and choose m3 = π/6 rad, that is 30◦. m4 specifies the

range of pendulum angular velocity and is chosen to be 0.2 rad/s, that is 11.5◦/s.

The structure of FLC is T-S type, which consists of rules of the following form

Ri : If (e1 is A1
i) AND (e2 is A2

i) AND (e3 is A3
i)AND (e4 is A4

i), THEN (ui = τi),

where A1
i, A2

i, A3
i, A4

i ∈ {P,N} are fuzzy sets or fuzzy labels, ui is the rule output, τi is a
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constant representing the desired control torque. Each fuzzy rule describes a specific relationship

between the fuzzy inputs and output.

Each rule contributes to the final FLC output according to matching for the IF part of the

fuzzy rule. The TS-type fuzzy inference takes a weighted average of the individual outputs for

each rule. The output τi (i = 1 ∼ 16) for each rule is weighted by the firing strength µRi , which

is calculated as shown in Fig. 6.2.

Figure 6.2: Sugeno-type fuzzy inference for the ith rule (i = 1 ∼ 16). Each input, e j ( j = 1 ∼ 4),

yields two membership values µN(e j) and µP(e j). For individual fuzzy rules, A j
i is specified as

either P or N, accordingly, the value of µA j
i(e j) used for calculation of µRi is either µP(e j) or

µN(e j). The AND logic operator in the antecedent part is chosen to be the production of four

fuzzy membership values.

Table 6.1 shows the sixteen rules of the FLC for the 2WMR system. According to the table,

the first IF-THEN rules can be expressed as

R1 : If (e1 is P) AND (e2 is P) AND (e3 is P) AND (e4 is P), THEN (ui = τi),

and the firing strength for the first rule is

µR1 = µP(e1)µP(e2)µP(e3)µP(e4).

The final output of the fuzzy controller is calculated by aggregating all sixteen rules in the



Chapter 6. A Takagi-Sugeno Type Fuzzy Logic Controller 90

Table 6.1: Fuzzy Rules

Rule e1(x− xr) e2(ẋ− vr) e3(θ −θr) e4(θ̇ ) Torque

1 P P P P τ1 = n1

2 P N P P τ2 = n2

3 N P P P τ3 = n3

4 N N P P τ4 = n4

5 P P P N τ5 = n5

6 P N P N τ6 = n6

7 N P P N τ7 = n7

8 N N P N τ8 = n8

9 P P N P τ9 =−n8

10 P N N P τ10 =−n7

11 N P N P τ11 =−n6

12 N N N P τ12 =−n5

13 P P N N τ13 =−n4

14 P N N N τ14 =−n3

15 N P N N τ15 =−n2

16 N N N N τ16 =−n1
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weighted form

u f lc =
∑16

i=1 µRiτi

∑16
i=1 µRi

.

Due to the symmetry in fuzzy rules design, we have ∑16
i=1 µRi = 1, which yields

u f lc =
16

∑
i=1

µRiτi. (6.2)

6.2.2 FLC Output Parameter Tuning

The tuning of the FLC output value of each rule is a critical issue as it directly determines

the control signal. First, note the skew symmetry between the ith rule and the (17− i)th rule

(i = 1 ∼ 8), that the input variables have opposite fuzzy labels P and N, we have the output

skew symmetry that the two rules give the same control amplitude ni but opposite directions.

Therefore, there are eight output parameters in total to be determined.

Essentially, the FLC could be regarded as a feedback controller but with varying feedback

gains,

u f lc =−k(e)e. (6.3)

To stabilize the 2WMR system, feedback control should be taken appropriately for all states.

A simple linear feedback controller can help to reveal how a feedback controller works, which

inspires us to tune the eight output parameters (n1 ∼ n8) using the knowledge of a linear feedback

controller.

The linear controller

κ =−ke, (6.4)

where k = [k1, k2, k3, k4], is designed based on a linearized dynamic model at the desired

equilibrium point and LQR method is applied to obtain the feedback gains. The detailed design

of the LQR based linear controller is presented in Section 3.3, thus is omitted here.
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The FLC output parameters are tuned in the following manner. At first, let one rule be fully

activated and other 15 inhibited by setting the four input variables at the limits of their ranges

(±mi), respectively. For instance, for rule R1 corresponding to e1 = P, e2 = P, e3 = P, e4 = P,

we choose ei = mi, i = 1,2,3,4. Then we can compare the output of the first fuzzy rule τ1 with

the output of the linear controller (6.4) with the same values of the four error quantities. In such

circumstances, the value of linear controller output given by (6.4) is equal to the first FLC rule

output, i.e., τ1 = n1 =−k1m1−k2m2−k3m3−k4m4. In this way we can determine all eight FLC

output parameters τi, i = 1, · · · ,16.

The advantages of using a linear controller to facilitate the FLC design are given as below.

(1) There is lack of systematic parameter design for FLC in general. Trial and error design is

time consuming due to the high dimension of parametric space, and often yields poor perfor-

mance. It would be even more difficult to determine the FLC output parameters in this work

because the 2WMR system is an underactuated and highly nonlinear system, which shows com-

plex behaviors, especially the motions of the wheels. For instance, let the 2WMR be initially

balanced at the origin, and a setpoint task with xd > 0 is assigned, i.e., the robot is supposed to

move forward. From human knowledge, a positive torque should be applied to drive the wheel-

s move forward. However, through investigations, we found that to achieve a stable response,

a negative torque should be applied at first, which makes the wheels move backward and the

pendulum tilt rightward a bit. After that, the wheels start to move forward. In fact, this is the typ-

ical control behavior of non-minimum phase systems, and according to our theoretical analysis

in Section 2.3.3, the underactuated 2WMR has an unstable internal dynamics. Considering the

2WMR complex behaviors, in this work, to determine the FLC output parameters, we utilize both

the system model information and the knowledge of a linear feedback controller. The resulting

FLC is able to produce a control signal profile that tallies with the desired one for non-minimum



Chapter 6. A Takagi-Sugeno Type Fuzzy Logic Controller 93

phase systems.

(2) The linear control design based on LQR method offers a systematic design and can reveal

how a feedback controller works. By aligning the FLC output with a linear controller output at

sixteen particular operating points, at least it is guaranteed that the FLC uses the right feedback.

(3) For implementation, the parameter tuning is inevitable due to the difference between simula-

tion and experiment. In this work, we do not need to tune the 16 FLC output parameters directly.

Instead, we tune the four feedback gains for the linear controller, according to which, the FLC

output parameters are computed. Thus, the tuning of the FLC output parameter in this work is

much simpler than that in general FLC designs.

6.2.3 Steady State Analysis

As we discussed in Section 2.3.2, when system enters steady state, the pendulum equilibrium

point is as

θe = arcsin
r sinφ(mp +mw)

mpl
. (6.5)

Define the steady state error vector as es = [e1,s, e2,s, e3,s, e4,s]
T , to make e3,s = 0, it is reasonable

to choose the reference for the pendulum angular as θr = θe. For the 2WMR with input coupling,

when it is stabilized on a inclined surface (φ ̸= 0), a torque, denoted as τs, should be provided to

overcome the effect of gravity, and

τs = r sinφ(mp +mw)g. (6.6)

At steady state, we have (e2,s, e3,s, e4,s)=(0, 0, 0), which yields [µP(ei,s), µN(ei,s)] =

[0.5, 0.5], i = 2,3,4. It follows that

µRi =

 µP(e1) ·0.53 for i = 1, 2, 5, 6, 9, 10, 13, 14

µN(e1) ·0.53 for i = 3, 4, 7, 8, 11, 12, 15, 16
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The FLC in (6.2) becomes

u f lc,s = 0.125[µP(e1,s)−µN(e1,s)]
8

∑
i=1

ni (6.7)

When applying the FLC designed in (6.2) to the 2WMR which travels on an inclined surface,

at steady state, we have u f lc,s = τs. From the above equation, we have µP(e1,s)− µN(e1,s) ̸= 0

since τs ̸= 0. From the membership function in (6.1), we can conclude that e1,s ̸= 0, i.e., there is

a steady state error in the response of the wheel position.

In this work, to achieve a satisfactory response with zero steady-state error for the wheel

position, i.e., e1,s = 0, we introduce a compensation term βc in the controller design, and βc = τs.

The new control law is as

u = u f lc + τs. (6.8)

With the compensation term, now we have u f lc,s in (6.7) equals zero, and e1,s = 0.

6.3 Implementation and Experiment Results

6.3.1 Regulation Task

For implementation, we start with a simple control task that is to balance the 2WMR at the

original position on a flat surface, i.e., xr = 0, vr = 0, and φ = 0.

Feedback gains for the linear controller (6.4) are obtained through LQR method and lat-

er manually tuned during the implementation, as presented in section 3.5. Based on the ob-

tained feedback gains k = [−10, − 0.5, − 35, − 1.5], the FLC output parameters are com-

puted in the way introduced in section 6.2.2, and we have: [n1, n2, n3, n4, n5, n6, n7, n8] =

[23.79, 23.44, 13.79, 13.44, 23.19, 22.84, 13.19, 12.84]. FLC in (6.8) is applied with τs = 0

and θr = 0. The experiment results are shown in Fig. 6.3. The FLC shows effectiveness that

the 2WMR stays around the original position and the pendulum is balanced around θ = 0. At
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Figure 6.3: Experimental testing results for regulation task: time responses of x and θ under the

FLC proposed in this work. The 2WMR is placed on a flat surface.

t = 15 s, we push the 2WMR to the right about 0.15 m, which can be considered as a disturbance

to the system. The 2WMR moves backward and stops at the origin position within 3 seconds.
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Figure 6.4: Experimental testing results for regulation task: time responses of x and θ under the

FTPC [28]. The 2WMR is placed on a flat surface.

For comparison, the fuzzy traveling and position controller (FTPC) proposed in [28] is used

to control the 2WMRs. Fig. 6.4 shows the experimental results for the 2WMR system under the

FTPC [28]. The pendulum of the 2WMR can be stabilized, however, the wheel position control

failed that steady state errors exist in the wheel position response, which shows the limitation
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of the FTPC. From the experimental results shown in Fig. 6.3 and Fig. 6.4, it is evident that the

FLC proposed in this work provides a better performance than the FTPC proposed in [28] when

controlling the 2WMR.
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Figure 6.5: Experimental testing results for regulation task: time responses of x, ẋ, θ , θ̇ and u

under FLC with θr = 0.09 rad, τs = 0.1855 N· m. The mobile robot is placed on inclined surface

with φ = 4.3◦.

Next, the robot is placed on an inclined surface with the slope angle φ = 4.3◦. According

to (6.5) and (6.6), we have θr = 0.09 rad and τs = 0.1855 N·m. FLC in (6.8) is applied. Other

control parameters are chosen the same as in the preceding test. The experiment results are shown

in Fig. 6.5. The FLC shows effectiveness that the 2WMR stays around the original position and

the pendulum is balanced around θ = 0.1 rad. It is also observed that the average value of the

control signal is positive.
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Figure 6.6: Experimental testing results for setpoint task: time responses of x, ẋ, θ , θ̇ and u

under FLC with θr = 0, τs = 0. The mobile robot travels on flat surface. The reference trajectory

(2.14) is applied.

6.3.2 Setpoint Task

First, we consider the 2WMR travels on a flat surface, i.e., φ = 0. The pre-planned references

for the wheel position and velocity are applied, as shown in Fig. 2.4. The FLC parameters are

chosen the same as for the regulation task. Experiment results are shown in Fig. 6.6. The 2WMR

reaches the desired setpoint xd = 1.5 m at t = 16.5 s and stays there afterwards. FLC shows the

effectiveness for setpoint control of the 2WMR system. However, the response of the wheel

position is not satisfactory because the backward motion exists.

To improve the 2WMR performance, especially the response of the wheel position, the mod-

ified reference trajectory xr,n in (5.30) is applied. The design of FLC is the same as in the
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preceding test. Experiment results are shown in Fig. 6.7. We can see that the robot reaches the

desired setpoint xd = 1.5 m at t = 13 s and the pendulum is balanced around θ = 0, i.e., the

upright position. Compared with the results shown in Fig. 6.6, it is evident that the response of

the wheel position in Fig. 6.6 is much smoother and the 2WMR arrives the desired position in a

shorter time, which shows the effectiveness of the proposed modified reference trajectory xr,n.
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Figure 6.7: Experimental testing results for setpoint task: time responses of x, ẋ, θ , θ̇ and u

under FLC with θr = 0, τs = 0. The mobile robot travels on flat surface. Modified reference

trajectory (5.30) is applied.

Next, we consider the mobile robot travels on an inclined surface with the slope angle φ =

2.45◦. According to (6.5) and (6.6), we have θr = 0.05 rad and τs = 0.1 N·m. To obtain a smooth

and fast response, similarly, the reference trajectory in (5.30) is used. The experiment results are

shown in Fig. 6.8. we can see that the robot travels smoothly and reaches the desired position
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without steady state error. The pendulum is balanced around θ = 0.05 rad.
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Figure 6.8: Experimental testing results for setpoint task: time responses of x, ẋ, θ , θ̇ and u

under FLC with θr = 0.05 rad, τs = 0.106 N·m. The mobile robot travels on inclined surface

with φ = 2.5◦. Modified reference trajectory (5.30) is applied.

6.3.3 Discussions

From experimental testings, it is found that the designed FLC outperforms the linear con-

troller. For linear controller with fixed feedback gains, when high gains are applied, the system

does not perform well during the traveling and when low gains are applied, the system could

easily become unstable for regulation task or after the setpoint is reached. The FLC shows effec-

tiveness for various control tasks under a group of fixed controller parameters. The reason is that

FLC functions as a feedback controller with varying gains, as we stated in Subsection III B. For
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a clear explanation, we have conducted the following analysis. Fig. 6.9 shows the comparisons

between the fixed feedback gains of a linear controller and the equivalent feedback gains of the

FLC, which are computed in the following manner,

ki =
u f lc

ei
at e j = 0 (i, j = 1,2,3,4 and j ̸= i).

For the calculation of k1, let (e2, e3, e4)=(0, 0, 0), from Fig. 6.1, we have [µP(e j), µN(e j)] =

[0.5, 0.5], j = 2,3,4. It follows that

µRi =

 µP(e1) ·0.53 for i = 1, 2, 5, 6, 9, 10, 13, 14

µN(e1) ·0.53 for i = 3, 4, 7, 8, 11, 12, 15, 16

We have

k1(e1) =
u f lc

e1
=

0.125[µP(e1)−µN(e1)]

e1

8

∑
i=1

ni. (6.9)

Similarly, we have

k j(e j) =
u f lc

e j
=

0.125[µP(e j)−µN(e j)]

e j

8

∑
i=1

ni, j = 2,3,4. (6.10)

Since ∑8
i=1 ni is a constant, it can be concluded that the equivalent feedback gains of the FLC are

determined by the membership functions.

From Fig. 6.9, we can see that |k j| drops as e j increase, which is desirable for the real imple-

mentation. When the states of the 2WMR are close to the desired values, i.e., the error states e

are small, the control signal is small. High gains are needed to achieve robustness, considering

the fact that the real-time platform is under various uncertainties, such as joint friction, ground

friction, backslash, unmodeled motor dynamics, etc. When the states of the 2WMR are away

from the desired values, i.e., the error states e are large, a group of relatively lower gains are pre-

ferred, considering that the motor capacity is limited and the control signal could be saturated if

high gains are applied, which would devastate the effectiveness of the feedback controller. FLC

with the selected membership function (6.1) provides such varying gains that are adapted to the
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Figure 6.9: Comparisons between the fixed feedback gains of a linear controller and the equiva-

lent feedback gains of the FLC.

current states of the 2WMR, which indicates the advantage of the selected membership functions

and explains that the designed FLC outperforms the linear controller.

6.4 Conclusions

In this chapter, synthesized design of a T-S type fuzzy logic controller for an underactuated

2WMR is presented. The FLC design is based on both human experience and information of

the system dynamic model. The proposed FLC is successfully implemented on the real-time

platform and shows effectiveness. The new FLC outperforms a linear controller, even though the

FLC output parameters are tuned according the output of the linear controller at certain operating

points. The design procedure indicates that we can easily extend a linear controller to a nonlinear

one like FLC to achieve better performance.



Chapter 7

Synthesized Design of a Fuzzy Logic

Controller with Iterative Learning

7.1 Introduction

The controllers proposed in the previous three chapters are model based designs. Considering

that system model is usually quite difficult to obtain in practice, model free or partially model

free designs are preferred in real life applications. In this chapter, our aim is to develop a pure

FLC without incorporating any model-based controller, and hence an accurate mathematic model

is not required.

In [38], an adaptive FLC is proposed for a wheeled inverted pendulum with parametric and

functional uncertainties, which is a model free design. The use of fuzzy approximations avoids

the need to develop a highly accurate mathematic model. However, the fuzzy approximator uses

324 fuzzy rules and computation for the control signal could be time-consuming. In general,

application of model-free FLC design for real life plants could be problematic considering the

large number of fuzzy rules and controller parameters to be determined. Furthermore, the heuris-

tic knowledge could be limited for control of system which has complex dynamic or behaves in

a complicated manner, such as the underactuated 2WMR. A better alternative is to synergize a

102
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model-free design with heuristic knowledge and a model-based design with an available plant

model, so that all information relevant to the control system can be fully utilized in FLC design.

Similarly as in Chapter 6, for the simplicity in design, a T-S type FLC is adopted. On the basis

of human experience, an FLC with three input variables and six fuzzy rules is first explored for

regulation control. Six controller parameters need to be tuned. Three range parameters specify

the universe of discourse of the input variables and were chosen using heuristic knowledge such

as the physical boundaries for the input variables. The other three are output parameters that

determine control output values for individual rules. In general, it is difficult to determine the

output parameters based only on human intuition or heuristics.

The limitations of heuristic knowledge and model-free design motivate us to explore de-

sign based partially on a model. To capture the correct feedback control action for each state,

a linear controller is designed based on a linearized model of the 2WMR. The linearization is

performed around the desired balance position, when the inverted pendulum is upright. Neces-

sary conditions for the feedback gains are established to ensure local stability around the desired

equilibrium point. Next, conditions for selection of the FLC output parameters are identified,

which makes parameter determination much easier. Considering the presence of uncertainties

and disturbances in practice, an FLC with integral action is further proposed.

To improve FLC performance and avoid tedious manual tuning, a partially model-free iter-

ative learning tuning (ILT) method is used to tune the FLC output parameters. The ILT process

consists of three steps. First, a number of cost functions chosen to characterize 2WMR behavior

are calculated according to 2WMR responses in the time domain. Next, an iterative learning al-

gorithm is derived to minimize the cost functions and then used to update the FLC output param-

eters. After parametric updating, the same motion control task is executed again and the 2WMR

responses are recorded for the next ILT run. The ILT only requires the process gradient infor-
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mation in selecting the learning gain, and hence guarantees learning convergence. Furthermore,

the gradient can be numerically approximated when gradient information is not available [80].

In this sense, the ILT is partially model-free.

The main contributions and originality of this chapter are summarized as follows.

(i) Synthesized FLC design is proposed for velocity control of the underactuated 2WMR sys-

tem in the presence of disturbances and model uncertainties. The synthesized design consists of

three phases: determination of the FLC structure through heuristic knowledge about the 2WMR;

quantitative determination of the output parameters for stabilization of the 2WMR; and tuning

of the FLC output parameters using ILT. The main idea behind the proposed methodology is to

maximize utilization of all the information available, which is achieved by combining partially

model-based and partially model-free designs, and hence improve the FLC performance.

(ii) Compared with model-based control design, the synthesized FLC design has the advan-

tage that it does not require an accurate model of 2WMR system. The fuzzy rules, membership

functions, direction of control action for the fuzzy output parameters, and cost function selection

for the ILT are all determined by human experience. The relative amplitudes of the output param-

eters for different fuzzy rules are determined based on a linearized model. However, the values

of the 2WMR parameters are not required to be known in the linearized model. Compared with

conventional FLC and FLCs designed in [38] [70], the synthesized FLC developed in this work

has fewer fuzzy rules and fewer parameters to be determined, which implies a simpler design.

(iii) The synthesized FLC is intelligent in the sense that learning is incorporated in FLC pa-

rameter tuning. Selection of the objective functions is based on human experience and the choice

of different key features from the 2WMR responses is flexible for meeting different control re-

quirements. The learning process is similar to human learning, which utilizes knowledge about

not only successful but also unsuccessful trials.
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The remainder of this chapter is organized as follows. In Section 7.2, FLC designs are

elaborated, including the basic FLC structure, FLC speed control, and FLC speed control with

integral action. The principle of ILT is presented in Section 7.3 and the FLC output parameters

are updated using ILT. Conclusions are drawn in Section 7.4.

7.2 Synthesized Design of FLC

FLC with three input variables is first explored for the regulation task. We focus on deter-

mining the output parameter for each fuzzy rule, which is critical in T-S FLC design. First, to

simplify the FLC design, a minimum number of fuzzy rules are used, which yields a minimum

number of output parameters to be determined. Second, the direction of the control action (sign

of the output parameters, positive or negative) is chosen by following the direction of the pen-

dulum tilt angle. Next, the relative amplitudes of the output parameters for different rules are

analyzed using the feedback knowledge of a linear controller, which is designed based on a lin-

earized model of the 2WMR. Linearization is performed around the desired balance position,

namely when the inverted pendulum is upright. Necessary conditions for the feedback gains are

established to ensure local stability around the desired equilibrium point. Considering the pres-

ence of uncertainties and disturbances for a practical 2WMR, FLC with integral action is further

proposed.

7.2.1 Fuzzy Logic Speed Controller

States (x2, x3, x4) = (ẋ, θ , θ̇) are the FLC input variables. Each of the input variables is

associated with two fuzzy sets, positive (P) and negative (N). The membership functions adopted

to represent the fuzzy sets P and N are the same as in Chapter 6, which are illustrated in Fig.

6.1. Let µP and µN denote the degree of matching to the fuzzy sets P and N, respectively. µP

is given by (6.1) and µN = 1− µP. The parameters [m1, m2, m3] in the membership function
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Table 7.1: Fuzzy rules for the speed controller in the regulation task

Rule ẋ θ θ̇ u

1 × P P τ1 =+n1

2 P P N τ2 =+n2

3 N P N τ3 =+n3

4 P N P τ4 =−n3

5 N N P τ5 =−n2

6 × N N τ6 =−n1

are determined under consideration of the physical constraints of the 2WMR system, as we have

discussed in Chapter 6.

To derive fuzzy rules, we start with a regulation control task, namely, vr = 0. Since there are

three input variables and each variable is associated with two fuzzy sets P and N, we could have

23 = 8 fuzzy rules in total. However, to simplify the FLC design, the number of fuzzy rules is

minimized by combining several cases into one. Table 7.1 summarizes the six FLC rules, where

× denotes either N or P. Fig. 7.1 shows a graphical representation of the six rules corresponding

to six scenarios. Let (·, ·, ·) denote a fuzzy state with respect to three variables (ẋ,θ , θ̇) and · is

either P or N. R1 is a combination of the two cases (P,P,P) and (N,P,P), and R6 is a combination

of the two cases (P,N,N) and (N,N,N).

FLC consists of rules in the following form:

Ri : If (ẋ is Ai) AND (θ is Bi) AND (θ̇ is Ci), THEN (ui = τi),

where Ai,Bi,Ci ∈ {P,N} are fuzzy sets, ui is the rule output and τi is a constant representing the

inferred control torque. Each fuzzy rule describes a specific relationship between the FLC inputs

and output.

Each rule contributes to the final FLC output according to matching for the IF part of the
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Figure 7.1: Graphical representation of the fuzzy rules corresponding to six scenarios. Each

scenario is associated with a rule, namely, scenario (i) is associated with rule i for i = i, · · · ,6.

The control priority is to balance the pendulum. When θ is P, as shown in scenarios (1)–(3), a

positive torque is provided so that the wheels move rightwards and the pendulum moves anti-

clockwise, regardless of the values of ẋ and θ̇ . Likewise, when θ is N, as shown in scenarios

(4)–(6), a negative torque is provided so that the wheels move leftwards and the pendulum moves

clockwise. In this way, rules 1–3 have positive outputs and rules 4–6 have negative outputs.

Figure 7.2: T-S type fuzzy inference for the ith rule of the FLC. Each input yields two mem-

bership values, µN and µP. The AND logic operator is chosen for production of the fuzzy

membership values.
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fuzzy rule. The output τi for each rule is weighted by the firing strength µRi for that rule. The

calculation for the firing strength for each rule is shown in Fig. 7.2. The TS-type fuzzy inference

takes a weighted average of the individual outputs for each rule, and the final output of the fuzzy

controller is computed as

u =
∑6

i=1 µRiτi

∑6
i=1 µRi

, (7.1)

Now we derive the amplitudes of the control outputs. Note the skew symmetry between

scenarios (1) and (6), and hence rules 1 and 6, whereby the input variables have opposite fuzzy

labels P and N. We have output skew symmetry whereby the two rules give the same control

amplitude n1 but in opposite directions. Similar skew symmetry can be observed between rules

2 and 5, and between rules 3 and 4. Thus, only three output parameters ni > 0, (i = 1,2,3) need

to be determined. In scenario (1), the pendulum tilt angle and angular velocity are in the same

direction (θ > 0, θ̇ > 0), and thus the pendulum tends to fall down clockwise. In scenarios (2)

and (3), the pendulum tilt angle and angular velocity are in opposite directions (θ > 0, θ̇ < 0),

and thus the pendulum returned to the balance position. Intuitively, a larger torque should be

applied in scenario (1) to bring the pendulum back to the balance position, i.e., we should choose

n1 > ni (i = 2,3).

Next we need to decide the relative amplitudes of n2 and n3. The only difference between

scenarios (2) and (3) is the direction of the wheel velocity, and thus deciding the relative am-

plitudes of n2 and n3 involves control of the wheels. However, the difference in velocity is not

adequate for deciding the relative amplitudes of n2 and n3. From Newton’s mechanical law, pen-

dulum motion is related to wheel acceleration instead of velocity, as we can observe from the

2WMR dynamic equations (2.1) and (2.2). In many practical control tasks, acceleration is not

available. For mechanical systems such as a 2WMR, the full state feedback uses only position
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and velocity information.

Since n2 and n3 cannot be decided using intuitive derivation or heuristic knowledge, trial and

error is an alternative. Through numerical tests, we find that n2 < n3 yields unstable responses,

and n2 > n3 leads to stable behavior. Nevertheless, in this study we seek a systematic way to

determine the FLC parameters, in particular the relative amplitudes of n2 and n3.

FLC can be regarded as a state feedback controller with varying feedback gains. In fact, from

Fig. 7.2 and (7.1), the control output can be expressed as u = −k(x)x. To stabilize the 2WMR

system, feedback control should be taken appropriately for all states. A linear controller helps

to reveal how a feedback controller works. Based on the linearized model in (A.5), we design a

linear controller as

u =−kx =−k2x2 − k3x3 − k4x4, (7.2)

where k = [k2, k3, k4] is the feedback gain vector. To ensure local stability of the desired e-

quilibrium point, all feedback gains need to be negative, i.e., k2 < 0, k3 < 0, k4 < 0 (refer to

Appendix A.3).

Remark 7.1 Conditions ki < 0, (i = 2,3,4) are established without knowing the values of the

2WMR parameters.

Note that the feedback term associated with x2 is −k2x2. In scenario (2), where x2 is P,

−k2x2 > 0. On the contrary, in scenario (3), where x2 is N, −k2x2 < 0. Thus, when states (x3,x4)

in scenario (2) are of the same value as in case (3), the control output in scenario (2) should be

greater than that in case (3). Therefore, we have n2 > n3, which is consistent with the numerical

tests.

The FLC with six rules is directly applicable to setpoint control by replacing x2 with e2 as

the first input variable. To verify the effectiveness of the proposed FLC, choose [n1, n2, n3] =
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[5, 2, 1.5]. The desired velocity for the wheel is vr = 0.2 m/s. The results are shown in Fig. 7.3.

Setpoint control of the wheel velocity is achieved while the pendulum is balanced.
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Figure 7.3: Time responses of the wheel velocity, the pendulum tilt angle and the control signal

profile under setpoint control with vr = 0.2 m/s. The FLC consists of six rules.

In practice, disturbances and model uncertainties exist in the 2WMR system, such as friction

fr and slope φ . Assume that the 2WMR travels on a tilted surface with φ = 2◦ and the friction

is fr = 0.2ẋ + 0.1sgn(ẋ). The results are shown in Fig. 7.4. The 2WMR fails to follow the

desired velocity of 0.2 m/s; in other words, the FL speed controller is not robust for exogenous

disturbances and model uncertainties.
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Figure 7.4: Time responses of the wheel velocity, the pendulum tilt angle and the control signal

profile under setpoint control vr = 0.2 m/s in the presence of unknown friction and slope. The

FLC consists of six rules.
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7.2.2 Fuzzy Logic Speed Controller With Integral Action

To enhance the FLC robustness, we introduce another input, EI =
∫ t

0(ẋ− vr)dτ , which is the

integration of the wheel velocity error. Input EI is also associated with two fuzzy sets P and

N, and the degree to which set the values belong to is determined by the membership functions

illustrated in Fig. 6.1. We assume that the average value of the velocity tracking error e2 for the

whole test time, i.e., 1
/

ts ·
∫ ts

0 (ẋ− vr)dτ , should be approximately 0.1 m/s. Thus, the range for

EI is chosen to be approximately m1 = 0.1ts m. The ranges of other input variables (e2,θ , θ̇) are

as [m2,m3,m4] = [0.5,π
/

3 ,2].

For a conventional FLC design, we could have 24 = 16 fuzzy rules. Similarly, the number of

fuzzy rules is minimized to simplify the FLC design. Fuzzy rules are shown in Table 7.2. R1 is a

combination of four cases, (P,P,P,P), (P,N,P,P), (N,P,P,P) and (N,N,P,P), and R10 is a combination

of four cases, (P,P,N,N), (P,N,N,N), (N,P,N,N) and (N,N,N,N). Here R1 and R10 describe the

same cases as R1 and R6 do in Table 7.1. R2 and R3 in Table 7.2 are obtained from R2 in Table

7.1 with additional P and N for EI . Similarly, we establish rules R4∼R9.

FLC consists of rules in the following form:

Ri : If (EI is Ai) AND (e2 is Bi) AND (e3 is Ci) AND (e4 is Di), THEN (ui = τi),

where Ai, Bi, Ci, Di ∈ {P,N} are fuzzy sets, ui is the rule output and τi is a constant representing

the inferred control torque.

There are five output parameters, n1–n5, to be determined. First, considering that θ and

θ̇ are in the same direction in R1 and R10, based on the analysis in Section 7.2.1, we have

n1 > ni > 0 (i= 2,3,4,5). Next, we use feedback knowledge from a linear controller to determine

the relative amplitude of n2–n5 because intuitive derivation is not straightforward.

With the additional state EI , we have an augmented linearized state space model as given in

(A.9). Now the linear feedback control law is u = −ke with k = [k1,k2,k3,k4]. To ensure local



Chapter 7. Synthesized Design of a Fuzzy Logic Controller with Iterative Learning 112

Table 7.2: Fuzzy rules for a speed controller with integral action for the setpoint task

Rule EI e2(ẋ− ẋr) e3(θ −0) e4(θ̇ −0) u

1 × × P P τ1 =+n1

2 P P P N τ2 =+n2

3 N P P N τ3 =+n3

4 P N P N τ4 =+n4

5 N N P N τ5 =+n5

6 P P N P τ6 =−n5

7 N P N P τ7 =−n4

8 P N N P τ8 =−n3

9 N N N P τ9 =−n2

10 × × N N τ10 =−n1

stability of the desired equilibrium point, all the feedback gains need to be negative (refer to

Appendix A.4).

The relative amplitudes of the output parameters are determined by adopting the method used

in Section 3.2. Between R2 and R3 or R4 and R5, the only difference in fuzzy inputs is P and N

for EI . Thus, the control output for rules with positive EI should be greater than that for rules

with negative EI , that is, n2 > n3, n4 > n5. Between R2 and R4 or R3 and R5, the only difference

in fuzzy inputs is P and N for e1. Thus the control output for rules with positive e2 should be

greater than that for rules with negative e2, that is, n2 > n4 and n3 > n5. To simplify the design,

we could choose n3 = n4. To summarize, we have n2 > n3 = n4 > n5.

Calculation of the firing strength for each rule is shown in Fig. 7.5. The final output of the

fuzzy controller is computed as

u =
∑10

i=1 µRiτi

∑10
i=1 µRi

. (7.3)

FLC with ten rules is applied with [n1, n2, n3, n4, n5] = [8, 4.5, 1.2, 1.2, 0.6], and param-
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Figure 7.5: T-S type fuzzy inference for the ith rule of the FLC with integral action.

eter ranges [m1, m2, m3, m4] = [5, 0.5, π
/

3 , 2]. The friction and slope are present as in the

preceding example. The simulation results are shown in Fig. 7.6. The wheel velocity reaches the

desired value of 0.2 m/s while the pendulum is balanced at a new equilibrium point, θ = 1.5011◦.

The results can be explained as follows.

When system is in a steady state, we have ẍ, θ̈ , θ̇ = 0. From the 2WMR dynamic equation

(2.1), τ = sinφ(mw +mp)gr+ r fr is obtained. From (2.2), we obtain θ = arcsin(τ
/

mplg). It is

clear that to maintain a constant velocity, a constant torque is needed to overcome the effects of

friction and slope, which thus results in a new balance position for the pendulum.
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Figure 7.6: Time responses of the wheel velocity, the pendulum tilt angle and the control signal

profile under setpoint control with vr = 0.2 m/s in the presence of unknown friction and slope.

The FLC consists of ten rules.
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7.3 FLC With Iterative Tuning

The relative amplitudes of ni are given in the previous section. Parameter tuning now needs

to be addressed, but manual tuning is a tedious and time-consuming process. Tuning becomes

even more challenging when model mismatch exists, for instance when the pendulum mass mp

and slope φ are unknown and if the actuator dynamics are not modeled. We use ILT to tune

the output parameters. This problem is formulated as a minimization process with respect to a

selected cost function. Parameter tuning is carried out via an updating law that is derived using

gradient information to minimize the cost function iteratively. The result after tuning is an opti-

mal solution with respect to the formulated cost function. With the ILT, the FLC design allows

unstable system responses in the first few trials, so the initial values for the output parameters

can be freely assigned. Given that the system response is unstable with the initial parameters,

after the first IL tuning stage, a stable response can be reached. After further fine tuning, stable

and fairly good performance can be achieved.

7.3.1 Selection of The Cost Function

Let ts denote the time duration for an evaluation period. We consider the overall performance

in the interval [t0, ts]. Different indices and features of 2WMR behavior can be used to evaluate

the control performance, which can be either a stable or an unstable response. From a practical

point of view, if |θ |> π
/

2, we consider that the controller failed. We define tw as the total time

for which the pendulum stays above the horizontal plane, i.e., |θ |< π
/

2 for t ∈ [0, tw].

For an unstable response (tw < ts), the following index can be used to evaluate the perfor-

mance:

G1 =
10

tw +0.01
.
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A smaller G1 implies a larger tw and hence a more stable response.

For a stable response (tw = ts), the following indexes can be chosen to evaluate the 2WMR

performance. To keep the pendulum around the balance position, we can use

∫ ts

0
|θ |qdt, or max(|θ |),

where q is a positive number. To avoid sharp changes in the pendulum angle and reduce pendu-

lum oscillation, we can use

∫ ts

0
|θ̇ |qdt, or max(|θ̇ |).

To achieve a velocity tracking task, we may consider

∫ ts

0
|e2|qdt, or max(|e2|).

Since saturation problems commonly exist in real situations, to avoid a large control signal we

can use

∫ ts

0
|u|qdt, or ∑ni (i = 1, · · · ,5).

When multiple performance indexes are taken into consideration, controller design and tun-

ing become a multi-objective optimization issue, which can be reduced to a scalar case using

weighted sums. For instance, a cost function as the weighted sum of all the indices is

G2 = wT f, (7.4)

where w is a vector of weighting coefficients and f is a vector of selected indices.

We can take various costs, not limited to those mentioned above, into consideration, such

as the settling time, model nonlinearities and the linear approximation error. To meet different
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control requirements, we need to choose different performance indices and different weighting

values.

Remark 7.2 The cost function is selected based on human experience, which captures the key

features of the 2WMR response.

For fuzzy logic speed controller with integral action, there are five output parameters, ni (i =

1,2,3,4,5), to be determined. Note that n1 > n2 > n3 = n4 > n5. We define p1 = n1 − n2,

p2 = n2 −n3 and p3 = n4 −n5, and denote p = [p1, p2, p3]
T , where p1, p2, p3 > 0. n5 is fixed at

a given value, although it can also be learned. p is tuned to achieve satisfactory performance.

The tuning procedure for p can be divided into two parts. For a given initial value of p,

denoted as p0, if the first trial fails (i.e., unstable position), the cost function J is chosen to be

G1. The objective is to increase the time tw for which a stable response lasts, and finally reach

Jmin = 10
/
(ts +0.01) , whereby the updated p makes the pendulum stay above the horizontal

plane during the whole evaluation period. Then we switch to cost function J = G2 for fine

tuning. Note that now the optimal design is to minimize the cost function J by updating p, which

is in fact a search task:

min
p∈Ωp

J(e,p),

where Ωp = {p ∈ R3|p1 > 0, p2 > 0, p3 > 0}.

We propose the following typical first-order ILT law:

pi+1 = pi − γiJi,

where the subscript i denotes the ith updating, p = [p1,i, p2,i, p3,i]
T . γi = [γ1,i, γ2,i, γ3,i]

T is

a learning gain vector that should be chosen to ensure the convergence of Ji. To speed up the

learning process, the learning gain is chosen to be the inverse of the gradient ∂J/∂ p. When the
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gradient is not available analytically, a numerically computed gradient can be used [80]. Note

that

J(pi+1) = J(pi)+ [J(pi+1)− J(pi)] = J(pi)+
dJ(p∗)

dp
(pi+1 −pi),

where p∗ is a value between pi and pi+1.

Substituting the ILT law, we have

J(pi+1) =

[
1− dJ(p∗

i )

dp
γi

]
J(pi). (7.5)

To guarantee a contractive mapping in (7.5), the following condition should be satisfied:

∣∣∣∣1− dJ(p∗
i )

dp
γi

∣∣∣∣< 1.

We define D j,i =
dJ(p∗

i )

d p j,i
( j = 1,2,3), which is estimated numerically as

D̂ j,i =
J(pi)− J(pi−1)

p j,i − p j,i−1
. (7.6)

Then the learning gain is γ j,i = λ j
/

D̂ j,i , where λ j is a constant gain and 0 < λ j ≤ 1.

For the first iteration, the gradient information is unavailable. We can choose a sufficiently

small learning gain. An alternative is to update each element of p in opposite directions (increas-

ing and decreasing directions), which yields eight (23 = 8) directions in 3D space, and select the

best result for the next updating.

For the learning gain selection, theoretically, the objective function J converges faster as λi

increases. However, in this study we use a numerical method to estimate the gradient informa-

tion as in (7.6); the information might not be accurate if there is a large difference in response

between consecutive iterations due to parameter updating. A small λi allows the parameters be

updated slowly and provides a better learning result. Conversely, the number of learning itera-

tions increases as λi decreases.
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7.3.2 Learning Results

A setpoint control task is considered with vr = 0.2 m/s. The initial states are (ẋ,θ , θ̇) =

(0,20◦,0). The pendulum load is mp = 8 kg, the slope is φ = 30◦ and friction is fr = 0.2ẋ+

0.1sgn(ẋ). The total time for evaluation is 40 s.

FLC with integral action is applied with the same parameter ranges and output parameters as

in the preceding example, which yields p = [3.5, 3.3, 0.6]T . However, the pendulum falls down

at t = 0.77 s. We conclude that the FLC with parameters that stabilize the 2WMR system for

mp = 1.45 kg and φ = 2◦ in the preceding example does not work when mp = 8 kg and φ = 30◦.

The ILT method is applied with the cost function J =G1. The learning gains are [λ1, λ2, λ3] =

[0.5, 0.3, 0.3]. The learning process is iterated until tw = ts. p = [4.7379, 4.4608, 0.8111]T is

obtained after IL tuning. The results are shown in Figs. 7.7 and 7.8. The pendulum stays above

the horizontal plane during the whole evaluation period. However, the overshoot of the wheel

velocity is large and a steady-state error for the wheel velocity exists. The maximum pendulum

angle is 27.1◦. Thus, the system performance is still poor and further fine tuning is required.
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Figure 7.7: Time responses of the wheel velocity, the pendulum tilt angle and the con-

trol signal profile after four learning iterations with the cost function G1. Before learn-

ing, [n1, n2, n3, n4, n5] = [8, 4.5, 1.2, 1.2, 0.6]; after learning, [n1, n2, n3, n4, n5] =

[10.6098, 5.8719, 1.4111, 1.4111, 0.6].

Next, ILT is applied with cost function J = G2 and the following cost function is used
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Figure 7.8: Evolution of the cost function G1.

G2 =
∫ ts

0
[w1|θ(t)|+w2|ẋ(t)− vr(t)|+w3|u(t)|]dt. (7.7)

A smaller G2 implies a smaller deviation from the equilibrium or setpoint. The weighting factors

in the cost function chosen are w1 = 750, w2 = 750 and w3 = 600. The initial value of p is

[4.7379, 4.4608, 0.8111]T , which is the result after four learning iterations with G1. Learning

gains are chosen as [λ1, λ2, λ3] = [0.3, 0.3, 0.3]. The learning process is iterated until J no

longer decreases. We obtain p = [7.6416, 7.1947, 1.3081]T after ILT. The results are shown in

Figs. 7.9 and 7.10. It is clear that the 2WMR responses improve after fine tuning. Compared

with the results in Fig. 7.7, the wheels can perfectly track the desired velocity with no tracking

error and the pendulum remains in a smaller range around the balance position.

For comparison, ILT is applied with an alternative cost function for fine tuning:

G2 = w1max(|θ |)+w2max(|e1|)+w3(p1 + p2 + p3). (7.8)

The weighting factors in the cost function were w1 = 100, w2 = 800 and w3 = 20. The other

parameters and initial conditions were the same as in the preceding example. The learning pro-

cess was iterated until J no longer decreased. We obtained p = [6.9954, 6.5863, 1.1975]T after

learning tuning over iterations. The results are shown in Figs. 7.11 and 7.12. Compared with
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Figure 7.9: Time responses of the wheel velocity, the pendulum tilt angle and the con-

trol signal profile after fine-tuning of three iterations with the cost function (7.7). Before

learning, [n1, n2, n3, n4, n5] = [10.6098, 5.8719, 1.4111, 1.4111, 0.6]; after learning,

[n1, n2, n3, n4, n5] = [16.7444, 9.1028, 1.9081, 1.9081, 0.6].
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Figure 7.10: Evolution of the cost function G2 given in (7.7).
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the preceding simulation results, it is evident that ILT with different cost functions leads to quite

similar results, which indicates the flexibility in choosing cost functions.
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Figure 7.11: Time responses of the wheel velocity, the pendulum tilt angle and the con-

trol signal profile after fine-tuning of five iterations with the cost function (7.8). Before

learning, [n1, n2, n3, n4, n5] = [10.6098, 5.8719, 1.4111, 1.4111, 0.6]; after learning,

[n1, n2, n3, n4, n5] = [15.3792, 8.3838, 1.7975, 1.7975, 0.6].
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Figure 7.12: Evolution of the cost function G2.

7.4 Conclusion

In this chapter, synthesis of a design for T-S FLC for an underactuated 2WMR was described.

The FLC design is based on both human experience and information from the dynamic model of

the system. The effectiveness of the FLC and ILT was verified using simulations. The proposed
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FLC is simple and easy to apply. The ultimate objective of the design is to maximize the utiliza-

tion of system information from either human experience or an analytical model. As a result, the

design is easily understood and offers great flexibility. Our next aim is to address implementation

on a real-time platform.



Chapter 8

Conclusions

This thesis presents the design of linear and nonlinear control algorithms for control of an

underactuated 2WMR. A 2WMR prototype is developed and used to demonstrate and verify the

effectiveness of the proposed control algorithms. Considering that various uncertainties exist in

the real time 2WMR system, robustness is addressed in the control system design.

Linear controller is simple and easy to implement, however, provides limited robustness.

Nonlinear controllers such as SMC or FLC are robust. However, a major difficulty in the design

and implementation of the nonlinear controllers is the determination and tuning of the controller

parameters. To avoid the difficulty in the nonlinear controller design, in this thesis, synthesized

designs of linear and nonlinear control techniques are proposed. The nonlinear controller param-

eters are determined based on the knowledge of a linear controller, which makes the nonlinear

control design become simple, systematic and easy to implement. Furthermore, the feedback

gains for the linear controller are free to be chosen, thus an extra degree of freedom is obtained

in control.

8.1 Summary

The summary of this thesis is as follows.

123
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In Chapter 2, the design and modeling of the underactuated 2WMR are presented. By s-

tudying the zero dynamics of the 2WMR system, it is shown that the pendulum is inherently

unstable at the desired equilibrium point. To stabilize the 2WMR, full-state feedback control is

indispensable.

In Chapter 3, a full-state feedback linear controller is proposed. Two alternative methods are

proposed to obtain the feedback gains for the linear controller. One is an optimal design based on

LQR technique and the other is a robust design based on LMI technique. The stability analysis of

the 2WMR nonlinear system with uncertainties is given when the system is under the LMI based

linear control. Based on theoretical analysis, simulation and experiment results, it is concluded

that the robustness of the linear controller is limited.

In Chapter 4 and Chapter 5, two types of SMC are proposed. The main advantages of the SM-

C are: (1) SMC is applicable to systems with various type of uncertainties, as long as the upper

bounds of the uncertainties are known, in other words, the SMC design requires less informa-

tion of the uncertainties in comparison with classical control techniques. (2) In the ideal sliding

mode, all uncertainties which are in the control range space, namely, matched uncertainties are

nullified. The SMC design consists of two phases: (1) sliding surface design that stabilizes the

sliding manifold and satisfies some performance specifications; (2) switching control law de-

sign that guarantees the system to reach the sliding surface in a finite time and maintain on the

surface afterwards. For the first phase of SMC design, linear and integral type sliding surfaces

are proposed in Chapter 4 and Chapter 5, respectively. For the second phase of SMC design,

Lyapunov’s direct method is employed to derive the SMC laws.

In Chapter 4, the linear sliding surface is constructed by combining the two states of the

wheel and two states of the pendulum in a linear form. For sliding surface design, the selection

of the sliding surface coefficients is a sophisticated design issue because those coefficients are
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non-affine in the sliding manifold. To avoid the difficulty in directly choosing the sliding surface

coefficients, a new sliding surface design method is proposed. The sliding surface design is

transformed into a nominal linear control design, which is simple, systematic and furthermore

provides one extra degree of freedom in control. By utilizing the extra degree of freedom, various

linear control techniques can be incorporated in the SMC design. The resulting sliding manifold

exhibits desirable properties besides stability, such as optimality and robustness.

In Chapter 5, a nonlinear integral-type sliding surface is adopted in the SMC design, namely,

an ISMC is proposed. The sliding mode exists from the very beginning, therefore the system is

more robust against uncertainties than the other SMC systems with reaching phase. The ISMC

is constructed by a nominal control part and a switching term. With the switching term, the

matched uncertainties are perfectly rejected. With the freedom to design a nominal control for

the sliding manifold, ISMC is incorporated with a linear controller.

Chapter 6 and Chapter 7 present synthesized design of T-S FLCs. The FLC design is based

on both human experience and information of the system dynamic model. A difficulty in FLC

design is the lengthy tuning process for FLC parameters, especially the output parameters. In

Chapter 6, the FLC output parameters are tuned according the output of a linear controller at

certain operating points. The linear control techniques introduced in Chapter 2 can be employed

and incorporated in the FLC design. The new FLC outperforms a linear controller because it

provides varying feedback gains, which are adapted to the current states of the 2WRM. In Chap-

ter 7, a synthesized FLC is developed without incorporating any model-based controller, and

hence an accurate mathematic model is not required. The synthesized design consists of three

phases: determination of the FLC structure through heuristic knowledge about the 2WMR; quan-

titative determination of the output parameters for stabilization of the 2WMR; and tuning of the

FLC output parameters using iterative learning tuning (ILT). The main idea behind the proposed



Chapter 8. Conclusions 126

Table 8.1: Comparisons between the controllers proposed.

Robustness

Control Method Unmodeled Parameter Exceptional Optimality Stability

Frictions Uncertainties Disturbance Analysis

Linear Controller Limited Limited Limited Suboptimal Provided

SMC Good Good Limited Suboptimal Provided

ISMC Good Good Fair Suboptimal Provided

FLC Good Fair Good Suboptimal None

FLC with ILT Good Good Good Optimal Provided

Complexity of algorithm: FLC > SMC, ISMC > Linear controller.

User friendly: FLC > Linear controller > SMC, ISMC.

Flexibility in design: FLC with ILT > FLC, and ISMC > SMC.

methodology is to maximize the utilization of all available information, which is achieved by

combining partially model-based and partially model-free designs, and hence improve the FLC

performance.

Table 8.1 summarizes the comparisons between all the control methods proposed and more

points are addressed as the following.

(i) The SMC and ISMC use discontinuous control laws to achieve the robustness with re-

specting to system uncertainties. However, in practical applications, the SMC and ISMC suffer

from the following disadvantages. First, the SMC and ISMC could be vulnerable to measure-

ment noise since the control signals depend on the sign of the sliding surface, which is very

close to zero and depends on the measured states. Second, the SMC and ISMC may employ

unnecessarily large control signals to overcome the parametric uncertainties. Third, the SMC

and ISMC could be vulnerable to exceptional disturbances which can drive the system be away

from the sliding surface. The system performance is hardly predictable when the system is not
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Table 8.2: Comparisons between LQR and LMI based linear control designs.

LQR LMI

Model Linearized Nonlinear

Nonlinearity and Uncertainties Ignored Considered

Feature Optimal Robust

on the specified sliding surface, especially the SMC.

(ii) The FLC offers a practical solution for controlling the 2WMR, although the design is lack

of stability proof. By incorporating heuristic knowledge in the design, the FLC is much more

user friendly than the SMC and ISMC. Through experimental testings, the FLC was proved to

be effective for setpoint control and can provide satisfactory performance even the system is in

presence of exceptional disturbances.

In particular, comparisons between the LQR and LMI based linear control designs are given

in Table 8.2.

Comparisons between the SMC and ISMC are given in Table 8.3. The computing of the

integral sliding surface is more complex than the linear sliding surface. In simulations, both

SMC and ISMC can provide satisfactory performances. In real time implementation, ISMC can

provide a better performance for setpoint control task. The main reason is that, in ISMC, the

wheel position error is directly used for feedback, while in SMC, the convergence of the wheel

position error depends on the convergence of the sliding surface and other three states.

Comparisons between the FLCs designed in Chapter 6 and Chapter 7 are presented in Ta-

ble 8.4. Compared with the FLC proposed in Chapter 6, the design of FLC with ILT in Chapter 7

uses fewer fuzzy rules and has fewer parameters to be determined, which implies a simpler de-

sign. Furthermore, the FLC with ILT requires less model information that the values of the

system parameters are unknown. However, by using the ILT, repetitive testing need to be con-
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Table 8.3: Comparisons between the SMC and ISMC.

SMC ISMC

Sliding surface Linear Nonlinear

Reaching phase Yes No

Control Law Strictly derived and fixed Flexible in nominal controller design

Knowledge of initial states Note required Required

Table 8.4: Comparisons between the FLCs proposed.

FLC+LQR FLC+ILT

No. of fuzzy rules 16 10

No. of parameters 12 9

Parameter tuning LQR ILT

Verification Experiment Simulation

ducted. In each trial, the system response should start at the same initial states, which might be

difficult to guarantee in practice.

8.2 Suggestions for Future Work

This section provides potential future directions of research in continuation of this work.

1. Chapter 3, the LQR based linear control is designed according to a linearized model of

the 2WMR and the weighting matrices Q and R are chosen based on human experience. Thus

the linear controller only gives an optimal solution subjected to the nominal linearized model

and the LQR performance index. In future work, we could utilize the freedom in choosing the

weighting matrices Q and R to achieve an optimal solution subjected to the nonlinear plant and

a separately defined performance index instead of the LQR performance index. Meanwhile, the

weighting matrices Q and R can be selected in a systematic way.
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2. In Chapter 4, for system with unmatched uncertainties, LMI method is adopted in the

sliding surface design, thus yielding a robust control system. An alternative possible approach

to deal with the unmatched uncertainties is to minimize the unmatched uncertainties directly by

selecting the the sliding surface coefficients appropriately, which could be considered as a future

work.

3. In Chapter 5, the ISMC design offers one extra degree of freedom to incorporate a nominal

controller and a linear controller is adopted. It would be interesting to investigate the ISMC

design by incorporating the developed FLC or other advanced control methods.

4. In Chapter 7, iterative learning method is adopted for tuning the FLC output parameters.

The proposed ILT method belongs to off-line learning methods. In future work, online learning

based tuning method can be explored.

5. In this thesis, the developed 2WMR platform functions well for verification of the pro-

posed control methods. However, due to the limited time and budget for building the prototype,

both the mechanical and electrical designs of the prototype are not perfect. Some of the future

works can focus on improving the hardware design. For example, a remote control block can be

added to make the operation be more user friendly; safety protections can be considered in both

the electrical and mechanical designs to make the operation of the robot be safer and avoid possi-

ble damage from collision. Furthermore, it would be interesting to explore different applications

of the 2WMR.

6. This thesis presents control system design for an underactuated 2WMR. The developed

methods are directly applicable to a 2-D unicycle system with lateral stability guaranteed, and

theoretically extendable to a 3-D unicycle system. However, the modeling and behaviors of 3-

D unicycle is much more complicated than the 2WMR or 2-D unicycle. The development and

control of a 3-D unicycle can be considered in future work.
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Appendix A

Mathematic Derivations

A.1 Derivation of the 2WMR Dynamic Equations

The mathematical model of the 2WMR system shown in Fig. 2.3 is derived using a Euler–

Lagrange formulation. We first present the kinetic and potential energies used to compute the

Lagrangian function [23]. The potential energy of the wheel is

Vwheel = mwgxsinφ

and the kinetic energy of the wheel is

Twheel =
1
2

mwẋ2 +
1
2

Iwϕ̇ 2 = (
1
2

mwr2 +
1
2

Iw)ϕ̇ 2.

We define xp as the horizontal position and yp as the vertical position of the centroid of the

pendulum. We then have

xp = xcosφ + l sinθ , yp = xsinφ + l cosθ .

The potential energy for the pendulum is

Vpendulum = mpgyp = mpg(xsinφ + l cosθ)

and the kinetic energy is

Tpendulum =
1
2

mp(ẋ2
p + ẏ2

p)+
1
2

Ipθ̇ 2 =
1
2

mp
[
ẋ2 + l2θ̇ 2 +2ẋθ̇ l cos(θ +φ)

]
+

1
2

Ipθ̇ 2.

142
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Therefore, the Lagrangian function of the 2WMR is given by

L = Twheel +Tpendulum −Vwheel −Vpendulum

= (
1
2

mwr2 +
1
2

Iw)ϕ̇ 2 +
1
2

mp
[
ẋ2 + l2θ̇ 2 +2ẋθ̇ l cos(θ +φ)

]
+

1
2

Ipθ̇ 2

−mwgxsinφ −mpg(xsinφ + l cosθ).

The equations of motion for the 2WMR are then given by the Euler–Lagrange equations

d
dt
(
∂L

∂ ϕ̇
)− ∂L

∂ϕ
= τ + τ f − r fr, (A.1)

d
dt
(
∂L

∂ θ̇
)− ∂L

∂θ
=−τ − τ f . (A.2)

The terms on the right-hand side of the equations represent torques applied externally to the

system. For torques acting on the wheel on the right-hand side of (A.1), τ is the torque generated

by the driving motor, τ f represents the torque resulted by the joint friction and r fr is the torque

due to ground friction fr. The torques acting on the pendulum shown in (A.2) are the reaction

torques.

In equation (A.1),

∂L

∂ϕ
= 0,

and

∂L

∂ ϕ̇
=

∂
∂ ϕ̇

[(
1
2

mwr2 +
1
2

Iw)ϕ̇ 2 +mpẋθ̇ l cos(θ +φ)+
1
2

mpẋ2]

= (mwr2 + Iw +mpr2)ϕ̇ +mprθ̇ cos(θ +φ)

and thus

d
dt
(
∂L

∂ ϕ̇
)− ∂L

∂ϕ
= (mwr2 +mpr2 + Iw)ϕ̈ −mprl sin(θ +φ)θ̇ 2 +mprl cos(θ +φ)θ̈ .

Recall that x = rϕ , so we have

d
dt
(
∂L

∂ ϕ̇
)− ∂L

∂ϕ
= (mwr+mpr+

Iw

r
)ẍ−mprl sin(θ +φ)θ̇ 2 +mprl cos(θ +φ)θ̈ .
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Substituting the above result in (A.1) and dividing both sides of the equation by r, we have

aẍ+bθ̈ −mpl sin(θ +φ) θ̇ 2 + sinφ (mp +mw)g =
1
r
(τ + τ f − r fr), (A.3)

where a = mw +mp + Iw
/

r2 and b = mpl cos(θ +φ).

In equation (A.2),

∂L

∂θ
= mplgsinθ −mplẋθ̇ sin(θ +φ)

and

∂L

∂ θ̇
=

∂
∂ θ̇

{
1
2

mp
[
l2θ̇ 2 +2ẋθ̇ l cos(θ +φ)

]
+

1
2

Ipθ̇ 2
}

= (Ip +mpl2)θ̇ +mplẋcos(θ +φ),

and thus

d
dt
(
∂L

∂ θ̇
)− ∂L

∂θ
= (Ip +mpl2)θ̈ +mpl cos(θ +φ)ẍ−mplgsinθ .

Substituting the above result in (A.2), we have

bẍ+ cθ̈ −mplgsinθ =−τ − τ f , (A.4)

where c = Ip +mpl2.

The dynamic behavior of the 2WMR system described by (A.3) and (A.4) is given by (2.1)

and (2.2).

A.2 Model of General Underactuated System

Consider a multibody mechanical system with n+m rigid body degree of freedom (DOF)

and n actuators. Partitioning the generalized coordinate vector x into n actuated, xa, and m

underactuated coordinates, xu, the motion equations of the system can be written as M11 M12

MT
12 M22

 ẍa

ẍu

=

 ηm +dm +u

ηuu +duu


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where M11 ∈ Rn×n, M12 ∈ Rn×m, M22 ∈ Rm×m.

Premultiplying the inverse of the inertia matrix to the above equation yields ẍa

ẍu

=

 M11 M12

MT
12 M22

 ηm +dm +u

ηuu +duu


where

M11 = (M11 −M12M−1
22 MT

12)
−1

M12 = −(M11 −M12M−1
22 MT

12)
−1M12M−1

22

M22 = (M22 −MT
12M−1

11 M12)
−1

and M11 ∈ Rn×n, M12 ∈ Rn×m, M22 ∈ Rm×m. ẍa

ẍu

=

 M11

MT
12

(ηm +dm +u)+

 M12

M22

(ηuu +duu)

Define

M1 =

 M11

MT
12

, M2 =

 M12

M22


where M1 ∈ R(m+n)×n, M2 ∈ R(n+m)×m.

The full state expression consists of a class of a second-order nonlinear systems in the fol-

lowing form

ẋ1 = x2

ẋ2 = ηu1 +g1(ηm +dm +u)+du1

ẋ3 = x4

ẋ4 = ηu2 +g2(ηm +dm +u)+du2

· · ·

ẋ2n+2m−1 = x2n+2m

ẋ2n+2m = ηu(m+n)+gn+m(ηm +dm +u)+du(n+m)

y = [x1,x3, · · · ,x2n+2m−1]
T
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with gi = M1(i), ηui = M2(i)ηuu, di = M2(i)duu. M1(i), M2(i) are the ith row vector of M1, M2.

Therefore the state-space model of the underactuated system can be expressed as

ẋ = ηu +G(ηm +dm +u)+du

with

ηu = [x2, ηu1, x4, ηu2, · · · , x2n+2m, ηu(m+n)]
T ,

G = [0, gT
1 , 0, gT

2 , · · · , 0, gT
m+n]

T ,

du = [0, du1, 0, du2, · · · , 0, du(m+n)]
T .

A.3 Analysis of Feedback Control for Stabilization of the Linearized

2WMR model

For velocity control of the 2WMR, the position of the wheel is not a concern. Thus, only

three states x2 = ẋ, x3 = θ , x4 = θ̇ are used to described the 2WMR. The linearized 2WMR

model is as 
ẋ2

ẋ3

ẋ4

=


0 a23 0

0 0 1

0 a43 0


︸ ︷︷ ︸

A0


x2

x3

x4

+


g10

0

g20


︸ ︷︷ ︸

g0

u. (A.5)

with

a23 = −
b0mplg
ac−b0

2 ,

a43 =
amplg

ac−b0
2 ,

g10 =
1
r

c
ac−b0

2 +
b0

ac−b0
2 ,

g20 =
1
r

−b0

ac−b0
2 +

−a
ac−b0

2 ,

and b0 = mpl cosφ .
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The linear feedback control law is u =−kx with k = [k2, k3, k4] and x = [x2, x3, x4]
T . We

denote the closed-loop system matrix by Ac. We have

Ac = A0 −g0k =


−g10k2 a23 −g10k3 −g10k4

0 0 1

−g20k2 a43 −g20k3 −g20k4

.
The characteristic equation of Ac is

|λ I −Ac|= λ 3 +(g10k2 +g20k4)λ 2 +(g20k3 −a43)λ + k2(a23g20 −a43g10) = 0.

To ensure local stability around the desired equilibrium point, Ac should be a Hurwitz matrix.

Applying the Routh criterion, we obtain the following necessary conditions for selection of feed-

back gains:

g10k2 +g20k4 > 0, (A.6)

g20k3 −a43 > 0, (A.7)

k2(a23g20 −a43g10)> 0. (A.8)

Note that a, b0, c> 0 and ac−b0
2 =(mw+Iw

/
r2 )(Ip+mpl2)+Ipmp+(mpl sinφ)2 > 0, and

thus we have g10, a43 > 0 and g20, a23 < 0. It follows from (A.7) that k3 < a43
/

g20 < 0. Since

a23g20−a43g10 =−mplg
/
[r(ac−b0

2)] < 0, we have k2 < 0 from (A.8) and k4 <−k2g10
/

g20 <

0 from (A.6). Finally, we conclude that all the feedback gains must be negative.



Appendix A. Mathematic Derivations 148

A.4 Analysis of Feedback Control for Stabilization of the Augment-

ed Linearized 2WMR Model

By introducing the state EI =
∫ t

0(ẋ− vr)dτ , which is the integration of the wheel velocity

error, we have the augmented linearized 2WMR model as
ĖI

ė2

ė3

ė4

=


0 1 0 0

0 0 a23 0

0 0 0 1

0 0 a43 0


︸ ︷︷ ︸

A0


EI

e2

e3

e4

+


0

g10

0

g20


︸ ︷︷ ︸

g0

u. (A.9)

The linear feedback control law is u=−ke with k= [k1, k2, k3, k4] and e= [EI, e2, e3, e4]
T .

The closed-loop system matrix

Ac = A0 −g0k =


0 1 0 0

−g10k1 −g10k2 a23 −g10k3 −g10k4

0 0 0 1

−g20k1 −g20k2 a43 −g20k3 −g20k4


should be a Hurwitz matrix. The characteristic equation of Ac is

|λ I −Ac|= λ [λ 3 +(g10k2 +g20k4)λ 2 +(g20k3 −a43)λ + k2(a23g20 −a43g10)]

+g10k2λ 2 + k1(a23g20 −a43g10) = 0.

To ensure local stability around the desired equilibrium point, we have the following necessary

conditions for selection of feedback gains:

g10k2 +g20k4 > 0, (A.10)

g20k3 −a43 +g10k1 > 0, (A.11)

k2(a23g20 −a43g10)> 0, (A.12)

k1(a23g20 −a43g10)> 0. (A.13)
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Since a23g20 − a43g10 < 0, we have k2 < 0 from (A.12) and k1 < 0 from (A.13). Thus, we

have k3 < a43 −g10k1
/

g20 < 0 from (A.11) and k4 <−g10k2
/

g20 < 0 from (A.10). Finally, we

conclude that all the feedback gains must be negative.
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