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Juan José Figueredo Uribe

Thesis submitted as partial fulfillment of the requirements for the degree of:
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Resumen

Este trabajo explora la aplicación de campos neuronales, a tareas de control

dinámico en el domino de caminata b́ıpeda.

En una primera aproximación, se propone una arquitectura de control que

usa campos neuronales en 1D. Esta arquitectura de control es evaluada en el

problema de estabilidad para el péndulo invertido de carro y barra, usado como

modelo simplificado de caminata b́ıpeda. El controlador por campos neuronales,

parametrizado tanto manualmente como usando un algoritmo evolutivo (EA),

se compara con una arquitectura de control basada en redes neuronales recur-

rentes (RNN), también parametrizada por por un EA. El controlador por campos

neuronales parametrizado por EA se desempeña mejor que el parametrizado man-

ualmente, y es capaz de recuperarse rápidamente de las condiciones iniciales más

problemáticas.

Luego, se desarrolla una arquitectura extendida de control y planificación us-

ando campos neurales en 2D, y se aplica al problema caminata bipeda simple

(SBW). Para ello se usa un conjunto de valores óptimos para el parámetro de con-

trol, encontrado previamente usando algoritmos evolutivos. El controlador óptimo

por campos neuronales obtenido se compara con el controlador lineal propuesto

por Wisse et al., y a un controlador óptimo tabular que usa los mismos parámetros

óptimos. Si bien los controladores propuestos para el problema SBW implemen-

tan una estrategia activa de control, se aproximan de manera más cercana a la

caminata dinámica pasiva (PDW) que trabajos previos, disminuyendo la acción

de control acumulada.

campos neuronales, neurocontrol, robótica evolutiva, vida artifical,

control óptimo, caminata b́ıpeda, péndulo invertido, caminata b́ıpeda

pasiva.
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Abstract

This work explores the application of neural fields to dynamical control tasks

in the domain of biped walking.

In a first approximation, a controller architecture that uses 1D neural fields

is proposed. This controller architecture is evaluated using the stability problem

for the cart-and-pole inverted pendulum, as a simplified biped walking model.

The neural field controller is compared, parameterized both manually and using

an evolutionary algorithm (EA), to a controller architecture based on a recurrent

neural neuron (RNN), also parametrized by an EA. The non-evolved neural field

controller performs better than the RNN controller. Also, the evolved neural field

controller performs better than the non-evolved one and is able to recover fast

from worst-case initial conditions.

Then, an extended control and planning architecture using 2D neural fields is

developed and applied to the SBW problem. A set of optimal parameter values,

previously found using an EA, is used as parameters for neural field controller.

The optimal neural field controller is compared to the linear controller proposed

by Wisse et al., and to a table-lookup controller using the same optimal param-

eters. While being an active control strategy, the controllers proposed here for

the SBW problem approach more closely Passive Dynamic Walking (PDW) than

previous works, by diminishing the cumulative control action.

neural fields, neurocontrol, evolutionary robotics, artificial life, opti-

mal control, biped walking, inverted pendulum, passive dynamic walk-

ing
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1 Introduction

1.1 Motivation

Dynamical bipedal walking has been a key objective in robotics since its origins,

due to the human curiosity about artificial anthropomorphic beings which gave

rise to the robot concept itself [11]. As could be seen in most industrialized

countries, the industrial manipulators have found a wide adoption, and there is

little space to a major boost in the area [76]. Although, the interest is shifting

from an industrial point of view to a more domestic one [3], where robots can be

seen as additional aids to human daily tasks.

But, in order to accompany humans, the robot must be able to fluidly move

through all the environments in which the human can, and those environments

are devised to adapt well to anthropomorphic beings: factories, vehicles, houses,

sidewalks, and shopping malls, among others. This way, a robot made to perform

well in arbitrary environments will have a great advantage if it is anthropomorphic,

so that it could serve well as an personal assistant [18].

The interest on biped robotics is not only for bio-robotics itself. Another reason

to research anthropomorphic motion is the understanding of human morphology,

mechanics and control, from a medical point of view, where robotics could serve

as a testing scenario to both theories and technologies concerning human motion

(for an example see [70]) and, probably, provide technological aids and substitutes

to body parts when an impairment is present [29].

Another motivation to the research of biped walking is related to the fact that

anthropomorphic motion planning and control is a complex problem that includes

nonlinear and non-holonomic systems [6], complex computing tasks, adaptability

to unknown and unstructured environments [14], among others, and is useful to

test different mechanical, electronic, computing and control techniques applicable

to diverse areas. As it is remarked by Craig [17], it should not be forgot that the

predominant dynamics algorithm for open-chain mechanisms was developed [60]

and refined [50] while working in biped walking problems.

Among the different problems faced in anthropomorphic motion, biped walking

is one of the most difficult because its intrinsic instability. In contradistinction

to wheeled mobile robotics and stable legged robotics, biped robotics must allow
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locally unstable motion in order to attain a fluid locomotion. Additionally, there

are several problems in biped locomotion other than stability. A bipedal walker

must be capable to choose the best path to reach an objective, avoid obstacles,

tolerate high perturbations, perform well in unstructured environments, and move

with an optimal energy consumption.

1.2 Goals

While already a problem broadly studied, the problem of biped walking is still

open for several key goals not currently entirely satisfied, such as optimal energy

consumption, objective-based planning and walking in less structured environ-

ments. However, there are recent, and not so recent, notable contributions in this

field obtained by diverse methods: active control, passive dynamic walking, and

computational intelligence; which are giving a stronger basis for major advances

in the field, fueled by a strong academic and commercial motivation.

Nonetheless, here we study a narrower problem, in which biped robotics com-

bines with dynamical neural neurons and evolutionary robotics to pursue biped

walking control by emergence, i.e. without the explicit specification of those pa-

rameters required in order to achieve the desired behavior with the control scheme

chosen.

In a intuitive way, the problem studied can be broadly described as to provide

a biped robot with an optimal locomotion. Nonetheless, since the optimality

referred can be thought as a performance measure, it is convenient to be more

specific in its definition. Based on the preliminaries in previous sections, some

possible relevant goals to be accomplished by biped locomotion are:

• To conserve static stability: The ability to conserve equilibrium while in

static state or in quasi-static motion.

• To walk conserving dynamic stability: The ability to walk, or locomote

without leaving the contact with the floor, at velocities high enough to

make considerable the inertial forces maintaining stability. That means the

robot should walk indefinitely without falling if there are no obstacles in its

way.

• To locally minimize energy consumption: For a given path minimize the

energy consumption of the gait pattern.

• To react to external perturbations: Sense and compensate external per-

turbations that affect locomotion, including external forces and changes in

environment parameters.
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• To plan gait trajectories to attain specific objectives: The ability to choose

a suitable trajectory to reach a desired state, not only in terms of path, but

also joint coordination.

• To move across unstructured environments: Perform biped locomotion in

environments with variable conditions which are not previously given to the

robot, and plan according to the perception of those variable conditions.

• To globally minimize energy consumption: For a given objective in an ar-

bitrary environment, select and perform the gait trajectory that minimizes

energy consumption.

Although non strictly, the order of goals presented has in mind a growing

complexity required to satisfy them. That implies that in some cases it would be

useful to satisfy, at least partially, a previous one before the one following it.

The last goal proposed, the global minimization of energy consumption, has

not been completely satisfied by any of the works reviewed so far, and the goals

of motion across unstructured environments and planning of trajectories to attain

specific objectives have been taken into account by few of them. Particularly, in

the area of computational intelligence it is necessary first to address consistently

the problem of planning previous to studying the remaining goals.

Therefore, the specific problem defined is to perform the motion planning and

control of biped locomotion in a computer-simulated environment using a goal-

oriented integrated architecture based on computational intelligence. The biped

model defined is a rigid body linked model, with the lesser number of joints

required to move in a two-dimensional environment.

The motion planning is understood as the process to detail a motion task

into a sequence of reference actions, while the motion control is the process that

transforms a sequence of reference actions into control signals applied to robot

actuators (applying torque accordingly to each joint).The computer-simulated en-

vironment is essentially a physics engine in which the dynamical experiments can

be performed, given a model of the system, environmental conditions and a set of

inputs.

1.3 Main Contributions

The goal-oriented control architecture using neural fields proposed here, is the

main contribution of this work. It shows that neural fields may be used as a

useful component to build motion controllers, taking into account that they are

also biologically plausible.
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In order to be able to move consistently across an unstructured environment

and to be useful for any specific task it is required that the biped can pursue

specific goals. Being able to perform both planning and control is important for

two reasons. The first one is to allow a uniform and hierarchical implementation

across the architecture, allowing the same adaptation strategies and analysis tools

to be applied to both planning and control systems, and performing the planning

task dynamically in the same time scale in which the control system is working.

The second one is to be able to change softly from one operation mode to another

when goals have changed, controlling undesired high frequency components of the

reference control signal.

An additional but important contribution, related to the goal of minimization

of global energy consumption, is the optimization by means of evolutionary algo-

rithms and neural fields of the previous work on pseudo-Passive Dynamic Walking

controllers (see [67]) for the Simplest Biped Walking model (as proposed in [24]).

With this contribution, we are advancing towards what could be the most valuable

goal on biped walking control.

The proposed problem faces dynamic biped walking in structured environments

without perturbations. With the contribution on goal-oriented planning and its

integration to motion control using a computational intelligence approach, and

furthermore with the improvement on energy consumption, it is expected that this

work provides a framework such that the motion across unstructured environments

and the global energy minimization for general environments will fall in the field

of study in short time.

1.4 Contents Overview

The contents of this work are organized as follows:

• First some preliminaries are presented, including:

– The problem of biped walking and some general approaches to solve it;

– An introduction to neural fields.

– An introduction to evolutionary algorithms.

– And finally, a survey of computational intelligence applied to biped

robotics.

• Then, a first approach to a neural field control architecture is shown. It is

used to solve the stability problem for the inverted pendulum, and compared

against a recurrent neural network controller. Also, it is shown a second
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neural field controller, where adaptation using evolutionary algorithms is

applied.

• Later, an extended neural field control and planning architecture is devel-

oped and applied to the stability problem for the Simplest Biped Walking

model. In this chapter we show how the control architecture may be used at

a planning level by changing the control policy to be applied, and also how it

is able to minimize the global energy consumption. The neural field control

architecture is compared to the linear controller proposed by Wisse et al.,

and to the optimized but not biologically inspired Sliding-mode controller

proposed by us.

• Finally, some conclusions are drawn and possibilities for future work are

presented.



2 Preliminaries

2.1 Introduction

Dynamical bipedal walking has been a key objective in robotics since it was first

conceived, due to the initial idea of robots as anthropomorphic machines with

human-mimicking behavior [11]. In spite of the advent of industrial robotics and

a modern academic and industrial conception more oriented towards robotics as a

production augmenting value [76], there are not only important reasons to pursue

anthropomorphic robots and understanding of bipedal walking, but an increasing

interest on non-industrial robots (for which the term service robot is sometimes

used) [3].

Most of the environments existing are devised to adapt well to humans: facto-

ries, vehicles, houses, sidewalks, and shopping malls, among others. This way, a

robot made to perform well in arbitrary environments will have a great advantage

if it is anthropomorphic, and therefore it could serve well as an personal assistant

[18]. Another reason to research anthropomorphic motion is the understanding of

human morphology, mechanics and control, from a medical point of view, where

robotics could serve as a testing scenario to both theories and technologies con-

cerning human motion (for an example see [70]) and, probably, provide techno-

logical aids and substitutes to body parts when an impairment is present [29]. A

third motivation is related to the fact that anthropomorphic motion planning and

control is a complex problem that includes nonlinear and non-holonomic systems

[6], complex computing tasks, adaptability to unknown and unstructured envi-

ronments [14], among others, and is useful to test different mechanical, electronic,

computing and control techniques applicable to diverse areas.

Among the different problems faced in anthropomorphic motion, biped walking

is one of the most difficult because its intrinsic instability. In contradistinction

to wheeled mobile robotics and stable legged robotics, biped robotics must allow

locally unstable motion in order to attain a fluid locomotion. Additionally, there

are several problems in biped locomotion other than stability. A bipedal walker

must be in capacity of choose the best path to reach an objective, avoid obstacles,

tolerate high perturbations, perform well in unstructured environments, and move

with an optimal energy consumption.
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2.2 Biped Walking

Biped walking is, from a robotics standpoint, the articulated motion of several

bodies with motion between them coordinated by actuation torques in their joints.

It is easier to model biped walking as a rigid bodies system, but the nature of

biological tissues is best modeled by viscoelastic bodies. Also, it is easier to model

biped walking with the most reduced number of degrees of freedom (i.e. the

minimum number of independent parameters required to completely describe the

sate of the system), but at the organ level there are at least 6-DOF in each leg (in

the hip: Flexion-Extension, Abduction-Adduction, External-Internal Rotation;

in the knee: Flexion-Extension; and in the ankle: Plantarflexion-Dorsiflexion,

Pronation-Supination) for a total of 12-DOF in the lower extremities. Though, a

biologically complete description of joint states would need a lot more degrees of

freedom: there are about 650 skeletal muscles in human body, each one composed

of several muscle fibers (myocytes) independently innervated. This way proper

selection of model body and joint properties is crucial in modeling walking.

2.2.1 Static and Dynamic Stability

One important element in biped walking is stability. Generally speaking, there

are two ways of defining stability in biped locomotion. The first method, assumes

locomotion as a quasi-static motion and, supposing negligible inertial momentum

in body links, the stability is given by the location of body center of mass (CoM).

If it is inside of the convex hull containing all points in the support area (i.e. the

supporting polygon) it is said to be stable, otherwise it is said to be unstable. An

example of a statically stable biped robot is shown in Fig. 2-1. This principle

applies generally under low accelerations in the single-support phase, because the

support polygon in this phase is limited to the contact area of the supporting feet,

and therefore the robot has a very limited movement range in order to conserve

stability. In the double-support feet it can be used reasonably to model stability

under higher accelerations, because the support area is wider and the stability is

less sensible to dynamic forces.

The second method, takes in account the inertial forces due to dynamical mo-

tion, and its general definition is still and open problem [4]. However, a limited

way to determine biped dynamic equilibrium is given by the projection of the

dynamical equivalent to CoM: the Zero Moment Point (ZMP). The Zero Moment

Point is the point where the reaction force with the supporting element would

produce a zero moment. If the ZMP is located inside the supporting polygon,

destabilizing moments due to dynamic locomotion would be compensated by the
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CoM

Support Poligon

CoM 

Vertical

Projection

Figura 2-1: Static Equilibrium by CoM vertical projection over support polygon.

support reaction. An illustration of a robot which is not in equilibrium is shown

in Fig. 2-2. The ZMP is the projection over the floor of the total force acting

over the CoM. When accelerations become relevant, the reference frame placed in

the CoM is not anymore an inertial frame and, therefore, appears an inertial force

opposed to CoM acceleration, which, with the weight force, yield a total force not

normal to the floor. In order to be in moment equilibrium, the projection over

the floor of the total force must coincide with the floor reaction point, that is, the

point where the equivalent reaction force is applied.

Biped locomotion can be thought as a rhythmic and symmetric progression of

trunk and limbs movement. In a complete gait cycle each leg passes trough a

stance phase, in which its toe is in floor contact, and a swing phase, in which the

foot is balancing without floor contact. Between them is a double support phase,

where both feet are conforming the support area. Double support phase dynam-

ics is more complex than that of the single support because of the additional

constraints that yields a parallel kinematic chain. Thereby, a usual modeling

technique is to model the dynamics of single support and a punctual transition

condition for the double support [24]. However, double support dynamics model-

ing could be representative since it accounts for 20% of the gait cycle.
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CoM

Total Force

Reaction Force

ZMP

acceleration

Figura 2-2: Dynamic Equilibrium not attained because of ZMP and floor reac-

tion point not coincident. The robot is falling backwards.

2.2.2 Biological Considerations on Biped Locomotion

In order to build suitable controllers for biped locomotion it is necessary to define

what aspects, or features, are most important to good performance, robustness,

stability, adaptability, and optimality of walking. All of these properties are at-

tained by biological biped walking and therefore it is the main inspiration for

building models as well as controllers of locomotion.

There are several models of biped walking, and each of them remarks one or

more important features. A very good review and analysis of biped locomotion

models can be found in [63]. Vaughan reviews six models of bipedal walking:

Bipedal walking as an evolutionary adaptation of hominids, minimization of en-

ergy consumption by displacing the CoM along an optimal path, progressive learn-

ing with risk of falling minimization, spinal cord inter-neurons acting as rhyth-

mic central pattern generators, neural system training along with bio-mechanical

system and environment adaptation, and feedback control in powered dynamic

locomotion. The neurobiological aspects of motion control have been examined in

[20]. Duysens remarks the reflex response of sensor inputs in motion control and

presents tree levels for neural motion control: Feedback control in motoneurons, in

terms of contribution of reflex action over motoneuron signal intensity; feedback

control in central pattern generator flexor-extensor centers, relevant to movement

synchronization and reflex response to perturbation and loads; and higher level
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control, referred to conscious control of locomotion. Duysens states that despite

of the relative low understanding of the high level control participation in locomo-

tion, the two lower levels are complex and rich enough to be studied an applied

to robot design (i.e. the so-called spinal robot, because it would have the control

architecture expected in a human with transected spinal cord).

2.3 Neural Fields

Neural fields arise as a tissue level model of neural populations in brain. It has

been proposed by Wilson and Cowan [65] and detailed by Amari [1] in the par-

ticular case of lateral inhibition. In this model, neural population in considered

continuum in which exists a dynamical evolution equation where the mean acti-

vation potential evaluated in one place is affected by its neighborhood according

to a so-called Mexican hat function (as noted by Coombes [16] better called wiz-

ard hat function) in which close neighbors act as exciters and distant ones act as

inhibitors.

The base model, as presented by Amari [1] for the multiple layer case is:

τi
δui(x, t)

δt
= −ui +

m∑
j=1

∫
wi,j(x, x

′; t− t′)fj (uj(x
′, t′)) dx′dt′ + hi + si(x, t) (2-1)

Where τ is a temporal constant of synaptic decay rate, ui(x, t) is the average

membrane potential of the neurons located at position x at time t on layer i

(where x can be 1-dimensional, 2-dimensional or even of higher dimension). The

average intensity of connection from neurons on layer j at y to neurons on layer

i at x is modeled with wi,j(x, y), fj(·) is the saturating output function which is

monotonically non decreasing. The deviation of the average stimulation potential

at place x at time y of layer i is represented by si(x, t), and hi = s̄i − ri is the

sum of the average stimulation potential an the resting potential of layer i.

There are several assumptions that produce simplifications over the previous

model. One of them is to include the additional dependence of the time lag

of signals t′ = |x − x′|/v where v is the velocity of an action potential [65].

Nonetheless, while not stated otherwise it will not taken into account the time

lag, as well as the multiple layers. The non-homogeneous terms will also be

merged S(x, t) = h+ s(x, t). This way, the resulting equation takes the form (for

x n-dimensional):

τ
δu(x, t)

δt
= −u+

∫
Rn

w(x, x′)f (u(x′)) dx′ + S(x, t) (2-2)
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For further simplification, temporarily the connection kernel w(x, x′) will be

considered as isotropic and homogeneous, so that it only depends on the norm of

the vector difference ‖x− x′‖ i.e. w (‖x− x′‖). Amari found diverse stable-state

solutions for the one-dimensional case (isotropic and homogeneous), where the

model is:

τ
δu(x, t)

δt
= −u+

∫ ∞
−∞

w (|x− x′|) f (u(x′)) dx′ + S(x, t) (2-3)

2.4 Evolution and Adaptation

Evolutionary algorithms are a set of population-based heuristic search and opti-

mization techniques. They maintain a population, and apply a set of operators or

transformations over its members. Those operators are typically inspired on bio-

logical evolution and usually include selection, reproduction and mutation, among

others. The operators are dependent of the evaluation of a performance function

called fitness function. Generally, fitness function evaluation may include, from a

simple numerical evaluation, to a complex simulation, in order to get the perfor-

mance criterion which its optimization is pursued.

The pseudo-code of a general evolutionary algorithm is as follows:

Algorithm 1 EvolutionaryAlgorithm

1: P ← Generate initial population of size N

2: Evaluate fitness for each individual in P

3: repeat

4: P ′ ← Apply operators to P

5: Evaluate fitness for each individual in P ′

6: P ← Select N individuals in P ′ according to a selection scheme

7: until Termination condition is met

The most predominant form of an evolutionary algorithm is embodied by ge-

netic algorithms. They most frequent genotypical representation is a bit sequence,

although other representations can be used. Usually they are implemented with

a generational replacement of population, but in some situations it is useful to

conserve a small set of the better individuals across generations in a steady-steady

replacement.
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Figura 2-3: A taxonomy tree of motion planning and control methods in biped

walking

2.5 Computational Intelligence Applied to Biped

Robotics: A Survey

Here is presented a tentative taxonomy of the previous works made in the area of

motion planning and control methods in biped walking. Three major approaches

are identified: Computational Intelligence, Active Control and Passive Dynamic

Walking. Fig. 2-3 shows for a graphical representation of the taxonomy with

emphasis in computational intelligence methods.

Before focusing on computational intelligence methods, the two other methods

mentioned are briefly presented.

Active Control refers to the persistent control of the joint actuation and state

applying control theory. It includes position, velocity, acceleration and torque

control techniques. Also, several design methods can be used, including some

derived from linear ones but applied to nonlinear systems. In the methods used

are included methods based on frequency response, performing the optimization

of a performance criterion (e. g. H∞ control), or applying state feedback. Another
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simpler method used is the tuning of parameters of a PID controller. Also it is

possible to a given extent use local linear approximations and directly use linear

control methods. Active control gives the best trajectory tracking and accuracy,

provides methods to evaluate stability (such as Lyapunov stability analysis), and

can be vertically integrated to higher motion planning algorithms, but its main

deficiency is its very high energy consumption due to the persistent control of

joint actuation, even when optimal control is applied.

The other major approach is Passive Dynamic Walking (PDW). In PDW it

is took the opposite approach by totally suppressing any joint actuation. The

idea is that the actuation given by gravity force over a biped robot standing

over a slightly inclined surface, in conjunction with its natural dynamics, must

achieve stable gait patterns. This is attained by using passive elements as springs

and dampers and a careful mechanical design guided by a detailed analysis by

dynamic systems theory, including state space modeling, phase transitions, and

probably other techniques such as Poincaré maps and Lyapunov stability analysis

and, mostly, dynamic simulation. In order to obtain gait pattern in flat surfaces

it can be applied reinforcement learning in a control system so as to learn how

to simulate the slight actuation given by the gravity in the inclined surface case.

The main advantage of this method is its very low energy consumption, and its

main disadvantage is its low flexibility to track general paths, particularly those

including vertical movements, and its high sensibility to environment conditions.

Next, each one of the three major approaches to the problem that apply compu-

tational intelligence are examined. These are Central Pattern Generator methods,

Dynamic Walking Control methods, Static Walking Control methods, and Tra-

jectory Tracking methods. This classification emphasizes the way in which the

problem is solved and not the sub-field of computational intelligence used.

2.5.1 Central Pattern Generator (CPG) Methods

A Central Pattern Generator (CPG) is a system which is supposed to give the

coordinated rhythmic stimulation to joints required to generate a gait pattern. It

is inspired from the spinal motor center find in animals such as mammals, and it

is usually implemented using a kind of neural networks called oscillatory neural

networks.

Neural oscillators are a special type of artificial neural networks (ANNs) de-

scribed by two essential elements: the dynamical properties of the individual

neuron, and the type of coupling between neurons. Each neuron has its dynamics

described by a set of differential equations.

A more specific model of neural oscillators couples neurons in pairs. It is
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Figura 2-4: Topology of an Amari-Hopfield neural oscillator

based in the fact that most muscle fibers have one excitatory center for flexion

and another for extension, and them are inhibiting between them. This way, the

two coupled neurons can be represented by a set of differential equations. An

example of this arrangement is the Amari-Hopfield model, for which a graphical

representation is shown in Fig. presented here as shown in [47]:

τ u̇ = −u+ af(u)− cf(v) + Su(t)

τ v̇ = −v + bf(u)− df(v) + Sv(t)

In which u and v are the neuron potentials, Su(t) and Sv(t) are the respective

neuron inputs as function of time, and f(u) and f(v) are neuron outputs after

applying the transfer function:

f(x) =
1 + tanh(µx)

2

The parameters a, b, c and d characterize the neural oscillator behavior. This

kind of arrangement is typically followed in the CPG control methods, where each

neural oscillator (neuron pair) is used to stimulate a single joint, and the mutual

interaction of neural oscillators conform the CPG.

A classical author in the application of CPGs to motion control of biped loco-

motion following the methodology presented above is Taga, who in his preliminary

work of 1991 (see [62]) applied the concept of coupled neural oscillators, remark-

ing the self-organizing properties of the neural system with the physical system

and the environment, which gives some disturbance rejection that keeps the equi-

librium of biped walking.

In general terms, the neural oscillator can be thought not only as the coupling of

two neurons, but more globally, the rate of neuron activation potential variation

can be a function of the network inputs, its current activation potential and a
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special term called fatigue. Also the rate of variation of fatigue is function of the

current fatigue and its current output. A general expression for the system of

differential equations that rule the dynamics of a individual neuron is [10]:

τrẋi = −xi +
n∑

j=1,j 6=i

aijyj − bfi + si

τaḟi = −fi + yi

yi = H1(xi)xi

H1(x) =

{
1 x ≥ 0,

0 x < 0,

Here, xi denotes the activation potential of the ith neuron, yi its output, aij
the connection weight from neuron j to neuron i, fi is the fatigue strength, b is

the coefficient of fatigue, si is a bias factor, and τr and τa are time constants.

With this model Cao and Kawamura used an oscillatory neural network as

CPG to generate biped walking patterns. The net composition includes a single

neuron for each articulation, and all neuron are connected between them (i. e.

all the networks is a single coupled neural oscillator). The neuron activation

function is given by the set of equations presented above. A connectivity matrix,

with inhibitory and excitatory weights (composed by the different terms aij) was

evolved using an genetic algorithm to obtain a gait pattern. The chromosome is

a linear arrange of matrix elements in binary representation in the form:

< b0b1 . . . b7︸ ︷︷ ︸ b8 . . . b15︸ ︷︷ ︸ . . . . . . b440 . . . b447︸ ︷︷ ︸ >

a12 a13 a87

The fitness function used is dived in two partial qualitative functions and a third

which evaluates the correctness of the gait, applying three genetic algorithms, one

nested in another (authors called it hierarchical evolutionary algorithm). This

way they were able to control eight joints and generate successful gait patterns.

Next is presented relevant previous works that mainly use Central Pattern

Generators as motion strategy.

Kun and Miller [37] implemented a control for biped robot walking of a 10-

DOF robot, for which they used a CPG that uses a heuristic to generate se-

quences, synchronizing the performance in the joints with the natural dynamics

of the robot, and receiving correction parameters in the lateral and frontal motion

given by CMAC neural networks as inputs. Additionally, a third CMAC network

is trained to help control the robot in the double support phase. The natural

dynamics of the robot is fundamental for the control system given its dependency
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on directional balance to stabilize the movement. They used temporary difference

learning to train networks. This pioneer work is validated implementing it on a

real biped robot.

Venkataraman [64] made a complete compilation of the important elements

in the CPGs in the field of biology and the robotics, and proposes an alterna-

tive method for biped, quadruped and hexapod locomotion patterns generation.

The method has relation with the general implementation using oscillatory neural

networks, but unlike these, it employs a single linear patterns generator, with

which the movements are generated in each extremity using filters of finite di-

mension (adjustments of phase lead and phase lag filters) to simulate the delays

that produce the coordinated movement necessary for locomotion. The oscillator

is modeled including elements of the Van der Pool oscillator to obtain a nonlinear

system with a robust and stable focus. There are presented as result patterns

for the gait types already mentioned, proving that they can be obtained with a

simple architecture.

Benbrahim and Franklin [8] developed a CPG using CMAC neural networks

and simultaneously applying reinforcement and supervised learning. They use a

central network, the generator, aided by a set of peripheral control networks in

parallel with observation networks, whose inputs are relevant parameters that act

as gait restrictions, among them body posture and height of body mass center.

Peripheral control networks act only if its correspondent observation network de-

tects a improper behavior from central network for a specific restriction. Control

system output is determined by a Gaussian function with median located in the

CPG output and standard deviation that initially has a high level and reduces as

solution converges. Dynamic control necessary to follow the reference provided by

CPG is easily implemented with a set of PID controllers. In the real application,

the control scheme was aided by a posture bang-bang control (i. e. on-off control).

It was required a previous training in order to obtain suitable network training

time. This novel approach allows to prevent that CPG errors cause a general gait

failure, not only providing robustness but accelerating the learning process.

Hasegawa et al. [27] proposed a method for developing pattern generators

useful for a biped 13-DOF robot walking on inclined surfaces. They solved the

unconstrained optimization problem with a hybrid evolutionary algorithm with a

lower layer that generates trajectory points (from a cubic spline) using evolution-

ary programming (EP), which are added in interpolated point sets, and those set

are in time evolved using a genetic algorithm (GA), selecting the successful sets

that minimize energy consumed by the robot. Due to that each point evaluation

depends on the best individual in the GA layer, and also second layer individuals

a sets of elements of the first layer, the algorithm has a co-evolutionary scheme.
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In the practical implementation made, the dynamic control is performed by PD

controllers.

Reil and Husbands [55] used an evolutionary algorithm (EA) to optimize the

parameters of a fully connected recurrent neural network. The model of each

neuron is a dynamic model that attenuates its answer in stimulation absence, and

depends on a set of weights, a bias factor and a dynamic time constant, with a

dynamics similar to the model exposed previously and presented in [10]. The three

parameters types for the totality of network neurons are represented linearly in the

individuals genotype used in the evolutionary algorithm. The fitness function used

favors movement that maximizes displacement in frontal direction and penalizes

movement in vertical direction. The authors manage with such simple evaluation

rule to generate satisfactory patterns of march without any sensory feedback.

Later, they add a sensory entrance of auditive type and, leaving the recurrent

connections fixed, they evolve the recurrent neurons connection weights with the

sensory input. This way, they attain that the robot navigate towards a source of

sound emission. The neural controller generates reference points that are taken

to forces in the motors by a PD torque control. An addition to the efficiency of

the algorithm is the premature abandonment of marches that move strongly in

vertical direction. They have achieved a relative low success rate in evolutions

(close to 20%) and propose switching to a more traditional CPG method.

Miyashita et al. [45] recalled the conceptualization of previous authors like

Taga, emphasizing the importance of the oscillating behavior in the nervous sys-

tem in form of CPGs. The proposed controller this way is based on oscillating

artificial neurons, or oscillators, which are connected mutually in pairs to obtain

a periodic behavior, in a form similar to the Amari-Hopfield model presented

previously. It is shown the evolution of neural network structure using genetic

programming (GP), in terms of the interconnections between oscillators, suppos-

ing the internal structure of the oscillators fixed (i.e. the parameters a, b, c, d

an τ). The GP implementation for solving the problem is made representing the

local network from each oscillator like an S-expression, doing a co-evolution where

a sub-population for each oscillator is evolved, but the evaluation of the aptitude

function as well as the application of genetic operators are applied over an oscilla-

tor group, each one of a different population. Results of walks generated with this

method are displayed, until a maximum of 10 stable steps. This work, spite its

relative success, has a very large computational overhead and gives a very small

set of successful neural oscillators. Nonetheless, its approach is very illustrative,

and somehow resembles the spinal control proposed in [20].

Paul [52] argued that, unlike the controllers that use a CPG whose connections

between oscillators in left and right sides are connected, it is possible to obtain a
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satisfactory biped walking with two decoupled generators. Two cases area treated:

the first one decouples control and sensor system, having each an independent

CPG, without any connection to each other and with entrances of sensors strictly

located in his partial side; while the second one decouples connections but allows

common entrances to both global position sensors. Both controllers are evolved

in parallel with genetic algorithms (GA) to three morphological parameters. It is

shown that for the first case successful biped walking is achieved in most of cases

but there are problems to follow a straight line. In the second, it is shown that

the CPGs decoupling with global entrances is an equally satisfactory technique

that the entirely coupled case. This way, Paul gives a highly valuable approach,

in which a lot simpler technique achieves similar results to those more complex

traditionally used. Paul therefore hypothesizes that lower limb control in walking

is inherently reactive and sensory-motor coordination based, and CPGs are used

only to alter gait conditions acting only in the trunk and arms.

In the another work [53], Paul aimed to continue the work oriented to controller

simplification for the biped walking based on neural networks, this time showing

that independent simple networks for controlling each leg can generate a stable

walk, using only forward connections (i. e. a feed-forward neural network) with-

out hidden layer. The used networks only receive as entrance the contact with

their respective leg and a common bias signal for both controller. Of numerous

configurations evolved with genetic algorithms, only two obtained the satisfactory

long walk, but in a remarkable form, both indefinitely turned out to be stable.

It is used, like in previous works of Paul, co-evolution of some few morphological

parameters. This is probably the simpler solution to this problem proposed to

the time.

Nakanishi et al. [48] made a less traditional approach to the generation of

patterns for biped walking with some similarities to the CPGs. The idea con-

sists of designing oscillators represented as systems of nonlinear phase coupled

differential equations, in such form that the fundamental element of dynamics is

not the oscillation frequency of each element, but its phase relations in order to

obtain a desired movement pattern. A local weighted regression (LWR) is pro-

posed as a training scheme to adapt elements phase, as well as dynamic system

global oscillation frequency. Additionally, it is applied the concept of phase reset

at the moment of heel strike. It is shown that the phase reset principle is advanta-

geous when disturbances in real robot walking appear. Also, it is argued that the

phase controller is simpler to train than CPGs. They also affirm the presented

controller superiority in front of a controller by finite automata. It is remarkable

that this work, first, abstracts the concept behind CPGs and, second, employs

the already biologically supported phase reset. A minor flaw of this method is its
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high sensibility to initial conditions.

Komatsu and Usul [36] showed the control for different biped locomotion types

using Hybrid Central Pattern Generators (H-CPG). The total action of the H-

CPG proposed is determined by the sum of the individual actions of each one

of its components: A neural oscillator that generates the rhythmical patterns in

form of torques, a support force controller that applies the Jacobian matrix to

map forces from Cartesian space to joint space, and a position controller that

implements a PD control to maintain legs as vertically as possible. The vertical

and horizontal movements are separately processed by the force controller. They

shown that proposed method allows to vary form slow walking to rapid walking,

and also walking and running in modified environments, particularly in slopes.

Satisfactory results were obtained in simulations and real robot implementation,

and a high movement versatility was attained by complementing traditional CPG

techniques with force and posture control. The system complexity in not so high

and is indeed feasible.

Computational intelligence methods used are:

• Oscillatory Neural Networks: As nuclear elements of CPGs.

• Evolutionary Optimization: For optimization and training of CPGs

• Rhythmical Dynamic Systems: An alternative to oscillatory neural networks

for building CPGs.

2.5.2 Trajectory Tracking Methods

Methods included in this category largely vary in implementation, but its main

methodology consists of generating a kinematic pattern or succession, in a way

that the joint following of it yields a successful gait pattern. Although there

are applied computational intelligence methods in generating the trajectory, this

process is typically followed by a simple control method, such as a PID control.

Developments under this approach are relatively recent and have strong founda-

tion on evolutionary computation methods.

The work of Capi et al. [12] gave and approach to obtaining a stable biped

walk with an optimal power consumption for a biped robot of prismatic joints.

The control system is based on the principle of Zero Moment Point (ZMP). The

control loop for center of gravity (of PD type) receives a reference of the center

of gravity location of the robot, and generates a control signal that receives the

ZMP control loop, along with the current ZMP location. In the same way, the

ZMP control loop processes that information and outputs actuation values for the

rotational joint in the feet and the prismatic joint in the thigh. A genetic algorithm
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with real codification is used (equivalent to an evolutionary strategy) to look for

the reference trajectory that generates the minimum energy consumption. The

results with the optimization for minimum torque applied and optimization for

constant height of center of gravity are compared. The problem of optimization

with restrictions is turned to a problem without restrictions to which penalties

in the aptitude function are added when the conditions of restriction are failed

to fulfill. This way, Capi et. al present a gait trajectory generation method for

an unusual robot configuration, and also give a forward step to optimization of

energy consumption using evolutionary computation.

Later, Yamasaki et al. [73] applied the evolution by genetic algorithms (GA)

to design a controller for a biped walker with low torque consumption. For it they

proposed the optimization of the gait sequences generated in two phases. The gait

sequences in terms of speeds are described like a set of sinusoidal functions with

amplitude and phases as parameters, dependent on the angular positions of both

legs. The parameters described are optimized along with the functions global

angular speed. A binary representation is used, applying cross and mutation

operators. The algorithm is divided in two phases, first with a fitness function

proportional to total distance walked by the robot during the simulation time

(or before falling), and the second one proportional to the walked distance and

inversely proportional to the used energy. Therefore, a sequential optimization

is made in order to, first, obtain suitable gait trajectories, and second, minimize

energy consumed. Nevertheless, the best trajectory obtained attained less than

2 second of walking before falling, and this should be regarded only as a partial

success.

Garder and Howin [25] recently applied a hybrid method of genetic algorithms

(GA) and hill climbing to evolve walking patterns for a biped robot with pneu-

matic actuation. In the problem faced by them, the movement of the robot is

restricted to sagital plane, as to it is of concern only the robot frontal advance.

The genotypical codification used is binary, and the complete sequence is repre-

sented by an individual, divided in three mechanism positions with pause times

between them. The chosen method consists of leaving the durations fixed and us-

ing a traditional genetic algorithm to evolve the three positions that characterize

the sequence of movement by 8 generations, and later to make an optimization

by hill climbing, leaving fixed the bits of position, and generation after genera-

tion optimizing from the most significant bits of pause times to less significant

ones. Satisfactory locomotion in the form of synchronous jumps is obtained. The

short run time of the algorithm allows to implement it in real time in the robot.

The result obtained where facilitated by the low problem dimensionality and rel-

ative smoothness of fitness landscape, but the method can fail on more complex
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problems.

Contemporarily Yanase and Iba [75] presented an implementation of an evolu-

tionary algorithm with user interaction to determine sequences of movement, as

well as other implementations with specific functions of aptitude to reach certain

objectives. In the first case, the optimization of a sequence of movement by in-

teractive evolutionary computation appears (IEC), for which a set of alternatives

for each picture of movement is generated (keyframes), being these evaluated by

the user graphically and, applying evolutionary operators in successive iterations

along with the evaluation mechanism, each one of the pictures that are to form

the sequence is obtained. Later they show how specially designed fitness functions

can be used, altogether with a dynamic simulator, to optimize the movement to

seat or kicking a ball. Also, they make a brief reference to the implementation of

an multiobjective genetic algorithm (MOGA) for the solution of such problems.

This is a novel approach in the fitness dynamical user evaluation employed and

also in the alternative objective based approach to evolution.

The application of computational intelligence methods in this approach is fo-

cused on:

• Evolutionary Computation: For optimization of trajectories under a perfor-

mance criterion (such as energy consumption, stability or specific motion

objectives).

2.5.3 Dynamic Walking Control

These are probably the most complex methods among those based on computa-

tional intelligence. They aim to obtain dynamic stable walking by a control based

on various techniques. Among them are included neural networks, fuzzy systems

and evolutionary algorithms.

Some concepts used in this section have been already presented, but it is use-

ful to detail recurrent neural networks, which are an important and promising

technique. A recurrent neural network is usually modeled as a fully connected

network without layered structure [28], in which the output can be expressed in

vectorial notation as a linear combination of neuron states:

yrnn(n) = Cxrnn

And neuron states in n + 1 are a function of recurrent potentials and input

potentials in n, each of them multiplied by weight matrices.

xrnn(n+ 1) = ϕ(Waxrnn(n) +Wburnn(n))
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The function ϕ() is a diagonal activation function, usually of sigmoid shape.

This way, a recurrent neural network is a dynamical system determined by its

weight matricesWa andWa, its activation function ϕ(), and the linear combination

of states used as output C. The relevant capability so obtained is that recurrent

neural networks not only are a nonlinear mapping from inputs into outputs, but

they present memory and dynamical response to inputs, which can give birth to

emergent behaviors.

Next, some works in the field of dynamically stable walking are presented,

beginning with the preliminary work of Magdalena and Monasterio-Huelin using

fuzzy systems.

The work of Magdalena and Monasterio-Huelin [42] dealt with the evolution

by genetic algorithms of a fuzzy logic controller and presents its application to lo-

comotion patterns generation in a biped walker. Particularly, a genetic algorithm

with binary codification is used to evolve the fuzzy rules as much as the ranks of

normalization for each one of the variables involved, although all relevant infor-

mation is codified to knowledge base, including the number of fuzzy sets by input

and output variable and the definition of membership function functions. It is

applied crossing between fuzzy rules, rule mutation at bit level and normalization

rank mutation. The exposed methodology is used to design a fuzzy controller for

a biped walker, which considers the different walking phases. A set of successful

biped walks is obtained as result, and also there are obtained rules with better

performance than the ones initially provided to the system.

The work of Bergener et al. [9] described an architecture that allows generating

patterns of behavior as much as to dynamically control the execution of each task.

Unlike other evaluated works, the architecture is applied to an anthropomorphic

robot that is not biped and whose similarity with the human morphology is ob-

served mainly in its arm, and therefore the problem faced do not include biped

walking. The displayed architecture uses neural fields that map from sensor space

to actuator space using principles of dynamic systems whose behavior adapts to

conditions of the surroundings through bifurcation phenomena which respond to

the so-called instanced dynamics (an elementary behavior parametrized by be-

havior variables in a specific environment). Also, to generate complex behaviors

it is used a competitive dynamic system as arbiter mechanism, which includes a

set of parameters that describes the logical and temporal requirements.

In the work of Capi citeCapi01Application the methodology to optimize the

biped walk using genetic algorithms followed a procedure very similar to the one

shown in [12]. It is observed as difference the application to a robot of rotational

joints with 5 degrees of freedom (5-DOF), as well as obtaining both stable biped

walking and stable ascent of stairs. Additionally, the data sets generated are used
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with the genetic algorithm to train a radial-basis neural network (RBFNN) with

an hidden layer, of such form that locomotion patterns could be generated in real

time.

In the novel work of Paul and Bongard [54] it is proposed a coupled evolu-

tion of morphology and control, since they emphasized the relative little depth

with which the morphological evolution (and in general the morphological config-

uration) for obtaining gait patterns has been studied. The methodology applied

consists of evolving simultaneously the morphology, in terms of the distribution of

discrete mass blocks in a fixed joint configuration, and the control, in terms of the

weights of a recurrent neural network. They made several experiments, varying

the mass proportion that can be redistributed, with the purpose of evaluating the

morphological modifications in micro, meso and macro scales.

Juang [34] presented a method of trajectories generation using a feed-forward

neural network as a nonlinear mapping between the present cinematic state and

the control signal. It is based on the principle of periodic of the human walk-

ing, looking for to train the network of such form that diminishes the difference

between the wished state and the end state, applying recurrent averaging learn-

ing in which the experiment is repeated consecutively initiating and finalizing in

states determined by the average of the previous beginnings and ending, so that

robustness in the system is obtained. The network is dynamically trained using

back-propagation trough time.

Juang [33] also made an application of a neural control system for biped walk-

ing in slopes. The control system consists of: a neural controller incarnated by

a feed-forward neural network that generates torque signals in the actuators, a

neural estimator that also consist of a feed-forward neural network, and a third

network with the same topology that adds a compensation control signal when

there is an inclination in the surface. The method of training used is delayed

back-propagation. The first step made is the identification of the system with

the neural estimator. Later, the neural controller trains so that it follows a pre-

assigned trajectory on flat surfaces, using the estimator to propagate the return

error towards the control network. Finally, the two previous networks are left

fixed and the inclination compensator, coupled with the control system, is trained

using the estimator to propagate the error backwards. The obtained trajectory

tracking, even in slopes, is satisfactory.

Wu et al. [71] studied the problem of inverted pendulum control excited in the

base with two rotational degrees of freedom and non-acted movement in the base.

There is a relation of such problem with the control of the trunk in biped walking,

where the trunk is modeled as an inverted pendulum with such configuration. In

order to obtain its objective, they use a set of feed-forward neural networks with
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a hidden layer, which generate different functions that are connected in a simple

closed loop configuration. An additional neural network is used to inversely model

the system of such form that it is not required to measure the base position and an

estimate is used instead. The controllers are pre-trained offline but its adjustment

is dynamically made on-line providing adaptability to the controller. It is shown

that the proposed control system evolves better than novel systems designed by

control theory methodologies and in addition it does not require a model of the

system nor a direct measurement of the position of the base.

Previously, on the same sense of previous work made by them, Wu et al. [72]

studied the problem of inverted pendulum control with angular excitation in the

base and free base translation in the three-dimensional space. They used then

four neural networks to inversely model the system. Also a feed-forward control

with one neural network is used, and its output is feed back to the circuit. The

inverse model is used to train the controller network.

Zhou [78] developed a learning agent with fuzzy and reinforcement learning

(GAFLR). He had previously conceptualized several versions of agent GAFLR

and its application the control of the biped long walk of a robot. The basic

characteristics of the agent are: 1, Parts of a fuzzy knowledge base designed by an

expert; 2. It is updated dynamically (on-line) using as reinforcement signal some

parameter calculated with the fuzzyfication of system state measurements and

internal estimations of future reinforcement signals; 3. The estimation of fuzzy

reinforcement signals is made by a neuro-fuzzy network of 5 layers that is trained

by reinforcement using a temporal technique of difference (temporal differences);

4. The actions are suggested by a neuro-fuzzy network of 5 layers trained with a

genetic algorithm whose genotypic representation consists of the fuzzy rules that

will be used for train the network directly; 5. A stochastic modifier of actions

takes the composed reinforcement signal as the suggested action and generates

the output. A fast convergence is exhibited towards the successful walk of the

robot.

Zhou [79] developed also a simpler version of GAFLR agent, but without learn-

ing by genetic algorithms. There are shown the previous conceptualization and

several versions of FLR agent and its application to robot biped walking control.

Basic agent characteristics are shared with GAFLR version having discounted

the training with GAs (the training by temporary differences is conserved). The

operation of the stochastic action modifier module (SAM) is exposed better as

an actions generator with normal distribution with average in FLR agent output,

and standard deviation given by the reinforcement signal of previous iteration.

Park [51] applied the conceptualization of gait viewed from the zero moment

point (ZMP), looking for, instead of generating movements for each one of the
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joints of the biped walker, dynamically generating the trajectories of the ZMP

according to the hip joints state and the leg in balance, using a fuzzy logic system

for trunk trajectory generation. Thus, it generates a natural movement and with

reduced hip displacements. In order to calculate the movements of the joints once

found the location of the ZMP, the inverse kinematics of the mechanism are used

and a control by computed torque is applied. Leg trajectories are input to the

trajectory generation system.

The hybrid algorithm proposed by Liu et al. [41] implements a controller for

the double support phase in biped walking divided in three components. First it

uses a CMAC neural network for which the fuzzy sets are generated, identified as

generalization sets of the network, with which the input variables are mapped to

a generalization space, obtaining the output as a linear combination between the

representation generalized for the set of entrances and the matrix of weights of

the CMAC neural fuzzy network. Later a hybrid position/force model is derived

for the system including restrictions, with which later a model for the hybrid

system is found applying a control scheme that includes the use of the neural

fuzzy network. It was implemented an H∞ optimization parameter for the joint

model, which is optimized. Finally a robust hybrid controller was obtained which

uses the neural fuzzy networks for the control of the inverse system and control of

variable structure. Therefore, a robust method for desired trajectory tacking in

double support is obtained. The study of techniques of switching system theory

is suggested for, connecting them with the proposed control technique, integrally

controlling the several gait phases.

Yamasaki, Nomura and Sato [74] emphasized the importance of dynamical

phase modification (phase reset) for gaining stability in the biped walk, which is

to be applied in the central patterns generator (CPG) implemented as a neural

network, due to biological motivations. For it they approach two types of me-

chanical systems: first, a double pendulum, and second a 5-links biped walker, for

which they develop the dynamic equations. Also they develop the dynamics of the

neural controller in general terms and show the results in phase space when phase

reset is applied and when it is not. Two effects are verified: 1. The phase reset in

a suitable magnitude can relocate the system within the attractor stability basin

after it has been put under a disturbance, obtaining stability; and 2. It can be

useful to diminish convergence times to stable state.

Hülse et al. [31], aimed to show that minimum and robust control structures

can be developed using algorithm ENS3 presented by them, of evolution of neuro-

modules made up of neurons with feedback connections , i. e. recurrent neural

networks. To such networks an evolutionary algorithm is applied, where evolu-

tionary operators are applied in each iteration: reproduction, variation (a type
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of mutation), evaluation and selection. In that process changes in the number of

hidden neurons, their number of connections and the weights of such connections,

are made. Once reached a satisfactory performance, there are reduced the num-

ber of neuro-modules elements, introducing costs by neuron and by connection,

to urge the minimalism of controllers. The application of the complete procedure

is shown in three examples: the expansion of a mobile robot for obstacle evasion

to luminance tropism, the morphological and control evolution for a biped walker

robot with minimum actuation, and the co-evolution of neuro-controllers for a ring

of gravitational impulsion with five actuator arms. An additional initial example

is shown which corresponds to robot evolution for obstacles evasion and serves

as guide for the controller development methodology according to the proposed

algorithm.

Jha et al. [32] made the controller design for stairs ascension of a biped robot

modeled in 2D. They use two fuzzy logic controllers to conserve robot stability ac-

cording to dynamic stability margin criterion based on zero moment point (ZMP).

The first controller is in charge to maintain stability during single support phase

and the second to maintain it in double support phase. The controllers are, in a

first approach, manually designed, and later the obtained controllers are optimized

using genetic algorithms (GA), and in a third approach they are designed entirely

by the AG. The low run times of the optimization suggest their possible appli-

cation in real time, but it is necessary to implement ZMP control compensation

when the controller does not manage to conserve the stability.

The approach taken by Kurz and Stergiou [40] to biped walking emphasizes

the chaotic properties, already stood out by other authors, proposing them like a

beneficial characteristic for control. They indicate that the capacity of a chaotic

system to present equilibria with different periodic characteristics, added to the

possibility of changing from one to another applying a small located actuation, fa-

cilitates the system robust control in presence of disturbances. They implemented

a neural network whose inputs correspond to positions and speeds of initial states

for the 8 previous periods of gait and its output is the hip actuation applied as

control. The concluded that biological control of human walk can respond to

similar phenomena, considering a more complex hierarchic structure in the neural

network control.

Sabourin and Bruneau [56] applied a control based on trajectory tracking gen-

erated by a CMAC neural network to control the biped walking. Initially they

calculate a set of rules or phases, of active and passive type, which generate partial

actuation in different joints according to the geometric configuration in which is

the biped walker robot. Later they trained a CMAC network so that it generalizes

the trajectories needed to generate the walk, particularly for swing leg. The knee
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of supporting leg is blocked and its angle is determined by a high level control

that, receiving a speed as parameter, modifies the angle to obtain a gait with

the desired speed. The tracking of trajectories generated by high level control

(support leg) and CMAC network (swing leg) is implemented with a PI control.

It is shown the method robustness putting it under disturbances in floor surface,

applying loads and sliding.

Computational intelligence methods mainly used are:

• Recurrent Neural Networks: For dynamic control and, in a novel approach,

for a dynamical systems perspective of planning.

• Fuzzy Systems: For dynamic control.

• Hybrid Methods: Control, occasional correction of movements and learning.

• Evolutionary Algorithms: For optimization of planning and control schemes

and as an alternative to learning methods.

2.5.4 Static Walking Control

The static walking refers to the achievement of locomotion by conserving static

stability along all the path. It causes that a characteristic of locomotion patterns

derived from this method is the very low velocities required to make negligible

the inertial forces that can be generated, in such a way that they can be classified

as quasi-static walking methods. This methods have been displaced by most

elaborate dynamic methods, but they still have a research value in studying the

stationary phases and posture of bipeds and some specific movement patterns.

Kun and Miller [38] studied again the biped walking problem, but now in static

balance. Unlike [37], in this work they aimed for biped locomotion with quasi-

static motion and, therefore, the stability criterion required that the projection

of the CoM was at any moment within the supporting polygon, thus being able

indefinitely to remain in any position. The trajectory generation, like in their pre-

vious work, is made with CMAC neural networks, starting off of pre-calculated

but adaptable trajectories. In this case a network for foot elevation, one for

forward movement and another one for the lateral motion are used. As the kine-

matics model used is an approximation, other two CMAC networks are used to

make corrections to gait patterns such that they compensate model inconsisten-

cies. The generator accompanied with a low level control that is in charge to map

the generated posture to joints space, to make the trajectory tracking, to hold the

perpendicular position to the ground in the double support phase and to make a

lateral and frontal reactive control. A satisfactory gait in a 10-DOF robot with
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a speed of 2,2 passages per minute was obtained. Is remarkable the similarity of

this method with that used in [37] despite of the dynamic orientation of the latter.

Miyakoshi et al. [44] studied the problem of open loop stabilization in periodic

movements using neural network oscillators. They showed the satisfactory appli-

cation to a juggling problem, and also to the biped walking with static balance

(stepping). In this last one, it is used a pattern generator with an oscillator for

the frontal plane and two coupled oscillators for the sagital plane, as well as a

PD position control with inhibition from the sagital plane oscillators. Also they

applied the method to biped walking in dynamic balance but obtain only some

steps, since the method becomes unstable. They propose to deepen the study of

the open loop control of the dynamic biped walking. This work exposes a diver-

gence from the mainstream of walking control methods in that it emphasizes the

role of open loop control and argues to its favor.

Wolff and Nordin [68] presented the evolution with evolutionary strategies (ES)

of a control sequence to obtain biped walking with static stability for a robot.

The evaluation of the fitness function is made directly in the physical system

using a camera to measure direction and an infrared sensor to measure range.

The evolution is made using a steady state algorithm which eliminates some of

the individuals of an iteration, and manually makes the search in a zone defined

by the Euclidean distance to a certain gene in the generated sequence. It is also

shown that the evolved controllers performed better than the designed ones. The

main contribution of this work is the physical fitness function evaluation which is

seldom found in works on the field.

In another work Wolff and Nordin [69] they tried to generate a pseudo-dynamic

walking, evolving points that are statically stable in the double support phase and

interpolating in the balance phase. For it they make a evolution using evolutionary

programming (EP) and representing the controller as a series of instructions with

basic arithmetic operators and trigonometric operators, all of them represented

like chains of integer numbers. The sequences thus evolved later are transferred to

the robot, which can make fine adjustments or recovery of failures in a evolution

second phase. The robotic platform used was the same one used in [68]. This

last method is a hybrid method between dynamic and static walking control, in

which an notable on-line failure recovery strategy is implemented, but the general

characteristics are still in disadvantage with dynamic walking control methods.

The two mayor computational intelligence methods used in static walking are:

• Neural Networks: To compensate and map trajectories.

• Genetic Algorithms: To optimize motion sequences.
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Planning Systems

3.1 Introduction

Artificial life aims to devise and study those emergent phenomena that give

complex attributes to the living beings, like self-organization, cooperation, self-

reproduction and adaptation, among others [7]. It focuses on the generation of

behavior from a biological, bottom-up perspective that relies on evolution, devel-

opment and learning [21].

Following a pure artificial life approach to evolutionary robotics [49], it is ex-

pected that complex behaviors of simulated agents emerge by local interactions

of elements. These interactions form a complex dynamical system which is the

generator of behavior and is capable of some form of adaptation or evolution.

Examples of such dynamical systems are recurrent neural networks [31] and feed-

forward neural networks [59].

One of the tasks in evolutionary robotics is the emergence of motion control

and planning capabilities of biped walking agents.

In biped robotics, the methods based on computational intelligence for plan-

ning and control have shown to be able to achieve static stability [38], dynamical

stability [48, 36], achieve simple control structures [31], and tolerate perturba-

tions [34]. Nonetheless, those properties have not been extended to an integrated

architecture of planning and control capable of following goals (for details see the

previous chapter).

Here, there are compared two control schemes based on neural networks in

order to observe their advantages and disadvantages as planning and control ar-

chitectures and their suitability as controllers given their structure. The first one,

uses a simple model of recurrent connections between neurons without additional

restrictions, i.e. a recurrent neural network. The second one, based on neural

fields, has a deeper biological basis, applies more restrictions and extends the dis-

crete model to a continuous one, following the method of planning and control

by means of neural fields [9]. The neural field model, as noted in the article by

Bergener et al., has the potential to address goal-based planning problems, so we
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are here interested on its capability to solve dynamic control problems.

The control problem set for testing the architectures is the stability problem

on a inverted pendulum, so that the controller ability to perform dynamic control

on an unstable plant can be evaluated. This is a first attempt (to the authors’

knowledge) to evaluate neural fields for solving a control problem for an unstable

plant, and specifically for solving the inverted pendulum control problem. How-

ever, there is a wide range of methods that have been applied to the inverted

pendulum problem both based on computational intelligence (e.g. [2, 5, 46, 77])

and based on control theory techniques (e.g. [35, 30, 13]).

In this chapter we aim to propose a control planning system or architecture

based on neural fields which is suitable to control a relatively complex system. We

test it over the stability problem on a typical inverted-pendulum and compare it

against a more traditional recurrent neural network controller. First, we present

the neural fields model, some variations of it which will be useful for its evolution

and some of the properties that arise from it. Next, we study its applications

to control and compare it with the recurrent neural network control scheme. We

briefly compare its properties with traditional control schemes, and then we test it

with the inverted-pendulum problem. Finally, we show how evolution algorithms

are applied to the neural field, and discuss the results obtained. The contents

of this chapter were published, in two parts, in the Proceedings of the Interna-

tional Joint Conference of Neural Networks (IJCNN) 2009 and the Genetic and

Evolutionary Computation Conference (GECCO) 2009 ([22] and [23]).

3.2 Neural Fields for Control and Planning

For the purpose of control and planning we need some particular requirements on

the neural fields.

The first one is to have a preprocessing over the input obtained from the sensors,

so that there is a closed loop where the representation of inputs has an appropriate

form. This mechanism alone (a particular form for the inputs) has shown to be

enough for the robot ARNOLD to navigate in the plane with obstacles [9].

The second one is to be able to modify the connection kernel so that it can be

suitable to our control problem. In order to do that, we will consider that the

connection kernel w(y) is a symmetric function (i.e. w(y) = w(−y)), that also

is a 2-power Lebesgue integrable function so that it also belong to L2. It can be

shown that, with that definition, a sum of an arbitrary number of kernel functions

will also be a kernel function. This way, we have a inner-product defined by the

Lebesgue measure:
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〈f, g〉L2 =

∫
R
f · gdµ (3-1)

The defined space, with its measure, conforms a Hilbert space, and therefore

is complete and metrizable. It also gives a notion of sum, and scalar product:

(f + g)(x) = f(x) + g(x) (3-2)

(λf)(x) = λf(x) (3-3)

Those properties will be used shortly, when arises the problem of kernel evolution.

The third one consists of its suitability to simulation. This is not an inherent re-

striction for it to be physically (or biologically) plausible, but to be implementable

on a computer. We will take a discrete form of the equation 2-2:

τ u̇i = −ui +
∑

xj∈Bp(xi)

w (xi, xj) f (uj) + S(xi, t) (3-4)

Where we replace the integral for a sum over the point included inside a finite

neighborhood (ball) around xi with radius p. The time is considered continuous,

and the computation of the dynamical system behavior is evaluated with a Runge-

Kutta method. We denote ui = u(xi, t). It should be noted that the previous

equation can be applied to the n-dimensional case without modification.

3.3 Control Architecture

The control architecture built based on the neural fields has three basic elements.

The first one, is a sensor, which reads the states from the plant and also their

derivatives (computed from the dynamical equation of the plant). In particular,

the sensor used for the neural field controller is based on the angular acceleration

of the pendulum pole, loosely resembling the vestibular system on the inner ear.

The second one is the input layer, which consists of a simple neural field without

natural dynamics, where the spatial codification of the sensed values is made. For

the problem at hand, we use a finite one-dimensional neural field, where a sensed

input with value zero maps to the center point of the field.

The third one is the processing layer, which has a more typical neural field

which has inner dynamics given by the eq. 3-4, where the fields taken into the

sum are the input neural field, and the processing neural field. This way, besides
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Figura 3-1: Neural fields for stability control

its natural dynamics, the processing layer receives the inputs from the input field

filtered by the kernel operator.

The parametrization of the controller is performed by varying the kernel oper-

ator. For the hand-tuned case, the kernel operator used is a Wizard Hat Function

with the expression:

w(xi, xj) = ke−(xi−xj)2/δ2 −H0 (3-5)

Where the diverse parameters work as vertical (k) and horizontal (δ) scaling,

and as vertical offset (H0).

The kernel operator for the evolutionary-tuned case is evaluated with the ex-

pression:

w(xi, xj) = kernelArray[|xi − xj|] (3-6)

Where kernelArray is the array of parameters modified by the evolutionary

algorithm. The kernel value is evaluated by accessing the array at position |xi−xj|.
The additional term on the eq. 3-4 S(xi, t) is used only as the uniform and

static resting potential, that is S(xi, t) = −rp. The firing rate function f(ui) is

simulated as a simple Heaviside function.

The output is processed taking the position with highest activation on the

processing filtered by another wizard-hat function, and decoding it to a value.

The figure 3-1 illustrates the input and output layers (in the 2-dimensional

case for generality) and the participation on the potential of a single element in

the processing (or main) layer from the elements in the same layer and in the

input layer.
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3.4 Evolution of Neural Fields

3.4.1 Neural Field Controller Architecture

The architecture used for the neural field controller uses a structure similar to that

of multilayer perceptrons, i.e. an input layer, a hidden layer and an output layer.

The hidden layer has the properties so far presented in the neural field model. The

input and output layers are also modeled as a population of neurons but without

inner dynamics. Nonetheless, it is used a kernel for the connection from the input

layer to the hidden layer, as well for the connection from the hidden layer to the

output layer. The input layer is used as a buffer where sensory inputs are placed

before they are processed by the hidden layer. The output layer is used so that

it can be applied some form of post-processing to the output of the hidden layer

without changing the inner dynamics of the neural field.

3.4.2 Evolutionary Algorithm Structure and Parameters

For the evolution process it is used a simple evolutionary algorithm as shown in

the preliminaries, with random elimination of individuals inversely proportional

with its fitness.

The evolution parameters are the connection kernels between the input layer

and the hidden layer, and between the hidden layer and the output layer. The

recurrent connections of the hidden layer with itself are left fixed, in the form of

a wizard hat function.

The connection kernels are considered isotropic and homogeneous along the

field, so that they can be described as symmetric one-dimensional arrays of values.

3.4.3 Genotypic Representation and Evolution Operators

Each connection kernel can be represented as an array of N values from w(0) to

w(p) with homogeneous spacing, using their symmetry. This way, for an equal

boundary radius for all the kernels, and a 2-layered architecture, there are 2N real

values in the genotype. As can be seen, the number of evolution parameters does

not have a direct relation with the simulation size of the neural fields (the number

of discrete points used), in contradistinction with recurrent neural networks, where

the number of parameters depends on the number n of neurons with a polynomial

order O(n2). Nonetheless, here is taken a more general approach and the boundary

radius is set equal to n, so that there are O(n) parameters.

The evolution operations used in both steps are:
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• Parametric mutation of input array: Gaussian modification of real codified

array values, which varies the connection kernel between input layer and

processing layer.

• Parametric mutation of recurrence array: Gaussian modification of real cod-

ified array values, which varies the recurrent connection kernel of the pro-

cessing layer.

• Selection: Calculates population fitness, selects with elitism and culling (5%

of both) couples of parents for generating new off-springs, calculates the

fitness function for both off-springs.

The mutation operators implemented apply the sum operator defined in eq.

3-2 but there was not implemented a crossover operator that used the scalar

operator as it was not deemed necessary, but can be easily implemented for another

application if it is considered useful.

3.4.4 Fitness Function

The fitness function is selected in such a way that the stability controller mainly

has the goal to reduce inclination. It was tuned experimentally to attain a conver-

gence velocity suitable for the experiment. This has in mind a notion of sequential

evolution of, first, the capability to attain equilibrium, and later, the capability to

perturb the equilibrium controller in such a way that a planned trajectory can be

followed or a reference can be tracked. Here we are interested only on the stability

problem.

The fitness function for the stability controller is:

F1 = 100− 100

(π4 + 2)Ttotal

∑
t

(
θ(t)4 +

|x(t)|
10

)
(3-7)

This fitness function aims to minimize the orientation error, but also has as a

minor second goal to minimize the total horizontal displacement.

While the above expression was used to get the fitness value, the actual fitness

function includes running a simulation instance of the control problem with a

neural field controller grown from the two kernel arrays.

3.5 Experimental Framework

The model used consists of an approach to biped walking based on a inverted

pendulum (car-and-pole) system in which the pendulum equilibrium is looked
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for. Nonetheless, supposing that the pendulum mass represents the body center

of mass, it is proposed that is reasonable to expect a system with its sole function

being to stabilize the body. This way, the navigation system has as purpose to

carefully perturb the first controller in such a way that the stabilizing controller

moves the car to the desired position. Here we are particularly interested only on

the stability problem and controller.

3.5.1 Dynamic Model

The dynamic model used, in mathematical terms, is expressed in the two equa-

tions:

ẍ =
F +mlθ̇2 sin θ −mg cos θ sin θ

M +m sin2 θ
(3-8)

θ̈ =
(M +m)g sin θ − F cos θ −mlθ̇2 sin θ cos θ

l(M +m sin2 θ)
+

τ

ml2
(3-9)

This model consists of four state variables and a high non-linearity as it departs

from equilibrium points. It is worth noting that the wanted equilibrium point is

in fact unstable.

The output from the stability controller maps to the lateral force F . The

angular actuator with value τ is left to a value of zero, to allow the plant to

behave according to its natural dynamics on the angular coordinate.

3.6 A RNN Approach for Comparison

The proposed architecture for the recurrent neural network controller has two

expert recurrent networks, whose interaction will achieve positioning and equilib-

rium as well.

There has been applied a preprocessing stage previous to the input neurons,

so that the actual values are not used and instead the inputs are mapped to

3 fuzzy sets. In this way, the stability controller only has 3 inputs, while the

positioning controller has 6, corresponding to the same 3 inputs previously de-

scribed and another 3 due to the fuzzy mapping of the error signal. All neurons

are interconnected and the first one of them is selected as output without loss of

generality.
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3.6.1 Evolutionary Algorithm Structure for the RNN Controller

It is expected, based on the approach of artificial life to evolutionary robotics (Nolfi

and Floreano), that the sequential and cooperative evolution of elements with

biological similarity leads to an specialization in the process of stabilization and

positioning (despite the antagonistic individual goals of each controller because of

the interest of the positioning controller to maximize also the global performance).

As said, the two steps are executed sequentially, taking the best individual of

the first step to collaborate with the individual evolved in the second step.

Aiming to obtain a fixed length representation and limit the problem dimen-

sionality, it is used a model of order Q totally connected. Any network with an

order equal or lesser and with total or partial connections can be represented

by the proposed model, by the addition of activating/deactivating elements for

neurons and connections. Therefore, individual are codified as:

• A bit sequence representing a serialization of an activation matrix Aa of

dimension Q-by-Q which activates/deactivates a recurrent connection.

• A sequence of real numbers representing a serialization of matrices Wa and

Wb, of dimension Q-by-Q and Q-by-(m+ 1) respectively.

The C matrix is not evolved because it is chosen arbitrarily only one output

(the first neuron).

The evolution operations used in both steps are:

• Parametric mutation of inputs: Gaussian modification of real codified ma-

trix weights, which varies connection weights of inputs.

• Parametric mutation of recurrences: Gaussian modification of real codified

matrix weights, which varies connection weights of recurrences.

• Selection: Calculates population fitness, selects with elitism and culling (5%

of both) couples of parents for generating new off-springs, calculates the

fitness function for both off-springs.

The fitness functions used are the same presented for the neural field controller.

3.7 Experimental Results

Experimentation Details

The sampling time used was 0.025s (for neural networks, neural fields, and visu-

alization) and 10 s tests were performed.
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The differential equation system was solved by a fixed-step numerical method,

4th Order Runge-Kutta. The iteration step selected was also h = 0.025s for each

test.

Here are shown the results obtained for:

• The evolved RNN controller

• A (non-evolved) neural field controller only with an input layer. It uses

directly the input field activation to control the system (that is, it actually

does omits the processing field to perform the control).

• The non-evolved neural field controller. An appropriate selection of pa-

rameters is applied (made taking into account only the self-stability of the

neural fields and the time constants of the plant). It behaves roughly as a

proportional state space controller.

• The evolved neural field controller (also with an appropriate selection of

parameters).

For all the simulations, the initial angular position was θ = π/6, the number

of discrete positions used in the simulation of the neural field was 21, and the

angular position θ was encoded into the input field with value 1 while the angular

velocity ω was coded with value kω = 0.5. The neural field time constant was

taken with value τ = 1/10s. The filtering (wizard hat) kernel on the actuator had

values k = 1, δ = 2 and H0 = 0. Also, the maximum control signal energy was

equal for all the simulations (and architectures) presented.

For the non-evolved controller, it were used also wizard hat kernels as defined

in eq. 3-5. The input kernel had values k = 2, δ = 2 and H0 = 0.1. The processing

kernel had values k = 0.3, δ = 2 and H0 = 0.1. Those values were derived mostly

by trial-and-error.

For the evolved controller, there were used parametrized kernels feed by the ker-

nel arrays on the genome of the evolutionary algorithm. The Gaussian mutation

operators were initialized with a standard deviation of 0.3. Its application rate

is evolved itself by the evolutionary algorithm used, which adjusts the operators

rates on-line (Hybrid Adaptive Evolutionary Algorithm).

Results

RNN Controller The first experiment is performed using the recurrent neural

network controller without evolution. Results are presented in the figure 3-2.

The figure shows the natural dynamics of the system when the controller is ran-

domly parametrized. It can be perceived the need for the parametrization made
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by the evolutionary algorithm on the recurrent neural network controller, since

the inverted pendulum is an unstable system around the origin, and a random

controller can not stabilize it. Red dots represent the pole mass location and blue

dots represent the cart position.

Figura 3-2: System dynamics with an untrained RNN controller. The first figure

shows the pendulum trace, and the second shows the pendulum at

t = 3.5s.

The second experiment shows the behavior of the inverted pendulum once

the RNN controller has been evolved. Results are presented in figure 3-3. The

adaptation made by the evolutionary algorithm, as is evident, has an important

positive effect on the controller.

Figura 3-3: System dynamics with a trained RNN controller. The first figure

shows the pendulum trace and the second the pendulum at t = 3.5s.

RNN Controller and Neural Field Controller Comparison The next three

experiments were performed with: an evolved RNN controller architecture, a

(non-evolved) neural field architecture using the processing field as output, and a

(non-evolved) neural field architecture using the input field as output (effectively

omitting the processing field in the feedback loop). In the remaining, the neu-

ral architectures will be simply called ’(non-evolved) input field architecture’ (the

architecture omitting the processing field) and ’processing field architecture’ (the

non-evolved architecture using the processing field in the feedback loop).

The qualitative behavior of the non-evolved processing field is shown in the

figure 3-4. It can be seen that, when an initial angular perturbation is small, the

neural field is able to control the stability without evolution.
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Figura 3-4: System dynamics with a non-trained Neural Field Controller.

Results of these three experiments are presented comparatively in figure 3-5.

In the upper part of figure 3-5, the behavior of the angular position state

variable (θ) is shown. This is the central variable of the control task, since its

minimization would mean also a minimization of the error signal (viewed from a

classical control theory perspective). Both the recurrent neural network architec-

ture and the input field architecture (marked as ’input field’) show an oscillating

behavior with wide movements around the reference value (θ = 0). Of them,

the RNN architecture has the fastest response, but also the widest oscillations.

On the contrary, the input field architecture shows diminishing oscillations with

increasing time.

On the other hand, the processing field architecture (marked as ’processing

field’) presents the best performance, staying close to the reference (with an error

|eθ| < 0.05) from t = 1.0s onwards.

The middle and bottom parts of figure 3-5 show the state variables ω (angular

velocity) and v (linear velocity). The angular velocity plot reinforces the percep-

tions given by the angular position plot. It also shows that the responses of the

RNN controller and the input field architecture are smoother than the response

of the processing field architecture.

The linear velocity plot evidences that all controllers deviate significantly from

the initial linear position in the experiments. This is expected, since the focus

was on balancing of the inverted pendulum, and not on its linear positioning.

While the results shown by both neural field architectures are not ideal (none

of them seems to achieve a zero error signal), their results are certainly better

than expected. This is notable, considering that the RNN was evolved to solve the

task at hand, while the neural field architectures were manually parametrized, and

there were not applied any adaptation or evolution schemes to their parametriza-

tion.
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Figura 3-5: Pendulum simulations with neural controllers between t = 0s and

t = 10. The three controllers shown are: a RNN controller, an input

field controller and a processing field controller. In the top, the

angular position is plotted (θ). In the middle, the angular velocity

is plotted (ω). In the bottom, the linear velocity (v) is plotted.
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The recurrent neural network controller is expressive enough to solve the prob-

lem at hand, but the number of parameters to configure (or in this case to evolve)

is of a quadratic order in relation to the number of nodes (or neurons). This

was not a particular problem for the evolutionary algorithm used, but it can be a

limitation if an adaptation scheme is not applied. Furthermore, the evolutionary

parametrization applied was not able to outperform the manual parametrization

of the neural field architectures.

On the other hand, the neural field controller is a bit more complex (in its

implementation) and its simulation more costly (up to 10 times slower than the

recurrent neural network), but has some notable advantages. The first one is its

ability to self-compensate or, equivalently, the stability of its natural dynamics,

which is attained after the setup of few parameters. The second one is its suit-

ability to the problem at hand, being able to solve it with a good performance.

Although there was a need for parameter configuration, evolution was not required

because the number of parameters to setup is small: basically three parameters of

the kernel function and the resting potential of the field equation — a number of

parameters of constant order in relation to the number of nodes (discrete elements

on the neural field).

Evolved and Non-Evolved Neural Field Controller Comparison A last exper-

iment is performed using the evolved neural field controller architecture, for the

same problem and experimental setup. Its qualitative behavior is shown in figure

3-6.

Figura 3-6: System dynamics with an evolved Neural Field Controller, at time

t = 4. Left: trace of the pendulum (cart in blue and pole tip in red).

Right: snapshot of the animation at time t.

The direct controller (non-evolved neural input field architecture) can by itself

attain stability for the initial value θ = π/6 but the performance is poor. While

not shown, it has problems stabilizing the pendulum with an initial value of

θ = π/3 or higher.
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The hand-tuned controller (non-evolved processing field controller) is able to

control the stability without evolution with a better performance than the pre-

sented by the direct controller. It can stabilize in the 10s time those instances

with an initial value of θ = π/3 or higher. Nonetheless, it causes big displacements

and tends to keep a small but persistent orientation error.

Finally, the evolved controller has the best performance of the three, performs

a fast stabilization of the pendulum even with an initial value of θ = π (worst-case

scenario for the initial orientation), which is shown in figure 3-9. It is the only one

that stays for long periods of time on the reference orientation and it causes the

least displacements. Despite its parametrization being carried out by evolution,

its strategy can be understood by looking at processing field activation values,

and this controller seems to apply short burst of switching maximum values.

The three figures 3-7, 3-8 and 3-9 show the input fields, the processing fields

and the state variables evolution (respectively) for the three controllers.

In the figure 3-8, of processing layer activations, the horizontal (x) axis repre-

sents the position of each element on the one-dimensional processing layer popu-

lation, and the oblique axis (t) represents the time elapsed. The presence of the

processing field in the feedback loop appears to act as an integrator-like control

element. On the contrary, the sole utilization of the input field to spatially code

the inputs appears to act as a proportional control element, causing the highly

oscillating behavior in the input field architecture. Consequently, the nonlinear

coupling between both actions, integral-like and proportional, seems to produce

the behavior presented by the processing field architecture. Furthermore, the

activation of the evolved neural field is quite chaotic, but shows a preferential

activation on the extremal points, which could be interpreted as a preference for

application of maximum control values (may be as an approximation of a bang-

bang controller).
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Figura 3-7: Input layer activation for simulations between t = 0s and t = 10s

with steps h = 1/40s and positions between xmin = −10 and xmax =

10. First: direct (without processing layer) controller. Second: non-

evolved controller. Third: evolved controller.
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Figura 3-8: Processing layer activation for simulations between t = 0s and

t = 10s with steps h = 1/40s and positions between xmin = −10

and xmax = 10. First: direct (output from input layer) controller,

illustrative of field dynamics excluded of the control action. Second:

non-evolved controller. Third: evolved controller.
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Figura 3-9: Pendulum simulation states with several neural field controllers be-

tween t = 0s and t = 10. Each state is coded with a position (so

that the pendulum can be simulated as a field on its own) this way:

x:0, θ:1, ẋ:2, θ̇:3. It can be seen the little variation in the angu-

lar position (θ). The discontinuity in x is present because position

wraps in the simulation so that x = 5 is equivalent to x = −5. First:

direct (without processing layer) controller. Second: non-evolved

controller. Third: evolved controller.
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3.8 Discussion

The results obtained from this chapter can be summarized in a short analysis.

While the recurrent neural network controller is expressive enough to solve

the problem at hand, the number of parameters to configure (or in this case to

evolve) is of a quadratic order in relation to the number of nodes (or neurons).

This was not a particular problem for the evolutionary algorithm used, but limits

its potential scalability. Furthermore, while it is expressive enough, it does not

hold an internal representation that resembles in a meaningful way the problem

of the inverted pendulum and there are no reasons to expect something different

for a more complex biped model.

On the other hand, the neural field controller is a bit more complex and its sim-

ulation more costly, but has some notable advantages. The first one is its ability

to self-compensate or, equivalently, the stability of its natural dynamics, which is

attained after the setup of few parameters. The second one is it suitability to the

problem at hand, being able to solve it with a acceptable degree of performance

for low and mid perturbations without evolution.

Although there was a need for parameter configuration to attain a good perfor-

mance, evolution was not strictly required because the small number of parameters

to setup: basically three parameters of the kernel function and the resting poten-

tial of the field equation, a number of parameters of constant order in relation to

the number of nodes (discrete potentials on the neural field). Nonetheless, the

evolved controller performed better than the other two, is more general because

eliminates the need for manual conscious parametrization and allows the designer

to specify more precisely the performance measure desired.

It is worth noting that the neural field has a spatial representation which allows

interpretation of field potentials (as shown in fig. 3-8). Indeed, its geometrical

representation allows for a small effort to go from an state-space like controller to

a neural field controller. The interpretation or understanding of recurrent neural

networks tends to be difficult and even more with increasing states involved. This

makes the neural field controller not as black-box as the a recurrent neural network

controller. This holds even for the evolved neural field controller.

More complex control problems could benefit from the strategy of parametriza-

tion of neural field controllers by evolution here developed. Therefore, it is left

for future work the task of integration of multiple goals in different populations

and the design of an arbitration scheme compatible with the architecture.

While the cart-and-pole biped walking model is useful as a first approach to

the problem of locomotion, in order to develop a more realistic controller of biped

walking, a model closer to human biped walking will be explored in the next
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chapter, and also some new controllers will be presented.



4 An Optimal Controller for Biped

Walking Using Neural Fields

4.1 Introduction

This chapter introduces the Simplest Biped Walking problem, which will be used

onwards as the reference control problem. Approximations to optimal linear state-

feedback controllers for the Simplest Biped Walking problem are found using

numerical methods (genetic algorithms), for each sub-region on a delimited state-

space region. A general architecture for the neural field controllers is presented,

and an structured strategy to implement non-linear (sliding-mode-like) state-space

controllers using the neural field-like controller architecture is shown. Finally, an

specific controller for biped walking is developed and tested using the collected

data, its behavior is shown using a Poincaré section for the controlled biped dy-

namics, and an stability analysis is provided.

4.2 The Simplest Biped Walking Model

The Simplest Walking Model, presented by Garcia et al. [24], is an attempt to

create the simplest model that is capable of mimicking bipedal gait. It provides a

reference model to study the phenomena that allows walking in two dimensions,

and it has been further studied in terms of stability [58] [19], swing-leg control

[67], energy consumption in active walking [39], walking on stairs [57], and walking

with an upper body [66].

Here is used the model of Garcia et al., as modified by Wisse et al. to allow

control torques.

The 2D Biped Walking (yet to be simplified) model assumes a biped with a

hip connected to two feet through rigid legs with no knees. It has a point mass

M located at the hip, and two point masses m located at the feet, with ratio

β = m/M . This model has a swing phase, where there is a leg in contact with

the ground (stance leg), and another one in pendular motion (swing leg). The

collision of the swinging foot with the ground at heel-strike is plastic (no-slip,
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no-bounce), and causes its velocity to jump to zero. Also, the double support

is instantaneous, so only one leg is in contact with the ground at any time. For

simplicity, it is assumed that the swing leg is allowed to pass through the floor

surface an be below floor level once on each step, and only its second crossing

will be detected as a collision (otherwise the foot-scuffing problems inevitable for

a walker with straight legs would appear).

The equations of motion for the swing phase have the form T = H(q)q̈ +

C(q, q̇)q̇ + τg(q), with q = [θ φ]T , where:

H =

[
1 + 2β(1− cosφ) −β(1− cosφ)

β(1− cosφ) −β

]
C =

[
2βφ̇ sinφ −βφ̇ sinφ

βθ̇ sinφ 0

]
τg =

[
(βg/l)[sin(θ − φ− γ)− sin(θ − γ)]− (g/l) sin(θ − γ)

(βg/l) sin(θ − φ− γ)

]
T =

[
Tθ
Tφ

]
The Simplest Biped Walking model is achieved simplifying the previous model,

by assuming that the point masses located at the feet are infinitesimal in com-

parison to the point mass at the hip (i.e. when β → 0). In the first row β is set

to 0, and in the second row we divide by β, effectively isolating the stance leg

acceleration θ̈ from the swing leg angle φ. Therefore:

T = H(q)q̈ + C(q, q̇)q̇ + τg(q) (4-1a)

H =

[
1 0

1− cosφ −1

]
(4-1b)

C =

[
0 0

θ̇ sinφ 0

]
(4-1c)

τg =

[
−(g/l) sin(θ − γ)

(g/l) sin(θ − φ− γ)

]
(4-1d)

Furthermore, we now define the action torque vector as:

T =

[
Tθ
T ′φ

]
(4-1e)
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Where we scale the torque on φ: βT ′φ = Tφ. Also, it is required a transition

mapping for the state vector before and after collision. As shown by Garcia et al.,

there is a phase reduction in the collision, from four dimensions to two dimensions,

which is seen as a rank reduction in the mapping equation:


θ

φ

θ̇

φ̇


+

=


−1 0 0 0

−2 0 0 0

0 cos 2θ 0 0

0 (1− cos 2θ) cos 2θ 0 0



θ

φ

θ̇

φ̇


−

(4-2)

To complete the model, it is introduced the heel-strike event condition (also

from Garcia et. al), that provides a geometric condition in terms of the state

vector, that has to be satisfied for the swing foot to cross the ramp surface:

φ+ − 2θ− = 0 (4-3)

Given that there is a model dimension reduction on each heel-strike, each step is

uniquely determined by the initial state after heel-strike v+ =
[
θ+
˙θ+

]
. The stability

of a given controller can be analyzed through the evolution of the Poincaré section

v+
n after the n-th heel-strike. This is analogous to analyzing the stability of the

’stride function’ vn+1 = S(vn) in terms of McGeer [43]. In general, stability in this

chapter is understood in the sense of Lyapunov, where the stride function is taken

as a discrete system. As there are some v values for which the stride function

S(v) has no output, it is assumed that stability is not attained when, for a given

v0, there is a n for which vn = Sn(v0) is not defined.

4.3 Searching for Optimal Linear State-Feedback

Controllers

As shown by Schwab et al. [58], while there is an attractor for the Simplest Biped

Walking model on small slopes, its basin of attraction covers a minute portion

of the initial configurations on phase space. Wisse et al. propose a controller

for the swing leg that substantially widens the basin of attraction [67], that may

be equally implemented as a spring-damper mechanical configuration (aided by

some switching mechanism when the swing leg becomes the stance leg), or as a

state-feedback control. This controller is based on the intuition that a rimless

wheel attains asymptotically stable steady 2D motions, given the proper ground

slope and angle between legs [15]. Also, it has the advantage that, for sufficiently



52 4 An Optimal Controller for Biped Walking Using Neural Fields

small mass ratio β, the energy cost of the required control action is negligible.

Such control strategy can be stated as:

T ′φ = kφ(φr − φ) +
√
kφφ̇ (4-4)

Where the reference swing leg angle is set to a convenient value φr = 0.3.

The aforementioned control strategy provides a wider basin of attraction as

kφ grows. Therefore, for each initial configuration, there is a minimum kφ that

attains stable walking [67].

As a first step to extending the static control policy of Wisse et al., in this

section there will be found a set of minimal kphi values that attain stability for

each initial configuration, with a given discretrization of the configuration space.

For the purpose of comparison, the system with γ = 0.004, and M = g = l = 1

will be explored. The initial configuration space will have the bounds θ0 = [0, 0.4]

and θ̇0 = [−0.4, 0], with step size δv = 0.025, for a 17x17 nodes grid.

For each node in the grid, a search with an evolutionary algorithm is performed,

using kφ as the genotype. The actual evolutionary algorithm implementation used

is HAEA (see [26]), as implemented in the library JML by Gomez. The fitness

function evaluation implies running a simulation of the model with the state-

feedback controller using the kφ given, for a fixed time interval. The simulation

may abort before the fixed time, if state variable (not the Poincaré section) θ(t)

leaves the interval [−π/2, π/2], and the lowest fitness value is assigned. Otherwise,

the fitness value is k2
φ.

The resulting mapping kφ = M(θ0, θ̇0) is shown in the figure 4-1 for γ = 0.004.

As can be seen, the mapping is monotonically increasing both as θ0 increases and

as θ̇0 decreases.

A displacement on the values found kφ = M(vn +
[

0.5h
−0.5h

]
) (where h is the

mapping grid step) in the mapping is applied, with the purpose to guarantee

stability in of the controller, when using interpolation for the kφ values. This can

be done, given the monotonically increasing nature of the mapping.

Before applying this mapping to an extended control policy for the Simplest

Biped Walking model implemented with a neural fields-like structure, an archi-

tecture for neural field controllers is required.
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Figura 4-1: Search result for the mapping kφ = M(θ0, θ̇0).

4.4 A Neural Field Controller Architecture

In previous chapters it has been shown how a neural field can be used as a con-

troller for an unstable system. Neural fields have performed good enough (com-

pared to the RNN approach) when applied to a simple control problem: a cart-

and-pole (inverted pendulum) system. The particular configuration tested was

composed by:

• Two input variables: angular position and angular speed.

• One control goal: to minimize the angular position.

• One control action: lateral force at the pendulum base.

The corresponding controller architecture was devised as a two layer neural

field. Each layer of the field is actually a neural population modeled after a

subset of the real line: x|x ∈ (−1, 1). Those layers have the following roles:

• A first layer, without inner dynamics (i.e. not governed by a differential

equation) which merely maps the input variables to activation potentials on

a field, using the vector coding technique.
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• A second layer, with prototypical dynamics of neural fields. The kernel

functions (for connections between layers 1 and 2, and for recurrent connec-

tions on layer 2) were used as the tuning/evolution parameters from which

the control behavior emerged. The actual output was obtained by finding

a weighted average of the activation potentials and mapping the resulting

centroid to a single value (an inverse process to vector coding).

To generalize this approach, here is introduced a simple architecture of neural

field controllers to help the understanding of commonalities and variations of

the several controller structures developed next. It is not meant as a global

framework for control with neural fields, as other architectures may be fruitfully

developed. It is instead, an specific model for the description of controllers based

on layered neural fields, able to describe the controller developed in this chapter.

The controller architecture that will be used here onwards is described with an

emphasis in how information is processed in the controller.

The neural field controller architecture will be generally structured as follows.

It will have three layers:

Input: Vector-coded representation of relevant input values (e.g. a subset or linear

combination of controlled system state-variables).

Representation: Inner state representation of the controller architecture. Could be inter-

preted as the probability of being on each state p(s = sx) from the viewpoint

of the controller.

Action: Representation of the preferred actions of the controller. May be interpreted

as vector-coded (when using a complete neuron population), or directly

coded (when using a single node for each controlled variable).

As a strongly layered architecture, the connections are only allowed from con-

tiguous layers, in one direction. Thus, elements in one layer cannot receive inputs

from other elements except those in the immediately preceding layer (with action

layer receiving from representation layer, and representation layer receiving from

input layer).

Each of these layers may or may not have a dynamic behavior, and furthermore,

if it does, may have the form of a neural field, in terms of structure and behavior

(i.e. governed by the dynamic equations of neural fields).

For those layers that do have a dynamic behavior (as is the case of the rep-

resentation layer in this chapter, as will be shown next), the derivative of the

layer potential at each position u̇i(x) is fed with the output of function from the
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previous layer activation potential fi,i−1(ui−1) (and may have also a recurrent

component, function of ui).

Those layers that do not have a dynamic behavior, have their input directly

defined as a function of the previous layer activation potential ui = fi,i−1(ui−1).

They also can be thought of as a reference-tracking dynamical system with zero

reference position error, which is fast enough for its transient behavior to be

ignored. The input layer may be a particular case of this, where there is no

previous layer, and its activation potential is a function of the controlled system

state-variables u1 = f1(X).

4.5 An Sliding-mode Neural Field Controller

4.5.1 Controller Structure

The layers, depicted in figure 4-2 are further described below:

Input Layer This layer is used as a spacial representation of a function of the

inputs, without a dynamic behavior (it does not add state-variables to the bundled

system-controller differential equation). The values stored in this layer act only

as a buffer to feed the inputs to the representation layer, and correspond in each

iteration to a mapping of the system state-variables. It should be noted that

this layer is not governed by a differential equation and therefore does not follow

Amari’s definition of a neural field.

While the mapping function can be general, here it will be simplified. As a

result, the input layer is a direct, vector-coded, representation of the relevant

state of the controlled system after heel-strike. More specifically, for the input

layer population (i = 1):

u1(x, t) = fI(x, v
+
n ) (4-5a)

f1(x, v+
n ) =

{
const. if v.c (v+

n ) = x.

0 otherwise.
(4-5b)

x =
[
x1
x2

]
∈ [0, 1]× [0, 1] (4-5c)

v+
n =

[
θ+n

θ̇n
+

]
∈ [0, 0.4]× [−0.4, 0] (4-5d)

Note that the activation potential of the input layer u1(x, t) is a function of

the reduced system state-vector v+
n for the n-th heel-strike (the last occurred at

time t), and is constant up to the next heel-strike.
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Figura 4-2: Neural field controller architecture for Chapter 3.

Representation Layer The neural population in this layer behaves according to

a differential equation where the input if functions of the activation potential of the

input layer. Therefore, the population in this layer resembles the definition given

by Amari for neural fields [1], but with an specific structure for the interconnection

between input layer and representation layer populations, and also, a minor role

of recurrence.

The differential equation for the potential at position x ∈ Ω2 = [0, 1]× [0, 1] in

the representation layer (i = 2) population is:

τ2u̇2(x, t) = −u2(x, t) +

∫
x′∈Ω2

w2,2 (s2,2(x, x′))ψ (u2(x′, t)) dx′ + f2,1(x, t) (4-6a)

f2,1(x, t) =

∫
x′∈Ω1

w2,1 (s2,1(x, x′))ψ (u1(x′, t)) dx′ (4-6b)

Where as in previous chapters τi is a time constant for the population i, ui is the

activation potential of elements in the population, wj,i is the connection kernel

for connections from population i towards population j, which is a function of

sj,i, the distance between two positions (on the same population j, or in different

populations i and j), Omegai is the set of positions x in the layer i, and ψ is the

activation function (here a Heaviside function).

The connection kernel wj,i could take any form, but the form of a Mexican-hat

function will be used.

Action Layer Similarly as it was done between the input layer, the action layer

is non-differential in nature (so it also does not add state variables to the bundled

system-controller differential equation). Also, it contains only one node, and its

activation corresponds to the controller output, kφ, the proportional controller

constant defined in section 4.2. The mapping between the representation layer

and the action layer (i = 3) is evaluated using a weighting matrix, calculated as:
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u3(t) =

∑
x′ W3,2(x′)u2(x′, t)∑

x′ u2(x′, t)
(4-7)

Where W3,2(x′) is the estimated control action if the current state where located

in the cell with center at position x′. The actual values for W3,2 are assigned to

the resulting M(θ0, θ̇0) of the search performed in section 4.3, which was then

assigned directly to kφ.

4.5.2 Insights on the Controller Behavior

The actual controller that is presented in this chapter may be understood as a

biologically implementation of a Sliding-mode controller, and works (in general

terms) selecting a control policy for each step, using as input the Poincaré section

v+
n =

[ θ+n
˙θ+n

]
. The mapping kφ = M([θ+

n
˙θ+
n ]T is embedded in the structure of

the neural field. The control policy provided as output by the neural field is

the parameter kφ, used as constant for the locally linear critically-damped PD

controller. An interpretation of the neural field controller structure is detailed

next.

The input layer has a two-dimensional (non-dynamic) neural population, with

one dimension for θ+
n and another for ˙θ+

n , the elements in the Poincaré section

v+
n (just after heel-strike), but rescaled to be in the set [0, 1] × [0, 1]. For these

populations, the function f in the equation u1(x, t) = f(v+
n ) (shown in the previous

subsection) performs a vector coding, i.e. an specific value of the input variable v+
n

causes an activation u1(x) with amplitude 1 at some position x, and an activation

of 0 at any other position. For implementation purposes, note that this value

does not need discretization, as the input layer is not explicitly modeled, given

that it does not add state variables to the bundled system-controller differential

equation.

The representation layer also a neural population, where the position x resides

in the same two-dimensional space of the input layer population. An activation of

an element of the input layer population (e.g the one corresponding to v+
n ) causes

an activation bump that reaches its maximum at some position in the representa-

tion layer, and decreases as the nodes are farther away. This configuration gives

the representation population an structure that resembles the Poincaré section

space. The implementation has 17x17 elements, an equal number than that of

the mapping found in the section 4.3, but it should be noted that the actual points

are different, given that in the position grid of the representation and input layers

each node is located at the center of each cell, but in the section 4.3 were located

at the cell boundaries.
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The output layer has also one population, actually with only one element,

which activation provides the output value kφ. Each element in the representation

layer population contributes with a value given by the product of its activation

potential and the optimal kφ value for that position in the approximated Poincaré

section in the representation layer. The total output is calculated as the average

of W3,2(x′) wighted by the activation of the representation layer u2(x′). If W3,2(x′)

is an approximation to the optimal control action for state x′, and the fraction

u2(x′, t)/
∑

x′ u2(x′, t) is an approximation to the probability of being in the state

x′ at the current time t, then this average provides an approximated expected

value for the optimal control action Eu2{kφ}.

4.6 Results and Discussion

The experimental results are shown in the following figures. For comparison pur-

poses, the State-feedback (SF) control strategy proposed by Wisse et al. is im-

plemented, and compared to the Optimized Sliding-mode (OSM) controller de-

veloped using search on section 4.3, and to the Sliding-mode(-like) Neural Field

(SMNF) controller proposed in the previous section. The experiment shown is

run for t = [0, 100] with the initial configuration vn =
[

0.02
−0.39

]
, which is near the

most unstable point in the region studied.

While the SF controller keeps constant the kφ = 100 value in order to attain

stability, both the OSM and SMNF controller proposed recalculate the kφ (at

least) on each step using the current Poincaré section and the embedded mapping

kφ = M(v+
n ), directly for the OSM, and indirectly for the SMNF.

The output values of the OSM take the form of a Sliding-mode controller in

the following sense:

• A subset of Poincaré section at heel-strike defines the section of state-space

where the system “slides” along.

• At each heel-strike the parameter kφ is re-evaluated, effectively changing the

structure of the controller in a discontinuous fashion.

• The matrix of control values M(v+
n ) is built so that the system always stays

in the subset of the Poincaré section, and furthermore, approaches the sliding

surface in finite time.

• Once reaches the sliding surface (fixed point in the Poincaré section), the

system stays there.
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On the other hand, the output function of the SMNF uses a weighted average

(analogous to a centroid policy). It interpolates between the values on the 17x17

mapping grid, but also has a dynamic estimation of the system state, implemented

in the representation layer. The dynamics of the representation layer could cause

the loss of stability, as it may lag or otherwise underestimate the required kφ.

Nonetheless, as is shown in the figures in this section, the SMNF (with the kernel

function parameters used) approaches quite closely the behavior in the long term

of the OSM controller, but with a soft and continuous change in the control

parameter kφ.

Figure 4-3 shows a sequence of captures, at increasingly longer intervals, of

the activation potential of the representation layer neural field population. In it

can be observed that the dynamics over the neural field converge as the system

approaches the attractor in the Poincaré section.

The overall performance of the SMNF controller is better than the SF in terms

of energy consumption and actuator strain, progressively diminishing its kφ value

and thus the cumulative control action (see the figure 4-4 where the kφ and
∫
τ 2
φ dt

values vs time are plotted). The SF controller converges faster to its fixed point

(as would be expected for a greater control action), but even in steady-state the

control action stays almost unaltered. On the other hand, the OSM controller

has an slightly higher cumulative control action than the SMNF controller, but it

provides a monotonic decrease in kφ across time, behaving more properly as an

Sliding-mode controller.

The Poincaré Sections (see figure 4-5) of the biped using both the SMNF con-

troller and the OSM controller show how the system moves from a configuration

that requires higher kφ values to configurations that require lower ones, and that

fact is exploited by the controllers. The SF controller also moves to configuration

that require lower kφ values (even closer to the natural attraction basin of the

biped), but that fact remains unused. This is the main factor of improvement in

the controllers proposed in this chapter compared to the solution of Wisse et al.

The time simulation (see figure 4-6) shows how the SMNF changes the control

policy (as parametrized by kφ) softly enough to provide a qualitatively natural gait

for the biped. It should be noted that sudden changes of behavior are common in

Sliding-mode controllers, but that is mitigated in this case by three facts: 1) The

neural field applies an interpolation using the centroid of activation to calculate

the output kφ. 2) The neural field has natural dynamics qualitatively equal to a

low-band filter. 3) The change in the kφ occur at a non-linear point in the biped

dynamics that anyway would cause a jump in its state.

In conclusion, in this chapter we presented two controllers which improve the

controller of Wisse et al. over the Simplest Biped Walking (SBW) model, using
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(a) t = 0 (s) (b) t = 1 (s) (c) t = 2 (s)

(d) t = 5 (s) (e) t = 10 (s) (f) t = 15 (s)

(g) t = 20 (s) (h) t = 50 (s) (i) t = 100 (s)

Figura 4-3: Activation potentials for the representation layer vs. time, for t ∈
0, 1, 2, 5, 10, 15, 20, 50, 100 (s), for the SMNF controller. Centroid

marked with a black asterisk (*).
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(a) kφ parameter values for the controllers.
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(b) Integral of squared control action (
∫
τ2
φ dt) for the controllers.

Figura 4-4: Controller action vs. time, for t ∈ [0, 100] (s), for the three controllers

presented in this chapter: Constant kφ for SF controller, step-wise

adaptation of kφ for OSM controller, and continuous variation of kφ
for SMNF controller.
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a mapping from regions of the Poincaré Section just after heel-strike vn =
[
θ+n
θ̇+n

]
to kφ values, in a manner similar to Sliding-mode controllers. Those controllers,

while being active, approach more closely Passive Dynamic Walking (PDW) by

diminishing the cumulative control action. One of the two controllers proposed

is implemented using a control architecture based on neural fields, which extends

and formalizes the structure of the controller for the inverted pendulum shown in

the previous chapter.
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Figura 4-5: Poincaré Section for the reduced-dimensionality system after heel-

strike, for t ∈ [0, 100] (s), for each controller evaluated.
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Figura 4-6: System evolution (state variables after heel-strike vs. time) for t ∈
[0, 10] (s), for each controller evaluated.
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5.1 Main Contributions

The goal-oriented control architecture using neural fields proposed here, is the

main contribution of this work. It shows that neural fields may be used as a

useful component to build motion controllers, taking into account that they are

also biologically plausible.

An additional but important contribution, related to the goal of minimization

of global energy consumption, is the optimization by means of evolutionary algo-

rithms and neural fields of the previous work on pseudo-Passive Dynamic Walking

controllers (see [67]) for the Simplest Biped Walking model (as proposed in [24]).

With this contribution, this work advances towards what could be the most valu-

able goal on biped walking control.

5.1.1 Neural Field Controller for the Inverted Pendulum

In chapter 3, which was published in two parts in the Proceedings of IJCNN

2009 and GECCO 2009 ([22] and [23]), it was developed a neural field controller

that is able to solve the stability problem for the inverted pendulum (cart-and-

pole). Both a neural field controller manually tuned, and a neural field controller

parametrized using evolutionary algorithms were presented. Also, two additional

controllers were presented for comparison: a controller using evolved recurrent

neural networks, and the non-evolved neural field controller omitting the process-

ing layer for output.

It could be seen that, while the recurrent neural network controller is expressive

enough to solve the problem at hand, the number of parameters to configure is of

a quadratic order in relation to the number of neurons.

On the other hand, the neural field controller was found to be more complex

and its simulation more costly, but had some notable advantages: The stability

of its natural dynamics, and its suitability to the problem at hand, being able to

solve it with a acceptable degree of performance for low and mid perturbations,

even without evolution.

The evolved controller performed better than the other two, is more general
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because eliminates the need for manual conscious parametrization and allows the

designer to specify more precisely the performance measure desired. Also it allows

interpretation of field potentials. and its geometrical representation allows for a

small switch between a state-space like controller to a neural field controller.

The interpretation or understanding of recurrent neural networks tends to be

difficult and even more with increasing states involved. This makes the neural

field controller not as black-box as the a recurrent neural network controller.

5.1.2 Neural Field Controller for SBW

While the cart-and-pole biped walking model is useful as a first approach to the

problem of locomotion, in order to develop a more realistic controller of biped

walking, a model closer to human biped walking was explored in chapter 4, and

also some new controllers were presented.

An extended neural field control and planning architecture was developed and

applied to the stability problem for the Simplest Biped Walking model. Also

it was shown how the control architecture may be used at a planning level by

changing the control policy to be applied, and also how it is able to minimize the

global energy consumption. The neural field control architecture was compared

to the linear controller proposed by Wisse et al. [67], and to the optimized but

not biologically inspired Sliding-mode controller proposed in this work.

Those controllers proposed in chapter 4, while being active, approach more

closely Passive Dynamic Walking (PDW) than previous works, by diminishing

the cumulative control action. One of the two controllers proposed was imple-

mented using a control architecture based on neural fields, which extends and

formalizes the structure of the controller for the inverted pendulum shown in the

previous chapter. Also, a parametrization using evolutionary algorithms (HAEA

by Gomez, see [26]) was performed on the mappings between the representation

layer and the action layer of the neural field controller proposed (also used directly

in the other controller presented).

It is important to note that the control strategies presented in chapter 4, would

also work, mostly unaltered, for any other system were there is a controller for

which exists a parameter so that the attraction basin widens as that parameter

is increased.

While the State feedback (SF) controller of Wisse et al. keeps constant the

kφ = 100 value in order to attain stability, both the optimized Sliding-mode

controller (OSM) and Sliding-mode-like neural field (SMNF) controller proposed

were shown to recalculate the kφ (at least) on each step using the current Poincaré

section and the embedded mapping kφ = M(v+
n ), directly for the OSM, and
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indirectly for the SMNF.

It was shown that the output values of the OSM take the form of a Sliding-mode

controller in the following sense:

• A subset of Poincaré section at heel-strike defines the section of state-space

where the system “slides” along.

• At each heel-strike the parameter kφ is re-evaluated, effectively changing the

structure of the controller in a discontinuous fashion.

• The matrix of control values M(v+
n ) is built so that the system always stays

in the subset of the Poincaré section, and furthermore, approaches the sliding

surface in finite time.

• Once reaches the sliding surface (fixed point in the Poincaré section), the

system stays there.

Also, it was shown that given the output function the SMNF uses, and the

dynamic estimation of the system state implemented in the representation layer,

could cause the loss of stability, as it may lag or otherwise underestimate the

required kφ. Nonetheless, the SMNF approaches quite closely to the behavior in

the long term of the OSM controller, but with a soft and continuous change in

the control parameter kφ.

The overall performance of the SMNF controller was better than the SF in

terms of energy consumption and actuator strain, progressively diminishing its kφ
value and thus the cumulative control action. The SF controller converges faster to

its fixed point, but even in steady-state the control action stays almost unaltered.

On the other hand, the OSM controller has an slightly higher cumulative control

action than the SMNF controller, but it provides a monotonic decrease in kφ
across time, behaving more properly as an Sliding-mode controller.

The Poincaré Sections of the biped using both the SMNF controller and the

OSM controller did show how the system moves from a configuration that requires

higher kφ values to configurations that require lower ones, and that fact is exploited

by the controllers.

The time simulation did show how the SMNF changes the control policy (as

parametrized by kφ) softly enough to provide a qualitatively natural gait for the

biped. It should be noted that sudden changes of behavior are common in Sliding-

mode controllers, but that is mitigated in this case by three facts: 1) The neural

field applies an interpolation using the centroid of activation to calculate the

output kφ. 2) The neural field has natural dynamics qualitatively equal to a low-

band filter. 3) The change in the kφ occur at a non-linear point in the biped

dynamics that anyway would cause a jump in its state.
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5.2 Future Work

More complex control problems could benefit from the strategy of parametrization

of neural field controllers by evolution here developed. This way, it is left for

future work the task of integration of multiple goals in different populations and

the design of an arbitration scheme compatible with the architecture.

Also, the neural field controller presented in chapter 4 may be extended using

reinforcement learning, specially a form of Q-learning, to efficiently identify the

optimal action-values (mapping between reinforcement and action layers). It could

be done using biologically plausible techniques, as shown by Strösslin et al. in

[61].

Finally, further application of the extended neural field controller architecture,

used at a policy modification level, could be explored to further asses its perfor-

mance in a wider variety of problems.
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