534 research outputs found

    A Novel Approach For Design Of Pulse Triggered Flip-Flop To Enhance Speed And Power

    Get PDF
    In VLSI Technology, flip-flops contribute a significant portion of chip area and power consumption to overall system design. Pulse triggered flip-flops (P-FF) have single latch and hence simpler in circuit complexity. Use of Explicit type design for P-FF gives the speed advantage. This paper presents various Pulse triggered Flip-flop (P-FF) designs and various techniques to achieve a better design in terms of power consumption and speed. Introduction of simple pass transistor in latch design can be used to speed up data transition. Dual edge triggering can be adopted as it consumes less power as compared to single edge triggering. Also conditional discharge technique can be used to reduce switching activity. The work is done in tanner tool software. DOI: 10.17762/ijritcc2321-8169.15025

    Effect of clock gating in conditional pulse enhancement flip-flop for low power applications

    Get PDF
    Flip-Flops (FFs) play a fundamental role in digital designs. A clock system consumes above 25% of total system power. The use of pulse-triggered flip-flops (P-FFs) in digital design provides better performance than conventional flip-flop designs. This paper presents the design of a new power-efficient implicit pulse-triggered flip-flop suitable for low power applications. This flip-flop architecture is embedded with two key features. Firstly, the enhancement in width and height of triggering pulses during specific conditions gives a solution for the longest discharging path problem in existing P-FFs. Secondly, the clock gating concept reduces unwanted switching activities at sleep/idle mode of operation and thereby reducing dynamic power consumption. The post-layout simulation results in cadence software based on CMOS 90-nm technology shows that the proposed design features less power dissipation and better power delay performance (PDP) when compared with conventional P-FFs. Its maximum power saving against conventional designs is up to 30.65%

    Low Power Explicit Pulse Triggered Flip-Flop Design Based On A Pass Transistor

    Full text link
    In VLSI system design, power consumption is the ambitious issue for the past respective years. Advanced IC fabrication technology grants the use of nano scaled devices, so the power dissipation becomes major problem in the designing of VLSI chips. In this paper we present, a low-power flip-flop (FF) design featuring an explicit type pulse-triggered structure and a modified true single phase clock latch based on a signal feed-through scheme using pass transistor. The offered design successfully figure out the long discharging path problem in conventional explicit type pulse-triggered FF (P-FF) designs and achieves better power performance by consuming low power. The proposed design also significantly reduces delay time, set-up time and hold time. Simulation results based on TMC 180nm CMOS technology reveal that the proposed design features the best power and delay performance in several FF designs under comparison

    High Performance Low Power Dual Edge Triggered Static D Flip-Flop

    Get PDF
    In this paper a low-power double-edge triggered static flip-flop (DETSFF) suitable for low-power and high performance applications is presented. The designed DETFF is verified at gpdk 180nm-1.8V CMOS technology. Comparison with some of the latest DETFFs shows that the proposed DETSFF can achieve the lowest power consumption, lowest clock to Q delay and thus Power-delay-product (PDP). Moreover, the proposed DETSFF comprises of only 15 transistors hence require lesser number of transistors and thus requires lesser overall silicon area.DOI:http://dx.doi.org/10.11591/ijece.v3i5.316

    A Modified Signal Feed-Through Pulsed Flip-Flop for Low Power Applications

    Get PDF
    In this paper a modified signal feed-through pulsed flip-flop has been presented for low power applications. Signal feed-through flip-flop uses a pass transistor to feed input data directly to the output. Feed through transistor and feedback signals have been modified for delay, static and dynamic power reduction. HSPICE simulation shows 22% reduction in leakage power and 8% of dynamic power. Delay has been reduced by 14% using TSMC 90nm technology parameters. The proposed pulsed flip-flop has the lowest PDP (Power Delay Product) among other pulsed flip-flops discussed

    Design and analysis of Low Power High Speed Pulse Triggered Flip Flop

    Get PDF
    The main important aspect is to outline a high speed and utilization of low power pulse triggered flip-flop and simulate the same. Also, we have to minimize leakage in the consumption of power in a flip-flop by employing pulse triggering technique that is adopted for clocks. Here, to solve the problem in the discharging path of the similar flip flop implementations, we employ signal feed through technique. The discharge time is reduced by the proposed method. This design out performs all the other similar pulse triggered flip flop implementation both in speed and power consumption. Now, it is implemented by employing Cadence Virtuoso Schematic Composer in 90nm GPDK. Simulation is done by a simulator known as Spectre

    Design and Analysis of Low Power Dual Edge Triggered Mechanism Flip-Flop Employing Power Gating Methodology

    Get PDF
    The advancement of battery operated designs has abundantly increases the memory elements and registers to be operated in ultra-low power. That is the this paper we have proposed a design of CT_C DET flip-flop with power gating technique which is the most efficient power consuming reduction technique.  The design of the power gating technique involves the pull-up transistor in the Vdd of the circuit and pull-down transistor in the ground terminal. This power gating technique reduces the power consumption by more than 40% than that of the existing design

    An Area Efficient Pulse Triggered Flipflop Design under 90nm CMOS Technology

    Get PDF
    The choice of flip-flop technologies is an essential importance in design of VLSI integrated circuits for high speed and high performance CMOS circuits. The main objective of this project is to design an area efficient Low-Power Pulse- Triggered flip-flop. It is important to reduce the power dissipation in both clock distribution networks and flip-flops. The comparison of low power pulse triggered flip-flops such as Ep-DCO, MHLFF, ACFF, Ip-DCO, conditional enhancement scheme and signal feed through scheme. Logics are carried out and the best power-performance is obtained. Here simulations are done under 90nm technology and the results are tabulated below. In that signal feed through scheme is showing better output than the other flip-flops compared here

    Power and Delay Analysis of Flip Flop Using Pulse Control Method

    Get PDF
    The past few years, increasing difficulty in integration can be solved by low power, which is very important and also choosing flip-flop solves the challenges like low power. In this paper, we design and compare the power problem of various indirect pulse triggered flip flop are examined. It can be attained by reconstructing the lower part of Single-ended Conditional Capture Energy Recovery (SCCER) design and by employing the control pulse scheme. The results after the simulation derives transistor count and power required are significantly reduced in the proposed design over existing design
    • …
    corecore