9 research outputs found

    Energy‐aware strategies for task‐parallel sparse linear system solvers

    Get PDF
    This is the pre-peer reviewed version of the following article: Energy‐aware strategies for task‐parallel sparse linear system solvers, which has been published in final form at https://doi.org/10.1002/cpe.4633. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions.We present several energy‐aware strategies to improve the energy efficiency of a task‐parallel preconditioned Conjugate Gradient (PCG) iterative solver on a Haswell‐EP Intel Xeon. These techniques leverage the power‐saving states of the processor, promoting the hardware into a more energy‐efficient C‐state and modifying the CPU frequency (P‐states of the processors) of some operations of the PCG. We demonstrate that the application of these strategies during the main operations of the iterative solver can reduce its energy consumption considerably, especially for memory‐bound computations

    Accelerating advanced preconditioning methods on hybrid architectures

    Get PDF
    Un gran número de problemas, en diversas áreas de la ciencia y la ingeniería, involucran la solución de sistemas dispersos de ecuaciones lineales de gran escala. En muchos de estos escenarios, son además un cuello de botella desde el punto de vista computacional, y por esa razón, su implementación eficiente ha motivado una cantidad enorme de trabajos científicos. Por muchos años, los métodos directos basados en el proceso de la Eliminación Gaussiana han sido la herramienta de referencia para resolver dichos sistemas, pero la dimensión de los problemas abordados actualmente impone serios desafíos a la mayoría de estos algoritmos, considerando sus requerimientos de memoria, su tiempo de cómputo y la complejidad de su implementación. Propulsados por los avances en las técnicas de precondicionado, los métodos iterativos se han vuelto más confiables, y por lo tanto emergen como alternativas a los métodos directos, ofreciendo soluciones de alta calidad a un menor costo computacional. Sin embargo, estos avances muchas veces son relativos a un problema específico, o dotan a los precondicionadores de una complejidad tal, que su aplicación en diversos problemas se vuelve poco práctica en términos de tiempo de ejecución y consumo de memoria. Como respuesta a esta situación, es común la utilización de estrategias de Computación de Alto Desempeño, ya que el desarrollo sostenido de las plataformas de hardware permite la ejecución simultánea de cada vez más operaciones. Un claro ejemplo de esta evolución son las plataformas compuestas por procesadores multi-núcleo y aceleradoras de hardware como las Unidades de Procesamiento Gráfico (GPU). Particularmente, las GPU se han convertido en poderosos procesadores paralelos, capaces de integrar miles de núcleos a precios y consumo energético razonables.Por estas razones, las GPU son ahora una plataforma de hardware de gran importancia para la ciencia y la ingeniería, y su uso eficiente es crucial para alcanzar un buen desempeño en la mayoría de las aplicaciones. Esta tesis se centra en el uso de GPUs para acelerar la solución de sistemas dispersos de ecuaciones lineales usando métodos iterativos precondicionados con técnicas modernas. En particular, se trabaja sobre ILUPACK, que ofrece implementaciones de los métodos iterativos más importantes, y presenta un interesante y moderno precondicionador de tipo ILU multinivel. En este trabajo, se desarrollan versiones del precondicionador y de los métodos incluidos en el paquete, capaces de explotar el paralelismo de datos mediante el uso de GPUs sin afectar las propiedades numéricas del precondicionador. Además, se habilita y analiza el uso de las GPU en versiones paralelas existentes, basadas en paralelismo de tareas para plataformas de memoria compartida y distribuida. Los resultados obtenidos muestran una sensible mejora en el tiempo de ejecución de los métodos abordados, así como la posibilidad de resolver problemas de gran escala de forma eficiente

    Performance and Energy Optimization of the Iterative Solution of Sparse Linear Systems on Multicore Processors

    Get PDF
    En esta tesis doctoral se aborda la solución de sistemas dispersos de ecuaciones lineales utilizando métodos iterativos precondicionados basados en subespacios de Krylov. En concreto, se centra en ILUPACK, una biblioteca que implementa precondicionadores de tipo ILU multinivel para la solución eficiente de sistemas lineales dispersos. El incremento en el número de ecuaciones, y la aparición de nuevas arquitecturas, motiva el desarrollo de una versión paralela de ILUPACK que optimice tanto el tiempo de ejecución como el consumo energético en arquitecturas multinúcleo actuales y en clusters de nodos construidos con esta tecnología. El objetivo principal de la tesis es el diseño, implementación y valuación de resolutores paralelos energéticamente eficientes para sistemas lineales dispersos orientados a procesadores multinúcleo así como aceleradores hardware como el Intel Xeon Phi. Para lograr este objetivo, se aprovecha el paralelismo de tareas mediante OmpSs y MPI, y se desarrolla un entorno automático para detectar ineficiencias energéticas.In this dissertation we target the solution of large sparse systems of linear equations using preconditioned iterative methods based on Krylov subspaces. Specifically, we focus on ILUPACK, a library that offers multi-level ILU preconditioners for the effective solution of sparse linear systems. The increase of the number of equations and the introduction of new HPC architectures motivates us to develop a parallel version of ILUPACK which optimizes both execution time and energy consumption on current multicore architectures and clusters of nodes built from this type of technology. Thus, the main goal of this thesis is the design, implementation and evaluation of parallel and energy-efficient iterative sparse linear system solvers for multicore processors as well as recent manycore accelerators such as the Intel Xeon Phi. To fulfill the general objective, we optimize ILUPACK exploiting task parallelism via OmpSs and MPI, and also develope an automatic framework to detect energy inefficiencies

    On Multiscale Algorithms for Selected Applications in Molecular Mechanics

    Get PDF

    Aceleración de métodos de reducción de modelos dispersos en arquitecturas multi mani-core

    Get PDF
    El estudio de sistemas dinámicos es un componente fundamental de varias áreas de la ingeniería así como también de otras disciplinas, como por ejemplo en Teoría de Control, Procesamiento de Señnales, Análisis Estructural o Economía. En algunos casos, el estudio se aborda mediante un enfoque empírico basado en la manipulación de las entradas de dicho sistema y la posterior medición de los resultados con el fin de realizar ajustes [30]. Sin embargo, por lo general, estos sistemas son demasiado complejos, o su construcción muy costosa o peligrosa, por lo que es necesario emplear otro tipo de técnicas. Es por esto que dichos sistemas suelen describirse mediante modelos físicos, y luego, aplicando distintas leyes de la Física, es posible desarrollar sistemas de ecuaciones matemáticas que describan su comportamiento. Estas ecuaciones matemáticas pueden ser de distinta índole, dependiendo del problema que se intente describir. Cuando estas ecuaciones son lineales se habla de un sistema dinámico lineal

    A class of linear solvers based on multilevel and supernodal factorization

    Get PDF

    A class of linear solvers based on multilevel and supernodal factorization

    Get PDF
    De oplossing van grote en schaarse lineaire systemen is een kritieke component van moderne wetenschap en technische simulaties. Iteratieve methoden, namelijk de klasse van moderne Krylov-subruimtemethoden, worden vaak gebruikt om grootschalige lineaire systemen op te lossen. Om de robuustheid en de convergentiesnelheid van de iteratieve methoden te verbeteren, worden preconditioneringstechnieken vaak beschouwd als cruciale componenten van de lineaire systeemoplossing. In dit proefschrift wordt een klasse van algebraïsche multilevel oplossers gepresenteerd voor het conditioneren van algemene lineaire systeemvergelijkingen die voortkomen uit computationele wetenschap en technische toepassingen. Ze kunnen spaarzame patronen produceren en geheugenkosten besparen door recursieve combinatorische algoritmen toe te passen. Robuustheid wordt verbeterd door de factorisatie te combineren met recent ontwikkelde overlappende en compressiestrategieën en door efficiënte lokale oplossers te gebruiken. We hebben de goede prestaties van de voorgestelde strategieën aangetoond met numerieke experimenten op realistische matrixproblemen, ook in vergelijking met enkele van de meest populaire algebraïsche preconditioners die tegenwoordig worden gebruikt

    Development of scalable linear solvers for engineering applications

    Get PDF
    The numerical simulation of modern engineering problems can easily incorporate millions or even billions of unknowns. In several applications, particularly those with diffusive character, sparse linear systems with symmetric positive definite (SPD) matrices need to be solved, and multilevel methods represent common choices for the role of iterative solvers or preconditioners. The weak scalability showed by those techniques is one of the main reasons for their popularity, since it allows the solution of linear systems with growing size without requiring a substantial increase in the computational time and number of iterations. On the other hand, single-level preconditioners such as the adaptive Factorized Sparse Approximate Inverse (aFSAI) might be attractive for reaching strong scalability due to their simpler setup. In this thesis, we propose four multilevel preconditioners based on aFSAI targeting the efficient solution of ill-conditioned SPD systems through parallel computing. The first two novel methods, namely Block Tridiagonal FSAI (BTFSAI) and Domain Decomposition FSAI (DDFSAI), rely on graph reordering techniques and approximate block factorizations carried out by aFSAI. Then, we introduce an extension of the previous techniques called the Multilevel Factorization with Low-Rank corrections (MFLR) that ensures positive definiteness of the Schur complements as well as improves their approximation with the aid of tall-and-skinny correction matrices. Lastly, we present the adaptive Smoothing and Prolongation Algebraic MultiGrid (aSPAMG) preconditioner belonging to the adaptive AMG family that introduces the use of aFSAI as a flexible smoother; three strategies for uncovering the near-null space of the system matrix and two new approaches to dynamically compute the prolongation operator. We assess the performance of the proposed preconditioners through the solution of a set of model problems along with real-world engineering test cases. Moreover, we perform comparisons to other approaches such as aFSAI, ILU (ILUPACK), and BoomerAMG (HYPRE), showing that our new methods prove comparable, if not superior, in many test cases
    corecore