
Sede Amministrativa: Università degli Studi di Padova

Dipartimento di Ingegneria Civile, Edile e Ambientale (ICEA)

SCUOLA DI DOTTORATO DI RICERCA IN:

SCIENZE DELL’INGEGNERIA CIVILE ED AMBIENTALE

XXXI CICLO

Development of Scalable Linear Solvers for Engineering

Applications

Tesi scritta con il contributo finanziario della Fondazione Cariparo.

Direttore della Scuola: Ch.mo Prof. Marco Marani

Relatore: Prof. Carlo Janna

Correlatore: Prof. Massimiliano Ferronato

Dottorando: Victor A. Paludetto Magri





UNIVERSITÀ DEGLI STUDI DI PADOVA

Abstract

Department of Civil, Architectural and Environmental Engineering

Doctor of Philosophy

Development of Scalable Linear Solvers for Engineering Applications

Victor A. Paludetto Magri

The numerical simulation of modern engineering problems can easily incorporate

millions or even billions of unknowns. In several applications, particularly those with

diffusive character, sparse linear systems with symmetric positive definite (SPD) matri-

ces need to be solved, and multilevel methods represent common choices for the role of

iterative solvers or preconditioners. The weak scalability showed by those techniques

is one of the main reasons for their popularity, since it allows the solution of linear sys-

tems with growing size without requiring a substantial increase in the computational

time and number of iterations. On the other hand, single-level preconditioners such

as the adaptive Factorized Sparse Approximate Inverse (aFSAI) might be attractive

for reaching strong scalability due to their simpler setup. In this thesis, we propose

four multilevel preconditioners based on aFSAI targeting the efficient solution of ill-

conditioned SPD systems through parallel computing. The first two novel methods,

namely Block Tridiagonal FSAI (BTFSAI) and Domain Decomposition FSAI (DDFSAI),

rely on graph reordering techniques and approximate block factorizations carried out

by aFSAI. Then, we introduce an extension of the previous techniques called the Mul-

tilevel Factorization with Low-Rank corrections (MFLR) that ensures positive definite-

ness of the Schur complements as well as improves their approximation with the aid

of tall-and-skinny correction matrices. Lastly, we present the adaptive Smoothing and

Prolongation Algebraic MultiGrid (aSPAMG) preconditioner belonging to the adaptive

AMG family that introduces the use of aFSAI as a flexible smoother; three strategies for
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uncovering the near-null space of the system matrix and two new approaches to dy-

namically compute the prolongation operator. We assess the performance of the pro-

posed preconditioners through the solution of a set of model problems along with real-

world engineering test cases. Moreover, we perform comparisons to other approaches

such as aFSAI, ILU (ILUPACK), and BoomerAMG (HYPRE), showing that our new

methods prove comparable, if not superior, in many test cases.
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Sommario
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Victor A. Paludetto Magri

Nell’ingegneria d’oggigiorno, le simulazioni numeriche possono facilmente arrivare

alle dimensioni di milioni, se non miliardi, di incognite. Diverse applicazioni, specifi-

catamente quelle a carattere diffusivo, richiedono la soluzione di sistemi lineari sparsi

con matrici simmetriche definite positive (SPD). In questo contesto, i metodi multiliv-

ello rappresentano una scelta corrent, sia da usarsi per come solutori iterativi che come

precondizionatori. La weak scalability mostrata da queste tecniche è una delle ragioni

principali alla base della loro popolarità, dal momento che consente la soluzione di

sistemi lineari di dimensioni crescenti senza un sostanziale aumento del tempo di cal-

colo e del numero di iterazioni. D’altro canto, i precondizionatori singolo livello, come

l’adaptive Factorized Sparse Approximate Inverse (aFSAI), possono avere il vantaggio

della strong scalability, principalmente grazie alla fase di setup più semplice. In questo

lavoro di tesi, si propongono quattro precondizionatori multilivello, basati sulla tec-

nica aFSAI. L’obiettivo è la soluzione efficiente di problemi SPD mal condizionati, at-

traverso l’utilizzo di algoritmi adatti al calcolo parallelo. I primi due metodi, ovvero

Block Tridiagonal FSAI (BTFSAI) e Domain Decomposition FSAI (DDFSAI), si basano

su tecniche di riordinamento della matrice e su fattorizzazioni approssimate a bloc-

chi, ottenute grazie alla aFSAI. In seguito, si presenta un’estensione delle tecniche

precedenti, denominata Multilevel Factorization with Low-Rank corrections (MFLR),

in grado di assicurare la definitezza (positiva) dei complementi di Schur e di miglio-

rarne l’approssimazione grazie a delle matrici di correzione a rango basso. Infine, si

introduce l’adaptive Smoothing and Prolongation Algebraic MultiGrid (aSPAMG), un

v
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precondizionatore appartenente alla famiglia dei metodi multigrid adattivi, che si dis-

tingue per alcune caratteristiche, quali l’uso della aFSAI come smoother flessibile, tre

strategie per approssimare il near-null space della matrice e due nuovi approcci per

calcolare dinamicamente l’operatore d’interpolazione. Nel presente lavoro, si anal-

izzano le caratteristiche dei precondizionatori proposti attraverso la soluzione sia di

problemi artificiali che di matrici reali, ricavate da applicazioni ingegneristiche. In-

fine, si realizzano confronti con altri approcci molto noti, quali aFSAI, ILU (ILUPACK)

e BoomerAMG (HYPRE), dimostrando che i metodi proposti hanno delle prestazioni

comparabili, se non superiori, in diversi problemi.

vi
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Chapter 1

Introduction

Engineering problems are often solved through mathematical models that derive from

the application of fundamental physical laws. Simple examples are the second New-

ton’s equation of motion for computing the acceleration of a body or its statical equi-

librium under the action of a set of mechanical forces; the Kirchhoff’s circuit rules for

computing currents and potentials values in closed electrical circuits or the thermody-

namics’ equations for calculating energy transfers and transformations across or inside

systems. If written in their integral forms, these equations can frequently be solved

analytically, i.e., after the application of a few arithmetic operations, an explicit for-

mula for the unknown variable is obtained. However, when studying the infinitesimal

distribution of these variables across a continuum media, these equations need to be

restated in differential form according to the physical laws that originated them and

their analytical solution is no longer straightforward to obtain. In fact, explicit solu-

tions can be found only in artificial scenarios composed of regularly shaped domains

and simple mathematical expressions representing the boundary conditions and mate-

rials properties.

When dealing with real-world applications, differential equations are solved only

approximately through the use of numerical methods. These are techniques introduced

in the last century that reformulate the mathematical problem valid for a continuous

media into another one holding for a finite representation of the original domain as-

sociated with a limited number of degrees of freedom, a process commonly denoted

as discretization. The first category of numerical methods to be proposed in the his-

tory are the finite difference methods (FDM) Strikwerda [2004]; LeVeque [2007], which

1
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approximate derivatives at an arbitrary point by the truncation of the respective Tay-

lor series according to the desired accuracy. After these, many other approaches were

developed such as the finite element method (FEM) Zienkiewicz et al. [2013], which de-

scribes an approximate global solution as the superposition of local contributions at the

element level weighted by a set of basis functions; the spectral element method (SEM)

Gopalakrishnan et al. [2008], which extends FEM by using higher degree piecewise

polynomials as basis functions and the finite volume method (FVM) LeVeque [2002],

that guarantees local conservation of physical properties at control volumes.

One common aspect of all discretization strategies is that they require the solution

of a sparse linear system of equations

Ax = b, (1.1)

where A ∈ RN×N is a sparse matrix; b ∈ RN , the right hand side vector and x ∈ RN ,

the approximate solution of the mathematical model being studied. For a given prob-

lem, linear systems with more unknowns and larger size normally improve the accu-

racy of the final solution. Also, the use of high order approximation schemes during

the discretization normally leads to better solutions.

No matter the discretization method and order chose, the solution of sparse linear

systems often represents the most significant portion of the computational time needed

for numerical simulation. To certify this fact, we show in Figure 1.1, the wall-clock

time associated with different phases of a numerical simulation where the mechanical

deformation of a steel gear under the action of rotating forces in its teeth is calculated.

We see that the linear system solution is the most expensive phase with more than 85%

of the total computation time. Besides, this value can increase when refining the mesh

or dealing with other mathematical models such as in the transient or non-linear cases

where a sequence of linear systems needs to be solved to find the final solution of the

model. Thus, it is of paramount importance the development of efficient algorithms

for the solution of sparse linear systems.

Linear problems of the type (1.1) can be solved either by direct or iterative methods.

Direct methods are robust approaches for finding an approximate solution x up to the
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FIGURE 1.1: Overview of the numerical simulation costs.

machine precision. They consist of two major phases, namely setup, and solve. The

first is usually the most expensive concerning computational time and is responsible

for decomposing the matrix A as the product of two sparse triangular factors. The sec-

ond one consists of solving the resulting triangular systems, something that is quickly

done via backward and forward substitution. One of the main drawbacks of these

methods is that their computational and memory complexities can grow up to O(N2)

when solving matrices with a high number of nonzeros per row such as in the case of

high order discretizations and three-dimensional problems. Also, their parallelization

above the range of a thousand cores is not straightforward due to inherently sequential

kernels needed in their construction such as the triangular solves.

Iterative methods build a sequence of vectors converging to the exact solution of

(1.1) up to the machine precision. They generally have lower computational and mem-

ory complexities than direct methods, meaning that after a certain problem size N⋆,

they become more advantageous than the former choice. See, e.g, Brussino and Son-

nad [1989]; Fan et al. [1996]; Saad [2003]; Wang et al. [2007]; Fialko [2014]; Puzyrev et al.

[2016]. Besides this, iterative methods primarily rely on first level linear algebra opera-

tions, i.e., those involving only vectors, and sparse linear algebra operations such as the

sparse matrix/vector multiplication (SpMV), which are naturally parallel tasks allow-

ing these methods to be reasonably scalable in parallel computational environments.

If used in their standalone form, iterative methods become inefficient since their

convergence rate is unsatisfactory and, thus, a considerable computational effort may

be required in their application phase. The most common remedy for this is precondi-

tioning. These are linear operators whose action is sufficiently close but not equal to
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A−1. They can be divided into several categories, for instance, according to the specific

type of problem that they are designed for and the family of algorithms they belong to.

However, a common aspect of all these techniques is that they target the reduction of

the conditioning number of the original linear system and, consequently, improves the

convergence ratio of iterative methods.

1.1 Thesis objective

The general objective of this thesis is the development of preconditioners for solving

(1.1) efficiently. We focus on the specific case of symmetric positive definite (SPD) ma-

trices that are originated from the discretization of the Poisson and linear elasticity

equations. Although, we note that the methods developed here are valid also for other

applications leading to SPD matrices. Moreover, we aim at solving sufficiently large

problem sizes starting range of O(106) unknowns. We specifically follow the road of

iterative methods and search for the construction of robust preconditioners relying on

sparse approximate inverse techniques Kolotilina and Yeremin [1993]; Benzi and Tůma

[1999]; Huckle [2003]; Janna et al. [2015b].

1.2 Engineering applications

The work developed in this thesis ultimately aims the efficient solution of general engi-

neering problems modeled by elliptical partial differential equations which, once dis-

cretized through a numerical method, requires the solution of sparse linear systems

formed by symmetric positive definite (SPD) matrices. Particular examples of engi-

neering applications contemplated by the methods developed herein are:

1. the multiphase flow in porous media modeled by Darcy’s law. This physical

problem is solved, for instance, by oil reservoir simulators aiming to predict the

cumulative fluids production, e.g., water and hydrocarbons, over a delimited

time window Jenny et al. [2003]; Gerritsen and Durlofsky [2005]; Nordbotten and

Celia [2011]; Horgue et al. [2015];
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2. the study of geomechanical effects in subsurface rock formations modeled by

the uncoupled poroelasticity equations. Deformation of these structures can oc-

cur due to anthropogenic actions towards hydrocarbons exploitation and under-

ground gas storage. This phenomenon can furtherly lead to the subsidence/uplift

of the ground surface or even promote induced seismicity. Thus, it is of great

importance to forecast these events to prevent possible environmental impacts

Kumpel [2002]; Teatini et al. [2005]; Zoback [2007]; Ferronato et al. [2010a];

3. the structural analysis of mechanical components modeled by the linear elasticity

equations. This analysis is carried out, for example, during the design phase of

new structures to compute their deformation under different loads and placing

conditions with the ultimate aim to verify the structures’ fitness for use prior

than using real prototypes for physical tests Boresi et al. [2010]; Zienkiewicz et al.

[2014]; Madenci and Guven [2015];

4. the creeping flow in open surfaces modeled by the Stokes’ equations. This is the

case of highly viscous fluids or flows with small velocities such that the Reynolds

number is smaller than one Tuminaro et al. [2016]. Practical examples are the

study of viscous polymers Vogel et al. [2014] and lava flow Dietterich et al. [2017];

5. the heat propagation into general domains due to diffusion modeled by the en-

ergy conservation equation. The solution of this mathematical model is the tem-

perature distribution along the region being considered and, under certain con-

ditions, can be applied to solid, liquid and gases Miah et al. [2018].

1.3 Contributions

In this work, we introduce four new algebraic preconditioners to be used in conjunc-

tion with the conjugate gradient method (CG) Hestenes and Stiefel [1952]. They share

a common ingredient which is the use of the adaptive factorized sparse approximate

inverse (aFSAI) Janna and Ferronato [2011] preconditioner at some stage of their con-

struction. The block tridiagonal aFSAI (BTFSAI) is based on the LDU decomposition of
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A viewed as a tridiagonal matrix and the further approximation of the Schur comple-

ment inverses utilizing the aFSAI algorithm. The domain decomposition aFSAI (DDF-

SAI) reorders the vertices of the adjacency graph ofA via a multilevel K-way algorithm

Karypis and Kumar [1998] that divides them into two categories, the method proceeds

by computing the block factorization of the reordered matrix and uses aFSAI for ap-

proximating matrices inverses in an explicit form. A third multilevel preconditioner

called multilevel FSAI with Low-Rank corrections (MFLR) improves the robustness of

the former ones with the aid of low-rank corrections. Lastly, we propose the adaptive

smoothing and prolongation algebraic multigrid preconditioner (aSP-AMG) which can

be viewed as an enhanced black-box algebraic multigrid method since it does not as-

sume any information about the constitution of the near-null space of A. Moreover, it

employs aFSAI as the smoothing method rendering it especially attractive to massively

parallel machines.

1.4 Outline

This thesis is organized as follows. In this chapter, we presented the problem being

studied and its relevance for the solution of engineering problems modeled by partial

differential equations. In chapter 2, we talk briefly about the most common numerical

methods used in engineering and the main characteristics of the linear problems gener-

ated by them. Also, we make a literature overview of the most used direct and iterative

methods, especially, employed for the solution of (1.1), pointing out the main pros and

cons of each strategy. In chapter 3, we present two novel preconditioners based on aF-

SAI, namely BTFSAI and DDFSAI, that can be viewed as a multilevel extension of the

former one. The robustness of BTFSAI is furtherly improved with low-rank corrections

in chapter 4 giving rise to the MFLR preconditioner. In chapter 5, another class of mul-

tilevel preconditioners is exploited, namely the adaptive algebraic multigrid methods.

We introduce the aSP-AMG preconditioner that employs a few ideas of sparse approx-

imate inverse techniques in its construction and targets the solution of larger problem

sizes than the previous preconditioners. The performance of each of those methods is

assessed in their respective chapters through the solution of simple model problems
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as well as real-world test cases. In chapter 6, we provide the main conclusions of this

thesis and note a few closing remarks. Lastly, in appendix A, we provide details about

the sparse linear matrices solved in this work that arise from real-world engineering

applications.





Chapter 2

Background

In this chapter, we provide a closer look at the linear problem (1.1). Assuming that the

mathematical model at hand is given by a PDE of elliptical type, we start by introduc-

ing the most fundamental numerical methods used in engineering that involves the

solution of linear systems, paying special attention to algebraic characteristics of the

generated matrices. Afterward, we present a succinct review of the most used direct

and iterative methods for solving sparse linear systems and also we describe the most

common preconditioners used for improving the convergence of the last methods.

2.1 Numerical methods

As already mentioned in the last chapter, numerical methods are essential for the solu-

tion of engineering problems modeled by PDEs. Several techniques have been devel-

oped in the previous century, and a common aspect of them is the generation of sparse

linear systems. In this section, we recall the most used numerical methods in engineer-

ing and show essential algebraic features of the system matrices originated from the

discretization process. For comparison purposes, we take as the standard model a ho-

mogeneous Poisson equation, which is typically used for modeling diffusion processes,

considering a unitary square with zero Dirichlet boundary conditions everywhere and

a unitary source term. This problem can be stated mathematically by:

−∆u = 1, for x ∈ Ω = [0, 1]2;

u = 0, on ∂Ω.
(2.1)

9
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All methods begin with the definition of a discrete representation of the domain being

studied. Then, they proceed by approximating the PDE, in this case, Equation (2.1), into

the new discretized domain. For a comprehensive review of numerical methods for

engineering applications, we refer the reader to the works of Thomée [2001]; Larsson

and Thomee [2003]; LeVeque [2007] and Grossmann et al. [2007].

2.1.1 Finite Differences Method (FDM)

In the finite differences method Strikwerda [2004]; LeVeque [2007], a mesh made of grid

points is defined to represent the domain in which the PDE is valid. Then, continuous

functions are approximated by their values at specific nodes of the mesh, while func-

tion derivatives are estimated by differences evaluated through Taylor’s series, always

using a limited set of grid points. Assuming that u is a smooth function of class C∞, h is

the mesh size and x0 the x-coordinate of an arbitrary grid point, the Taylors’ expansion

of u around x0 is:

u(x0 + h) = u(x0) +
u(1)(x0)

1!
h+

u(2)(x0)

2!
h2 + · · ·+ u(n)(x0)

n!
hn +O(hn+1), (2.2)

with O(hn+1), the order of the error involved with the approximation. After some

algebraic manipulation, the first and second derivatives of u can be written as

u(1)(x0) ≈
u(x0 + h)− u(x0)

h
+O(h1); (2.3)

u(2)(x0) ≈
u(x0 + h)− 2u(x0) + u(x0 − h)

h
+O(h2). (2.4)

Besides, we note that higher order approximations could be obtained in case more grid

points were used in these calculations. Choosing the expression (2.4) to estimate the

second derivative of u, the Poisson Equation (2.1) can be discretized as

4u(x0, y0)− u(x0 + h, y0)− u(x0 − h, y0)− u(x0, y0 + h)− u(x0, y0 − h) = h2, (2.5)

which leads to a system matrix A having five nonzero entries per row at maximum,

since boundary nodes have fewer connections than others. Also, the matrix A is SPD,
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since

uTAu =
N∑
i=2

(ui − ui−1)
2 > 0, (2.6)

with N the total number of unknowns and ui the i − th unknown. Lastly, it can be

shown that A is irreducibly diagonally dominant Maliska. In figure 2.1 we show an

example of discretized mesh for the problem (2.1) and the sparsity pattern of the matrix

generated by FDM.

0 6 12 18 24 30 36
0

6

12

18

24

30

36
Poisson 2D FDM / nnz: 84 Aij

1

1

4

FIGURE 2.1: On the left, a Cartesian mesh with 6 × 6 grid points used
for discretizing the Poisson equation via a finite difference method. The
boundary points, depicted in orange, are associated with Dirichlet con-
ditions. On the right, the sparsity pattern of the system matrix generated

by FDM.

2.1.2 Finite Volumes Method (FVM)

In the classical finite volume method Patankar [1980]; LeVeque [2002], a mesh is com-

posed of control volumes that do not intersect each other. Also, unknown variables

attain a uniform value inside these entities; meanwhile, their derivatives at the vol-

umes’ interfaces are computed through finite difference formulas involving the un-

known variables at neighboring control volumes. Then, discretization is performed by

integrating the PDE over the control volumes through the divergence theorem, which

ultimately produces a sparse linear system. This method is often used for the solu-

tion of PDEs deriving from conservation laws since numerical fluxes across the control

volumes are guaranteed to be conserved locally, i.e., the partial differential equation

integrated at each control volume is valid independently of the solution found for the
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unknown variable. The classical FVM may use structured or unstructured grids, al-

though the last ones are more common in another variant of FVM called the control

volume finite element method variant (CVFEM) Baliga [1978]; Chen [2006].

We present a simplified recipe for solving the PDE (2.1) through the classical finite

volume method. First, a mesh dividing the unit square into several partitions is cre-

ated. A possible example is showed at the left portion of the figure 2.2 which depicts

a cartesian 6 × 6 mesh composed by equally spaced control volumes of length h × h.

Then, the PDE can be integrated inside an arbitrary control volume as follows

y+h
2∫

y−h
2

x+h
2∫

x−h
2

∂

∂x

(
∂u

∂x

)
dx dy +

y+h
2∫

y−h
2

x+h
2∫

x−h
2

∂

∂y

(
∂u

∂y

)
dx dy = −

y+h
2∫

y−h
2

x+h
2∫

x−h
2

1 dx dy, (2.7)

where we omitted integration in the z-direction since we are dealing with a 2D geom-

etry. Applying the divergence theorem to (2.7), we have

x+h
2∫

x−h
2

(
∂u

∂x

)
dx+

y+h
2∫

y−h
2

(
∂u

∂y

)
dy = −h, (2.8)

where volumetric integrals at the left-hand side of (2.7) are transformed into surface

integrals giving the net flow across volumes’ boundaries. Next, the first fundamental

theorem of calculus gives

(
∂u

∂x

)⏐⏐⏐⏐x+h
2

−
(
∂u

∂x

)⏐⏐⏐⏐x−h
2

+

(
∂u

∂y

)⏐⏐⏐⏐y+h
2

−
(
∂u

∂y

)⏐⏐⏐⏐y−h
2

= −h. (2.9)

Lastly, the partial derivatives of (2.9) can be approximated with finite differences ex-

pressions such as (2.3) which leads to the following stencil equation for internal control

volumes, i.e., with no contact with the domain boundaries:

(
u(i+1,j) − u(i,j)

h

)
−
(
u(i,j) − u(i−1,j)

h

)
+

(
u(i,j+1) − u(i,j)

h

)
−
(
u(i,j) − u(i,j−1)

h

)
= −h,

(2.10)

with (i, j) denoting the index of the control volume centered at position (x, y) = (i/5, j/5).
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We note that the equation (2.10) can be rewritten as (2.6), thus we conclude that the dis-

cretization via FVM reduces to the finite difference case for internal control volumes.

However, for boundary volumes, the equation (2.10) takes a different form. Consider-

ing the first control volume of the mesh we have

(
u(i+1,j) − u(i,j)

h

)
−
(
u(i,j) − uw

h/2

)
+

(
u(i,j+1) − u(i,j)

h

)
−
(
u(i,j) − us

h/2

)
= −h, (2.11)

where us and uw denote the Dirichlet conditions at the boundaries x = 0 and y = 0,

respectively. Thus, the final expression for (2.11) can be written as

6u(i,j) − u(i+1,j) − u(i,j+1) = h2 + uw + us, (2.12)

differing from the way that FDM treats the boundary conditions. In the right portion

of the figure (2.2) we show the sparsity pattern of the system matrix arising from FVM.

In the same way as with FDM, the system matrix is symmetric positive definite and

strictly diagonally dominant, it is also classified as an M-matrix.
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FIGURE 2.2: On the left, a Cartesian mesh made of 5 × 5 control vol-
umes with uniform dimensions. On the right, the sparsity pattern of the

system matrix generated by FVM.

2.1.3 Finite Element Method (FEM)

The Finite Element Method (FEM) was initially developed to solve problems of de-

formable continuous media and became famous in the solution of general engineering

problems after the dissemination of the first edition of the book by Zienkiewicz et al.

[2013]. A relevant characteristic of FEM is that it enables the use of complex meshes
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such as unstructured grids, which are generally needed for representing realistic prob-

lems due to their complicated geometries. This method follows a similar approach to

the FVM in the sense that it starts by defining a mesh as the union of elements with

no intersection among themselves and proceeds by approximating the PDE at those

entities. However, it differs in the way that this approximation is carried out. In the

finite element methods, discrete functions such as the unknown u are generally vari-

able inside an element. Their values at arbitrary points are interpolated from specific

nodes by the use of basis functions, which also affects the integration of PDEs along

elements. In the end, local matrices generated from the computation of integrals over

the elements are summed up to assemble a global system matrix.

The finite element method can be used for solving the PDE problem (2.1) as follows.

First, the continuous square domain is discretized into several elements of possibly ar-

bitrary shapes. Here, we consider triangles, which are the most simple and commonly

used elements, distributed in a structured grid configuration with elements size h equal

to 0.2. We observe that unstructured grids with more general shapes could also be used

with FEM, however, we prefer the structured choice to facilitate comparisons with the

other discretization techniques. The obtained mesh is depicted in the left portion of the

figure 2.3.

Before approximating the PDE via the finite element method, we need to define

specific quantities. The first one is the test space V given by

V =
{
v ∈ H1 (Ω)

⏐⏐v = 0 on ∂Ω
}
, (2.13)

whereH1 (Ω) denotes the Sobolev space of infinitely differentiable functions compactly

supported in Ω. Next, we define the trial space U as

U =
{
v ∈ H1 (Ω)

⏐⏐v = u0 on ∂Ω
}
, (2.14)

which contains the functions of V shifted by the boundary condition u0. Lastly, we

define a pair of discrete sets Vh ⊂ V and Uh ⊂ U which can be represented in terms of

the basis functions ϕ(x) and ψ(x), respectively. These sets are related to the mesh used

for discretizing Ω, while the basis functions depend on the types of elements composing
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the mesh. In the continuous Galerkin (classical) finite element method, the discrete

spaces are represented by the same set of functions, thus ψ(x) = ϕ(x). Multiplying the

PDE (2.1) by an arbitrary test function v ∈ V and integrating the result over the domain

Ω, we find:

−
∫
Ω
∇ · (∇u) v dx =

∫
Ω
1 v dx. (2.15)

Using the Green’s formula, the left hand side of (2.15) can be rewritten as the composi-

tion of a volumetric and a surface integral leading to

∫
Ω
∇u∇v dx−

∫
∂Ω

(η · ∇u) v dx =

∫
Ω
v dx, (2.16)

where η denotes a unitary vector normal to the boundary ∂Ω. Recalling that v = 0 on

∂Ω, the Equation (2.16) can be simplified to

∫
Ω
∇u∇v dx =

∫
Ω
v dx, (2.17)

which remains valid for the continuous domain Ω. However, this integral equation can

be discretized over the sets Uh and Vh leading to

∫
Ω
∇uh∇vh dx =

∫
Ω
vh dx, (2.18)

where vh is an arbitrary function belonging to Vh and uh is given by

uh(x, y) =

N∑
k=1

ũk ϕk(x, y), (2.19)

with N , the dimension of the space Uk; ũk, the k − th node unknown value belonging

to the finite element and ϕk(x) its k − th basis function evaluated at the coordinate x.

This last quantity depends on the type of finite element chosen for creating the mesh.
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In the case of linear triangular elements, the basis functions are given by

ϕ1(x, y) =
1

J
[(x2y3 − x3y2) + (y2 − y3)x+ (x3 − x2)y] ; (2.20)

ϕ2(x, y) =
1

J
[(x3y1 − x1y3) + (y3 − y1)x+ (x1 − x3)y] ; (2.21)

ϕ3(x, y) =
1

J
[(x1y2 − x2y1) + (y1 − y2)x+ (x2 − x1)y] ; (2.22)

J = x1(y2 − y3) + x2(y3 − y1) + x3(y1 − y2). (2.23)

where (xk, yk) are the coordinates of the k−th vertex of a triangle element. Substituting

(2.19) at the Equation (2.18) and using the basis functions ϕk(x) to represent the discrete

space Vh, we have:

N∑
k=1

ũk

∫
Ω
∇ϕk∇ϕi dx =

∫
Ω
ϕi dx, for i = 1, 2, · · · , N . (2.24)

Thus, the approximate solution uh can be found by solving the linear system Aũ = b

such that

Aik =

∫
Ω
∇ϕk∇ϕi dx, and (2.25)

bi =

∫
Ω
ϕi dx. (2.26)

We show the sparsity pattern of A at the right portion of Figure 2.3. In comparison to

the previous discretization methods, it has a bigger stencil size which leads to more

accurate solutions. Besides, the system matrix is still SPD and diagonally dominant;

however, it contains off-diagonal coefficients that are positive, thus, it cannot be classi-

fied as an M-matrix.

Lastly, we provide a list of the most used open-source computational libraries that

implement the necessary operations for running a finite element method.

• Deal.II - An open-source finite element library written in C++ Arndt et al. [2017].

• FEniCS - open-source computing platform for solving differential equations writ-

ten mainly in C++ with interfaces to Python Alnæs et al. [2015].
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FIGURE 2.3: On the left, a mesh composed of linear triangle elements
and used for discretizing the PDE problem (2.1) via the finite element
method. On the right, the sparsity pattern of the system matrix gener-

ated by FEM.

• MFEM - A free, lighweight, scalable C++ library for finite element methods Kolev

and Dobrev [2010].

• Libmesh - A framework for the numerical simulation of partial differential equa-

tions Kirk et al. [2006].

• GetFEM++ - An open-source finite element library Renard and Pommier [2002].

• FreeFem++ - A partial differential equation solver with its own language Hecht

[2012].

• Feel++ - A scalable finite element embedded library written in C++ Prud’Homme

et al. [2018].

• OOFEM - An objected oriented finite element solver written in C++ Patzák [2012].

• FEMPAR - An object-oriented parallel finite element framework Badia et al. [2018].

2.2 Sparse linear solvers

In the last section, we showed that the discretization of partial differential equations

through numerical methods involve the solution of sparse linear systems. There are

several techniques for solving these mathematical problems that can be appropriate

or not depending on multiple factors such as the problem size, sparsity degree of the

system matrix and inherent characteristics of the continuous problem originating the
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linear system. In this section, we provide an overview of the most used approaches for

solving sparse linear systems starting with direct methods and then moving to iterative

methods.

2.2.1 Direct Methods

Direct methods are based on the decomposition of the system matrix asA = LU , where

the right-hand side matrices are sparse and have a triangular sparsity pattern. These

methods consist of four basic phases. Initially, a pre-processing step reorders the matrix

A with the aim to minimize the fill-in of the triangular factors. Secondly, a symbolic

factorization of the system matrix is carried out to compute the sparsity pattern of L

and U . Then, a numerical factorization fills in the nonzero coefficients selected in the

previous phase and finally, the linear system solution is computed through a pair a

triangular solves involving L and U Duff et al. [2017].

Direct solvers are considered to be robust since a factorization can always be cal-

culated, apart from cases where the matrix is numerically ill-conditioned. Also, due to

their few configuration parameters and simplicity of use, they are frequently used as

black-box solvers for industrial applications. However, these methods also have draw-

backs which are mainly the high RAM consumption for computing and storing the

triangular factors as well as a limited degree of parallelism for large-scale applications.

Recent investigations by several authors Sourbier et al. [2009]; Gupta et al. [2009]; Ra-

jamanickam et al. [2012]; Mary [2017] on the strong scalability of sparse direct solvers

show that these methods typically have a good parallel efficiency up to the range of

a hundred cores; however it starts to degrade significantly after that. A promising

solution to improve the scalability of these solvers relies on the use of low-rank ap-

proximation techniques which decrease the space and time complexity of sparse direct

solvers. These have been explored recently by the works Agullo et al. [2013]; Ghysels

et al. [2016] and Rouet et al. [2016].

For an extended review of direct methods and their development over the last

years, we refer the reader to the works Davis [2006]; Davis et al. [2016] and Duff et al.

[2017]. Lastly, we present in Table 2.1 a list of commonly used open-source packages

that provide sparse direct solver implementations.
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TABLE 2.1: Open-source packages that implement sparse direct solvers.

Package Parallelism Matrices Factorization Reference

PARDISO MPI/OpenMP General CSR Supernodal Schenk et al. [2001]
HSL MA57 None General CSR Multifrontal Duff [2004]
SuperLU MPI/OpenMP General CSR Supernodal Li [2005]
MUMPS MPI/OpenMP General CSR Multifrontal Amestoy et al. [2001]
STRUMPACK MPI/OpenMP General HSS Multifrontal Rouet et al. [2016]
CHOLMOD None SPD CSR Supernodal Chen et al. [2008]
UMFPACK None Unsym. CSR Multifrontal Davis [2004]
KLU None SPD CSR Supernodal Davis [2010]
PaStiX MPI/OpenMP General CSR Supernodal Hénon et al. [2002]

2.2.2 Iterative methods

Iterative methods compute a sequence of vectors starting from an initial guess x0 that

converges to the exact solution of (1.1) up to the machine precision. These methods

share in common a few configuration parameters such as the maximum number of

iterations and stopping tolerance based on the residual vector norm. On the other

hand, they differ on how the sequence of vectors is built. They are often the only choice

for nonlinear equations and particularly attractive for the solution of large-scale linear

problems as far as the number of iterations remains small.

The simplest type of an iterative scheme is the Richardson method or fixed-point

iteration which is given by

xk = xk−1 + ωM−1
1

(
b−AM−1

2 xk−1
)
, (2.27)

where the superscript k denotes the iteration count and ω a relaxation factor that con-

trols the spectral radius of the iteration matrix. The operators M−1
1 and M−1

2 are de-

noted as left and right preconditioners, respectively, and will be explained detailed in

the section 2.3.

A second class of iterative methods is given by the Krylov subspace based algo-

rithms which builds a vector sequence of the type

Km =
{
r0 ;Ar0 ;A

2r0 ; · · · ;Am−1r0
}
, (2.28)
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where r0 is the initial residual vector and m is the subspace dimension. Many algo-

rithms can be defined to find an approximate solution of (1.1) through the use of the

Krylov subspace (2.28). In the case of SPD system matrices, the most commonly used

iterative method is the conjugate gradient Paige and Saunders [1975] which finds a

solution minimizing the quantity

argmin
x∈Km+x0

||x− x⋆||A , (2.29)

where x⋆ denotes the exact solution of Equation (1.1).

It is worth noting that the effectiveness of iterative methods is highly dependent

on the preconditioner choice. In fact, advances on Krylov subspace methods have pro-

gressively faded over the last years while research on preconditioning techniques have

gained increased interest Ferronato [2012].

2.2.3 Hybrid methods

Hybrid methods combine direct and iterative approaches to preserve the advantages

and counterbalance drawbacks associated with both strategies. They commonly take

a domain decomposition approach and solve the problem restricted to interior graphs

with sparse direct solvers while the interface problem, which ties the interior problems

altogether, is solved with a preconditioned iterative method applied to the accompany-

ing Schur Complement. This way the amount of memory required for running direct

solvers is decreased while the iterative counterpart couples the local solutions in a nat-

urally parallel fashion.

The current approach is very suitable to parallel machines and somehow achieves

better strong scalability than sparse direct methods on large clusters. Although over-

lapping techniques and multilevel techniques have been proposed, the property of

weak scalability over the range of multiple millions of unknowns has not been shown

yet. Lastly, this is an active field of research as described to the recent works Giraud

et al. [2008]; Nakov [2015]; Agullo et al. [2016].
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2.3 Preconditioning

Preconditioning regards techniques for altering the original linear system (1.1) to an

equivalent one whose system matrix has a better conditioning number and, thus, pro-

vides a faster convergence when solved with iterative methods. The updated linear

system can be written generically in the form

M−1
1 AM−1

2 y =M1b (2.30)

x =M−1
2 y, (2.31)

where M−1
1 and M−1

2 are denoted as the left and right preconditioners, respectively.

We note that both operators are not necessarily different than the identity matrix I . In

fact, most preconditioning methods choose M−1
1 ̸= I and M−1

2 = I . Furthermore, in

the ideal case M−1
1 = L−1 and M−1

2 = U−1, which reduces actually to a direct method.

Explicit representations of a preconditioner through a matrix are not always feasible.

Instead, simply defining the sparse matrix/vector product z =M−1v is already enough

for their application in the scope of iterative methods.

The central inquiry while developing preconditioners relies on how to choose op-

erators M−1
1 and M−1

2 which effectively improve the convergence of iterative methods.

Many researchers recognize that an optimal and general purpose approach applicable

to a broad range of linear problems is unlikely to be found Benzi [2002]; Wathen [2015].

However, a list of necessary conditions that lead to efficient strategies exists and can be

stated as follows:

1. the eigenspectrum relative to the preconditioned operator M−1
1 AM−1

2 should be

formed by one or more clusters of eigenvalues that are distant to the origin and

sufficiently condensed or close to each other. In the context of iterative methods,

the first criterion helps to reduce error components efficiently along eigenvec-

tors associated with small eigenvalues, while the second criterion contributes to

diminishing multiple error components in fewer iterations.

2. The construction time of a preconditioner should be the smallest possible for a

given operator quality, which is measured by the convergence rate of the resultant
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iterative method. Likewise, the application time of a preconditioner should be

cost-effective.

3. The memory requirements for storing a preconditioner should be the lowest.

4. In case of large-scale problems, the construction and application phases of a pre-

conditioner should also demonstrate the best parallel efficiency possible, which

is predominantly influenced by the algorithm’s degree of parallelism.

Preconditioners can be classified into two major classes: purely algebraic and problem-

specific. In both cases, configuration parameters are used for controlling the quality

and cost of a given strategy. However, they differ in the sense that methods belong-

ing to the first category need no more information than the global system matrix A

for defining the operators M−1
1 and M−1

2 while methods belonging to the second type

use additional knowledge from the mathematical problem at hand such as the physics,

geometry and discretization technique employed. Generally, the first ones are more

robust however they often do not provide the optimal method for a given problem,

a characteristic which is easier to hold in the second class of preconditioners. It is

worth noting that, recently, a third category combining ideas of both algebraically and

physically based approaches have been developed and denoted as “gray-box”. For in-

stance, particular physics-based pattern selection strategies can be used for algebraic

sparse approximate inverse preconditioners as proposed by Carpentieri et al. [2005]

and block variants of multilevel incomplete factorizations as in Janna et al. [2009b] and

Carpentieri et al. [2014].

Below we give an overview of the most used algebraic approaches for building a

preconditioner. For a comprehensive review of general preconditioning techniques,

we refer the reader to the works Benzi [2002]; Ferronato [2012]; Wathen [2015]. Also,

an extended review of multilevel preconditioners including incomplete factorizations

algebraic multigrid and domain decomposition is given by Vassilevski [2008].
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2.3.1 Regular splitting

The simplest preconditioners are based on the decomposition of the system matrix as

A = E +D + F, (2.32)

where E, D and F are the lower triangular, diagonal and upper triangular part, respec-

tively, of the matrix A. The damped (weighted) Jacobi preconditioner can be defined

as

M−1
1 = ωD−1, M−1

2 = I, (2.33)

where ω is a relaxation factor rendering the preconditioner convergent if used with

a Richardson iteration Richardson [1911]. Other common variants are the Successive

Over Relaxation (SOR) preconditioner

M−1
1 = ω (D + ωE)−1 , M−1

2 = I; (2.34)

and its symmetric counterpart (SSOR)

M−1
1 = ω (2− ω) (D + ωF )−1D (D + ωE)−1

M−1
2 = I.

(2.35)

These preconditioners do not show calculation costs since they are readily available

from the matrix A. If used solely, they are not effective strategies generally regarding

convergence. However, when used as smoothers for multigrid methods they become

very helpful Trottenberg et al. [2001].

2.3.2 Incomplete LU factorization

Incomplete LU Factorization (ILU), as the name clearly suggests, is based on the ap-

proximate decomposition of the system matrix such that

A ≈ L̃Ũ , (2.36)
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where L̃ and Ũ are the lower and upper triangular approximated factors. This leads to

the following preconditioner

M−1 = Ũ−1L̃−1. (2.37)

There are several techniques for building an ILU preconditioner. The simplest one is to

enforce a sparsity pattern that is selected a priori for the triangular factors. This strat-

egy gives rise to the ILU(k) preconditioner where k denotes the fill-in factor, i.e., the

ratio between the number of nonzeros of the triangular factors and A. Although very

effective for M-matrices, the ILU(k) algorithm could fail for general matrices. This mo-

tivated the development of a more robust approach by Saad [1994], namely the incom-

plete LU preconditioner based on threshold (ILUT). In this strategy, the sparsity pattern

of the triangular factors is built dynamically in accordance to a maximum number of

nonzero coefficients per row as well as a control on their sizes through the elimination

of sufficiently small entries with respect to a threshold. Subsequently, many other ILU

variants were designed mainly to overcome particular issues involving the previous

ones. We limit our presentation by simply citing a few of the most important variants

such as the Crout Incomplete LU (ILUC) targetting better computational efficiency Li

et al. [2003]; the Block Incomplete LU (BILU) for treating problems deriving from sys-

tems of PDEs Chow and Saad [1997a] and the Modified Incomplete threshold LU (MI-

LUT) which produces approximate triangular factors such that L̃ Ũ 1 = A1, a very

desired property for the solution of Poisson problems MacLachlan et al. [2012]. For

comparisons between different ILU preconditioners we refer the reader to the works

Chow and Saad [1997b]; Lin and Moré [1999]; Benzi and Tůma [2003]; Gupta [2017]

In general, incomplete factorization techniques lead to iterative methods with sat-

isfactory convergence rates; however, their applicability in parallel machines is some-

how limited since their algorithms normally carry a degree of sequentiality difficulting

parallel implementations as well as because that they show superlinear complexities,

which does not lead to weakly scalable solutions. Multilevel incomplete factorization

techniques were developed to cope with these deficiencies. Their central idea is to use

domain decomposition concepts for splitting recursively the adjacency graph of A into

several levels. Efforts towards this direction were proposed by the works Li and Saad
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[2013a]; Xi et al. [2016]; Li et al. [2016]; Carpentieri et al. [2016]; Bu et al. [2016].

Recently, many authors have worked on the extension of incomplete factorization

techniques to massively parallel computing architectures. Examples can be found in

the works by Li and Saad [2013b]; Chow and Patel [2015]; Chow et al. [2018] and Anzt

et al. [2018a]. Besides, the development of specialized algorithms for sparse matrices

with low-rank structures has been explored in the articles by Xia [2013a,b]; Ghysels

et al. [2016]; Rouet et al. [2016]. Most of these scientific publications developed also

open-source numerical packages and the table 2.2 lists a few of the pertinent ones.

TABLE 2.2: Open-source packages that implement incomplete factoriza-
tion preconditioners.

Package Parallelism Matrices Method Reference

BPKIT None General CSR Block Chow and Heroux [1998]
ILUPACK OpenMP General CSR Multilevel Bollhöfer et al. [2011]
HSL_MI28 None SPD CSR Single-level Scott and Tůma [2014]
HSL_MI30 None Saddle-Point CSR Single-level Scott and Tůma [2014a]
ARMS None General CSR Multilevel Saad and Suchomel [2002]
pARMS MPI General CSR Multilevel Saad and Sosonkina [2002]
VBARMS None General CSR Blk. Multilevel Carpentieri et al. [2014]
pVBARMS MPI General CSR Blk. Multilevel Carpentieri et al. [2016]
STRUMPACK MPI/OpenMP General HSS Multifrontal Rouet et al. [2016]

2.3.3 Sparse Approximate Inverses (SAI)

Sparse approximate inverse preconditioners propose an explicit approximation forA−1

in the format of a sparse matrix. These are very efficient preconditioners for the case

that the entry values of A−1 demonstrate a fast decay in magnitude from the diago-

nal Benzi and Tůma [1999]. Sparse matrices arising from the discretization of elliptic

equations frequently fall into this category.

These techniques can be divided into two major classes: unfactored and factored.

Methods belonging to the first category define the operators M−1
2 = I and M−1

1 as the

solution of the following constrained minimization problem:

min
M∈S

⏐⏐⏐⏐I −M−1
1 A

⏐⏐⏐⏐
F
, (2.38)
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where S denotes a set of sparse matrices sharing the same sparsity pattern. This ap-

proach produces a left inverse only. A right inverse preconditioner could be obtained

by solving the equivalent problem

min
M∈S

⏐⏐⏐⏐⏐⏐I −ATM−T
2

⏐⏐⏐⏐⏐⏐
F
, (2.39)

which implies M−1
1 = I . This distinction can be important for nonsymmetric matri-

ces since there are cases where solving Equation (2.38) is easier than (2.39) or vice-

versa Benzi and Tůma [1999]. Perhaps the most well-known method of this type is the

SPAI preconditioner proposed by Grote and Huckle [1997]; Huckle and Sedlacek [2011]

which assumes a candidate sparsity pattern informed by the user and fills it according

to an iterative algorithm controlled by dropping tolerances; the number of entries to be

added and maximum number per row of M−1. Recently, this preconditioner has been

improved for the solution of low-frequency error components by the incorporation of

probing Huckle et al. [2010].

Factored techniques are based on incomplete inverse factorizations of the system

matrix i.e., they search for operators such that M−1
1 ≈ L−1 and M−1

2 ≈ U−1. This

strategy is specially attractive for SPD system matrices since the property M−1
1 =M−T

2

is guaranteed to hold, which may not be true in the other class of sparse approximate

inverses. This feature helps to reduce the preconditioner setup cost and enables its use

with symmetric iterative solvers such as the conjugate gradient method. The first strat-

egy of this type was proposed by Kolotilina and Yeremin [1993] with a naturally par-

allel and robust algorithm since it could not break down. Next, Benzi et al. [1996] pro-

posed the AINV preconditioner constructed by a biconjungation algorithm that com-

putes a triangular factorization of A−1 without its explicit knowledge. Depending on

the problem, this strategy could lead to break down and this flaw was remediated with

the stabilized AINV by Benzi et al. [2000]. Other techniques have been proposed such

as the FSPAI by Huckle [2003]; the adaptive factorized sparse approximate inverse (aF-

SAI) by Janna and Ferronato [2011] and the incomplete sparse approximate inverse

(ISAI) by Anzt et al. [2018b]. We refer the reader to the work by Benzi and Tůma [1999]

for a comparison of sparse approximate inverses techniques.
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In general, sparse approximate inverses do not show high dependence on the ma-

trix ordering. One of the significant challenges in computing these preconditioners

consists of defining the sparsity pattern of the matrices belonging to the set S Benzi

et al. [2001]. Ideally, a full pattern would lead to the calculation of the exact inverse

of A. For obvious reasons, this choice is not feasible and selecting a sufficiently sparse

pattern leading to an efficient preconditioner can be complicated. Dynamic pattern se-

lections tend to be more robust than static, i.e., a priori, choices; however, they are more

costly. Recently, novel algorithms lying into the first category have been proposed by

Janna and Ferronato [2011]; Janna et al. [2015b] and Janna et al. [2015a]. We give spe-

cial attention to the adaptive Factorized Sparse Approximate Inverse method (aFSAI)

in the section 3.2.

Lastly, we show in Table 2.3 a list of open-source numerical packages that imple-

ment sparse approximate inverses preconditioners.

TABLE 2.3: Open-source packages that implement sparse approximate
inverse preconditioners.

Package Parallelism Matrices Pattern Reference

Parasails MPI General CSR Static Chow [2001]
Sparslab None General CSR Dynamic Benzi et al. [2001]
HSL_MI12 None Unsymmetric CSR Dynamic Gould and Scott [1998]
SPAI MPI General CSR Dynamic Huckle and Sedlacek [2011]
MSPAI MPI General CSR Static/Dynamic Huckle et al. [2010]
FSPAI MPI SPD CSR Static/Dynamic Huckle [2003]
FSAIPACK OpenMP SPD CSR Static/Dynamic Janna et al. [2015b]

2.3.4 Domain Decomposition (DD)

Domain decomposition preconditioners are mainly motivated by the solution of large-

scale linear systems through parallel computing. Roughly speaking, their basic idea is

to split the problem’s domain into several parts and distribute them among processors

on a parallel machine. A global solution is then formed by gathering local solutions

computed in each subdomain. This strategy is often referred to as divide-and-conquer.

The first solution methods of this class date several years before the advent of parallel

computing and even computers themselves. Schwarz methods, as proposed in 1870 by

Schwarz [1870], aimed to find the approximate solution of elliptical PDEs in domains
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formed by the superposition of regularly shaped geometric forms through restricting

the original problem to each of the subdomains.

There are two main families of domain decomposition algorithms: overlapping

Schwarz and iterative substructuring. The central idea of both methods is to obtain

convergence rates that are independent of the number of subdomains. In general, an

additional component to provide global transfer of numerical information across all

subproblems is needed for achieving weak scalability. They differ on how the subdo-

main problems are defined and coupled to yield the global solution.

In the case of overlapping Schwarz, subdomains may share common regions with

their neighbors. These methods are generally based on solving Dirichlet problems and

the overlap plays a significant role in rendering them robust regarding convergence.

The simplest examples are the Additive Schwarz (AS) and Multiplicative Schwarz (MS)

methods as presented by Chan and Mathew [1994].

Iterative substructuring or non-overlapping methods are based on the implicit elim-

ination of degrees of freedom associated with the interior of each subdomain. The re-

sulting Schur complement system is then solved iteratively. In the balancing Neumann-

Neumann (BNN) method from Goldfeld et al. [2003], Neumann problems are solved

at the subdomain boundaries, which requires additional information arising from the

unassembled or partially assembled matrices. A more recent approach namely the Bal-

ancing Domain Decomposition by Constraints (BDDC) enforces continuity between

subdomains at every iteration Zampini and Keyes [2016]; Zampini [2016]; Badia et al.

[2016] while the FETI-DP aims the same objective through the use of Lagrange multi-

pliers Farhat et al. [2001]; Klawonn et al. [2002].

For a comprehensive review of domain decomposition methods, we refer the reader

to Chan and Mathew [1994]; Smith et al. [1996]; Toselli and Widlund [2005]; Dolean

et al. [2015]. Lastly, we show in Table 2.3 a list of open-source numerical packages that

implement domain decomposition preconditioners.

2.3.5 Algebraic Multigrid (AMG)

Algebraic MultiGrid (AMG) is a family of iterative methods, also used as precondition-

ers, built upon a hierarchy of levels associated with linear problems of decreasing size.
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TABLE 2.4: Open-source packages that implement domain decomposi-
tion preconditioners.

Package Parallelism Matrices Methods Reference

AztecOO MPI General CSR AS Heroux [2004]
IFPACK MPI General CSR AS Prokopenko et al. [2016]
PETSc MPI General CSR AS/BNN/BDDC Balay et al. [2018]
HPDDM MPI General CSR AS/FETI/BDD Jolivet et al. [2013]
BDDCML MPI General CSR BDDC Sousedík et al. [2013]

Four essential components define a method belonging to this class: the restriction and

prolongation (interpolation) operators, coarsening process, smoothing and application

strategies. Varying these elements gives rise to different AMG methods; however, shar-

ing a common characteristic which is indeed the central idea of algebraic multigrid:

they all work by reducing the error between the iterative and exact solution of the lin-

ear system (1.1) while targeting different error components across their level hierarchy.

The high-frequency part of the error is reduced in the fine level system while the coarse

levels handle the low-frequency counterpart. In this way, optimality and efficiency are

achieved by combining the two complementary processes: relaxation and coarse-grid

correction.

Multigrid and multilevel domain decomposition methods share so many features

that one method can usually be written as a special case of the other. In multigrid,

moderate coarsening ratios are generally used and inexact solves or smoothers are ap-

plied in each level through the use of simple preconditioners that reduces error com-

ponents locally while domain decomposition methods use very aggressive coarsening

and strong smoothers. Ultimately, both preconditioning methods aim to reduce the

dependency of the conditioning number on the mesh size. We reserve a more in-depth

overview of these methods in the chapter 5. For a general review of multigrid tech-

niques, we refer the reader to the works by Stüben [2001]; Falgout [2006] and Xu and

Zikatanov [2017]. Lastly, we show in Table 2.5 a list of open-source numerical packages

that implement geometric and algebraic multigrid preconditioners.
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TABLE 2.5: Open-source packages implementing multigrid precondi-
tioners.

Package Implementation Matrices Methods Reference

HYPRE C/MPI General CSR GMG/AMG Henson and Yang [2002]
HSL_MI20 Fortran SPD CSR classical AMG Boyle et al. [2010]
PETSc C/MPI General CSR agg. AMG Balay et al. [2018]
ML C++/MPI General CSR agg. AMG Gee et al. [2006]
MueLu C++/MPI+OpenMP General CSR agg. AMG Prokopenko et al. [2014]
AGMG Fortran/MPI General CSR agg. AMG Notay [2010]
AmgX C++/Cuda/MPI General CSR GMG/AMG Naumov et al. [2015]
PyAMG C/Python General CSR GMG/AMG Bell et al. [2015]
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Multilevel aFSAI Preconditionining

This chapter presents two multilevel preconditioners based on a sparse approximate

inverse technique, namely the block tridiagonal factorized sparse approximate inverse

(BTFSAI) and the domain decomposition factorized sparse approximate inverse (DDF-

SAI). It extends the theory and results published in the work by Paludetto Magri et al.

[2018].

3.1 Introduction

As presented in chapter 2, preconditioning is the principal ingredient for building ro-

bust and efficient iterative solvers. Given the increasing number of unknowns asso-

ciated with realistic engineering models and the fact that parallel computing recently

became the common tool for solving large computational simulations, it is natural to

invest on preconditioning methods with good parallel efficiency. In this thesis, we

concentrate on factorized sparse approximate inverses mainly because they offer em-

barrassingly parallel algorithms for both setup and application phases. However, re-

garding convergence, these preconditioners are not weakly scalable, i.e., the number

of iterations required for solving problems with decreasing mesh size may grow sub-

stantially. To illustrate this behavior, we show in Figure 3.1 the number of iterations

required for solving a 2D homogeneous Poisson model with increasing number of de-

gree of freedoms when using the adaptive factorized sparse approximate inverse (aF-

SAI) preconditioner along with the conjugate gradient method.

This theoretical deficiency of aFSAI makes the amount of computational work asso-

ciated with its application phase to grow superlinearly and thus limits its applicability

31
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FIGURE 3.1: Numerical weak scalability of the aFSAI-PCG solver for the
solution of a 2D homogeneous Poisson problem.

in parallel computing architectures for the solution of big1 sparse linear systems. The

preconditioners developed in this work aim to improve this flaw while maintaining the

inherent parallelism showed by aFSAI to an acceptable degree.

In this chapter, we introduce two novel preconditioners based on the adaptive fac-

torized sparse approximate inverse, namely the Block Tridiagonal FSAI (BTFSAI) and

the Domain Decomposition FSAI (DDFSAI). The basic concept developed with these

techniques is borrowed from incomplete factorizations, where the computation of a

row takes advantage of the information gained from the previous ones. We note that

this idea was already exploited in the context of sparse approximate inverses Benzi

et al. [1996]; Chow and Saad [1998]; Raghavan and Teranishi [2010], however in this

work we take a different approach with respect to the previous works. In the BTFSAI

preconditioner, the system matrix is reordered with a band minimizing method and

viewed as a block tridiagonal matrix; then, the aFSAI preconditioner is used to com-

pute Schur complements and approximate its inverses. The DDFSAI preconditioner

is based on the combination of a two-level domain decomposition approach and the

FSAI preconditioner, which is used for computing the approximate inverse of the inner

submatrices and the Schur complement.

1Number of degrees of freedom above 106.
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This chapter is organized as follows: in section 3.2, we review the aFSAI precon-

ditioner and present its algorithm. In sections 3.3 and 3.4, we introduce the BTFSAI

and DDFSAI preconditioners, respectively. Next, in section 3.5, we evaluate their per-

formance considering system matrices deriving from simple model problems as well

as real engineering applications. Lastly, in section 3.6, we draw conclusions on the

approaches presented in this chapter.

3.2 aFSAI Preconditioning

The Factorized Sparse Approximate Inverse (FSAI) Kolotilina and Yeremin [1993, 1995];

Kolotilina et al. [1999]; Yeremin et al. [2000] preconditioner M−1
FSAI of a symmetric pos-

itive definite matrix A is given by

M−1
FSAI = GTG ≈ A−1, (3.1)

where the factor G is calculated by minimizing the Frobenius norm

||I −GL||F (3.2)

over the set WS of matrices sharing the same lower triangular nonzero pattern S . In

the same equation, L is the exact lower Cholesky factor of A. Note that, although this

matrix is used in Equation (3.2), it is not required for the calculation of G. Indeed,

setting to zero the derivative of (3.2) with respect to the entries [G]ij yields

[GA]ij =

⎧⎪⎪⎨⎪⎪⎩
0, if i ̸= j, (i, j) ∈ S

[L]ii, if i = j.

(3.3)

Since [L]ii is unknown, we can instead compute a matrix Ĝ such that:

[
ĜA
]
ij
= δij , (i, j) ∈ S; (3.4)

where δij is the Kronecker delta. Finally, the matrix G is obtained by scaling Ĝ with the

square root of its diagonal entries, i.e., G = D−1Ĝ, with D−1 = [diag(Ĝ)]1/2. This way,
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the diagonal entries of the preconditioned matrix GAGT are equal to one, which is a

desirable property since LALT = I , with I the identity matrix. Once G has been calcu-

lated, the density µFSAI of the factorized sparse approximate inverse preconditioner is

defined as

µFSAI =
nnz (G)

nnz (A)
, (3.5)

with nnz (M) the function returning the number of nonzeros stored for the matrix M .

A key factor affecting the performance of FSAI is the selection of its sparsity pattern.

In fact, there is a trade-off between the preconditioner quality in terms of convergence

and its computational efficiency since denser sparsity patterns naturally lead to better

convergence, however, with higher setup costs. The most straightforward choice of

sparsity pattern is given by (small) powers of the system matrix, which is employed

by the static FSAI algorithm. Although cheap and straightforward to calculate, this

strategy lacks robustness regarding preconditioning quality. A more robust approach

referenced as the adaptive Factorized Sparse Approximate Inverse (aFSAI) was pro-

posed by Janna and Ferronato [2011] where the sparsity pattern of G is built dynami-

cally such that an upper bound of the Kaporin number of the preconditioned matrix is

minimized. Later, several approaches including the last two were compared by Janna

et al. [2015b] and the authors concluded that aFSAI was the most robust one. For this

reason, we focus on aFSAI in the present work and describe its algorithm next.

Suppose that an initial guess G0 has already been computed statically by solving

Equation (3.4) for every pair (i, j) lying in the initial pattern S0. Then, scale G0 with its

diagonal entries, i.e.,

G0 = D̃0G̃0, (3.6)

where D̃0 = diag(G0). The target of the dynamic pattern generation is to enlarge S0

in order to reduce as much as possible a measure of the conditioning of the precondi-

tioned matrix. To this aim, let us consider the Kaporin conditioning number of G0AG
T
0

Kaporin [1990, 1994]:

κ =
tr(G0AG

T
0 )

n det(G0AGT
0 )

1/n
. (3.7)
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Recalling that G0AG
T
0 and G̃0 have unitary diagonal entries, it follows that:

κ =
1

det(A)1/n
1

det(D̃0)2/n
. (3.8)

Since:

diag
(
G0AG

T
0

)
= I, (3.9)

by computing the determinant of both sides of (3.9) and using Equation (3.6), we have:

det(D̃0)
2det[diag(G̃0AG̃

T
0 )] = 1, (3.10)

and introducing Equation (3.10) into (3.8) finally yields:

κ = det(A)−1/ndet[diag(G̃0AG̃
T
0 )]. (3.11)

Denoting by G̃0[i, :] the i-th row of G̃0, Equation (3.11) reads:

κ = det(A)−
1
n

n∏
i=1

ψ0,i, (3.12)

where ψ0,i = G̃0[i, :]AG̃0[i, :]
T . The objective is to find an augmented pattern S1 allow-

ing for a reduction of κ in Equation (3.12) by minimizing each factor ψ0,i. Moreover,

since each of these factors depends only on the i-th row of G̃0, it follows that the dy-

namic pattern generation can be carried out in parallel on a row-wise basis. Defining

Pi = {j | (i, j) ∈ S1, j < i}, the idea is to compute the gradient of κ with respect to

the entries of G̃0 and add its largest components to the index set Pi. After that, the

coefficients G1[i,Pi], i.e., those relative to the off-diagonal part of the i-th row of G, are

computed by the following set of equations

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

A[Pi,Pi] G̃T
1 [i,Pi] = −A[Pi, i],

G1[i, i] =
1√

A[i, i] +A[Pi, i]G̃1[i,Pi]
,

G1[i,Pi] =
G̃1[i,Pi]
G1[i, i]

;

(3.13a)

(3.13b)

(3.13c)
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Algorithm 1 Adaptive FSAI setup.

1: procedure AFSAI_SETUP(kg,ρg,ϵg,A)
2: G̃← I
3: for i = 1, n do
4: ψ0,i ← [A]ii
5: for k = 1, kg do
6: Compute∇ψk,i

7: Add to Pi the ρg indices of the largest components of∇ψk,i

8: Gather A[Pi,Pi] and A[Pi, i] from A
9: Solve A[Pi,Pi]g̃i = −A[Pi, i]

10: if ψk,i ≤ ϵg · ψk−1,i then
11: Exit the loop over k
12: end if
13: end for
14: d̃ii ← (−g̃T

i A[Pi, i])−
1
2

15: gi ← d̃iig̃i
16: Scatter the components of gi into G[i,Pi]
17: end for
18: return G
19: end procedure

where the matrix A[Pi,Pi] is small, dense, SPD and built up by gathering the coeffi-

cients of A referring to the positions (i, j) ∈ S1 × S1. Analogously, the vector A[Pi, i]

is composed by gathering the coefficients Aji such that j ∈ P1. The Equation (3.13a)

calculates the scaled coefficients of the i-th row of G while the Equation (3.13c) scales

these values with the aim to ensure that

Gk[i, :]AGk[i, :]
T = 1, (3.14)

i.e., the preconditioned matrix has a unitary diagonal.

The procedure just described can be naturally iterated for a user-specified number

of steps by adding an arbitrary quantity of new nonzero entries at each iteration, and

can be stopped when the current value of ψk,i, being k the step counter, is reduced

below some tolerance with respect to the initial value ψ0,i. When either ψk,i meets the

stopping criterion, or a maximum number of steps are performed, the dynamic pro-

cedure ends. With these considerations in mind, the Algorithm 1 outlines a complete

method for constructing the aFSAI.

At last, we note that the following user-specified parameters control the precondi-

tioner density:
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1. kmax, the maximum number of steps for the dynamic procedure;

2. ρF , the number of entries added per row at each step;

3. ϵF , the exit tolerance based on the relative reduction of ψk,i.

Regarding the computational cost of aFSAI, it is possible to show that it is propor-

tional to the fourth power of µaFSAI. A more detailed description of the setup algorithm

of FSAI and its complexity is provided in the work Janna et al. [2015b].

3.3 Block Tridiagonal FSAI (BTFSAI)

In the Block Tridiagonal aFSAI (BTFSAI), the basic idea is to identify a block tridiagonal

structure in A and perform a block LDU decomposition. The inverses of the diagonal

blocks are approximated explicitly by the aFSAI algorithm introduced in section 3.2.

With this approach, the global matrix is subdivided into small blocks, that should be

approximated with less effort, and the information of the first rows is used to compute

the last rows of the preconditioner. This feature is counterbalanced by the introduction

of an intrinsic sequentiality whose importance grows as the number of blocks increases.

However, parallelism can still be exploited for each level of the decomposition.

The matrix A is first reordered by the reverse Cuthill-McKee algorithm Cuthill and

McKee [1969], with the aim of reducing its bandwidth, then it is partitioned into a block

tridiagonal structure for a given number of blocks. Let n be the number of partitions,Ai

the SPD diagonal submatrix andBi the upper diagonal submatrix of the i−th partition.

Thus, the matrix A can be written as:

Â = P TAP =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A1 B1

BT
1 A2 B2

. . . . . . . . .

BT
n−2 An−1 Bn−1

BT
n−1 An

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3.15)
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For example, considering a 3D Poisson problem discretized in a 10x10x10 cube, we

can compare the original sparsity pattern of the system matrix to the reordered pattern

used by the BTFSAI preconditioner configured with four partitions in Figure 3.2.
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FIGURE 3.2: Left, sparsity pattern of the 10 × 10 × 10 Poisson problem
with native ordering. Right, reordered sparsity pattern employes by the

BTFSAI preconditioner.

Computing the block LDU decomposition of the reordered matrix, we have:

Â =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

I1

BT
1 S

−1
1 I2

. . . . . .

BT
n−1S

−1
n−1 In

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

S1

S2
. . .

Sn

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

I1 S−1
1 B1

I2 S−1
2 B2

. . . . . .

In

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (3.16)

where

Si = Ai −BT
i−1S

−1
i−1Bi−1, i = 2 . . . n, (3.17)

is the i− th Schur complement and S1 = A1, by definition.

Let S−1
i ≈ GT

i Gi be an approximate inverse of the Schur complement computed

by aFSAI and the matrix Hi be equal to the product GiBi. It follows that the Schur

complement defined by Equation (3.17) can be calculated recursively as Si = Ai −

HT
i−1Hi−1. If we substitute these relationships into Equation (3.16), the matrix Â can be
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approximated as

⎡⎢⎢⎢⎢⎢⎢⎢⎣

I1

HT
1 G1 I2

. . . . . .

HT
n−1Gn−1 In

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

GT
1G1

GT
2G2

. . .

GT
nGn

⎤⎥⎥⎥⎥⎥⎥⎥⎦

−1 ⎡⎢⎢⎢⎢⎢⎢⎢⎣

I1 GT
1H1

I2 GT
2H2

. . . . . .

In

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (3.18)

Computing the inverse of (3.18), we have

⎡⎢⎢⎢⎢⎢⎢⎢⎣

I1 −GT
1H1 . . . . . .

I2 −GT
2H2

...
. . .

...

ITn

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

GT
1G1

GT
2G2

. . .

GT
nGn

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

I1

−HT
1 G1 I2
...

. . . . . .

. . . . . . −HT
n−1Gn−1 In

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (3.19)

which finally leads to the BTFSAI preconditioner:

Â−1 ≈

⎡⎢⎢⎢⎢⎢⎢⎢⎣

GT
1 −GT

1H1G
T
2 . . . . . .

GT
2

. . .
...

. . . −GT
n−1Hn−1G

T
n

GT
n

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

G1

−G2H
T
1 G1 G2

...
. . . . . .

. . . . . . −GnH
T
n−1Gn−1 Gn

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (3.20)

The steps for building the BTFSAI preconditioner are summarized in the Algorithm

2. As input parameters we have:

Algorithm 2 BTFSAI setup.

1: procedure BTFSAI_SETUP(n, kmax, ρF , ϵF , A)
2: Compute A−1

1 ≈ GT
1G1, the approximate inverse of A1

3: for i = 2, . . . , n do
4: Compute Hi−1 = Gi−1Bi−1

5: Compute Si = Ai −HT
i−1Hi−1

6: Compute S−1
i ≈ GT

i Gi, the approximate inverse of the Schur complement
7: end for
8: return G1···n; H1···(n−1)

9: end procedure

1. A, the linear system matrix itself;

2. n, the number of desired partitions;

3. kmax, ρF and ϵF , the aFSAI configuration parameters.
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Calling bw(A) the bandwidth of A, i.e., the largest difference between the column in-

dices of an arbitrary nonzero term of A to its diagonal, we note that the maximum

number of partitions allowed for covering the entire matrix in a uniform block tridi-

agonal fashion is equal to nmax = n(A)/bw(A). A larger number of levels could be

chosen if the matrices Bi were not square; however, this would not necessarily lead

to a more efficient preconditioner since the quantity of Schur-complements being ap-

proximated would also be higher. From our experience, a good estimate for the opti-

mal n is given by nmax/2. Better performance can probably be found in the interval

nmax/2 < n < nmax; however, it is likely that a marginal decrease in the total solution

time will be verified in this case.

Regarding the setup algorithm, the outer loop on the i index is sequential and re-

quires a thread synchronization before starting with a new level. The operations at

each level, however, are almost perfectly parallel. Note that the matrices Hi are cal-

culated explicitly, however the BTFSAI application does not require the off-diagonal

terms Gi+1H
T
i Gi and GT

i HiG
T
i+1 given in Equation (3.20) to be stored. Hence, only Gi,

i = 1, ..., n, and Hi, i = 1, ..., (n − 1), have to be stored and the density µBTFSAI of the

resulting preconditioner can be computed as

µBTFSAI =

(
n∑

i=0

nnz (Gi) +
n−1∑
i=0

nnz (Hi)

)/
nnz (A) (3.21)

The procedure for applying the BTFSAI preconditioner to an arbitrary vector v is

presented in Algorithm 3.

Algorithm 3 BTFSAI application.

1: procedure BTFSAI_APPLY(n,Gi,Hi,v)
2: w1 = G1v1

3: for i = 2, . . . , n do
4: wi = Gi

(
vi −HT

i−1wi−1

)
5: end for
6: un = GT

nwn

7: for i = n− 1, . . . , 1 do
8: ui = GT

i (wi −Hiui+1)
9: end for

10: return u
11: end procedure
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A weak point for this approach may arise in the computation of the n − 1 Schur

complements along with their aFSAI approximations. While theoretically the exact Si

should be SPD for every i, since it is computed numerically as the difference between

two SPD matrices, Ai and HT
i−1Hi−1, it could be indefinite depending on the approx-

imations introduced in Hi−1. This difficulty tends to vanish when the quality of the

approximate inverses increases because the current Schur complement becomes closer

to the exact one. In fact, when a breakdown occurs, the aFSAI relative to the pre-

vious Schur complement is recomputed by using new kmax and ρF parameters such

that µaFSAI is increased by a user-specified factor with a default value of 1.15. From

our experience, a few restart steps can restore the positive definiteness of the Schur

complement and permit the setup algorithm to evolve. However, the preconditioner

effectiveness with respect to the reduction of PCG iterations can deteriorate. Another

solution to this problem consists in rewriting the Schur complement Si as the summa-

tion of SPD matrices instead of subtraction, as presented in the next chapter. This idea,

which will be described in the next chapter, ensures greater robustness at the cost of a

higher computational setup effort.

3.4 Domain Decomposition FSAI (DDFSAI)

An alternative way to partitionA into many blocks relies on using a Domain Decompo-

sition approach. Roughly speaking, domain decomposition refers to a family of tech-

niques which solve a problem defined on a large domain Ω through the solution of

smaller problems defined over subdomains Ωk, k = 1, . . . , n. Each subproblem can be

solved independently of the others for the internal variables, thus exploiting the intrin-

sic parallelism of any algorithm, and the solutions are eventually gathered to build the

outcome of the full problem.

In the Domain Decomposition aFSAI (DDFSAI), the graph of the original matrix

is adequately reordered, as proposed by Benzi et al. [1999] in another sparse approx-

imate inverse context, according to the K-way partitioning algorithm implemented in

the METIS software library Karypis and Kumar [1998]. With this method, the number

of edges connecting a subdomain to the others is minimized, thus reducing the pieces
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of information that need to be communicated among different partitions. At the same

time, the subdomain sizes are kept approximately at the same order to ensure a satis-

factory load balance among distinct threads. After this, each independent block of the

matrix is reordered according to the reverse Cuthill-McKee algorithm for reducing its

bandwidth.

Let Q be the permutation matrix employed by the DDFSAI preconditioner. The

reordered system matrix can be written as:

Ã = QTAQ =

⎡⎢⎣ C B

BT D

⎤⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C1 B1

C2 B2

. . .
...

Cn Bn

BT
1 BT

2 . . . BT
n D

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (3.22)

where the submatrices Ci represent the connections between the internal nodes of the

i−th subdomain; the matrixD, those between interface nodes, andBi, the coupling be-

tween internal and interface nodes belonging to the i− th subdomain. For instance, for

the 3D Poisson problem used in Section 3.3, the difference between the original spar-

sity pattern of the system matrix and the one employed by the DDFSAI preconditioner

when configured with four partitions is shown in the figure 3.3.
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FIGURE 3.3: Sparsity pattern of the original test case on the left and the
reordered pattern employed by the DDFSAI preconditioner on the right.
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We can proceed as done formally in Section 3.3 for the BTFSAI preconditioner, just

considering a 2-level partition. Writing the LDU decomposition of Ã we have:

Ã =

⎡⎢⎣ I1

BTC−1 I2

⎤⎥⎦
⎡⎢⎣C

S

⎤⎥⎦
⎡⎢⎣I1 C−1B

I2

⎤⎥⎦ , (3.23)

with S = D − BTC−1B the Schur complement and Ii, i = 1, 2, the identity matrices

with size equal to the number of internal and interface nodes, respectively. Note that

the exact computation of S can be very expensive because of the high number of fill-in

and linear solves required by the triple sparse matrix product BTC−1B. It is therefore

desirable to approximate this calculation in a cheaper way. Indeed, following the same

approach as in the BTFSAI preconditioner, we approximate S by S̃ = D −HTH with

H = G1B, where G1 is the adaptive FSAI factor of C. This gives a sparse approximate

inverse of the matrix Ã:

Ã−1 =

⎡⎢⎣I1 −C−1B

I2

⎤⎥⎦
⎡⎢⎣C−1

S−1

⎤⎥⎦
⎡⎢⎣ I1

−BTC−1 I2

⎤⎥⎦ . (3.24)

and the inverse S−1 is approximated in the same way as C−1, i.e., by the aFSAI algo-

rithm. Finally, the DDFSAI preconditioner can be written as

M−1
DDFSAI =

⎡⎢⎣I1 −GT
1H

I2

⎤⎥⎦
⎡⎢⎣GT

1G1

GT
2G2

⎤⎥⎦
⎡⎢⎣ I1

−HTG1 I2

⎤⎥⎦ . (3.25)

or even more concisely as:

M−1
DDFSAI = GTG =

⎡⎢⎣GT
1 −GT

1HG
T
2

GT
2

⎤⎥⎦
⎡⎢⎣ G1

−G2H
TG1 G2

⎤⎥⎦ . (3.26)

As already observed in the last section, the triple products GT
1HG

T
2 and G2H

TG1

are not assembled explicitly, but their action on a vector is calculated by three SpMV

operations. The expression for computing the density of the DDFSAI preconditioner
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turns out to be a special case of Equation (3.21) where only two levels are used:

µDDFSAI =

[
nnz (H) + nnz

(
2∑

i=1

Gi

)]/
nnz (A) . (3.27)

The procedure for building the DDFSAI preconditioner is almost the same as Algo-

rithm 2 restricted to two levels, with the only difference consisting in the initial matrix

reordering and also in the possibility to use different input parameters for building

the aFSAI G1 and G2 factors. The same argument also applies to the preconditioner

application. Notice here that the sequentiality introduced by the level partitioning is

much less significant than the one characterizing the BTFSAI variant, hence the degree

of parallelism ensured by DDFSAI is expected to be almost optimally preserved.

3.5 Numerical Results

In this section, we present a two-stage analysis of the BTFSAI and DDFSAI precon-

ditioners. First, the impact of the DDFSAI and BTFSAI configuration parameters on

their performance is studied considering the solution of two reference problems aris-

ing from the discretization of the Poisson and elasticity equations. In the second stage,

both computational performance and parallel efficiency of an OpenMP implementation

are evaluated for a set of real-world engineering problems described in the appendix

A. The performance of the aFSAI algorithm as implemented in the FSAIPACK package

Janna et al. [2015b] is also shown for comparison purposes.

We calculate the right-hand side vector associated with a unitary solution. More-

over, the preconditioned conjugate gradient method (PCG) is used as the iterative

solver and convergence is reached when the relative Euclidean norm of the residual

with respect to the right-hand side vector is smaller than 10−10.

The performance of the resulting preconditioned iterative solvers is evaluated through

the total number of iterations needed for convergence nit, the wall clock time needed

for building the preconditioner Tp and the time for solving the linear system Ts. The

machine used for running the sequential test cases was a local cluster equipped with

two Intel Xeon E5645 processors at 2.4GHz and 256 GB of RAM memory. On the other

hand, the scalability tests were performed in a single node of the Marconi A1 cluster at
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the CINECA - Center for High Performance Computing - which is equipped with 1512

nodes containing each two 18-core Intel(R) Xeon(R) E5-2697 v4 at 2.30GHz and 128 GB

RAM.

3.5.1 Preconditioner analysis

A comprehensive analysis of the multilevel preconditioners proposed in this work is

first carried out by solving two reference test cases arising from the discretization of

elliptic partial differential equations, which are known to produce SPD linear systems

of the type (1.1). The test cases are summarized below:

• ps3d160: discretization of the Poisson equation in a unitary cube by the stan-

dard 7-point finite difference method. Setting 160 nodes in each direction, the

discretization gives rise to a matrix with 4,096,000 rows and 28,518,400 nonzeros

entries;

• el3d50: discretization of the linear elasticity problem in a unitary cube by the

finite element method. By employing 50 hexahedral elements in each direction,

the discretization gives rise to a matrix with 397,953 rows and 30,986,559 nonzeros

entries.

Initially, we find the optimal parameter configuration for the adaptive FSAI pre-

conditioner, providing the lowest total wall-clock time, and set this configuration as

the reference one. The search for the best setup parameters of the preconditioner is ac-

complished by using the guidelines suggested in Janna and Ferronato [2011] and Janna

et al. [2015b]. Specifically, we varied the number of steps and the dropping tolerance

used in the calculation of the aFSAI factor and later the step size while keeping the

preconditioner density below 4.0, thus searching for a balance between preconditioner

cost and quality. Then, the same input parameters are used for building the BTFSAI

and DDFSAI preconditioners, with the only additional information being the number

of blocks or partitions in both cases. The aFSAI parameters relative to the interface

nodes for DDFSAI are also set independently.

In order to evaluate how the number of selected partitions affects the solution pro-

cess in the ps3d160 test case, we vary this quantity over a specific range and show in
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the figure 3.4 the resulting number of iterations needed for convergence, the times for

building these preconditioners and the times for solving the linear systems.
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FIGURE 3.4: Matrix ps3d160 - solution times and number of iterations
for the BTFSAI preconditioner on the left and for the DDFSAI precondi-

tioner on the right.

Considering first the BTFSAI preconditioner, we note that the number of iterations

needed for convergence decreases with respect to the reference case up to 200 parti-

tions, then it starts to increase again. This behavior is caused by the quality of the

approximated Schur complements, which degrades as the number of blocks increases,

and by the fact that with a high number of levels the nonzero entries located farther

from the main diagonal are neglected in the block tridiagonal factorization process. On

the other hand, we see that both the number of iterations and computational times for

the DDFSAI grows moderately with respect to the aFSAI and BTFSAI preconditioners

while remaining quite stable for any number of partitions.

The same analysis is carried out for the el3d50 test case and showed in the figure

3.5. As before, the number of iterations for convergence given by the BTFSAI precon-

ditioner decreases up to a certain number of blocks and then starts to increase again.

However the optimal number of blocks, in this case, is ten times smaller than before

showing that this is a very problem-dependent parameter. Generally speaking, the

larger is the number of nonzero off-diagonal terms, the smaller is the value for the op-

timal number of levels. Considering the DDFSAI preconditioner, we notice that the

number of iterations can be reduced with respect to aFSAI when using 100 partitions

and the total time becomes closer to the reference even when using more than 400 par-

titions.
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FIGURE 3.5: Matrix el3d160 - solution times and number of iterations
for the BTFSAI preconditioner on the left and for the DDFSAI precondi-

tioner on the right.

Next, fixing the optimal number of partitions for each multilevel preconditioner, we

vary the input parameters which are required for the construction of the aFSAI factors.

This analysis aims to evaluate whether and how the optimal configuration parameters

for the BTFSAI and DDFSAI preconditioners vary with respect to the native FSAI algo-

rithm applied to the whole matrix. The preconditioner density µ; number of iterations

for convergence nit; preconditioner setup time Tp; solution time Ts and total time Tt

obtained while using the BTFSAI and DDFSAI preconditioners are reported in Tables

3.1 and 3.2, respectively. From these tables, we see that it is possible to improve the

quality of the multilevel preconditioners by adjusting the aFSAI factor computations.

However, such parameters are generally quite close to the ones used for the optimal

aFSAI. This evidence is quite useful from a practical point of view because it simplifies

the parameter setting for the multilevel FSAI variants.

Finally, we report in Table 3.3 the optimal configuration of each preconditioner re-

garding total solution time for both test cases.

3.5.2 Real-world engineering applications

The performance and scalability of BTFSAI and DDFSAI are analyzed considering a

set of five matrices arising from different engineering applications, such as structural

mechanics, geomechanics, electromagnetism and multiphase flow. A detailed descrip-

tion of each test case is presented in Appendix A. As in the previous subsection, we
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TABLE 3.1: Tentative optimization of the BTFSAI preconditioner for the
test matrices ps3d160 and el3d50. The best configuration regarding

Tt for each preconditioner is highlighted.

Case Prec.
Input parameters Output parameters

kmax ρF ϵF n µ nit Tp [s] Ts [s] Tt [s]

ps3d160

aFSAI 2 3 0.0 – 1.00 236 16.9 59.2 76.1

BTFSAI

2 3 0.0 180 1.91 177 18.1 69.3 87.4
2 1 0.0 180 0.88 295 8.0 90.0 98.0
5 1 0.0 180 1.61 197 28.0 71.8 99.9
5 3 0.0 180 3.78 129 111.0 72.3 183.3
5 3 1e-3 180 3.57 130 100.0 70.8 170.7

10 1 0.0 180 2.74 152 120.7 72.0 192.8
10 1 1e-3 180 2.70 152 116.8 71.4 188.2
15 1 1e-3 180 2.97 128 177.6 63.2 241.0

el3d50

aFSAI 3 3 0 – 0.13 460 5.4 36.2 41.5

BTFSAI

3 3 0.0 18 0.60 302 16.0 38.8 54.1
3 1 0.0 18 0.42 467 7.2 49.8 57.0
5 1 0.0 18 0.47 423 12.7 48.8 61.6
5 3 0.0 18 0.78 247 31.1 36.6 67.3

10 1 0.0 18 0.62 289 28.7 34.2 63.0
10 3 0.0 18 1.18 195 142.3 35.7 178.1
10 3 1e-3 18 1.16 195 135.8 35.4 171.2
15 1 0.0 18 0.78 248 62.6 33.0 95.6
15 3 1e-3 18 1.37 174 255.3 33.5 290.3
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TABLE 3.2: Tentative optimization of the DDFSAI preconditioner for
the test matrices ps3d160 and el3d50. The best configuration is high-
lighted and the aFSAI input parameters for building the F1 and F2 are

differentiated by the subscripts 1 and 2.

Case Prec.
Input parameters Output parameters

kmax1 ρF1 ϵF1 kmax2 ρF2 ϵF2 n µ nit Tp [s] Ts [s] Tt [s]

ps3d160

aFSAI 2 3 0.0 – – – – 1.00 236 16.9 59.2 76.1

DDFSAI

2 3 0.0 2 3 0.0 2 1.01 285 17.5 79.2 96.7
3 1 0.0 3 3 0.0 2 0.59 355 22.6 84.4 107.0
3 3 0.0 3 3 0.0 2 1.45 277 29.8 80.3 110.1
5 1 0.0 5 1 0.0 2 0.87 306 37.8 80.3 118.1
5 3 0.0 5 3 0.0 2 0.59 306 72.6 87.2 159.8

el3d50

aFSAI 3 3 0.0 – – – – 0.13 460 5.4 36.2 41.5

DDFSAI

3 3 0.0 3 3 0.0 2 0.17 455 6.3 35.0 41.3
5 3 0.0 5 1 0.0 2 0.25 400 14.0 36.8 50.8
5 3 0.0 5 3 0.0 2 0.27 385 14.8 32.8 47.6
5 1 0.0 5 1 0.0 2 0.12 610 7.4 43.6 51.0
5 1 0.0 5 3 0.0 2 0.13 608 7.9 47.8 55.7

10 1 0.0 10 1 0.0 2 0.19 434 20.8 37.5 58.3

TABLE 3.3: Optimal configurations of the aFSAI, BTFSAI and DDFSAI
preconditioners for the test matrices ps3d160 and el3d50.

Case Prec.
Input parameters Output parameters

kmax1 ρF1 ϵF1 kmax2 ρF2 ϵF2 n µ nit Tp [s] Ts [s] Tt [s]

ps3d160

aFSAI 2 3 0.0 – – – – 1.00 236 16.9 59.2 76.1
BTFSAI 2 3 0.0 – – – 180 1.91 177 18.1 69.3 87.4
DDFSAI 2 3 0.0 2 3 0.0 2 1.01 285 17.5 79.2 96.7

el3d50

aFSAI 3 3 0.0 – – – – 0.13 460 5.4 36.2 41.5
BTFSAI 3 3 0.0 – – – 18 0.60 302 16.0 38.2 54.8
DDFSAI 3 3 0.0 3 3 – 2 0.17 455 6.2 35.0 41.2
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show in Figure 3.6 through 3.10 how the performance of both preconditioners vary ac-

cording to the number of partitions in each test case. Again, we use the optimal aFSAI

input parameters for building the multilevel preconditioners, and then we evaluate

their performance for a different number of partitions.
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FIGURE 3.6: Matrix hook1498 - solution times and number of iterations
for the BTFSAI preconditioner on the left and for the DDFSAI precondi-

tioner on the right.
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FIGURE 3.7: Matrix spe10 - solution times and number of iterations
for the BTFSAI preconditioner on the left and for the DDFSAI precondi-

tioner on the right.

In general, when compared to aFSAI, the BTFSAI method is able to reduce the

number of iterations in most cases, showing up to a three-fold reduction, as in the

cylinder test case. Consequently, the total execution time of linear solve is also re-

duced with a significant wall-clock time reduction. As already detected before, there is

a problem-dependent optimal number of blocks for building this preconditioner. After

this optimal number, we observe a sudden performance degradation, while too few

blocks do not allow for thoroughly exploiting the block tridiagonal structure of the

preconditioner. However, BTFSAI still can perform better than the pure FSAI.
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The DDFSAI preconditioner can also decrease the solution time and the total num-

ber of iterations, although this effect is not as pronounced as in the BTFSAI case. Its

behavior, however, is always very stable with the number of levels. When the time

needed for building a good preconditioner is relatively large, like in the cylinder

case, the use of DDFSAI becomes more advantageous since the inverse of the Schur

complement can be approximated with a low accuracy showing no significant loss of

effectiveness.
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FIGURE 3.8: Matrix ecology2 - solution times and number of iterations
for the BTFSAI preconditioner on the left and for the DDFSAI precondi-

tioner on the right.
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FIGURE 3.9: Matrix tmt-sym - solution times and number of iterations
for the BTFSAI preconditioner on the left and for the DDFSAI precondi-

tioner on the right.

Next, given the optimal number of blocks for each test case and multilevel precon-

ditioner, we vary the aFSAI configuration parameters looking for the optimal setting.

The best results for each test case are reported in Table 3.4. We can conclude again that

once the optimal aFSAI parameters are known, they can be used for the construction
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FIGURE 3.10: Matrix cylinder - solution times and number of iter-
ations for the BTFSAI preconditioner on the left and for the DDFSAI

preconditioner on the right.

of efficient multilevel preconditioners and the only parameter which still needs to be

selected is the number of partitions.

TABLE 3.4: Tentative optimization of the multilevel preconditioners rel-
ative to the test matrices.

Case Prec.
Input parameters Output parameters

kmax1 ρF1 ϵF1 kmax2 ρF2 ϵF2 n µ nit Tp [s] Ts [s] Tt [s]

hook1498

aFSAI 5 3 0.0 – – – – 0.40 1809 44.0 397.5 441.5
BTFSAI 5 3 0.0 – – – 2 0.41 1904 48.5 474.1 522.6
DDFSAI 5 3 0.0 5 3 0.0 2 0.41 1796 44.7 417.8 462.5

spe10

aFSAI 10 3 1e-2 – – – – 2.51 1050 23.9 134.1 158.0
BTFSAI 5 3 1e-3 – – – 110 2.41 392 14.7 57.0 71.7
DDFSAI 10 3 1e-2 10 3 1e-2 500 2.58 975 23.8 148.7 172.5

ecology2

aFSAI 5 3 0.0 – – – – 3.00 1605 15.5 141.9 157.4
BTFSAI 10 3 1e-3 – – – 1000 3.72 387 17.1 48.7 65.8
DDFSAI 5 3 0.0 5 3 0.0 100 1.82 1239 16.6 168.1 184.7

tmt-sym

aFSAI 5 1 0.0 – – – – 0.86 1678 7.2 82.0 89.2
BTFSAI 10 3 1e-3 – – – 600 3.21 313 21.1 36.0 57.1
DDFSAI 5 1 0.0 5 1 0.0 10 0.87 1874 7.6 127.9 136.7

cylinder

aFSAI 10 1 1e-2 – – – – 0.22 743 13.7 37.8 51.5
BTFSAI 10 1 1e-3 – – – 30 0.18 238 3.6 12.5 16.1
DDFSAI 10 1 1e-2 10 1 1e-2 30 0.42 663 11.3 46.2 57.5

3.5.3 Strong scalability

Lastly, we analyze the strong scalability of the multilevel preconditioners using up to 32

threads of a single node of the Marconi A1 cluster. We evaluate three different metrics
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for measuring the degree of parallelism tackling different aspects. The first one is the

inverse speedup which is given by

1

s (p)
=
Tt (p)

Tt (1)
, (3.28)

where p is the number of threads used and Tt (p) is the total solution time relative to an

arbitrary preconditioner. For a given solution strategy, this quantity shows how much

the total solution time decreases with respect to the sequential case. On the other hand,

the parallel efficiency, given by

e (p) = 100

(
s (p)

p

)
, (3.29)

uses the concept of speed-up to measure in percentage how close to perfectly parallel

a solution strategy is. Finally, we consider the relative parallel efficiency as

re (p) = 100

(
Tt (1)

TFSAI (1)

)(
TFSAI (p)

Tt (p)

)
(3.30)

which measures the relationship between the parallelism showed by the multilevel

preconditioners and the native aFSAI. Here, a value greater than 100% means that the

multilevel preconditioner scales better than aFSAI.

The metrics presented in Equations (3.28) to (3.30) are computed for aFSAI, BTFSAI

and DDFSAI for all real-world test cases. The results are shown in Figure 3.11 through

3.15. Considering first the DDFSAI preconditioner, we note from the relative parallel

efficiency graphs that its scalability is very close to aFSAI. Moreover, according to the

inverse speedup graphs, it is close to the ideal profile up to 16 threads. If 32 threads

are used for solving the linear systems, all scalability metrics suffer from the cluster’s

limited bandwidth and this is the reason why the performance of all preconditioners

decays.

On the other hand, taking into consideration the BTFSAI preconditioner, we note

that its scalability is worse than the one of aFSAI and DDFSAI. This is expected from

the premises of the algorithm and is caused by the number of synchronization barriers



54 Chapter 3. Multilevel aFSAI Preconditionining

needed by BTFSAI, which increases with the number of partitions. These are responsi-

ble for increasing the load imbalance between threads as well as their overhead time,

thus leading to a reduced parallel efficiency. We note, however, that when the number

of partitions is sufficiently small, like for the hook1498 test case, the BTFSAI precon-

ditioner can lead to a scalability which is very similar to aFSAI.
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FIGURE 3.11: Scalability profiles for the matrix hook1498.

3.6 Conclusions

In this chapter, two new multilevel variants of the aFSAI preconditioner were dis-

cussed, namely the DDFSAI and BTFSAI algorithms. Their main idea is to improve

the preconditioning quality given by aFSAI for a given memory footprint at the cost

of reducing its degree of parallelism to a reasonable value. The multilevel variants of

aFSAI were applied in the serial and parallel solution of SPD linear problems arising

from model problems as well as distinct engineering applications. The results show

that the BTFSAI technique is very promising in terms of decreasing the total number

of iterations and time for achieving the solution in comparison to the original aFSAI

preconditioner. On the other hand, the computational gain obtained with the DDF-

SAI technique is smaller than the one observed with BTFSAI; however, its stability and
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FIGURE 3.12: Scalability profiles for the matrix spe10.
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FIGURE 3.13: Scalability profiles for the matrix ecology2.
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FIGURE 3.14: Scalability profiles for the matrix tmt-sym.
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FIGURE 3.15: Scalability profiles for the matrix cylinder.
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scalability are better in general. Finally, we note that all of the performance metrics of

the DDFSAI preconditioner are very similar to the ones shown by the aFSAI precondi-

tioner indicating that it can easily substitute the reference preconditioner.





Chapter 4

Multilevel aFSAI with Low-Rank

Corrections

This chapter presents a multilevel preconditioner based on BTFSAI that enhances its

robustness with the aid of low-rank corrections. An extension of the theory and results

exposed in the present chapter can be found in the work by Franceschini et al. [2018].

4.1 Introduction

As discussed in the last chapter, one of the major difficulties that arise in the multilevel

generalization of aFSAI is related to the accuracy in computing the Schur complements

and their inverses at each level. If the earlier levels are not well approximated, the

resulting Schur complement can be indefinite since it is computed as the difference

between two SPD matrices and aFSAI cannot be employed for approximating the Schur

complement inverses.

The mathematical reason behind this flaw relies on the poor approximation of the

leftmost eigenvalues usually obtained by aFSAI. For illustrating this, we consider a

system matrix A deriving from a two-dimensional Poisson problem over a 64 × 64

structured grid and discretized with linear triangular finite elements. We show in Fig-

ure 4.1 the exact eigenspectra of A as well as LLT and (GTG)−1, i.e., the approximation

of A through an Incomplete Cholesky with 10−2 threshold dropping, ICT(10−2), and

through the aFSAI preconditioner with 5 nonzeros per row, aFSAI(5), respectively. We

see that both ICT and aFSAI preconditioners are not able to capture the set of small-

est eigenvalues of A. Recalling the terminology of the last chapter, if we divide A

59
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in two arbitrary partitions, the smallest eigenvalues of A1 will be the largest ones of

A−1
1 , and therefore controlling the most significant entries of the Schur complement

S = C−BTK−1B. We note that this behavior is reproduced also when Incomplete Fac-

torizations are used as the central kernel in a multilevel preconditioning framework.
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FIGURE 4.1: Comparison between the eigenspectra of A, LLT and
(GTG)−1 for a homogeneous Poisson test case discretized with P1 FEM

in a 64× 64 mesh.

To address this issue, some stabilization techniques, e.g., based on diagonal shifts

Janna et al. [2009b]; Scott and Tůma [2014b], have been successfully introduced. Un-

fortunately, these strategies do not provide satisfactory results when used for the com-

putation of S̃ with the aid of FSAI as a kernel. A more prominent solution has been

recently investigated in the context of multilevel incomplete factorizations with the as-

sistance of low-rank corrections Xi et al. [2016]; however, no contributions were made

yet to the field of sparse approximate inverses.

Low-rank compression algorithms are gaining an increasing attention especially in

direct linear solution methods, e.g., Amestoy et al. [2015]; Wang et al. [2013]; Xia [2012,

2013a,b]; Xia et al. [2010], with the basic idea of taking advantage from data sparsity

instead of structural sparsity. In fact, during the factorization process of a system ma-

trix arising from a PDE problem, the off-diagonal submatrices, which are characterized

by low-rank properties, are decomposed by the singular value decomposition (SVD)

and compressed by neglecting those components corresponding to the smallest singu-

lar values. There are several schemes to carry out the compression on the entire matrix,

ranging from hierarchical matrices (H-matrices) Hackbusch [1999]; Börm et al. [2003];

Hackbusch [2015], HSS methods Sheng et al. [2007]; Ghysels et al. [2016]; Rouet et al.
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[2016] to BLR tree structured compression Amestoy et al. [2015]; Aminfar et al. [2016];

Amestoy et al. [2017]. Typically a drop tolerance is set below which the singular values

are neglected. In the case of sufficiently large drop tolerances, this process gives rise

to a preconditioner, as investigated initially by Li and Saad [2013a] in the context of

divide and conquer methods.

Within the multilevel aFSAI framework presented in the last chapter, low-rank cor-

rections are introduced for both enhancing the preconditioner quality at the earlier

levels (Descending Low-Rank, DLR) and improving the accuracy in the Schur comple-

ment computation (Ascending Low-Rank, ALR). This chapter is organized as follows.

We start by presenting the Multilevel Factorization (MF) preconditioner featuring posi-

tive definite Schur complements by construction. Then, we demonstrate how low-rank

corrections can improve the quality of the Schur matrices. The effectiveness of the ap-

proaches introduced here is evaluated through the solution of real-world test cases.

Lastly, we conclude of the developments proposed in the present chapter.

4.2 Multilevel Factorization with Block FSAI

A generic remedy for solving the problem of the indefinite Schur complement relies on

rewriting it as the summation, instead of subtraction of SPD matrices. In this section,

we propose the MF preconditioner, a modification to the multilevel aFSAI precondi-

tioners introduced in the last chapter with the aid of the adaptive Block FSAI algorithm

Janna et al. [2010]. We start by proving a few theoretical results in order to build the

modified version of multilevel aFSAI.

Theorem 4.2.1 Let A ∈ Rn×n be an SPD (2× 2)-block matrix:

A =

⎡⎢⎣ K B

BT C

⎤⎥⎦ , (4.1)
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withK ∈ Rn1×n1 , B ∈ Rn1×n2 and C ∈ Rn2×n2 , and V ∈ Rn×n2 andD ∈ Rn2×n the 2-block

rectangular matrices:

V =

⎡⎢⎣ F T

I

⎤⎥⎦ , D =

[
0 Z

]
, (4.2)

with F ∈ Rn2×n1 and Z ∈ Rn2×n2 , such that the Frobenius norm ∥D − V TL∥F is minimum

for any Z, L being the lower Cholesky factor of A. Then, S = V TAV is the Schur complement

of A with respect to the partition (n1, n2).

Proof. The lower Cholesky factor of A can be written as:

L =

⎡⎢⎣ LK 0

BTL−T
K LS

⎤⎥⎦ , (4.3)

where LS is the lower Cholesky factor of the Schur complement of A, i.e., LSL
T
S =

C −BTK−1B. The matrix (D − V TL) is therefore:

D − V TL =

[
FLK +BTL−T

K , Z − LS

]
, (4.4)

whose Frobenius norm is minimum for any Z if FLK +BTL−T
K = 0, i.e.:

F = −BTK−1. (4.5)

The matrix S = V TAV reads:

S = FKF T +BTF T + FB + C. (4.6)

Introducing equation (4.5) into (4.6) provides V TAV = C −BTK−1B.

Remark. The matrix F of Theorem 4.2.1 is generally dense. If Equation (4.5) is enforced

only for the entries located in a prescribed set of positions S̃ ⊂ S = {(i, j) : 1 ≤ i ≤

n1, 1 ≤ j ≤ n2}, the sparsity of F can be retained at a workable level. This definition for

F coincides with the Block FSAI preconditioner introduced in Janna et al. [2010] and

Janna and Ferronato [2011], where the nonzero pattern S̃ is defined either statically
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or dynamically during the computation of F . Using a sparse F into Equation (4.6)

produces an approximation S̃ of the exact Schur complement S of A.

Corollary 4.2.2 The Schur complement approximation S̃ computed with Equation (4.6) and a

sparse Block FSAI F is SPD.

Proof. The expression of S̃ can be easily rearranged by adding and subtractingBTK−1B:

S̃ = C −BTK−1B +
(
F +BTK−1

)
K
(
K−TB + F T

)
= S +W TKW. (4.7)

The result immediately follows by noting that W TKW is SPD.

Based on these results, the MF preconditioner is built as follows. The zero-level

preconditioner M−1
0 is made by two factors:

M−1
0 = PbPa. (4.8)

An explicit approximation of K−1 is computed as GTG using an adaptive FSAI proce-

dure Janna et al. [2015b] and introduced in Pa:

Pa =

⎡⎢⎣ G 0

0 I

⎤⎥⎦ . (4.9)

Then, the preconditioned matrix PaAP
T
a is computed:

PaAP
T
a =

⎡⎢⎣ GKGT GB

BTGT C

⎤⎥⎦ (4.10)

and the adaptive Block FSAI Janna and Ferronato [2011] of PaAP
T
a is computed for the

second factor:

Pb =

⎡⎢⎣ I 0

F I

⎤⎥⎦ . (4.11)
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Algorithm 4 Multilevel block aFSAI setup.

1: procedure MF_SETUP(kg,ρg,ϵg,nl,A,M−1)
2: Set A1 = A
3: for all l = 1, . . . , nl − 1 do

4: Partition Al as
[
K B
BT C

]
5: Compute the aFSAI factor G of K through the Algorithm 1

6: Set Pa =

[
G 0
0 I

]
7: Compute Pb =

[
I 0
F I

]
the adaptive Block FSAI approximation of PaAlP

T
a

8: Compute S̃ = C + FGB +BTGTF T + FGKGTF T

9: Set M−1
l = PbPa

10: Set Al+1 = S̃
11: end for
12: Compute the aFSAI factor M−1

nl
of Anl

through the Algorithm 1
13: Set M−1 =

{
M−1

1 ,M−1
2 , . . . ,M−1

nl

}
14: end procedure

The first-level preconditioned matrix M−1
1 AM−T

1 reads:

M−1
1 AM−T

1 =

⎡⎢⎣ I 0

F I

⎤⎥⎦
⎡⎢⎣ GKGT GB

BTGT C

⎤⎥⎦
⎡⎢⎣ I F T

0 I

⎤⎥⎦ =

⎡⎢⎣ GKGT −RT
F

−RF S̃

⎤⎥⎦ (4.12)

where RF = −F (GKGT ) − BTGT is the residual on F , i.e., RF approaches the null

matrix as the accuracy in the computation on F increases. Finally, the (2,2) block of

M−1
1 AM−T

1 is the approximation of the first-level Schur complement:

S̃ = C + FGB +BTGTF T + FGKGTF T (4.13)

that becomes the new matrix for the next level. As S̃ in (4.13) is SPD for any F and G

(see Corollary 4.2.2), no breakdown is possible. The operations required for building

the robust MF preconditioner are provided in Algorithm 4.

4.2.1 Theoretical properties

In this section, we will obtain some theoretical bounds on the eigenspectrum of the

preconditioned matrix according to the different approximations introduced in the MF

computation. At every level of the MF preconditioner setup, the partial factorization of
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the approximated Schur complement from Equation (4.13) is computed. This operation

introduces additional approximations level after level, potentially yielding to a Schur

complement quite different from the exact one. Consider the first-level preconditioner

M−1
1 of Equation (4.8):

M−1
1 =

⎡⎢⎣ G 0

FG I

⎤⎥⎦ . (4.14)

The natural choice for the next level preconditioner is:

M̃−1
2 =

⎡⎢⎣I 0

0 L−1

S̃

⎤⎥⎦ (4.15)

where L
S̃
LT
S̃
= S̃. However, S̃ is an approximated Schur complement. If available S,

one could use

M−1
2 =

⎡⎢⎣I 0

0 L−1
S

⎤⎥⎦ (4.16)

with LSL
T
S = S. Using either M̃−1

2 orM−1
2 as the next level preconditioner ofA leads to

a different performance. The two propositions that follow provide a theoretical upper

bound for the eigenvalues of the preconditioned matrices M̃−1AM̃−T andM−1AM−T ,

in order to allow for an a priori assessment of the preconditioner quality.

Proposition 4.2.3 The eigenvalues λ of the preconditioned matrix M̃−1AM̃−T , with M̃−1 =

M̃−1
2 M−1

1 as defined in equations (4.14) and (4.15), satisfy:

|λ− 1| ≤
∥EK∥+

√
∥EK∥2 + 4∥Q̃T ∥∥Q̃∥

2
(4.17)

where Q̃ = G(KGTF T + B)L−T

S̃
= −RT

FL
−T

S̃
and EK = GKGT − I , for any consistent

matrix norm.
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Proof. The preconditioned matrix M̃−1AM̃−T reads:

M̃−1AM̃−T =

⎡⎢⎣ GKGT G
(
KGTF T +B

)
L−T

S̃

L−1

S̃

(
FGK +BT

)
GT I

⎤⎥⎦
=

⎡⎢⎣I + EK Q̃

Q̃T I

⎤⎥⎦
(4.18)

Its eigenpairs (λ,w), w = [u,v]T , satisfy by definition the relationship:

⎡⎢⎣ I + EK Q̃

Q̃T I

⎤⎥⎦
⎡⎢⎣ u

v

⎤⎥⎦ = λ

⎡⎢⎣ u

v

⎤⎥⎦ (4.19)

which is equivalent to:

⎡⎢⎣ EK Q̃

Q̃T 0

⎤⎥⎦
⎡⎢⎣ u

v

⎤⎥⎦ = (λ− 1)

⎡⎢⎣ u

v

⎤⎥⎦ (4.20)

Taking consistent norms at both sides of the first and second set of equations we have:

⎧⎪⎨⎪⎩ ∥EK∥∥u∥+ ∥Q̃∥∥v∥ ≥ |λ− 1|∥u∥

∥Q̃T ∥∥u∥ ≥ |λ− 1|∥v∥
(4.21)

which, by setting t = ∥v∥/∥u∥, can be rearranged as:

⎧⎪⎨⎪⎩ |λ− 1| ≤ ∥EK∥+ ∥Q̃∥t

|λ− 1| ≤ ∥Q̃T ∥/t
(4.22)

If ∥u∥ = 0, then trivially v ∈ Ker(Q̃) and λ = 1, thus satisfying the inequality (4.17).

The right-hand side of the first and second inequality in (4.22) increases and decreases

monotonically with t, respectively (Figure 4.2). The intersection point is:

t̄ =
−∥EK∥+

√
∥EK∥2 + 4∥Q̃T ∥∥Q̃∥

2∥Q̃∥
(4.23)
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FIGURE 4.2: Schematic representation of the system of inequalities
(4.22).

so for any t we have:

|λ− 1| ≤
∥EK∥+

√
∥EK∥2 + 4∥Q̃T ∥∥Q̃∥

2
(4.24)

Proposition 4.2.4 The eigenvalues λ of the preconditioned matrix M−1AM−T , with M−1 =

M−1
1 M−1

0 as defined in equations (4.8) and (4.16), satisfy:

|λ− 1| ≤ ∥EK∥+∥QT ∥∥(I+EK)−1∥∥Q∥+
√

(∥EK∥−∥QT ∥∥(I+EK)−1∥∥Q∥)2+4∥QT ∥∥Q∥
2 (4.25)

where Q = G(KGTF T + B)L−T
S = −RT

FL
−T
S and EK = GKGT − I , for any consistent

matrix norm.

Proof. Operating as in the proof of Proposition 4.2.3, it can be shown that the eigen-

pairs of M−1AM−T satisfy:

⎡⎢⎣ I + EK Q

QT I +QT (I + EK)−1Q

⎤⎥⎦
⎡⎢⎣ u

v

⎤⎥⎦ = λ

⎡⎢⎣ u

v

⎤⎥⎦ (4.26)

which is equivalent to:

⎡⎢⎣ EK Q

QT QT (I + EK)−1Q

⎤⎥⎦
⎡⎢⎣ u

v

⎤⎥⎦ = (λ− 1)

⎡⎢⎣ u

v

⎤⎥⎦ (4.27)
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Again, taking consistent norms at both sides of the first and second set of equations,

and setting t = ∥v∥/∥u∥, we get:

⎧⎪⎨⎪⎩ |λ− 1| ≤ ∥EK∥+ ∥Q∥t

|λ− 1| ≤ ∥QT ∥/t+ ∥QT ∥∥ (I + EK)−1 ∥∥Q∥
(4.28)

If ∥u∥ = 0, then trivially v ∈ Ker(Q) and λ = 1, thus satisfying the inequality (4.25).

Otherwise, denoting by t̄ the intersection point between the right-hand sides of (4.28):

t̄ =
−∥EK∥+ ∥QT ∥∥ (I + EK)−1 ∥∥Q∥+

√
(∥EK∥ − ∥QT ∥∥ (I + EK)−1 ∥∥Q∥)2 + 4∥QT ∥∥Q∥
2∥Q∥

(4.29)

for any t we have:

|λ− 1| ≤ ∥EK∥+∥QT ∥∥(I+EK)−1∥∥Q∥+
√

(∥EK∥−∥QT ∥∥(I+EK)−1∥∥Q∥)2+4∥QT ∥∥Q∥
2 (4.30)

Now, to understand which preconditioner, either M̃−1 or M−1, is expected to en-

sure a faster convergence, we compare the upper bounds provided in Propositions 4.2.3

and 4.2.4. These bounds depend on the norms of EK and Q or Q̃, which on their turn

are controlled by the accuracy in the computation of G and F , respectively. As GTG

approaches K−1, ∥EK∥ → 0, and in the limit the bounds (4.17) and (4.25) read:

|λ− 1| ≤
√
∥Q̃∥∥Q̃T ∥ (4.31)

and

|λ− 1| ≤ 1

2

[
∥Q∥∥QT ∥+

√
∥Q∥∥QT ∥ (4 + ∥Q∥∥QT ∥)

]
(4.32)

respectively. Similarly, as F approaches −BTK−1G−1, ∥Q∥, ∥Q̃∥ → 0 and the bounds

(4.17) and (4.25) trivially provide:

|λ− 1| ≤ ∥EK∥ (4.33)

The previous relationships hold true for any consistent matrix norm. However, to com-

pare the bounds in an easier way, we restrict our attention to the matrix norm induced
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by the 2-norm of vectors. In this case we have:

∥EK∥2 = λ1(EK) = ϵ1, ∥Q∥2 =
√
λ1(QTQ) = η1, ∥Q̃∥2 =

√
λ1(Q̃T Q̃) = η̃1,

∥(I + EK)−1∥2 = λ−1
n (GKGT ) = κ−1

n

(4.34)

and the bounds (4.17) and (4.25) respectively become:

|λ− 1| ≤ ϵ1 +
√
ϵ21 + 4η̃21
2

(4.35)

|λ− 1| ≤
ϵ1 + η21κ

−1
n +

√(
ϵ1 − η21κ

−1
n

)2
+ 4η21

2
(4.36)

Remark. When ϵ1 = 0, it is easy to prove that the maximum and minimum eigenvalues

of M̃−1AM̃−T are 1 + η̃1 and 1 − η̃1, respectively, and the maximum and minimum

eigenvalues of M−1AM−T are 1 + (η21 +
√
η41 + 4η21)/2 and 1 + (η21 −

√
η41 + 4η21)/2,

respectively.

The following results suggest the use of M̃−1 instead of M−1 as the MF precondi-

tioner of A.

Theorem 4.2.5 For any choice of G and F in (4.14), the bound (4.35) is narrower than or

equal to the bound (4.36).

Proof. Using the arguments of Corollary 4.2.2, it follows that S̃ = S + H̃ , with H̃ a

symmetric positive semidefinite matrix, hence ∥SS̃−1∥2 ≤ 1. In particular:

S̃ = C + FGKGTF T + FGB +BTGTF T =

= C −BTK−1B + (F +BTK−1G−1)(GKGT )(F +BTK−1G−1)T =

= S +RF (GKG
T )−1RT

F (4.37)
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Moreover, the matrix Q̃T Q̃ is similar to LT
S S̃

−1LSQ
TQ. In fact, recalling that Q =

−RT
FL

−T
S and Q̃ = −RT

FL
−T

S̃
, we obtain:

RT
FRF = LSQ

TQLT
S = L

S̃
Q̃T Q̃LT

S̃
(4.38)

from which the similarity follows. Hence:

∥Q̃T Q̃∥2 = ∥LT
S S̃

−1LSQ
TQ∥2 ≤ ∥LT

S S̃
−1LS∥2∥QTQ∥2 ≤ ∥QTQ∥2 (4.39)

because LT
S S̃

−1LS is similar to SS̃−1. As a consequence, η̃1 = αη1 for some α ≤ 1. The

thesis of the theorem reads:

ϵ1 +
√
ϵ21 + 4η̃21
2

≤
ϵ1 + η21κ

−1
n +

√(
ϵ1 − η21κ

−1
n

)2
+ 4η21

2
(4.40)

Introducing η̃1 = αη1 in (4.40), after some algebra we obtain:

α2 ≤ 1 +

√(
ϵ1 − η21κ

−1
n

)2
+ 4η21 −

(
ϵ1 − η21κ−1

n

)
2

(4.41)

which holds true for any F and G.

Theorem 4.2.5 suggests that the use of S̃ in the MF preconditioner is likely to be

more appropriate than the exact Schur complement S. In particular, in the theoretical

case of GTG = K−1 it is possible to compute explicitly the ratio between the condition-

ing numbers of the preconditioned matrices M−1AM−T and M̃−1AM̃−T as follows.

Theorem 4.2.6 If EK = 0, the ratio between the conditioning number of the preconditioned

matrices (4.26) and (4.18) is:

r(η1) =

(
1 +

η21 +
√
η41 + 4η21
2

)2

1 + 2η21 + 2
√
η41 + η21

(4.42)
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Proof. If EK = 0, it can be easily verified from Equation (4.37) that S̃ = S+RFR
T
F and:

L−1
S S̃L−T

S = I + L−1
S RFR

T
FL

−T
S = I +QTQ (4.43)

Recalling from the proof of Theorem 4.2.5 that Q̃T Q̃ is similar to LT
S S̃

−1LSQ
TQ we

have:

∥Q̃T Q̃∥2 = ∥(I +QTQ)−1QTQ∥2 (4.44)

Trivially, (I+QTQ)−1QTQ is symmetric positive definite and has the same eigenvectors

as QTQ. Denoting by λ an eigenvalue of QTQ, the norm ∥(I + QTQ)−1QTQ∥2 is the

maximum of the function:

f (λ) =
λ

1 + λ
(4.45)

As f(λ) monotonically increases with λ, its maximum value is attained for the largest

eigenvalue of QTQ, i.e., ∥QTQ∥2 = η21 . Hence:

∥Q̃T Q̃∥2 =
∥QTQ∥2

1 + ∥QTQ∥2
⇒ η̃1 =

√
η21

1 + η21
(4.46)

The proof is completed by introducing Equation (4.46) in the results of Remark 4.2.1.

Remark. The ratio r(η1) monotonically increases with η1 and takes value 1 for η1 = 0,

i.e., F = −BTK−1G−1 and S̃ = S. For η1 →∞, r monotonically diverges to infinity as

the second power of η1. Hence, the sparser or more inaccurate F , the more important

is using S̃ instead of S in the MF preconditioner.

4.3 MF with Low-Rank corrections

The framework developed in the last section provides the formulation for a robust mul-

tilevel preconditioner that can be computed in a stable way for any configuration of the

aFSAI factors. Using low fill-in degrees obviously keeps the computational cost of the

preconditioner setup and application under control at the cost of a poor convergence.

The quality of the MF preconditioner can be improved by using low-rank corrections

giving rise to the MFLR scheme. The basic concept of combining low-rank corrections
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to multilevel preconditioners is given as follows. Define the matrices:

Y = L−1
C BTK−1BL−T

C = L−1
C (C − S)L−T

C (4.47)

and

X = LT
C

(
S−1 − C−1

)
LC (4.48)

where LC is the exact lower factor of C, i.e., C = LCL
T
C . It is straighforward to see that

the eigenvalues σi of Y follow the inequality:

0 < σn2 ≤ · · · ≤ σ1 < 1. (4.49)

Theorem 4.3.1 The eigenvalues σi of matrix Y and θi of matrix X are related through the

formula:

θi =
σi

1− σi
i = 1, . . . , n2 (4.50)

Proof. Note that (I − Y ) = L−1
C SL−T

C and (I +X) = LT
CS

−1LC , thus:

(I − Y )−1 = I +X. (4.51)

From the Sherman-Morrison-Woodbury (SMW) formula, the matrix inverse on the left-

hand side of Equation (4.51) can be written as

(I − Y )−1 = I +
(
Y −1 − I

)−1
. (4.52)

Substituting this equivalence in Equation (4.51), we have:

X =
(
Y −1 − I

)−1
. (4.53)
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Finally, if pi is an eigenvector of Y associated with the eigenvalue σi:

Y pi = σipi

→ Y −1pi = (1/σi)pi

→
(
Y −1 − I

)
pi = (1/σi − 1)pi

→
(
Y −1 − I

)−1
pi = (1/σi − 1)−1 pi

→ Xpi = (1/σi − 1)−1 pi

∴ θi = (1/σi − 1)−1 =
σi

1− σi
.

(4.54)

From Theorem 4.3.1, the distance between consecutive eigenvalues of X is larger

than those of Y . Moreover, their difference can be written as

θi − θi+1 =
σi − σi+1

(1− σi) (1− σi+1)
i = 1, . . . , (n2 − 1). (4.55)

The separation of the eigenvalues of L−T
C XL−1

C = S−1 − C−1 has a stronger impact on

the performance of the MSLR preconditioner Xi et al. [2016], however studying X is

easier and the main results for X are at some extent still valid for S−1 −C−1. Equation

(4.55) suggests that approximating with a low-rank matrix (S−1 − C−1) is easier than

(S − C) because of the faster eigenvalue decay. A better approximation of S−1 can be

computed as:

S−1 ≃ C−1 +WkΘkW
T
k (4.56)

with WkΘkW
T
k a rank-k approximation of L−T

C XL−1
C which can be obtained from the

eigendecomposition of Y . In fact, by retaining the k largest eigenvalues and corre-

sponding eigenvectors of Y we can write:

Y ≃ UkΣkU
T
k (4.57)

Noting that:

S−1 − C−1 = L−T
C [(I − Y )−1 − I]L−1

C = L−T
C [Y (I − Y )−1]L−1

C (4.58)
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the rank-k correction to S−1 − C−1 is found by setting:

Θk = Σk(I − Σk)
−1 (4.59)

and Wk = L−T
C Uk.

In the original formulation outlined above, the low rank corrections are used to

make the action ofC−1 closer to that of S−1. By distinction, we use low-rank corrections

to improve the action of S̃−1. A consequence of Corollary 4.2.2 is that the eigenvalues

σi of the matrix:

Y = L−1

S̃
(S̃ − S)L−T

S̃
(4.60)

satisfy the condition (4.49). Thus, following the procedure outlined above for C, we

can compute the k largest eigenpairs of Y :

Y ≃ UkΣkU
T
k (4.61)

and get the expression of the corrected Schur complement inverse:

S−1 ≃ S̃−1 +W kΘkW
T
k (4.62)

where Θk = Σk(I − Σk)
−1 and W = L−T

S̃
U . However, the idea of correcting the ap-

plication of S̃−1 so as to better resemble the one of S−1 is not that good. First, the

computation of (4.61) may be quite expensive, since every multiplication by S requires

a solution of a linear system with K. Second, according to Theorems 4.2.5 and 4.2.6,

the use of S−1 in our multilevel framework is not optimal.

The low-rank corrections can be more effectively implemented in this other way.

Since we are working in a multilevel framework, S̃−1 will not be used exactly. Rather,

a new approximation, say Ŝ−1 ≃ S̃−1, will be computed. Thus, Ŝ will be the new

target of the low-rank correction. Moreover, as shown by equation (4.17), reducing

∥EK∥ is also useful for improving the convergence. Also this task can be performed

by a low-rank correction. Therefore, we use two low-rank correction techniques for the

preconditioner setup:
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• Descending low-rank corrections: computed at each level, from the first to the last,

to reduce ∥EK∥;

• Ascending low-rank corrections: computed at each level, from the last to the first, to

reduce the gap between Ŝ and S̃.

4.3.1 Descending Low-Rank corrections

The aim of this correction is to enhance the approximation of the inverse of K. We can

define the matrix:

Y = G
[(
GTG

)−1 −K
]
GT = I −GKGT (4.63)

obtained from Equation (4.60) where
(
GTG

)−1 and K replace S̃ and S, respectively,

and compute its rank-k approximation:

Y ≃ UkΣkU
T
k (4.64)

Note that the computation of Uk and Σk is less expensive than in (4.61), because both

G and K are explicitly known. The enhanced preconditioner for K reads:

KT ≃
(
GTG

)
+W kΘkW

T
k (4.65)

The eigenvalues of Y are bounded from above by one as GKGT is positive definite,

but there is not a lower bound in this case. Actually this is not a problem, as we are

mainly interested in the computation of the eigenvalue σi of Y closest to one. From

the implementation point of view, it is better to dispose of a symmetrically splitted

operator. Hence, we define:

G̃ = (I + UkΨkU
T
k )G (4.66)

in order to have:

G̃T G̃ = GT (I + UkΨkU
T
k )(I + UkΨkU

T
k )G = GTG+W kΘkW

T
k (4.67)
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Recalling that W k = GTUk, the diagonal k × k matrix Ψk is simply found by solving:

I + 2UkΨkU
T
k + UkΨ

2
kU

T
k = I + UkΘkU

T
k (4.68)

Using Equation (4.55), the entries of Ψk read:

ψi = −1 +
√

1

1− σi
, i = 1, . . . , k (4.69)

Since GKGT is positive definite, σi < 1 and ψi is real for any i.

This correction can significantly reduce ∥EK∥. However, the update in G̃ propa-

gates in the other blocks of the preconditioned matrix potentially shattering the overall

procedure efficiency:

PaAP
T
a =

⎡⎢⎣ G̃KG̃T G̃B

BT G̃T C

⎤⎥⎦ =

⎡⎢⎣ GKGT GB

BTGT C

⎤⎥⎦+

+

⎡⎣ UkΨkU
T
kGKG

T +GKGTUkΨkU
T
k + UkΨkU

T
kGKG

TUkΨkU
T
k UkΨkU

T
kGB

BTGTUkΨkU
T
k C

⎤⎦ (4.70)

Actually, this is not the case. In fact, the Block FSAI F̃ computed as the (2,1) block of Pb

when using G̃ is the approximate solution of the multiple right-hand-side system:

F̃ T ≃ −(G̃KG̃T )−1G̃B = −G̃−TK−1B (4.71)

By expanding Equation (4.71) with G̃ definition, we note that F̃ can be easily found as:

F̃ = F (I + UkΨkU
T
k )

−1 (4.72)

whereF is the standard Block FSAI computed usingG. Moreover, from (4.72) and (4.66)

we notice that FG = F̃ G̃. This implies that the approximate Schur complement (4.13)

is not affected by the use of F̃ and G̃:

S̃ = C+ F̃ G̃B+BT G̃T F̃ T + F̃ G̃KG̃T F̃ T = C+FGB+BTGTF T +FGKGTF T (4.73)



Chapter 4. Multilevel aFSAI with Low-Rank Corrections 77

As a consequence, descending low-rank corrections onG have only a local impact with

no changes for the following levels.

4.3.2 Ascending Low-Rank corrections

We define the matrix Ŷ and compute its rank-k approximation:

Ŷ = I − ĜS̃ĜT ≃ ÛkΣ̂kÛ
T
k (4.74)

where Ĝ is the lower inverse factor of Ŝ, i.e. (ĜT Ĝ)−1 = Ŝ, which is explicitly available

by the approximation of lower levels. The computation of (4.74) is relatively cheap,

because the explicit expression of every matrix is known. The new approximation to S̃

is given by:

S̃−1 ≃ ĜT Ĝ+ ŴkΘ̂kŴ
T
k (4.75)

where Ŵk = ĜT Ûk and Θ̂k = Σ̂k(I − Σ̂k)
−1. Notice that, during the setup, we use a

splitted update, as done for the descending low-rank corrections, because it is opera-

tively necessary to compute ĜS̃ĜT . However, during the preconditioner application,

the use of Equation (4.75) is more efficient as it only requires one update.

4.3.3 MFLR algorithm

The multilevel aFSAI preconditioner with Low-Rank corrections (MFLR) can be con-

structed through the recursive Algorithm 5. The input parameters for its configuration

are listed as follows:

1. nl: number of levels composing the preconditioner hierarchy.

2. ϵg: drop tolerance for computing the aFSAI factor G, see Janna et al. [2015b];

3. ϵf : drop tolerance for computing the block aFSAI factor F , see Janna and Fer-

ronato [2011];

4. ndlr: size of the descending low-rank correction, i.e., number of eigenpairs used

to enrich G;
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Algorithm 5 MFLR setup.

1: procedure MFLR_SETUP(l,nl,nalr,ndlr,ϵg,ϵf ,A)
2: if l < (nl − 1) then

3: Partition Al as
[
K B
BT C

]
4: Compute the aFSAI factor G of K through the Algorithm 1

5: Set Pa =

[
G 0
0 I

]
6: Compute Pb =

[
I 0
F I

]
, the block aFSAI approximation of PaAlP

T
a

7: Compute S̃ = C + FGB +BTGTF T + FGKGTF T

8: Compute a rank k approximation UkΣkU
T
k of Y = I −GKGT

9: Set G̃ = (I + UkΨkU
T
k )G with Ψk = (I − Σk)

−1/2 − I

10: Set P =

[
G̃ 0
FG I

]
11: [Qalr, QM] = MFLR_SETUP(l + 1,nl,nalr,ndlr,ϵg,ϵf ,S̃)
12: Use Qalr and QM to compute the rank k correction Ŵk and Θ̂k as in (4.75)

13: Set P̃ =

[
I 0

0 I + ŴkΘ̂kŴ
T
k

]
14: Push P̃ in the head of Qalr
15: Push P in the head of QM
16: else if l = nL then
17: Compute the aFSAI factor G of A through the Algorithm 1
18: Set Qalr = ∅
19: Set QM = {G}
20: end if
21: return Qalr, QM
22: end procedure

5. nalr: size of the ascending low-rank correction, i.e., number of eigenpairs used to

enrich Ŝ−1.

For simplicity, we set the maximum number of nonzeros per row and the number of co-

eficients added to the aFSAI factors at each inner cycle of the Algorithm 1 as unlimited

and one, respectively.

The application of MFLR to a random vector is performed recursively for each level

of the preconditioner hierarchy as given by the Algorithm 6.

We note that, in this work, the Algorithms 5 and 6 are implemented computation-

ally by using the Fortran 90 language and OpenMP directives for their parallelization

in shared memory architectures.
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Algorithm 6 MFLR application.

1: procedure MFLR_APPLY(l,nl,Qalr,QM,x)
2: if l < (nl − 1) then
3: Pop P from the head of QM
4: Pop P̃ from the head of Qalr
5: Compute y = Px
6: Partition y into y1 = y(1 : n1) and y2 = y(n1 + 1 : n1 + n2)
7: Compute z2 = MFLR_APPLY(l + 1,nl,Qalr,QM,y2)
8: Form z with y1 and z2
9: Compute y = P̃z

10: Update y← P Ty
11: Push P in the head of QM
12: Push P̃ in the head of Qalr
13: else if l = nL then
14: Pop G from the head of QM
15: Compute y = GTGx
16: Push G in the head of QM
17: end if
18: return y
19: end procedure

4.4 Numerical results

In this section, we investigate the behavior of MFLR for the solution of linear systems

along with the preconditioned conjugate gradient method. First, we verify experimen-

tally the theoretical properties MFLR presented in section 4.3. Next, we perform a

sensitivity analysis on the input parameters for building MFLR in order to better un-

derstand how they control its quality and computational efficiency. Lastly, we employ

this preconditioner for the solution of real-world test problems with large size.

4.4.1 Theoretical properties

As our model problem, we choose the bcsstk38 SPD matrix Davis and Hu [2011]

with 8,032 rows and 355,460 nonzeroes in its scaled form so as to have unitary di-

agonal. We refer this matrix as A. Assuming a uniform partioning into two levels

(n1 = n2 = 4, 016), we calculate the exact Schur complement S and the approximate

Schur complement S̃ through Equation (4.6) where F is the adaptive block FSAI of A

Janna and Ferronato [2011] built with a variable number kF,max of entries retained per
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row. Figure 4.3 shows the complete eigspectrum of A in the left and the nonzero eigen-

spectrum of (S̃−S). As expected by Corollary 4.2.2, the last quantity is strictly positive

for any choice of F .
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FIGURE 4.3: bcsstk38 test case: eigenspectrum of A (left) and
(
S̃ − S

)
(right) for different configurations of the adaptive block FSAI factor F .

The analysis is performed by introducing new ingredients to the MFLR precondi-

tioner step-by-step. In particular:

1. the exact inverse of K is used to evaluate the effect of using either S̃ or S;

2. the approximation GTG ≃ K−1 is introduced;

3. low-rank corrections are added to improve the preconditioner

First, we want to verify that the main claim of Section 4.2, i.e., the use of S̃ is

more appropriate than that of S in the presented multilevel framework. With this aim,

we report in Table 4.1 the ratio between the conditioning numbers of M−1AM−T and

M̃−1AM̃−T for different configurations of the block FSAI factor F . Should F be com-

puted exactly as a full matrix, there would be no difference between M̃−1 and M−1. In

constrast, decreasing the quality of F means increasing η1 = ∥Q∥2 and η̃1 = ∥Q̃∥2. As a

consequence, the effectiveness of M̃−1 improves with respect to M−1, i.e., the sparser

F , the more important is to use S̃ instead of S. For this test problem, the ratio r(η1)

between the conditioning numbers of the matrix M−1AM−T from Equation (4.26) and

M̃−1AM̃−T from Equation (4.18) increases up to 5.709.

Theorem 4.2.6 no longer holds if we introduce the approximation GTG for K−1.

However, it is still true that the theoretical eigenvalue bounds for M̃−1 are tighter than
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TABLE 4.1: bcsstk38 test case: comparison between the conditioning
numbers of (4.26) and (4.18) by varying F with ∥EK∥ = 0. λ and λ̃

denote the eigenvalues of M−1AM−T and M̃−1AM̃−T , respectively.

kF,max η1 η̃1 [λn, λ1] [λ̃n, λ̃1] r(η1)

30 4.395 0.975 [0.0470, 21.273] [0.0249, 1.975] 5.709
60 2.867 0.944 [0.0988, 10.121] [0.0558, 1.944] 2.939
90 2.248 0.914 [0.1448, 6.9069] [0.0863, 1.914] 2.153

those for M−1. The matrix G is computed as the aFSAI factor of K, thus, its quality is

controlled mainly by the maximum number of entries kG,max retained per row. First of

all, notice that S̃ computed as in equation (3.17) might be indefinite if G is not accurate

enough. For instance, even with kG,max = 250 the approximate Schur complement(
C −BTGTGB

)
still has one negative eigenvalue.

Changing the fill-in degree ofGmodifies the values obtained from the bounds (4.35)

and (4.36), which become tighter as kG,max increases. Such bounds along with the

actual eigenvalue intervals are reported in Table 4.2 for different choices of G and F .

It can be observed that the role played by ϵ1 and η̃1, i.e., a measure of the quality of

G and F , respectively, has a similar impact on the actual eigenvalue distribution of

M̃−1AM̃−T , as expected from the right-hand side of inequality (4.35). Hence, one may

argue that improving both G and F is essential for a better MF performance. On the

other hand, the bound (4.36) is less significant because of the presence of κ−1
n , which

can be quite large. Nonetheless, the actual eigenvalue distribution of M−1AM−T is in

any case worse than that of M̃−1AM̃−T .

Finally, we analyze the Descending and Ascending Low-Rank corrections. We fix

kG,max = 30 and kF,max = 60, and change the number of eigenpairs computed to cor-

rect either G (dlr) or Ŝ−1 (alr). Their effect on the variation of the conditioning number

of M̃−1AM̃−T is shown in Table 4.3. Using both low-rank strategies greatly helps re-

duce the conditioning number. For example, in this case, retaining 20 eigenpairs for

both corrections yields a reduction of the conditioning number of about two orders of

magnitude, i.e., from about 24,000 to 500. By distinction, notice that correcting S̃−1 to-

wards S−1 is not as effective, as expected from the MFLR theoretical properties. It is
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TABLE 4.2: bcsstk38 test case: eigenvalue distribution of M−1AM−T

and M̃−1AM̃−T while varying F and G. The same notation of Table 4.1
is used.

bound bound
kG,max kF,max ϵ1 η1 η̃1 [λn, λ1] [λ̃n, λ̃1] (4.36) (4.35)

30 30 1.08 4.50 0.81 [1.8e-4, 47.3] [1.7e-4, 2.1] 19473.3 2.51
30 60 1.08 3.18 0.79 [1.8e-4, 33.2] [1.8e-4, 2.1] 9707.6 2.49
30 90 1.08 2.62 0.65 [1.8e-4, 29.1] [1.8e-4, 2.1] 6570.8 2.39

60 30 1.24 4.39 0.72 [3.9e-4, 40.0] [3.9e-4, 2.2] 8291.3 2.57
60 60 1.24 3.04 0.64 [4.0e-4, 29.5] [4.0e-4, 2.2] 3963.8 2.51
60 90 1.24 2.47 0.59 [4.0e-4, 25.8] [4.0e-4, 2.2] 2613.6 2.47

90 30 1.09 4.30 0.74 [6.6e-4, 36.0] [6.5e-4, 2.1] 5353.9 2.46
90 60 1.09 2.94 0.65 [6.8e-4, 26.8] [6.7e-4, 2.1] 2495.6 2.40
90 90 1.09 2.43 0.62 [6.9e-4, 23.3] [6.8e-4, 2.1] 1716.8 2.37

also interesting to observe that the largest eigenvalue is the most sensitive to the selec-

tion of the target matrix for the Ascending Low-Rank corrections, while it is insensitive

to the Descending Low-Rank corrections, which mainly affect the smallest eigenvalue.

4.4.2 Sensitivity analysis

To test the influence of the user-specified parameters controlling the behavior of MFLR,

we employ a medium-sized test case referred as cube190k arising from discretizing

the linear elasticity model in a unitary cube with homogeneous material properties by

P1 finite elements. The resulting system matrix has 190,581 unknowns and 7,531,389

nonzero entries. We use a PCG iterative solver preconditioned with MFLR with a con-

vergence tolerance based on the relative residual norm equal to 10−8. The right-hand

side vector b is such that the components of the solution x are xj = j + 1, j = 1, . . . , n.

All tests reported here are obtained using a machine equipped with Intel(R) Xeon(R)

E5-2680 v2 processors at 2.80 GHz and 256 Gbyte of RAM. Each CPU has ten cores. For

these preliminary tests, just one thread is used. For the computation of the eigenpairs

needed by the Low-Rank corrections, we used the Laneig software, that is part of the

Filtlan package Fang and Saad [2012].

The cube190k test matrix is reordered with the Reverse Cuthill-McKee algorithm

and uniformly partitioned into equal-size levels. The results are evaluated in terms of
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TABLE 4.3: bcsstk38 test case: effect of Descending and Ascending
Low-Rank corrections, dlr and alr, respectively, with kG,max = 30 and
kF,max = 60. The target of Ascending Low-Rank correction is S̃−1 and

S−1 in the upper and lower table, respectively.

alr target alr dlr [λn, λ1] λ1/λn

0 0 [1.682e-04, 2.337e+00] 2.389e+04
0 10 [4.391e-04, 2.337e+00] 5.321e+03
0 20 [4.438e-04, 2.337e+00] 5.265e+03

10 0 [1.682e-04, 2.076e+00] 1.234e+04
S̃−1 10 10 [4.391e-04, 2.077e+00] 4.731e+03

10 20 [4.438e-04, 2.137e+00] 4.816e+03
20 0 [1.744e-04, 2.076e+00] 1.190e+04
20 10 [3.380e-03, 2.077e+00] 6.145e+02
20 20 [4.413e-03, 2.137e+00] 4.843e+02

10 0 [1.753e-04, 1.467e+01] 8.371e+04
10 10 [4.342e-03, 1.482e+01] 3.414e+03

S−1 10 20 [6.308e-03, 1.493e+01] 2.367e+03
20 0 [1.772e-04, 3.220e+01] 1.817e+05
20 10 [5.475e-03, 3.270e+01] 5.973e+03
20 20 [9.065e-03, 3.290e+01] 3.630e+03

number of iterations, nit, time needed to compute the preconditioner, Tp, the time spent

in the PCG iterations, Ts, and the preconditioner density, ρ, defined as:

ρ =
1

nnz(A)

nl∑
i=1

(
nnz(Qi

alr) + nnz(Qi
M )
)

(4.76)

where nl is the number of levels and the matricesQi
alr andQi

M are defined in Algorithm

5. For these preliminary tests, the sparse matrix/matrix products are fully computed,

i.e., any use of thresholds and/or levels of fill is avoided.

Similarly to the previous section, the analysis is carried out step-by-step. First, the

performance of the robust MF preconditioner with no low-rank corrections (Algorithm

4) is investigated by changing the fill-in degree of G and F . Then, low-rank corrections

are added to clarify their effect. It is worth noting that only the robust MF precon-

ditioner is addressed here because the standard BTFSAI preconditioner (Algorithm 2)

breaks down due to the computation of indefinite Schur complements.

Table 4.4 shows the results obtained by varying the number of levels nl and the
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TABLE 4.4: cube190k test case: performance of MFLR without low-
rank corrections as a function of nl and ϵG (ϵF = 10−2, dlr = alr = 0).

ϵG nl nit ρ Tp Ts

10−1 10 930 0.43 14.5 26.8
20 843 0.73 132.0 34.3
50 664 1.47 349.9 49.1
100 612 2.78 515.1 79.2

10−3 10 446 1.97 268.4 24.0
20 416 2.53 881.2 29.5
50 386 3.45 829.9 41.8
100 367 5.71 956.9 66.3

ϵG nl nit ρ Tp Ts

10−2 10 640 0.77 34.5 21.9
20 591 1.17 265.9 29.3
50 503 2.04 441.7 41.6
100 464 3.67 612.9 67.0

10−4 10 362 3.83 2232.9 37.3
20 338 4.67 3741.6 35.7
50 329 5.74 2404.2 47.4
100 318 8.88 2053.8 73.1

tolerance ϵG for building the adaptive block FSAI factor. The other tolerance ϵF is set

to 10−2 and no low-rank corrections are applied, i.e., dlr = alr = 0. As expected, the

iteration count decreases progressively as ϵG decreases, i.e., G is more accurate, and

nl grows. The preconditioner density also increases, so that the setup time becomes

very high and the cost per iteration grows. Although the setup cost could be reduced

by introducing thresholds and level-of-fills in the sparse matrix-matrix computations

with no substantial loss in the PCG acceleration, it appears that the proposed multilevel

approach is of interest whenever the preconditioner can be reused multiple times, e.g.,

in eigensolvers or in some transient simulations, so that its setup cost can be properly

amortized and set apart in the present analysis. Hence, we focus on the solution time

Ts only.

Considering the best value for ϵG given by the table 4.4, i.e., 10−2, we vary again

the number of levels nl but now also the drop tolerance for computing the F factor, i.e,

ϵF . The results, provided in Table 4.5, show that the MFLR preconditioner appears to

be less sensitive to the quality of F than of G. In fact, the iteration count is more stable

than in Table 4.4.

Now, we test the effects of Descending and Ascending Low-Rank corrections by

considering ϵG = 10−2, ϵF = 10−2 and nl = 10. The results for different low-rank

corrections are displayed in Table 4.6. Increasing the rank size, the number of iterations

decreases for both approaches, but Ascending Low-Rank corrections have a stronger
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TABLE 4.5: cube190k test case: MFLR performance varying nl and ϵF
(ϵG = 10−2, dlr = alr = 0).

ϵG nl nit ρ Tp Ts

10−1 10 660 0.65 29.1 22.8
20 632 0.94 216.8 29.5
50 601 1.61 369.8 47.8
100 579 2.81 498.0 78.7

10−3 10 621 1.13 85.7 27.0
20 544 1.79 639.2 32.9
50 403 3.21 1129.2 43.0
100 348 6.98 2278.7 71.2

ϵG nl nit ρ Tp Ts

10−2 10 640 0.77 34.5 21
20 591 1.17 265.9 29.3
50 503 2.04 441.7 41.6
100 464 3.67 612.9 67.0

10−4 10 585 2.304 1163.3 35.1
20 460 3.445 4513.5 39.3
50 309 5.550 4020.9 43.6
100 255 11.192 6029.8 68.6

impact on the solution time Ts. This is somewhat expected because Ascending Low-

Rank corrections have a global effect on the overall preconditioner, while Descending

Low-Rank corrections improve locally the current level approximation of K−1.

TABLE 4.6: cube190k test case: MFLR performance varying either dlr
or alr (ϵG = ϵF = 10−2, nl = 10).

dlr nit ρ Tp Ts

5 534 0.90 71.3 29.3
10 485 1.01 66.1 29.4
20 450 1.24 65.9 25.5
50 405 1.92 75.0 30.1

alr nit ρ Tp Ts

5 289 1.35 95.1 17.0
10 213 1.92 78.0 15.1
20 196 3.06 88.1 14.1
50 186 6.48 214.5 36.7

Finally, the combined effect of both corrections is investigated in table 4.7. This

allows for obtaining the best result in terms of both iteration count and solution time

Ts decrease. In particular, the latter is more than halved with respect to the case with

no corrections with at least dlr = alr = 10. The solver acceleration is paid with a bigger

setup cost, that makes the MFLR approach interesting when the preconditioner can be

recycled.

Although the present analysis cannot be thoroughly exhaustive, it is possible to

observe that dlr and alr appear to be the most sensitive user-specified parameters. The

number of levels nl strongly depends on the size of the matrix and should be selected

such that each level is not too small. In the cube190k test case it can be seen that

with more than 20 levels, i.e., less than 10,000 unknowns per level, the preconditioner
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TABLE 4.7: cube190k test case: MFLR performance varying both dlr
and alr (ϵG = ϵF = 10−2,nl = 10).

dlr alr nit ρ Tp Ts

1 1 525 0.92 76.3 34.4
1 10 204 1.95 87.7 14.8
1 20 188 3.09 112.5 18.5

10 1 381 1.13 71.7 25.0
10 10 148 2.15 83.6 10.9
10 20 134 3.29 100.0 11.3

20 1 341 1.35 86.6 23.9
20 10 132 2.38 100.5 10.4
20 20 123 3.52 100.1 10.8

application cost grows quickly and is no longer compensated by the iteration count

reduction. By distinction, the selection of the tolerances ϵG and ϵF does not appear to

be overly difficult. In fact, the MFLR performance does not change much with respect

to a variation of these parameters in the interval [10−3, 10−1].

4.4.3 Preconditioner performance

In this section, we evaluate the use of MFLR as a preconditioner to PCG in the solution

of real-world problems arising from structural and fluid flow models and described

with details in the appendix A. In Table 4.8, we show the best results obtained by the

MFLR preconditioner in terms of the solution time Ts as well as the results for the

aFSAI, ILUPACK1 Bollhöfer et al. [2011] and Trilinos_ML Gee et al. [2006] precondi-

tioners. It is worth mentioning that the native adaptive FSAI is used as a benchmark

because the BTFSAI and DDFSAI preconditioners generally give rise to indefinite Schur

complements in these test cases. Hence, only the robust MF algorithm presented here

can be effectively used, with or without low-rank corrections. The latter may improve

the convergence rate, but have no effect on the preconditioner robustness.

As already observed, the MFLR preconditioner setup can be quite expensive, espe-

cially because of the computation of the eigenpairs needed by the low-rank correction

procedures. However, its effectiveness in the iteration count and CPU time can be quite
1Since ILUPACK gives a non-symmetric preconditioner, we use GMRes Saad and Schultz [1986] as the

iterative solver.
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TABLE 4.8: Performance comparison between the aFSAI, ILUPACK,
Trilinos_ML and MFLR preconditioners in the solution of real-world en-

gineering problems.

Matrix name Method nit ρ Tp[s] Ts[s] Tt[s]

afshell3 aFSAI 963 0.89 88.8 63.9 152.7
ILUPACK 79 4.12 64.0 24.6 88.6
Trilinos_ML 356 1.01 1.2 80.1 81.3
MFLR 126 4.50 237.8 31.5 269.3

afshell8 aFSAI 1033 0.86 81.2 68.0 149.2
ILUPACK 78 4.12 62.2 24.4 86.4
Trilinos_ML 309 1.02 1.2 57.4 58.6
MFLR 131 3.22 174.8 28.6 203.4

emilia923k aFSAI 1513 0.11 5.0 128.5 133.5
ILUPACK — — — — —
Trilinos_ML 586 1.15 6.5 367.0 373.5
MFLR 575 0.25 82.8 80.4 163.2

geo1438k aFSAI 491 0.31 59.4 89.6 149.0
ILUPACK 878 0.50 57.3 385.8 443.1
Trilinos_ML 118 1.15 9.6 93.7 103.3
MFLR 456 0.49 159.8 110.4 270.2

stocF1465k aFSAI 937 0.93 51.3 133.4 184.7
ILUPACK 108 1.50 49.2 33.3 82.5
Trilinos_ML 759 1.16 3.8 278.0 281.8
MFLR 936 1.66 260.4 222.2 482.6
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significant. For instance, in the afshell3 and afshell8 test cases, nit is approxi-

mately reduced by a factor 10 and Ts is more than halved. Hence, the use of the MFLR

preconditioner can be of great interest whenever the setup time can be amortized along

several linear solves. On the other hand, if the reduction of the number of iterations

is marginal, such as in the geo1438k and stocF1465k test cases, the Adaptive FSAI

proves more efficient than the MFLR preconditioner.

The ILUPACK parameters are set in such a way to obtain approximately the same

memory footprint as MFLR. By distinction, the default parameters for configuring Trili-

nos_ML are kept. The results show that the ILUPACK performance in terms of solution

time Ts is close to MFLR for afshell3 and afshell8, much better for stocF1465k

and much lower for emilia923k and geo1438k. In particular, the ILU density for

the emilia923k test case must be increased up to 3.8 to attain convergence in just 62

iterations, otherwise the convergence is not reached after 3,000 iterations. Recalling

that ILUPACK cannot thoroughly exploit a growing parallelism of the computational

architecture, the comparison with MFLR appears to be quite satisfactory. As far as the

results with Trilinos_ML are concerned, it can be observed that with the default param-

eters the MFLR preconditioner is always superior, with the exception of the geo1438k

test case where the two performances are roughly equivalent.

Finally, to show the potential parallelism of the MFLR preconditioner, a scalability

test has been carried out on a discrete Laplacian computed over a regular 300×300×300

grid. The numerical experiment is performed on the A1 partition of the Marconi clus-

ter at CINECA (Center of High Performance Computing), Bologna, Italy. It consists

of 1,512 nodes with 128 Gbyte of RAM each. Every node is equipped with 2 Intel

Xeon E5-2697v4 Broadwell processors at 2.3 GHz with 36 cores. This preliminary im-

plementation of MFLR makes use of shared-memory parallelism through the OpenMP

directives, hence in the strong scalability test provided in Figure 4.4, a single node only

is used with up to 32 threads.
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FIGURE 4.4: Strong scalability test for a regular 3003 Laplacian.

The strong scalability of the MFLR preconditioner is compared to that of the Adap-

tive FSAI algorithm as far as both the setup and the iteration time, Tp and Ts, is con-

cerned. In particular, Figure 4.4 provides the speedup:

Sp =
Tp(t)

Tp(1)
; Ss =

Ts(t)

Ts(1)
, (4.77)

with Tp(t) and Ts(t) the setup and iteration wall-clock times measured with t threads.

It has been already verified that aFSAI practically has an ideal speedup Janna et al.

[2015b], according to the hardware properties of the specific computational architecture

used for the numerical experiments. In the case of the multi-core processors of the

Marconi cluster, it is well-known that it is virtually impossible to obtain ideal speedups

with iterative solvers as these algorithms are bandwidth limited being characterized

by a low bit per flop ratio. The MFLR preconditioner is theoretically less parallel than

FSAI, because of the intrinsic sequentiality introduced by the multilevel framework.

Nevertheless, Figure 4.4 shows that the strong scalability is only marginally affected

by such a sequentiality and the MFLR preconditioner still preserves a good degree of

parallelism.
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4.5 Conclusions

The development of a multilevel framework is often useful in several applications.

However, the use of the FSAI preconditioner as basic kernel in a standard multilevel

approach may arise some difficulties related with the approximations introduced in

the computation of the Schur complement at each level. With SPD problems, such a

Schur complement might be indefinite, thus causing a break down of the multilevel

algorithm.

We proposed a robust multilevel framework for SPD matrices based on the use of

aFSAI as the main kernel. An alternative way of computing the Schur complement

is introduced so as to guarantee its positive definiteness independently of the precon-

ditioner sparsity. A theoretical analysis is formulated with the aim of providing ap-

propriate bounds for the eigenspectrum of the preconditioned matrix. The multilevel

FSAI preconditioner is further enhanced by introducing low-rank corrections at both

a local and a global level, namely Descending and Ascending low-rank corrections,

respectively, thus producing the MFLR preconditioning framework.

The MFLR preconditioner has been investigated in a set of test problems to ana-

lyze: (i) the relative influence of the user-specified parameters controlling the algorithm

setup, and (ii) the computational performance and potential scalability in a parallel en-

vironment. The numerical results show that the proposed approach is generally able

to significantly accelerate the solver convergence rate still preserving a good degree of

parallelism. At the present time, the solver acceleration is paid off by a large setup cost,

which is mainly due to the computation of the eigenpairs needed by the low-rank cor-

rections. The increase of the cost for building the preconditioner with respect to aFSAI

makes this approach attractive especially for those applications where the precondi-

tioner can be effectively recycled along a number of linear solves.



Chapter 5

Adaptive Smoothing and

Prolongation based AMG

This chapter presents an algebraic multigrid preconditioner called adaptive smoothing

and prolongation based AMG (aSP-AMG). This presentation extends the one given

by the journal article Paludetto Magri et al. [2019] which, by the time of writing this

document, was under peer review.

5.1 Introduction

Although the MFLR preconditioner, with a novel way of approximating Schur comple-

ments and enhancing the application phase via low-rank corrections, represented an

improvement in terms of robustness with respect to the other multilevel FSAI precon-

ditioners such as BTFSAI and DDFSAI, its applicability remained limited by the setup

costs. Due to this reason, we decided to explore another algebraic preconditioning

field which has a lot in common with multilevel factorization techniques: the algebraic

multigrid methods (AMG).

AMG was firstly introduced in the early 1980s in the form of classical AMG (C-

AMG), whose main feature is that coarse level nodes are obtained as a subset of the fine

level nodes and the interpolation operator is built upon the assumption that the uni-

tary vector is the dominant component in the near-null space of A McCormick [1982];

Stüben [1983]; Brandt et al. [1984]; Brandt [1986]. Since then, researches have been

conducted in the direction of improving the components of classical AMG as well as

creating new AMG techniques with the final aim of improving AMG efficiency and

91
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expanding its applicability to challenging problems characterized by complex geome-

tries, distorted grids, strong discontinuities in the physical properties and anisotropy.

The most important AMG variants comprise unsmoothed and smoothed aggrega-

tion multigrid whose coarsening is based on agglomeration of nodes and the prolon-

gation operator is built in a column-wise fashion in order to interpolate a set of vectors

in the near-null space usually provided as an input Vaněk [1992]; Vaněk et al. [1996];

Notay [2012]. The element-based AMG family composed by the energy-minimization

AMGe Brezina et al. [2001], element-free AMGe Henson and Vassilevski [2001] and

spectral AMGe Chartier et al. [2003], where the coarse spaces are constructed via an

energy minimization process, were proposed to improve the robustness of these meth-

ods by alleviating the heuristics based on M-matrices properties implemented in clas-

sical AMG. More recently the adaptive and Bootstrap AMG (αAMG and BAMG, re-

spectively) were designed for the solution of harder problems where the classical and

smoothed AMG may fail or show poor convergence Brezina et al. [2005, 2006]; Brandt

and Ron [2003]; Brandt et al. [2011]; Brezina et al. [2012]; Brandt et al. [2015]; D’Ambra

et al. [2018]. The most important feature of the above methods is that no preliminary

assumption is made about the near-null space of A but it is approximated adaptively

during the AMG hierarchy construction by starting from one or multiple candidate

vectors. Moreover, the computed multigrid hierarchy can be used itself as a smoother

to better expose smooth vectors in a self-improvement fashion. On the one hand, this

attribute renders those methods more general and capable of achieving better conver-

gence rates, but on the other, it increases the setup time substantially. A detailed review

of the most recent and effective AMG variants developed so far can be found in Xu and

Zikatanov [2017].

In this work, we propose a novel AMG package that we name aSP-AMG where

the acronym aSP stands for adaptive Smoothing and Prolongation. The reason for the

choice of the word adaptive is manifold. The first motivation is that we follow the

perspective of adaptive and bootstrap AMG that is to assume no information about

the near-null space of A, but we construct the space of smooth vectors, denoted as test

space in the remainder of the paper, by testing an initial set of candidates, however

without making use of the self-improvement concept in the current implementation.
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Another novel contribution provided by aSP-AMG is the introduction of the adaptive

pattern factorized sparse approximate inverse (aFSAI) as a smoother. This improves

the smoothing capabilities of the resulting method as aFSAI is more effective than Ja-

cobi and usually much sparser than Gauss-Seidel for the same accuracy. Moreover,

aFSAI has been shown to be, both theoretically and experimentally, strongly scalable

Janna et al. [2015b]; Bernaschi et al. [2016], and this fact fosters the implementation of

the package in massively parallel computers, even if it is not our main focus at the

moment. Coarsening is carried out as in classical AMG by dividing variables into fine

and coarse, but the strength of connection is computed by means of the affinity be-

tween components of the test space, which we believe is a concept that better adapts to

general problems. Finally, the main contribution that we want to stress consists of the

presentation of three new techniques for building the prolongation operator which are

based on different minimization processes. The rationale of the first two techniques de-

rives from the adaptive block FSAI preconditioning Janna and Ferronato [2011] while

the third one, similarly to Brandt et al. [2011], is based on least squares, however with a

dynamic pattern selection scheme enhancing its quality especially in real-world prob-

lems.

This chapter is organized as follows. In section 5.2, the fundamentals of the classical

AMG preconditioner are reviewed and the setup and application algorithms of aSP-

AMG are presented. Section 5.3 introduces the aFSAI preconditioner as a smoother,

pointing out its advantages over other choices for relaxation and providing details of

the setup algorithm. The following section 5.4 exposes how the near-null space of A is

approximated via the calculation of a subspace of Rn×nt with nt << n. In section 5.6,

we introduce the three new aforementioned techniques for building prolongation. In

section 5.7, the impact of each configuration parameter on the aSP-AMG performance

is analyzed in Poisson and linear elasticity model problems and an extensive set of

matrices arising from real-world applications is used to compare aSP-AMG to the well-

established and popular BoomerAMG preconditioner from the Hypre library Falgout

and Yang [2002] and the one-level aFSAI.
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5.2 The Classical Algebraic Multigrid (C-AMG) approach

As mentioned before, there are several families of AMG methods, each of them sharing

common components such as a multilevel hierarchy built upon interpolation opera-

tors, the use of smoothers and the quest for a suitable interplay between coarse-grid

correction and relaxation. In the present work, we adopt the classical AMG approach

in which coarse variables are chosen as a subset of the fine level ones and the interpo-

lation operators are usually built in a row-wise fashion.

We start by recalling the basic ideas behind classical AMG methods. For a more

detailed and rigorous description, we refer the reader to the works by works Stüben

[2001]; Trottenberg et al. [2001]; Xu and Zikatanov [2017]. For the sake of clearness, we

restrict our explanation here and in the remainder of the paper to a two-level method,

and note that the multilevel extension can be easily obtained by applying the two-level

scheme recursively for the coarse levels solution. Recalling the linear system given by

(1.1), to simplify notation, we reorder the system matrixA according to the Fine/Coarse

(F/C) partitioning of the unknowns:

A =

⎡⎢⎣Aff Afc

AT
fc Acc

⎤⎥⎦ (5.1)

even though this ordering is never really needed in the solver implementation.

The first component that needs to be defined in C-AMG is the smoother, which is

a stationary iterative method responsible for eliminating the error components associ-

ated with large eigenvalues of A, usually referring to the high frequency error compo-

nents. Generally, it is given by a simple pointwise relaxation method such as (block)

Jacobi or Gauss-Seidel, with the second one often preferred even though its efficient

parallel implementation is not straightforward. In aSP-AMG, we introduce the usage

of aFSAI as a smoother. Regardless of the choice, the smoother operator S can be rep-

resented by

S = I − ωM−1A, (5.2)

where I is the identity matrix, ω is a relaxation factor and M , the preconditioning op-

erator.
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The following step for building a multigrid hierarchy is called coarsening. Defining

Ω as the index set 1, 2, ..., n, with n the size of A, we want to find two disjoint sets

F and C representing the fine and coarse nodes, respectively, such that Ω = C ∪ F

with nf = |F| and nc = |C|. Strategies for computing the F/C splitting normally

rely on a classical strength of connection concept which is taylored for M-matrices and

shows practical limitations when solving more general matrices. Aiming a more robust

approach, in aSP-AMG we employ an affinity-based strength of connection introduced

by Livne and Brandt [2012] and explained detailed in section 5.5.

Next, it is possible to build the prolongation operator, which is responsible for trans-

ferring information from the coarse to the fine space. Using the conventional F/C or-

dering defined above (5.1), the prolongation operator P will be written as:

P =

⎡⎢⎣W
I

⎤⎥⎦ , (5.3)

where W is a nf × nc matrix containing the weights for coarse-to-fine variable interpo-

lation. Finally, as the system matrix is SPD, we assume a Galerkin approach in defining

the restriction operator R as P T , with the coarse level matrix Ac simply given by the

triple matrix product:

Ac = P TAP. (5.4)

In practice, we want fast convergence with a rapid coarsening, i.e. high F/C ratios, and

possibly small sets of interpolatory variables, also referred as the prolongation caliber,

to allow for small and relatively sparse coarse grid operators. With aSP-AMG, we pro-

pose three algorithms for constructing effective prolongation operators that conciliate

these conflicting requirements.

Once all the aforementioned components are well defined, the setup phase of the

two-level multigrid method can be completed and its iteration matrix is given by:

(S)ν2
(
I − PAc

−1P TA
)
(S)ν1 (5.5)

with ν1 and ν2 representing the number of pre and post smoothing steps, respectively.
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Algorithm 7 AMG setup.

1: procedure AMG_SETUP(Ak)
2: Define Ωk as the set of the nk vertices of the adjacency graph of Ak

3: if nk is small enough to allow for a direct factorization then
4: Compute Ak = LkL

T
k

5: else
6: Compute Mk such that M−1

k ≃ A−1
k

7: Define the smoother as Sk =
(
Ik − ωkM

−1
k Ak

)
8: Compute the nk × nt test space matrix Xk

9: Partition Ωk into the disjoint sets Ck and Fk via coarsening
10: Compute the prolongation matrix Pk from Ck to Ωk

11: Compute the new coarse level matrix Ak+1 = P T
k AkPk

12: Call AMG_SetUp(Ak+1)
13: end if
14: end procedure

As anticipated, extending this two-level approach to a more efficient multilevel ver-

sion is straigthforward by using recursivity. Algorithms 7 and 8 briefly report the gen-

eral AMG setup phase and application in a V-cycle, respectively, where it is conven-

tionally assumed that A0 = A, y0 = y and z0 = z. The details regarding all the com-

putational building blocks used in our implementation of Algorithm 7 will be given in

the following sections.

Algorithm 8 Application of the AMG V-cycle preconditioner.

1: procedure AMGV_APPLY(Ak, yk, zk)
2: if k is the last level then
3: Solve LkL

T
k zk = yk

4: else
5: sk ← apply ν1 smoothing steps to Aksk = yk with s0 = 0
6: rk ← yk −Aksk
7: rk+1 ← P T

k rk
8: Call AMGv_Apply(Ak+1, rk+1,dk+1)
9: dk ← Pkdk+1

10: sk ← sk + dk

11: zk ← apply ν2 smoothing steps to Akzk = yk with z0 = sk
12: end if
13: end procedure

5.3 aFSAI smoothing

The development of robust and efficient multigrid smoothers for parallel architectures

is an active field of research. On the one hand, some of the best methods used in
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sequential multigrid implementations such as Forward/Backward Gauss-Seidel, Suc-

cessive Over Relaxation and ILU are hard to parallelize. On the other hand, highly par-

allel approaches such as hybrid Gauss-Seidel, (damped) l1-Jacobi/Gauss-Seidel and

Chebyshev polynomials Adams et al. [2003]; Baker et al. [2011]; Ghysels et al. [2012]

might lead to poor convergence especially when dealing with anisotropic and discon-

tinuous coefficients problems as well as system of PDEs. Thus, the problem of finding

strategies showing a good compromise between parallelism and effectiveness is yet to

be solved.

Given the good qualities of sparse approximate inverses mentioned in section 2.3.3,

we exploit the idea of using aFSAI as the smoother method for aSP-AMG. In this case,

the operator (5.2) is written as

S = I − ωGTGA (5.6)

with the highest frequencies of GTGA compromising the smoothing property of aFSAI

while the lowest counterpart being responsible to the slow-to-converge modes. The

first issue can be handled by setting the relaxation factor as

ω =
2

λmax (GTGA)
, (5.7)

thus ensuring the overall smoother convergence Briggs et al. [2000], i.e., ||S|| ≤ 1.

Despite the high number of publications dealing with sparse approximate inverses,

very few analyzed their use as smoothing techniques, and none of them have studied

aFSAI specifically. The very first research was introduced by Tang and Wan [2000],

who analyzed the smoothing property of a modified least squares SAI method and

compared it to other techniques such as Gauss-Seidel for the solution of anisotropic

problems showing that they are very effective techniques. Later, Bröker et al. [2001] and

Bröker and Grote [2002] analyzed more robust SAI smoothers based on SPAI variants

that are built with the same sparsity pattern of A as well as with more general patterns

that are obtained dynamically during the smoother setup. Moreover, they introduce

theoretical results proving the smoothing property of SPAI. However, in general, the
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SPAI smoother is not symmetric which thus limits the applicability of AMG as a pre-

conditioner to PCG. Also, for a given factor density, the convergence given by SPAI is

inferior to aFSAI when used as single-level preconditioners.

The accuracy and effectiveness of the aFSAI smoother can be easily controlled by

allowing for larger densities of G, which is not possible with Jacobi or Gauss-Seidel re-

laxations. Depending on the type of matrix being solved, aFSAI can even yield sparser

smoothers ,when looking at the the application phase, than Gauss-Seidel while main-

taining its smoothing property, i.e., ||S|| ≤ 1. An example proving this phenomenon is

showed in Figure 5.1 which presents the sparsity pattern and the number of nonzeros

coefficients of the linear system operators Ak and aFSAI factors Gk formed by aSP-

AMG with k = {1, 2, 3} when considering a 3D linear elasticity problem discretized

with P1 FEM. By distinction to ILU preconditioners, the setup of aFSAI is not affected

by reordering of unknowns either by the occurrence of zero or negative pivots. Lastly,

they form SPD smoothers naturally, and their setup and application phases follow

highly parallel operations, thus bringing together the two ingredients necessary for

achieving smoothers well-suited for parallel architectures.
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FIGURE 5.1: Comparison between the sparsity patterns of the system
matrices Ak (upper frame) and aFSAI factors Gk (lower frame) belong-
ing to the finest (left), second (center) and coarsest (right) levels of aSP-

AMG.
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5.4 Test space generation

A crucial step in the setup of aSP-AMG or any other adaptive AMG method is the

identification of smooth modes, i.e., components of the error vector that are not elimi-

nated sufficiently during smoothing. The reason for this importance is that the smooth

modes need to be well represented by the range of the prolongation operator in order

to be eliminated by coarse grid correction and consequently result in an efficient solver.

Like most of the other single level preconditioners, aFSAI is able to represent accurately

only the upper part of the spectrum of an SPD matrix while it fails in approximating

lower counterpart. In Figure 5.2 (left frame), we show a typical example of such occur-

rence by comparing the spectra of A and different configurations of (GTG)−1 for the

bcsstk38 sparse matrix from the SuiteSparse collection. No matter the accuracy used

for computing the aFSAI factor G, the lowest end of the eigenspectrum of (GTG)−1

(right frame) does not appropriately represent the one of A.
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FIGURE 5.2: In the left, LogLog plot of the eigenspectrum of A and dif-
ferent configurations of (GTG)−1 for the bcsstk38 test case. In the

right, a zoom into the lowest end of the eigenspectra.

In Bootstrap AMG, Brandt et al. [2011], smooth modes are interpreted as the near-

null space of A which is approximated by a small subspace of test vectors, called test

space, after the application of a multilevel eigensolver. This idea was proven to be ro-

bust and to originate an AMG method with fast convergence for anisotropic Poisson

problems. However, it involves reconstruction of the multigrid hierarchy and would be

inefficient if used within the aSP-AMG framework given the aFSAI setup cost. More-

over, as shown recently by Brannick et al. [2018], the near-null space of A is not the
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optimal representation of smooth modes, instead they are given by the eigenmodes

corresponding to the smallest eigenvalues of

Ax = λM̃x, (5.8)

with M̃ the symmetrized preconditioner matrix. In aSP-AMG, we follow the last ap-

proach and search for an approximation of the eigenvectors related to the nt largest

eigenvalues of

(
I − ωGAGT

)
y = λ̄y (5.9)

→ S̄y = λ̄y, (5.10)

with S̄ the symmetrized smoother operator. Note that the Equations (5.8) and (5.10)

are related via M̃ = G, x = GTy and λ̄ = (1 − λ). The nt solutions x form the column

vectors of a test space matrix X . In aSP-AMG, we have three strategies for computing

the test space matrix as detailed below.

5.4.1 Power method

The simplest approach for solving Equation (5.10) for its largest eigenvalues in magni-

tude is a variant of the power method, presented by the Algorithm 9. This technique,

which belongs to the class of single-vector iteration methods, is based on the fact that

a vector which is multiplied repeatedly by a matrix tends to align in the direction of

the eigenvector associated to its dominant eigenvalue. In aSP-AMG, we assume that

this component gives the principal direction on what the smoother reduces the error

least efficiently and, thus, which should be well characterized by the formation of ro-

bust prolongation operators. Lastly, we note that the only input parameter needed for

configuring the power method is the number of iterations nit.

5.4.2 Plain Lanczos

The Lanczos method was originally proposed by Lanczos [1952] and was later en-

hanced with an explicit orthogonalization step for a better accuracy in finite precision
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Algorithm 9 Test Space generation by Power method.

1: procedure CPT_POWER(nt, nit, A, ω, G, GT )
2: for k = 1, nt do
3: Initialize xk to a random vector
4: for i = 1, nit do
5: xk ←

(
I − ωGAGT

)
xk

6: xk ← xk/ ||xk||2
7: end for
8: xk ← GTxk

9: end for
10: return X
11: end procedure

computations by Paige [1972] and Paige [1980]. In the context of aSP-AMG, it is used

to compute the upper part the eigenspectrum of S̃. The method starts with the obser-

vation that S̃ can be reduced it to a tridiagonal form T with size ns × ns, (ns << n) by

means of the three-term recurrence formula:

βkvk = S̃vk−1 − αk−1vk−1 − βkvk−2, (5.11)

with vk an arbitrary vector of unitary norm and the coefficients

αk = vT
k

(
S̃vk − βkvk−1

)
, and,

βk =
⏐⏐⏐⏐⏐⏐S̃vk−1 − αk−1vk−1 − βk−1vk−2

⏐⏐⏐⏐⏐⏐
2
,

(5.12)

such that the tridiagonal matrix T is written as

T =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α1 β2

β2 α2 β3

β3 α3
. . .

. . . . . . βns

βns αns

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (5.13)

Defining V = [v1,v2, · · · ,vns ], the following relation holds

S̃V − V T = βns+1vns+1e
T
m. (5.14)
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Multiplying the last equation by V T , we obtain:

V TAV = T, (5.15)

since the property V Tvns+1 = 0 holds by construction of the method. From Equa-

tion (5.15), we can conclude that T represents the orthogonal projection of S̃ onto the

Krylov subspace which allows for the computation of the Rayleigh-Ritz approxima-

tions of its eigenpairs. Let (λk, ek) be an eigenpair of T belonging to the upper part

of its eigenspectrum, then the Ritz value λk and the Ritz vector Vek can be taken as

approximations to the eigenpair of S̃.

The process described above is given by the Algorithm 10, which depends on the

following user-specified parameters:

1. nt, the dimension of the test space;

2. ns, the dimension of the trial space;

3. ϵt, the relative accuracy in estimating eigenpairs, i.e., (λ,v) is added to the test

space if it satisfies
⏐⏐⏐⏐⏐⏐S̃v − λv⏐⏐⏐⏐⏐⏐

2
≤ ϵt ||v||2.

5.4.3 Simultaneous Rayleigh Quotient Minimization (SRQCG)

If an approximation X0 for the (partial) near-null space of A is available beforehand, it

is natural to use this information as an initial guess for building a possibly larger test

space X . Knowing the physical problem that originates A usually can give a clue on

the matrixX0. For instance, when solving linear elasticity problems via a finite element

discretization, it is known that the rigid body modes constitute the kernel of the differ-

ential operator prior to application of the boundary conditions, thus, they can be used

to define X0. As a matter of fact, such information is essential to the effectiveness of

other methods like the aggregation-based AMG Adams [2002] and the deflation-based

preconditioning Frank and Vuik [2001]; Jonsthovel et al. [2013]; Baggio et al. [2017].

Given the limitation of the plain Lanczos and power methods on employing more

than a single initial vector for computing X , we propose the use of a Rayleigh quotient

minimization algorithm for this specific situation. The method is called Simultaneous
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Algorithm 10 Test Space generation by Lanczos.

1: procedure CPT_LANCZOS(nt, ns, ϵt, A, ω, G, GT )
2: Initialize x1 to a random vector
3: v1 ←

(
I − ωGAGT

)
x1

4: v1 ← v1/ ||v1||2
5: for i = 1, ns do
6: vi+1 ←

(
I − ωGAGT

)
vi

7: if (i > 1) then vi+1 ← vi+1 − βi−1vi−1 end if
8: αi ← vT

i+1vi

9: vi+1 ← vi+1 − αivi

10: βi ← ||vi+1||2
11: end for
12: Define T via Equation (5.13)
13: Solve the eigenvalue problem TE = EΛ
14: Set Ω as the indices associated with the nt largest eigenvalues from Λ
15: Set Ṽ as [v1,v2, · · · ,vns ] restricted to Ω
16: Set Ẽ as E restricted to Ω
17: for i = 1, nt do
18: if

⏐⏐⏐⏐⏐⏐S̃Ẽi − λẼi

⏐⏐⏐⏐⏐⏐
2
≤ ϵt

⏐⏐⏐⏐⏐⏐Ẽi

⏐⏐⏐⏐⏐⏐
2

then

19: Xi ← GT Ṽ Ẽi

20: end if
21: end for
22: return X
23: end procedure
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Rayleigh Quotient Minimization by Conjugate Gradients (SRQCG) and was introduced

by Longsine and McCormick [1980]. As the name clearly suggests, it is based in the

minimization of Rayleigh quotients over several independent vectors simultaneously.

A conjugate gradient technique is then used to form each new vector through the linear

combination of current iterates and correction vectors. Moreover, as in other subspace-

based methods, SRQCG uses Ritz projections to accelerate convergence.

The SRQCG method is described by the Algorithm (11). For a practical investiga-

tion of SQRCG through numerical experiments based on real-world applications, we

refer the reader to the works by Bergamaschi et al. [2006, 2012] and Ferronato et al.

[2012b]

5.5 Affinity-based coarsening

Numerous coarsening algorithms have been developed over the years such as classi-

cal Ruge-Stüeben (RS), Cleary-Luby-Jones-Plasman (CLJP), Parallel Maximal Indepen-

dent Set (PMIS) and Hybrid MIS (HMIS) Yang [2006]. All of them rely on the concept

of strength of connection (SoC), which measures the influences exerted between two

neighboring nodes. The commonly used definition of strength of connection, how-

ever, is based on the assumption that A is an M-matrix or it is applied to the M-matrix

relative of A which jeopardizes its applicability to more general discretizations. In aSP-

AMG, we employ another definition of SoC based on the concept of affinity recently

introduced by Livne and Brandt [2012], that we believe more flexible and with a wider

range of applicability.

Affinity-based SoC requires the availability of a suitable test space X , i.e, with its

column vectors representing the smooth modes. Our current implementation is able

to both take advantage of an already existing test space, if available, or estimating it

through the algorithms discussed in section 5.4. In any case, let us denote as xT
i the i-th

row vector of X . The connection strength between two adjacent degrees of freedom i

and j is given by

SoC[i, j] =

(
xT
i xj

)2(
xT
i xi

) (
xT
j xj

) . (5.16)



Chapter 5. Adaptive Smoothing and Prolongation based AMG 105

Algorithm 11 Test Space generation by SRQCG.

1: procedure CPT_SRQCG(nt, nit, A, G, GT , X0)
2: Z0 ←

(
I −GAGT

)
X0

3: Orthogonalize the column vectors of Z0

4: SZ0 ← GAGTZ0

5: β0 = 0; P0 = 0
6: for k = 1, nit do
7: for i = 1, nt do
8: qk−1,i ← (SZk−1,i)

T Zk−1,i

9: Rk−1,i ← SZk−1,i − qk−1,iZk−1,i

10: if k > 1 then
11: βk−1 ← 2 (SPk−1,i)

T (Rk−1,i)
/
nk−1,i

12: end if
13: Pk,i ← 2Rk−1,i − βk−1Pk−1,i

14: SPk,i ← GAGTPk−1,i

15: mk,i ← (SZk,i)
T (Pk,i)

16: nk,i ← (SPk,i)
T (Pk,i)

17: pk,i ← (Zk,i)
T (Pk,i)

18: qk,i ← (Pk,i)
T (Pk,i)

19: rk,i ← (SZk,i)
T (Zk,i)

20: a0 ←mk,i − pk,irk,i
21: a1 ← qk,irk,i − nk,i

22: a2 ← nk,ipk,i −mk,iqk,i

23: αk,i ←
(
a1 +

√
a21 − 4a2a0

)/
2a2

24: Zk,i ← Zk,i + αk,i (Pk,i)
25: SZk,i ← SZk,i + αk,i (SPk,i)
26: end for
27: Dk ← ZT

k (SZk)
28: Ek ← ZT

k Zk

29: Solve DkUk = EkUkΛk

30: Zk ← ZkUk

31: SZk ← (SZk)Uk

32: end for
33: X ← GTZnit

34: Orthogonalize the column vectors of X
35: return X
36: end procedure
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Algorithm 12 F/C splitting based on MIS

1: procedure CPT_FCSPLITTING(n, X , SoC, C, F)
2: for i = 1, n do
3: nrmxi ← ||Xi,:||2
4: end for
5: Put nrmx in descending order stored as idx;
6: Set C = ∅ and F = ∅;
7: for k = 1, n do
8: i = idxk
9: if i is a Free node then

10: C ← C ∪ i
11: for all strong neighbors j of i do
12: if i is a Free node then F ← F ∪ j; end if
13: end for
14: end if
15: end for
16: end procedure

With this definition, the strength of connection matrix SoC is formed initially on the

same pattern of A and then filtered by dropping weak connections. Coarse nodes are

finally chosen by finding a maximum independent set (MIS) of nodes on the filtered

adjacency graph. Unfortunately, affinity-based SoC gives usually rise to connections

whose numerical values are distributed in a narrow interval, so it is tricky to define an

absolute threshold for dropping. For this reason, we prefer to control the sparsity of the

SoC matrix, and thus the rapidity of coarsening, by specifying the integer parameter:

• θ, the average number of connections per node,

that is we prescribe the maximum number of entries in SoC.

5.6 Prolongation operators

Once the coarsening stage is concluded and the coarse unknowns are selected, we

can define the prolongation operator P . To achieve an effective two-grid method, it

is crucial to compute a prolongation whose action is complementary to the fine level

smoother, that is, P should be able to accurately represent slow converging modes

of the error. In this section, we present three new techniques for building P where the

first two rely on approximating the ideal prolongation operator Falgout and Vassilevski

[2004], while the last one approximates the optimal prolongation Brannick et al. [2018].
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5.6.1 Adaptive Block FSAI (ABF)

For a given F/C splitting of variables, the ideal prolongation is the absolute minimizer

of a weak approximation property Falgout and Vassilevski [2004]; Vassilevski [2008].

Recalling the form (5.3) of the prolongation, it can be completely defined by

Wideal = −A−1
ffAfc. (5.17)

Although being attractive from a convergence viewpoint, the direct use of such oper-

ator is impractical. The simple reason is that computing A−1
ff explicitly or its action

to an arbitrary vector is expensive and, in most practical cases, leads to dense Wideal

operators. In many AMG methods, prolongation operators are designed to target the

ideal form Wideal while maintaining sparsity and cheap setup. For instance, the stan-

dard interpolation employs a prescribed pattern to W and a few Jacobi or Gauss-Seidel

to improve its quality Trottenberg et al. [2001]; also, in Olson et al. [2011], diverse

energy-minimization techniques are proposed to approximate Wideal through a root-

node multigrid type Manteuffel et al. [2017]. It can be shown, see e.g., Theorem 12.2

Xu and Zikatanov [2017], that computing the ideal interpolation (5.17) is equivalent to

solving the trace minimization problem:

P ∗ = argmin
P∈P

tr(P TAP ) (5.18)

where P represent the set of n× nc matrices of the form specified in (5.3). In the Adap-

tive Block Factorization (ABF) prolongation, we propose an approximation of Wideal

based on the work by in Janna and Ferronato [2011] where an adaptive procedure is

developed for minimizing each entry [FAF T ]ii for any i ∈ {1, . . . , n} with F a block

lower triangular matrix (see Theorem 2.4, Janna and Ferronato [2011]). The analogy

with ideal prolongation is readily found by considering a matrix F partioned in two

blocks with dimensions nf and nc, respectively, such that:

F =

⎡⎢⎣Inf
0

F̃ Inc

⎤⎥⎦ (5.19)
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Due to the format of F , the following identity holds:

tr(FAF T ) = tr(Aff ) +
∑
i∈C

[FAF T ]ii, (5.20)

which shows that reaching the minimum of each [FAF T ]ii is equivalent to choosing

F̃ =Wideal. Using an approach similar to the one presented in Franceschini et al. [2018],

we approximate the ideal prolongator by running a few iterations of the Algorithm 1

with configuration parameters kp, ρp and ϵp, where in place of gi we compute wT
i , the

i-th row of W .

5.6.2 Dynamic Pattern Least Squares (DPLS)

The latter method usually provides a fast AMG cycle in terms of convergence; however,

at the cost of a dense sparsity pattern for W . For this reason, we developed another

strategy for computing the prolongation operator where the nonzero pattern of W is

selected through a least squares minimization procedure inspired by the work Brandt

et al. [2011].

A common way to select the nonzero pattern of W is to choose for each row vec-

tor wT
i of W nonzero coefficients in correspondence to coarse nodes with a sufficiently

small connecting path to i. Usually, a length equal to two is already enough for build-

ing good operators when using moderate coarsening ratios, while distance three might

be used in case of aggressive coarsening. Normally, to limit the number of nonzeroes in

W , only strong connections are considered. However, the connectivity of the strength

of connection matrix may vary significantly, especially in difficult problems, with the

consequence that an a priori selected nonzero patterns may give rise to both overde-

termined and underdetermined row systems. The first occurrence causes unnecessary

large operator complexity, while the latter prevents the construction of an effective

prolongation as the target range cannot be represented locally. Very often, to avoid the

second occurrence, it is necessary to include long-distance neighbors, thus producing

dense prolongation that needs to be post-filtered in order to limit setup and application

costs.
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With the Dynamic Pattern Least Squares (DPLS), we propose an iterative proce-

dure, showing some analogies with approximate inverses Grote and Huckle [1997];

Janna and Ferronato [2011], that constructs the prolongation pattern dynamically dur-

ing setup. Its first stage is very similar to the static pattern selection of FSAI. For any

fine node i, we choose a set of coarse nodes that can be reached from i with a path of

strong connections shorter than a given distance dp, and form the set Ji of potential

column indices to be considered in row wT
i . The set Ji is intentionally larger than what

is really needed and the selection procedure can be efficiently implemented through a

level set traversal starting from i. Once Ji is formed, the problem is to choose a fixed

number k of entries j ∈ Ji such that there exists a linear combination of vj giving the

best possible approximation of vi in the Euclidean norm sense. When k = 1, the op-

timal solution is easily found by selecting the index j̄ for which the angle comprised

between vi and vj̄ is minimal or, in other words, the affinity

αij̄ =
|vT

i vj̄ |
||vi||2

⏐⏐⏐⏐vj̄

⏐⏐⏐⏐
2

(5.21)

is maximal. To choose the second most promising entry, it is necessary to update the

affinity estimate by removing the components of both vi and all the vj along vj̄ . This

operation is crucial, since, if not present, another connection carrying similar informa-

tion of node j̄ could be added to the pattern of P . Orthogonalization can be conve-

niently carried out by applying Householder reflections to vi and all the remaining vj .

Given a vector u ∈ Rn, the rotation matrix Q nullifying its components from k + 1 to n

is given by

Q = I − 2hhT , (5.22)

where h = z / ||z||2 is a unit vector obtained from z whose components statisfy:

zi =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0, if i < k;

ui + sign(ui)×
√

n∑
j=k

u2j , if i = k;

ui, if i > k.

(5.23)

The selection of interpolating coarse nodes fromJi continues until the desired accuracy
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FIGURE 5.3: Practical demonstration of Algorithm 13 with numerical
values taken from a linear elasticity test case. We want to find the in-
terpolation weights for the central fine node F, depicted in brown. In
this example, we set dp = 2 and ϵp = 10−2. Initially, i.e., upper right
frame, we find the set of nodes that are strongly connected to F with al-
gebraic length up to dp. Note that the first level neighbors are depicted
in green while the second level neighbors, blue. Then, in frame (2), the
set of interpolation candidates Ji and the row vectors xi are gathered
from the test space matrix. In (3), we compute the affinities of xi for
i = {2, 3, · · · , 7} with respect to x1 and select the coarse node with the
biggest one as the first interpolation node. In frame (4a), the affinities are
updated according to the Householder reflection defined by Equation
(5.22) and, again, the coarse candidate with the biggest value is included
in the set J i. This procedure is repeated in frame (4b), where conver-
gence according to Equation (5.24) is finally met. Lastly, in frame (5), the

interpolation weights for the selected coarse nodes are computed.

is reached, that is the relative difference between vi and the optimal linear combination

of selected vj falls below a prescribed tolerance:

⏐⏐⏐⏐⏐⏐
⏐⏐⏐⏐⏐⏐vi −

∑
j∈J i

βjvj

⏐⏐⏐⏐⏐⏐
⏐⏐⏐⏐⏐⏐
2

≤ ϵp ||vi||2 (5.24)

where J i ⊆ Ji contains only the selected entries. Obviously, if k reaches nt, the vector

vi is perfectly matched and the procedure stops anyway. For a better understanding,

we provide in Figure 5.3 a practical example of the procedure just described.

In summary, the DPLS prolongation is controlled by the user-defined parameters:

1. dp, the maximum path length for interpolation among fine and coarse nodes;
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Algorithm 13 Dynamic Pattern Least Squares Prolongation

1: procedure DPLS_SETUP(dp,ϵp,Sc,Vf ,Vc,W )
2: for all nodes i ∈ F do
3: k ← 0; Ci ← ∅; r← vi; vi ← vi

4: Form Ji ← {j ∈ C | there is a path from i to j shorter than dp}
5: while ∥r∥ ≥ ϵp∥vi∥ do
6: k ← k + 1
7: Select j̄ ∈ Ji \ Ci for which vj has maximal affinity with r
8: Update Ci ← Ci ∪ {j̄}
9: Compute the Householder reflection operator Q by Equation 5.22

10: Compute r← Q r
11: for all j ∈ Ji \ Ci do
12: Compute vj ← Qvj

13: end for
14: end while
15: Form the nt × k upper triangular matrix R collecting vj , for all j ∈ Ci
16: Compute wi ← R−1r
17: end for
18: end procedure

2. ϵp, the relative exit tolerance in the iterative procedure.

Note that, with no danger of confusion, we use the same symbol ϵp for both ABF and

DPLS. Lastly, we present in Algorithm 13 the complete procedure for computing such

prolongation operator.

The ability of DPLS prolongation to adapt to the problem at hand is shown in Fig-

ure 5.4 where an anisotropic diffusion problem is considered. The Poisson equation is

solved on a two-dimensional square domain characterized by different diffusion ten-

sors in the four regions NE, NW, SE and SW. SW is isotropic, while in the other regions

a ratio of 100 between diffusivities in orthogonal directions and a different slope are

used. Figure 5.4 (right) shows how aSP-AMG follows the material properties.

5.7 Numerical results

In this section, we present an analysis of the aSP-AMG preconditioner in two stages.

First, the impact of the configuration parameters in its performance is studied consid-

ering the solution of three model problems. Next, the computational performance of

aSP-AMG in terms of CPU time and memory occupation is evaluated considering a set

of SPD sparse matrices arising from real-world engineering applications. Moreover, we
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FIGURE 5.4: Anisotropic diffusion problem. Computational grid (left),
adjacency graph of the DPLS prolongation (right).

compare our new method with three other preconditioners, namely the native aFSAI

algorithm, as implemented in the FSAIPACK package Janna et al. [2015b]; Boomer-

AMG, as provided by the Hypre package, version 2.13 Falgout and Yang [2002] and

GAMG, a smoothed aggregation algebraic multigrid implementation present from the

PETSc package, version 3.9.0 Balay et al. [2018].

The right hand side vector used in the test cases discussed here are unitary. The

linear systems are solved by the preconditioned conjugate gradient method (PCG) with

initial solution equal to the null vector. Lastly, convergence is considered achieved

when the PCG iterative residual becomes smaller than 10−10 · ||b||2.

To evaluate the memory occupation and the cost for applying aSP-AMG in a single

V-cycle, we use the classical definition of operator and grid complexities, shown in

equations (5.25) and (5.26), respectively:

Cop =

nl∑
l=1

nnz (Al)
/

nnz (A1), (5.25)

Cgd =

nl∑
l=1

nrows (Al)
/

nrows (A1). (5.26)

The first accounts for the space needed to store the sparse systems belonging to the

multigrid hieararchy while the second measure is related to the size of auxiliary vectors

employed in the preconditioner application. Moreover, the grid complexity also gives
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an idea of how fast unknowns are coarsened in the multilevel hierarchy and can be

easily related to the average grid contraction factor ravg by the following expression:

Cgd =
nl∑
l=1

rlavg =
1− rnlavg

1− ravg
. (5.27)

The third measure is the cycle complexity which is borrowed from the work Man-

teuffel et al. [2017]. This gives an estimate of the application cost of one multigrid cycle

in comparison to the cost of one SpMV operation involving the original matrix A. This

quantity accounts for the cost of application of the smoother and interpolation opera-

tors as well as the residual computations present in the algorithm 8. It is also dependent

on the type of multigrid cycle used and for the V-cycle it is given by

Ccv =

[
nl∑
l=1

(1 + νT )nnz (Al) + 2
nl−1∑
l=1

(νT )nnz (Fl) + nnz (Pl)

]/
nnz (A1), (5.28)

in which the variable νT is equal to ν1 + ν2, i.e., the total number of pre and post-

smoothing steps per level.

Lastly, we consider the aFSAI density µG, i.e. the ratio between the nonzeroes in

the G factor and the nonzeroes in A, which gives an idea of the cost for storing as well

as for applying of aFSAI preconditioner:

µG =
nnz (G)
nnz (A)

. (5.29)

When aFSAI is considered as a smoother, its density is simply given by an average

through levels:

µG =

nl−1∑
l=0

nnz (Gl)

nl−1∑
l=0

nnz (Al)

. (5.30)

We stress once more that our focus is not on the parallelism of the proposed ap-

proach but on its algorithmic definition. Nevertheless, to show that there are no obsta-

cles to its parallelization, we present a shared memory implementation developed by
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using OpenMP directives and run all the tests on a workstation equipped with two In-

tel Xeon E5-2643 processors at 3.30GHz with 4 cores each and 256 GB of RAM memory.

5.7.1 Sensitivity analysis

The proposed solver depends upon a considerable number of user-defined parame-

ters that varies according to the strategies selected for computing each of its building

blocks. Then, it is desirable to understand which of these parameters play a significant

role in the construction of an efficient preconditioner as well as their range of suitable

values. For this reason, we run a sensitivity analysis on aSP-AMG by testing several

setup configurations and applying the resulting preconditioner for the solution of three

model problems that exhibit laborious characteristics from the numerical viewpoint.

To better understand the relative impact of each parameter, we vary only one or few of

them at a time, leaving the other unchanged to the “default” values listed in Table 5.1.

TABLE 5.1: Default parameters for the sensitivity analysis.

Phase Method Parameter Value

Smoother aFSAI
kg 5
ρg 3
ϵg 10−2

Test Space Lanczos
nt 10
ns 100
ϵt 10−1

Coarsening Affinity-based θ 5

Prolongation
ABF

kp 20
ρp 1
ϵp 10−2

DPLS
dp 2
ϵp 10−2

A detailed description of the model problems is given below

P1: a three-dimensional Poisson simulation (∇ · (K∇u) = 0) on a unitary cube com-

posed by two anisotropic materials, namely soft and hard, that are disposed in a
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16× 16× 16 checkboard pattern with conductivity matrices given by

Ksoft =

⎡⎢⎢⎢⎢⎣
10.0 5.0 2.0

5.0 8.0 2.0

2.0 2.0 2.0

⎤⎥⎥⎥⎥⎦ , and Khard =

⎡⎢⎢⎢⎢⎣
1.0 0.8 0.2

0.8 0.5 0.4

0.2 0.4 4.0

⎤⎥⎥⎥⎥⎦ . (5.31)

The boundary faces located on theXY , andXZ planes are impermeable (∇u·n =

0) while the remaining ones on plane Y Z show dirichlet boundary conditions

equal to 0 and 1 for x = 0 and x = 1, respectively. The domain is discretized with

262, 144 (64× 64× 64) linear hexahedral elements leading to a sparse matrix with

274, 625 rows and 7, 189, 057 nonzero terms. The Figure 5.5 ilustrates the problem

geometry and mesh on the left and a plot of the resultant sparse matrix on the

right.
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0
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FIGURE 5.5: Left: the discretized domain of problem P1 with colors rep-
resenting different materials. Right: sparsity pattern of the pertinent
discretization matrix colored according to the order of magnitude of the
nonzero coefficients. The last matrix coefficients depicted in dark red

represent the boundary conditions.

P2: a three-dimensional linear elasticity problem where the Cauchy indefinite equi-

librium equations are solved on a cube with unitary edges. The domain is firstly

discretized with 1,193 linear tetrahedral finite elements and the bottom face is

completely fixed as boundary condition. A constant Poisson ratio ν = 0.3 is as-

sumed while the Young modulus E varies in the range [10−α, 10α], with α = 3.

For each element, Ei is computed drawing σi from a uniform distribution and

computing Ei = 10σi . Once the material properties are defined in the whole
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domain, the mesh is refined thus generating 610,816 tetrahedra with every new

finite element inheriting the material properties of the original tetrahedron in

which it is located. In such a way, we have homogeneous aggregates of finite

elements with jumps in the material properties among aggregates. The final num-

ber of unknowns and nonzero entries for this matrix are 393,102 and 15,767,442,

respectively. Figure 5.6 provides the FE mesh with different colors used to distin-

guish materials.
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nnz: 15,767,442 log(|Aij|)
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FIGURE 5.6: Distribution of the Young modulus across the domain of
the problem P2.

P3: mechanical equilibrium of a heterogeneous cylinder composed by four coaxial

layers of different materials. The cylinder has unitary diameter and height and

it is under compression in the top face by a uniformly distributed pressure of

10MPa and clamped in the bottom face. Linear elasticity equations are used to

model the equilibrium of forces on this structure. Mechanical properties refer-

rent to the layers as well as their limits are provided in Table 5.2 The mesh is built

TABLE 5.2: Materials properties and layers limits for problem P3. ri and
ro denotes the inner and outer radius of each layer, respectively; E and
ν are the Young modulus and Poisson’s coefficient of the material.

Layer ri[m] ro[m] E[GPa] ν

1 0.00 0.10 1.0 0.35
2 0.10 0.25 10.0 0.45
3 0.25 0.40 0.1 0.25
4 0.40 0.50 1.0 0.20

with Gmsh Geuzaine and Remacle [2009] by using the default program options
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and a maximum element size of 0.1 which gives 590,266 tetrahedron. Discretiza-

tion of the mathematical model is done by first order continuous Galerkin FEM

which generated a sparse matrix with 316, 623 rows and 13, 851, 585 nonzero co-

efficients. In Figure 5.7 we show the deformed configuration of the body as well

as a sparsity pattern plot of the matrix.
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FIGURE 5.7: Left: a cross-section of the deformed mesh colored with the
magnitude of the displacement vector after the solution of P3. Right:
sparsity pattern of the matrix relative to P3 where the colors indicate the

values of the nonzero coefficients.

In particular, we provide the following information in each analysis:

• nl: number of levels;

• Cgd: grid complexity;

• Cop: operator complexity;

• Cfs: aFSAI complexity;

• nit: number of iterations for convergence;

• Tts: time spent in the test space calculation phase;

• Tcs: time spent in the coarsening phase;

• Tsm: time spent in the aFSAI smoother calculation phase;

• Tpl: time spent in the prolongation computation phase;

• Tp: time spent in the setup of aSP-AMG;
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• Ts: time spent in the solver application;

• Tt: total solution time spent until convergence.

We start the sensitivity analysis by varying the input parameters for building the

smoother. Six configurations are used and the results obtained are shown in Table 5.3.

The first and simplest configuration gives rise to a weighted Jacobi relaxation, mean-

while the following ones calculate aFSAI factors G with increasing density. From Table

5.3, we see that the iteration counts for all test problems reduce when Cfs increases,

i.e., the situation where more accurate aFSAI factors are computed. We note that such

effect is basically driven by increasing kg and ρg or decreasing ϵg. We see also that the

smoother has little impact on the multigrid hierarchy since the grid and operator com-

plexities remain practically constant for each test problem. As shown by Janna et al.

[2015b], the setup cost of G is proportional to the fourth power of its average number

of nonzeros per row, thus, the smoother setup cost can be high even for small values

of kg. In fact, the smoother calculation time Tsm increases with Cfs up to the point of

representing more than 90% of the total solution time Tt as for the last configuration.

This leads to the conclusion that an efficient aFSAI smoother must be associated with

a sufficiently sparse factor G with cheap computation cost while maintaining a good

smoothing property. In particular, we note that the second configuration provides the

most efficient option one for all problems, except for P1 since, due to its simplicity,

weighted Jacobi has proven to be the most efficient relaxation option. Such configura-

tion is in close accordance with the one considered in Table 5.1.

For the test space computation, we divide the sensitivity analysis in three steps

by considering first the Lanczos method given by Algorithm 10 and later, the SRQCG

method given by Algorithm 11 with different initial guesses for the test space X0. For

the Lanczos method, the input parameters being varied are the number of test vectors

nt, the dimension of the Lanczos space nv, and the convergence tolerance ϵs. Seven

configurations are tested and the results obtained are showed in Table 5.4. Although

the grid and operator complexities are more affected by the test space selection than by

the smoother, such effect is still small. The same observation can be verified for Cfs. In
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TABLE 5.3: aSP-AMG sensitivity to the smoother selection.

Test
case

Parameters Results

kg ρg ϵg Cgd Cop Cfs nit Tts[s] Tcs[s] Tsm[s] Tpl[s] Tp[s] Ts[s] Tt[s]

P1 0 1 100 1.97 2.54 0.30 38 1.2 0.8 0.0 0.1 2.2 0.8 3.0
5 1 100 2.00 2.53 1.77 26 1.9 1.0 1.5 0.2 4.7 0.9 5.6
5 3 100 2.01 2.53 4.74 20 1.9 0.7 2.2 0.1 5.1 0.7 5.8

10 3 10−3 2.02 2.51 9.05 20 2.9 0.8 10.3 0.2 14.2 0.9 15.1
30 1 10−3 2.02 2.54 7.84 19 2.5 0.7 19.4 0.1 22.8 0.8 23.6
30 3 10−3 2.04 2.49 17.00 16 3.9 0.7 46.8 0.1 51.6 1.1 52.6

P2 0 1 100 1.81 2.66 0.18 687 2.4 2.0 0.0 0.4 5.0 34.5 39.5
5 1 100 1.81 2.93 1.01 127 3.3 2.4 2.4 0.5 8.5 7.8 16.3
5 3 100 1.81 2.97 2.62 87 4.9 3.4 6.1 0.7 15.1 7.0 22.1

10 3 10−3 1.81 3.00 4.12 65 5.3 2.6 15.4 0.5 23.8 5.6 29.4
30 1 10−3 1.81 3.02 2.86 74 4.4 2.5 26.2 0.5 33.6 5.9 39.5
30 3 10−3 1.81 3.02 6.74 52 6.5 2.8 91.2 0.5 101.1 5.6 106.7

P3 0 1 100 1.68 3.02 0.15 184 2.7 2.7 0.0 0.6 6.1 8.1 14.2
5 1 100 1.70 3.02 0.92 90 3.1 2.7 2.2 0.6 8.6 4.7 13.3
5 3 100 1.70 2.99 2.45 76 3.6 2.6 4.5 0.6 11.4 5.2 16.6

10 3 10−3 1.71 2.95 4.70 61 3.5 1.8 12.5 0.4 18.2 4.0 22.2
30 1 10−3 1.71 2.96 4.13 60 3.5 1.8 30.4 0.4 36.1 3.7 39.9
30 3 10−3 1.72 2.90 10.39 41 5.3 1.7 83.0 0.4 90.5 3.8 94.3

terms of iteration count, the results for P1 are very similar, however, we see that the re-

maining test cases require more test vectors for a better convergence as long as smaller

accuracy in their calculation is allowed, i.e., small values of ϵs. The cost of computing

the test space, measured by Tts, increases fast with the Lanczos dimension and the de-

fault configuration value for nv gives the smallest computation times. Overall, the test

space computation cost can represent up to 80% of the total solution time, while the

optimal test space configuration represents nearly 25− 40% of Tt.

One of the main drawbacks of the Lanczos method is the fact that it does not allow

the use of a priori knowledge about the near-null space components of A. With the

SRQCG method, presented in section 5.4.3, an initial guess X0 can be used for comput-

ing the test space matrix. Now, we evaluate such strategy in two different scenarios:

first, a random initial guess is considered, while, in the second, the rigid body modes,

which are the nullspace components of the linear elasticity operator prior application

of the boundary conditions, are used. Table 5.5 gives the results for the first case. In

terms of iteration count, we note that the SQRCG gives slightly better results than Lanc-

zos, also, the total solution times of the fastest runs are pretty similar to the fastest runs
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TABLE 5.4: aSP-AMG sensitivity to the test space selection - Algorithm
10.

Test
case

Parameters Results

nt nv ϵs Cgd Cop Cfs nit Tts[s] Tcs[s] Tsm[s] Tpl[s] Tp[s] Ts[s] Tt[s]

P1 10 100 10−1 2.11 2.17 4.97 21 2.0 0.6 2.1 0.1 4.9 0.7 5.6
20 100 10−1 2.07 2.31 4.88 20 2.6 0.7 2.1 0.1 5.5 0.7 6.2
30 100 10−1 2.02 2.41 4.78 19 3.6 1.0 2.7 0.2 7.7 0.8 8.5
10 150 10−1 2.12 2.14 5.00 20 3.3 0.8 2.8 0.2 7.0 0.9 7.9
30 200 10−1 2.08 2.29 4.92 19 6.3 0.9 2.8 0.2 10.3 0.8 11.1
30 200 10−2 2.06 2.35 4.86 18 15.6 1.0 2.7 0.2 19.6 0.8 20.4
30 200 10−3 2.10 2.24 4.95 20 18.9 0.9 2.8 0.2 22.9 0.9 23.8

P2 10 100 10−1 1.92 2.23 2.61 121 4.6 1.8 4.0 0.3 10.8 10.9 21.7
20 100 10−1 1.91 2.26 2.59 118 6.2 2.1 4.5 0.5 13.3 7.8 21.1
30 100 10−1 1.89 2.31 2.57 119 9.0 2.1 4.4 0.5 16.1 8.0 24.0
10 150 10−1 1.91 2.27 2.60 109 6.6 2.0 4.6 0.4 13.6 9.9 23.5
30 200 10−1 1.86 2.54 2.54 86 11.8 2.7 4.6 0.6 19.8 6.4 26.2
30 200 10−2 1.89 2.44 2.57 146 25.8 2.0 3.8 0.4 32.1 10.0 42.1
30 200 10−3 1.94 2.23 2.63 314 27.5 1.7 4.0 0.3 33.7 20.7 54.4

P3 10 100 10−1 1.79 2.33 2.58 114 3.4 1.7 3.6 0.4 9.2 7.0 16.2
20 100 10−1 1.69 2.93 2.44 64 4.3 2.7 3.8 0.7 11.5 4.4 16.0
30 100 10−1 1.66 3.08 2.39 62 4.3 2.1 3.0 0.5 10.0 3.4 13.4
10 150 10−1 1.83 2.20 2.63 105 4.4 1.6 3.5 0.3 9.9 6.4 16.3
30 200 10−1 1.69 2.91 2.43 59 9.0 2.6 4.4 0.6 16.7 3.4 20.1
30 200 10−2 1.78 2.64 2.56 213 20.1 1.8 3.4 0.5 25.8 10.7 36.5
30 200 10−3 1.89 2.32 2.73 220 17.9 1.3 3.0 0.3 22.6 10.8 33.4
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given by the Lanczos method. From these results we see that even if a innacurate ap-

proximation of the near-null space components are used, the SRQCG method can still

find a sufficiently good test space matrix.

TABLE 5.5: aSP-AMG sensitivity to the test space selection - Algorithm
11 with random initial guess X0.

Test
case

Parameters Results

nt nit ϵ Cgd Cop Cfs nit Tts[s] Tcs[s] Tsm[s] Tpl[s] Tp[s] Ts[s] Tt[s]

P1 6 5 10−1 2.06 2.25 1.22 17 1.0 0.8 2.7 0.1 4.8 0.8 5.6
6 10 10−1 2.08 2.20 1.23 18 1.0 0.7 2.5 0.1 4.6 0.8 5.3
6 30 10−1 2.08 2.20 1.23 18 0.9 0.6 2.1 0.1 3.9 0.6 4.5

10 10 10−1 2.08 2.24 1.23 16 1.5 0.6 2.2 0.1 4.6 0.6 5.2
20 10 10−1 2.07 2.29 1.22 14 3.9 0.9 2.8 0.2 8.0 0.6 8.6
30 10 10−2 2.07 2.31 1.22 14 7.4 0.9 2.6 0.2 11.3 0.5 11.8
30 10 10−3 2.07 2.31 1.22 14 6.8 0.8 2.1 0.1 10.1 0.5 10.7

P2 6 5 10−1 1.76 2.89 0.61 184 2.0 3.5 4.8 0.7 11.7 17.9 29.6
6 10 10−1 1.78 2.85 0.61 163 1.5 2.3 3.9 0.5 8.8 11.6 20.4
6 30 10−1 1.79 2.76 0.62 142 2.7 2.4 4.0 0.5 10.4 10.2 20.5

10 10 10−1 1.77 2.90 0.61 115 3.9 3.4 4.7 0.7 13.6 11.3 24.8
20 10 10−1 1.76 2.97 0.61 97 7.3 3.5 4.5 0.8 17.0 7.2 24.2
30 10 10−2 1.76 2.94 0.61 89 14.3 3.6 4.7 0.8 24.2 8.7 33.0
30 10 10−3 1.76 2.94 0.61 89 12.6 2.8 4.2 0.7 21.0 6.4 27.5

P3 6 5 10−1 1.68 2.89 0.60 126 1.4 2.6 3.8 0.6 8.8 8.6 17.4
6 10 10−1 1.70 2.84 0.61 90 1.6 2.5 3.8 0.5 8.8 4.7 13.5
6 30 10−1 1.74 2.65 0.63 74 2.0 1.5 2.9 0.3 7.2 3.8 11.0

10 10 10−1 1.68 2.91 0.61 66 2.4 2.2 3.5 0.6 9.0 3.5 12.6
20 10 10−1 1.68 3.01 0.60 58 5.1 2.2 3.5 0.5 11.7 3.1 14.8
30 10 10−2 1.68 2.99 0.60 54 10.0 2.8 3.8 0.7 17.8 3.7 21.5
30 10 10−3 1.68 2.99 0.60 54 8.8 2.2 3.5 0.5 15.4 2.9 18.4

In Table 5.6, we show results for the case of using the rigid body modes as an initial

guess for Algorithm 11. Since this makes sense only for linear elasticity problems,

results for the test case P2 are ommitted. Initially, we note that the grid, operator and

aFSAI complexities follow the same trend as in the last scenario. If only 6 components

are used, which is the number of rigid body modes for the three-dimensional test cases,

the initial guess gives a sufficiently good approximation toX lowering the computation

time of the test space Tts and, consequently, decreasing the total run time Tt. In case

more test vectors than the ones provided by X0 are used, the performance of SRQCG

is practically the same wheter using an initial guess X0 or not.

In Table 5.7, we show the sensitivity analysis of aSP-AMG with respect to its coars-

ening calculation phase. We want to test the performance of the method when the
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TABLE 5.6: aSP-AMG sensitivity to the test space selection - Algorithm
11 with X0 given by the rigid body modes.

Test
case

Parameters Results

nt nit ϵ Cgd Cop Cfs nit Tts[s] Tcs[s] Tsm[s] Tpl[s] Tp[s] Ts[s] Tt[s]

P2 6 5 10−1 1.93 2.15 0.66 151 1.7 1.9 4.5 0.4 9.2 13.6 22.8
6 10 10−1 1.94 2.16 0.66 153 2.3 1.9 4.6 0.4 9.7 13.9 23.6
6 30 10−1 1.93 2.16 0.66 153 1.5 1.3 3.7 0.2 7.4 10.2 17.6

10 10 10−1 1.80 2.67 0.62 101 2.9 2.8 4.6 0.6 11.6 7.7 19.3
20 10 10−1 1.76 2.93 0.61 84 7.2 3.4 5.7 0.8 17.9 6.1 24.0
30 10 10−2 1.77 2.93 0.61 80 14.4 3.6 4.8 0.8 24.4 7.8 32.2
30 10 10−3 1.77 2.93 0.61 81 11.1 2.5 4.0 0.5 18.9 5.9 24.8

P3 6 5 10−1 1.80 2.15 0.65 90 0.8 1.1 2.9 0.2 5.3 4.2 9.5
6 10 10−1 1.81 2.14 0.65 88 0.9 1.1 2.9 0.2 5.4 4.1 9.5
6 30 10−1 1.81 2.14 0.65 88 1.4 1.5 3.5 0.3 7.2 5.0 12.2

10 10 10−1 1.74 2.65 0.62 66 1.6 1.6 3.0 0.3 6.9 3.4 10.3
20 10 10−1 1.69 2.95 0.61 56 4.1 1.9 3.1 0.5 9.9 3.0 12.9
30 10 10−2 1.68 2.97 0.60 53 7.8 1.9 3.0 0.5 13.7 2.8 16.5
30 10 10−3 1.68 2.97 0.60 53 10.0 2.8 3.8 0.7 17.8 3.7 21.4

average number of strong connections per node θ from a lower bound equal to 2 up to

an upper bound equal to 8. A common behavior to all numerical runs is the decrease

in the grid and operator complexities when increasing the value of θ, followed by a

slightly increase in the total solution time. Moreover, looking at the iteration counts

we conclude that the preconditioning operator quality deteriorates when increasing θ

towards 8. As expected, the parameter θ affects mostly the coarsening time. However,

it is worth noting that the test space and smoother computation times (Tts and Tsm) are

influenced indirectly by the way that the multigrid hierarchy is built, and consequently,

by the value of θ. In summary, we see that such parameter has a significant effect in all

setup phases aSP-AMG and therefore is an important parameter in our method. More-

over, we note that the default choice of θ lead to a satisfactory performance in all test

cases.

In table 5.8, the DPLS prolongation parameters are varied. It is seen that both dp and

ϵp are important. A too large value of dp, e.g. dp = 3, causes a serious increase of the

operator complexity, with a larger preconditioning time, which is not counterbalanced

by a consequent reduction in the number of iterations. If ϵp is too high, e.g. ϵp = 10−1,

the prolongation is inaccurate and the AMG-cycle becomes ineffective.

In table 5.9, the ABF prolongation is tested. Despite the fact that both the number of
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TABLE 5.7: aSP-AMG sensitivity to the coarsening variable.

Test
case

Param. Results

θ Cgd Cop Cfs nit Tts[s] Tcs[s] Tsm[s] Tpl[s] Tp[s] Ts[s] Tt[s]

P1 2 1.75 1.86 1.02 24 1.8 0.5 2.2 0.2 4.8 0.7 5.4
5 1.46 1.62 0.85 28 1.6 0.5 1.7 0.4 4.2 0.8 5.0
8 1.33 1.51 0.77 31 1.4 0.5 1.5 0.5 3.9 0.9 4.8

P2 2 1.61 1.96 0.55 145 4.2 1.8 3.7 0.7 10.5 9.8 20.3
5 1.33 1.87 0.45 233 2.8 1.4 2.8 1.2 8.2 12.0 20.2
8 1.22 1.73 0.41 346 3.3 2.0 2.8 2.3 10.4 17.0 27.4

P3 2 1.48 2.23 0.53 120 2.4 1.3 2.5 0.6 6.8 5.2 12.1
5 1.27 1.95 0.46 163 2.3 1.5 2.4 1.4 7.7 6.5 14.2
8 1.19 1.73 0.43 304 2.1 1.4 2.1 1.9 7.6 11.0 18.6

TABLE 5.8: aSP-AMG sensitivity to the prolongation selection - DPLS.

Test
case

Parameters Results

dp nmax ϵp Cgd Cop Cfs nit Tts[s] Tcs[s] Tsm[s] Tpl[s] Tp[s] Ts[s] Tt[s]

P1 1 10 10−3 2.03 2.45 1.20 20 2.0 0.7 2.2 0.1 5.0 0.7 5.7
2 10 10−3 1.99 2.62 1.17 20 2.4 1.0 2.5 0.2 6.1 0.9 7.0
3 10 10−3 1.91 3.31 1.13 20 2.6 1.4 2.6 0.7 7.3 1.0 8.3
2 5 10−3 1.99 2.62 1.17 20 2.2 0.8 2.6 0.2 5.7 0.7 6.5
2 5 10−2 2.01 2.53 1.19 20 2.3 0.9 2.5 0.2 6.0 0.9 6.9
2 5 10−1 2.11 2.09 1.24 21 2.3 0.7 2.5 0.1 5.6 0.9 6.5

P2 1 10 10−3 1.85 2.57 0.63 96 3.9 1.7 3.9 0.2 9.7 6.7 16.3
2 10 10−3 1.79 3.41 0.62 98 5.9 5.2 5.2 1.1 17.4 10.6 28.0
3 10 10−3 1.72 5.14 0.60 149 6.5 12.2 6.1 17.9 42.7 20.2 62.9
2 5 10−3 1.79 3.27 0.62 76 4.4 2.9 4.3 0.6 12.3 5.9 18.2
2 5 10−2 1.81 3.04 0.62 81 4.7 3.1 4.6 0.6 13.1 6.1 19.1
2 5 10−1 1.96 2.08 0.66 120 4.5 1.8 4.3 0.3 11.1 10.6 21.7

P3 1 10 10−3 1.76 2.51 0.63 93 3.5 1.9 3.6 0.2 9.3 5.9 15.3
2 10 10−3 1.68 3.38 0.60 87 3.9 3.5 4.1 1.0 12.5 6.7 19.2
3 10 10−3 1.61 5.31 0.58 115 4.7 6.3 4.7 10.5 26.3 8.9 35.2
2 5 10−3 1.68 3.31 0.61 88 3.1 2.2 3.2 0.7 9.3 5.0 14.3
2 5 10−2 1.70 3.12 0.61 92 3.7 2.9 4.0 0.7 11.3 6.6 17.9
2 5 10−1 1.86 2.04 0.67 112 3.0 1.4 3.5 0.3 8.2 6.6 14.8
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iterations and the solution time are significantly higher than the previous tests where

DPLS is used as default, it is seen that the only parameter really affecting this approach

is the choice of the least squares correction. When the pattern of a poor ABF (e.g.

kp = 20 and ϵp = 10−2) is used, updating the prolongation in a least square sense

reduces both the number of iterations and the solution time. By contrast, in case of a

very accuarate ABF (e.g. kp = 40 and ϵp = 10−4), the least square correction increases

both the number of iterations and the solution time.

TABLE 5.9: aSP-AMG sensitivity to the prolongation selection - ABF.

Test
case

Parameters Results

κp ρp ϵp Cgd Cop Cfs nit Tts[s] Tcs[s] Tsm[s] Tpl[s] Tp[s] Ts[s] Tt[s]

P1 5 1 10−3 1.86 5.09 4.36 49 3.1 0.9 2.9 0.7 8.8 2.4 11.2
5 3 10−3 1.86 7.84 3.94 38 3.3 1.1 3.3 1.6 12.1 2.4 14.5

15 1 10−3 1.69 7.54 3.94 38 3.4 1.3 3.5 4.2 14.7 2.3 17.0
15 3 10−3 1.63 11.13 3.81 32 4.2 1.6 3.8 8.7 23.9 2.6 26.5
30 1 10−3 1.66 8.47 3.88 35 4.0 1.5 3.9 10.2 23.9 2.3 26.2

P2 5 1 10−3 1.81 3.90 2.48 727 4.5 1.0 4.4 0.9 13.5 63.2 76.8
5 3 10−3 1.72 6.51 2.37 529 7.6 2.7 6.8 2.9 30.8 68.3 99.2

15 1 10−3 1.73 5.89 2.38 571 6.4 2.0 5.3 5.5 25.5 64.0 89.5
15 3 10−3 1.60 8.66 2.20 412 7.9 2.7 6.5 11.3 41.4 61.1 102.5
30 1 10−3 1.67 6.36 2.30 479 8.2 2.7 7.4 16.4 45.9 63.9 109.9

P3 5 1 10−3 1.74 3.87 2.48 285 3.3 1.1 3.9 0.9 10.2 18.5 28.7
5 3 10−3 1.63 5.71 2.34 230 4.3 1.5 3.9 1.9 14.9 19.4 34.3

15 1 10−3 1.65 5.94 2.37 227 4.6 1.6 4.1 5.7 19.4 19.3 38.7
15 3 10−3 1.55 9.63 2.22 215 7.6 2.6 6.9 13.7 41.8 26.6 68.4
30 1 10−3 1.59 7.45 2.28 203 5.6 2.2 4.7 16.5 34.2 20.6 54.8

This sensitivity analysis shows that the DPLS prolongation is by far the most effec-

tive prolongation strategy, and the only parameters that really impact the perfomance

of aSP-AMG are those controlling DPLS. As to the other parameters, especially those

controlling the smoother, it is better to avoid configurations leading to too high setup

costs. According to this general guideline, different choices in the user-defined param-

eters lead to almost the same performance, which simplifies the tuning of aSP-AMG

towards its optimal configuration parameters.

5.7.2 Weak scalability

In this section we evaluate the weak scalability of aSP-AMG, that is how the iteration

count needed for convergence changes by varying the size of a problem arising from
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the discretization of PDEs. Due to its major effectiveness, only DPLS prolongation is

considered in this analysis that comprises two test problems, a diffusion and a linear

elasticity test case. The software Gmsh Geuzaine and Remacle [2009] is used to build

the geometry and the meshes considered herein while the numerical discretization re-

lies on the MFEM package Kolev and Dobrev [2010]. For comparison purposes, we pro-

vide also the results obtained with the BoomerAMG preconditioner configured with its

default parameters as available in the current package Henson and Yang [2002], version

2.11.2, which is one of the most commonly used classical AMG implementations avail-

able in the literature.

Starting with the diffusion test case, we consider an isotropic Poisson model with

unitary diffusivity coefficients and homogenous boundary conditions, as described by

the PDE problem:

∆u = 1, for Π ∈ R3 | Π = [0, 1]3

u = 0 on ∂Π.
(5.32)

The system is discretized by linear hexahedral finite elements with size h. In table

5.10, we report the main characteristics of the sparse matrices generated from the FEM

discretization of (5.32) as well as the performance of the aSP-AMG and BoomerAMG

preconditioners in terms of grid and operator complexities as well as number of itera-

tions to converge according to the mesh refinement.

TABLE 5.10: Weak scalability of the Poisson problem.

Matrix Info aSP-AMG(2) aSP-AMG(N) BoomerAMG

h−1 nrows nnz Cgd Cop nit Cgd Cop nit Cgd Cop nit

8 729 15,623 1.07 1.07 4 1.07 1.07 4 1.32 1.51 6
16 4,913 117,645 1.33 1.35 5 1.51 1.55 5 1.60 1.72 6
32 35,937 912,669 1.40 1.47 6 1.71 2.03 7 1.79 1.98 6
64 274,625 7,189,053 1.50 1.53 7 1.99 2.29 10 1.92 2.21 7
128 2,146,689 57,066,621 1.52 1.57 8 2.00 2.43 12 1.98 2.38 10

As expected, we note only a slight increase in the number of iterations for both

aSP-AMG(2) and aSP-AMG(N) preconditioners when refining the mesh. We highlight

the fact that aSP-AMG presents the same order of magnitude for nit when going from
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the two-level version to the multilevel one. This is a relevant observation showing

that the inexact smoothing steps executed across the multigrid hierarchy degrades only

marginally its convergence performance. Lastly, we remark that aSP-AMG(N) presents

a very similar convergence behavior as BoomerAMG without having to raise substan-

tially the operator complexity.

The second problem concerns an unitary cube formed by an homogeneous mate-

rial under the hypothesis of small deformation. A linear elastic material property is

assumed and the resulting PDE for calculating the deformation of this structure reads:

∇ ·

[
λ tr

((
∇u+∇uT

)
2

)
I + µ

(
∇u+∇uT

)]
= 0 for Π = [0, 1]3,

u = 0 on ∂ΠD = [0, 1]× [0, 1]× {0},

σ · n = 10 on ∂ΠN = [0, 1]× [0, 1]× {1},

σ · n = 0 on ∂Π \ {∂ΠD ∪ ∂ΠN}

(5.33)

with λ and µ the Lamè constants corresponding to Young modulus and Poisson ratio

equal to 103 GPa and 0.3, respectively.

Again, the problem is discretized by using linear hexahedral finite elements and the

results are reported in table 5.11. First of all, we observe that aSP-AMG shows a slightly

smaller increase of nit with mesh in comparison to the diffusion model problem sug-

gesting that this preconditioner is even more suitable for solving elasticity problems.

Finally, we mention that aSP-AMG(N) performance is very close to aSP-AMG(2) and

both lead to better convergence behaviors than BoomerAMG while still having similar

grid and operator complexities.

5.7.3 Real-world engineering problems

In this section we evaluate how the aSP-AMG preconditioner behaves in the solution of

sparse linear systems arising from the application of different discretization techniques

to real-world engineering problems such as the the fluid flow in petroleum reservoirs,

pressure-temperature field evolution in porous media, geomechanical simulations and

mechanical equilibrium of linear elastic materials. The matrices used for these tests
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TABLE 5.11: Weak scalability on the linear elasticity problem.

Matrix Info aSP-AMG(2) aSP-AMG(N) BoomerAMG

h−1 nrows nnz Cgd Cop nit Cgd Cop nit Cgd Cop nit

8 2,187 140,625 1.36 1.48 10 1.51 1.73 12 1.67 1.87 14
16 14,739 1,058,841 1.38 1.59 11 1.54 2.00 13 1.65 1.97 17
32 107,811 8,214,057 1.41 1.68 11 1.56 2.26 13 1.68 2.15 19
64 823,875 64,701,513 1.41 1.73 12 1.56 2.40 14 1.69 2.28 24
128 6,440,067 513,599,625 1.40 1.76 14 1.54 2.42 21 1.70 2.35 31

have been chosen to be representative of ill-conditioned problems characterized by

complex geometries and strong heterogeneities in both material properties and element

size.

The dimension, number of nonzeroes, average number of nonzeroes per row to-

gether with a brief description of the above matrices are listed in the table A.1. For the

sake of completeness, we also solve this set of problems with aFSAI, in order to under-

stand how the multilevel hierarchy of aSP-AMG is able to complement its single level

smoother and, lastly, with the BoomerAMG preconditioner.

Table 5.12 shows grid and operator complexities, aFSAI density, number of itera-

tions and computational times for the preconditioners considered here. We note that

these results were obtained with the best possible configuration for each of the precon-

ditioners tested in terms of total solution time. In particular, for BoomerAMG, a vast

package collecting several options for any AMG components, we carried out an opti-

mization process involving all the available prolongation and coarsening algorithms

over an extensive range of values for their input parameters. We stress that, for elas-

ticity problems, the parameter bs defining the block size used for interpolation turned

out to be of paramount importance to achieve fast convergence. Detailed information

about the input parameters used in the setup of the preconditioners is provided in the

appendix 5.8.

The main aspect to be noted here is that aSP-AMG leads to an efficient solution

method in all test cases. More precisely, comparing the aSP-AMG to aFSAI, we see that

the first one shows a reduction up to ten times in the number of iterations nit. Also, the

total computational time Tt is smaller in all experiments except for bump2911 which
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TABLE 5.12: Performance comparison between aFSAI, BoomerAMG
and aSP-AMG preconditioners in the solution of the real-world engi-

neering problems.

Matrix name method Cgd Cop µG nit Tp[s] Ts[s] Tt[s]

pflow742 aFSAI — — 0.28 1465 1.4 24.9 26.3
BoomerAMG 1.31 1.14 — 577 0.3 38.4 38.7
aSP-AMG 1.54 1.87 0.58 85 9.5 5.7 15.2

finger aFSAI — — 2.20 3711 5.2 199.0 204.2
BoomerAMG 1.67 2.21 — 10 1.0 2.2 3.2
aSP-AMG 1.71 2.22 2.05 43 18.2 8.3 26.5

spe10 aFSAI — — 1.55 1767 1.0 22.7 23.7
BoomerAMG 1.55 2.23 — 36 0.4 2.2 2.6
aSP-AMG 1.90 2.68 1.1 64 5.3 3.5 8.8

bump2911 aFSAI — — 0.46 507 13.6 45.3 58.9
BoomerAMG 1.58 1.62 — 250 4.5 89.3 93.8
aSP-AMG 2.17 2.94 0.53 42 59.9 23.8 83.7

flan1565 aFSAI — — 0.22 4230 9.9 179.2 189.1
BoomerAMG 1.27 1.38 — 244 2.0 73.1 75.1
aSP-AMG 1.38 1.74 0.21 136 31.9 30.6 62.5

abq_powtrain aFSAI — — 0.72 2792 11.6 123.1 134.6
BoomerAMG 1.47 1.45 — 526 3.7 241.4 245.1
aSP-AMG 1.49 2.06 0.56 123 27.7 24.7 52.4

hook1498 aFSAI — — 0.40 2010 3.0 64.5 67.4
BoomerAMG 1.60 3.16 — 72 5.8 35.6 41.4
aSP-AMG 1.54 2.30 0.42 135 19.4 21.0 40.4
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already present a fairly good convergence behavior when solved with aFSAI. However,

even in these cases, we observe that the solution time Ts for aSP-AMG is smaller up

to three times and if this preconditioner could be recycled such as in some transient

simulation, its setup time would be amortized after two or three linear solves only.

Another interesting fact observed for our AMG is that its aFSAI density µG is al-

ways smaller than the operator complexity Cop, which in turn gives the cost for Gauss-

Seidel smoothing. It follows that the aFSAI smoother yields a faster strategy, besides

showing a higher degree of parallelism and thus be amenable to the implementation in

massively parallel computers.

Comparing the results obtained with BoomerAMG and aSP-AMG, we note that the

first one provides a faster method in terms of setup for all test cases, which can be ex-

plained by the fact that in aSP-AMG we have two additional setup phases contributing

to Tp, i.e., the construction of the smoother and the test space. However, aSP-AMG

is still competitive against BoomerAMG as we can see in the pflow742, bump2911,

flan1565 and abq_powtrain test cases (see Figure 5.8 for a comprehensive com-

parison). Indeed, the high setup time of aSP-AMG is compensated by the faster con-

vergence of the method providing a smaller total computation time Tt. Ultimately, we

observe that aSP-AMG tends to behave better in elasticity problems in comparison to

the diffusion problems. This fact was already observed in the last section and suggests

that this method proves to be more efficient when employed in the solution of matrices

with larger near-null space dimension.

5.8 Input parameters for configuring the preconditioners

In Table 5.13 we show the input parameters used for configuring the BoomerAMG pre-

conditioner applied in the solution of the real-world problems. We kept fixed most

of the configurable parameters for this preconditioner and varied only the ones that

could impact most the performance of the preconditioner, i.e., the interpolation and

coarsening methods; the block size of the matrix bs; the number of levels with aggres-

sive coarsening nagg; the strong threshold θ and the maximum number of nonzeros

per row of the prolongation operator Pmax. Note that bs is the only input parameter
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FIGURE 5.8: Total time comparison relative to the aFSAI preconditioner.
The lower segment of each column represents the relative setup time

while the upper segment denotes the solution counterpart.

which depends on the problem being handled. The best configuration was selected as

the one which produced the fastest preconditioner in terms of total computational time

(Tt). For completness, a list of other input parameters which were kept fixed are given

below:

• relaxation method: symmetric-SOR/Jacobi with C/F ordering and ω = 1.0;

• coarse system solver: Gaussian-elimination;

• measure type: local;

• interpolation truncation factor: 0.0;

• interpolation maximum row sum: 0.9;

• cycle type: V(1,1).

The input parameters for the aFSAI and aSP-AMG preconditioners are given in

Table 5.14. Lastly, after an extensive optimization process for aSP-AMG, we remark

that the best parameters offer a very similar performance as given by the default setup

configuration listed in Table 5.1.
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TABLE 5.13: Input parameters for configuring the BoomerAMG precon-
ditioner.

Matrix name Interpolation Coarsening bs nagg θ Pmax

pflow742 classical CLJP 1 1 0.99 —
finger classical Falgout 1 0 0.25 —
spe10 classical HMIS 1 1 0.70 10
bump2911 ext+i Falgout 3 1 0.99 5
flan1565 ext+i HMIS 3 1 0.70 5
abq_powtrain classical Falgout 3 1 0.99 —

TABLE 5.14: Input parameters for aFSAI and aSP-AMG, respectively.

Matrix name
aFSAI aSP-AMG

kg ρg ϵg kg ρg ϵg nt θ dp ϵp

pflow742 5 3 10−3 5 4 10−3 10 6 2 10−2

finger 5 2 0 5 1 10−3 5 5 1 10−3

spe10 10 2 10−3 3 1 0 8 4 1 10−2

bump2911 10 2 10−3 10 1 10−3 10 2 2 10−3

flan1565 15 1 0 5 2 0 15 8 2 10−2

abq_powtrain 10 2 0 5 3 10−3 15 6 2 10−3

5.9 Conclusions

In this chapter, we propose a novel AMG package featuring approximate inverse smooth-

ing and three new strategies for computing the prolongation operator. This method,

entitled as aSP-AMG, belongs to the recent adaptive and bootstrap AMG family, which

may not assume any information about the constitution of the near null space of A,

rendering it more general and robust than the classical and aggregation based AMG

methods.

A set of artificial and real-world problems are solved in order to assess the perfor-

mance of aSP-AMG. Initially, a sensitivity analysis is carried out to uncover the most

important configuration parameters for aSP-AMG as well as their suitable range of

usability. From this analysis, we show that the DPLS prolongation technique is more

efficient than ABF. After this, it is verified that the aSP-AMG preconditioner config-

ured with the DPLS prolongation is weakly scalable in the solution of two model prob-

lems discretized with linear finite elements and having up to six millions of unknowns.

Lastly, the performance of the aSP-AMG is compared to the aFSAI and BoomerAMG

preconditioners in the solution of real-world problems showing that aSP-AMG leads
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to the faster solution method in most of the cases in terms of both iteration time as well

as total execution time.

The next steps of the present research will concern the implementation of other

application techniques such as the powerful F-cycle Trottenberg et al. [2001] and K-

cycle Notay [2010]. Further, we want to develop new techniques for predicting the

smooth vector space aiming to reduce the setup time as well as improving the quality

of the test vectors, which play a fundamental role in defining coarse nodes and setup

interpolation. Another enhancement could be the introduction of adaptivity also in

the coarsening process. Lastly, a major goal will be the efficient implementation of this

package on modern massively parallel computers for the solution of very large size

problems.
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Conclusions

In this thesis, we presented four SPD preconditioners targeted to the solution of large

size linear problems obtained from engineering applications with diffusive character.

All of these techniques are based on aFSAI with the main idea of enhancing its weak

scalability through multilevel strategies. The two multilevel approaches presented in

Chapter 3, i.e., BTFSAI and DDFSAI, showed improvements in terms of iteration count

and solution time when compared to aFSAI; however, their applicability was limited

to the number of partitions allowed for computing SPD Schur complements. This con-

straint was eliminated by the MFLR preconditioner presented in Chapter 4 which also

introduced low-rank corrections that reduced iteration counts, however at the cost of

longer setup time. Lastly, in Chapter 5, we explored a different multilevel framework

by proposing an adaptive AMG method that employs aFSAI as a flexible smoother and

strategies for dynamically generating the prolongation pattern among other innovative

features. We run several sensitivity analysis with challenging test cases to understand

the importance of the input configuration parameters of the preconditioners and, con-

sequently, we were able to identify suitable ranges of these parameters giving rise to ef-

ficient methods. Also, we solved real-world linear problems arising from the numerical

discretization of diverse engineering applications and proved that the preconditioners

proposed in this thesis had a better performance, in general, when compared to aF-

SAI, ILU and other AMG implementations. Special attention is given to the aSP-AMG

method which proved to be the most robust and efficient strategy over the other meth-

ods proposed herein. Future steps of the present work should focus on such method

and aim to improve particularly its C/F splitting selection. Moreover, further enhance-

ments on the computational implementation of aSP-AMG could reduce its setup time
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and the development of a distributed parallel code would make possible the solution

of problems in order of billions of unknowns.
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Appendix A

Sparse matrices arising from

real-world applications

Here we talk bout the Sparse Matrices arising from Real-World applications.

1. afshell3: simulation of sheet metal forming Davis and Hu [2011];

2. afshell8: simulation of sheet metal forming Davis and Hu [2011];

3. emilia923k: mechanical equilibrium of a 3D gas reservoir with tetrahedral Fi-

nite Elements. An irregular unstructured grid was used due to the complexity of

the geological formation Ferronato et al. [2010b];

4. geo1438k: a 3D geomechanical problem discretizing a region of the earth crust

subject to underground deformation. The computational domain is a box with

an areal extent of 50 x 50 km and 10 km deep and the disretization is done via

regularly shaped tetrahedral Finite Elements Janna et al. [2010];

5. stocF1465k: pressure distribution in an three dimensional underground aquifer

with stochastic permeabilty field. The computational grid consists of tetrahedral

Finite Elements Ferronato et al. [2012a];

6. pflow742, arising from a 3D simulation of the pressure-temperature field in a

multilayered porous media discretized by Q2 hexahedral FE Janna et al. [2015a];

7. finger, a 2D discretization of multiphase flow simulating viscous fingering in

porous media Janna et al. [2015b];
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8. spe10, a finite volume discretization of the single-phase flow simulation in a 3D

heterogeneous reservoir with properties defined by the SPE10 dataset Christie

et al. [2001];

9. bump2911, a 3D geomechanical model of a gas-reservoir discretized by linear

tetrahedral FE with mechanical properties of the medium varying in depth Janna

et al. [2013];

10. flan1565, a 3D mechanical equilibrium problem of a steel flange discetized with

linear hexahedral finite elements. The computational grid is a structured mesh

with regularly shaped elements Janna et al. [2009a];

11. abq_powtrain, a 3D powertrain model, provided by © Dassault Systèmes Simu-

lia Corp., mainly discretized by Q1 hexahedral elements, with non-linear gaskets,

penalty frictional contact and pre-tensions;

12. ecology2: Landscape ecology problem, using electrical network theory to model

animal movement an gene flow. The computational domain is two-dimensional;

mesh is formed by 1000x1000 points and the discretization is done via the stan-

dard finite difference method (5-points stencil) McRae et al. [2008];

13. tmt_sym: a symmetric electromagnetics problem Davis and Hu [2011];

14. cylinder: mechanical equilibrium of a cylinder containing a central hole. The

medium is loosely clamped. Discretization is performed via linear tetrahedral

finite elements by using an in-house numerical code;

15. fault639: a 3D faulted gas reservoir discretized with tetrahedral Finite Ele-

ments while the faults are discretized with triangular Interface Elements and

modeled through a penalty formulation Massimiliano et al. [2007];

16. hook1498: a 3D mechanical equilibrium problem of a steel hook discetized with

linear tetrahedral finite elements Baggio et al. [2017];
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FIGURE A.1: Sparsity pattern of the real-world test matrices from Table
A.1. The colors represent the order of magnitude of the nonzero coeffi-

cients.
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TABLE A.1: Test matrices deriving from real-world problems.

ID Matrix name n(A) nnz(A) avg.
nnzr. Short Description

1 afshell3 504,855 17,588,875 35 2D/3D structural problem
2 afshell8 504,855 17,579,155 35 2D/3D structural problem
3 emilia923k 923,136 40,373,538 44 3D elasticity - P1 FEM
4 geo1438k 1,437,960 60,236,322 42 3D elasticity - P1 FEM
5 stocF1465k 1,465,137 21,005,389 14 3D poisson - P1 FEM
6 pflow742k 742,793 37,138,461 49 3D poisson - Q2 FEM
7 finger 4,718,592 23,591,424 5 2D poisson - FDM
8 spe10 1,122,005 7,780,175 6 3D poisson - FVM
9 bump2911k 2,911,419 127,729,899 43 3D elasticity - P1 FEM

10 flan1565k 1,564,794 114,165,372 72 3D elasticity - Q1 FEM
11 abq_powtrain 1,609,950 68,660,476 42 3D elasticity - P1 FEM
12 ecology2 999,999 4,995,991 5 2D poisson - FDM
13 tmt-sym 726,713 5,080,961 7 Electromagnetic problem
14 cylinder 372,960 16,473,150 44 3D elasticity - P1 FEM
15 fault639k 638,802 28,614,564 42 3D elasticity - P1/IE FEM
16 hook1498 1,498,023 59,374,451 40 3D elasticity - P1 FEM
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