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1 Introduction

1.1 Motivation and background

The solution of large and sparse linear systems is a critical component of modern
science and engineering simulations, often accounting for up to 90% of the whole
solution time. Iterative methods, namely the class of modern Krylov subspace
methods, are often considered the method of choice for solving large-scale
linear systems such as those arising from the discretization of partial differential
equations on parallel computers. They are matrix-free and they can solve the
memory bottlenecks of sparse direct methods which are known to scale poorly with
the problem size. However, one practical difficulty of an efficient implementation
of Krylov methods is that they lack the typical robustness of direct solvers.
Preconditioning is a technique that can be used to reduce the number of iterations
required to achieve convergence. In general terms, preconditioning can be defined
as the science and art of transforming a problem that appears intractable into
another whose solution can be approximated rapidly [98]]. Nowadays it can be
considered a crucial component of the linear systems solution.

One important class of preconditioning techniques for solving linear systems is
represented by Incomplete LU decomposition (ILU) [[73}/86]. ILU preconditioners
have good robustness and typically exhibit fast convergence rate. Therefore, they
are considered amongst the most reliable preconditioning techniques in a general
setting. Well known theoretical results on the existence and the stability of the
incomplete factorization can be proved for the class of M-matrices, and recent
studies are involving more general matrices, both structured and unstructured. The
quality of the factorization on difficult problems can be enhanced by using several
techniques such as reordering, scaling, diagonal shifting, pivoting and condition
estimators (see e.g. [18129,143}71,/89]). As a result of this active development, in
the last years successful results are reported with ILU-type preconditioners in many
areas that were of exclusive domain of direct methods, e.g., in circuits simulation,
power system networks, chemical engineering plants modelling, graphs and other
problems not governed by PDEs, or in areas where direct methods have been
traditionally preferred, like in structural analysis, semiconductor device modelling
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and computational fluid dynamics applications (see e.g. [|6,(14,(72,87]). One
problem with ILU-techniques is the severe degradation of performance observed
on vector, parallel and GPU machines, mainly due to the sparse triangular
solvers [70]]. In some cases, reordering techniques may help to introduce nontrivial
parallelism. However, parallel orderings may sometimes degrade the convergence
rate, while more fill-in diminishes the overall parallelism of the solver [44].

On the other hand, sparse approximate inverse preconditioners approximate the
inverse of the coefficient matrix of the linear system explicitly. They offer inherent
parallelism compared to ILU methods as the application phase reduces to simply
perform one or more sparse matrix-vector products, making them very appealing
to solve large linear systems. Thus this class is receiving a renewed interest for
implementation on massively parallel computers and hardware accelerators such
as GPUs [26[70}/74,/100]. Additionally, on certain indefinite problems with large
nonsymmetric parts, the explicit approach can provide more numerical stability
than ILU techniques (see e.g. [28,[35,56]]). In practice, however, some questions
need to be addressed. The computed preconditioning matrix M could be singular,
and the construction cost is typically much higher than for ILU-type methods,
especially for sequential runs. The main issue is the selection of the non-zero
pattern of M. The idea is to keep M reasonably sparse while trying to capture
the ‘large’ entries of the inverse, which are expected to contribute the most to the
quality of the preconditioner. On general problems it is difficult to determine the
best structure for M in advance, and the computational and storage costs required
to achieve the same rate of convergence of preconditioners given in implicit form
may be prohibitive in practice.

In this thesis, we present an algebraic multilevel solver for preconditioning
general nonsymmetric linear systems that attempts to combine characteristics of
both approaches. Sparsity in the preconditioner is maximized by employing
recursive combinatorial algorithms. Robustness is enhanced by combining the
factorization with recently developed overlapping and compression strategies, and
by using efficient local solvers. Our goal is to propose new preconditioning
strategies and ideas that have a good deal of generality, so that they can improve
parallelism and robustness of iterative solvers, while being economic to implement
and use. We follow a purely algebraic approach, where the preconditioner is
computed using only information available from the coefficient matrix of the linear
system. Although not optimal for any specific problem, algebraic methods can be
applied to different problems and to changes in the geometry by only tuning a few
parameters.

We introduce a novel Algebraic Multilevel Explicit Solver (referred to
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as AMES), which is a hybrid recursive multilevel incomplete factorization
preconditioner based on a distributed Schur complement formulation. The AMES
method uses the nested dissection ordering to create a multilevel arrow structure,
so that most nonzero entries of the original matrix are clustered into a few nonzero
blocks. We assess the overall performance of AMES, and investigate the choice
of parameters. Moreover, we also introduce a combination of the overlapping
strategy with the AMES solver. The usage of the overlapping strategy preserves
the multilevel block arrow structure of the original matrix, as well as helps
improve the convergence rate and solving time by adding more information. The
algorithm and performance of the combinatorial method are elaborated upon. We
demonstrate that the proposed strategies can also be incorporated in other existing
preconditioning and iterative solver packages in use today.

Based on the AMES algorithm, we propose an improved implicit variant,
referred to as Algebraic Multilevel Implicit Solver (AMIS), also built upon
the multilevel recursive nested dissection reordering. In AMIS we modify the
solve phase and apply the preconditioner implicitly without using the explicit
computation of the approximate inverse. This modification can save much of the
recursive computation done in the AMES algorithm which is quite time consuming.
Numerical experiments are presented to compare the overall performance of AMIS
against AMES.

Finally, we propose a variable block variant of the AMIS solver (referred
to as VBAMIS) to exploit the presence of dense components in the solution
to the linear system. Sparse matrices arising from the discretization of partial
differential equations often exhibit some small and dense nonzero blocks in the
sparsity pattern, e.g., when several unknown quantities are associated with the
same grid point. Such block orderings can be sometimes unravelled also on
general unstructured matrices, by ordering consecutively rows and columns with
a similar sparsity pattern, and treating some zero entries of the reordered matrix
as nonzero elements. It is possible to take advantage of these structures in the
design of AMIS for better numerical stability and higher efficiency on cache-
based computer architectures. Compression techniques are used to discover dense
blocks in the sparsity pattern of the coefficient matrix. Variable block compressed
sparse row (VBCSR) storage formats and high-level BLAS (Basic Linear Algebra
Subprograms) [40] routines are employed to achieve better cache performance on
supercomputers.

The thesis is organized as follows. In Chapter 2 we review modern Krylov
subspace methods and preconditioning techniques for solving large linear systems,
with particular attention to Incomplete LU factorization (JLU) and sparse-
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approximate inverse-based preconditioners. In Chapter 3 we introduce the new
solver AMES. We present the main computational steps of the method, and assess
its performance for solving matrix problems arising from various applications
against some state-of-the-art solvers. We also discuss different parameter settings
of the new method and put forward suggestions of a reasonable parameter setting.
In Chapter 4 we present a combination of an overlapping strategy with the AMES
solver. We recall the theoretical background of overlapping, and present numerical
experiments to illustrate the effect of overlapping. In Chapter 5 we propose an
implicit formulation of AMES, referred to as AMIS. We also present comparative
experiments on AMES and AMIS. Finally, in Chapter 6, we propose a variable
block variant referred to as VBAMIS.



2 lterative methods for sparse linear
systems

Mathematical models of multiphysics applications often consist of systems of
partial differential equations (PDEs), generally coupled with systems of ordinary
differential equations. Current numerical methods and softwares to solve such
models do not provide the required computational speed for practical applications.
One reason for this is that limited use is made of recent developments in
(parallel) numerical linear algebra algorithms. The numerical solution of PDEs
is usually computed using standard finite-difference (FD) [67,95]], finite-element
(FE) [91.,99], finite-volume (FV) [19,20]], discontinuous Galerkin (DG) [3/36] or
spectral element (SE) methods [66,81]. The FE method is often used as it can
encapsulate the complex geometry and small-scale details of the boundary. The
spatial discretization of the underlying governing PDEs leads to very large and
sparse linear systems that must be solved at each time step of the simulation,
regardless of the type of numerical method employed. Sparse direct methods
based on variants of Gaussian elimination are robust and numerically accurate
algorithms, but they are too memory demanding for solving very large linear
systems even on modern parallel computers. Iterative methods, namely modern
Krylov subspace solvers, are based on matrix-vector (M-V) multiplications. They
can solve the memory bottleneck of direct methods and present a viable alternative,
provided they are accelerated with some form of preconditioning. In Sections
2.1 and 2.2, we propose a short review of modern Krylov subspace methods and
preconditioning techniques for solving large linear systems as they form the basis
of our development.

2.1 Krylov subspace methods
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We denote our linear system to solve as
Az = b, (2.1)

where the coefficient matrix A is a large, sparse and unsymmetric n X 7 matrix,
and b is the right-hand side vector.

There are two principal computational approaches for solving system (2.I)), that
are direct methods and iterative methods. Direct methods are based on variants of
the Gaussian Elimination (GE) algorithm [42]]. They are robust and predictable in
terms of both accuracy and computing cost, but their O(n?) memory complexity
and O(n?) algorithmic complexity, where n can be in the order of several millions
of unknowns, are too demanding for solving practical applications. In this thesis
we focus our attention on iterative methods. Iterative methods are matrix-free and
hence they can solve the memory problems of direct methods. At each iteration,
iterative methods improve the current approximation towards convergence. The
computation requires M-V products with the coefficient matrix A plus vector
operations, thus potentially reducing the heavy algorithmic and storage costs of
sparse direct solvers on large problems.

The early development of iterative methods was based on the idea of splitting the
coefficient matrix A into the sum of two matrices. The splitting A = I — (I — A)
produces the well-known Richardson iteration

zi=b+ (I —A)xi1=2i-1+71i-1, (2.2)
where ;1 = b— Ax;_1 is the (i—1)-th residual vector. Multiplying Equation
by — A and adding b, we obtain

b— Az, =b— Ax;_1 — Ar;,_1
that can be written as
ri= (I — A)ri1 = (I — A)'rg = Pi(A)ro, (2.3)

where 79 = b — Az is the initial residual vector. From Equation (2.3, fast
convergence is possible when || I — Al|2 < 1 [41]. In Equation the residual r;
is expressed as a polynomial of A times (. For the standard Richardson iteration,
the residual polynomial has the form P;(A) = (I — A)’.

The Richardson iteration can be generalized by using splitting of the form A =
K — (K — A) , where the matrix K is an approximation of A and is easy to invert.
The iteration scheme writes as follows

Kri=b+ (K —-A)xi_1 = Kzj—1 +ri_1,



2.1. KRYLOV SUBSPACE METHODS 9

-1
T =xi—1 + K i

In general, the inverse matrix K ! is never computed explicitly. In the above
equations, if we define B = K~'A and ¢ = K~'b, then the splitting with K is
equivalent with the standard Richardson method applied to the equivalent system
Bz = c. Therefore, the matrix & ~! can be viewed as an operator that transforms
the original coefficient matrix A into a new matrix which is close to I. This
transformation is called preconditioning, which is the subject of this thesis, and
will be introduced in Section

Without any loss of generality, we can choose the initial guess to be g = 0.
From the Richardson iteration (2.2)), it follows that

7
Tig1 =10+ 7r1+...+1; :Z(I—A)jro,
=0

hence w;11 € span{rg, Arg, A%rq, ..., Alrq} = Kit1(A, 7o) [41]. Here the
subspace KC;( A, rg) is called the Krylov subspace of dimension ¢ generated by A
and ro. This tells us that the Richardson iteration computes elements of Krylov
subspaces of increasing dimension in the attempt to solve the linear system.

From the theory of Krylov subspace methods, the dimension m of the space
Km(A,r9) where the exact solution lies depends on the distribution of the
eigenvalues of A [57]]. If A has k distinct eigenvalues denoted by A1, A1, ..., A,
then the minimal polynomial P,,(¢) of A can be constructed as follows

k
Pn(t) = [Tt =)™, 24)
j=1
k
where \; has multiplicity m; and m = ) m;. The minimal polynomial P, (t) of
j=1

A is the unique monic polynomial of minimal degree such that P,,,(A4) = 0.
If we write Equation (2.4) into the form

m

Pn(t) = Zajtja

=0
then it follows that

Ph(A)=al +a1A+ ...+ a,A™ =0,
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k
where the constant term a9 = [](A;)™. For nonsingular matrix A, ag # 0.
=1
Hence the inverse of matrix A can be expressed as

. 1 m—1 ;
A = — Z aj+1A .
7=0

ag <

The above equation describes the solution 2 = A~'b as a linear combination of
vectors from a Krylov subspace

m—la
1
r=—y —IA.
Q
=0 0
Since xg = 0, then we have
m—la m—la
1 1
T =— g L ATy = — E ITL AT,
e «
=0 70 =0 70

hence the solution z lies in the Krylov subspace K,,, (A4, ro) [41].

Generally, the Richardson method may suffer from slow convergence. Hence
over the last three decades, many new faster, more powerful and robust Krylov
methods that extract better approximations from the Krylov subspace than
Richardson were developed for solving large nonsymmetric systems.

In most of our experiments we used the Generalized Minimum Residual Method
(GMRES) [83]]. Hence we briefly recall the GMRES method and the minimum
residual approach in the first place.

2.1.1 The Generalized Minimum Residual Method (GMRES)

The minimum residual approach requires ||b — Axg|l2 to be minimal over
Kr(A,79). In the category of orthogonal methods, the Generalized Minimum
Residual Method (GMRES) [83]] is one of the most popular algorithms. GMRES
is a projection method based on the Arnoldi process. Hence we first recall the
Arnoldi method briefly as the prerequisites.

The Arnoldi method [[4] described in Algorithm is an orthogonal projection
method onto the Krylov subspace /C,,. It generates an orthogonal basis
{v1,v2,..., vy} of the Krylov subspace /C,,.
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Algorithm 2.1 Arnoldi method.

1: Choose a vector vy such that ||v1]2 = 1
2: forj=1,2,...,mdo

33 fori=1,2,...,5do

4: Compute h; j = (Avj, v;)

5:  end for

J
6: Compute Wi = A’Uj — Z hmvi
=1
7 hjrg = llwgllz
8: If hj+1,j = 0, stop

9 w1 = wj/hjy
10: end for

Let V,,, denote the n x m matrix with columns being vy, va, ..., vmn. Also, let
H,y,41,m denote the upper (m + 1) x m Hessenberg matrix with entries &; ;, and
H,, denote the square matrix with dimension m. According to Algorithm the
following relation holds

J+1
AU]' = Zh@j@uj = 1,2,...,m.
i=1

This leads to
AVm = m+1Hm+1,m- (25)

Multiply the above equation by V,I" from both sides, and we have
VEAV,, = VIV Hyptm.

With the orthonormality of {v1, ..., vy}, the product V,I'V},, 1 produces an m x
(m+1) matrix, whose upper m X m part is an identity matrix I,,, and the (m+1)-th
row is an empty row. Hence

VIAV,, = H,,

where H,, has the same entries h; ; as in Hy,1,,,. The matrix H,, can be viewed
as being obtained from H,, 11 ,, by deleting the last row.

The first step of the projection process is to find a basis for the Krylov subspace.
The Arnoldi process starts by computing orthonormal basis vectors vy, v, . .., Up
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as a result of the modified Gram-Schmidt procedure. This results in matrix Vi,
with orthonormal columns that meets Equation (2.5)).

GMRES computes the approximate solution by minimizing the residual norm
over all the vectors in xq + /C,,,. Define

J(y) = [Ib— Azmll2 = [Ib — A(zo + Viny)ll2, (2.6)

then the approximate solution that minimizes is computed by GMRES.
Equation (2.5) leads to
b— Azxp, =b— A(zo + Viy)
=19 — AVy
= pv1 — Vi1 Hm41,my
= Vinr1(Be1 — Hoy1.m¥),

where 3 = ||ro||2 and vy is chosen so that v; = 7 /3. Since the columns of V1
are orthonormal vectors, then

J(y) = b — A(zo + Viny)ll2 = [|Ber — Hpyl[2- 2.7)
By Equation (2.7)), the approximation solution z,, can be computed as
T = T0 + Vinym, where y,, = argminy|fer — Hpyl|2. (2.8)

The minimizer y,, is inexpensive to compute since it can be calculated from an
(m 4+ 1) x m least-squares problem which is typically small. To solve the least-
squares problem ||Se; — H,,yl|2, the Hessenberg matrix is often transformed into
upper triangular form by using Givens rotations [83]. The rotation matrices are
defined as

1
1
Qi — ci S’L
—S; €
1
1
where ¢; and s; are chosen to meet c? + 8? = 1 and to eliminate entry h;;1;

of the Hessenberg matrix. With the rotation operations with €21, {, ..., €),, the
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Hessenberg matrix H,, is transformed into the upper triangular matrix R,,. Set
Qm = 2mQn_1...Q1. Then R, = @, H, and Beq is transformed into g, =
QmpBe.

Since ), is unitary, the least-squares problems can be expressed as
min||fer — Hpyll2 = min|gm — Rmnylle. (2.9
The new least-squares problem (2.9) can be solved as y,, = R..'gm (see

Proposition 6.9 in [86] for detail).
The implementation of the GMRES method is illustrated in Algorithm [2.2]

Algorithm 2.2 GMRES

1: Choose x¢; compute g = b — Axg, 5 := ||ro||2 and vy 1= ro/f.
2: for j =1:mdo
3:  Compute w; := Av;

4. fori=1:7jdo

5 hij = (w5, vi)

6: Wwj = wj — hijjvi

7:  end for

8 hjy1j = llwille.

9: if hj+1,j = 0 then

10: setm := j and go to 14
11:  end if

122 vj41 = wi/hjp

13: end for

14: Define the (m + 1) x m Hessenberg matrix H,, = {h;;}, where 1 < i <
m+1,1<j5<m.
15: Compute the minimizer y,, of ||fe; — Hy,yll2 and z,, = xo + Vinym.

As the dimension m increases, the computational and memory costs of each
iteration would increase dramatically. One remedy could be to use a restart
strategy, which leads to the restarted GMRES [45] method. In the restarted
variant, the GMRES algorithm [2.2]is restarted every r steps, and the approximate
solution x, is used as initial guess for the next GMRES process until convergence
is reached. But when the method restarts, the existing Krylov subspace is also
destroyed and a new one is created from the ground up damaging convergence.
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2.1.2 Other approaches

Although the GMRES method is mostly used in the experiments proposed in the
following chapters, the preconditioners developed in this thesis are independent on
the choice of the specific Krylov method. Occasionally, they will be combined with
some other families of Krylov solvers. Thus, below we present a quick overview
of other popular Krylov subspace methods for solving linear systems (2.1)) [41]].

The Ritz-Galerkin approach

The Ritz-Galerkin approach requires that (b — Axy) L Kg(A,rg). This leads
to popular and well-known orthogonal projection methods, such as the Full
Orthogonalization Method (FOM) [86] for general non-symmetric matrices and
the Conjugate Gradients (CG) [54] for symmetric, positive and definite (SPD)
matrices.

For solving Equation (2.1), a projection technique could be an effective solving
method. When the approximation Z is obtained from an m-dimensional subspace
ICn» the residual vector b — Az must be constrained to be orthogonal to m linearly
independent vectors, which form a basis of the m-dimensional subspace £. The
projection process is applied onto K and orthogonal to £. The approximate
solution Z is extracted by imposing the conditions that & belongs to /C and the
residual vector b — A% belongs to £+

Find z € KC, such that b — Az 1 L. (2.10)

When the initial guess x( to the solution is given, the projection process (2.10)
can be refined as

Find Z € zg + K, such thatb — Az | L.

In Section [2.1.1) we have recalled the Arnoldi method which is necessary in
GMRES to compute the Krylov basis. If the initial vector v; in the Arnoldi method
is chosen as v; = 79/, where 19 = b — Axy is the initial residual vector and
B = ||lrol|2, then we have 19 = [vi. According to the definition of V;,,, we have
VmT v = eg, where 1 < k < m. Then the following equation holds

Vilrg = VI (Bur) = Ber,
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and the approximate solution is computed by

T =z + Ao
= z0 + Vin(V,, AVi) 7'V, Do,
= x0 + Vi H,  (Bey).
=z0 + VinYm, (2.11)
where y,, = H,,}(Be1).

Based on these derivations, the algorithm of Full Orthogonalization Method
(FOM) is given in Algorithm [2.3]

Algorithm 2.3 Full Orthogonalization Method (FOM).

1: Given an initial guess z(, compute rog = b — Axg, 8 := ||roll2, v1 := 10/
2: Define m x m matrix H,, = (h; ;)i j=1,..m; set Hp =0
3:forj=1,2,...,mdo

4: Compute wj = Av;

5: fori=1,2,...,5do

6: hi’j = (wj,vi)

7: Wj; = Wj — hi,jvi

8:  end for

9:  Compute hji1,; = [|wjl|2.
10: if hj_;_l’j = 0 then

11: Set m := j and goto 15
12:  end if

13: Compute Vjt+1 = wj/hj+1,j.
14: end for

15: Compute y,,, = H,,*(Be1) and x,, = z0 + Vinym

The Conjugate Gradient (CG) method is another effective Krylov method based
on the Ritz-Galerkin approach. It is based on short-term vector recurrences, and
may be considered the method of choice for solving large symmetric and positive
definite linear systems. Since the focus of thesis is on the solution of nonsymmetric
systems, we skip the derivation of the CG method.

The Petrov-Galerkin approach

The Petrov-Galerkin approach requires that b — Ax;, is orthogonal to some other
suitable k-dimensional subspace. This leads to bi-orthogonalization methods like



16 CHAPTER 2. ITERATIVE METHODS FOR SPARSE LINEAR SYSTEMS

the Bi-orthogonal version of CG (Bi-CG) and QMR [48] methods. Thereafter,
hybrid variants of these approaches have been proposed, such as the Conjugate
Gradient Squared (CGS) algorithm [93] and the Bi-conjugate Gradient Stabilized
(BI-CGSTAB) method [39]].

The Biconjugate Gradient (BiCG) method was first proposed by Lanczos [68]].
BiCG can be interpreted as the nonsymmetric variant of CG. The difference is that
AT is used in the BiCG recurrence instead of A. Below we present the BiCG
algorithm.

Algorithm 2.4 The BiCG method.

1: Given an initial guess x, compute 1o = b — Axg
2: Choose 7 (for example, r5 = rp)

3: Letpg = ro, p§ =14

4: fori=0,1,2,...do

Q= (Ti,T;()/(Api,pf)

Tit1l = T + ayp;

Tit1 =1 — Qi Ap;

Py =i — AT}

Bi = (riva,ri)/(ri,r))

10: pit1 =741 + Bipi

1 piyy =14 + Bip;

12:  Check convergence; continue if necessary
13: end for

R A

BiCG not only solves the original system Ax = b, but also solves the dual linear
system ATz* = b* implicitly. The residual vectors r; in CG cannot be made
orthogonal with short recurrences, which makes it not suitable for nonsymmetric
systems. In contrast, BiCG replaces the orthogonal sequence of residuals r; by
two mutually orthogonal sequences, r; and r;. These two sequences of vectors
are based on A and A’ respectively. The two sequences are made bi-orthogonal
rather than orthogonalizing each sequence. BiCG obtains approximations from
the Krylov subspace by means of the bi-orthogonal basis approach, which enables
BiCG to solve nonsymmetric systems.

The Conjugate Gradient Squared (CGS) method proposed by Sonneveld [93]]
aims to obtain a faster convergence rate with the same computational costs, yet
without involving AT as in BiCG. In BiCG it is necessary to compute 7. However,
the CGS method avoids the construction of r; and the computation with AT,
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This results in the CGS algorithm given below. The computational costs of each

Algorithm 2.5 The CGS method.

1: Given an initial guess x(, compute vy = b — Az, choose arbitrary r;
2: Choose 7y arbitrarily

3: Letpg = ug =19

4: fori=0,1,2,...do

a; = (ri,75)/(Api, 75)

¢ = u; — o Ap;

Tip1 = i + oy (ui + qi)

Tip1 =1 — i A(u; + ;)

Bi = (riv1,715)/ (1i,75)

100 w1 = rig1 + Bids

1 pip1 = w1 + Bi(a + Bips)

12:  Check convergence; continue if necessary
13: end for

R e A

iteration are almost the same for BiCG and CGS, but CGS has an advantage of
avoiding the computation with respect to the 77 and A”. Hence CGS can be
considered as the transpose-free variant of BiCG. In general, CGS is expected to
exhibit faster convergence than BiCG with roughly the same computational and
memory cost. When solving SPD problems, BiCG and CGS produce the same
x; and r; as CG and do not break down. For the unsymmetric cases, there is no
thorough report on convergence analysis yet. But numerical tests show that with
an appropriate preconditioning strategy, CGS could be an effective solver for the
unsymmetric problems.

Recently, Sonneveld and van Gijzen have developed a family of efficient
methods, called IDR(s), for solving large nonsymmetric systems of linear
equations [94]]. These methods are based on the induced dimension reduction
(IDR) method proposed by Sonneveld in 1980 [101]]. They generate residuals
that are forced to be in a sequence of nested subspaces. It is shown that the IDR
methods can be interpreted as a Petrov-Galerkin process over particularly chosen
block Krylov subspaces. The IDR methods can fully exploit the implicitly imposed
orthogonality and is quite effective for solving many problems. Subsequently,
Simoncini and Szyld present a new version of IDR, which is called Ritz-IDR
method [92]]. The Ritz-IDR method could overcome the difficulties encountered
when using a small block size for building the block subspace. The Ritz-IDR
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method has been verified to work well on convection-diffusion problems with
definite spectrum.

The minimum error approach

The minimum error approach requires |x — x|z to be minimal over
ATKL(AT rg). It is not so obvious that we could minimize the error. However,
the special form of the subspace makes this possible. Methods of this category
include Conjugate Gradient on the Normal equations, CGNR (“Residual”) and
CGNE (“Error”).
Given a linear system of equations Az = b with nonsymmetric A, the normal
equation is defined as
AT Az = ATb. (2.12)

or
(AAT)y = b, with z = ATy, (2.13)

The CGNR and CGNE methods are constructed by applying the CG method
to the normal equations. CGNR solves Equation (2.12), and CGNE solves
Equation (2.13). For nonsymmetric and nonsingular coefficient matrix A, the
normal equations matrices AA” and AT A are symmetric and positive definite,
and CG can be applied. However, in this case the convergence rate of CG depends
on the square of the condition number of A, which makes CG converge slowly.
The LSQR algorithm proposed by Paige and Saunders [[77]] applies the Lanczos
process to the damped least squares problem

A (D
AL ) o
where ) is an arbitrary scalar. The solution to (2.14) satisfies the symmetric system
I A r\ (b

AT 0 z )\ 0)’

where r = b — Az. The LSQR method is analytically equal to the CG method, but
possesses better robustness.

min

: (2.14)
2

2.1.3 Concluding remarks
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For a given problem, choosing an appropriate method is not an easy task.
Important selection criteria are the storage costs, the availability of A~!, the
computational costs of the M-V products, SAXPYs and inner products. Table 2.1
lists the operations performed per iteration and storage costs of the Krylov subspace
methods introduced above.

Method  Inner Product SAXPY M-V Product Storage costs

BiCG 2 5 171 matrix + 10n
CGS 2 6 2 matrix + 11n
GMRES i+ 1 i+1 1 matrix + (i + 5)n

Table 2.1: Operational and storage costs for the methods in the ¢-th iteration. Here
“1/1” means 1 multiplication with the matrix and 1 with its transpose.

There is a possibility that one Krylov subspace converges slowly and no good
approximate solution can be found or such an approximate solution cannot be
obtained easily. In this case it is recommended to use a preconditioner to converge
faster.

2.2 Preconditioning

Iterative methods require M-V products involving the coefficient matrix of the
linear system plus vector operations, which can potentially solve the memory
bottlenecks of sparse direct solvers. However, as we discussed at the end of
Section [2.1] there are many occasions where iterative methods converge slowly
or even fail to converge. Under this circumstance, we aim at computing a matrix
M such that the solution to the equivalent system M Az = Mbor AMy = b,
can be obtained in a smaller number of iterations of a Krylov method. This idea is
called preconditioning. The matrix M, which is called the preconditioner, should
approximate the inverse of the coefficient matrix A.

It is widely recognized that preconditioning is a critical ingredient in the
development of efficient solvers for modern computational science and engineering
applications. In practice, with the availability of a high quality preconditioner,
the choice of the Krylov subspace accelerator is often not so critical, see e.g.
conclusions in [51,86]. Some preconditioning approaches often work well only for
a narrow class of problems. In this thesis we propose new preconditioning methods
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for solving general nonsymmetric linear systems. We pursue a purely algebraic
approach where the preconditioner is computed from the coefficient matrix of the
linear system. Although not optimal for any specific problem, algebraic methods
are universally applicable. They can be adapted to different operators and to
changes in the geometry by tuning only a few parameters, and are suited for solving
irregular problems defined on unstructured meshes.

A good preconditioner M should satisfy the following properties

1. M is a good approximation to A~ in some sense.
2. The cost of the construction of M is not prohibitive.
3. The new preconditioned system is much easier to solve than the original one.

At every iteration step, the operation y = M Ax for left preconditioning is
computed in two steps: we first compute z = Ax and then we obtain y as y = M z.
When solving the preconditioned system

MAzx = Mb

by a Krylov subspace method, the approximate solution x; at step ¢ belongs to the
Krylov subspace

span{Mrqy, (MA)(Mro),...,(MA) 1 (Mry)}. (2.15)

By a suitable choice of M, we may expect that the dimension of the preconditioned
Krylov space where the exact solution lies is much smaller compared to the
unpreconditioned one, so that convergence may be faster.

There are three different ways to implement a preconditioner M, as described
below, leading to different convergence behaviors in general.

1. Left-preconditioning. Apply the iterative method to the transformed linear
system

MAx = Mb. (2.16)

All residual vectors and norms computed by a Krylov method correspond in
this case to the preconditioned residuals M (b — Axy) rather than the original
residuals b — Axg. This may have an impact on the stopping criteria based
on the residual norms.
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2. Right-preconditioning. Apply the iterative method to the transformed
system
AMy=10b, x = My. 2.17)

Right-preconditioning has the advantage that it only affects the operator and
not the right-hand side. Therefore the preconditioned and unpreconditioned
residual vectors are the same.

3. Split (Two-sided) preconditioning. The preconditioning process can be
written in the form

MlAMQZ = Mlb, Tr = MQZ. (218)

Then we apply the iterative method to (2.18)). This form of preconditioning
may be useful especially for preconditioners that come in factored form. It
can be seen as a compromise between left- and right-preconditioning. This
form may be also used to obtain a (near) symmetric operator for situations
where M cannot be used for the definition of an inner product (as described
under left-preconditioning).

The convergence rate is determined by the approximation degree of M to A~
In one extreme case, if M is equal to A~!, the convergence will be reached in one
step. But in this case the construction of the preconditioner is equivalent to solving
the original problem. In general, the preconditioner M should be easy to construct
and to apply, and the total computing time for solving the preconditioned system
be less than those for the original one.

2.2.1 Explicit and implicit form of preconditioning

Most of the existing preconditioning methods can be divided into implicit and
explicit form. A preconditioner of implicit form is defined by a nonsingular matrix
M ~ A~! and requires to solve a linear system at each step of an iterative method.
One of the most important examples in this class is Incomplete LU decomposition
(ILU), where M is implicitly defined by M = LU. Here L and U are
triangular matrices that approximate the exact L and U factors of A=, according
to some dropping strategy adopted in the Gaussian elimination algorithm. Well
known theoretical results on the existence and stability of the factorization can be
proved for the class of M-matrices [73]], and recent studies involve more general
matrices, both structured and unstructured. Many techniques can help improve the
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quality of the factorization for solving more general problems, such as reordering,
scaling, diagonal shifting, pivoting and condition estimators [[18}[29}43]71,/89].
Successful computational experience using ILU-type preconditioners have been
reported in many areas, such as circuit simulation, power system networks,
chemical engineering, structural analysis, semiconductor device modelling and
computational fluid dynamics [6}14,/72,[87]. However, one problem is that the
sparse triangular solvers can lead to a severe degradation of performance of ILU-
techniques on highly parallel and GPU machines [[70]]. For some cases, reordering
techniques may help to introduce nontrivial parallelism. But in many cases parallel
orderings may degrade the convergence rate, while more fill-ins diminish the
parallelism of the solver [44].

On the contrary, explicit preconditioning directly approximates A~!, so that the
preconditioning operation reduces to forming one (or more) sparse M-V product.
Consequently, the application of the preconditioner may be easier to parallelize.
Some of these explicit techniques can also perform the construction phase in
parallel [30,55,58,/78,/79]. On certain indefinite problems, these methods have
provided better results than ILU techniques (see e.g. [28.35}/56]), representing an
efficient alternative in the solution of difficult applications. In practice, however,
some questions need to be addressed. First of all the resulting matrix M could
be singular, so that the new transformed linear system is no longer equivalent to
the original one. In the second place, explicit techniques usually require more
CPU-time to compute the preconditioner than ILU-type methods. The main issue
is the selection of the nonzero pattern of M. The idea is to keep M reasonably
sparse while trying to capture the large entries of the inverse, which are expected
to contribute the most to the quality of the preconditioner. Generally speaking, it
is difficult to determine the best nonzero pattern for M and it is often necessary to
increase the density of the computed sparse approximate inverse in order to have
the same rate of convergence as attained by implicit preconditioners. This may
lead to prohibitive computational and storage costs.

In the sections below we describe more extensively the popular classes
of Incomplete LU factorization (ILU) and sparse-approximate-inverse-based
preconditioners, which are the prerequisites for understanding our research.

2.2.2 Incomplete LU factorization

An ILU factorization can be derived by performing the standard Gaussian
elimination process and choosing a proper sparsity pattern for the nonzero entries



2.2. PRECONDITIONING 23

of the approximate triangular factors of A. Let A; be the matrix obtained from the
first step of the Gaussian elimination process applied to A.

aip a2 a3 ... Qin

a1 a2 a3 ... dA2p

A= | @31 a32 azz ... asn
L Gnl an2 Aap3 ... Adpp |

We define the user-selected nonzero pattern P of a target matrix M as
P = {(i,7) € [1,n]? s.t. my; # 0},
and the nonzero pattern of a given matrix A as
NZ(A) = {(i,j) € [1,n)? s.t. a;j # 0}.

The nonzero pattern P can be selected in advance, and typical options are in
general P = NZ(A),P = (NZ(A))?,.... Some small entries outside of the
main diagonal of A; can be 0 according to the selected nonzero pattern P. The
resulting matrix is denoted by A;.

We use fll(I, J) to denote the submatrix of fll, with entries a;; of fll such
that ¢ € Z and j € J with Z and J subsets of [1,n|. Here we define Z; =
{i,i+ 1,...,n}. At each step, the Gaussian elimination process is repeated on
the matrix fll(Ii,Ii), i = 2,3,...,n, until the incomplete factorization of A is
obtained. Note that the entries of A; are updated at each elimination step.

Below we describe the idea behind the general ILU factorization which is
denoted as I LUp. Here P represents the selected nonzero pattern as introduced
above.

The Gaussian elimination procedure contains three loops that can be
implemented in several ways. Algorithm computes the outer product update
and can be viewed as the KIJ version of Gaussian elimination. Similarly, there are
other variants of Gaussian elimination implementations such as the IKJ variant,
that can be incorporated with the I LUp preconditioner [86].

If the nonzero pattern P is chosen to be precisely the nonzero pattern of A and no
fill-in is allowed, then we have the so-called ILU(0) preconditioner. In the ILU(0)
preconditioner, the triangular factors have the same pattern as the lower and upper
triangular parts of A. We denote by a;, the i-th row of A, by a;;,1 < 4,5 < n the
entries of A.
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Algorithm 2.6 General Static ILU factorization.
I: fork=1:n—1do
22 fori=Fk+1:nandif (i,k) € Pdo
3 Qik *= Qi [ Ok
4 forj =k+1:nandif (i,5) € Pdo
5: Qjj 1= Q5 — Qi X Qg
6
7
8:

end for
end for
end for

Algorithm 2.7 IKJ variant of general ILU factorization: ILU(0).

1: fort: =2:ndo

22 fork=1:i—1andif (i,k) € Pdo
3 Qik *= Qi [ Ok

4 forj =k+1:nandif (i,5) € Pdo
5: Qjj = Q5 — QAL
6 end for

7 end for

8: end for

Observe Figure 2.1 for example. In Figure [2.1| we denote nonzeros by the little
squares. Matrix A is illustrated in the bottom left part. L and U are triangular
factors so that LU approximates A~'. At the top of Figure we show the matrix
L possessing the same structure as the lower part of A, and the matrix U possessing
the same structure as the upper part of A. If we execute the product LU, we
would obtain the matrix possessing the pattern shown in the bottom right part of
Figure Here we see that the product LU has more nonzeros than A. The
extra nonzeros are denoted by hollow blocks and are called fill-ins. If we ignore
these fill-ins at the cost of some approximation, then we can find L and U so that
the entries of A — LU are equal to zero in the positions of NZ(A). The standard
ILU(0) implementation is described in Algorithm[2.7] The selected nonzero pattern
P is chosen to be equal to NZ(A).

If we drop too many fill-ins, then the ILU(0) factorization will not be accurate
enough to converge fast. By employing a hierarchy of ILU factorizations, we can
keep more fill-ins and obtain more accurate and reliable preconditioners. This
hierarchical ILU factorization is denoted by ILU(p), where the positive integer p
represents the so-called level of fill-in.
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L U
L] I'=l .l
.. .==J .=;
FE= T, FEe  Bx
. i % i
A LU

Figure 2.1: The ILU(O) factorization for a five-point matrix.

We continue to use the example of ILU(0) factorization shown in Figure 2.1]to
elaborate ILU(1) factorization. Different from ILU(0), the ILU(1) factorization
chooses NZ(LU) to be the nonzero pattern of the triangular factors L; and Uy,
with L and U resulting from the ILU(0) factorization applied to A. The pattern
NZ(LU) is shown at the bottom right part of Figure

The nonzero patterns of L; and U; are illustrated at the top of Figure @ The
new product L;U; is shown at the bottom right part of the figure, that has more
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l== .==.. l==
e, Fm, FEs, =,
.== -=Ej .=E -=Ej

A, LU,

Figure 2.2: The ILU(1) factorization.

fill-ins than A;.

Based on the concept of levels of fill-in, a hierarchy of ILU preconditioners can
be obtained. A level of fill-in [ev; ; is assigned to each entry a;; that results from
the Gaussian elimination process, and dropping is performed based on the values
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of lev; ;. The initial level of fill-in of an entry a;; is defined as follow:

{0, if ai; £ 0ori=j,
levi,j = A
oo, otherwise.
During the ILU factorization, a;; is modified at each step, and its level of fill-in
lev; j is updated accordingly:

lev; j = min{lev; j,lev; ; + levy ;}. (2.19)

In ILU(p), all fill-ins whose level of fill-in is greater than p are dropped. Then
the nonzero pattern for ILU(p) is defined as

Py ={(i,j)|levi; < p}.

When p = 0, ILU(p) equals to the ILU(0) factorization as defined before. As p
increases, accuracy grows while the factorization cost also increases. In general,
ILU(1) is good enough for most cases. The accuracy of ILU(1) improves to a large
extent compared to ILU(0), at moderate computational and memory cost. Below is
the ILU(p) algorithm.

Algorithm 2.8 ILU(p).
1: Define lev(a;;) = O for all the nonzero entries a;;
2: fori =2:ndo
33 fork=1:7—1andlev;; < pdo

4 Compute a;; = a;i/agk

5 Qs = Qi — Ak Qs

6: Update lev; j according to Equation (2.19)
7 end for

8: end for

However, ILU(p) may drop large entries or keep small entries due to the
static pattern selection strategy. This would lead to inaccurate factorization and
result in slow convergence rate or even incorrect results. The problem can be
partially remedied by using a magnitude-based dropping strategy, rather than a
location-based dropping strategy. In this case the nonzero pattern P is determined
dynamically.

By incorporating a set of rules for dropping small entries, a general ILU
factorization with threshold (denoted as ILUT) can be obtained. In ILUT, the



28 CHAPTER 2. ITERATIVE METHODS FOR SPARSE LINEAR SYSTEMS

dropping strategy implemented in the Gaussian elimination process is based on
their magnitude instead of their positions. Below is a short description of the ILUT
algorithm. Here a;, denotes the i-th row of A, and wy, denotes the k-th entry of the
auxiliary vector w.

Algorithm 2.9 /LUT.

1: fori =1:ndo

2 W = Qjx

3: fork=1:7—1and w; # 0do
4. Wg = wk/akk

5: Apply a dropping rule to wy
6 if wy # 0 then

7 W =W — Wk X Ukx
8

9

end if
: end for
10:  Apply a dropping rule to row w
11: lm:wjforj:l,...,i—l
12: ui’j:wjforj:i,...,n
13 w=0
14: end for

1. In line 5, the element wy is dropped if wy < 7;, the relative tolerance
obtained by multiplying 7 by the original norm of a; .

2. In line 10, first drop the elements whose magnitude are below the relative
tolerance 7; in row w. Then except for the p largest elements in the L part,
the p largest elements in the U part of the row and the diagonal element, all
the rest entries are dropped.

Here p can be used to reduce the memory costs, and 7 is used to control the
computational costs. The preconditioner implemented in Algorithm [2.9|is referred
to in the literature as ILUT(p, 7).

Multielimination ILU preconditioner

In the ILU preconditioners introduced above, the dropped entries are discarded
according to the location or to the magnitude. The resulting factors are often ill-
conditioned and the convergence rate tends to deteriorate [87/]. To solve this issue,
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multilevel strategies are often incorporated in ILU factorizations. Multielimination
ILU preconditioner (ILUM) for general sparse matrices is one of the pioneering
methods in this category [84].

ILUM relies on the fact that at a given stage of Gaussian elimination, many
rows can be eliminated simultaneously because of the matrix sparsity. The set
that consists of such rows is called an independent set. Once an independent set
is computed, the unknowns associated with it can be eliminated simultaneously.
After the elimination, a smaller reduced system can be obtained. The elimination
is applied approximately and recursively a few times, until the reduced system is
small enough to be solved by an iterative solver.

We will use the following terminology. Let G = (V, E) denote the adjacency
graph of the matrix A. Here G is a directed graph, V' = {v1,vg,...,v,} is the set
of vertices, and E is the set of edges (v;, vj), where v;,v; € V and (v;, vj) denotes
an edge from vertex v; to v;. The n vertices in V' represent the n unknowns, and
the edges in E represent the binary relations in the linear system. When a;; # 0,
there exists an edge (v;, v;) € E.

Definition 1. An independent set S is a subset of V' such that
VUZ'7U]' eSs, (Ui,’l)j) ¢ E.
This corresponds to a set of nodes that are not coupled.

A maximal independent set is an independent set that can not be augmented,
ie., for any v € V, S(J{v} is not an independent set. In this thesis the term
independent set is used to refer to the maximal independent set.

During the multilevel Gaussian elimination process, the matrix A is
preliminarily reordered into a 2 x 2 block form by a permutation matrix P

r (D F
PAP _< 5 C), (2.20)

where D is diagonal. The permutation is executed so that the unknowns contained
in the independent set are listed first, followed by the remaining unknowns. The
following block LU factorization is performed on (2.20)

(2 ¢)=(eor 1)*(0 &)

Here Ay = C — ED~'F is the Schur complement as well as the coefficient matrix
of the reduced system. The same permutation can be applied recursively on A
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and the consecutively reduced systems, until the last system is small enough to
be easily solved by a standard method. After the last level is reached, the last-
level system can be solved efficiently by a Krylov subspace or a direct method.
Then through backward iterations, the solution for the original system is obtained.
With the multilevel strategy, the solution of a big problem is decomposed into the
solution of a sequence of smaller problems.

Block versions of the Multielimination and Multilevel ILU
preconditioner

ILUM is an effective multilevel solver that has a high degree of parallelism, but
it also has some drawbacks. First, during the reduction process, the diagonal
entries of matrix D could be small in magnitude and this may lead to an inaccurate
factorization. Second, when the coefficient matrix A is relatively dense, then the
size of the independent set is typically small and the Schur complement is large,
and the convergence rate deteriorates. In order to avoid these problems, the ILUM
factorization can be generalized to block versions of multilevel ILU factorization
(BILUM) [90]] that exploit block structures in the matrix. The idea of exploiting
the block structure within the coefficient matrix inspired us to construct the block
multilevel solver, presented in Chapter 6.

Consider a partitioning of the set of vertices V' of the adjacency graph of A with
disjoint subsets V; of vertices, that is

ViV =0, if i # ).

A quotient graph can be constructed where each of these subsets is viewed as a
super-vertex. In a quotient graph, vertex V; is called to be adjacent to vertex V; if
there is a vertex in V; which is sharing an edge with a vertex in V. Then a block
independent set can be defined as follows.

Definition 2. Let Vi, Vs, ..., V,, be a group of disjoint subsets of V. The set V is
called a block independent set if any two subsets V; and V; in 'V are not adjacent
in the quotient graph.

For simplicity, the block independent set ordering is initially described using a
constant block size equal to 2. This can be generalized to any size. There are
different blocking strategies to couple a node with its neighbors to form a 2 x 2
block. One way is to check the absolute values of the neighbors of this node,
and couple the node with the neighbor which has the largest absolute value. This
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blocking strategy leads to nonsingular 2 x 2 diagonal blocks, and the inversion of
these blocks is stable. Upon permutation, we obtain the reordered system

v (D F
PAP _<E C). (2.21)

Equation (2.21)) possesses the same structure as that of Equation (2.20), and the
remaining factorization steps are also similar to ILUM. The submatrix D is a block
diagonal matrix in BILUM framework, and the inverse of D can be explicitly
computed by inverting the small blocks exactly. The forward and backward
substitutions are similar to those in ILUM with the diagonal matrix D being a
block diagonal matrix.

The Algebraic Recursive Multilevel Solver (ARMS)

The variant of the ILUM and BILUM methods that we consider in this thesis is
called ARMS. The ARMS solver proposed in [89] is a general preconditioning
method based on a multilevel partial solution approach. It can be viewed as a
generalization of ILUM and BILUM. The main framework of ARMS is similar to
that of BILUM. For the processing phase, the block size can be larger than two,
and the block ILU factorization is applied recursively to the reduced system at each
level, until the final system is small enough to be solved with a standard method;
the solving phase consists of the solution of the last-level system and consecutive
backward substitutions.

The ARMS solver uses block independent sets as in BILUM. One major
implementation difference between the two methods lies in the calculation of the
factorization and of the Schur complement at each level. One standard approach
for computing the factorization (2.22) is to use Gaussian elimination and produce
the factorization in the form

D F L 0 u w
(E c)‘(a 1>X<o A1>’ (2.22)
Here D is factorized as D ~ LU with L ~ LandU ~ U, G = EU~! and
W = L7'F,and Ay = C — ED~'F is the Schur complement with respect to
C. However, in the ARMS implementation, after the incomplete factors of D, L
and U, are computed, the approximation W' =~ L~'F is also computed. Then the

approximation G’ ~ EU ! and approximate Schur complement A; are obtained.
These computations are iterated until the last level is reached. The blocks W and
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G are stored temporarily to compute the Schur complement, and then discarded
afterwards. Then the costs of W and G can be saved, and the accuracy of the
factorization of D is guaranteed.

Inverse-based Multilevel Incomplete LU factorization

This recently developed preconditioner is implemented in the popular ILUPACK
(abbreviation for Incomplete LU factorization PACKage) software package
developed by Bollhofer and Saad [[16]] for solving large sparse linear systems. The
ILUPACK software is mainly built on multilevel incomplete factorization methods
combined with Krylov subspace methods. The multilevel approach of ILUPACK
is summarized below.

e The coefficient matrix A is first scaled by diagonal matrices D1 and D-

D1ADs = A,
and then permuted by matrices P and PT
PAPT = A.

Scaling and permutation can be viewed as preprocessing steps before the
factorization step to make the original system more amenable to the iterative
solution. These techniques include methods for reducing the fill-in and
improving the diagonal dominance, like the maximum weight matching [[15],
the multiple minimum degree ordering [2] and the nested dissection [S0].

e The matrix A is approximately factorized as
A~ LDU,

with L and U being unit lower and unit upper triangular factors, and D being
a diagonal matrix.

e Apply the above procedures to the reduced system with coefficient matrix
A = S, where S = C — ED™'F is the Schur complement. Recursively
apply these procedures onto the Schur complement until S is small or dense
enough to be efficiently factorized by level 3 BLAS operations.

e Compute the last-level system with Krylov subspace methods and obtain the
solution to the original system by a hierarchy of backward substitutions.
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Figure 2.3: Pivoting in ILUPACK.

To limit the possibly large norm of the inverse triangular factors L~' and
U~! which may lead to ill-conditioned triangular solvers, a pivoting strategy is
incorporated during the factorization process. The pivoting can be expressed as

-+ (B E\_ (Lp 0)( DsUs DpUg
PAP_(FC “\zp 1 0 s )t

where R is the error matrix and S is the Schur complement. The pivoting strategy
estimates the norm of the inverse factors. If the norm of one row in U ™! or one
column in L' exceeds a pre-determined bound 7, then this row or column is
rejected, otherwise it is accepted. All the accepted rows and columns continue the
approximate factorization process. The rejected rows are permuted to the lower
end of the matrix, and the rejected columns are permuted to the right end of the
matrix. The pivoting process is illustrated in Figure [2.3]

The inverse-based approach of ILUPACK is based on subtle relations between
ILU methods and sparse approximate inverse methods. Bollhofer and Saad
have investigated the relations between approximate inverses and related ILU
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methods [[17]. These useful relationships can be applied to generate more robust
variants of ILU methods [[13]]. In ILUPACK, the approximate inverse triangular
factors are computed instead of the incomplete factors. The information contained
in the inverse factors improves the robustness of the factorization process. Hence
the inverse-based approach and the incomplete factorization process are combined
in ILUPACK and efficiently implemented. We thoroughly use ILUPACK in our
development and comparison.

2.2.3 Sparse-approximate-inverse-based preconditioners

Many popular general-purpose preconditioners, such as preconditioners based
on incomplete factorizations of A, have good robustness and good convergence
rate. However they require sparse triangular factors to be performed at each
iteration, which are highly sequential operations. Hence it is difficult to obtain
good parallel scalability using incomplete factorization preconditioners on parallel
computers. Therefore in this thesis we also revisit the class of approximate inverse
factorization preconditioners, as their constructions reduce to solving independent
linear systems which can be performed concurrently. Before introducing our
methods, we would like to recall the main underlying ideas.

Sparse approximate inverse preconditioning possesses natural parallelism since
only sparse M-V products are needed at each step of an iterative method. This
class of methods often succeeds in solving complicated problems while ILU
preconditioning fails, and has attracted considerable research interest in the last
few decades [|11/7,94[331146.53}/64,86]. Sparse approximate inverse preconditioning
aims at explicitly computing a sparse approximation of the inverse M ~ A~!,
or of its triangular factors M = MM, =~ A~1. In the former case, it can be
implemented as left-preconditioning or right-preconditioning (2.17), in the
latter case as split preconditioning (2.18)). Then a Krylov subspace method is used
to solve the preconditioned system.

A good preconditioner M should be as sparse as possible, and the construction
of M should be efficient. Therefore, sparse approximate inverse preconditioning
is based on the implicit assumption that A~! can be effectively approximated
by a sparse matrix, which means that most entries of A~! are small. To save
computational and memory costs, dropping strategies are applied during the
preconditioning construction. Some dropping strategies are location-based or
pattern-based, that is entries at chosen locations will be dropped; some dropping
strategies are size-based or threshold-based, that is the entries whose size meet a
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certain condition will be dropped. Although the relation between the size of the
dropped entries and the convergence rate is still not clearly understood, basically
dropping small elements is a better choice, which tends to produce a better quality
preconditioner [86].

To reduce the total execution time, the computation of M and the M-V product
My should be computed in parallel. Sparse approximate inverse methods are
clearly superior to Incomplete LU factorizations in this respect, as they do not
require sequential triangular solvers. A lot of work has been devoted to developing
preconditioning methods that naturally possess parallelism. Among these methods,
sparse approximate inverse methods have received an increasing attention. We
have incorporated some of the underlying ideas into our multilevel framework
presented in the coming chapters, attempting to improve the performance of the
original methods. Below we briefly introduce the popular classes of SParse
Approximate Inverse (SPAI), Approximate INVerse (AINV) and Factorized Sparse
Approximate Inverse (FSAI).

SParse Approximate Inverse (SPAI)

One idea for constructing an approximate inverse preconditioner is to find a sparse
matrix M such that |AM — || is small for some selected norm. The SPAI
method [53]] presents the inverse in factored form, which avoids the singularity
of M. Direct or iterative methods can be both used to minimize ||AM — Iz [1].

The SPAI method uses the Frobenius norm to minimize ||[AM — I||, that is it
solves

IAM — I|% = I(AM — I)ex 3. (2.23)
k=1

Since each column of M is independent, solving Equation (2.23)) amounts to
solving n independent least squares problems

min [|[Amy, — egll2, k=1,2,...,n, (2.24)
my,

where my, is the i-th column of M, and e;, = (0,...,0,1,0,...,0)”. Below we
solve the kth least squares problem as an example. Let J be the set of indices j
such that mg(j) # 0. Ty denotes the reduced vector of unknowns my (7). To
eliminate the zero rows in the submatrix A(., 7 ), let Z be the set of indices i such
that A(i, J) is not all zero, and the resulting submatrix A(Z,7) is denoted by
A. Analogously, e (Z) is denoted by e;. Then solving Equation for my
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amounts to solving the extracted least squares problem

min || A7 — 2. (2.25)
mi

When A and M are sparse matrices, the least squares problem is
much smaller than the corresponding original least squares problem in (2.24)
and it can be easily solved. The computation is very similar in the case of left
preconditioning.

On the one hand, preconditioning methods based on Frobenius norm
minimization have high potential for parallelism. The minimization in the
Frobenius norm leads to the independent calculation of each column of M, and
Equation (2.24) can be solved in parallel. On the other hand, the solution
process can be much simplified by solving the reduced least squares problems.
Research reveals that the SPAI algorithm could produce a sparse and effective
preconditioner [30].

The choice of the sparsity pattern of M is usually an important issue to compute
an effective and cheap sparse approximate inverse preconditioner. A very sparse
pattern yields a preconditioner that is easy to construct, but may lead to a slow
convergence rate. A large sparsity pattern may enable us to converge faster, but it
also results in higher computational costs. The idea is to keep M reasonably sparse
while still being able to capture the large entries of the exact inverse of A, which
are supposed to contribute most to the quality of the preconditioner computed. The
sparsity pattern of M can be static or prescribed a priori. A common choice is
to select for M the same nonzero pattern of A. This strategy can be effective
especially if A has some degree of diagonal dominance. However, this approach
may not be robust for solving general sparse problems since A~ may have large
entries outside of the sparsity pattern of A. One possible remedy is to choose the
sparsity pattern of M to be that of A* where k is a positive integer and k& > 2 [33].
This approach computes more of the large nonzero entries and often results in
better performance, but the computational and storage costs of the preconditioner
tend to grow rapidly with larger k. The sparsity pattern of M can also be selected
dynamically, starting with a simple initial guess like a diagonal pattern. Then
the sparsity pattern is augmented as the algorithm proceeds, until some accuracy
criteria are satisfied.

Approximate INVerse (AINV)

The AINV method proposed in [10,[11] is a method for computing sparse
approximate inverse preconditioners in factorized form. The resulting factorized
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sparse approximate inverse is used as an explicit preconditioner for Krylov
subspace methods.

AINV computes a split factorization M = MM, of the form (2.18). The
triangular factors in the AINV algorithm are computed based on two sets of A-
biconjugate vectors {z;}7 ; and {w;}? ;, i.e. wl Az; = 0if and only if i # j.
Then introducing the matrices Z = [z1, 22, ..., 2,), and W = [wy, w2, ..., wy],
the relation

DP1 0o ... 0

... 0

WTAZ =D = b
0 0 ... pp

holds, where p; = w! Az; # 0, and the inverse is equal to

ziwiT

ATt =zD W = zn: "

i=1

Observe that A~! is known if two complete sets of A-biconjugate vectors are
known. The two sets of A-biconjugate vectors are computed by means of a (two-
sided) Gram-Schmidt orthogonalization process with respect to the bilinear form
associated with A. In exact arithmetic this process can be completed without
breakdowns if and only if A admits an LU factorization, that is if all the leading
principal minors of A are nonzeros [[11]]. Sparsity is preserved during the process
by discarding elements having magnitude smaller than a given positive threshold.
This strategy has proved to be robust and effective especially for unstructured
matrices.

For SPD problems, there exists a stabilized variant of AINV which is breakdown
free [[7,/62]]. When A,,,, is an SPD matrix, it does not need to be stored explicitly.
This is economical memory-wise cost and useful when A is just known as an
implicit operator. After Z and D are obtained, the solution vector can be calculated
as

" 2Th
r=A""=2D"Z"b=) (“)z,
— D
1=
where p; = z;[ Az;. For general problems, some care must be taken to avoid

breakdowns due to divisions by zero.
During the AINV process, Z and W tend to be dense, which makes the costs
unacceptable. Since many of the entries in the inverse factors of a sparse matrix
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are small in absolute value, sparsity can be preserved by dropping these small fill-
ins arising during the computation of the vectors of Z and W.

The AINV method does not require the sparsity pattern to be known in advance.
It uses adaptive techniques that dynamically identify the best structure for the
inverse factors.

The AINV preconditioner is typically robust in applications and it results in
good convergence rates of a Krylov subspace method at low set-up costs [[11].
One drawback of AINV is that the orthogonalization steps for generating the
preconditioner is highly sequential. This makes it difficult to implement AINV
in parallel. Graph techniques can be used to obtain an effective parallelization [9].

Factorized Sparse Approximate Inverse (FSAI)

In this subsection we briefly review the FSAI preconditioner proposed by
Kolotilina and Yeremin in a series of papers [63-65.{103].
Let
Ax =10 (2.26)

be an n x n general linear system with nonsingular, possibly indefinite and
unsymmetric matrix A = {a;;} € R™ ", and vectors z,b € R™. Consider the
left preconditioned system of the form

MAz = Mb,

where M ~ A~! is nonsingular. If the sparsity pattern S C {(i,5) : 1 <1i # j <
n} for M = {my;} is prescribed in advance, we can set

m; =0 if (Z,]) S S,

and determine the nonzero values m;; for (7, j) ¢ S by minimizing the nonnegative
quadratic functional

11— MA|, = tr |(I— MAYW (I — MA)T] 2.27)

with a positive definite, possibly nonsymmetric weight matrix W [64]]. A
nonsymmetric matrix A is said to be positive definite if (4 4+ AT)/2 is positive
definite, and hence we have

(MAW +WT) AT = (W +WT)AT) . (i,§) & S. (2.28)
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Then Equation decouples into n independent linear systems with symmetric
positive definite coefficient matrices. We can compute nonzero entries in each row
of M from corresponding independent linear system. Unfortunately, for
W # A~! generally yields an unsymmetric approximate inverse M. Hence we
assume that A admits for a triangular decomposition

A=LU
and we precondition system (2.26)) as
My AMyy = Mpb

with My, ~ L~! and My ~ U~!, clearly preserving symmetry and/or positive
definiteness of A.

The FSAI preconditioner is based on incomplete inverse factorizations of A1,
and constructs My, and My by first selecting some triangular sparsity patterns Sy,
and Sy such that

{(6,7) i <j} € SL<{(,5) =i # j} (2.29)
and
and then computing nonzero entries of My, and My to satisfy the conditions

(Mp);; =0, (4,4) € Si,
(My);; =0, (i,5) € Su,
(
(

J 2.31
MLA)ij = 5ij7 (27]) ¢ SL? ( )
AMy);; = 6ij. (1,7) ¢ Su.
The preconditioned matrix has the form
MpAMyD™, (2.32)
where
D = diag (M AMy) . (2.33)

It is easy to see that the nonzero entries of the i-th row of M|, can be determined by
solving linear algebraic equations with coefficient matrix A(*), where A® denotes
the principal submatrix of A having entries a;, with j,k € {¢: (i,£) ¢ Sr} [64].
A similar assertion also holds for the nonzero entries of the jth column of the
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matrix Mpy. The entries of the matrices My and My are uniquely determined
whenever all the submatrices A®, ¢ = 1,...,n, are nonsingular. From
Equation (2.31)), we see that the factors L and U are actually not needed for the
construction of My, and My . Clearly, there is wide scope for parallelism in this
approach. For symmetric positive definite (SPD) linear systems, the resulting
preconditioner is quasi-optimal as a minimizer of the Frobenius norm of the
corresponding residual matrix over all lower triangular preconditioning matrices
of a fixed sparsity pattern [103]. In addition, it is always well defined and can
be computed in a stable way if A is SPD. Convergence results are proved for
M -matrices, H-matrices, and block H-matrices [64]. For more general matrices,
however, it may fail to exist.

The main issue is the selection of the nonzero patterns Sy, and Sy. The idea is
to keep the inverse factors M and My reasonably sparse while trying to capture
the “large” entries of L~! and U~!, which are expected to contribute the most to
the quality of the preconditioner. For arbitrary matrices, especially those having
highly irregular structure, it is unclear how to determine a nearly optimal nonzero
pattern in advance for the inverse factors. The simple strategy to take S;, equal
to the sparsity pattern of the lower triangular part of the symmetrized matrix A +
AT and to set Sy = ST, can sometimes produce preconditioners of low quality
(this will also be confirmed by some of our numerical experiments reported in this
thesis). In order to improve the quality of the FSAI preconditioner, one could use
the pattern of the lower triangular part of the matrix (A+4AT)P, where p is a positive
integer [33,(34,/102]. The larger p, the better in general the approximations to the
triangular factors of A, and the higher the quality of the computed preconditioner.
But larger p may rapidly increase the density of the pattern. The serial costs of
constructing, storing and applying the FSAI method can be very high if its nonzero
pattern is sufficiently dense.

Recently, blocking and adaptive variants have been proposed [47,/58L/60], which
increase the robustness and efficiency as well as maintain the parallelism. The
Block FSAI preconditioner (BFSAI) [58] combines the FSAI method with an
incomplete block Jacobi algorithm to solve SPD linear systems of equations. The
idea of BFSAI is to find a preconditioner M = GTG, where G € S, to minimize
the Frobenius norm

I = GL|F,

where L is the lower triangular factor of A such that A = LL”, and S, is the
nonzero pattern of L. In BFSALI the block preconditioner M4 = FTF, where



2.2. PRECONDITIONING 41

F € Spr, is employed to minimize the Frobenius norm
ID—FL|F,

where D is a block-diagonal matrix with a block nonzero pattern Spp, and
Spr. = Spp U Sr. The block nonzero patterns are described in Figure [2.4
The inner preconditioner M4 = FTF is used to reduce the interaction between

(@ Spp (b) St (©) SL

Figure 2.4: Schematic of the nonzero patterns Sgp, St and Spy..

the diagonal blocks of A, which results in FAF”’s nice property of parallel
implementation. To improve the convergence rate, F AF is preconditioned again.
With a number of blocks at least equal to the number of available processors, each
block of FAFT is preconditioned separately with a sequential preconditioner. The
outer preconditioner .J7'.J of FAFT is computed by an Incomplete Cholesky (IC)
decomposition for improving the conditioning index of each block. Then the final
BFSAI preconditioner is

M=wTw = (JF)TJF,
and the preconditioned matrix is
JFA(JF)T = wAWT,

The BFSAI preconditioner is a parallelizable hybrid of FSAI and ILU, which
coincides with FSAI when the number of blocks is equal to the dimension of the
matrix, and reduces to IC if only one block is applied.

As an approximate inverse method based on the Frobenius norm minimization,
the BFSAI preconditioner aims to compute a preconditioner to minimize the
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distance between the preconditioned matrix and a block diagonal matrix with
Frobenius norm. Among the minimization process, the nonzero pattern is chosen
beforehand by the user, which is usually a difficulty for a general problem. To
overcome the limitation of BFSAI, the Adaptive BFSAI (ABF) preconditioner
proposed in [60] generates the nonzero pattern automatically. The adaptive
procedure captures the most significant nonzero entries of the first powers of A,
which is based on the minimization of an upper bound to the Kaporin conditioning
number of the preconditioned matrix. The Kaporin number of an SPD matrix A is

defined as
trA

ld) = n det(A)V/n’

The adaptive computing of the nonzero pattern proceeds iteratively until a user-
specified criterion on the upper bound variation is satisfied. The adaptive strategy
for computing the nonzero pattern captures the most significant entries of powers
of A larger than 3 without computing all their entries, which reduces the number of
iterations dramatically and keeps the density of the preconditioner at a low level.

In [47], the BFSAI preconditioner for SPD is further expanded to solving
unsymmetric linear systems of equations, which is called Unsymmetric Block
FSAI (UBF). In the UBF algorithm, the preconditioner for the unsymmetric matrix

(@) SBp (b) SBL (c) Spu

Figure 2.5: Schematic of the nonzero patterns Sgp, Spr. and Spy.

A is computed as M = Fy Fr, where the block preconditioner Fy; € Sy and
Fr, € Spr. Here the factors F7, and Fiy can be computed independently by
splitting to different processors in parallel. Similar to block FSAI, the aim of
F7, and Fy; is to resemble the preconditioned matrix 1, AFy to a block diagonal
matrix. Then the block diagonal matrix F, AFy; can be preconditioned by a block
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diagonal preconditioner in parallel, where each diagonal block is preconditioned
separately by a sequential preconditioner.

2.3 Concluding remarks

In this chapter, we recalled the basic concepts underlying the development
of modern Krylov subspace methods for solving large linear systems. By
repeatedly performing M-V products involving the coefficient matrix A plus
vector operations, Krylov subspace methods can significantly reduce the memory
bottlenecks of direct solvers. Krylov subspace methods are iterative in nature and
economical in computation. Therefore they are often considered the methods of
choice for solving large linear systems such as those arising from the discretization
of partial differential equations on modern computers. We have briefly highlighted
several standard Krylov subspace methods including BiCG, CGS and GMRES. We
have also proposed a comparison of the computational and storage costs of these
methods. The GMRES method is mostly used in our algorithms, and some other
Krylov methods are also applicable.

One practical problem is that iterative solvers lack the typical robustness of direct
solvers. Preconditioning techniques are necessary for enhancing their robustness.
We have described preconditioning techniques of both explicit and implicit
form, with particular attention to Incomplete LU factorization (ILU) and sparse-
approximate-inverse-based methods. In many problems, ILU preconditioners work
well. But as the size of the problem increases, the convergence rate tends to
deteriorate. Multilevel and block variants such as ILUM and BILUM improve
standard methods and result in faster convergence rate. This motivates us to
construct preconditioners with multilevel and block strategies. We have also
discussed recent developments in the field of preconditioning methods, including
ARMS and ILUPACK. These state-of-the-art methods have been well proved
to have good performance on solving general linear systems. Hence we also
incorporate ILUPACK in our new preconditioners, and compare the combinatorial
methods to ARMS and ILUPACK. Preconditioners based on sparse approximate
inverse are computationally attractive due to their natural parallelization and good
numerical stability properties. We have briefly revisited the SPAI, AINV and FSAI
methods, including recent block variants. The performance of these methods can
also be improved by combining them with our multilevel strategy. In the coming
chapters we present the development of a new class of linear solvers to enhance the
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robustness of multilevel preconditioning. We focused in particular on approximate
inverse preconditioners, as their constructions reduce to solving independent linear
systems, and this task can be performed concurrently. The proposed methods are
based on multilevel and supernodal factorization for solving general linear systems,
making them very good candidates to solve very large linear systems on massively
parallel computers.



3 Distributed Schur complement
preconditioning|

To solve the increasingly complicated and enormous linear systems from various
applications, some aspects of the existing preconditioning methods need to be
improved. Some of the existing methods are problem-dependent. There exists
no such a universal preconditioning technique that is applicable to every problem.
Although it is unlikely to compute a preconditioner that is the most effective for
all applications, it is still highly desirable to develop general-purpose techniques
that can be efficient for a large group of problems. Some of the existing
preconditioning methods can be improved with respect to inherent parallelism,
robustness, efficiency and cost. The design of the preconditioner is somehow
a matter of both art and science. The matrix factorization involved in our
preconditioners is based on the reordered matrices themselves and does not
require any priori information of the problem or physical domain. Our goal is
to propose black box solvers for sparse matrices with a general structure. The new
preconditioning strategies and ideas have a good deal of generality, so that they can
improve parallelism and robustness of iterative solvers, while being economic to
implement and use.

In this chapter we introduce an algebraic recursive multilevel incomplete
factorization preconditioner based on a distributed Schur complement formulation
for solving general linear systems

Az =b. 3.1

The novelty of the proposed method is to combine hybrid factorization techniques
of both implicit and explicit type, and to use recursive combinatorial algorithms
and multilevel mechanisms as an attempt to maximize sparsity and reduce costs in
the factorization. Assuming that the coefficient matrix A of system (3.1]) admits the
factorization A = LU, with L a unit lower and U an upper triangular matrix, our

IThis chapter is based on the published article [22}/24].
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method approximates the inverse factors L~ and U 1. The strategies investigated
in this chapter can be also incorporated in other existing preconditioning and
iterative solvers packages. Our experiments will show that the proposed methods
can compete well and can sometimes outperform other existing state-of-the-art
approaches for solving linear systems. As it will be shown in the following
chapters, some of the ideas proposed here can be used also in the context of direct
methods.

This chapter is organized as follows. First we describe the proposed Algebraic
Multilevel Explicit Solver (referred to as AMES) in Section 3.1} In Section [3.2]
we assess the overall performance of AMES by showing several numerical
experiments on realistic matrix problems. We compare the effect of AMES against
other state-of-the-art solvers like ARMS and ILUPACK.

3.1 AMES: a hybrid recursive multilevel incomplete
factorization preconditioner for general linear
systems

In this section we describe AMES, an algebraic multilevel solver of explicit type
that can be seen as a multilevel generalization of the FSAI factorization described
in Section 2.2.3] The main novelty of the AMES solver is to use multilevel
combinatorial algorithms to enforce sparsity in the approximate inverse factors.
It is easier to describe the AMES method by using graph notation, dividing the
solution of the linear system Az = b in five distinct phases [22}24,42]:

1. ascale phase, where the coefficient matrix A is scaled by rows and columns
so that the largest entry of the scaled matrix has magnitude smaller than one;

2. a preorder phase, where the structure of A is used to compute a suitable
ordering that maximizes sparsity in the approximate inverse factors;

3. an analysis phase, where the sparsity preserving ordering is analyzed and an
efficient data structure is generated for the factorization;

4. a factorization phase, where the nonzero entries of the preconditioner are
computed;

5. asolve phase, where all the data structures are accessed for solving the linear
system.
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Below we describe each phase separately.

3.1.1 Scale phase

We initially scale the system of equation Az = b by rows and columns as
Dy*Ay = D*, y =D}, (3.2)

where the n X n diagonal scaling matrices D and D5 have the form

. . _ . ; . . - .
max[a;;| ifi =j maxv\tziﬂ , it =

Dy (i, j) = ’ o Daig) =4
0 , ifi £ j 0 , ifi #£j

For simplicity, in our thesis we still refer to the scaled system (3.2) as Ax = b.

3.1.2 Preorder phase

We use standard notation of graph theory to describe this computational step. We
denote by G(A) the undirected graph associated with the matrix

= | A, if A is symmetric,
~ | A+ AT if Ais nonsymmetric.

First, G (fl) is partitioned into p non-overlapping subgraphs G; of roughly equal
size by using the multilevel graph partitioning routines metis and submetis,
which are available in the Metis package [61]]. For each partition G; we distinguish
two disjoint sets of nodes (or vertices): interior nodes that are connected only to
nodes in the same partition, and interface nodes that straddle between two different
partitions; the set of interior nodes of G; form a so called separable or independent
cluster (see Figure[3.1).

Upon renumbering the vertices of G one cluster after another, followed by the
interface nodes as last, and permuting A according to this new ordering, a block
bordered linear system is obtained, with coefficient matrix of the form

B O O O F

. O By, O O F
A:PTAP:<E C): O O 0 (3.3)

O O O B, F

E, Ey E, C
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interior nodes

interface nodes

Figure 3.1: The classification of nodes in a local partition G;.

By abuse of notation, we still call G the renumbered graph. Here we use
the multilevel graph partitioning routines metis and submetis in the Metis
package [61] to carry out the nested dissection process. Nested dissection
splits the problem into smaller subproblems, all having similar structures to the
original one. Then the dissection process is repeated recursively on each of the
subgraph until a desirable block-size is reached. By using the Metis tools, we
can find block independent sets and split the graph (problem) into p separate
subgraphs (subproblems) with no coupling. Then by combining the solutions to
the subproblems, we obtain the solution to the original problem. Upon the nested
dissection permutation, a sparse matrix can be reordered in the block downward
arrow structure illustrated in Equation (3.3). The diagonal blocks B; correspond
to the interior nodes of G;, the blocks F; and F; correspond to the interface nodes
of G;, the block C' is associated to the mutual interactions between the interface
nodes, and the rest are zero blocks. In our multilevel scheme, we apply the same
block downward arrow structure to the diagonal blocks B; of A. The procedure is
repeated recursively until a maximum number of levels is reached, or until the
last-level blocks are sufficiently small to be easily factorized. As an example,
in Figure [3.2b) we show the structure of the sparse matrix rdb2048 from the
SuiteSparse (formerly the University of Florida sparse matrix collection) [37] after
three reordering levels.

To reduce factorization costs, a similar permutation is applied to the Schur
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(a) The original structure of the rdb204 8 matrix.

(b) The structure of rdb204 8 after permutation.

Figure 3.2: Structure of the multilevel inverse-based factorization for the matrix

rdb2048.

complement matrix S = C' — EB~F as follows

Bgsy
Bgsa

Es1 FEgo

Bgy
Es,

Fsq
Fso
Fgs,
Cs

(3.4)

Although the Schur complement tends to get fairly dense, it typically preserves a
good deal of sparsity that can be exploited in the design of the preconditioner.

3.1.3 Analysis phase

In the analysis phase, a suitable data structure for storing the linear system
is defined, allocated and initialized. We use a tree structure to store the block
bordered form (3.3)) of A. The root is the whole graph G, and the leaves at each level
are the independent clusters of each subgraph. Each node of the tree corresponds
to one partition G; of G (/Nl), or equivalently to one block B; of matrix A. The
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information stored at each node are the entries of the off-diagonal blocks £ and F'
of B;’s father, and those of the block C' of B; after its permutation, except at the
last level of the tree where we store the entire block B;.

In order to take advantage of the large proportion of zero entries, we employ
sparse storage formats, such as the Compressed Sparse Row (CSR) and the
Compressed Sparse Column (CSC) formats to store the matrix blocks. The CSR
format is one of the most popular storage formats for storing sparse matrices. The
CSR data structure stores sparse matrices using three arrays AA, JA and IA.
Suppose the matrix has nnz nonzero entries and its dimension is n. AA contains
the nonzero entries of the matrix row by row. JA contains the column indices of
the entries stored in AA. The lengths of AA and and J A are both nnz. I A contains
the pointers to the first entries of each row in AA and JA. The i-th element of /A
is the position in AA and J A where the i-th row starts. The length of A isn + 1
and TA(n+ 1) = nnz + 1.

Take the following matrix for example.

b

Il
N OO O
Gt O =W
cowoo
o~ woo
N OO o ©

This matrix can be stored by the following CSR arrays

AA = (6,3,9,1,8,2,9,3,7,1,2,5,2),
JA=(1,2,5,2,5,1,3,4,2,4,1,2,5),
TA = (1,4,6,9,11,14).

Similar to CSR, CSC stores the entries, indices and pointers of the nonzero entries
of the sparse matrices in column-wise manner. The above matrix can be stored
with CSC arrays as

AA=(6,2,2,3,1,7,5,9,3,1,9,8,2),
JA=(1,3,5,1,2,4,5,3,3,4,1,2,5),
IA=(1,4,8,9,11,14).

In Figure [3.3((a), we describe the structure of matrix rdb2048 after the nested

dissection permutation, and in Figure [3.3(b) we show the tree data structure. In
this example the matrix rdb2048 is partitioned into three levels. The first-level
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(a) The structure of rdb2048. (b) The tree graph of rdb2048.

Figure 3.3: Structure and tree graph of matrix rdb2 048 after the nested dissection
permutation.

block A; is partitioned into five second-level blocks As, A3, A4, A5 and Ag. As an
example of the second-level blocks, As is partitioned into four blocks By, Bo, Bs
and By, which are last-level blocks. At the first level, we store blocks F, F; and
Cq; at the second level, we store blocks Fy ~ FEg, Fy ~ Fg and Cy ~ Cg; at
the third level (last level), we store all the blocks B. All the blocks F;, C; and
the last-level blocks B; are stored in CSR format, and blocks F; are stored in CSC
format.
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3.1.4 Factorization phase

The approximate inverse factors L~'and U~ of A can be written in the following
form

Ut Wy Lt
Uy ! W Ly!
L'~ : , U '~ .
u,t w, L,
Ug! Gi Gy - G
(3.5)

where B; = L;U;, and Lg, Ug are the triangular factors of the Schur complement
matrix

p
S=C-> EB;'F,. (3.6)
=1

By computing the matrix-matrix production A X A=Y = T with Equation (3.5)),

that is
B F =91 -1y (10
(EC)X(L x U )_<OI>’

we can obtain the auxiliary matrices
W, =-U'L;'FUSY, G = -Lg'E;U 'L (3.7)

Some fill-in may occur in L~ and U~' during the factorization, but only
within the nonzero blocks. This two-level reordering scheme was used in the
context of factorized approximate inverse methods for the parallelization of the
AINV preconditioner in [9]. However, differently from [9]], we apply the arrow
structure (3.3) recursively to the diagonal blocks and to the first-level Schur
complement as well, so that most of the nonzero entries of the original matrix
are clustered into a few nonzero blocks. This effectively maximizes sparsity in the
inverse factors and consequently reduces the factorization costs. The multilevel
factorization algorithm requires to invert only the last-level blocks and the small
Schur complements at each reordering level; the blocks W;, G; do not need to
be assembled explicitly, as they may be applied using Equation (3.7). For the
rdb2048 problem, in Figure [3.4(c) we display in red the actual extra storage
required by the exact multilevel inverse factorization in addition to matrix A; these
represent only 34% of the total number of nonzeros of A which is already very
sparse. From the knowledge of the red entries, the blue ones can be retrieved

-1
LS
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from Equation (3.7), using the off-diagonal blocks of A. We also permute the
large Schur complement at the first level into a block bordered structure, until we
reach a maximal number of levels or a given minimal size. The last-level matrix is
inverted inexactly. An inexact solver is also used to factorize the last-level blocks

(a) The original structure of (b) The structure of rdb2048 after (c) The structure of the inverse
rdb2048. permutation. factor. The entries actually stored
are displayed in red.

Figure 3.4: Structure of the multilevel inverse-based factorization for the matrix
rdb2048.

3.1.5 Solve phase

In the solve phase, the multilevel factorization is applied at every iteration step of
a Krylov method for solving the linear system. Notice that the inverse factorization
of A may be written as

n-1 (U W Lt 0
(PAP") _< 0 U§1>><( o L§1> (3.8)

where W = —U‘lL_lFUs_l, G= —LglEU_lL_l, and Lg, Ug are the inverse
factors of the Schur complement matrix S = C — EB~1F.
From Equation. (3.8), we obtain the following expression for the exact inverse

3.9

B 14+ B lFs-lgp~! —_B-lpg§-1
-S'EB™! S-1 '
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We can derive preconditioners from Equation. (3.9) by computing approximate
solvers B~! for B and S~ for S, that are cheap to compute, apply and store due
to sparsity. Hence the preconditioner matrix M will have the form

B-1.4 B-1pg-1pp-1 _p-1pg-1
M—(B +B'FSTEB BTFS >7 (3.10)

~S~'EB~! S—1
and the preconditioning operation ( 21 ) =M < Zl ) writes as Algorithm|3.1
2 2

Notice that Algorithm is called recursively at lines 1-3, as B and S also have a
block bordered structure upon permutation.

Algorithm 3.1 The preconditioning operation in the AMES solver.
1 p1= B_lb}

[p2,p3] = STHE - p1, by

[p4,p5] = B~ [F - pa, F - p3]

©T1=Pp1+Ps—Ds

L2 = Pp3 — P2

A

3.2 Numerical experiments with AMES

In this section we present the results of our numerical experiments to illustrate
the performance of the AMES preconditioner, also against other state-of-the-art
methods and software for solving general linear systems. The selected matrix
problems are extracted from the public-domain matrix repository available at the
SuiteSparse [37]], and arise from various application fields. We present a summary
of the characteristics of each linear system in Table We applied AMES
as a preconditioner for the Generalized Minimal Residual (GMRES) method by
Saad and Schultz [83[]. In all our runs we started the iterative solution from the
zero vector and we stopped it when either the initial residual was reduced by
twelve orders of magnitude or when no convergence was achieved after 5000 M-
V products. To limit memory costs, we restarted the GMRES algorithm every
500 iterations. The right-hand side b of the linear system was chosen so that the
solution is the vector of all ones, that is b = Ae with e = (1,...,1)7. In each run
we recorded the following performance measures:
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Matrix problem n  Field nnz(A)
orsirr_1l 1,030 Oil reservoir simulation 6,858
1138 bus 1,138  Bus Power System 4,054
bcsstk27 1,224  BCS Structural Engineering Matrix 28,675
epbl 1,794  Plate-fin heat exchanger 7,764
cz20468 20,468 Closest Point Method 206,076
raefsky3 21,200 Fluid Structure Interaction 1,488,768
ABACUS_shell_ud 23,412 ABAQUS benchmark 218,484
sme3Db 29,067 3D structural mechanics problem 2,081,063
viscoplastic? 32,769 FEM discretization 381,326
cz40948 40,948 Closest Point Method 412,148
rmal0 46,835 3D CFD Model 2,374,001
finanb512 74,752 Portfolio optim 596,992
helm2d03 392,257 Helmholtz eq. on a unit square 2,741,935
parabolic_fem 525,825  Parabolic FEM 3,674,625

Table 3.1: Set and characteristics of the test matrix problems.

1. the density ratio nnz(A)

nnz(Mp+My)

, that is the ratio between the number of

nonzeros in the preconditioner matrix M = My My, versus the number of
nonzeros in the coefficient matrix A;

. the number of iterations Its required to reduce the initial residual by 12
orders of magnitude starting from the zero vector;

. the CPU time cost in seconds for completing the preorder phase (denoted
by t,), for constructing the approximate inverse factorization (¢7), and for
solving the linear system (¢5). Symbol “-” means that the corresponding
phase does not apply to the given run. For example, some of the
preconditioners used for the comparison against our method do not have a
preorder phase.

The codes were developed in Fortran 95. The experiments were run in double
precision floating point arithmetic on a PC equipped with an Intel(R) Core(TM)2
Duo CPU E8400, 3.00 GHz of frequency, 4 GB of RAM and 6144 KB of cache
memory. In the coming sections we study the effect of using different parameter
settings in the AMES solver, and we illustrate the overall performance on the
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selected matrix problems.

3.2.1 Performance of the multilevel mechanism

The AMES method can be seen as a multilevel generalization of factorized
approximate inverse techniques such as the FSAI preconditioner by Kolotilina
and Yeremin, and the AINV preconditioner by Benzi and Tuma. Therefore,
first we present some comparison between these methods, to show the benefit of
the multilevel mechanism introduced in our AMES. The results are reported in
Table For these runs, we considered four matrix problems from Table
that are orsirr_1, 1138 _bus, bcsstk27 and epb0. In our AMES solver, we
inverted the last-level blocks using ILU, FSAI and AINV factorizations. For ILU,
we used the multilevel implementation available in the ILUPACK package [[16]
(this combination is referred to as AMES_ILU in the table).

For FSAI, we use the structure of the nonzero pattern of the lower (resp. upper)
triangular part of the symmetrized block for the approximate inverse factors, and
also the square of this pattern (this combination is referred to as AMES_FSAI). For
AINV we use the implementation kindly provided by the authors (this combination
is referred to as AMES_AINV). AMES_FSAI and AMES_AINV are multilevel
generalizations of AINV and FSAI respectively. This motivates the comparison
on several problems in our numerical experiments. On the other hand, AMES_ILU
is tested mostly for comparison purpose. The dropping threshold value selected
for the AINV, AMES_AINV and AMES_ILU methods (referred to as Drop in the
Table) is an absolute value, and is computed so that the resulting preconditioners
have roughly equal memory cost. We use the default value for the parameter
condest = 10 (norm bound for the inverse factors L~ and U~!) in ILUPACK.

In our runs, the multilevel variants AMES _FSAI and AMES_AINV perform
consistently better than the FSAI and AINV solvers in terms of convergence rate
and storage cost. This shows that the proposed multilevel mechanism enable us
to exploit sparsity in the inverse factors more effectively. The best solutions with
AMES are obtained using ILU as local solver, while the threshold-based dropping
rules of the AINV method often compute a better pattern for the approximate
inverse factors than the static approach used in the FSAI method. We can see
evidence of this behaviour in Figures [3.5] - [3.8] where for one of the last-level
blocks of the permuted coefficient matrix we compare the structure of its
exact inverse factor L~!, and of the approximations M; and W7 of L=! as
computed by, respectively, the AMES_FSAI code using the square of the pattern
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of the symmetrized block, and by the AMES_AINV code. Large to small entries are
depicted in different colors, from red to orange and yellow. The approximation
is good for the 1138 _bus problem (Figure but poor for the orsirr_1
matrix (Figure [3.6), and this is confirmed by the different convergence results
for the two problems, reported in Table [3.2] On some larger problems, like the
cz40948 and the ABACUS_shell_ud problems, shown in Figures -B8
we find that L~ has no evident structure; in this case we have to increase the
number of nonzeros in My, and W7 significantly to converge. For example on
the ABACUS_shell_ud problem, AMES_AINV converges in 468 iterations with
nnz(Z + W) /nnz(A) = 11.6 while AMES_FSAI does not converge at this value
of density. In these situations, uniformly better convergence is obtained using
ILU as local solver. We will focus mostly on this choice of local solver for the
experiments of this chapter. Notice that in this case the entries of the inverse factors
are not computed explicitly, and the application of the preconditioner is carried out
through a backward and forward substitution procedure. Other options may be
considered for the last level solver, such as the ARMS method [89] and enhanced
FSAI methods [[59]], but these are not included in the presented analysis.

(a) orsirr_1
Method Pattern Drop/condest Its %LJ)MU) tp ty ts
AMES_FSAI A4 AT 273 1.42 0.011  0.023 0.22
FSAI 304 1.45 - 0.070 0.23
AMES_FSAI (A4 AT)2 217 343 0.013  0.035 0.17
FSAI 236 3.76 - 0.088 0.16
AMES_AINV 0.03 67 2.27 0.016 0.014 0.034
AINV . 0.07 30 2.22 - 0.016  0.024
AMES_ILU - 8e-3/10 31 1.24 0.012 0.013 7.4e-3
(b) 1138 bus
Method Pattern Drop/condest Its %L(:)MU) tp tr ts
AMES_FSAI A+ AT 7 2.24 5.2e-3  0.032 1.2e-3
FSAI ) 9 2.32 - 0.074  8.9e-4
AMES_FSAI Tho 5 2.70 5.0e-3  0.035 1.0e-3
FSAI (A+47) - 2.88 - 0077 6ded
AMES_AINV ) 0.6 13 2.85 7.0e-:3  2.0e-3 1.9¢-3
AINV 0.7 16 2.88 - 6.0e-:3  3.2e-3

AMES_ILU - 0/10 1 1.00 S5.1e-3 3.9e-3  7.0e-4
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(c) besstk27

Method Pattern Drop/condest Its %ﬁm tp ty ts

AMES_FSAI A+ AT 8 0.90 0.062  0.041 0.021
FSAI 19 1.27 - 0.20 4.1e-3
AMES _FSAI N2 5 1.16 0.063  0.071 0.018
FSAI (A+4%) 13 272 - 047 37e3
AMES_AINV le-3 6 1.18 0.055 0.040 7.3e-3
AINV ) 0.06 16 0.98 - 0.063  5.7e-3
AMES_ILU - 0.01/10 6 0.978 0.059 0.016 0.010

(d) epb0

Method Pattern Drop/condest Its %L(::)MU) tp ty ts

AMES_FSAI A4 AT ) 277 1.67 0.020 0.011 0.66
FSAI 400 1.69 - 0.19 0.59
AMES_FSAI (A + AT)?2 161 4.32 0.021 0.023 0.40
FSAI 290 4.81 - 0.23 0.27
AMES_AINV ) 0.5 132 3.32 0.024  4.5e-3 0.21
AINV 0.9 347 4.26 - 0.015 0.42
AMES_ILU - 0.1/10 7 1.848 0.020 4.1e-3 0.019

Table 3.2: Numerical experiments on selected matrix problems illustrating the
performance of the multilevel sparse approximate inverse preconditioner
AMES against the factorized approximate inverse methods FSAI and
AINV.
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Figure 3.5: The exact (left) and approximate (middle and right) inverse lower
triangular factors of the 1138 _bus matrix.
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Figure 3.6: The exact (left) and approximate (middle and right) inverse lower
triangular factors of the orsirr_1 matrix.
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Figure 3.7: The exact (left) and approximate (middle and right) inverse lower
triangular factors of the cz4 094 8 matrix.



60 CHAPTER 3. DISTRIBUTED SCHUR COMPLEMENT PRECONDITIONING

0
100
200
300
400
500

600
700
800

0 200 400 600 800 0 200 400 600 800 0 200 400 600 800
nz = 380119 nz = 10973 nz = 17366

(@ L' (b) My, © wT

Figure 3.8: The exact (left) and approximate (middle and right) inverse lower
triangular factors of the ABACUS_shell_ud matrix.
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3.2.2 Varying the number of independent clusters at the first
level

In the numerical tests, we observe that the pre-processing procedure is much
cheaper than the factorization phase. To achieve the optimal parameter setting and
take full advantage of the block bordered structure, we have conducted various
numerical experiments with respect to different choices of parameters and present
them in the following sections.

We considered three matrix problems in our runs cz20468,
ABACUS_shell_ud and cz40948. In Table [3.3|we show the results varying the
number of independent clusters p at the first level of reordering of A in (3.3). For
each problem, we used the same number of levels ny., in the AMES structure,
and tuned the drop tolerance in the local ILU factorization to keep the memory
ratio %L&)MU) roughly constant while increasing p in different runs. Clearly,
larger p results in more independent clusters of smaller size, and in larger Schur
complement matrices. In the table we report the ratio % between the average

size of the independent clusters B; and the size of the Schur complement at the

first level. Increasing p reduces in turn s.iz‘if to values smaller than 1. Using
sizeAg

ILU as local solver, the best convergence results were obtained when %

Our experiments indicate that for good performance the size of each independent
cluster should be approximately equal to that of the Schur complement matrix.

~ 1.
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sizeB

Matrix P Its tp ty ts tper it sizeAs
15 151 04 03 3.0 0.020 4.3
20 139 04 03 28 0.020 2.5
30 131 05 04 25 0.019 1.1
40 137 05 06 26 0.019 0.6
4 258 05 12 9.1 0.035 7.8
6 242 05 12 83 0.034 3.8
12 213 05 20 6.8 0.032 1.0
15 253 05 21 87 0.034 0.7
15 219 1.1 0.5 10.8 0.049 8.7
30 212 1.1 0.7 100 0.047 2.2
45 198 1.1 1.2 92 0.046 0.9
50 207 1.1 19 98 0.047 0.5

cz20468

ABACUS_shell_ud

cz40948

Table 3.3: The best performance of the multilevel sparse approximate inverse

.. sizeB
preconditioner are observed when = 1 ~ L

3.2.3 Varying the number of reduction levels for the diagonal
blocks

We consider again matrices cz40948, ABACUS_shell_ud and cz20468
for our tests. We varied the number of levels n;, from 1 to 3 in the multilevel
reordering of the diagonal blocks. In each run we tuned the dropping threshold
parameter to have roughly the same memory cost in the experiments for each
matrix. We chose the value of p for each problem so that S‘Z@fg ~ 1 as reported in
Section We have fixed a maximum number of levels and a minimum block
size, and incorporate this information in the criteria used to stop the multilevel
reordering. We set them as parameters of the code, and changed them manually
at every run if necessary. Then we selected values of these parameters for good
performance. The last-level blocks were factorized using ILUPACK [16]. The
results reported in Table [3.4] show that using more levels can reduce the number
of iterations for similar memory ratio as we can gain additional sparsity during the
factorization. However, probably due to our non optimized implementation, the
solution cost tends to increase.

Since using many levels would intensively increase the solution cost, a small
number of reduction levels is recommended to use. In this case, to remedy the
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Matrix Niew Its  tp ty ts tper_it
1 113 05 04 19 0.017
80 0.5 05 23 0.028
71 0.6 05 4.1 0.058
388 0.5 1.7 17.6 0.045
381 0.5 19 219 0.057
294 0.6 19 227 0.077
198 1.1 12 92 0.046
154 12 1.3 104 0.068
133 1.3 13 173 0.13

cz20468

ABACUS_shell_ud

cz40948

W N =W N =W

Table 3.4: The number of iterations of the multilevel approximate inverse
preconditioner can be reduced by increasing the number of reduction
levels ny.,, for the diagonal blocks, at roughly equal memory costs.

increasing solution cost, we could modify the strategy and use more independent
clusters, that is increase p, at each level to make the blocks B smaller. Then within
2 or 3 levels, we could obtain small last-level blocks B. For this strategy, we
need to conduct further research on the optimal choice of the parameters with the
strategy illustrated in Section [3.2.2]

3.2.4 Varying the number of reduction levels for the Schur
complement

The Schur complement matrix relative to the block C' in typically preserves
a good deal of sparsity, and this can be further exploited during the factorization
by applying, e.g., the multilevel nested dissection reordering to Ag, similarly to
what is done to the upper leftmost block B. We implemented this idea at the first
permutation level, using ILU factorization as local solver and selecting the same
values of p and n;., for each matrix problem. We tuned the drop tolerance in the
ILU factorization to have roughly the same memory costs in different runs. We
varied Nyeyag from 0 to 3 (nje,45 = 0 means that only the diagonal blocks of
the upper-left block B are permuted). The results reported in Table [3.5] show that
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the simultaneous permutation of both the diagonal blocks of B and of the Schur
complement can make the preconditioner more robust. We adopted this strategy in
the experiments illustrated in the coming sections, selecting in each run the value
of njeyas that minimized the total solution cost.

Matrix Nevas  Its 1,  ty ts
0 331 05 02 82
228 04 13 56
209 04 13 438
181 04 13 40
576 05 1.8 350
485 05 1.8 295
414 05 14 244
393 05 1.6 222
183 1.9 05 237
166 19 64 166
157 19 6.1 148
152 1.8 6.1 143

cz20468

ABACUS_shell_ud

cz40948

W= OWN = OWN =

Table 3.5: At roughly equal memory costs, larger reduction levels for the Schur
complement can improve the convergence rate.

3.2.5 Comparison against other solvers

We compared the performance of the AMES preconditioner against three
other popular algebraic preconditioners for solving linear systems, that are the
ILUPACK solver developed by Bollhofer and Saad [16]], the Algebraic Recursive
Multilevel Method (ARMS) proposed by Saad and Suchomel [[89]], and the SParse
Approximate Inverse preconditioner (SPAI) introduced by Grote and Huckle [53]].
As in the previous experiments, for each run we recorded the CPU time from the
start of the solution until the initial residual was reduced by 12 orders of magnitude
or until the process failed. We declared a solver failure when no convergence
was achieved after 5000 iterations of the restarted GMRES method. We selected
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the parameters carefully to have a fair comparison between different methods. In
AMES, following our conclusions from Section [3.2.3] we selected the number of
blocks B; at the first level so that their average size is almost equal to the size
of the Schur complement. For every problem we tested different combinations
of number of levels n;., of recursive factorization and different values for the
dropping threshold parameter droptol for the factorization of the last-level blocks
B, and of the Schur complements. We chose the best combination in terms of
memory and time to solution costs for the given problem. Then we tuned the
value of the dropping threshold in the ILUPACK, ARMS, SPAI and AINV solvers
to have roughly equal memory costs as in AMES, setting the other parameters
equal to their default values defined in those packages. The performance of these
methods is rather sensitive to the dropping threshold parameter. For example, on
the rmal0 problem, ILUPACK converged in only 9 iterations using the default
value droptol = 0.01, but the computation costed ZZZ((JZ)) = 8.9 and ty = 45s;
ARMS converged in 26 iterations with the default droptol = 0.001, costing
Z’Z((JX)) = 33.9 and t; = 1111s; and SPAI could not converge in 5000 iterations
with ZZZZ((AX)) = 0.19, using the default value droptol = 0.6. The number of
levels of recursive factorization in the multilevel methods ILUPACK and ARMS
are calculated automatically by the original codes developed by their authors. We
point out that the performance comparison between AMES and the other solvers at
fixed memory occupation may be a little penalizing for the AINV, FSAI and SPAI
preconditioners as one-level approximate inverses inherently need more memory;
the ARMS method is a multilevel solver, but it factorizes the diagonal blocks
without any permutation.

In Table we show the complete results of our experiments. These include
number of iterations (Its), density ratio (nnz(My + My)/nnz(A)), time costs
for the preordering (%), factorization (Zy) and solve phase (). We also tested
the unpreconditioned GMRES for these matrix problems, and no convergence is
achieved. Basically, the AMES preconditioner can exploit more sparsity. This
benefits from the use of multilevel combinatorial algorithms to enforce sparsity in
the approximate inverse factors. We clearly see the good potential of the multilevel
mechanism incorporated in the AMES preconditioner to reduce the number of
iterations of Krylov methods, also in comparison to other multilevel solvers at low
to moderate memory costs. In our examples, AMES was more robust than these
solvers especially at low memory ratios. We emphasize that the comparison was
done against some of the most effective matrix solvers in use today.
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(a) ¢cz20468

Method ~ ™ULEMU)  ps 4, ot
AMES 1.26 187 03 02 42
ILUPACK 1.24 2500 - 0.4 403
ARMS 1.16 +5000 - 0.1 +65
SPAIL 1.64 +5000 - 4.0 +80
(b) raefsky3
(M +My)
Method — ==-REE i tp  ty ts
AMES 0.54 235 24 37 100
ILUPACK 0.55 1224 - 28 252
ARMS 2.38 +5000 - 24 4235
SPAI 1.83 +5000 - 5040 +243.0
(c) ABACUS _shell_ud
(M +My)
Method — ==CFo dis b, by ts
AMES 1.79 453 03 08 221
ILUPACK 1.82 1411 - 05 266
ARMS 1.88 +5000 - 02 +76
SPAI 2.41 +5000 - 110 4120
(d) sme3Db
(Mp+My)
Method  ==-RE i ty  ty ts
AMES 0.85 407 35 84 393
ILUPACK 0.74 1210 - 41 414
ARMS 5.61 +5000 - 39.0  +549

SPAI 1.23 +5000 - 3360 +123.0
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(e) viscoplastic2

Method ~ ™Z0MAiU) g bty
AMES 3.07 78 0.9 14.3 3.9
ILUPACK 4.00 2500 - 1.6 70.0
ARMS 3.02 +5000 - 0.9 +10.9
SPAI 3.37 +5000 - 2440 +24.0
(f) cz40948
Method %L(Z)MU) Its ty ty ts
AMES 1.41 170 0.7 04 7.4
ILUPACK 1.48 1627 - 1.0 51.1
ARMS 1.70 +5000 - 09 +21.8
SPAI 1.64 +5000 - 85 +17.2
(g) rmal0
Method ~ ™=ULEHU) s 4, ty ts
AMES 2.33 164 3.9 13.1 34.5
ILUPACK 2.27 1242 - 8.6 82.9
ARMS 14.30 +5000 - 2039 +111.3
SPAI 4.84 +5000 - 11280 +180
(h) finan512
Method — "UTLAIUL ps g, gy 4
AMES 0.59 9 08 05 08
ILUPACK 0.62 11 - 0.7 0.1
ARMS 0.58 36 - 04 0.5

SPAI 0.61 7 - 42 02
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(i) helm2d03
Method ~ “=URZMU)  ps 1, 4y
AMES 0.88 6 6.1 43 4.6
ILUPACK 0.91 7 - 37 04
ARMS 0.93 12 - 14 15
SPAI 0.87 15 - 100.7 2.7
(j) parabolic_fem
Method "0 lU) g5 1, tp
AMES 0.75 4 47 57 13
ILUPACK 0.68 10 - 53 05
ARMS 0.76 12 - 20 20
SPAI 0.77 4 - 1753 08

Table 3.6: Performance comparison of the multilevel approximate inverse
preconditioner against other iterative solvers, both one-level and
multilevel.



4 Combining the AMES solver with
overlapping

An incomplete factorization preconditioner based on a domain decomposition
has been proposed in [38]. In this method the subdomains have a small
overlap with certain parametrized algebraic boundary conditions. In a domain
decomposition framework, incomplete factorizations with overlapping subdomains
leads to so-called generalized Schwarz splitting methods [96]. Schwarz methods
were developed to solve linear systems of algebraic equations derived from
discretizations of PDEs [97]. They can be seen as generalizations of classic
iterative methods such as block Jacobi or Gauss-Seidel methods, as they introduce
overlap between the blocks. Overlap plays an important role in the convergence
of Schwarz methods. It has been shown that using additive Schwarz methods with
overlap variables can improve the convergence rate as well as reduce execution
times [21]. Inspired by the domain decomposition approaches, Grigori, Nataf
and Qu [52] have introduced an overlapping technique to enhance the robustness
of multilevel incomplete LU factorization preconditioning. This overlapping
strategy is based on an algebraic multi-level nested-dissection which reorders the
matrix into an arrow form, e.g. using the nested dissection method proposed by
George [|80]].

The multilevel mechanism incorporated in the AMES preconditioner described
in the previous chapter is based on a nested dissection-like ordering, and thus it
can easily accommodate for overlapping. We have combined the AMES solver
with the overlapping strategy with the purpose of improving its robustness and
reducing storage costs. In this chapter, we first review the overlapping strategy that
adapts the idea of overlapping subdomains from domain decomposition methods to
nested dissection-based methods in Section We introduce the combination of
the overlapping strategy with the AMES solver, elaborate the algorithm and show
performance of the combinatorial method in Section We have also tested the
proposed combinatorial strategy, and the results of the experiments are reported in
Section



70 CHAPTER 4. COMBINING THE AMES SOLVER WITH OVERLAPPING

4.1 Background

A well-known technique to accelerate the convergence of domain decomposition
methods, is overlapping. Overlapping extends the subdomains to their
neighbours [49] [75].  In the popular restricted additive Schwarz (RAS)
algorithm [27]], the unknowns that belong to the overlapping regions are duplicated,
and the preconditioner is built from an enlarged linear system. The solution of the
original system is obtained from the solution of the enlarged system by applying a
restriction procedure. In RAS, the computation of a subdomain ¢ with overlap can
be expressed as RiAR? , where R; is a restriction operator that restricts the ¢-th
subdomain to the overlapped subdomain. In AMES, the construction is slightly
more complex in order to preserve the nested arrow structure computed in the
preorder phase. Below we review the overlapping procedure in detail.

Let 2 = (V(Q), E(Q2)) be the graph of A, V' (€2) denoting the set of vertices and
E(Q) the set of edges in . If the graph is directed, we denote an edge of F issuing
from vertex u to vertex v as (u, v); u is called a predecessor of v, and v a successor
of u. If the graph is undirected, we denote the edges of F by non-ordered pairs
{u,v}; u is called a neighbour of v. As in the previous section, we assume that G
is partitioned into p independent non-overlapping subgraphs 2, ..., §2,, and we
call S the set of separator nodes, straddling between two different partitions. The
goal of overlapping is to extend each independent set of {2 by including its direct
neighbours, similarly to the overlapping idea used in other domain decomposition
methods, for example in the restricted additive Schwarz method [82}/86].

Following [52]], we denote by V' (£2; ¢4¢) the separator nodes that are successors
of Qi,

V(Qieat) = {v € V(9)|Fu € V(%), (u,v) € E()} C V(S), (4.1)
and by V' (,¢) the complete set of successor nodes of all the subdomains

V(Qext) = | V(Qeat)- 4.2)
i=1:p

Then €2, is extended to the set QZ as
V() = V() UV (Qiewt), i =1,...,p, (4.3)

and the separator S is extended to S by adding the successors of nodes in V' (Qcy¢),
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that is

V(S)=V(S)U{veV(Q),i=1,....p|Ju € V(Qw), (u,v) € E(Q)}.
4.4
Using this notation, the overlapped graph of A, Q = (V(Q),E(Q)), is
introduced as follows. First define the overlapped subgraph Q; and the overlapped
separator S as, respectively,

V() = {(x,i) : € O},
V(~ ) ={(=, s)‘xeg}

For simplicity we refer to (z, ) as x;. Then the vertex set V(£2) of the overlapped
graph Q is formed by the disjoint union of the V (€%;)’s and of V' (S) as

vy = [J v(w | uv(s). (4.5)

i€lp
Recall that, given the union B of a family of sets indexed by the index set I,
B:UAZ:U{{E[IZEAZ},
il i€l
their disjoint union C'is defined as the set
C=|J{(z,i):z € A},
icl

At this stage, it is useful to introduce the two projection operators II; and Il such
that
I : (z,0) — x

and
Iy : (x,0) — i

With this notation, the set of edges of the overlapped graph € is defined according
to their projection onto the original graph as follows

E(QZ) = {(uz,vz)]ul c V(QZ‘),’UZ‘ S V(QZ), (Hl(ui),ﬂl(vi)) S E(Q)}, (46)

E(S) = {(us, v)|us € V(S),vs € V(S), (111 (us), I (vs)) € E(Q)},  (4.7)
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E(€Q,5) = {(us,vs)|ui € V(4),vs € V(S), (1 (), 11 (vs)) € E(),

iﬂvi S V(Ql), (ui, ’U7;) S E(Ql)}, (48)

Pus € V(S), (us,vs) € E(S)}. (4.9)

The following property, established in [52], ensures an equivalence between the
equations of the overlapped system and those of the original system.

Proposition 1. Let ) be the associated directed graph of a given system of linear
equations and u be a vertex of V (Q2). Let Q be the overlapped graph, and let u; be a
vertex of V() such that 1y (u;) = u € V(). For each edge (u,v) € E(S), there
is a unique v; € V(Q) such that we have both 111 (v;) = v and (u;,v;) € E(Q).

This property shows that there exists a bijection between the nonzeros of the
equation corresponding to vertex u in the original system and the nonzeros of
the equation corresponding to its dual u;, where Il (u;) = u. From a matrix
viewpoint, to each nonzero entry a,;, ., in the overlapped matrix there is a unique
nonzero entry a,,, in the original matrix, where Il (u;) = w and II;(v;) = v.
Therefore there is a one-to-one correspondence between equations in the original
system and those in the overlapped system. By solving the overlapped system, we
can automatically obtain the solution of the original system.

4.1.1 An Example

Below we explain the overlapping procedure on a small example specifically.
We display a simple example from [52f to describe briefly how the overlapping
procedure works in practice. We consider a 5 X 5 matrix

ail  ai12 a14 Q15
a21 Q22

a33 | a34 G35
a41 Q43 | Q44
as1 as3 as5
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This matrix has the structure shown in Figure ff.T[(a). There are two subdomains
shown by blue blocks, and the separator is shown by red block. The off-diagonal
blocks corresponding to the edges between the subdomains and the separator are
denoted by grey and green blocks respectively.

(a) The original matrix (b) The matrix after one-level overlapping

Figure 4.1: Matrix structure before and after applying the overlapping procedure.

After applying the overlapping procedure, both subdomains and the separators
are extended following the procedure described in Section .1} The structure of
the enlarged matrix is shown in Figure #.1(b). Below we describe the overlapping
steps on the example matrix in detail.

The graph of the original matrix consists of two independent subgraphs 2; =
{1,2}, Q2 = {3} and one separator S = {4,5}. We just pick the first subgraph
and the separator set to explain. Separator nodes that are successors of €27 are the
set

V(Q ext) = {4,5}

and we have

V(1) = V(Q)1 UV(Qear) = {1,2,4,5},
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so that
V(Q1) = {11,21,41,51}.
Analogously,
V(Q2,e0t) = {4,5}
and

V(Qext) = Ql,e:{:t U QQ,ext = {47 5}

Next, we compute the overlapped separator set S. The vertices of V(1) and
V(g) directed by V' (e, ) are {1, 3}, so

V(S)=V(S)u{1,3} = {4,5,1,3}
and
V(8) = {4s,54, 15,35}

According to Equations (4.6)-(4.9), the edges of the overlapped subdomain
E(Ql) are defined based on their projection onto the original graph. The first
diagonal block of the overlapped matrix is formed by picking the V(Q) =
{1,2,4,5} rows and columns of the original matrix

1 2 4 5
1 /0 ¢ ¢ ¢
210 o
41 ¢ o
5 \¢ o

The other two diagonal blocks are also formed in the same way, and this is shown
in Figure [4.1(b).

From Equatlon , we can construct the edges from Q; to S. These are the
nonzero entries of the overlapped interface block F1, adopting the same notation as
in ( . We pick the V (€) = {1,2,4,5} rows and V(S) = {4,5,1,3} columns
of the original matrix, and we set the columns corresponding to the common
vertices of {21 and S to zeros. In our example this results in zeroing out the columns
of F} indexed by 1 U S = {4,5,1}, giving

4 5 1 3 4 5 1 3
1/x x o 1
2 o 2
41 * X X - 4 X
5 * X X 5} X
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A similar procedure is followed for the other blocks F;, E;. Finally, the overlapped

matrix has the form

ail a2 a4 ais
a a2
a1 44 a43
asy ass as3
az3 a4 ass
a43 Q44 as1
as3 ass as1
Q44 @41 Q43
ass as]  as3
a2 a4 ais ai
i az4 ass ass |

The block arrow structure of the original matrix is preserved. However, symmetry
is lost and the sparsity pattern also changes significantly.

4.2 Analysis and algorithmics

It is interesting to analyse the effect that overlapping may produce on the AMES
method. According to (4.3) and (4.6), the size and the number of nonzeros in each
subgraph are increased after overlapping. According to (4.8), the interconnections
between subdomains and separator are reduced in the overlapped system, as the
original interconnectivities are all removed. The more nodes are added to the
subgraphs, the richer they are in terms of information about the system matrix, and
a larger performance improvement may be expected. In the overlapped system,
each block Bi has the following structure

V(Qz) V(Qi,ext)
V(Ql) ( B E(Qu Qi,ezt) )
V(Qi,ext) E(Qi,ea}t’ Qz) E(Qi,ext) )

From Equation we see that the set of neighboring nodes V(€ cqt)
corresponds to the nonzero columns of the block Fj, and the nonzero elements
of F; are determined by the set of interconnections E(€2;, Q;eqt). Therefore, the
more dense and larger the blocks F; (that is, the size of separator) in the original
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matrix, the more nodes and interconnections are added to subdomains, and a larger
reduction of the number of iterations can be achieved.

The AMES preconditioning algorithm described in Section (3.1| with one extra
overlapping phase can be written as follows:

1. a scale phase, where the matrix A is scaled by rows and columns so that the
largest entry of the scaled matrix has magnitude smaller than one;

2. a preorder phase, where the structure of A is used to compute a suitable
ordering that can maximize sparsity in the approximate inverse factors;

3. an overlap phase, which extends each block B; and the Schur complement,
and generates the overlapped matrix A and the right-hand side vector b;

4. an analysis phase, where the sparsity preserving and overlapping orderings
are analyzed and an efficient data structure is generated for the factorization;

5. a factorization phase, where the entries of A are processed to explicitly
compute the approximate inverse factors;

6. asolve phase, that accesses all the data structures for solving the overlapped
linear system.

7. a restriction phase, that restricts the solution obtained from the overlapped
system to the original system, and obtains the solution.

4.3 Effects of overlapping

We solved several problems from Table [3.1| combining the AMES method with
overlapping after the first level of reordering in (3.3). In these runs, we set
Niey = 2, and we tuned the droptol parameter to have roughly the same memory
costs in the experiments with and without overlapping. The experimental results
are shown in Table The number of iterations (/zs) are almost the same after
overlapping for problems cz20468 and cz40948, while for problems sme 3Db,
ABACUS_shell_ud and raefsky3 we observed a consistent reduction of the
number of iterations Its by a factor between 9.5% and 23.8% and of the solving
time t5 by a factor between 21.4% and 29.9%. This is in agreement with our
analysis of Section #.2] In Table 4.3] we give the effects of overlapping on the
change in size and in number of nonzeros for the overlapped system. In Table 4.3]
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for each problem we studied the sparsity pattern of block F' and the size of blocks
B and C before and after overlapping is applied at the first reordering level. The
quantity Spr denotes the ratio between the number of nonzero elements and the
size of I, that is the sparsity degree :ZZE?% As we can see, the cz20468 and
cz 40948 problems have the smallest relative size of the separator C' and also the
smallest value of Spr; this means that less information is added to the subdomains.
Following the analysis reported in Section [4.2] the overlapping technique is less
likely to help on these two matrices, and this is also confirmed by the numerical
results. Differently, problems sme3Db and raefsky3 show larger values of
sizec and Spr and in fact overlapping has a better effect on convergence for these
two problems. In our experiments we found that a small number of independent
clusters p is recommended to use when overlapping.

nnz(Mp+My)

Matrix Method nnz(A) Its ts
Cihowoverapping 132 19 4
raefsky3 witiou overlapping 055 286 20.
ABACUS_shell_ud ?V\:lrli)alip(i)r\frlapping ggg ;22 13461
sme3Db Sv\:lri)alipci)r\lfirlapping 83 i ig? ggé
cz40948 Sv\;fl?oalip(i)r\lzirlapping }i(z) };; 3(5)

Table 4.1: Experiments on the effect of block overlapping on the performance of
the multilevel sparse approximate inverse.
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Matrix n(Ao:Le(;zSpped) nnz(‘s;ze(’:itgpped)
cz20468 1.005 1.004
raefsky3 1.134 1.135
ABACUS_shell_ud 1.020 1.019
sme3Db 1.588 1.639
cz40948 1.006 1.004

Table 4.2: The effect of block overlapping on the change in size and in number of

NONZeros.

Matrix problem Method sizep sizeo Spr
original 20405 63 l.le—14
cz20468 after overlapping 20450 116  4.3e —5
raefsky3 original 19776 1424 l.le—4
Y after overlapping 21184 2864  5.le —4
original 23184 228 1.3e —4
ABACUS-shell-ud after overlapping 23412 458 6.1e — 5
e 3Db original 19956 9111 9.2e — 4
Sme after overlapping 25932 20214  3.de —4
©240948 original 40825 123 5.2e — 5

after overlapping 40925 250 2.4e -5

Table 4.3: Effects of overlapping on matrix blocks size and sparsity.

We incorporate the overlapping strategy to enhance the robustness and
convergence rate of our AMES method, and numerical experiments show good
effects of the combination. The overlapping procedure does not destroy the sparsity
structure of the matrix, and it can reduce further the interconnections between
subdomains and separator set. Based on the analysis and numerical results of the
impact of overlapping, both the matrix size and the number of nonzeros would be
increased to some extent. The overlapping operation brings in information of the
system matrix and accelerates the computation. For the problems that have small
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relative size of the separator C, less information can be added to the subdomains
and hence the overlapping strategy does not improve the convergence rate much.
As shown in Table 4.1| if applied on suitable problems, overlapping can accelerate
the convergence rate and result in a smaller solve phase time ¢.






5 An implicit variant of the AMES
solver

In Chapter [3.2) we have presented a performance analysis of the AMES solver
against some state-of-the-art solvers. The numerical experiments have shown that
faster convergence rates can be achieved at moderate memory and CPU time costs.
However, too much recursive computation can make the explicit computation of the
preconditioner time-consuming, especially when many reduction levels are used in
the nested dissection ordering applied to the coefficient matrix of the linear system
to solve.

To overcome this problem, we propose an improved variant of the AMES
algorithm, referred to as Algebraic Multilevel Implicit Solver (AMIS). AMIS is
also based on the multilevel recursive nested dissection reordering. The major
difference with respect to AMES lies in the solve phase, where the preconditioner
is applied implicitly without using the explicit computation of the approximate
inverse. We will show that this modification can enhance the overall robustness of
the AMES solver.

5.1 AMIS: an Algebraic Multilevel Implicit Solver for
general linear systems

For the description of the AMIS algorithm, we utilize the framework of the
AMES method proposed in Section [3.1] The main solution process of AMIS also
consists of five phases, that are the scale phase, the preorder phase, the analysis
phase, the factorization phase and the solve phase. Below we introduce the new
AMIS implementation.

In the scale phase, the linear system Ax = b is scaled by the diagonal scaling
matrices )1 and D5 such that

D}/sz = Di/Qb, Y= D;/Qx.
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In the preorder phase, we use the nested dissection ordering [[80] to permute the
coefficient matrix of the above system into the block downward arrow structure

B, Fy
Bs Fy

A=pPTAP = :
Bp Fp

Ey By -+ E, C

For simplicity, we still refer to the linear system to be solved as Ax = b. The
dissection process is repeated recursively on each submatrix B;, until a maximum
number of levels or a desirable block-size is reached. The permuted matrix A is
stored in a suitable data structure that is defined in the analysis phase. Then we
factorize A and compute the approximate inverse of the last-level blocks B;, and
the Schur complements S; at each level.

5.1.1 Improvement of AMIS

Compared to AMES, the main improvement of AMIS lies in the solve phase.
Below we elaborate the improvement of the AMIS solver with respect to AMES.
We write the problem Ax = b in the form

B F I . b1

E C T2 - b2 ’
where 21, 2, b1 and by are column vectors. We denote the approximate inverse of
B by B~! and the approximate inverse of S by S~!. Then the equation Ax = b

can be rewritten as
B F 1 o bl
E C i) o b2

Bx1+ Fxo = by
Exy+ Cxy = by
{ Szy = by — E(B71hy)

5.1
xr] = (Bilbl) — (BilF)xQ S

where S is the Schur complement matrix S = C — EB~'F.
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At this stage, in the solve phase we invert the linear system implicitly from
Equation (5.I) instead of assembling the approximate inverse of the coefficient
matrix explicitly as in Equation (3.10). The new preconditioning operation in
AMIS writes as in Algorithm [5.1]

Algorithm 5.1 The AMIS preconditioning operation.

1: p1:B_1~bl

2: xgzg_l'(bQ—E-pl)
3 pp=F -z

4 ps =B~ p

50 1 =p1—pP3

At lines 1-3 of the AMES Algorithm [3.1] five vectors need to be computed
recursively. Three of these vectors are associated to the multilevel structure of
the independent sets

p1 = By,
P4 = B_le27
ps = B~ Fps,

and two vectors are associated to the multilevel structure of the first level Schur
complement matrix

In contrast, in the AMIS Algorithm only three vectors need to be computed
recursively.

pP1 = B_lblv
zo = S7H(by — Epy),
p3 = B 'py

In Figure [5.1] we use the matrix raefsky3 as an example to illustrate how
the recursive computation process traverses the tree data structure of the block
reordered coefficient matrix. In this example the matrix is permuted into 2 levels.
At the first level there are 5 blocks; at the second (last) level, each of those 5 blocks
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Bi B, Bs B4

Figure 5.1: The multilevel tree structure of the permuted matrix raefsky3.

is divided into 4 blocks. In AMES, to compute p; = B’*lbl in Ay, we need to
obtain p; respectively from As, As, ..., Ag at the first level, and then reach the
second level to compute the inverse factorization of By, Ba, ..., Bag. Then we
move up level by level to retrieve p; in Ay. Clearly, this recursive process is also
applied to solve p4 and p5. The recursive computation is quite time consuming. On
the other hand, in AMIS only the computation of p; and p3 involve recursion. The
gain is two-fold. Much computation within the lower levels can be saved during
the recursion as well.

In Table we give account of the solve phase time ¢; for AMES and AMIS
expressed in seconds. Here we use the same parameter setting in the numerical
tests with both solvers. In the AMES algorithm, the computation of p;, ps4 and
ps involving recursion takes a large portion of ¢;. In AMIS, only p; and p3 need
recursion and thus cost less time. The multilevel strategy is also applied to the
Schur complement S in A;. The size of S and the number of levels in S are set
small in this example. Hence the total time consumption involving the recursion in
S1, such as t(ps2) and t(p3) in AMES and t(x2) in AMIS, is insignificant compared to
ts. However, we can see that AMES also involves more recursive calls for S7, and
the sum of t(p3) and t(p3) in AMES is larger than t(z2) in AMIS. It is reasonable
to conclude that AMIS would save significant time costs for inverting the Schur
complement as well.

Figure[5.2]shows the solve phase time ¢4 required by AMES and AMIS to solve
the raefsky3 problem. Both curves are increasing as the number of iterations
grows. As expected, the new implicit variant is cheaper to use than the original
one throughout the iterative process. The gain can be even larger if more levels are
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(a) AMES

t(p1) t(Ep1) tp2) t(Fp2) t(ps) t(Fp3) t(ps) t(ps)
5.2 0.2 0.6 0.2 0.5 0.2 9.6 9.6

(b) AMIS

t(p1) t(Ep1) twe) t(p2) t(p3)
3.5 0.1 04 0.2 6.5

Table 5.1: In the solve phase, the quantities to be computed and the corresponding
times to compute them are different in AMES and AMIS.

40
AMES ——

AMIS

Figure 5.2: The solve phase time of AMES and AMIS with respect to iterations

used in the nested dissection partitioning.
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5.2 Numerical experiments with AMIS

We present the results of numerical experiments that illustrate the performance
of the AMIS preconditioner. We compare the AMIS method against the
AMES method and other popular algebraic preconditioners, ILUPACK [/16]
and ARMS [89]], for solving general linear systems. The selected matrix
problems are extracted from the public-domain matrix repository available at the
SuiteSparse [37]], and arise from various application fields. We present a summary
of the characteristics of each linear system in Table[5.2] The codes were developed
in Fortran 95. We execute the numerical experiments in double precision floating
point arithmetic on a PC equipped with an CPU AMD A8-5600K, 3.6 GHz of
frequency, 4 GB of RAM and 4096 KB of cache memory.

Matrix problem n  Field nnz(A)
cz20468 20,468 Closest Point Method 206,076
raefsky3 21,200  Fluid Structure Interaction 1,488,768
ABACUS_shell_ud 23,412 ABAQUS benchmark 218,484
sme3Db 29,067 3D structural mechanics problem 2,081,063
viscoplastic? 32,769 FEM discretization 381,326
cz40948 40,948 Closest Point Method 412,148
rmal0 46,835 3D CFD Model 2,374,001
finanb512 74,752  Portfolio optim 596,992
helm2d03 392,257 Helmholtz eq. on a unit square 2,741,935

Table 5.2: Set and characteristics of the test matrix problems.

For both AMES and AMIS solvers, we inverted the last-level blocks using
the multilevel inverse-based ILU factorizations, available in the ILUPACK
package [[16]]. We used the default value for the parameters in ILUPACK. For each
run we recorded the CPU time from the start of the solution until the initial residual
was reduced by 12 orders of magnitude or until the process failed (no convergence
was achieved after 5000 iterations of the restarted GMRES method). To give a fair
comparison, we tested both solvers with the same values of n;, and p, that are the
number of levels of diagonal blocks and number of first-level blocks. We also tuned
the dropping threshold to make both solvers have roughly equal memory costs. We
declared a solver failure when no convergence was achieved after 5000 iterations of
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the restarted GMRES method. For the ILUPACK and ARMS solvers, we tuned the
value of the dropping threshold so that they had roughly equal memory costs as in
AMES and AMIS. The number of levels of recursive factorization in the multilevel
methods ILUPACK and ARMS are calculated automatically by the original codes
developed by their authors.

The results are reported in Table [5.3] We clearly see the good potential of the
multilevel mechanism incorporated in AMES and AMIS to reduce the number of
iterations of Krylov methods in comparison to ILUPACK and ARMS at low to
moderate memory costs. This performance is in accordance with the numerical
comparison in Section 3.2.5. The AMES and AMIS algorithms have the same
preorder phase and factorization phase, and we store the same blocks for both
methods. Hence they have the same memory requirements for the same parameter
setting. We observe that the convergence rates of the two solvers are very similar.
This is because the modification to the recursive calls in the solve phase only
reduces the amount of calculation to apply the preconditioner, and this does not
affect much the number of iterations. In our runs, the implicit variant AMIS
performed consistently better than AMES in terms of time consumption. For the
solving time ¢4, we observe a consistent reduction by a factor between 11% and
65%. The results show that the AMIS solver could simplify the computation in
the solve phase and reduce the solving time ¢ sometimes dramatically, depending
on the parameter setting. By increasing the number of blocks at each level and
the number of levels, we obtain a larger and more complicated multilevel tree
data structure to handle. Although this helps us exploit sparsity effectively, it also
brings in higher complexity due to the recursive computation in the solve phase.
By construction, the AMIS method requires less recursion, hence its overall more
robust performance.
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(a) ¢cz20468

Method "0 dU) s 4, tp
AMES 1.26 186 05 03 4.6
AMIS 1.26 186 0.5 0.2 4.1
ILUPACK 1.24 +5000 - 06 +29.6
ARMS 1.60 +5000 - 0.1 +44.1
(b) raefsky3
Method %L(Z)MU) Its ty ty ts
AMES 0.54 235 33 64 12.0
AMIS 0.54 235 33 63 9.2
ILUPACK 0.55 +5000 - 40 +103.0
ARMS 2.38 1485 - 20 28.8
(c) ABACUS_ shell_ud
Method %L(Z)MU) Its tp ty ts
AMES 1.79 453 0.5 12 233
AMIS 1.79 453 05 1.3 20.6
ILUPACK 1.82 +5000 - 0.7 +38.1
ARMS 1.88 +5000 - 02 +40.0
(d) sme3Db
Method %L(Z)MU) Its t, ty ts
AMES 0.85 407 4.8 12.7 61.0
AMIS 0.85 407 49 126 38.2
ILUPACK 0.76 +5000 - 59 +1824
ARMS 5.61 +5000 - 315 42229
(e) viscoplastic2
Method — "UTLAIu)l  ps 4,
AMES 3.61 8 09 99 8.2
AMIS 3.61 8 09 10.0 4.2
ILUPACK 4.07 +5000 - 2.6 +606.5

ARMS 3.37 +5000 - 1.2 +46.3
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() c240948
Method ~ “ULEM)  ps 4, ts
AMES 1.54 38 1.1 12 33
AMIS 1.54 38 1.1 12 1.6
ILUPACK 1.48 +5000 - 12 +64.4
ARMS 1.70 +5000 - 04 +1016
(g) rmal0
Method ~ “=U00dU) s 1, i ts
AMES 2.39 162 51 225 697
AMIS 2.39 162 52 224 345
ILUPACK 2.25 146 - 122 108
ARMS 14.30 +5000 - 1784 +516.4
(h) finan512
Method %@MW s t, t;
AMES 0.59 9 10 07 10
AMIS 0.58 9 10 07 04
ILUPACK 0.62 11 - 10 ol
ARMS 0.59 40 - 04 04
(i) helm2d03
Method ~ “=U0lU)  prs  t, t;
AMES 0.88 6 57 47 51
AMIS 0.88 6 54 47 1.8
ILUPACK 0.91 7 - 50 05
ARMS 0.92 9 - 15 09

Table 5.3: Performance comparison of the AMES and AMIS solvers.






6 VBAMIS: a variable block variant
of the Algebraic Multilevel Implicit
Solver

One major source of sparse linear systems in computational science and
engineering applications arises from the discretization of partial differential
equations (PDEs). When several physical unknown quantities in the underlying
PDE are associated with the same grid point, the discretized matrix often
exhibits fully dense and typically small nonzero blocks in the sparsity pattern.
Examples arise, e.g., in plane elasticity problems with both z- and y-displacement
components associated with each grid point, in Navier-Stokes systems for the
analysis of turbulent compressible flows where five distinct variables (density,
scaled energy, two components of the scaled velocity, and turbulence transport
variable) are assigned to each node of the physical mesh, or in cardiac bidomain
systems coupling the intra-and extra-cellular electric potentials at each ventricular
cell of the heart. These small blocks of fully coupled unknowns in the linear
system form clusters of nodes in the adjacency graph of the coefficient matrix.
We refer to such clusters as supernodes. By reformulating the factorization on
the quotient graph built upon the supernodal structure, higher level BLAS kernels
can be used, which improve computational efficiency and accelerate the solve
phase. The supernodal graph can be much smaller and the factorization time can
be shortened. Below the word ‘block’ is used as the matrix counterpart of the
word ‘supernode’. We use variable block compressed sparse row storage formats,
saving column indices and pointers for the block entries, and high-level BLAS
(Basic Linear Algebra Subprograms) [40] routines in the factorization, achieving
better cache performance on computer architectures with a hierarchical memory.
Better cache reuse is possible for block algorithms. One problem, however, is
how to detect the presence of fine-grained dense structures in the linear system
automatically, without any user’s knowledge of the underlying problem, and how
to exploit them efficiently during the factorization. In this chapter we address these
problems for our AMIS solver.
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In Section 6.1 we overview some conventional graph compression techniques
to compute small dense matrix blocks, such as the checksum-based method, the
angle-based method and the graph-based method. In Section we introduce
a variable block variant of the AMIS solver presented in Chapter [5] designed to
exploit the presence of dense components in the solution of the linear system. We
refer to this new variant as VBAMIS(Variable Block Algebraic Multilevel Implicit
Solver). Some numerical experiments illustrated in Section[6.3]reveal the potential
of higher efficiency of VBAMIS against AMIS for solving several general linear
systems. We also look at the problem of finding a good parameter setting in the
VBAMIS method.

6.1 Graph compression techniques

Below we review some compression techniques that can be used to discover
dense matrix blocks in the sparsity pattern of a matrix. These techniques were
proposed in connection with the use of block iterative methods, often showing
better convergence rates and less solution time compared to their pointwise
analogues, see e.g. the studies in [8}[85].

6.1.1 Checksum-based compression method

The first method is due to Ashcraft [|5]. The method is based on the idea of
traversing the nonzero structure of a matrix A and looking for rows or columns
that have the same pattern.

It is simpler to describe the algorithm in terms of graphs. Let G(A) = (V, E)
be the adjacency graph of A, where V' = {v;, va,...,v,} is the set of vertices and
E is the set of edges (v;,v;). We call adjacency list adj(i) the set of neighbors
v; of vertex v; connected by an edge in the adjacency graph. Ashcraft’s method
looks for the so-called indistinguishable vertices v;,v; € V that are by definition
vertices with the same adjacency list, or adj(i) = adj(j) using our terminology.
To do this, a quantity called checksum is assigned to each vertex v; (or equivalently
to the ¢-th row of A); the checksum quantity is defined as follows

chk(i)= > k. 6.1)

(i,k)eE
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* [0 0]0] % * x| 0 0]x*x x
x| %10 0 *|x* * %[0 0] *x =%
0l0lx %[00 0 0|« {0 O
Bi=10lol« «lolo["P2=]0 ol« «|0 0
O]*x|0 O x*|=x * %[0 0] % =x
Lx|x[0 O] L * x| 0 0| x|

Figure 6.1: Two examples matrices with imperfect (on the left) and perfect (on the
right) block structure. Nonzero entries in the matrices are denoted as .

The algorithm marks the ith row of A and loops over the subsequent rows. If two
rows ¢ and j have the same checksum value, their patterns are compared; if the
patterns are the same, they are added to the same group.

When the matrix is general unstructured, it is still possible to have imperfect
dense block structures in the pattern, meaning that some zero entries appear in the
blocks. Figure [6.1] shows the difference between a perfect (the left matrix B)
and imperfect (the right matrix Bs) block matrix structures. By can be viewed
as By where the entries By(1,5) and B;(5, 1) are treated as nonzeros. Since the
checksum-based method only detects rows with the same pattern, it would find
only one nontrivial diagonal block in B;. On the other hand, in matrix By there
are three nontrivial diagonal blocks, so we would prefer to treat some zero entries
as nonzeros in this situation, and use high level BLAS routines on larger blocks
for better efficiency. Some modifications are necessary in the checksum-based
compression method to compute imperfect dense blocks, and this is discussed
below.

6.1.2 Angle-based compression method

Saad has proposed an angle-based compression method in [85]] to compute dense
blocks in a sparse matrix. The angle-based compression method compares angles
of rows of A. Denoting by C' the pattern matrix of A (C has the same pattern of A
and entries equal to one), the angle-based compression method computes the upper
triangular part of each row i of CCT. When j > i, entry (i, 5) in the i-th row of
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CCT is the cosine value between row 4 and row j.

cos(< 4,5 >) = (i,4)/(lil - |j]) > 7.

A large cosine value means a small angle between row ¢ and row j. If this value
is big enough, then the angle between row ¢ and row j is small, which means they
can be assigned to the same group.

The angle-based compression method depends on a user-defined parameter 7 €
[0, 1]. When the cosine value is larger than 7, the two rows are grouped together.
When 7 = 1, the method computes a perfect block structure. Smaller values of 7
could produce larger blocks containing some zero entries. This option can be used
to discover imperfect block structures and is computationally attractive as it would
enable us to use BLAS routines on larger blocks. Hence choosing the value of 7
is a crucial issue. Tuning the 7 parameter to optimize the total solution time and
storage costs may require several trial tests.

6.1.3 Graph-based compression method

Carpentieri et al. propose a graph-based compression method that requires one
simple to use parameter [32]. In the graph-based compression method, the average
block density (bgensity) value, defined as the amount of nonzeros in the matrix
divided by the amount of elements in the nonzero blocks, is constantly monitored.
Parameter bey,sity is assigned to shows the ratio of the number of nonzero entries
in A before and after the compression. The value bgensity = 1 means that a fully
dense block structure is found in A, while bgensity < 1 means that some zero
entries are allowed to be treated as nonzero entries, and the blocks to be computed
will have an imperfect dense structure.

Let G(A) = (V, E) be the adjacency graph of A, and assume that the set of
vertices V' can be partitioned into disjoint subsets. The quotient graph Q(A) can
be obtained by viewing each subset of vertices as a supervertex. The checksum-
based method proceeds by merging the vertices of G into supervertices of O.
Supervertices with similar adjacent sets are successively merged together. Before
actually merging two supervertices [ and J, the bgepsity Of 1 U J needs to be
calculated. The algorithm continues until the average block density bgeysity 1S
at least a specified value p; otherwise it stops. Numerical experiments in [32]]
show similar performance between the angle-based and the graph-based methods.
However, in the graph-based method there is only one simple to use parameter u
to tune, that is the acceptable lower bound for bgep ity In contrast, the angle-based
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method may need to run the algorithm from scratch several times to find a good
value for the compression parameter 7.

6.2 VBAMIS: Variable Block AMIS

In the last section we have introduced several graph compression techniques to
compute block orderings for general sparse matrices. These techniques can be
used in combination with block methods that often provide better performance
than their point-wise counterparts [6, (31} |88]]. Block incomplete LU (ILU)
factorization methods, when they are applicable, are amongst the most efficient
solvers delivering fast convergence rates for some challenging problems [8}[85].
This motivates our interest to embed a blocking strategy into the AMIS algorithm.
The new variable block variant of AMIS will be referred to as VBAMIS. We divide
the VBAMIS solution of a linear system into five phases:

1. a blocking phase, where a suitable block ordering is computed for the
coefficient matrix A, to permute it into a new block structured matrix A;

2. a preorder phase, where the block structure of A is used to compute a
suitable ordering that maximizes sparsity in the approximate inverse factors;

3. an analysis phase, where the sparsity preserving ordering is analyzed and an
efficient data structure is generated for the factorization;

4. a factorization phase, where the nonzero entries of the preconditioner are
computed;

5. asolve phase, where all the data structures are accessed for solving the linear
system.

Below we describe each phase in details.

Blocking phase

In this phase, we compute the block structure of the coefficient matrix A
using the matrix compression function init_blocks available in the ITSOL
package [[69]. This routine implements an angle-based compression algorithm
described in Section [6.1.2] and requires as a threshold parameter 0 < 7 < 1 to
decide when merging two rows into the same group. In the ITSOL package [69],
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the function init_blocks is written in the C language. In our implementation,
the function init _blocks is converted into Fortran language.
The init_blocks function returns

e a permutation array perm such that A = A(perm,perm) has a block
structure of the form below

/:11,1 {11,2 e Ié:ll,np

_ A2,1 A2,2 to AQ,np

A = A(perm,perm) = ] i ) ) ; (6.2)
/_lnp,l Anp,? T Anp,np

e an integer array n B containing the size of each block.

e an integer np, storing the block dimension of A, which is equal to the number
of blocks per row/column of A.

Upon permutation, all the blocks on the same (block) row will have the same row
dimension, and analogously all the blocks on the same (block) column will have
the same column dimension. The permutation A = A(perm, perm) is equivalent
to clustering nodes in the graph of A into different supervertices, and renumbering
the nodes in the graph supervertex by supervertex. A nonzero block A; ; in (6.2)
expresses the relation that supervertex V; is connected to cluster V; in the quotient
graph of A.

We construct Q(fl), the quotient graph of A

A, if A is symmetric,
A+ AT if Ais nonsymmetric.

In Q([l), each vertex corresponds to one block of A, and each edge connects one
pair of nonzero blocks of A.

To represent the blocked coefficient matrix A conveniently in memory, we use
the data structure defined in [31]], which is called variable block compressed sparse
row format (referred to as VBCSR). Basically, the VBCSR format is like the CSR
format, but the individual entries are blocks; the entries of a nonzero block are
stored one after the other in contiguous memory locations. The VBCSR storage
format consists of three vectors: one double precision vector a, and two integer
vectors ¢a and ja:

e ¢ is an array of the nonzero blocks in the matrix. Each entry of a stores all
the entries of the block using a dense matrix format.
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e ja is an array of the column indices of the elements in the a vector.
e ja stores the locations of the beginning of each block row in the a vector.

As an example, consider the nonsymmetric matrix A defined by

CoO 0o O W
cCoo oo o w
N R R0 O
MO O oo
WD WO D
WO OO O WL
B O O O ®

with nB = (2,3,2). Then the block dimension of A'is np = 3, and the VBCSR
vectors of matrix A are:

a=1((2,5,3,0),(5,7,6,8),(8,9,3,4,8,6,1,9,8),(6,0,2,2,5,3), (2,7,3,4))
ja=(1,3,2,2,3)
ia = (1,3,4,6)

The VBCSR storage enables us to use easily the level 3 BLAS routines on the
individual blocks, as these can be immediately accessed in the data structure and
passed as input arguments.

Preorder phase

After the blocking operation the nodes of the initial graph of A are grouped
into separate clusters. Each of these clusters represents one node of the quotient
graph Q([l). We apply the multilevel graph partitioning algorithms available in the
Metis package [61] on Q(fl) instead of the quotient graph of the original matrix A.
This is an important implementation difference between the VBAMIS and AMES
/ AMIS solvers. After this operation, Q(fl) is partitioned into p non-overlapping
subgraphs Q; of roughly equal size. For each partition Q; we distinguish two
disjoint sets of nodes (or vertices): the interior nodes that are connected only to
nodes in the same partition, and the interface nodes that straddle between two
different partitions; the set of interior nodes of Q; form a so called separable or
independent cluster. Upon renumbering the vertices of Q one cluster after another,
followed by the interface nodes as last, and permuting A according to this new
ordering, a block bordered linear system is obtained, with coefficient matrix of the
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By Fi
B F = f2
i_pTip _ _ . .
A=P AP—<E C>_ .. : . (6.3)
B, Fp
E, By --- E, C

In Equation (6.3)), the diagonal blocks B; correspond to the interior nodes of Q;,
and the blocks E; and F; correspond to the interface nodes of Q;; the block C' is
associated to the mutual interactions between the interface nodes. In the multilevel
scheme we apply the same block downward arrow structure to the diagonal blocks
B; of A; the procedure is repeated recursively until a maximum number of levels
is reached, or until the blocks at the last level are sufficiently small to be easily
factorized.

Analysis phase

In this phase, a suitable data structure for storing the linear system is defined,
allocated and initialized. We use a tree structure to store the block bordered
form (6.3) of A. The root is the whole graph O, and the leaves at each level
are the independent clusters of each subgraph. Each node of the tree corresponds
to one partition Q; of Q(fl), or equivalently to one block B; of matrix A. A new
block data structure is defined to represent the block bordered coefficient matrix A.
In this data structure, the blocks E and F' at each level are stored in the VBCSR
format. Blocks F; and F; can be very sparse, as many of their rows and columns
can be zero. The last-level blocks B; and the Schur complements S; are stored
in the CSR format as in the current implementation we are still using pointwise
factorization algorithms to invert the last level solvers.

Factorization phase
The approximate inverse factors L~! and U~! of A can be written in the
following form

Ut 471 Lt
U, Wo Lyt
f,_l =~ : . [7_1 i~
-1 -1
ultow, L,
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where
B; = LU;,W; = -U'L;'FUS' G = —-Lg'E;UT LY (6.4)

and Lg, Ug are the triangular factors of the Schur complement matrix

p
S=C-) EB;'F. (6.5)

=1

During the factorization, fill-ins in L~'and U1 only occur within the nonzero
blocks. We apply the arrow structure (6.3)) recursively to the diagonal blocks and to
the first-level Schur complement as well, so that most of the nonzero entries of the
original matrix are clustered into a few nonzero blocks. This effectively maximizes
sparsity in the inverse factors and reduces the factorization costs. The multilevel
factorization algorithm requires to invert only the last-level blocks and the small
Schur complements at each reordering level. The blocks W;, G; do not need to
be assembled explicitly, as they may be applied using Equation (6.4). The last-
level blocks are factorized by ILUPACK. The Schur complements are assembled
as in Equation . First the products B, L' F; are computed by the ILUPACK
routine in CSR format. To exploit the block structure within the matrix, we use the
level 3 BLAS routines to compute the multiplications of the dense block entries.
The matrix-matrix operations E; X B, lFi and C — XP: E;B;” lFi are performed
block-wise efficiently. =

Solve phase

For the last-level blocks B and Schur complements at each level, we compute
their inverse factorization as what we do in AMES and AMIS. Owing to the merit
of the implicit factorization strategy, we observed better performance on the AMIS
solver comparing to the AMES solver. Hence in the VBAMIS solver we apply a
similar strategy to that of the AMIS solver. Instead of computing the inverse factors
of matrix A explicitly, we only compute the approximate inverse factorization of
the blocks B that are not at the last level recursively in the way as we do in AMIS.
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The equation Az = b is rewritten as

B F 1 o b1
E C T2 o bg
Bz + Fxo = by
Ex1+Cxy = by

{ S$2 == bg - E(B_lbl) (6 6)

xr] = (Bilbl) — (BilF)J;Q

where S is the Schur complement matrix S = C' — EB~!F. The preconditioning
operation is the same as Algorithm [5.I] except the operations are in VBCSR
format.

6.3 Numerical experiments with VBAMIS

In this section we present the results of our numerical experiments to illustrate
the performance of the VBAMIS preconditioner. First we compare VBAMIS
against AMIS for solving general linear systems. Then we explore further the
sensitivity of the parameter selection in the VBAMIS solver. The selected matrix
problems are extracted from the public-domain matrix repository available at the
SuiteSparse [37]], and arise from various application fields. We present a summary
of the characteristics of each linear system in Table The codes are developed
in Fortran 95. We execute the numerical experiments in double precision floating
point arithmetic on a PC equipped with an CPU AMD A8-5600K, 3.6 GHz of
frequency, 4 GB of RAM and 4096 KB of cache memory.
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Matrix problem n  Field nnz(A)
stacom 8,415 Compressible flow 271,936
ABACUS_shell_ud 23,412 ABAQUS benchmark 218,484
cz20468 20,468 Closest point method 206,076
cz40948 40,948 Closest point method 412,148
raefsky3 21,200 Fluid structure interaction 1,488,768
olafu 16,146  structural problem 1,015,156
venkat01 62,424  Unstructured 2D Euler solver 1,717,792

Table 6.1: Set and characteristics of the test matrix problems.

6.3.1 Numerical comparison between AMIS and VBAMIS

In Table [6.2] we present a numerical comparison between the AMIS and
VBAMIS solvers to show the benefit of the block variant strategy.

For both solvers, we inverted the last-level blocks using the multilevel inverse-
based ILU factorization available in the ILUPACK package [16], with default
values for the parameters. For each run we recorded the CPU time from the start
of the solution until the initial residual was reduced by 12 orders of magnitude
or until the process failed (no convergence was achieved after 5000 iterations of
the restarted GMRES method). To give a fair performance comparison, we used
the same values of n;, and p, that are the number of levels of diagonal blocks
and number of first-level blocks, in both methods. We also tuned the dropping
threshold parameter to have roughly equal memory costs. For the VBAMIS solver,
we initially set 7 = 1.0 and decreased it by 0.1 in each run; then we selected the
value of 7 which gave us the best performance for the given problem.

We recorded the following performance measures:

1. the density ratio ZZZZ((AX)) , that is the ratio between the number of nonzeros in

the preconditioner matrix M versus the number of nonzeros in the coefficient
matrix A;

2. the number of iterations [ts required to reduce the initial residual by 12
orders of magnitude starting from the zero vector;

3. the CPU time cost in seconds for completing the preorder phase (denoted
by t,), for constructing the approximate inverse factorization (¢y), and for
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solving the linear system (¢s). For the VBAMIS method, the time of the
blocking phase is counted in ¢,. The column ¢, gives the total CPU time
tat = tp +1t5 + ts.

4. the average block size of A after the compression (denoted by b_size),
and the ratio of the number of nonzero entries in A before and after
the compression (denoted by b_density). It is b_density = 1 if the
blocks obtained after compression are all fully dense nonzero blocks, and
b_density < 1 means that some zero entries in the blocks are treated as
nonzeros. These two quantities do not apply to the AMIS method and hence
we use the symbol “-”.

From the numerical results reported in Table[6.2] we can conclude that the block
variant solver VBAMIS performs better than AMIS with respect to convergence
rate and time consumption. The VBAMIS method requires a blocking operation,
and hence the time of ¢, is generally higher than the AMIS method. For the
matrix problems stacom, raefsky3 and venkat 01, the average size of blocks
b_size is relatively large, which means a good compression is achieved. Smaller
compressed systems in VBAMIS result in a faster factorization phase than the
AMIS method. In the case of matrix problems cz20468 and cz20468, we
observe that the results of VBAMIS and AMIS are close. In these two cases, the
average block size b_size = 1.04 implies that the matrices are hardly compressed
and not many blocks are formed. The VBAMIS solver is based on the block
structure. If the matrix has no block structure or the blocking algorithm could
not generate a matrix with good block structure, the block algorithm may require
more computation cost and perform worse than the point-wise solvers.

In Table the optimal performance of matrix raefsky3 appears when 7 =
1.0. We present the block arrow structure of matrix raefsky3 with 7 = 1.0 in
Figure[6.2a). In Figure[6.2|b) we present one last-level block with block structure,
whose entries are small blocks of dimension 8. The original size of the matrix
is 21200, and the size of matrix in Figure [6.2]is dramatically reduced to 2650 by
treating small blocks as its entries. The blocking phase results in b_size = 8.00 and
b_density = 1.00, which means the blocks involved in computation are relatively
large and fully dense. The much smaller dimension of problem and dense block
structure enhance the efficiency of level 2 and 3 BLAS block-wise operation and
produce better convergence rate and time performance.
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(a) stacom
Method ZZ’Z((%) Its tp ty ts  tay b_size b_density
AMIS 3.20 9 065 261 022 348 - -

VBAMIS  3.03 7 062 201 023 286 242 0.97

(b) cz20468

Method ZZZZ((]X)) Its tp ty ts tay b_size b_density
AMIS 1.29 168 0.47 028 343 4.18 - -
VBAMIS 1.29 167 0.77 030 333 440 1.04 0.90

(c) ¢cz40948
Method ZZ’Z((]‘X)) Its tp ty ts  tey b_size b_density
AMIS 1.23 397 093 0.55 2699 2847 - -
VBAMIS 1.27 367 1.73 141 23.13 2627 1.04 0.90

(d) raefsky3

Method ZZZ((]Z)) Its tp iy ts  tay b_size b_density

AMIS 0.87 351 3.50 15.19 2191 40.60 - -

VBAMIS 0.72 297 339 365 13.35 20.39 8.0 1.00
(e) venkatO1

Method ZZZ((]X)) Its tp ty ts  tey b_size b_density

AMIS 3.87 12 3.65 2247 137 27.49 - -

VBAMIS 3.65 7 402 934 276 16.12 4.00 1.00

Table 6.2: Performance comparison of the AMIS and VBAMIS solvers.
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N\

(a) raefsky3 (b) One last-level block

Figure 6.2: The block arrow structure of matrices raefsky3 and one last-level
block with block structure with each block of size 8.
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6.3.2 The impact of - on VBAMIS

To inspect the impact of the parameter 7 on the performance of VBAMIS in
terms of convergence rate and CPU time, we ran some more experiments. For
each run with a different value of 7, we recorded the CPU time from the start of
the solution until the initial residual was reduced by 12 orders of magnitude or
until the process failed. We declared a solver failure when no convergence was
achieved after 5000 iterations of the restarted GMRES method. We also recorded
the memory cost %L(:)MU) and the number of iterations /ts. The numerical
results are displayed in Table[6.3] The column b_size shows the average block size
of A after the compression, and the column b_density shows the ratio of the number
of nonzeros in A and A. The value b_density = 1 means that the nonzero blocks
in A are fully dense, whereas b_density < 1 means that some blocks in A contain
some zero entries.

For each run, we applied VBAMIS on the selected matrices and reduced the
value of 7 by 0.1 from 1.0 to 0.6. We tuned the dropping threshold to make
the memory cost for each setting of 7 roughly the same, and compared their
convergence rate and time cost. On the olafu and the cz4 0948 problems, when
7 was reduced from 1.0 to 0.9, VBAMIS converged relatively fast and used less
solution time. For the cz20468 problem, the best performance was obtained
when 7 = 0.7. The quantities b_size and b_density did not vary much for the
cz20468 and cz40948 problems, and the performance for different values of 7
were quite close. In most cases, reducing the value of 7 enabled us to enlarge the
size of blocks, treat some zero entries in each block as nonzeros, increase b_size
and decrease b_density. Due to larger blocks and smaller factorization costs, it
was possible to achieve faster convergence, provided b_density was around 0.90
or larger. To sum up, a large value of 7, e.g. 1.0 or 0.9, is recommended to use in
VBAMIS.

Small values of 7 introduced too many zero entries to be treated as nonzeros in
the data structure, increasing significantly the memory expenses and factorization
costs, and this penalised the performance of VBAMIS. The results on the
raefsky3 problem are slightly different. The best performance was obtained
when 7 = 1.0 and the results did not improve much when we tuned 7. In this case
b_density remained around 1 as we tuned 7. The value of b_size did not show
significant change as we tuned 7, especially in raefsky3 the initial b_size was
already very large.

We choose two typical matrices cz20468 and raefsky3 from Table [6.3]
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(a) ¢cz40948
T Z:L;((AX)) Its tp ty ts  tay b_size b_density
1.0 .36 227 1772 0.62 1056 1290 1.04 0.90
0.9 1.36 213 1.60 0.61 9.63 11.84 1.04 0.90
0.8 .36 230 1.70 0.64 10.75 13.09 1.05 0.89
0.7 1.36 216 1.68 0.63 9.66 1197 1.07 0.85
0.6 1.36 215 1.62 0.59 9.68 11.89 1.22 0.66

(b) 220468
T ZZZZ((AX)) Its tp ty ts teay  b.size b_density
1.0 1.14 344 0.74 028 1038 1140 1.04 0.90
0.9 1.15 336 074 028 993 1095 1.04 0.90
0.8 1.15 331 0.72 030 9.70 10.72 1.05 0.89
0.7 1.14 331 0.73 031 9.69 10.73 1.07 0.85
0.6 1.14 332 0.72 029 9.76 10.77 1.22 0.66

(c) raefsky3
T nnz(M) - gy t t t t b_size b_densit

nnz(A) D f s all — B Yy
1.0 1.54 10 321 471 0770 8.62 8.00 1.00
0.9 1.54 10 334 474 0.69 877 8.00 1.00
0.8 1.55 26 3.22 1571 1.43 20.36 8.63 0.89
0.7 1.55 26 3.29 1574 1.44 2047 8.63 0.89
0.6 1.56 41 3.08 3932 2.80 4520 16.02 0.39
(d) olafu
T ZZ’ZZ((JX)) Its tp ty ts  tay b_size b_density
1.0  2.01 237 1.77 9.76 16.81 2834 1.54 1.00
0.9 2.05 75 112 6.12 520 1244 5.10 0.89
0.8 217 209 1.08 9.14 14.62 2484 647 0.64
0.7 2.05 168 1.08 8.13 11.38 20.59 7.23 0.59
Table 6.3: Large value of 7 are recommended to obtain better performance of

VBAMIS.

and plot the compressed block structure with differen values of 7. The graphs
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Figure 6.3: The block arrow structure of matrices cz20468 and raefsky3 with
different values of 7.

of the compressed block structures are illustrated in Figure [6.3] The first-level
complement is marked with a red box. In Figure[6.3a) the block arrow structures
of matrix cz20468 are listed with 7 = 0.6,0.7,0.8, 0.9, 1.0 from left to right. As
shown in Figure[6.3|a), the block structures are nearly unchanged as 7 varies. This
corresponds to the results in Table[6.3{b) that the choice of 7 has little impact on the
performance of VBAMIS for this problem matrix. In Figure[6.3[b) the block arrow
structures of matrix raefsky3 are listed with 7 = 0.6, 0.8, 1.0 from left to right.
The cases of 7 = 0.7 and 0.9 are omitted since they give exactly the same block
structures and computational results as those of 7 = 0.8 and 1.0. Figure [6.3(b)
shows that as 7 increases, block structure with dense blocks can be obtained. Once
the number of independent sets p at the first level is selected, a larger 7 could
result in a smaller Schur complement and larger independent sets, which is also
beneficial for the multilevel strategy. However, we observe a different behavior
on matrix olafu. In Figure[6.4] larger 7 produces smaller blocks, hence smaller
supervertices and more interface nodes, which yields a larger Schur complement.



CHAPTER 6. VBAMIS: A VARIABLE BLOCK VARIANT OF THE ALGEBRAIC
108 MULTILEVEL IMPLICIT SOLVER

This deteriorates the convergence and time performance, and numerical results in
Table[6.3]d) also confirms this. The influence of parameter 7 on the block structure
of matrices is complicated and calls for more research.

(@) 7 =09 (b 7=1.0

Figure 6.4: The block arrow structure of matrices olafu with different values of
T.

We also ran some tests to analyse the sensitivity to other parameters. In Table[6.4]
we show results using a larger value of dropping threshold on the raefsky3
problem. When we dropped more entries, using 7 = 0.6 gave better performance
than using 7 = 0.7, which is different from that in Table In Table[6.5]we show
the results of using a different number of independent blocks p on matrix olafu.
We still applied the same parameter setting on olafu as in the tests in Table
except p. When we used a different value of p, VBAMIS gave the best performance
when 7 = 1.0 instead of 7 = 0.9. The effect of other parameters on VBAMIS is
more complex to investigate and requires further investigation.
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T ZZZZ((%) Its tp Ly ts tar b_size b_density
1.0 1.03 34 320 4.03 149 8.72 8.00 1.00
0.9 1.03 34 327 404 148 8.79 8.00 1.00
0.8 1.12 260 3.17 1575 14.13 33.05 8.63 0.89
0.7 .12 260 3.23 15.76 13.84 32.83 8.63 0.89
0.6 1.03 165 3.10 37.70 9.11 4991 16.02 0.39
Table 6.4: When the dropping threshold is changed, the performance on matrix
raefsky3 with respect to diverse values of eps is different.
T 7:17:;((]\:)) Its tp ty ts tay b_size b_density
1.0 247 92 1.76 1047 7.60 19.83 1.54 1.00
09 249 219 114 6.68 1576 23.58 5.10 0.89
Table 6.5: When we tuned p, the best performance on matrix olafu appeared when

eps = 1.0.

6.3.3 Combining VBAMIS with a direct solver and other
iterative solvers

Utilizing VBAMIS as direct solver

The results shown in Chapter 3 indicate that the multilevel mechanism can be
effective to reduce the memory burden but, at least in our implementation, tends to
increase the cost per iteration. As an attempt of a possible remedy, we ran some
experiments with an exact VBAMIS solver, where no entries are dropped during
the factorization, the dropping threshold parameter droptol is set equal to zero, and
the condest parameter is set equal to a very large value (condest > 1000), and the
last-level blocks and the Schur complements are inverted exactly. In this situation,
the VBAMIS method will perform as a direct solver, and thus will be denoted as
VBAMIS _direct. For MA4 8 we used the Fortran 95 variant which offers additional
features to the Fortran 77 version of MA4 8. We executed the numerical experiments
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with respect to direct solvers in double precision floating point arithmetic. As
no approximation is introduced during the factorizations, in each problem we can
obtain convergence in one or two iterations, and the solving phase is much cheaper.
This can be observed in Table

(a) ¢cz40948

Method %LJ)MU) tp ty ts tan lz—2'|| ||JAz —b|| b.size b.density
MA38 3.30 - 0.96 0.01 0.97 3.7e-6 2.7e-4 - -
MAA48 2.30 - .12 0.004 1.124 1.4e-6 4.4e-4 - -
VBAMIS _direct 1.54 1.97 053 0.07 2.57 1.6e-12 2.4e-7 1.04 0.90

(b) cz20468
Method % tp ty ts tar  |lz—2'|| |JAz —b|| b_size b_density
MA38 3.15 - 048 0.004 0.484 84.5 4020.1 - -
MAA48 2.27 - 0.55 0.004 0.554 85.0 6404.5 - -
VBAMIS _direct 1.53 0.74  0.28 0.04 1.06 9.6e-15 3.9e-8 1.04 0.90

(c) raefsky3
Method %L(Z)MU) tp ty ts tan  |lz—2'|| |JAz —b| b-size b.density
MA38 11.31 - 1048 0.04 10.52 6.6e-3 4.7e-9 - -
MA48 7.81 - 2537 0.03 2540 6.4e-8 5.3e-13 - -
VBAMIS _direct 3.94 3.27 8.69 036 1232 2.9e-14 7.3e-16 8.00 1.00

(d) ABACUS shell_ud

Method %LJ‘;MU) tp tf ts  teu |lz—a'| ||Az—10b| b_size b_density
MA38 13.65 - 0.82 0.01 0.83 3.5e-2 1.8e-2 - -
MA48 11.38 - 325 001 326 1.9e-2 1.7e-2 - -
VBAMIS _direct 7.04 095 156 0.11 2.62 2.9e-6 2.9e-11 1.04 1.00

(e) venkatO1
Method %W tp ty ts tan lz—2'|| |JAz —b| b-size b-density
MA38 10.74 - 8.17 0.05 8.22 2.8e-3 1.3e-5 - -
MAA48 7.61 - 20.00 0.04 20.04 4.2e-13 6.9e-14 - -
VBAMIS _direct 4.37 3.89 9.02 073 13.64 1.1e-15 1.2e-15 4.00 1.00

(f) stacom
Method %LJ)MU) tp ty ts tan lz—2'|| ||JAz —b| b.size b.density
MA38 18.20 - 220 0.01 2.21 8.8e-4 3.4e-8 - -
MAA48 22.98 - 20.34 0.0l 20.35 6.2e-5 8.1e-10 - -
VBAMIS _direct 4.03 0.62 1.90  0.08 2.60 3.1e-8 7.1e-9 2.42 0.97

Table 6.6: Performance comparison of MA38, MA48 and VBAMIS _direct.
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In Table [6.6) we show the numerical results obtained using VBAMIS direct,
MA38 and MA48. Symbol “-” means that the corresponding phase does not
apply to the given run. For the VBAMIS direct solver, we inverted the last-level
blocks and the Schur complements using ILU factorizations, using the multilevel
implementation available in the ILUPACK package [16]]. No approximation is
introduced during factorizing the last-level blocks and Schur complements, and
we could obtain a good convergence rate for each test matrix. On the other hand,
the multilevel mechanism also effectively reduces the memory costs. Comparing
against the results of MA38 and MA48, we see that using VBAMIS as a direct
solver can save much storage cost only at moderate extra time cost. In Table [6.6]
we also report on the forward error || — /|| (2’ is the exact solution vector with all
the entries equal to 1) and || Az — b||. For most given matrices, VBAMIS produced
a smaller error comparing to direct solvers. For the case of cz20468, MA38
and MA48 could not produce a correct solution. Numerical results show the good
robustness and accuracy of VBAMIS applied as a direct solver.

(a) raefsky3

Method %L(X)MU) tp ty ts tquu  b-size  b_density
VBAMIS _direct 3.94 3.27 8.69 036 12.32 8.00 1.00
AMIS _direct 3.93 328 1798 0.27 2153 - -

(b) venkatO1

Method nnz(Mp +My)

ez (A) tp ty ts tqnn  b-size  b._density
VBAMIS _direct 4.92 4.57 796 046 1299 4.00 1.00
AMIS _direct 5.00 3.69 20.87 046 25.02 - -
(c) ¢z20468
Method T %w tp ty ts tqr  b-size  b_density
1.0 1.53 0.74 026 0.04 1.04 1.04 0.90
VBAMIS direct 0.8 1.53 082 026 0.04 1.12 1.05 0.89
0.6 1.54 0.76 025 0.03 1.04 1.22 0.66
AMIS _direct - 1.54 052 021 0.03 0.76 - -

Table 6.7: Performance comparison of VBAMIS _direct and AMIS _direct.

We also applied the AMIS method as an exact factorization, denoted by
AMIS _direct, without dropping any entries. We present the comparison of
AMIS _direct and VBAMIS _direct in Table We tuned the dropping threshold
to make the memory cost for each method roughly the same, and compared their
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convergence rate and time cost. For the matrices for which VBAMIS can create
large blocks (large b_size), VBAMIS outperforms AMIS. For the matrices like
cz20468 and cz40948, reducing 7 still can not produce large blocks. Then
VBAMIS does not gain much on these matrices, and the performance of AMIS
and VBAMIS are nearly the same.

Combining (VB)AMIS with other iterative solvers

Although in our experiments we used the GMRES accelerator, it should be
observed that the multilevel preconditioning strategies introduced in this thesis
can also be combined with other Krylov solvers. We have applied the MI23
and MI26 routines from HSL and incorporated them into the solve phase of
our methods. Routines MI23 and MI26 use the CGS (conjugate gradient
squared) method and the BiCGStab (BiConjugate Gradient Stabilized) method
to solve an unsymmetric linear system. We denote these two combinations as
(VB)AMIS_CGS and (VB)AMIS _BiCGStab, respectively, and the AMIS method
accelerated by GMRES as (VB)AMIS_GMRES. According to the results presented
in Table@ on the matrix problems extracted from the SuiteSparse [37]], and listed
in Table with the same preconditioner used the three combinations performed
roughly equally well. This shows that the AMIS and VBAMIS methods are robust
and easy to combine with other state-of-the-art iterative solvers.
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(a) raefsky3
Method %ﬁxﬁm Its tp ty ts tqun  b-size b_density
AMIS_GMRES 28 330 9.69 123 1473
AMIS_CGS 0.95 26 322 974 189 1496 - -
AMIS _BiCGStab 27 322 9.78 1.92 14.92
VBAMIS_GMRES 34 337 396 147 8.80
VBAMIS_CGS 1.03 17 334 405 127 8.66 8.00 1.00
VBAMIS _BiCGStab 20 322 398 1.49 8.69
(b) stacom
Method %%MU) Its tp ty ts tan  b-size  b_density
AMIS_GMRES 6 0.65 2.61 0.17 3.43
AMIS_CGS 2.95 3 0.65 2.61 011 337 - -
AMIS _BiCGStab 4 0.63 2.60 0.14 3.37
VBAMIS_GMRES 7 0.64 2.04 022 290
VBAMIS_CGS 3.03 3 0.65 199 0.12 2.76 242 0.97
VBAMIS _BiCGStab 3 0.68 2.01 0.10 2.79
(c) venkatO1
Method %L(Z;MU) Its tp ty ts tquu  b-size  b_density
AMIS_GMRES 7 402 2861 272 3535
AMIS_CGS 2.95 4 4.04 28.41 2.14  34.59 - -
AMIS_BiCGStab 4 406 2796 1.87 33.89
VBAMIS_GMRES 7 4.19 9.19 276 16.14
VBAMIS_CGS 3.65 4 4.11 9.18 222 1551 4.00 1.00
VBAMIS_BiCGStab 4 4.03 9.35 2.03 1541

Table 6.8: Combination of AMIS/VBAMIS with GMRES/CGS/BiCGStab.






7 Summary and perspectives

7.1 Summary

In this thesis, we have proposed a class of preconditioning methods for the iterative
solution via Krylov subspace methods of sparse systems of linear equations arising
from computational science and engineering applications. We have presented the
main lines of developments of the new methods, and analysed their effectiveness
to reduce the number of iterations of Krylov methods and their cost, identifying
potential causes of failure and proposing ideas to enhance their robustness. We
have assessed their performance to the solution of various matrix problems, also
in comparison against some of the most popular algebraic preconditioners in use
today. Numerical results demonstrate the good performance of our methods.

The initial concern of the thesis has been to design robust sparse approximate
inverse preconditioners. This class of methods offers inherent parallelism as
the application phase reduces to performing one or more sparse matrix-vector
products, making them very good candidates to solve very large linear systems on
massively parallel computers and modern hardware accelerators such as GPUs [26,
74, 100]. We focused in particular on approximate inverse preconditioners
in factorized form, as their constructions reduce to solving independent linear
systems, and this task can be performed concurrently. One problem that often
prevents the use of sparse approximate inverses in practical applications is the
lack of a good pattern selection strategy. Indeed, the inverse of a sparse matrix
is typically dense and often totally unstructured. This is even more true for the
inverse factors, with the result that the approximate inverse can be fairly dense
and the preconditioner is costly to compute [[104]. This was an important concern
addressed in the thesis.

In Chapter 1 we presented the motivations and background behind this research.
In Chapter 2 we proposed a short review of modern Krylov subspace methods
and preconditioning techniques for solving large linear systems. Krylov subspace
methods are iterative in nature and economical in computation. Therefore they
are often considered the methods of choice for solving large linear systems such as
those arising from the discretization of partial differential equations. We introduced
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the basic concepts underlying the development of Krylov subspace methods and
briefly overviewed several standard algorithm, alongside their comparison in terms
of computational and storage costs. Although iterative methods are very efficient
memory-wise, they lack the typical robustness of direct methods. Therefore, it
is recommended to use a preconditioner to make them converge faster. The aim
is to compute a preconditioning matrix such that the equivalent preconditioned
system will require a smaller number of iterations to converge to the approximate
solution. It is nowadays recognized that preconditioning is a crucial ingredient
in the development of efficient solvers for computational science and engineering
applications. We have reviewed preconditioning techniques of both explicit and
implicit form, with particular attention to Incomplete LU factorization (ILU) and
several sparse-approximate-inverse-based preconditioners. We discussed in detail
the ARMS and ILUPACK methods. We also revisited the SPAI, AINV and FSAI
methods, including recent block variants.

In Chapter 3, we introduced the new solver AMES (Algebraic Multilevel
Explicit Solver) that can be defined as a recursive multilevel factorization based
on a distributed Schur complements formulation. We presented the development
steps of the AMES algorithm. Multilevel graph partitioning algorithms are used
to reorder the coefficient matrix, to enhance sparsity and to introduce parallelism
in the construction. We designed a suitable data structure for representing the
reordered matrix in the computer memory. We assessed the overall performance
of AMES by showing numerical experiments on realistic matrix problems. We
discussed different parameter settings of the new method, such as the number
of independent clusters and the number of partitioning levels. We also put
forward suggestions of a reasonable parameter setting. The results reported in
Table [3.2] showed that the AMES method can enhance significantly the efficiency
of factorized approximate inverse methods like AINV or FSAIL Our techniques
can produce very sparse patterns and make the factorization cheap and effective. It
is remarkable that they can compete very well with , and sometimes outperform,
some of the state-of-the-art methods currently in use today.

In Chapter 4, we presented a combination of an overlapping strategy with the
AMES solver, aiming at enhancing the robustness and the convergence rate. We
recalled the theoretical background and presented numerical experiments showing
the positive effect of overlapping. We observed a consistent reduction of the
number of iterations and of the solving time for some of the problems tested.

One practical difficulty with AMES is that although the multilevel mechanisms
can be effective to reduce the factorization costs, the application of the
preconditioner can be more expensive due to the long oct-tree traverses of the
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multilevel mechanism. To overcome this problem, in Chapter 5 we have proposed
an implicit formulation of AMES that is cheaper to apply. This variant is referred
to as AMIS. AMIS is also based on the multilevel recursive nested dissection
reordering. The major difference with respect to AMES lies in the solve phase
which is applied implicitly. In our numerical tests AMIS consistently outperformed
AMES in terms of time to solution. By construction, the AMIS method requires
less recursion, hence its overall more robust performance.

In Chapter 6, we combined the AMIS method with graph compression strategies,
and proposed a variable block variant referred to as VBAMIS. Block methods
are often more effective than their pointwise analogues. We reformulated our
AMIS algorithm using level 3 BLAS operations. We use the data structure that
is called variable block compressed sparse row format (referred to as VBCSR) to
represent block sparse matrices. Numerical results revealed good robustness and
higher efficiency obtained by exploiting additionally the matrix block structure.
The multilevel mechanism also effectively reduced the memory costs, making the
AMIS and VBAMIS methods compete well with existing direct methods.

7.2 Perspectives

For the moment our methods focus on the solution of nonsymmetric systems only,
but they can be used equally well for solving symmetric systems. The techniques
proposed in this thesis can also be useful for solving realistic engineering
applications [23]]. To support this point, we show below a case study for solving
sparse linear systems arising in computational electromagneticﬂ The selected
matrix problems listed in Table[/.1|are available at the SuiteSparse [37]].

Matrix problem  Size nnz(A) Field

dw2048 2,048 10,114 Square dielectric waveguide
dw8192 8,192 41,746 Square dielectric waveguide
utm3060 3,060 42,211 Uedge Test Matrix
utm5940 5,940 83,842 Uedge Test Matrix

Table 7.1: Set and characteristics of the test matrix problems from
electromagnetism simulations.

"This is based on the published article [23].
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We solved the right preconditioned system AMy = b, * = My instead of Ax =
b, using the restarted GMRES method [86] as the accelerator for the algebraic
multilevel solver developed in this thesis, and compared these results against two
other popular algebraic preconditioners for linear systems in use today, that are the
Algebraic Recursive Multilevel Method (ARMS) proposed by Saad and Suchomel
in [89] and the SParse Approximate Inverse preconditioner (SPAI) introduced by
Grote and Huckle in [53[]. In Table we report on the number of iterations
Its, the density ratio ZK((%), the time ¢, for the preorder phase, the time ¢, for
the factorization phase, the time ¢, for the solve phase, and the total CPU time
tay = tp + 1ty +ts. Symbol “-” means that the corresponding phase does not apply
to the given run. Again, on the solution of a practical real-world application, the
techniques developed in this thesis are effective to reduce the number of iterations
of Krylov subspace methods, competing very well against some of the state-of-the-
art solvers, at low memory costs.

In our experiments, we tuned the dropping thresholds and other parameters
to make the solvers have roughly equal memory costs. The results confirm
that the implicit variant (AMIS) performed consistently better than the explicit
one (AMES) in terms of time to solution, and the block variant (VBAMIS)
outperformed both in all respects.




7.2. PERSPECTIVES 119
Matrix Method " %) Its ts t tau
AMES 231 19 004 005 009 0.18
AMIS 231 19 004 004 003 0.1
dw2048  VBAMIS  2.33 14 002 005 001 008
ARMS 2.24 418 - 001 012 0.3
SPAI 312 45000 - 021  +1.76  +1.97
AMES 3.44 53 014 042 154 210
AMIS 3.44 53 014 044 059 117
dw8192  VBAMIS  3.53 38 017 091 029 137
ARMS 426 1063 - 005 432 437
SPAI 698  +5000 - 578 +3559 +41.37
AMES 2.93 127 0.12 026 097 135
AMIS 2.93 127 012 026 056 094
utm3060 VBAMIS  2.83 32 016 046 014 076
ARMS 293 +5000 - 005 +9.54 +9.59
SPAI 324 +5000 - 606 +591 +11.97
AMES 337 98 022 088 179 289
AMIS 3.37 98 024 086 096  2.06
utm5940 VBAMIS — 3.27 18 030 112 018  1.60
ARMS 6.15  +5000 - 035 +27.69 +28.04
SPAI 386 +5000 - 21.88 42322 +45.10

Table 7.2: Performance comparison of AMES, AMIS, VBAMIS and some state-

of-the-art solvers on the electromagnetic problems.

The iterative

solution wa started from the zero vector, and was stopped when either
the initial residual was reduced by twelve orders of magnitude or when
no convergence was achieved after 5000 M-V products.

An interesting and challenging source of very large linear systems arises in the
solution of Markov chain problems. PageRank [[76]] in particular is one of the most
popular Markov problems. In a separate study, we have investigated the numerical
methods for solving the PageRank problem using adaptive reordered methods [25]].
Benzi and Tima have illustrated the good performance of preconditioned Krylov
subspace methods on solving the Markov chain problems with large state spaces
in [12]. It would be interesting in a future work to test the multilevel methods
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proposed in this thesis for solving Markov chain problems, as well as in other
areas. Following Nick Trefethen, Professor at Oxford University, “nothing will
be more central to computational science in the coming decades than the art of
transforming a problem that appears intractable into another whose solution can be
approximated rapidly.” For Krylov subspace methods, this is preconditioning [98]].



Samenvatting

In dit proefschrift hebben we een klasse van preconditioneringsmethoden voor de
iteratieve oplossing voorgesteld via Krylov-deelruimtemethoden van ijle systemen
van lineaire vergelijkingen die voortkomen uit computationele wetenschap en
technische toepassingen. We hebben de hoofdlijnen van de ontwikkelingen van
de nieuwe methoden gepresenteerd en de doeltreffendheid ervan geanalyseerd om
het aantal iteraties van Krylov-deelruimtemethoden en hun kosten te verminderen,
potentiéle oorzaken van falen te identificeren en ideeén voor te stellen om
hun robuustheid te verbeteren. We hebben hun prestaties beoordeeld op de
oplossing van verschillende matrixproblemen, ook in vergelijking met enkele
van de meest populaire algebraische preconditioners die tegenwoordig worden
gebruikt. Numerieke resultaten tonen de goede prestaties van onze methoden.

De eerste zorg van het proefschrift was om robuuste, spaarzame approximatieve
inverse preconditioners te ontwerpen. Deze klasse van methoden biedt inherent
parallellisme wanneer de toepassingsfase vermindert tot het uitvoeren van een
of meer ijle matrix-vectorproducten, waardoor ze zeer goede kandidaten zijn
om zeer grote lineaire systemen op massaal parallelle computers en moderne
hardwareversnellers zoals GPU’s op te lossen. We hebben ons met name gericht
op benaderde inverse preconditioners in gefactionaliseerde vorm, aangezien hun
constructies verminderen tot het oplossen van onafhankelijke lineaire systemen
en deze taak tegelijkertijd kan worden uitgevoerd. Een probleem dat vaak het
gebruik van schaarse benaderende inverse in praktische toepassingen voorkomt,
is het ontbreken van een goede patroonkeuzestrategie. Inderdaad, de inverse van
een ijle matrix is meestal dicht en vaak totaal ongestructureerd. Dit geldt zelfs
meer voor de inverse factoren, met als gevolg dat de benaderde inverse vrij dicht
kan zijn en de preconditioner kostbaar is om te berekenen. Dit was een belangrijke
zorg die in het proefschrift wordt behandeld.

In Hoofdstuk 1 hebben we de motivaties en achtergronden van dit onderzoek
gepresenteerd. In Hoofdstuk 2 hebben we een korte bespreking voorgesteld van
moderne Krylov-deelruimtemethoden en preconditioneringstechnieken voor het
oplossen van grote lineaire systemen. Krylov-deelruimtemethoden zijn iteratief
van aard en economisch in berekening. Daarom worden ze vaak beschouwd
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als de methoden bij uitstek voor het oplossen van grote lineaire systemen zoals
die voortkomend uit de discretisatie van partiéle differentiaalvergelijkingen. We
introduceerden de basisconcepten die ten grondslag liggen aan de ontwikkeling
van Krylov-deelruimtemethoden en bekeek kort een aantal standaardalgoritmen,
naast hun vergelijking in termen van computer- en opslagkosten. Hoewel
iteratieve methoden zeer efficiént geheugeneffectief zijn, missen ze de typische
robuustheid van directe methoden. Daarom wordt aanbevolen om een
preconditioner te gebruiken om ze sneller te laten convergeren. Het doel
is om een preconditioneringsmatrix zo te berekenen dat het equivalente
vooraf geconditioneerde systeem een kleiner aantal iteraties vereist om te
convergeren naar de benaderde oplossing. Tegenwoordig wordt erkend dat
preconditioning een cruciaal ingrediént is bij de ontwikkeling van efficiénte
oplossers voor computationele wetenschap en technische toepassingen. We hebben
preconditioneringstechnieken beoordeeld van zowel expliciete als impliciete vorm,
met bijzondere aandacht voor onvolledige LU-ontbinding (ILU) en verschillende
sparse-approximate-inverse gebaseerde preconditioners. We bespraken in detail
de ARMS- en ILUPACK-methoden. We hebben ook de SPAI-, AINV- en FSAI-
methoden opnieuw bekeken, inclusief recente blokvarianten.

In Hoofdstuk 3 hebben we de nieuwe oplosser AMES (Algebraische Multilevel
Explicit Solver) geintroduceerd, die kan worden gedefinieerd als een recursieve
multiniveau-factorisering op basis van een gedistribueerde formulering van Schur-
complementen. We hebben de ontwikkelingsstappen van het AMES-algoritme
gepresenteerd. Multilevel grafische partitioneringsalgoritmen worden gebruikt
om de coéfficiéntmatrix opnieuw te ordenen, om de sparsiteit te verbeteren en
om parallellisme in de constructie te introduceren. We hebben een geschikte
gegevensstructuur ontworpen voor het weergeven van de opnieuw ordende matrix
in het computergeheugen. We hebben de algehele prestaties van AMES beoordeeld
door numerieke experimenten te laten zien op realistische matrixproblemen. We
hebben verschillende parameterinstellingen van de nieuwe methode besproken,
zoals het aantal onafhankelijke clusters en het aantal partitioneringsniveaus. We
doen ook suggesties voor een redelijke parameterinstelling. De resultaten tonen
aan dat de AMES-methode de efficiéntie van gefactoriseerde benaderde inverse
methoden zoals AINV of FSAI aanzienlijk kan verbeteren. Onze technieken
kunnen zeer ijle patronen produceren en de factorisatie goedkoop en effectief
maken. Het is opmerkelijk dat ze zeer goed kunnen concurreren met, en soms beter
kunnen presteren, met enkele van de meest moderne methoden die tegenwoordig
worden gebruikt.

In Hoofdstuk 4 presenteerden we een combinatie van een overlappende strategie
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met de AMES-oplosser, gericht op het verbeteren van de robuustheid en de
convergentietarief. We herinnerden de theoretische achtergrond en presenteerden
numerieke experimenten die het positieve effect van overlapping aantoonden. We
constateerden een consistente vermindering van het aantal iteraties en van de tijd
die nodig was om een aantal van de geteste problemen op te lossen.

Een praktische moeilijkheid met AMES is dat, hoewel de multiniveau-
mechanismen effectief kunnen zijn om de factorisatiekosten te verlagen, de
toepassing van de preconditioner duurder kan zijn vanwege de lange oct-boom-
traverses van het multiniveau-mechanisme. Om dit probleem op te lossen,
hebben we in Hoofdstuk 5 een impliciete formulering van AMES voorgesteld die
goedkoper is om toe te passen. Deze variant wordt AMIS genoemd. AMIS is
ook gebaseerd op de multilevel recursieve geneste dissecticherordening. Het grote
verschil met betrekking tot AMES ligt in de oplossingsfase die impliciet wordt
toegepast. In onze numerieke tests presteerde AMIS consistent beter dan AMES in
termen van tijd tot oplossing. Door constructie vereist de AMIS-methode minder
recursie, vandaar de algehele robuustere prestaties.

In Hoofdstuk 6 hebben we de AMIS-methode gecombineerd met strategieén
voor grafiekcompressie en een variante blokvariant voorgesteld die VBAMIS
wordt genoemd. Blokmethoden zijn vaak effectiever dan hun pointwise-
analogen. We hebben ons AMIS-algoritme opnieuw geformuleerd met BLAS-
bewerkingen op niveau 3. We gebruiken de datastructuur die een gecomprimeerd
dun schijfformaat met variabel blok wordt genoemd (VBCSR genoemd) om
blokschaarse matrices weer te geven. Numerieke resultaten lieten goede
robuustheid en hogere efficiéntie zien die werd verkregen door het extra gebruik
van de matrixblokstructuur. Het multiniveau-mechanisme verminderde ook
effectief de geheugenkosten, waardoor de AMIS- en VBAMIS-methoden goed
konden concurreren met bestaande directe methoden.
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