69 research outputs found

    A Charge-Recycling Scheme and Ultra Low Voltage Self-Startup Charge Pump for Highly Energy Efficient Mixed Signal Systems-On-A-Chip

    Get PDF
    The advent of battery operated sensor-based electronic systems has provided a pressing need to design energy-efficient, ultra-low power integrated circuits as a means to improve the battery lifetime. This dissertation describes a scheme to lower the power requirement of a digital circuit through the use of charge-recycling and dynamic supply-voltage scaling techniques. The novel charge-recycling scheme proposed in this research demonstrates the feasibility of operating digital circuits using the charge scavenged from the leakage and dynamic load currents inherent to digital design. The proposed scheme efficiently gathers the “ground-bound” charge into storage capacitor banks. This reclaimed charge is then subsequently recycled to power the source digital circuit. The charge-recycling methodology has been implemented on a 12-bit Gray-code counter operating at frequencies of less than 50 MHz. The circuit has been designed in a 90-nm process and measurement results reveal more than 41% reduction in the average energy consumption of the counter. The total energy savings including the power consumed for the generation of control signals aggregates to an average of 23%. The proposed methodology can be applied to an existing digital path without any design change to the circuit but with only small loss to the performance. Potential applications of this scheme are described, specifically in wide-temperature dynamic power reduction and as a source for energy harvesters. The second part of this dissertation deals with the design and development of a self-starting, ultra-low voltage, switched-capacitor (SC) DC-DC converter that is essential to an energy harvesting system. The proposed charge-pump based SC-converter operates from 125-mV input and thus enables battery-less operation in ultra-low voltage energy harvesters. The charge pump does not require any external components or expensive post-fabrication processing to enable low-voltage operation. This design has been implemented in a 130-nm CMOS process. While the proposed charge pump provides significant efficiency enhancement in energy harvesters, it can also be incorporated within charge recycling systems to facilitate adaptable charge-recycling levels. In total, this dissertation provides key components needed for highly energy-efficient mixed signal systems-on-a-chip

    Bandgap Reference Design at the 14-Nanometer FinFET Node

    Get PDF
    As supply voltages continue to decrease, it becomes harder to ensure that the voltage drop across a diode-connected BJT is sufficient to conduct current without sacrificing die area. One such solution to this potential problem is the diode-connected MOSFET operating in weak inversion. In addition to conducting appreciable current at voltages significantly lower than the power supply, the diode-connected MOSFET reduces the total area for the bandgap implementation. Reference voltage variations across Monte Carlo perturbations are more pronounced as the variation of process parameters are exponentially affected in subthreshold conduction. In order for this proposed solution to be feasible, a design methodology was introduced to mitigate the effects of process variation. A 14 nm bandgap reference was created and simulated across Monte Carlo perturbations for 100 runs at nominal supply voltage and 10% variation of the power supply in either direction. The best case reference voltage was found and used to verify the proposed resistive network solution. The average temperature coefficient was measured to be 66.46 ppm/◦C and the voltage adjustment range was found to be 204.1 mV. The two FinFET subthreshold diodes consume approximately 2.8% of the area of the BJT diode equivalent. Utilizing an appropriate process control technique, subthreshold bandgap references have the potential to overtake traditional BJT-based bandgap architectures in low-power, limited-area applications

    ULTRA ENERGY-EFFICIENT SUB-/NEAR-THRESHOLD COMPUTING: PLATFORM AND METHODOLOGY

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Оптимизация мощности и задержки наноразмерного (4х1)-мультиплексора при использовании схемы удвоителя напряжения на КМОП структурах

    Get PDF
    Полный текст доступен на сайте издания по подписке: http://radio.kpi.ua/article/view/S0021347016110017Работа поддержана университетом ITM (Гвалиор) и компанией Cadence System Design (Бангалор)В статье представлен высокоэффективный (4×1)-мультиплексор с малой утечкой и уменьшенной задержкой, снабженный схемой удвоителя напряжения на МОП-структурах, которая совмещена с расширенной МОП-конфигурацией транзисторов ждущего режима наноразмерной структуры. Оригинальная конструкция схемы удвоителя напряжения реализована в виде дополнительной схемы на выходе предложенной конструкции для ступенчатого увеличения напряжения. Это позволило удвоить выходное пиковое напряжение за счет переходных процессов положительного и отрицательного циклов. Это повышенное напряжение может использоваться в качестве стабилизированного источника питания для определенных целей. Наличие схемы удвоителя напряжения не является достаточным для улучшения общей эффективности предложенной конструкции (4×1)-мультиплексора. Для получения одновременной оптимизации по мощности рассеяния (мощность утечки) и длительности задержки схема удвоителя напряжения используется совместно с расширенной МОП-конфигурацией транзисторов ждущего режима. Для минимизации параметра мощности рассеяния, вызванной утечкой, введена схема удвоителя напряжения на МОП-структурах, совмещенная с расширенной конфигурацией транзисторов ждущего режима. Это позволило уменьшить избыточную мощность рассеяния схемы, обусловленную утечкой. Указанная дополнительная часть схемы позволяет получить необходимый уровень выходного напряжения у предложенного (4×1)-мультиплексора при улучшенных параметрах. Моделирование устройства осуществлялось при использовании технологии 45 нм. В результате мощность рассеяния, обусловленная утечкой, уменьшена до уровня примерно 55%, а характеристика задержки улучшена до требуемого уровня благодаря использованию схемы удвоителя напряжения на МОП-структурах совместно с улучшенной МОП-конфигурацией транзисторов ждущего режима. В статье представлены различные комбинации схемы удвоителя напряжения на МОП-структурах, реализованные на выходе (4×1)-мультиплексора

    A 10-bit SAR ADC with an Ultra-Low Power Supply

    Get PDF
    This paper presents a successive approximation analog-to-digital converter (SAR ADC) design, which operates with a 0.2 V power supply. The design utilizes a dynamic bulk biasing scheme to dynamically adjust the relative NMOS and PMOS strengths, which are very sensitive to temperature, process, and mismatch variations at low supply voltages. The design achieves a very low power consumption due to the 0.2 V supply. Several circuits in the design are optimized for full functionality at 0.2 V. Extracted simulations show a total power consumption of 9 nW with a peak SNDR of 61.3 dB and a Walden Figure of Merit of 1.91 fJ/conversion-step

    Advanced modelling and design considerations for interconnects in ultra- low power digital system

    Get PDF
    PhD ThesisAs Very Large Scale Integration (VLSI) is progressing in very Deep submicron (DSM) regime without decreasing chip area, the importance of global interconnects increases but at the cost of performance and power consumption for advanced System-on- Chip (SoC)s. However, the growing complexity of interconnects behaviour presents a challenge for their adequate modelling, whereby conventional circuit theoretic approaches cannot provide sufficient accuracy. During the last decades, fractional differential calculus has been successfully applied to modelling certain classes of dynamical systems while keeping complexity of the models under acceptable bounds. For example, fractional calculus can help capturing inherent physical effects in electrical networks in a compact form, without following conventional assumptions about linearization of non-linear interconnect components. This thesis tackles the problem of interconnect modelling in its generality to simulate a wide range of interconnection configurations, its capacity to emulate irregular circuit elements and its simplicity in the form of responsible approximation. This includes modelling and analysing interconnections considering their irregular components to add more flexibility and freedom for design. The aim is to achieve the simplest adaptable model with the highest possible accuracy. Thus, the proposed model can be used for fast computer simulation of interconnection behaviour. In addition, this thesis proposes a low power circuit for driving a global interconnect at voltages close to the noise level. As a result, the proposed circuit demonstrates a promising solution to address the energy and performance issues related to scaling effects on interconnects along with soft errors that can be caused by neutron particles. The major contributions of this thesis are twofold. Firstly, in order to address Ultra-Low Power (ULP) design limitations, a novel driver scheme has been configured. This scheme uses a bootstrap circuitry which boosts the driver’s ability to drive a long interconnect with an important feedback feature in it. Hence, this approach achieves two objectives: improving performance and mitigating power consumption. Those achievements are essential in designing ULP circuits along with occupying a smaller footprint and being immune to noise, observed in this design as well. These have been verified by comparing the proposed design to the previous and traditional circuits using a simulation tool. Additionally, the boosting based approach has been shown beneficial in mitigating the effects of single event upset (SEU)s, which are known to affect DSM circuits working under low voltages. Secondly, the CMOS circuit driving a distributed RLC load has been brought in its analysis into the fractional order domain. This model will make the on-chip interconnect structure easy to adjust by including the effect of fractional orders on the interconnect timing, which has not been considered before. A second-order model for the transfer functions of the proposed general structure is derived, keeping the complexity associated with second-order models for this class of circuits at a minimum. The approach here attaches an important trait of robustness to the circuit design procedure; namely, by simply adjusting the fractional order we can avoid modifying the circuit components. This can also be used to optimise the estimation of the system’s delay for a broad range of frequencies, particularly at the beginning of the design flow, when computational speed is of paramount importance.Iraqi Ministry of Higher Education and Scientific Researc

    Tri-band CMOS Circuit Dedicated for Ambient RF Energy Harvesting

    Get PDF
    RÉSUMÉ L'utilisation de systèmes sans fil connait une croissance rapide dans divers domaines tels que les réseaux de téléphonie cellulaire, Wi-Fi, Wi-Max, la radiodiffusion et les communications par satellite. Cette croissance mènera à une quantité considérable d'énergie électromagnétique générée dans l'air ambiant, mais toujours en dessous des limites de sécurité internationales. Ainsi, la recherche au niveau des systèmes de récupération d'énergie RF pour alimenter des appareils électroniques miniaturisés à faible consommation de puissance devient attrayante et prometteuse. Le bloc principal dans un système de récupération d'énergie RF est le redresseur qui détermine l'efficacité et la sensibilité de l'ensemble du système. Étant donné que la puissance RF ambiante est très faible, la quantité d'énergie captée par l'antenne l’est également. En outre, il y a des pertes au niveau du réseau d'adaptation d’impédance qui réduisent encore plus la puissance transmise au bloc redresseur. Par conséquent, la puissance disponible est trop faible pour faire fonctionner des redresseurs classiques. Dans ce mémoire, nous proposons trois redresseurs à trois-étages et à grilles totalement croisées-couplées en utilisant des transistors à faible tension de seuil afin d’opérer à de faibles puissances d'entrée. Les trois redresseurs ont été conçus et intégrés au sein d’une même puce fabriquée en utilisant une technologie CMOS 130nm d’IBM. Ils ont été optimisés à des fréquences de 880MHz, 1960MHz et 2.45GHz respectivement. Les résultats expérimentaux démontrent qu’ils atteignent une efficacité de conversion de puissance maximale de 62%, 62% et 56.2% respectivement. Les mesures montrent également une grande amélioration de l'efficacité à de faibles niveaux de puissance d'entrée. Afin de récupérer l'énergie ambiante de trois principales sources RF au Canada – GSM-850, GSM-1900 et Wi-Fi, un système de redresseur utilisé pour la combinaison de la puissance de ces trois canaux est simulé et analysé. Le système utilise une topologie consistant simplement à connecter les sorties des redresseurs ensemble pour charger le condensateur de charge. En dépit de la grande amélioration de l'efficacité et de la sensibilité dans la plage de 0-5μW, une baisse d'efficacité indésirable se produit aux puissances plus élevées. Ainsi, un nouveau bloc de gestion de l'alimentation est proposé. De plus, une antenne tri-bande est conçue et simulée pour diminuer le volume de l'ensemble du système de récupération d'énergie RF. En particulier, les pertes par réflexion obtenues sont de -25.43dB, -13.92dB et -12.73dB aux fréquences citées plus haut respectivement.---------- ABSTRACT Nowadays, the use of wireless systems has grown rapidly in various domains such as cellular phone networks, Wi-Fi, Wi-Max, radio broadcasting and satellite communications. The growing use of these wireless systems leads to considerable amount of electromagnetic energy generated in ambient air (of course, still below international safety limits). Thus the research in ambient RF energy harvesting system dedicated for powering up low-power-consumption miniaturized electronic devices becomes attractive and promising. The main block in a RF harvesting system is the rectifier which determines the efficiency and sensitivity of the whole system. Since ambient RF power is very low, the amount of power captured by the antenna is extremely low. Besides, there is loss on matching networks, thus the available power given to the rectifier block is too low for traditional rectifiers to operate. Therefore, in this master thesis, three three-stage fully gate cross-coupled rectifiers using low-thresholdvoltage transistors are proposed to overcome the dead zone in low input power range. The three rectifiers optimized at 880MHz, 1960MHz and 2.45GHz frequencies respectively are designed on one chip layout. Their experimental results are retrieved from this custom fabricated integrated circuit using IBM 130nm CMOS technology. They achieve peak efficiencies of 62%, 62% and 56.2% respectively and show great improvements on power conversion efficiency at low input power level. In order to harvest ambient RF energy from the three main RF contributors in Canada – GSM-850, GSM-1900 and Wi-Fi 2.4GHz, a rectifier system used for power combination from these three channels is simulated and analyzed. The system employs a simple topology by connecting the outputs together to charge the load capacitor. In spite of its high improvements on efficiency and sensitivity in 0-5μW range, an undesirable efficiency drop happens at higher input power levels. Thus an idea of power management block is proposed. In addition, a tri-band antenna is designed and simulated so as to decrease the volume of the overall RF energy harvesting system. It achieves return loss of -25.43dB, -13.92dB and - 12.73dB at each desired band respectively

    A 10-bit Charge-Redistribution ADC Consuming 1.9 μW at 1 MS/s

    Get PDF
    This paper presents a 10 bit successive approximation ADC in 65 nm CMOS that benefits from technology scaling. It meets extremely low power requirements by using a charge-redistribution DAC that uses step-wise charging, a dynamic two-stage comparator and a delay-line-based controller. The ADC requires no external reference current and uses only one external supply voltage of 1.0 V to 1.3 V. Its supply current is proportional to the sample rate (only dynamic power consumption). The ADC uses a chip area of approximately 115--225 μm2. At a sample rate of 1 MS/s and a supply voltage of 1.0 V, the 10 bit ADC consumes 1.9 μW and achieves an energy efficiency of 4.4 fJ/conversion-step

    Analog Compressive Sensing for Multi-Channel Neural Recording: Modeling and Circuit Level Implementation

    Get PDF
    RÉSUMÉ Dans cette thèse, nous présentons la conception d’un implant d’enregistrement neuronal multicanaux avec un échantillonnage compressé mis en oeuvre avec un procédé de fabrication CMOS à 65 nm. La réduction de la technologie a˙ecte à la baisse les paramètres des amplificateurs neuronaux couplés en AC, comme la fréquence de coupure basse, en raison de l’e˙et de canal court des transistors MOS. Nous analysons la fréquence de coupure basse et nous constatons que l’origine de ce problème, dans les technologies avancées, est la diminution de l’impédance d’entrée de l’amplificateur opérationnel de transconductance (OTA) en raison de la fuite d’oxyde de grille à l’entrée des OTA. Nous proposons deux solutions pour réduire la fréquence de coupure basse sans augmenter la valeur des condensateurs de rétroaction de l’étage d’entrée. La première solution est appelée rétroaction positive croisée et la deuxième solution utilise des PMOS à oxyde épais dans la paire de l’entrée di˙érentielle de l’OTA. Il est à noter que pour compresser le signal neuronal, nous utilisons le CS dans le domaine analogique. Pour la réalisation, un intégrateur à capacité commutée est requis. Les paramètres non idéaux de l’OTA utilisé dans cet intégrateur, tels que le gain fini, la bande passante, la vitesse de balayage et le changement rapide de la sortie. Toutes ces imperfections induisent des erreurs et réduisent le rapport signal sur bruit (SNR) total. Nous avons simulé ces imperfections sur Matlab et Simulink pour définir les spécifications de l’OTA requis. Aussi, pour concevoir les circuits analogiques correspondant aux interfaces neuronales requises, tels qu’un amplificateur neuronal, une référence de tension compacte et à faible consommation d’énergie est requise. Nous avons proposé une référence de tension de faible consommation d’énergie sans utiliser le transistor bipolaire parasite de la technologie CMOS pour diminuer la surface de silicium requise. Finalement, nous avons complété l’encodeur de CS et un convertisseur analogique-numérique à approximation successive (SAR ADC) requis pour la chaine d’enregistrement des signaux neuronaux dans ce projet.----------ABSTRACT In this thesis we present the design of a multi-channel neural recording implant with analog compressive sensing (CS) in 65 nm process. Scaling down technology demotes the parameters of AC-coupled neural amplifiers, such as increasing the low-cuto˙ frequency due to the short-channel e˙ects of MOS transistors. We analyze the low-cuto˙ frequency and find that the main reason of this problem in advanced technologies is decreasing the input resistance of the operational transconductance amplifier (OTA) due to the gate oxide static current leakage in the input of the OTA. In advanced technologies, the gate oxide is thin and some electrons can penetrate to the channel and cause DC current leakage. We proposed two solutions to reduce the low-cuto˙ frequency without increasing the value of the feedback capacitors of the front-end neural amplifier. The first solution is called cross-coupled positive feedback, and the second solution is utilizing thick-oxide PMOS transistors in the input di˙erential pair of the OTA. Compress the neural signal, we utilized the CS method in analog domain. For its implementation, a switched-capacitor integrator is required. Non-ideal specifications of OTA of CS integrator such as finite gain, bandwidth, slew rate and output swing induce error and reduce the total signal to noise ratio (SNR). We simulated these non-idealities in Matlab and Simulink and extracted the specification of the required OTA. Also, to design analog circuits such as neural amplifier a low power and compact voltage reference is required. We implemented a low-power band-gap reference without utilizing parasitic bipolar transis-tor to decrease the silicon area. At the end, we completed the CS encoder and successive approximation architecture analog-to-digital converter (SAR ADC)

    Ultra-low-power SRAM design in high variability advanced CMOS

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2009.Cataloged from PDF version of thesis.Includes bibliographical references (p. 163-181).Embedded SRAMs are a critical component in modern digital systems, and their role is preferentially increasing. As a result, SRAMs strongly impact the overall power, performance, and area, and, in order to manage these severely constrained trade-offs, they must be specially designed for target applications. Highly energy-constrained systems (e.g. implantable biomedical devices, multimedia handsets, etc.) are an important class of applications driving ultra-low-power SRAMs. This thesis analyzes the energy of an SRAM sub-array. Since supply- and threshold-voltage have a strong effect, targets for these are established in order to optimize energy. Despite the heavy emphasis on leakage-energy, analysis of a high-density 256x256 sub-array in 45nm LP CMOS points to two necessary optimizations: (1) aggressive supply-voltage reduction (in addition to Vt elevation), and (2) performance enhancement. Important SRAM metrics, including read/write/hold-margin and read-current, are also investigated to identify trade-offs of these optimizations. Based on the need to lower supply-voltage, a 0.35V 256kb SRAM is demonstrated in 65nm LP CMOS. It uses an 8T bit-cell with peripheral circuit-assists to improve write-margin and bit-line leakage. Additionally, redundancy, to manage the increasing impact of variability in the periphery, is proposed to improve the area-offset trade-off of sense-amplifiers, demonstrating promise for highly advanced technology nodes. Based on the need to improve performance, which is limited by density constraints, a 64kb SRAM, using an offset-compensating sense-amplifier, is demonstrated in 45nm LP CMOS with high-density 0.25[mu]m2 bit-cells.(cont.) The sense-amplifier is regenerative, but non -strobed, overcoming timing uncertainties limiting performance, and it is single-ended, for compatibility with 8T cells. Compared to a conventional strobed sense-amplifier, it achieves 34% improvement in worst-case access-time and 4x improvement in the standard deviation of the access-time.by Naveen Verma.Ph.D
    corecore