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Abstract

Embedded SRAMs are a critical component in modern digital systems, and their role
is preferentially increasing. As a result, SRAMs strongly impact the overall power,
performance, and area, and, in order to manage these severely constrained trade-offs,
they must be specially designed for target applications. Highly energy-constrained
systems (e.g. implantable biomedical devices, multimedia handsets, etc.) are an
important class of applications driving ultra-low-power SRAMs.

This thesis analyzes the energy of an SRAM sub-array. Since supply- and threshold-
voltage have a strong effect, targets for these are established in order to optimize
energy. Despite the heavy emphasis on leakage-energy, analysis of a high-density
256x256 sub-array in 45nm LP CMOS points to two necessary optimizations: (1) ag-
gressive supply-voltage reduction (in addition to Vt elevation), and (2) performance
enhancement. Important SRAM metrics, including read/write/hold-margin and read-
current, are also investigated to identify trade-offs of these optimizations.

Based on the need to lower supply-voltage, a 0.35V 256kb SRAM is demonstrated
in 65nm LP CMOS. It uses an 8T bit-cell with peripheral circuit-assists to improve
write-margin and bit-line leakage. Additionally, redundancy, to manage the increas-
ing impact of variability in the periphery, is proposed to improve the area-offset
trade-off of sense-amplifiers, demonstrating promise for highly advanced technology
nodes. Based on the need to improve performance, which is limited by density con-
straints, a 64kb SRAM, using an offset-compensating sense-amplifier, is demonstrated
in 45nm LP CMOS with high-density 0.25 pm 2 bit-cells. The sense-amplifier is re-
generative, but non-strobed, overcoming timing uncertainties limiting performance,
and it is single-ended, for compatibility with 8T cells. Compared to a conventional
strobed sense-amplifier, it achieves 34% improvement in worst-case access-time and
4x improvement in the standard deviation of the access-time.

Thesis Supervisor: Anantha P. Chandrakasan
Title: Joseph F. and Nancy P. Keithley Professor of Electrical Engineering
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Chapter 1

Introduction

Moore's law of scaling [1] has been the most important driving force behind the

semiconductor industry. Scaling has directly or indirectly been the root cause of the

tremendous capabilities of today's ICs and their ubiquitous use in nearly all modern

electronic systems. Though Gordon Moore recently amended his law to include a

much broader set of metrics associated with ICs [2], his basic statement pertains to

"components," which literally implies number of transistors. Today, even as many

aspects of CMOS device scaling begin to saturate off the exponential trend, density-

scaling remains a primary objective of the semiconductor industry [3]. In the face

of rapidly emerging limitations that are fundamental to continued device shrinking,

density-scaling enables circuit [4] and architecture level parallelism [5], providing a

means to achieve energy-efficiency and performance improvements in lieu of of the

previous trends.

Embedded SRAMs provide a direct means of bringing the benefits of transistor-

level density-scaling to the circuit and architecture levels and are therefore vital to

this new model of IC scaling. Due to their regular structure and broad applicability to

so many digital systems, SRAMs are carefully designed as one of the lead components

during the development of new technology nodes, and they utilize highly specialized

and aggressive layout rules that address sub-resolution fabrication limitations. This

level of design attention has allowed SRAM bit-cells to follow density trends in-line

with the transistors themselves [6]. This is shown in Figure 1-1 where bit-cell areas



reported by Intel, IBM, TI, Sony, Renesas, and Samsung have been plotted versus

the technology node (represented by deployment year).

101,

-1X ech. ode M102)

1998 2000 2002 2004 2006 2008
Year

Figure 1-1: SRAM bit-cell density versus technology node showing cell density scal-
ing in-line with transistor dimension scaling (every two years corresponds to a new
technology node).

Accordingly, to benefit efficiently from transistor density-scaling, modern digi-

tal architectures increasingly emphasize the use and integration of more and more

SRAMs [7][8]. The resulting consequence for low-power devices is that SRAMs oc-

cupy a dominating portion of the total die area and the total power consumption.

Figure 1-2 shows three state-of-the-art examples intended for increasingly low-power

applications: the Intel Core 2 processor targets mobile computing [9], the ARM1176JZ

processor targets hand-held computing [10], and the custom MSP430 microcontroller

targets remote wireless sensor and implantable biomedical computing [11]. The im-

portant trend observed here is that the SRAM (or memory) power becomes more and

more significant in increasingly low-power devices. The precise cause of this is dis-

cussed throughout the following chapters, but in the meantime, it is clear that SRAMs

are a fundamental platform component in the modern semiconductor industry, and

their power-consumption is a limiting factor.

An important evolution in the semiconductor industry is that, today, the appli-

cation space for integrated circuits is extremely broad, extending far beyond desktop

computing microprocessors to include ambient, remote, mobile, and implantable de-



* Embedded/handheld * Implantable, sensor nets

Intel Core 2 (Penryn) ARM1176JZ Custom MSP430
6MB SRAM L2, 64kB RF L1 16kB SRAM cache 16kB SRAM cache

Power: 20% Power: 39% Power: 69%

Figure 1-2: Three example low-power applications demonstrating dominating area
and power-consumption of SRAMs: 45nm Intel Core 2 [9], 90nm ARM1176JZ (suit-
able for iPhone application processor) [10], and 65nm custom MSP430 [11].

vices, to name a few. With regards to the constituent digital circuits, all of these

applications have vastly varying and highly stringent demands that require careful

design within the associated trade-offs. In order to adhere to intense scaling trends,

SRAM design is also highly constrained, especially in the face of emerging limita-

tions ranging from device-level variability to system-level power consumption. Since

their impact on the overall system is so significant, and since their design is so con-

strained, modern embedded SRAMs must be developed with the application in mind

so that their own trade-offs can be carefully managed. Generally speaking, SRAMs

are strongly subject to the power, performance, and density trade-offs shown in Fig-

ure 1-3. The precise origins and effects of these trade-offs are discussed throughout

the following chapters, but the overall implication is that improvement in one of the

dimensions strongly stresses the others. Of course, all three dimensions are impor-

tant to some degree in all applications; as a result, embedded SRAM design involves

making judicious compromises in order to support the most important system-specific

requirements. The focus of this work is to investigate techniques that improve the ba-

sic trade-off in order to more efficiently allow optimization of the parameters relevant

for the systems considered (these are discussed in more detail below). It is important

to note that although the illustration in Figure 1-3 indicates a simple inverse relation-

* Mobile computing
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ship between power, performance, and density, in reality, the relationships are often

much more complicated, and, importantly, aggressive emphasis on one dimension,

such as power reduction, increases the opposition imposed by the other dimensions

with much higher intensity.

Performance
App.: * Desktop, server computing

* Advanced graphics, etc.

Trends: * Low-Vt devices
* Large bit-cells, short bit-lines

Density Low Power
App.: * Multimedia handsets App.: * Biomedical

* Mobile, ubiquitous computing * Wireless sensor networks

Trends: * High-Vt devices Trends: * High-Vt devices, low VMIN
* Small bit-cells, long bit-lines * Medium bit-cells, short bit-lines

Figure 1-3: SRAM trade-offs.

1.1 Ultra-Low-Power Embedded SRAM Applica-

tions

Since SRAMs must be specially designed with their application in mind, it is worth

considering the application constraints. This work specifically considers a number

of applications where power consumption, or, more generally, energy consumption,
is paramount. Of course, the SRAM challenges associated with achieving multi-

Giga-Hertz operation in high-performance applications, including desktop and server

computing, requires very targeted and innovative solutions as well [12][13][14]. How-

ever, a few of the highly energy-constrained applications that are the focus of this

work are considered below:



Table 1.1: Key existing and emerging applications for biomedical devices

Application Performance Specification
Power Processor Energy

Source
Pacemaker & <10 pW 1kHz DSP 10-year life-
Cardioverter- time battery
defibrillator [15][16]
Hearing aid & 100-2000 /W 32kHz-1MHz 1-week lifetime
Cochlear implant DSP battery
[17][18][19]
Neural recording 1-10 mW n/a Inductive
[20][21] power
Body-area monitor- 140 W <10MHz DSP Battery
ing [22]

(1) Biomedical. Existing and emerging biomedical applications are shown in Ta-

ble 1.1, along with some critical system requirements. In all cases, energy

is highly constrained. In the case of implantable devices, such as pacemak-

ers/defibrillators, cochlear implants, and neural sensors/stimulators, battery

lifetime constraints determine the time between surgical replacement, thereby

limiting total system power consumption to 1001pW or less. Wearable systems,

such as hearing aids and body-area sensors, have similar, though somewhat less

stringent, energy-constraints set by battery weight limitations.

Although the energy constraints in biomedical systems are severe, their perfor-

mance constraints are considerably relaxed. Table 1.1 shows that, for the most

part, processors need to operate at less than 1MHz. Additionally, the volume

of most of the highlighted applications is fairly modest, though it does range

to much higher volumes as well, especially in the case of body-area sensors.

Correspondingly, the required SRAMs must heavily emphasize low-power and,

secondarily, density, and these can be optimized at the cost of performance.

(2) Mobile multimedia. Today's portable handsets are capable of extremely so-

phisticated multimedia. In addition to rich audio and communication capabili-

ties, they will deliver high-definition video to users [23]. For these applications,



however, the time required between battery charges must be extended to the

order of several days, and the battery itself can weigh no more than a few tens of

grams. Accordingly, power consumption is a major concern, though it is not as

constrained as in biomedical systems. Also unlike biomedical applications, per-

formance is critical in order to support rich multimedia operations, that require

processors with operating frequencies up to hundreds of Mega-Hertz. Further,

the large volume of consumer handsets implies that cost and density are also

primary concerns. As a result, very high-density SRAMs that minimize power

consumption under moderate-to-high performance constraints are needed.

(3) Wireless sensor networks. Micro/nano-scale devices providing sensing, pro-

cessing, and communications capabilities can form networks, broadly referred

to as wireless sensor networks [24] [25]. The applications for such devices include

industrial and automotive sensing [26], environment monitoring [27], structural

monitoring [28], and military surveillance/detection. Operation of such net-

works must be largely maintenance-free due to their use in remote or inaccessi-

ble physical locations. As a result, battery lifetime constraints are critical, and

the battery must be physically small to facilitate in-situ sensing in a broad range

of uses. Alternatively, to extend the lifetime of the sensor nodes, potentially in-

definitely, energy harvesting from the ambient environment can be leveraged as

long as occasional degradation in performance quality, depending on the ambi-

ent factors, can be tolerated. Nonetheless, the power consumption of the system

is limited by the harvesting capacity. Table 1.2 shows the power harvestable by

state-of-the-art energy harvesting devices, indicating a total power budget less

than 100pW for most of the sensor networks considered.

With regards to SRAM requirements, power consumption (both static and dy-

namic) is the primary concern, and, since most monitoring applications require

processing on low-speed signals, performance constraints are relaxed to the hun-

dreds of kilo-Hertz range. Since the nodes are meant to form high-density net-

works that are sacrificial after use, cost and density are also important concerns.



Table 1.2: Energy collecting and harvesting options [29] [30] [31] [32]

Energy Source Performance

Thermoelectric 60 pW/cm3

Light 100 pW/cm2 (office),
100 mW/cm2 (direct light)

Vibration 4 pW/cm3 (human motion)

Heel strike 10-700 mW (walking)

Near-field inductive energy transfer 20 mW at 5 cm [33]

Far-field inductive energy transfer 2 pW at 10 m [34]

As with most digital systems, embedded SRAMs play a highly prominent role

in these energy-constrained applications. Also as before, they pose the most critical

limitation to the total power, performance, and area. Figure 1-4 shows an example of

a custom MSP430 microcontroller that specifically targets highly energy-constrained

biomedical and sensor applications [11]. Operating at its minimum energy point,

its on-chip SRAM cache consumes 69% of the total energy per operation, limits the

operating frequency (which is 1.7MHz for the SRAM at 0.5V), and, as shown, occupies

a dominating portion of the total area. Consequently, to enable the applications

described above, embedded SRAM is a critical area of focus.

a rra

Figure 1-4: Die photo of ultra-low-power low-voltage MSP430 microcontroller domi-

nated by on-chip SRAM cache [11].



Energy Versus Power

For the applications discussed above, it is important to make the distinction between

energy consumption and power consumption. Ultimately, battery powered systems

are primarily limited by the energy the battery can provide. Energy harvesting sys-

tems typically use a battery (or other form of energy storage [35]) to buffer the power

extracted from an ambient source [36], and, once again, average power consumption,

corresponding to total energy normalized over a time period, is the critical concern.

Performing any circuit operation requires energy, and, so, it is a fundamental metric

for battery operated and energy-harvesting systems.

This implies that in an "off" state, where the circuit is performing no operation,

it can consume extremely low energy. Such an "off" state, however, only exists in

very specific cases for SRAMs. Generally, even in the absence of active accesses,

SRAMs are expected to retain their stored data. Figure 1-5 shows this distinction,

and, in the case of the persistent storage states, data retention is an operation that

requires energy. Importantly, however, this operation is inherently tied to time by

the duration for which data retention is required. Of course, ultimately, the SRAM

will transition to the "off" state, either at the end of the device's lifetime or upon

completion of a set sequence of operations. Accordingly, the total energy can still

be considered. However, unlike with generic digital logic, the energy consumed has a

component related to time, but unrelated to the time associated with its own circuit

delay. The corresponding energy optimization is considered in detail in Chapter 2.

1.2 SRAM Structure and Limitations

Figure 1-6 shows the architecture used by modern SRAMs. A combination of row

decoders and column multiplexers provide access to the bit-cells. While data-retention

circuits for logic, like flip-flops and latches, typically employ between 10 to 20 devices,

the 6T bit-cell shown relies on ratioed operation to achieve the required functionality

with very high density. 6T CMOS bit-cells in the 65nm and 45nm nodes occupy

0.4-0.5 um 2 [37][38] and 0.24-0.33 /m 2 [39], respectively. For reasons explained below,
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Figure 1-5: Operating states of an SRAM

in the absence of active accesses.

Persistent
storage

where data-retention consumes energy even

M1 - 2 are called the driver devices, M3 - 4 are called the load devices, and M5 - 6

are called the access devices.

BLC I

Device Function
M1-2 Driver
M3-4 Load
M5-6 Access

Amp

Figure 1-6: Typical structure of modern SRAM; 6T bit-cell is composed of NMOS

driver and access devices and PMOS load devices.

Data is held in the 6T cell by the cross-coupled inverter structure (formed by M1-

4). Figure 1-7a shows how the 6T cell's ability to hold data depends on its butterfly

curves. Here, the transfer-functions between the data storage nodes, NT/NC, are

superimposed, and the bi-stable nature required is indicated by intersection points at

M1 M3 M6

M5 M4 M2



valid logic "0" and "1" levels. Strictly speaking, read-access is a non-ratioed operation

where the bit-lines, BLT/BLC, are precharged, and, after word-line (WL) assertion,

the cell read current, IRD, which is generated by the driver and access devices, causes

a droop on one bit-line which can be sensed with respect to the other to quickly

decipher the accessed data. However, the transients on NT and NC can result in

loss of the bi-stable characteristic, and their worst-case impact can be analyzed by

assuming that BLT/BLC are clamped at VDD. The corresponding butterfly curves,
shown in Figure 1-7b, now have dangerously degraded lobes, quantified by the static

noise margin (SNM), which measures the diagonal length of the largest embedded

square [40]. An SNM less than zero implies the loss of one of the required intersection

points, indicating the cell's inability to correctly retain the corresponding data state.

Hence, proper operation requires maintaining wide lobes, which depends on the driver

devices, M1 - 2, being much stronger than the access devices, M5 - 6.

0.9 SN
0.9

0 -
Z 0 . 4

o. sNT NC oCN

0.6 f 0.2... . 0.5 -
0 0

0 0.2 0.4 0.6 0.8 1 % 02 0.4 0 6 0.8 1
NC, NT (V) NC, NT (V)

(a) (b)

Figure 1-7: 6T bit-cell butterfly curves showing bi-stable behavior during (a) hold,
where access devices are "off", and during (b) read, where access devices are "on"
and bit-lines are clamped to VDD.

Data is written to the 6T cell by pulling the appropriate bit-line low. The cell is

made mono-stable at only the desired data value, and, after WL gets de-asserted, the

local feedback regenerates to the correct state. Write operation is explicitly ratioed,
since the NMOS access devices are required to overpower the PMOS load devices,
M3 - 4, in order to overwrite new data.



SRAM Variation

The ratioed operation, both during read and write, leaves the 6T bit-cell highly

susceptible to both variation and manufacturing defects. In particular, since a typical

SRAM is composed of bit-cell arrays of hundreds of kilo-bits to several Mega-bits,

extreme worst-case case behavior at the 4 or 5a level must be considered.

Two forms of variation affect SRAMs: inter-die (which will be called global vari-

ation) and intra-die (which will be called local variation) [41]. Global variation is

the difference between average parameter values of the die; for instance, these can

include the average NMOS/PMOS threshold voltage, dielectric thickness, or poly

width. Global variation comes about due to systematic processing changes affect-

ing individual dies. On the other hand, local variation is the difference between

nominally matched devices on the same die. These can include the number of

NMOS/PMOS channel-adjust doping ions, poly line-edge roughness, local-layout-

dependant lithography effects, as well as transient effects such as negative bias tem-

perature instability (NBTI) [42]. In advanced technologies, local variation sources

have an increasingly dominating impact [41]; while global variation significantly de-

grades the operating margins of SRAMs, local variation represents the most urgent

concern regarding the increasing rate of failures observed [43]. A complete treatment

of variation in CMOS devices, and its impact on circuits, such as SRAMs, can be

found in [41].

1.3 Thesis Contributions

Previous work in SRAMs has focused on their reliability with technology and density

scaling. The use and implications of technology optimizations that are generally

pursued for a broad range of high-volume and low-energy applications (e.g. mobile

processors) have also begun to be investigated. There remains, however, the need to

develop SRAM techniques to support severely energy constrained applications such

as biomedical devices, wireless sensor nodes, and much richer mobile multimedia.

Specifically, these require strategies to improve the trade-offs highlighted in Figure



1-3.

Due to its heightening importance in digital systems, and its increasing sensitivity

to processing and manufacturing factors, SRAM design requires some level of coordi-

nation with technology development in order to be effective. As a result, low-energy

SRAM solutions must be compatible with industry methodologies, which are well

suited for new technology development at the manufacturing level. For instance, op-

timal bit-cell layout design depends on several manufacturing details. Accordingly,

this work focuses on circuit techniques that are compatible with and supportive of

those approaches, particularly with regards to the most advanced technologies. It is

the hope that this thesis contributes to identifying and solving some of the most crit-

ical issues facing highly energy constrained SRAMs, though, of course, many issues

will remain, and every effort is made to identify those as well.

This thesis contributes in the following areas:

(1) SRAM Energy Analysis. Supply- and threshold-voltage strongly impact

the total energy of an SRAM sub-array. Chapter 2 presents an analysis for

the optimal supply-voltage (VDD) and threshold-voltage (Vt) targets in order to

minimize total energy considering the need to perform a given average number

of accesses within a specified time. The analysis here is different from that of

generic logic [44] in two ways: (1) the presumed need to retain the stored data

for the entire time specified, and (2) the increased dependence of the energy on

variation, which in SRAMs occurs at extreme-levels.

In addition to optimal targets from the perspective of minimizing energy, Chap-

ter 2 considers how the metrics that are critical to SRAM operation depend on

the supply- and threshold-voltage targets. As a result, the major oppositions

to SRAM operation at the optimal energy point are established.

(2) Ultra-Low-Voltage SRAM. The analysis of Chapter 2 points to ultra-low-

voltage operation as a means to minimize sub-array energy. Chapter 3 provides

an analysis of failure sources within the SRAM that restrict low-voltage opera-

tion. Having analyzed the failure sources, techniques are proposed to overcome



them, and the techniques are analyzed for their efficiency. The techniques ad-

dress two key limitations: (1) bit-cell operation and (2) sense-amplifier opera-

tion. Redundancy, which is commonly relied on to overcome bit-cell variation

at the 5c level, is analyzed for critical periphery components (namely, sense-

amplifiers), where low-voltage operation exacerbates variation to an intolerable

point even at the 3a level. The proposed techniques are demonstrated in a

prototype 256kb SRAM test-chip in 65nm LP CMOS that operates down to

0.35V.

(3) Low-Power High-Density SRAM Performance Enhancement. The anal-

ysis of Chapter 2 points to sub-array performance as a major limitation to en-

ergy reduction, especially in the presence of variation. Chapter 4 analyzes the

severe trade-off between sub-array performance and density. The limitations

imposed by both the bit-cells and the sense-amplifiers are investigated to al-

leviate the constraining trade-offs. Specifically, a sense-amplifier is proposed

that provides regenerative small-signal sensing. Importantly, however, it does

not require an explicit strobe signal, which, in advanced technologies, imposes

severe timing uncertainties that limit the worst-case performace. Additionally,

due to the promise of single-ended bit-cells (e.g. 8T) for ultra-low-voltage, low-

energy applications, the sense-amplifier proposed provides variation resilient

single-ended sensing. Although this enables the low-energy benefits of voltage

scalability and high read-current, it introduces increased sensitivity to noise

sources. Accordingly, the noise performance of the proposed sense-amplifier is

analyzed. A prototype test-chip in 45nm LP CMOS compares its performance

to that of a conventional strobed sense-amplifier, demonstrating improvements

in the worst-case access-time and the standard-deviation of the access-time by

34% and 4x, respectively.



34



Chapter 2

SRAM Energy and Operating

Metrics

With respect to the growing number of applications considered in Chapter 1 and the

increasing dominance of SRAMs, careful consideration is required of the trade-offs

that minimize SRAM energy. The aggressive application of these energy-reducing

trade-offs, however, directly impacts the functionality and operating metrics of the

SRAM (and, in turn, the system) leading to a complex effect on the achievable energy

savings in a practical scenario. Of course, device variation, at the extreme levels

observed in typical SRAM arrays, plays a central role in precisely how the energy-

reducing trade-offs affect the operating metrics. Since their energy is so critical in

the overall system, SRAMs are subject to a sophisticated suite of power-management

assists spanning the device, circuit, and architecture levels. The energy, then, must

be analyzed under this power-management strategy.

Both active- and leakage-energy components contribute critically to SRAM energy,

and hence the analysis in this chapter treats them as the underlying optimization tar-

gets. For general digital circuits, it has already been shown that supply-voltage (VDD)

and threshold-voltage (Vt) interact to set the active and leakage energy [44]. Com-

pared with general digital-circuits, however, SRAMs face the operational constraint

of long-term data-retention even during temporary idle periods (that may last ar-

bitrarily long) where it is known that active accesses will not be performed. This



gives rise to the concept of a data-retention voltage (VDRV) [45], where only idle

data-storage, and no data-read or data-write, functionality must be supported. In

addition to their effect on energy, which is the primary motivation for manipulating

VDD, Vi, and VDRV, this chapter analyzes the fundamental effect these voltages have

on SRAM functionality and performance in the presence of variation. Ultimately,

this chapter serves to determine what the optimal operating point (i.e. VDD and Vt)

target is to minimize SRAM energy and also to identify the challenges of operating

at that point.

2.1 SRAM Energy

The array nature of SRAMs has an important impact on the way their energy scales

with respect to VDD and Vt, especially during active-access modes. Specifically, com-

pared to general digital circuits, SRAM leakage-energy has increased importance due

to three factors: (1) high ratio of leakage-paths to actively-switching-nodes, (2) total

leakage set by an aggregation of intentionally minimum sized devices, and (3) critical-

path set by a single MOSFET pull-down stack with extreme variation. These factors

are considered below.

In order to maximize array area-efficiency, the trend is to use large sub-arrays

with up to 256 bit-cells (or more) per row and column [46], as far as performance

optimizations allow [47][48]. For such large sub-arrays, the leakage from the bit-

cells, which scales directly with the array size, dominates over that of the periphery.

Within the sub-array, the active switch capacitance from the word-lines scales with

the number of columns but not the number of rows, since only one row's word-line

switches per access. As a result, the word-line switch capacitance does not increase

in proportion to the total array size. Alternatively, the switch capacitance of the

bit-lines scales with the number of rows, and, during read-accesses, the bit-lines of all

columns switch; however, typically, their swing is significantly less than VDD. Further,
during write-accesses, the number of bit-lines that switch is reduced by the column-

multiplexer ratio (typically four or eight). Consequently, for large sub-arrays, the



ratio of leakage-energy to active-energy is higher than that of generic logic.

The use of intentionally small devices, to maximize the density of the bit-cell

arrays, introduces increased variation, elevating the actual aggregate leakage-current

significantly beyond the nominal aggregate leakage-current. Since leakage-current

is related exponentially with threshold-voltage, the effect of Vt variation cannot be

expected to average out over the linear summation of all leakage-paths in the array.

Figure 2-1 shows the simulated total aggregate leakage-current (at 1.1V), normalized

to the nominal aggregate leakage-current, for a 1Mb array composed 0.25Pum 2 bit-

cells in an LP 45nm technology. As shown, increasing uVt (even over a fairly modest

range) leads to a significant increase in the total leakage-current [49]. To simplify the

description, this will be referred to as the leakage-current gain factor due to variation.
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Figure 2-1: Simulated total leakage-current for 1Mb array in 45nm LP CMOS (at
1.1V); result shown includes variation and is normalized to total nominal leakage-
current.

The critical delay path in an SRAM is limited by the time required for the accessed

bit-cells to discharge their bit-lines beyond the required data-sensing margin. In the

presence of variation, this implies that the performance of a large array may be set

by a single bit-cell experiencing drive-current degradation at an extreme level (e.g.

5a). The performance degrading effect of variation in a typical circuit composed of

logic paths is alleviated since the total delays are set by the sum of several constituent



stages [50]. Consequently, extreme variation on any one device has greatly reduced

impact. Unfortunately, in SRAMs the tendency towards large arrays implies the

possibility of extreme variation, and the structure of the read-path precludes the

benefit of delay averaging over many stages. As a result, the overall performance of

an SRAM suffers far more drastically in the presence of variation.

Considering the active and leakage energy profiles for a general digital circuit [51],

the active-energy scales quadratically in a straight-forward manner as CVAD with

respect to supply-voltage. Of course, as a circuit's VDD is reduced, however, the gate-

drive of the constituent MOSFETs is also reduced, degrading the switching speed.

Consequently, the integration time of the leakage-currents, which is set by the time

required to complete the operation, increases, raising the leakage-energy. The oppos-

ing active and leakage energy profiles are shown in Figure 2-2a for a representative

case (i.e. 32b carry-look-ahead adder in 90nm CMOS).

However, based on the factors discussed above leakage-energy in SRAMs has in-

creased prominence. Specifically, as sketched pictorially in Figure 2-2b, the high ratio

of leakage-paths to actively-switching-nodes and the leakage-current gain factor due

to variation both contribute to raising the leakage-energy curve up-ward relative to

the active-energy curve. Additionally, the severe performance degradation due to the

critical-path's dependence on a single bit-cell experiencing extreme variation, causes

the leakage-energy curve to shift right-ward, as sketched in Figure 2-2c. This can be

understood by observing that the point at which the leakage-energy begins increas-

ing exponentially occurs at a higher supply-voltage than before; effectively, variation

raises the limiting bit-cell's threshold voltage, and, as a result, supply-voltage reduc-

tion quickly leads to sub-threshold operation, which imposes an exponential increase

in circuit delay.

The result in Figure 2-2c seems to indicate that the optimal VDD for SRAMs

occurs at a relatively high supply-voltage. In fact, however, the energy optimization

picture must be modified by considering the practical power-management approach

discussed in Section 2.1.1. Although the importance of leakage-energy remains high,

it must be considered both during active-access and idle-data-storage modes. As
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discussed below, raising VDD in order to reduce the SRAM access delay has reduced

benefit, as leakage-energy must still be incurred in order to retain data even after the

active-mode.

The following subsections start by describing the operating modes of an SRAM.

Then, the energy components during these modes are identified and analyzed in

detail, especially with respect to the supply- and threshold-voltages. Finally,VDD and

Vt targets are determined to optimize energy.

2.1.1 SRAM Idle-Mode Leakage Reduction

If the SRAM power-supply could be gated after the completion of a required number

of accesses, the picture in Figure 2-2, consisting of one leakage energy component and

one active energy component, could be used to determine the optimal total energy.

However, generally, an SRAM is required to retain its data for an arbitrary length of

time unrelated to its own access-delay. Consequently, the data-retention period can-

not be parameterized by the access-delay, and a new parameter must be introduced to

represent the total length of time data is retained. Specifically, idle data-retention con-

sumes power, and to analyze its energy, the period of the retention-cycle, TCYC,RTN,

must be considered. Accordingly, TCYC,RTN corresponds to the average duration of

time within which a required number of accesses are to be completed. The required

number of accsses are designed as N. The data stored in the SRAM at the end

of TCYC,RTN must correspond to these accesses, serving as the initial state for the

subsequent set of accesses.

The actual length of time required to complete the N accesses can be set freely

to optimize energy as long as it is less than TCYC,RTN. This time to complete the

accesses is designated as the access-period, TACC. For the remainder of the retention-

cycle (i.e. TCYC,RTN - TACC) only idle-data-storage is required. As discussed in detail

in Section 2.2, the operating metrics associated with idle-data-retention are far less

stringent than those associated with active data reads and writes. As a result, during

idle-data-retention, the power can be much more aggressively reduced. The timing

parameters relevant to SRAM energy are summarized in Figure 2-3.
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Figure 2-3: Summary of parameters relevant to SRAM energy.

A straight-forward and highly effective implementation of the low-energy data-

retention mode involves dynamically reducing the voltage across the bit-cell array.

This reduces the leakage-current by alleviating drain induced barrier lowering (DIBL),

an increasingly prominent effect in advanced technologies. DIBL pertains to an ef-

fective decrease in the threshold-voltage brought on by increasing the MOSFET VGS;

large VGs induces encroachment of the source/drain depletion regions into the channel

region, reducing the gate to bulk biasing required for channel inversion.

Figure 2-4 shows the normalized leakage-current with respect to supply-voltage

scaling, which also sets the VDS of the devices. Predicite models have been used for

this simulation, and as shown, well over an order of magnitude reduction in leakage-

current can easily be achieved. The leakage-power savings further benefit from the

supply-voltage reduction, leading to over 100x savings with 45nm CMOS when VDD

is scaled from 1.2V to 0.3V.

Practically, this approach has been successful by both reducing VDD [52][53] [54] [45]

and raising Vss [55] [56] [57] [58] [59]. It should be mentioned that an additional ap-

proach involves reverse body-biasing to further reduce the leakage-current [60] [61].

Nonetheless, the biasing employed in all of these cases can only be applied to the

point where the data-storage margin is violated. Hence, the data-retention-voltage

(VDRV) is introduced in [45] to characterize the minimum VDD at which data can re-

liably be retained by the bit-cells. As discussed further in Section 2.2, however, VDRV

is highly subject to variation. Consequently, closed-loop replica techniques have been

employed to estimate the VDRV limit dynamically, so that maximum idle-mode energy

savings can be achieved [62]. In order to enforce a desired VDD or Vss voltage for

the sub-array (i.e. VDDSUB or VSSSUB) during the idle-mode, the supporting circuits

shown in Figure 2-5 have been used [63][64].
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Figure 2-4: Normalized leakage-current reduction with respect to supply voltage for
minimum-sized 90nm, 65nm, and 45nm devices due to DIBL (predictive models used).
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Figure 2-5: Circuitry to enforce idle-mode biasing using (a) programmable sleep
switches [63] and (b) an operational-amplifier [64].

Regardless of the choice of the idle-mode biasing or the circuitry used to enforce

it, it is critical that transitions between idle- and active-modes be made without

compromising the biasing required in order to maintain the stringent active-mode

operating margins. Consequently, careful signal timing is required to deriving the

idle-mode SLEEP signal which actuates the idle-mode biasing. Figure 2-6 shows an

example of this signaling. In this case, full-cycle and half-cycle latencies corresponding

to idle-to-active and active-to-idle transitions are inserted to ensure the corresponding

operating margins are not violated [57].
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Figure 2-6: Waveforms corresponding to idle-to-active and active-to-idle mode tran-

sitions.

2.1.2 SRAM Sub-Array Optimal Energy

In this section, the average energy of an SRAM sub-array is considered, and more

specifically, how it can be minimized by judicious selection of supply-voltage, VDD, and

device threshold-voltage, Vt, is analyzed. A typical SRAM is composed of many tiled

sub-arrays, themselves consisting of a bit-cell array and access-control drivers/sensors.

Additionally, global decoding and interfacing circuitry is also required. However, due

to their very specific energy, performance, and operating characteristics (described

above and further in Section 2.2), sub-arrays often employ a separate VDD [65] and

specialized devices [66], where the Vt is engineered for optimal operation. Because

the sub-array critically determines the energy and performance of the entire SRAM,

and because it offers independent control of VDD and Vt, this section focuses on how

the sub-array's energy can be optimized independently of the global decoding and

interfacing circuitry.

Energy Components

Based on the operating model considered in Section 2.1.1, total sub-array energy,

ETOT, has four components, as indicated in Equation 2.1:

ETOT = EACC + ELKG + EIDL + EOH (2.1)

The active-access-energy (EAcc) and the leakage-access-energy (ELKG) pertain to the

active mode. EACC corresponds the switching energy required to perform reads and



writes, and ELKG corresponds to the leakage-energy imposed by applying a supply-

voltage across the array that must be large enough to ensure reliable reads and writes.

The idle-data-retention energy (EIDL) corresponds to data storage during the idle-

mode, and it will also be referred to as the idle-mode energy. Finally, the overhead-

energy (EOH) corresponds to the overhead incurred due to altering the sub-array's

biasing in accordance with idle-mode power reduction. These components are sum-

marized in Figure 2-7, and they are described in more detail below.

TCYC RTN

TACC

MN MActive (N accesses) Active

* EACT: switching energy for * EIDL: Leakage energy to meet
reads/writes hold margin (i.e. at VDRV)

* ELKG: Leakage energy to * EOH: Overhead energy to
meet read/write margin switch between active/

idle-mode biasing

Figure 2-7: Summary of SRAM energy components.

(1) Active-Access-Energy (EAcc). This represents the energy required to switch

capacitive nodes in order to generate the control and data signals required to

read and write bit-cells. Signal nodes that transition over the full-range from

VDD to ground require an active access-energy given by CVD, where C is

the node capacitance. Full-swing signals typically include the one-hot enabled

word-line, WL, for row selection, and the one-hot enabled column-select, cSEL,
for multiplexed column selection in a column-interleaved array [67]. Of course,
the internal nodes of the sense-amplifiers also switch from VDD to ground. In

total, the number of sense-amplifiers is equal to the number of columns in the

sub-array divided by the column-multiplexing ratio, m.

The most significant source of active-access-energy consumption, however, is
the bit-lines, BL, which are used to convey the stored read-data to the sense-

amplifiers and to drive new write-data into the bit-cells. However, in some
implementations, the BLs may not discharge completely during data-sensing.



Strictly speaking, to resolve the read-data, the BLs need only discharge to the

required sense-amplifier input margin, VSNS, which can be less than 100mV.

Nonetheless, in practice, the BLs are often discharged beyond the sensing-

margin to reduce the probability of data-disruption caused by sustained pulling

of the bit-cell storages nodes towards the BL voltage near VDD. During read-

accesses, for instance, the design in [68] actively amplifies the signal on all BLs

to full logic levels in order to avoid data-disruption. Accordingly, the total

active-access-energy for reads of an i x j (i.e. i-column, j-row) sub-array is

given by Equation 2.2, where the strong dependence on supply-voltage is clear:

EACC,RD = CWLVDD + CcSELV D + -CSAVDD + iCBLVDDVSNS (2.2)

Similarly, the total active-access-energy for writes is approximately given by

Equation 2.3:

i 2 m-1
EACC,WR CWLVD + CcSELVDD + BLDDCBLVDDVSNs (2.3)

m m

(2) Leakage-Access-Energy (ELKc). This represents the static energy con-

sumed, even in the absence of active-accesses, just to generate a voltage across

the sub-array that ensures the operating margins associated with active-accesses

are reliably met. It comes about as a result of sub-threshold (and other) leakage-

currents through the bit-cell devices that multiply with the supply-voltage,

thereby consuming leakage-power. Since this source leads to static power dis-

sipation, it must be integrated over a time interval to derive its energy. Mini-

mally, the length of time that must be considered is TACC, the period required

to complete some set number of accesses, N. Beyond this, the bit-cell biasing

conditions no longer need to support the active-access operating margins, and

biasing more conducive to minimum power-consumption can be enabled. Ac-

cordingly, the leakage-access-energy for an i x j sub-array is given by Equation



2.4, where it is assumed that the entire sub-array is biased with a single VDD

that must meet the active-access operating margins:

ELKG = ijTAC ILKG,BCVDDdt= jILKG,BCVDDTAcc (2.4)

In this expression, the dependence on VDD is explicit through multiplication

with the bit-cell leakage-current, which leads to the leakage-power. However,

the dependence on VDD is also implicit in two other ways: (1) the effect of

VDD on ILKG,BC through DIBL, and (2) the effect of VDD on TACc through

the VGS available in order to generate bit-cell drive-current needed to discharge

the BLs during data-sensing. Similarly, the dependence on threshold-voltage,

Vt, is also implicit in two ways: (1) the effect of Vt on ILKO,BC through the

sub-threshold current equation [69], and (2) the effect of Vt on TACC through

the gate-overdrive (i.e. VGs - Vt) necessary to generate bit-cell drive-current.

Additionally, Vt also affects the ability of the bit-cells to meet the operating

margins given a particular VDD. Consequently, as described in Section 2.2, Vt

has a direct effect on the minimum VDD allowed.

(3) Idle-Data-Retention Energy (EIDL). This represents the static energy re-

quired to retain the data, without any active-accesses, until the end of some

required period. Considering the power-management scenario described in Sec-

tion 2.1.1, system operations will require an average number of accesses, N,

every TCYC,RTN seconds. The operating point of the sub-array may be chosen

to optimize energy as long as the N accesses are completed in a period less than

TCYC,RTN. For the remainder of the time until the end of TCYC,RTN, however,

the data must be retained so that it is available for the next set of accesses.

This cycle is shown in Figure 2-7. Accordingly, the idle-data-retention energy

is given by Equation 2.5:



EIDL = ij TN-TAc IDRV,BCVDRvdt ijIDRv,BCVDRV(TCYC,RTN -TACC)

(2.5)

Here, VDRV refers to the data-retention voltage [45], and IDRV,BC refers to the

leakage-current of the bit-cell at VDRV. In this expression, the dependence on

Vt is implicit since it affects IDRV,BC through the sub-threshold current equa-

tion. Further, as described in Section 2.2, Vt also affects the minimum VDRV

achievable. Although it is possible to adjust Vt dynamically [60][61] in order

to optimize the idle-mode energy, compared to VDD such adjustments are more

difficult to make over an aggressive range. Finally, as mentioned previously,

both VDD and Vt affect TACC.

(4) Overhead Energy (EOH). This represents the energy consumed in order to

transition to the low-energy idle-mode state. During the idle-mode, the array

must be rebiased by changing VDD, Vss, and/or the body-bias. This involves

appropriately charging the supply, ground, or back-gate capacitance for the

entire array. For the case of changing the sub-array supply-voltage from VDD to

VDRV, the overhead energy, which is consumed once every TCYC,RTN, is given

by Equation 2.6, where CVDD is the total power-supply capacitance:

EOH = VDDVDD(VDD - VDRV) (2.6)

In this expression, the dependence on VDD is explicit, and the dependence on

Vt, which limits the minimum achievable VDRV as mentioned above, is implicit.

It should be noted that some finite time is required in order to ensure complete

transition between the idle-mode and active-mode biasing, and it is critical to

consider this in order to avoid violating the different operating margins associ-

ated with each mode. Nonetheless, the leakage-energy that is consumed during

the transition period is relatively insignificant, since CVDD is typically very large

(i.e. >100pF) and the transition time required is on the order of only a few



clock-cycles [57]. Finally, since EOH is an unavoidable overhead associated with

transitioning to the low-energy idle-mode, it is useful to analyze whether the en-

ergy savings yielded will be sufficient to exceed the energy overhead. Minimally,

this requires that [70]

EOH < ij(ILKG,BCVDD - IDRV,BCVDRV)(TCYC,RTN - TACC), (2.7)

and even further, the overhead associated with circuitry to support the rebiasing

must also be considered.

Sub-Array Energy Analysis

To ascertain VDD and Vt targets that lead to optimal sub-array energy, a practical case

for a low-power high-density SRAM is considered. The specifications of the sub-array

are shown in Figure 2-8. In particular, an LP 45nm CMOS technology is used. The

sub-array consists of 256 columns and 256 rows of bit-cells that have been designed to

occupy a layout area of 0.25pum 2 using actual SRAM design-rules for the technology.

Column-multiplexing of 4:1 is assumed, such that 64 (out of the 256) cells are accessed

each cycle. Layout extraction is performed to determine the parasitic capacitances

of the word-lines (WL), bit-lines (BL), column-select-lines (cSEL), sense-amplifiers,

and power-supply (VDDSUB, which will be referred to as VDD for the remainder of this

analysis). Finally, the total voltage-swing on the bit-lines is assumed to be 200mV

during read-accesses. All other digital control signals are assumed to be full-swing,

from ground to VDD.

To characterize the energy, simulations are performed by scaling VDD for the en-

tire sub-array and scaling Vt of the bit-cell devices. This is achieved by adjusting the

VTHO parameter of the BSIM4 transistor models, which corresponds to the thresh-

old voltage of a long-channel device with zero substrate bias [71]. The effects of device

variations, and how they scale with VDD and Vt are not considered here. Instead, the

optimal targets are being established. The impact variation has on parameters rele-

vant to the energy will be considered in Section 2.3, by revising the energy analysis.



Sub-Array Specifications
Technology 45nm LP CMOS
Bit-cell area 0.25pm2 (6T)

Configuration 256 x 256
BL swing (Vs,) 0.2V
Column-muxing 4:1 (i.e. 64 sense-amplifiers

Figure 2-8: Sub-array specifications for energy analysis.

In particular, the data-retention voltage, VDRV, which, in the presence of variation,

is heavily dependant on Vt, will be taken to equal 0.4V for the initial analysis.

The average number of accesses (N) required for logical operations, and the aver-
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age time required to complete a logical operation (TcYC,RTN) are application depen-

dant parameters that can significantly affect the optimal total energy of the sub-array.

For instance, as TCYC,RTN becomes very long, the leakage-energy, specifically during

the idle-mode (i.e. EIDL), dominates over all of the other components, and it largely

negates the impact of VDD all together. However, for most of the low-power applica-

tions discussed in Chapter 1, the time-scales of interest lead to a dependence on all of

the energy components. To proceed with the analysis, N is assumed to be 1024, which

corresponds to an access of every bit-cell in the 64kb sub-array (since 64 cells are ac-

cessed each cycle). Additionally, TCYC,RTN is set to 10ms, 1ms, 100ps, and 10ps

to consider various performance constraints. For the array configuration considered,

EIDL overwhelmingly dominates when TcYC,RTN is much longer than 10ms.

Before analyzing the total energy, the energy components are discussed. Figure

2-9 shows the active-mode energy (corresponding to EACC + ELKG), idle-mode en-

ergy, and overhead energy plotted as log-magnitude contours with respect to VDD

and Vt. Here, TCYC,RTN is set to Ims. As TCYC,RTN and N are varied, the trends

observed for each component remain constant, but the relative magnitudes of the

components change. For instance, large TCYCRTN and small N elevates the impor-

tance of idle-mode energy with respect to active-mode energy; similarly, overhead

energy has reduced prominence as N increases, since it gets amortized over more

active-accesses.

The contours observed for active-accesses (Figure 2-9a) are typical for digital

circuits [44]. At low VDD (0.4-0.6V), the sub-array speed is significantly reduced,

so minimizing the leakage currents, by increasing Vt from 0.1-0.3V, favorably affects

the energy; at higher VDD, the energy is overwhelmingly dominated by capacitive

switching. As Vt is increased beyond 0.4V (in the region below the dotted line of

Figure 2-9a), deep sub-threshold operation leads to compromised logic levels causing

artifacts leading to increased energy. For the considered array configuration and

technology, the active-mode energy points to an optimal VDD and Vt of approximately

0.5V and 0.35V, respectively.

As expected, the idle-mode energy (Figure 2-9b) is strongly dependant on Vt, due
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Figure 2-9: Sub-array individual energy components.

to the effect of Vt on sub-threshold leakage-currents. Here, the blocked-out portion

corresponds to a region where the performance constraint (specified by TCYC,RTN

and N) is not met due to excessive access-delay, TACc (i.e. TACC > TCYC,RTN)-

At the boundary of this region, the idle-mode energy degenerates to zero since the

entire data-retention period (TCYC,RTN) is spent in the active-mode, and the irregular

contours represent artifacts due to the limited resolution of the plotted points.

In Figure 2-9b, the benefit of increasing Vt beyond 0.4V degrades for high VDD

(as indicated by the increasing distance between the energy contours). Here, leakage-

power sources other than sub-threshold currents, namely gate- and junction-currents,

start to become significant. At lower VDD (i.e. below 0.6V) and high Vt (i.e. above

0.3V), the idle-mode energy seems to rapidly decrease as the threshold-voltage in

increased (as indicated by the contours tapering together). In this region, which cor-

responds to sub-threshold operation, the active-mode access-delay (TACC) increases

rapidly with Vt. As a result, a smaller total portion of TCYC,RTN is spent in the

idle-mode, and the idle-mode energy appears to decrease quickly.

The overhead energy (Figure 2-9c) represents the cost of charging the sub-array



power-supply node between the active-mode voltage and the data-retention voltage.

Consequently, it has a straight-forward dependence on VDD.

Combining all of the energy components, the total sub-array energy is plotted

as log-magnitude contours with respect to VDD and Vt in Figure 2-10. Once again,

the blocked region represent supply- and threshold-voltages where the performance

constraint is not met (i.e. TACC > TCYC,RTN)-

Several important observations can be drawn from these plots. First, compared to

the active-mode energy (shown in Figure 2-9a), which follows the behavior of general

digital logic [44], the total energy favors a lower supply-voltage. For instance, in all

cases a VDD less than 0.5V is optimal, and, in fact, even lower supply-voltages would

be preferable if the performance constraint could be met (this result is discussed

further below). The preference towards low supply-voltages occurs since, in the ab-

sence of long-term data-retention, the leakage-currents can be completely negated at

the end of TACC, which is shortened greatly by raising VDD. However, the need for

data-retention precludes complete leakage-current gating, somewhat attenuating the

benefit of raising VDD.

Second, as mentioned, in all cases, the energy contours continue to decrease fairly

rapidly into the regime where the performance constraint is not met. The important

consequence of this is that any means to improve the performance will enable further

VDD and Vt scaling, leading to further reduction in the sub-array energy.

An additional result, which must be qualified, seems to be that performance lim-

itation in this manner indicates no need for the idle-mode at all; in particular, the

sub-array should be operated with a relatively high threshold-voltage and the lowest

possible supply-voltage required to just meet the TCYC,RTN constraint. Of course,

in large SRAMs where several sub-arrays are tiled, the benefit of the idle-mode is

clear, as it minimizes the leakage-power of all the inactive sub-arrays. However, even

with very few sub-arrays, the idle-mode can be important. Section 2.3 will show

that reducing the access-period beyond TCYC,RTN can be beneficial in order to re-

duced excessive active-mode leakage-energy; this requires raising the supply-voltage

in order to overcome performance degradation from variation, allowing sooner tran-
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Figure 2-10: Sub-array total energy (at room temperature) for various performance
requirements (specified by TCYC,RTN).
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sition into the low-power idle-mode. The idle-mode is also beneficial for recovering

additional energy imposed by margining. For instance, some VDD margin is neces-

sary to support changes in the operating conditions and instantaneous peaks in the

performance demands (which require shortening the access-period below the average

TCYC,RTN considered). Figure 2-11 considers the effect of this margin if provisions for

the idle-mode are not included. For the TCYC,RTN = 10ms case, the energy compo-

nents (normalized to ETOT) are shown along a slice corresponding to the Vt = 0.45V

axis (the optimal achievable energy occurs along this slice). An additional energy

component, ELKG,CYC,RTN, is also plotted, which corresponds to the leakage-energy

that would be incurred if the active-mode VDD were used for the entire duration of

TCYC,RTN. Although ELKG,CYC,RTN degenerates to ELKG at the optimal VDD (which

is the minimum voltage of 0.42V), less than 0.15V of VDD margin makes it the dom-

inant source of energy, and it increases rapidly from there. Hence, the idle-mode

provides a means to minimize the excess energy imposed by the required margining.
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Figure 2-11: Energy components for TCYC,RTN = 10ms along Vt = 0.45V axis.



2.2 SRAM Operating Margins and Metrics

Aside from the performance constraint specified by TCYC,RTN, SRAMs must meet

several other operating margins that are not considered in the analysis of Section 2.1.2.

The optimal VDD and Vt trends established there are only targets; but enabling actual

sub-array operation at those targets requires overcoming the associated operational

challenges. This section examines how read-margin, write-margin, data-retention,

and read-current depend on VDD and Vt, particularly in the presence of variation.

Generally speaking, the motivation to reduce VDD and raise Vt, based on sub-

array energy optimization, is opposed not only by the ensuing degradation of noise-

margins, but also by an enhanced sensitivity of MOSFETs to variability. Due to

the tendency towards large sub-arrays, the level of variation observed in SRAMs is

extreme, typically beyond the 5a level. Substantial effort is devoted to minimizing

SRAM variation. For instance, at the device-level, implant doping (material and

orientation) as well as layout features are carefully controlled [72]. Similarly, at the

array-level, bit-cell redundancy is widely used to mitigate the impact of extreme

variation [73]; nonetheless, in 256x256 sub-arrays, variation beyond the 4a level can

still be expected to limit operation [74].

Figure 2-12 shows the effect of variation on MOSFET drain-current (with VGS =

VDS = VDD) in two lights. In Figure 2-12a, an NMOS with Vt = 0.3V is considered as

VDD is scaled for both a mean and 4a device. The distance between the two widens

drastically as supply-voltage is reduced (indicating a degrading ratio of mean-to-4a

current). This comes about due to the increasing dependence of the gate-overdrive,

VDD - Vt, on Vt fluctuations combined with an increasing dependence of the drain-

current on that gate-overdrive (which ranges from linear to exponential towards the

sub-threshold regime [75]).

In Figure 2-12b, an NMOS with VGS=VD=1V is considered as Vt is scaled.

Threshold-voltages that are engineered to be higher exhibit increased aVt. This is

due to the need to increase dopant concentration, which leads to more severe random

dopant fluctuation (RDF) [76]. Consequently, to account for the effect that Vt scaling



has on variation, aVt has been adjusted using the relationship of Equation 2.8 [77]:

orVt oc Vq2NsUBWDE P

/q(Iv - VFB- 20F)

Cox

ovt oc + 0.1. (2.8)

(Here, -VFB - 2 0F 0.1, which has been validated through several data-points from

65nm fabs [77].) As a result, with increasing Vt, the 4o current deviates increas-

ingly from the mean current, particularly as Vt approaches VDD, tending towards an

exponential impact in sub-threshold.

In the following subsections, Monte Carlo simulations are performed on the nom-

inal process conditions, and the statistical device parameters affected by variation

(including Vt), are sampled from a Gaussian distribution while considering the im-

pact of VDD and Vt scaling. Here, the effect of local-variation (i.e. intra-die) [41],

which most prominently limits SRAM functionality [78], is combined with global

(inter-die) process-skews in order to illustrate the total effect.

2.2.1 Read-Margin

The read SNM quantifies the extent to which a 6T bit-cell can reliably hold each of

the two data states required while being subjected to a static read condition. The

read SNM is illustrated graphically in the butterfly plots of Figure 2-13. Here, the

transfer-functions between the bit-cell's data storage nodes (i.e. from NT-NC and

from NC-NT) are superimposed. As shown in Figure 2-13a, the static read condition

implies that the access-devices (M5-6) are enabled and the bit-lines are held at VDD.

The cell's ability to reliably hold both data states depends on the transfer-functions

(plotted in Figure 2-13b) intersecting at two valid logic levels, and it is quantified

by the length of the diagonal of the largest square embedded in the transfer-function
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Figure 2-12: Mean and 4o drain-current for minimum sized NMOS in 45nm CMOS
with respect to (a) VDD (with =0.3V) and (b) Vt (with VDD=1V).

lobes [40].

Figure 2-13b shows how variation can shift the transfer-functions [79], and how

supply-voltage scaling degrades the noise margin, easily leading to the loss of the

read SNM. Similarly, threshold-voltage scaling, has a detrimental effect through the

increase in oVt it introduces.

To determine the combined effect of supply- and threshold-voltage scaling, Figure

2-14 shows the mean and variation-affected read SNM with respect to VDD and Vt.

For the variation-affected case, 4c local variation is considered on top of the process

global-variation. As shown, variation strongly limits the region where read SNM is
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preserved, specifically restricting operation at low VDD and high Vt, where sub-array

energy tends to be optimized.
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Figure 2-14: 45nm 0.25 pm 2 bit-cell read SNM contours for (a) mean case, and (b)
4o (on top of global variation) case.
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2.2.2 Write-Margin

Several metrics exist to quantify write-ability [80] [42]. One that relates well to the

read-margin is the ability to make the bit-cell mono-stable at the logic state intended

to be stored [81]. This corresponds to the negative of the read SNM, and is used here.

Figure 2-15 shows the mean and 4o (on top of global variation) write-margin with

respect to VDD and Vt. Once again, variation strongly limits the functional region and

specifically opposes that where sub-array energy is optimized. It should be noted, that

the result shown is for a dense 0.25pm 2 bit-cell, which severely constrains the sizing

of the constituent devices. In a practical cell, however, threshold voltage engineering

provides an additional means, beyond just sizing, to set the required relative device

strengths. Here, in order to develop the general trends with minimal complexity,

all Vt's are assumed to scale equivalently; however, in a practical cell, selective Vt

engineering actually leads to better write-margin. Nonetheless, the increased impact

of variation on write-margin seen at low VDD and high Vt remains, and it critically

contributes to limiting sub-array energy.

2.2.3 Hold-Margin (and Data-Retention-Voltage)

The hold-margin quantifies the ability of the bit-cell to idly retain data in the absence

of read or write conditions. The hold SNM [40] is analogous to the read SNM; however,

as shown in Figure 2-16a, it implies that the bit-cell access-devices are disabled,

precluding the disruption of the storage nodes NT/NC by the bit-lines near VDD.

Consequently, as shown in Figure 2-16b, the hold SNMI can be significantly larger

than the read SNM. As shown in Figure 2-16c, this implies the possibility of low VDD

(or high Vt) data-retention even in the presence of variation, leading to much lower

power consumption.

In this manner, the hold-margin is directly related to the data-retention voltage.

Here, the hold SNM is used as the hold-margin, and the VDD where it equals zero

(in the 4a on top of global-variation case) is taken to be the data-retention voltage,

VDRV; of course, in practice it is prudent to also introduce some additional engineering
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Figure 2-15: 45nm 0.25pm2 bit-cell write-margin contours for (a) mean case, and (b)
4a (on top of global variation) case.

margin when setting the idle-mode VDD, but the additional margin, which degrades

the power-savings, can be minimized if VDRV can be accurately determined either

through simulation [82] [83] or run-time sensing and estimation [62].
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Figure 2-17 shows the mean and 4a (on top of global-variation) hold SNM with

respect to VDD and Vt. Due to higher dependence on Vt fluctuations and elevated aVt,

increasing Vt tends to raise the minimum tolerable VDRV. Consequently, the favorable

impact of reducing the leakage-current degrades as Vt is increased. This effect is

particularly important at very high threshold-voltages, where the leakage-current is

dominated by gate and junction sources; here, Vt scaling can actually increase the

idle-mode energy due to the higher VDRV required.

2.2.4 Cell Read-Current

The read-current, IRD, is the current sunk by the bit-cell from the bit-line immediately

after its access devices are enabled. The biasing condition implied here is that the

bit-lines are at their precharge voltage, which is typically VDD. The read-current is

a critical metric for sub-array performance, and, as discussed in Section 2.1.2, it also

strongly affects the minimum achievable energy.

Figure 2-18 shows the mean and 4a loglo(IRD) with respect to VDD and Vt. As

expected, lowering VDD and raising Vt strongly reduces the mean IRD and increases

the further degradation from variation. Improving cell-drive capability is critical

for low-energy sub-arrays not only because this enables more aggressive VDD and Vt

scaling under set performance constraints, but also because it overcomes functionality

failures that are fundamental to SRAMs at the low-energy operating points. These

failures are further discussed in Chapter 3.

2.3 SRAM Energy with Variation

Since VDD and Vt scaling so severely elevates the effect of device variation, the optimal

energy analysis of section Section 2.1.2 must be revised. In particular, three impor-

tant effects emerge: (1) the access-period, TACc is much longer, (2) the minimum

achievable VDRv is higher, and (3) the total aggregate leakage-current is higher due

to the variation gain factor (illustrated in Figure 2-1). The resulting impact on the

total energy is considered below.
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First, regarding the increase in TACC, the most important implication is that the

supply- and threshold-voltage region where the performance constraint is not met

is significantly expanded. Hence, the energy optimization achievable through VDD
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and Vt scaling is directly limited. As shown in Figure 2-19c-d, this, is particularly

detrimental in the high performance cases (i.e. TCYC,RTN = 100,Ps, 10Ps).

Second, for the low performance cases, the optimal energy is not limited by the per-

formance constraint, TCYC,RTN. For instance for the TCYC,RTN = 10ms case (shown

in Figure 2-19a), the optimal point is VD = 0.65V and Vt = 0.475V, which oc-
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curs well within the region where the performance constraint is met (i.e. TAcc is

considerably less than 10ms). The reason for this is that long data-retention periods

require high Vt in order to minimize leakage-power; however, the severe variation that

accompanies this results in extreme performance degradation. The resulting increase

in active-mode leakage-energy (ELKG) cannot be offset by the leakage-current sav-

ings (which themselves are diminished by the variation gain factor). Consequently,

to reduce ELKG, TACC must be aggressively shortened by raising the supply-voltage.

Of course, the net increase in the leakage-energy, and now also the active-energy, is

extremely detrimental to the absolute total energy (as quantified below).

The effect on VDRV also has a strong impact on the total energy, particularly in

the low performance cases where TACC must be reduced far below TCYC,RTN. For

instance, in the TcyC,RTN = 10ms case, the idle-mode power at the optimal Vt (i.e.

0.475V) is higher by over 1.9x compared to the nominal case. This is due to both the

higher VDRv and the leakage-current gain factor from variation.

Overall, the increase in TAcc, VDRV, and the aggregate leakage-current has a

severe impact on the absolute total energy. Specifically, for the TCYC,RTN=lOns,

1ms, 100,ps, 10[s cases respectively, the increases in the total-energies are 1.65x,

1.56x, 1.28x, and 1.33x compared to the nominal cases. From this analysis the most

important conclusion that can be drawn is that, for ultra-low-energy applications with

modest data-retention periods, it is critical to improve performance in the presence

of variation in order to (1) enable aggressive VDD and Vt scaling, and (2) minimize

T4CC so that so that the active-mode leakage-energy can be reduced at a given VDD

and Vt. As the data-retention period becomes extremely long, it also becomes critical

to minimize the idle-mode leakage-power.

2.4 Summary and Conclusions

This chapter investigates the sources of SRAM energy, and, in particular, how they

scale with respect to supply-voltage and threshold voltage. Targets and trends for

optimal VDD and Vt are established. The analysis here is different from that of generic



digital logic [44] in two important ways: (1) the general requirement of long-term data-

retention introduces the need for a low-power idle-mode where the power cannot be

assumed to be zero, and (2) due to its extreme impact on SRAMs, variability (and

its dependence on VDD and Vt) must be considered.

With the need to persistently retain data, total SRAM energy optimization, based

on the analysis of a practical sub-array, points to three necessary trends: (1) lower-

ing VDD, despite the prominence of active-mode leakage-energy, far below the value

expected based on generic logic considerations; (2) raising Vt to mitigate leakage-

currents during both active- and idle-modes; and (3) reducing the access-delay to

reduce the active-mode leakage-energy and increase the amount of VDD and Vt scaling

achievable under the performance constraint. Although lowering VDD tends to raise

leakage-energy due to the ensuing increase in the access-delay, the inability to com-

pletely negate leakage-currents following the active-accesses increases its appeal from

the standpoint of active-energy reduction. Nonetheless, analysis of the critical SRAM

operating metrics shows that reliable operation at the low target supply-voltages and

high target threshold-voltages is vehemently opposed by device variability. In par-

ticular, the read-margin (quantified by the read SNM) and the write-margin suffer

the primary operational violations. The hold-margin has other important implica-

tions, particularly with respect to the minimum data-retention voltage achievable,

which degrades as Vt is increased; however, with regards to limiting functionality, the

hold-margin is far superseded by read-margin.

The cell read-current is also critical to the sub-array energy, and suffers intolerably

at low VDD and high Vt. Specifically, it limits sub-array speed, therefore restricting

VDD and Vt scaling in the presence of a performance constraint. Importantly, how-

ever, because it is so severely degraded by variation at low supply-voltages and high

threshold-voltages, read-current drastically increases the access-delay, elevating the

leakage-energy. Consequently, due to the degradation of read-current, enhancing sub-

array performance is critical. Unfortunately, both read-margin and read-current must

be improved simultaneously, and, as discussed in Chapter 4, design strategies to im-

prove one tend to worsen the other. So, it is beneficial to find some means to improve



performance other than targeting read-current (and without increasing VDD or low-

ering Vt), in order to reduce leakage-energy and easily overcome the performance

constraint, thereby facilitating supply- and threshold-voltage scaling.

The following chapters are guided by the energy optimization targets established in

this chapter. Chapter 3 investigates techniques to ensure that the required operating

margins and metrics are met in order to operate SRAMs at low supply-voltages and

high-threshold-voltages. Chapter 4 investigates techniques to improve performance

(while maintaining high density), so that VDD and Vt scaling can be aggressively

employed for maximum energy savings.



Chapter 3

Ultra-Low-Voltage SRAM Design

The analysis in Chapter 2 strongly points to voltage scaling in order to minimize the

energy of SRAMs. Achieving reliable functionality at low supply-voltages, however, is

extremely challenging. In fact, in digital systems, SRAMs pose the primary limitation

to low-voltage operation, which is critical for energy-constrained applications. Fig-

ure 3-1 shows the minimum supply-voltage achieved by specifically ultra-low-voltage

designs that have been recently reported [84]. As shown, logic circuits achieve much

better voltage scalability than SRAMs, and the gap is increasing as technology scales.

As highlighted in Chapter 2 the reason for this is two-fold: SRAM noise-margins and

performance are more sensitive to variation than those of logic circuits, and SRAMs

are subject to more extreme levels of variation.

This result suggests that one way to alleviate the low-voltage challenges associated

with SRAMs is to target larger geometry technologies, where the effects of variation

and leakage-currents are much less severe. Unfortunately, the critical SRAM metric of

density is equally important, or perhaps even more important, in highly-energy con-

strained systems. There are two important classes of energy-constrained applications

that specifically benefit from technology and/or density scaling:

(1) Dynamic Performance Scalable. Applications such as cellular multimedia

handsets [85] and wireless sensor nodes [25] have relaxed workloads for the vast

majority of the time, but can require bursts of high performance. Dynamic
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Figure 3-1: Minimum supply-voltage of specifically ultra-low-voltage designs recently
reported [84].

voltage scaling and ultra-dynamic voltage scaling [86][87] allows momentary

operation at raised voltages, and advanced technologies afford the necessary

speed-ups. An important challenge is managing the trade-off between low-

voltage functionality and the accompanying overheads to performance and area,

which limit high-voltage high-performance operation [88].

(2) Fixed High-Performance. Applications such as baseband radio processors

[89] and high-resolution video decoders [23] must meet aggressive system through-

put specifications. These leverage extreme parallelism, enabled by area scaling

in advanced technologies, to operate efficiently at a reduced voltage and fre-

quency [4], which is critical for battery-powered mobile devices.

Despite the challenges and density constraints, the energy optimization analysis

in Chapter 2 suggests that SRAM voltage should be reduced to 0.5-0.6V, or even

lower (i.e. < 0.4V) if the performance degradations imposed by variation can be

sufficiently overcome. Accordingly, this chapter describes the design and analysis

leading to a 256kb SRAM prototype in LP 65nm CMOS that is intended to operate

below 0.4V and achieves operation down to 0.35V. Operation below 0.4V is essen-

tial, particularly to ensure engineering margin (of 0.1-0.2V) at the target optimal

supply-voltage. Additionally, although the threshold voltage of the implementation



technology is fixed, the analysis of Chapter 2 recommends a higher Vt (up to 0.5V),

and a 0.4V demonstration leaves margin for additional device Vt engineering. Fi-

nally, Figure 3-1 illustrates the increasing challenge with technology scaling; hence,

aggressive low-voltage techniques provide some basis for low-voltage SRAMs in future

deeply scaled technologies.

3.1 Low-Voltage SRAM Challenges

Figure 3-2 shows the normalized ID versus VGS behavior of an 65nm LP NMOS

(predictive model) in two different lights. Specifically, two effects are shown that are

of critical importance to SRAMs at low-voltages: 1) the severe effect of threshold-

voltage variation (shown in Figure 3-2a), and 2) the degradation in the on-to-off ratio

of the drain-current (shown in Figure 3-2b).

In Figure 3-2a, the on-current initially increases exponentially in sub-threshold,

and then far more slowly in strong-inversion. As mentioned in Chapter 2, threshold

voltage shifts are a prominent result of processing variation and RDF [90][91], and

they essentially cause sideways offsets. The ±+4 case for local-variation, which occurs

commonly in large SRAM arrays, is shown. Although the resulting variability is

relatively small at high voltages, the change in drain-current is severe at ultra low-

voltages (e.g. 0.3V) and can easily exceed three orders of magnitude. This suggests

that relative device strengths cannot reliably be set using conventional techniques

like W/L sizing. As described in Chapter 2, standard high-density SRAM topologies

rely heavily on ratiometric sizing, making them extremely sensitive to this failure

mechanism.

Figure 3-2b plots the ratio of the on-current to the off-current for the same 65nm

LP NMOS. As shown, the nominal ratio of JoN/IoFF degrades from over 105 at

nominal voltages to less than 103 at 0.3V. The impact of this effect is even more severe

when the variation picture from above is considered; for instance, with 4a degradation

to loN, the ratio at low-voltages is reduced to less than 102. This implies that there is

now a strong interaction between both the "on" and the "off" devices when it comes
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Figure 3-2: Degradation of LP 65nm NMOS (predicitive model) with respect to VDD
showing (a) drain-current variation and (b) ION/IOFF.

to setting the static voltages of critical nodes. This, once again, is highly problematic

for SRAMs, where high-density requirements call for the integration of many devices

on shared nodes, such as bit-lines.

In the following sub-sections, the basic degradations to MOSFET operation that

are brought on at low-voltages are related more specifically to the design of high-

density SRAMs. First, the precise effect on bit-cells is considered, specifically with

respect to the standard 6T topology. Bit-cell modifications that have been used to

address the deficiencies and afford some degree of voltage scalability are also discussed.

Then, the challenges related to low-voltage periphery are considered.



3.1.1 Low-Voltage Bit-Cell Array

The 6T bit-cell, which is shown in Figure 3-3, fails to operate at ultra low-voltages

because of reduced signal levels and increased sensitivity to threshold-voltage varia-

tion [79]. With this topology, both read and write accesses are ratioed making it very

difficult to overcome the severe effects of variation and manufacturing defects.

Device Function
M1-2 Driver

M5 M6 M3-4 Load
M5-6 Access

NC-  M1 M2 -- NT

BLC Parasitic BLT
gate-oxide
breakdown

Figure 3-3: 6T bit-cell for low-voltage analysis.

Read/Write Margin

During read-accesses the cell must remain bi-stable to ensure that either data logic

value that might be stored can be held and read without being upset by transients

that occur at the internal nodes, NC/NT, when the access-devices, M5 - 6, are

enabled. The read SNM is considered in Chapter 2 with respect to VDD and Vt,

and it quantifies the margin against loss of bi-stability by considering the worst-case

condition where the bit-lines (BLT/BLC) remain at the pre-charge voltage of VDD.

It should be noted, that in low-voltage designs, the cell read-current is likely to be

very small (in proportion to the bit-line capacitance), and BLT/BLC do in fact

remain close to the pre-charge voltage for an extended period.

Figure 3-4a shows Monte Carlo simulations of a 65nm LP CMOS bit-cell designed

to fit in a layout area of 0.5pm 2 while meeting SRAM design rules for the technology.

As expected from the analysis in Chapter 2, at low-voltages the read SNM is violated.

Similarly, Figure 3-4b shows how the write-margin is lost at low voltages, which

indicates that the cell cannot be made mono-stable [81] at the data state desired to
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be written. Finally, the hold SNM (Figure 3-4a) measures the ability of the cell to

remain bi-stable while the access-devices are disabled. As shown, it is preserved to

very low voltages and forms the basis for several bit-cell topologies that modify the

6T structure in order to operate at ultra-low-voltages.

Generally, the read and write failures discussed above arise due to the reduced

signal levels at low voltages and due to threshold-voltage variation, whose impact also

increases at low voltages. The electrical-0 ratio [92] is shown in Figure 3-5, and it

is defined as the ratio of the effective strength of the driver-devices, M1 - 2, to the



access-devices, M5 - 6. As a result, it is a critical metric characterizing the cell's

immunity against problematic transients on NT/NC during read-accesses. In fact,

it serves to isolate the contribution that variations in the driver and access-devices

have towards read failures. Figure 3-5 shows that the electrical-0 ratio, which is

nominally set between 2-3 [93], can degrade by almost four orders of magnitude at

ultra-low-voltages.

102
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IDS,M5,6
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Figure 3-5: Electrical-0 ratio definition and degradation with respect to VDD.

In addition to variation, an equally important effect limiting the minimum supply

voltage of a 6T bit-cell is gate-oxide soft-breakdown, resulting in extremely high gate-

leakage from the driver-devices, M1 - 2 [94]. In 65nm and beyond, even with very

high-quality oxide, soft-breakdown unfavorably distorts the read butterfly curves.

This can be envisioned by considering the additional parasitic current path shown

in Figure 3-3, which at low-voltages can be comparable to the PMOS load-device

currents. As a result, this current path lowers the VGS of one of the driver devices,

exacerbating the degradation to the logic "0" level of NT/NC during read-accesses

[95]. In this manner, soft-oxide breakdown severely limits the minimum voltage where

the read-margin is met.



Bit-Line Leakage

In addition to the performance and energy limitations discussed in Chapter 2, the

rapid degradation of cell read-current that accompanies VDD scaling also introduces

critical functionality failures. Specifically, Figure 3-6 shows the worst-case read-data

sensing scenario on one pair of bit-lines. Typically, when a bit-cell is accessed, a droop

can be detected differentially on one of the bit-lines, BLT/BLC, with respect to the

other. This requires that the read-current of the accessed-cell discharges the intended

bit-line more rapidly than the aggregate leakage-current, ILKG,BL, which is imposed

on the alternate bit-line. Importantly, however, the aggregate leakage-current on the

alternate bit-line depends on the data stored in all of the involved unaccessed bit-

cells. In the case shown, sense-ability is most severely limited; the stored data in the

unaccessed cells leads to high leakage-current on the alternate bit-line (due to the high

VDS across the associated access-devices), and nearly no leakage-current contribution

to the intended read-current.

IRD

'0"

ILKG,BL

V

Figure 3-6: Bit-line leakage during read-data sensing opposing the ability to detect
differential droops.



Accordingly, the read-current must be much greater than the worst-case aggregate

leakage-current. As mentioned in Chapter 2, however, VDD and Vt scaling (for optimal

energy) greatly reduces the read-current, especially in the presence of variation. The

severe effect due to variation is shown by plotting the weakened-cell read-currents

normalized to the already reduced mean read-current. This is shown in Figure 3-7a

for a 0.5pm 2 cell in the target 65nm LP technology. Combining this effect with the

ION/IOFF degradation discussed previously, Figure 3-7b plots the worst-case IRD as

a ratio of the worst-case bit-line leakage-current (assuming 256 cells per bit-line). As

shown, at low-voltages, the worst-case IRD is exceeded by the worst-case ILKG,BL,

making data sensing impossible.

The design trade-offs between electrical-/ ratio and the cell read-current suggest

that the symmetric-6T topology imposes inherent restrictions to ultra-low-voltage

operation. The electrical-3 ratio can be increased by reducing the strength of the

access-devices; however, this degrades the cell read-current, fatally limiting the ability

to sense read-data. Alternatively, the electrical-/ ratio can be increased by up-sizing

the driver-devices (M1 - 2). However, the up-sizing required to overcome the degra-

dation shown in Figure 3-5 is too drastic considering the cost on density. Additionally,

a large increase in gate area for the driver-devices can exacerbate the limiting effect

of gate-oxide soft-breakdown [95], somewhat opposing the read-margin improvement.

To overcome these limitations, alternate bit-cell topologies have been proposed that

attempt to improve the low-voltage trade-offs and provide some additional voltage

scalability. These are described below as non-buffered-read and buffered-read bit-

cells.

Non-Buffered-Read Bit-Cells

The key benefit of the 6T bit-cell, compared with other static storage structures, is its

possibility for maximum density. Whether this possibility can be practically realized,

however, is subject to several factors including variability (at the target VDD and Vt),

array configuration, and selective biasing conditions during read/write operations.

As mentioned, the difficulty arises due to the need to simultaneously increase
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Figure 3-7: Read-current degradation in the presence of variation (a) with respect to
VDD scaling and (b) leading to loss of data sense-ability due to bit-line leakage.

read-margin and read-current while lowering the voltage. For instance, several ap-

proaches exist to overcome variation and enforce the required read-margin; the elec-

trical strength of the access-devices and load-devices can be altered selectively for

read and write operations through precise and adaptive biasing of the word-lines,
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lending to variation resilient cell layout [96] and global process-skew correction [39].

Unfortunately, however, this degrades the read-current [39] to an intolerable level

at low-voltages. Alternatively, raising the supply voltage for only the bit-cells be-

ing accessed [53] improves the read-margin and read-current but adversely affects the

active-access-energy; although the leakage-energy is reduced, the energy saving trends

in Chapter 2 cannot be achieved.

Minimally, the read-margin and read-current trade-off at low-voltages can be al-

leviated by maximizing the discharge rate of the bit-lines, reducing the disruptive

stress on the bit-cell storage nodes (NT/NC) that tends to raise their voltage. This

is the basis for regenerating the bit-line voltages using a sense-amplifier, as in [68].

Alternatively, the bit-line loading can be aggressively reduced (to less than 16), and

the bit-cell pull-down stack on one side can be aggressively up-sized, leading to the

asymmetric cell shown in Figure 3-8a [97]. Though the read SNM condition is some-

what eased, severe variation at low-voltages makes it difficult to guarantee that the

read-stress is sufficiently eliminated; further, array area-efficiency must suffer, arising

from the need to drastically shorten the bit-lines. To completely overcome the read

SNM condition, the 7T cell in Figure 3-8b [98] can be used, where the bit-cell feedback

path is gated by M7 during read-accesses so that the possibility of actively flipping

the stored data-state is eliminated. The additional of M7 leads to an L-shaped lay-

out, leaving gaps for sensing circuitry to be distributed throughout the columns so

that RdBLT can be kept short in order to ensure minimal read access-delay. How-

ever, at ultra-low-voltages, the read access-delay is still quite long. Since NC is held

dynamically, leakage-currents severely compromise data-storage during these periods,

limiting the level of voltage scaling that can reliably be achieved with this bit-cell.

The write operations are somewhat less constrained than read operations, which

depend on both the read-margin (to avoid data-disruption) and the read-current

(to ensure data sense-ability and achieve optimal sub-array energy). The critical

6T SRAM metric associated with write operations is the write-margin, and it is

possible to apply selective biasing to improve the write-margin without simultaneously

degrading any other critical metric. In particular, correct write operation requires
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Figure 3-8: Non-buffered bit-cells formed by (a) asymmetrically upsizing one pull-

down path for rapid RdBLT discharge [97], and (2) addition of device (M7) to gate

bit-cell feedback path against disruption [98].

that the NMOS access-devices overpower the PMOS load-devices, in order to store

a new data state. A couple of options exist in order to enhance the strength of the

access-devices relative to the load-devices. First, the bit-lines that are engaged in

the write-operation (recall, column-interleaving implies that only some of the bit-

cells in the accessed row must be written to) can be slightly boosted beyond the

rail-voltages to over-drive the target access-devices [42]. Second, the supply-voltage



can be reduced, selectively, for the columns that are engaged in the write-operation,

thereby weakening their PMOS loads [99]. It is important to note here that the

supply-voltage is reduced to all cells in the target columns, including those in the

unaccessed rows; however, since their access-devices are disabled they only face the

hold-condition, which is far less stringent than the read-condition.

Buffered-Read Bit-Cells

In order to completely eliminate the possibility of read-data-disruption without in-

troducing additional dynamic nodes (which are highly problematic at low-voltages),

buffered-read bit-cells can be used. Here, the bit-cell storage-cell, where data is writ-

ten and held, is explicitly separated from its read-port. This can be done with the

addition of at least two devices, leading to the 8T topology shown in Figure 3-9. The

evolution from a 6T topology is shown, and the additional devices, M7 - 8, form a

read-buffer which isolates the storage-nodes (MI - 6) from the read-bit-line, RdBL.

A comparison of the layout for the two cells is also shown, where both adhere to the

"Thin Cell" structure [100], which alleviates lithography stresses and device mismatch

sources by minimizing jogs in the poly. The 6T layout is limited by the pitch of four

devices, while the 8T layout [93] is limited by the pitch of five devices. This layout is

highly efficient in its sharing of source-drain junctions and poly wires with abutting

cells.

Nonetheless, the additional area overhead introduced, compared with the 6T bit-

cell is unavoidable. Hence, to evaluate the merits of the 8T topology for low-voltage

operation, it must be compared against the approach of up-sizing the devices of a 6T

topology for variation reduction, which would reduced its failure probability due to

read-data-disruption. Further, 6T up-sizing also leads to stronger bit-line pull-down

paths, increasing the cell read-current. Consequently, for comparison, the 8T cell

must use read-buffer devices (M7 - 8) that are sized equivalently to the 6T driver

and access-devices. Accordingly, in the iso-read-current 8T cell, very little area is left

for the storage-cell (MI - 6). Importantly, however, the storage-cell must only meet

the hold SNM rather than the far more stringent read SNM, which must be met by
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Figure 3-9: 8T bit-cell and layout (to overcome read-data-disruptions) shown besides

a typical 6T bit-cell and layout.

the 6T bit-cell. Figure 3-10 compares the 4a read SNM of 6T bit-cells and the 4u

hold SNM of the storage-element of 8T bit-cells that have been sized for equivalent

read-current and total layout area (ranging from 0.65pm 2 to 1.15/m 2) using SRAM

design rules in the target 65nm LP technology. As shown, for each given area, the

8T cell achieves lower voltage operation (by approximately 0.2V), as indicated by the

VDD where the hold/read SNMs equal zero, respectively.

Since it breaks the highly constrained trade-off between read-margin and read-

current, and because its remaining operating margin (i.e. hold SNM) is much more

robust to variation, the 8T bit-cell is extremely promising for low-voltage operation.

Additionally, for a given layout area, many more options exist to address the low-

voltage challenges. For instance, the read-buffer's access-device (M8) can be made

at least as strong as its driver-device (M7), and/or its word-line (RdWL) can be

boosted, both of which lead to greatly enhanced read-current. Additionally, the

threshold-voltages of the storage-devices (Ml - 6) can be raised, to manage leakage-

currents (which critically limit the energy savings in both active- and idle-modes), and

the threshold-voltages of the read-buffer-devices (M7 - 8) can be lowered to further
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(and equivalent read-current) in LP 65nm CMOS.

improve read-current. Finally, with the relaxed operating margin afforded by the

hold-condition, the storage-element can be aggressively optimized for write-margin.

Although the 8T bit-cell addresses the matter of read-margin very effectively, it

still suffers from bit-line leakage at ultra-low-voltages. To address this, the read-buffer

has been enhanced in the bit-cells of Figure 3-11 [101] [102]. In Figure 3-11a, when

the cell is unaccessed (i.e. RdWL = 0) and NC = O, NCB is actively pulled-up to

VDD through M10. Hence, sub-threshold leakage from RdBL to NCB is eliminated.

alternatively, when NC = 1, NCB is set by the relative leakage currents from M9

and M10, and PMOS/NMOS threshold-voltage skews in the technology used lead

to higher PMOS leakage currents, once again causing NCB to settle near VDD. In

Figure 3-11b, when the cell is unaccessed, NCB is actively driven to VDD by M10,

regardless of NC. In both bit-cells, however, the read-buffer enhancement imposes

an additional area overhead of two devices (i.e. 10T cells).

To overcome read-bit-line leakage without additional area overhead, the design
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node [102].

in [103] uses a standard 8T cell in a general-purpose process with lower threshold-

voltages. This leads to less variation and higher gate-overdrive on the devices (i.e.

improved ION/IOFF). Consequently, bit-line leakage can be sufficiently managed

by shortening the read-bit-lines (i.e. eight cells per read-bit-line are used). The

degradation to array area-efficiency is alleviated by using very simple read-bit-line

tIRdWL
W

"----



sensing circuitry and maintaining much longer write-bit-lines (BLT/BLC), which

are not susceptible to leakage effects (i.e. 512 cells per write-bit-line). Nonetheless,

as discussed in Chapter 2 reducing the threshold-voltage can have a highly detrimental

effect on the total energy in low- and medium-performance highly-energy-constrained

applications.

An issue with the 8T bit-cell is that it is not as amenable to a column-interleaved

layout as the 6T bit-cell. During write-operations in a column-interleaved array, only

some cells of the accessed-row are engaged by differentially driving write data on to

their bit-lines. The bit-lines of the remaining cells in the row, which are referred to

as half-accessed, are precharged high, imposing a read-condition since their access-

devices are enabled. Truly eliminating the read-condition, then, restricts column-

interleaving, requiring that bit-cells accessed together be layed-out adjacently. Un-

fortunately, soft-errors, caused by radiation of energetic particles [104], exhibit spatial

locality [105], implying that, without column-interleaving, several bits of an accessed

word can be corrupted. In order to avoid the increased complexity of multi-bit er-

ror correction coding (ECC), soft-error immunity can be achieved by using several

ECC bits per row, each corresponding to spatially separated bit-cells. With the 128b

per row configuration of [103], the extra ECC penalty is only 5%. Alternatively, a

buffered-read bit-cell has also been proposed to enable column-interleaving; however,

its area overhead is considerable, requiring a total of ten devices (i.e. 10T) [106].

3.1.2 Low-Voltage Periphery

With respect to overall SRAM density, the area of the periphery, including address

decoders, word-line drivers, sense-amplifiers, and read/write data interfaces, is less

important than that of the array. As a result, circuit-styles that are much more

robust to low-voltage operation can be employed. The peripheral decoders and array

control-signal drivers are considered below, followed by the sense-amplifiers



Decoders and Drivers

For decoding circuitry and word-line drivers, static CMOS logic gates, free of ratio-

metric functionality dependencies and nominally achieving rail-to-rail signal levels,

are amenable for low-voltage operation [51][107]. This is particularly true if gates

with high input fan-in are avoided, in order to minimize parallel leakage-paths that

degrade the output logic level [108]. Further, in the nominal case, sizing of CMOS

gates for minimum energy also favors high density [109]. In the presence of varia-

tion, however, care in logic gate design is necessary, requiring transistor up-sizing to

ensure that actively "on" pull-up/down networks are not so severely weakened that

that they cannot compete with their complementary pull-down/up networks (which

are nominally "off") [110]. Nonetheless, unlike bit-cells, which exhibit extreme lev-

els of variation (i.e. 4-5cr) in large arrays, the periphery can be designed for much

less variation, on the order of 3a. Consequently, comparatively modest up-sizing is

required to ensure low-voltage operation.

Sense-Amplifiers

Unlike decoder and driver circuitry, sense-amplifiers have much more stringent oper-

ational requirements than static CMOS logic gates. Even if full-swing bit-line sensing

is used [111], the bit-line logic-levels are severely degraded at low-voltages by two

critical factors: (1) severe bit-line leakage, arising since the paradigm of low nodal

fan-out [108] can not be up-held on the bit-lines, and (2) drastically reduced bit-cell

read-currents, arising since large arrays are subject to to extreme levels of bit-cell

variation.

Of course, by using very short read-bit-lines (e.g. eight), simple CMOS-style

full-swing logic sense-amplifiers can be used [103]. However, in high-density array

configurations, where 256 cells are integrated per bit-line, sense-amplifier inverters

pose one of the primary limitations at low-voltages [81]. To reduce the sensing margin

required, the sense-amplifier inverters' trip-points can be adjusted by using a replica

column to emulate the logic levels that have been compromised by bit-line leakage.



This technique is effective in the 130nm design of [102], where the aggregate bit-

line leakage is less than the worst-case read-current, and read-current variation is

sufficiently small to have minimal impact on the bit-line logic-levels.

In advanced technologies, however, low read-current variation cannot be pre-

sumed; further, variation in the sense-amplifiers themselves greatly increases the re-

quired sensing margin. To manage the effect of global variation in the sense-amplifiers,

differential structures, such as the strong-arm flip-flop (SAFF) [112] or the conven-

tional input-regenerating latch [113], can be used. Differential buffered-read bit-cells,

such as the 9T design of [114] and the O1T design of [106], provide compatibility at

the cost of density, though pseudo-differential sensing can also be employed, as dis-

cussed in Section 3.2.2. Unfortunately, these approaches do not address the critical

concern of local-variation in the sense-amplifiers, which poses a primary limitation to

their own area scaling, and, increasingly, that of the entire array [111].

3.2 Ultra-Low-Voltage SRAM Prototype

In this section the design, implementation, and testing of a low-voltage SRAM pro-

totype is described. Solutions that are practical with respect to the overheads they

introduce are presented to address the challenges discussed in Section 3.1. Impor-

tantly, the design presented is meant to be compatible with technology directions

specifically targeting low-energy and high-density, even though these aggravate vari-

ability. Specifically, a 65nm LP CMOS technology is used. Although the device

threshold-voltages are preferentially optimized for low-power, even higher Vt would

be desirable for the severely energy-constrained applications discussed in Chapter 1.

Consequently, aggressive voltage scaling is pursued in order to leave margin for fur-

ther Vt optimization as well as practical guard-band from supply/ground fluctuations.

The prototype is designed to operate below 0.4V, corresponding to a sub-threshold

supply-voltage. Furthermore, to maximize array area-efficiency and specifically target

the challenge of bit-line leakage at low-voltages, 256 cells are integrated per bit-line.

Finally, the total capacity of the prototype is 256kb, which can serve as a reasonable



size cache for many practical low-energy applications. Accordingly, this design forms

the basis for the SRAM used in actual systems that have been prototyped, including

a low-voltage DSP [11] and H.264 video decoder [23].

3.2.1 8T Bit-Cell with Low-Voltage Circuit Assists

The prototype uses the bit-cell shown in Figure 3-12. It is based on the 8T topology,

employing a 6T storage-cell and a 2T read-buffer which isolates the storage-cell during

read-accesses. Consequently, as discussed in Section 3.1, the read SNM limitation

is eliminated. The other two prominent limitations, namely bit-line leakage and

write-ability in the presence of variation, are dealt with using the peripheral assists

associated with the BffrFt and VVDD controls, which are described below.

RdWL
WL

VVDD

M3 M4

M 5M6 M8

BffrFt

BLC BLT RdBL

6T Storage Cell 2T Read
Buffer

Figure 3-12: 8T bit-cell uses two-port topology to eliminate read SNM and peripheral

assists, controlling BffrFt and VVDD, to manage bit-line leakage and write errors.

Bit-Line Leakage Assist

The bit-line leakage problem in the single-ended 8T cell is analogous to the problem

in the 6T case (discussed in Section 3.1), except that the leakage-currents from the

unaccessed cells and the read-current from the accessed cell affect the same node,

RdBL. Consequently, the parasitic leakage-currents can pull down RdBL regardless

of the accessed cell's state. Figure 3-13a shows transient simulations where RdBL is



correctly pulled low by the accessed cell in the solid curve, but it is also erroneously

pulled low in the dotted curves by the leakage currents of the unaccessed cells. Here,

only the case with 64 cells on RdBL results in any sampling window; of course, the

need for additional engineering margin limits the achievable integration even further.
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Figure 3-13: Read-buffer bit-line leakage in (a) conventional case where unaccessed

read-buffer foot is statically connected to ground and (b) this design where unaccessed

read-buffer foot is pulled up to VDD.

In this design, however, the feet of all the unaccessed read-buffers are pulled up

to VDD through the BffrFt control, as shown in Figure 3-13b. Consequently, after

RdBL is precharged, the read-buffer devices have no voltage drop across them, and

they sink no sub-threshold leakage-current. The transient simulation in Figure 3-13b

now shows that RdBL correctly remains high in the dotted curves even when 256

cells are integrated. Some residual droop is still visible; this comes about as a result

of gate-leakage from the read-buffers' access-devices and junction-leakage from their



drains. Although some energy overhead is incurred to switch BffrFt, this is roughly

equivalent to WL assertion, and it is much less than the energy of the aggregate BL

switch capacitance.

An important concern with this approach is that the peripheral NMOS device

of the Bf frFt driver must sink the read-current from all cells in the accessed row.

As shown in Figure 3-14 (and discussed further in Section 3.2.3), this design has

128 cells per row, making the current requirement of the footer device impractically

large. Unfortunately, this device faces a two-sided constraint, and cannot simply be

up-sized to meet the required drive strength, since this would introduce excessive

leakage-current in the Bf frFt driver of the unaccessed rows, and, additionally, the

resulting area increase would offset the density advantage of using a peripheral assist.

"1 1

128 X IREAD

"0"

S/LEAK

Figure 3-14: BffrFt driver must sink the read-current from all bit-cells in accessed
row, and it draws leakage-current in all unaccessed rows.

Instead, the BffrFt driver is itself driven with the charge-pump circuit shown

in Figure 3-15a. This ensures that, when accessed, the gate-drive of its NMOS is

at least 600mV instead of 350mV, and since this device is in (or very near) sub-

threshold, its current increases exponentially, by over a factor of 500, as shown. As

a result, the devices of the Bf frFt driver can be nearly minimum sized, consuming

negligible leakage-power in the unaccessed rows. Additionally, since their gate nodes

have minimal capacitance, the charge-pumps and their boost-capacitors (CBOOST)

can be physically small, occupying just slightly more area than a couple of bit-cells.



The charge-pump circuit itself is suitable for this ultra-low-voltage application since

it uses a PMOS, M1, to precharge the boost-capacitor and is free from threshold

voltage drops. The transient simulation in Figure 3-15b shows that when a row

gets accessed, its BFB node gets bootstrapped to nearly 2VDD, and the following

NMOS can easily pull down the feet of the accessed read-buffers. A side-benefit of

this approach is that the read-buffer devices consume no sub-threshold leakage-power

themselves. In a typical 8T bit-cell, the read-buffer imposes an additional leakage

path. Here, however, that overhead is almost completely mitigated.
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Figure 3-15: To resolve read-buffer footer limitation (a) charge-pump circuit is used
(b) BFB node gets bootstrapped to approximately 2VDD increasing the current of
the BffrFt driver by over 500x.

Write Assist

Write failures occur because, in the presence of variation, it cannot be guaranteed

that the strength of the access-devices (M5 - 6) is more than the strength of the load

devices (M3 - 4). However, it is possible to enforce the desired relative strengths

BFB

WL R



using circuit assists. For instance, as mentioned in Section 3.1 the appropriate bit-

line voltage can be pulled below ground or, in a non-column-interleaved array, the

word-line voltage can be boosted above VDD in order to increase the gate-drive of

the NMOS access-devices. Unfortunately, both of these approaches require boosting

a large capacitance, either the bit-line or word-line, beyond one of the rails. An

alternate strategy that avoids generation of an explicit bias voltage involves weakening

the PMOS load devices by reducing the cell supply-voltage. Figure 3-16 shows that

as the supply-voltage is reduced, the strength required of the access-devices is eased,

which is reflected by the accompanying decrease in the minimum word-line voltage

that results in a successful write. So, in this design, write-ability down to 0.35V

is ensured by boosting the word-line slightly, by 50mV, but more importantly by

reducing the cell supply voltage to weaken the PMOS load devices.
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Figure 3-16: Minimum word-line voltage resulting in a successful write with respect
to the bit-cell supply voltage.

As shown in Figure 3-17a, all cells in each row share a virtual supply node, labeled

VVDD. Previously, VVDD has been reduced passively by disconnecting its power-

supply [99] [101]. However, to ensure write-ability with more aggressive voltage-scaling

in this design, VVDD gets actively pulled low during the first half of the write cycle

by a peripheral supply driver. Despite this, as shown in Figure 3-17b, VVDD does
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not go all the way to ground because all of the accessed cells contribute to pulling it

back up. Specifically, one of the bit-lines gets pulled low, causing the corresponding

storage node, NT, to go low. Accordingly, the alternate PMOS load device tends

to turn on, introducing a current path from the opposite storage node to VVDD;

in this manner half the bit-cell contributes to pulling VVDD back up through one

of its PMOS load devices and one of its NMOS access devices. Fortunately, this

interaction is quite accurately controllable, since the pull-down devices of the supply

driver are large enough that they experience minimal local variation, and the pull-up

path through all of the accessed bit-cells tends to stabilize variability. It is important

to note, however, that the supply driver does introduce an additional leakage path in

all of the unaccessed rows. To minimize its leakage-current, series NMOS pull-down

devices are used, taking advantage of the stacked-effect [115].
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Figure 3-17: Virtual VDD scheme
forms.
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Bit-Cell Layout and Sizing

Figure 3-10 shows that, by eliminating the read-condition on the storage-element

(M1 - 6), the 8T bit-cell has greatly eased operating margins, allowing it to be

sized much more aggressively. Read-buffer (i.e. M7 - 8) sizing, however, remains

an important concern due the effect of read-current on energy, performance, and

functionality. Importantly, threshold-voltage variation, whose standard-deviation is

inversely related to the square-root of device area, has elevated impact at reduced

voltages (approaching an exponential dependence towards sub-threshold); as a result,

read-buffer up-sizing has significantly enhanced appeal. Figure 3-18 shows the benefit,

at the 4j level, of upsizing the read-buffer beyond the dimensions used for a 0.65pm 2

cell in the target 65nm LP technology. As shown, even modest increase in the width

and length improves the current gain greatly at low-voltages. The length increase is

particularly beneficial, since, in addition to alleviating variability, it improves even

the mean read-current by effectively reducing the device threshold voltages through

the reverse-short-channel effect (RSCE); here, increasing length reduces the influence

of high-concentration "halo" doping in the channel region [116]. This effect can also

be used to improve the strength of the storage-cell access devices to improve the

write-margin [117].

With regards to the conventional 8T bit-cell layout, length increase by approxi-

mately 40% of the read-buffer devices can be achieved with nearly no area overhead.

As shown in Figure 3-19, the layout height is limited by two minimum length NMOS

devices (Mi, 5 and M2, 6) that require an active-contact between them. However,

since the read-buffer devices require no contact to their intermediate node, their

lengths can be increased as shown. Additionally, the 8T bit-cell used in this design

requires row-wise control of the BffrFt node. This can be achieved with no addi-

tional overhead, as shown; in this manner, the BffrFt node is shared by two rows,

but the resulting increase in bit-line due to BffrFt activation in the unaccessed cell

is negligible. If VVDD control is not required (i.e. the write-margin is sufficiently

enhanced by storage-cell sizing and device engineering, as suggested in Section 3.1.1),
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Figure 3-18: Read-current gain as a result of read-buffer upsizing (a) via width
increase, and (b) via length increase (taking advantage of reduced variability and
RSCE).

the remainder of the layout can be left unchanged.

In this design, however, VVDD control is required to ensure that the write-margin

does not limit voltage scaling. Further, logic design rules are used (instead of SRAM

rules), leading to a larger bit-cell layout that must be redesigned to minimize area.

The final layout used is shown in Figure 3-20, where all devices have been rotated,

isolating the VVDD node. Additionally, to share VVDD routing/contacts, RdBL rout-

ing/contacts, and PMOS N-wells, the row is physically folded [118], as shown in the
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Figure 3-19: 8T bit-cell layout with read-buffer upsizing and BffrFt control (but no

VVDD control).

layout tiling.
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Figure 3-20: Final 8T bit-cell layout and folded-row tiling.

3.2.2 Sense-Amplifier Redundancy

An important consequence of using a non-column-interleaved layout (described fur-

ther in Section 3.2.3) is that adjacent columns can no longer share a sense-amplifier.

As a result, each column must have its own, making the area of each sense-amplifier

more constrained and increasing the total number in the entire SRAM. This scenario

stresses a general problem observed in deeply scaled technologies. Specifically, the

size of the sense-amplifiers has stopped scaling due to the trade-off between their sta-

tistical offset and their physical size [111]. In this design, that trade-off is managed in

part by using a "full-swing" sensing scheme, where the read-bit-line is allowed to dis-

charge completely. Considering the significant speed-up conventionally obtained by

small-signal sensing, this might seem like a drastic approach. However, as mentioned

in Section 3.2.1 the unaccessed read-buffers do impose some minimal droop on their
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RdBL due to gate and junction leakage. Conversely, as the RdBL voltage level falls,

the unaccessed read-buffers start to drive reverse sub-threshold leakage current from

their BffrFt nodes, which are at VDD, on to the RdBL node. The resulting droop

ultimately settles to approximately 120mV. Unfortunately, as mentioned in Section

3.1, read-current variation can cause the read-access time to extend almost arbitrarily,

and, in fact, it approaches the settling time of the transient droop. Consequently, in

this design, a static discipline is adopted that guarantees that the correct data value

can be sensed on the read-bit-line even after the read-current and droop transients

have settled. Specifically, this implies that the offset of all of the sense-amps must

be bound by the 120mV logic "1" level and ground logic "0" level of RdBL. To

achieve this offset under the imposed area constraints, sense-amplifier redundancy is

employed, as described in the following sub-sections.

Sense-Amplifier Offset Sources

Offsets in sense-amps come about as a result of global and local-variation in their

devices [41]. Here, global-variation refers to die-to-die variation in devices, and local-

variation refers to mismatch between devices within the same die placed close to each

other. Global-variation can affect all of the NMOS devices on the chip differently

than the PMOS devices, thereby, for instance, skewing the switching threshold of all

inverters. Alternatively, local-variation can affect the switching threshold differently

for each inverter.

Importantly, the effect of global-variation can be cancelled by using a differential

sense-amp, as shown in Figure 3-21. The symmetry in this structure ensures that the

devices in its two branches will not be subject to systematic differences in process

variation. Of course, the 8T bit-cell of this design uses a single-ended read-buffer

and is incompatible with differential sensing. Accordingly, pseudo-differential sensing

is used, where the actual read-bit-line drives one of the inputs in Figure 3-21, and

an off-chip reference drives the other high-impedance input. Although this off-chip

reference provides valuable testability support, for a more integrated solution, the

PMOS input device on the reference side can be separated into two devices that are
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driven by replica columns providing the worst-case RdBL logic "1" and "0"' levels.

Assuming the reference is properly generated, the differential signal on the read-bit-

line that must be resolved is 60mV.

ENB

REF RdBL

Q

ENB ENB

Figure 3-21: Differential sense-amp structure cancels effects of global variation.

The remaining source of offset is local-variation, which is modeled as a random

effect whose standard-deviation is inversely related to the square-root of the device

areas [119][120]. This gives rise to the area-offset trade-off that is also shown in

the Monte Carlo curves of Figure 3-22. In this design, where there are a total of

1024 sense-amplifiers (as discussed in Section 3.2.3), considerable up-sizing would be

required to keep the number of failures from offset to an acceptable limit.

Sense-Amplifier Redundancy Concept

As shown in Figure 3-23, sense-amplifier redundancy requires that the read-bit-line

(RdBL) from each column be connected to N different sense-amplifiers. Each of

these has the differential structure shown in Figure 3-21, so their offsets are from

local-variation, and they are therefore non-systematic and uncorrelated. Only one

sense-amplifier from among the N is selected, whose offset is bound by the high and

low logic levels of RdBL. So, if the selection can be made correctly, only one of the N

sense-amplifiers must have sufficiently low offset. A similar approach has been applied

to flash ADCs to achieve minimal offset in the thermometer coded comparators [121].

Importantly, though, the total area for all of the sense-amplifiers is constrained.

So, increasing the amount of redundancy means each of them must be smaller. For
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Figure 3-22: Monte Carlo simulations of sense-amp statistical offset; at expected
input swing (i.e. 60mV), errors from offset are prominent.
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Figure 3-23: With sense-amplifier redundancy, each RdBL is connected to N different
sense-amplifiers.

example, as shown in Figure 3-24a, if N equals 2, each must fit into half the allocated

area, and, if N equals 4, each must fit into a quarter of the allocated area. Unfor-

tunately, reducing the size of the individual sense-amplifiers in this manner increases

the standard-deviation of their offset distribution, and correspondingly increases their

probability of error. Specifically, the offset distributions in Figure 3-24b are derived

from Monte Carlo simulations of sense-amplifiers designed to occupy a layout active

area of 40[m 2, and the error probability for an individual sense-amplifier, PERR,N, is

defined as the area under its distribution where the magnitude of the offset exceeds

the input voltage swing expected on RdBL. Here, it is clear that, due to the necessary
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reduction in its size, the error probability for an individual sense-amp increases as

the amount of redundancy, N, increases. However, the ability to select one structure

with sufficiently small offset means that the error probability for the entire sensing

network is the joint probability that all of the individual sense-amplifiers yield an

error. The total error probability, PERR,tot, is given by the following:

PERR,tot = (PERR,N)N (3.1)

Input., ,
Swing , *

Sense-Amp Area I

(N=1) (N=2) (N=4) (N=8)
P
S~ E R, 2H H E R,8 P

S Column Pitch -0.1 -0.05 0 0.05 0.1
Differential Input Swing (V)

(a) (b)

Figure 3-24: With sense-amplifier redundancy (a) the size of each individual sense-
amplifier must decrease, and (b) the individual sense-amplifier error probabilities,
defined as the area under the offset distribution exceeding the magnitude of the input
swing, increases.

The resulting error probabilities for the overall sensing networks are plotted in Figure

3-25 normalized to the error probability of a single, full-sized sense-amplifier. As

shown, increased levels of redundancy result in significantly reduced overall error

probabilities, and at the input swings expected in this design (i.e. >50mV), the

resulting improvement can be well over an order of magnitude. Further analysis of

sense-amplifier redundancy, considering its precise area overheads and how it scales

with increasing device variability (expected in future technologies), is undertaken

below.
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Figure 3-25: Increased levels of redundancy significanly reduce the error probability
in the overall sensing network.

Sense-Amplifier Redundancy Implementation

The actual implementation of redundancy used in this design incorporates two sense-

amps (i.e. N = 2). The analysis above considers a general case of up to N = 8, but at

those levels, the total area must be large enough to accommodate at least 8 minimum

sized structures, and the overhead of the selection logic, which is not considered,

becomes significant (the analysis is revised below to consider this overhead). With

N = 2, the selection logic can be reduced to just two latches and two logic gates.

The rest of the selection circuitry is shown in Figure 3-26. Here, a reference bit-cell

is used with both "0" and "1" read-data values hard-wired. This cell gets accessed

once on power-up, and it enforces the case where the read-bit-line is first pulled low,

and then where it remains high. Fortunately, the logic "1" and "0" levels of the read-

bit-lines are fairly independent of variation between the accessed bit-cells; specifically,

logic "0" is consistently very near ground, and, as mentioned, logic "1" is set by the

aggregate gate, junction, and reverse sub-threshold leakage from all of the read-buffers

sharing each read-bit-line. Then, to force the worst-case logic "1" condition, all of the

bit-cells in the array must first be written with data that ensures the gate-voltage of
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their read-buffer driver-device (i.e. M7) is zero, minimizing the reverse sub-threshold

current. This can be done in one cycle by simultaneously enabling all word-lines.

Consequently, under a static discipline, the wide distribution in read-current does

not limit the integrity with which the dummy cell emulates each logic level. Then,

the simple state machine in Figure 3-26 determines which of the sense-amps can

correctly resolve each logic level, and only the corresponding structure is enabled. If

both sense-amps work, the first one is selected, and if neither work, the entire SRAM

fails.

Figure 3-26: Redundancy selection circuitry consisting of a dummy bit-cell and se-
lection state-machine.

Figure 3-27 shows the normalized overall error probability for the sensing-network

with the sense-amp sizes actually used in this design. As shown, at the input swings

of interest (i.e. 60mV), the error probability improves by approximately a factor of

five compared to a single full-sized sense-amp.

106



o 0 .8 -... ...... .... ..

N S........... ..... .......

O.

- 0 .2...................
0

0.2 .
0

0
0 0.02 0.04 0.06

Input Voltage Swing (IVI)

Figure 3-27: Overall error probability for implemented sense-amp redundancy scheme
improves by a factor of 5 compared to a single sense-amp scheme.

Redundancy Analysis with Technology Scaling and Overhead

Sense-amplifier redundancy shows promise for easing the area-offset trade-off. How-

ever, to evaluate it in a practical scenario, the overhead of the sense-amplifier selection

circuitry must be considered. Furthermore, how the benefit of the technique scales

with technology is also critical, since it is meant to enable sense-amplifier density

scaling at a similar rate as bit-cell density scaling. For this analysis, the case of

N = 2 (i.e. two sense-amplifiers total) will be considered, since this requires minimal

overhead circuitry.

Figure 3-28 shows the overhead selection circuitry required for each sensing-

network (i.e. one per RdBL). Here, a 6T storage-cell is used to store the state

corresponding to the selected sense-amplifier. Then, at power-on, gSET is asserted,

initializing the wrEN flip-flop. This allows simultaneous control across all column

sensing-networks to selectively enable each of the redundant sense-amplifiers so that

all columns can be tested at once using their corresponding hard-wired reference bit-

cell. Additionally, however, the wrEN flip-flops from the columns are connected to

each other to form a shift-register. Subsequently, this shift-register provides individ-

ual and successive assertion of wrEN for each sensing-network so that the desired
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sense-amplifier can be permanently enabled on a column-by-column basis. The sense-

amplifiers themselves have the structure shown in Figure 3-21, and the input reference,

REF, is set to 0.06V, based on the read-bit-line logic levels expected from simula-

tions. Finally, the sense-amplifier ENB signal is driven by a local NAND gate of

minimum size. Generally, the ENB transition time can have an impact on the sense-

amplifier offset originating from device geometry mismatch and output capacitance

mismatch [113]. However, at low-voltages the relative impact of these offset sources

is greatly reduced compared to threshold-voltage mismatch, diminishing the need to

further reduce the ENB transition time.

VVDD

storage n ENB1

cell

saSEL
saSELB

gEN

D Q

SET

shSEL
gSET

Figure 3-28: Sense-amplifier redundancy overhead circuitry for the case of N = 2.

The sensing-networks for both N = 2 and N = 1, which corresponds to just

one full-sized sense-amplifier with no selection circuitry overhead, are layed-out in

65nm CMOS to occupy a total area (Atot) of 40/m 2 each. To consider the impact

of technology, scaling, the dimensions of all devices are reduced by 2v for 45nm, 2

for 32nm, and 2V2 for 22nm, and it is assumed that the layout area scales accord-

ingly. For the 32nm and 22nm technology analysis, simulations are performed using a

predictive technology model where it is assumed that the threshold-voltage matching

co-efficient, AvTO, (i.e. o7Vt x /-W--L) [122] is the same as that of the 45nm devices.

Though challenging, in reality, efforts to improve the matching co-efficient are always

pursued [123][124][125].
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Figure 3-29 shows the overall error probability for the N = 2 sensing-network

normalized to that of the N = 1 sensing-network. The results are derived from 10k

point Monte Carlo simulations, and curves are plotted until the input voltage swing

exceeds the offset observed from all samples of the respective N = 1 sensing-networks

(i.e. where their probability of error is too fine for the simulation resolution).
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Figure 3-29: Normalized sensing-network (N = 2) error probabilities for different
technologies and layout areas.

As shown, the selection circuitry overhead, which reduces the active area available

for the sense-amplifiers, degrades the benefit of sense-amplifier redundancy somewhat

(compared to the result in Figure 3-27). Additionally, the normalized improvement

also degrades slightly with respect to technology scaling. Nonetheless, Figure 3-

29 shows that sense-amplifier redundancy provides significant improvement in the

sensing-error probability, well beyond the 45nm node, even as the total sensing-

network area is aggressively scaled from 40pnm2 to 5[tm2.
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3.2.3 Test-Chip Architecture

The 256kb SRAM is partitioned into eight bit-cell sub-arrays consisting of 128 columns

and 256 rows (32kb), as shown in Figure 3-30. Each cycle, all 128 bit-cells from a

row are accessed. No additional delay is required when selecting different sub-arrays,

and reads and writes may be performed on consecutive cycles.

Figure 3-30: Prototype test-chip architecture, with total capacity of 256kb partitioned
in eight sub-arrays.

3.2.4 Measurements and Characterization

The prototype incorporating the 8T bit-cell of Section 3.2.1, the peripheral assists,

and sense-amplifier redundancy, is implemented in an 65nm LP CMOS technology.

A die photograph of the 256kb prototype is shown in Figure 3-31. Measurements are

performed by writing and reading two sets of test patterns: (1) checker-board pattern
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and its complement over each array, and (2) binary count and its complement down

the rows of the array.

The prototype achieves full read and write functionality down to 0.35V (which is

well below the device threshold voltages), and it retains data down to 0.3V, indicating

that the bit-cell and peripheral assists are successful at enabling a VDD that is close

to the data-retention limit. The following sub-sections describe the characterization

results of the prototype with regards to its leakage power, active performance, and

active power.

E

1.89mm

Figure 3-31: Die photo of prototype low-voltage SRAM.

Leakage Power

Figure 3-32 shows the leakage power of the SRAM with respect to supply voltage

for O0C, 27C00, and 750C. At the minimum VDD of 0.35V, the total leakage power

is 2.2pW, representing over a factor of 20 in leakage power savings compared to a

supply voltage of 1V. As mentioned, the SRAM also retains data down to 0.3V where

the total leakage power is 1.65pW.

The area and leakage power of this SRAM can be compared to a conventional 6T

design, and the 10T sub-threshold design in [101]. From the actual cell layouts, this

design represents an area overhead of approximately 30% compared to a 6T design
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Figure 3-32: Prototype SRAM leakage-power; at the minimum VDD Of 0.35V, the
entire SRAM draws 2.2/pW of leakage-power.

and an area savings of approximately 30% compared to the 10T design. Additionally,

the leakage power savings of this design, compared to a conventional 6T design, with

a projected VDD of approximately 700mV [57][126], is over 5x.

Active Performance

Figure 3-33 shows the active read and write performance of the prototype SRAM

with respect to the supply-voltage. As expected, the speed is significantly reduced in

sub-threshold, and at 0.35V, the SRAM operates at 25kHz.

Active Power

Figure 3-34 shows the total (i.e. active plus leakage) power, in the solid curves, and

just the leakage power, in the dotted curves, with respect to the operating frequency.

The leakage power remains a dominant portion of the total power for a wide range

of frequencies, so leakage minimization efforts are well justified.
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Figure 3-33: SRAM speed with respect to VDD.
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Figure 3-34: Total power (solid curves) and leakage power (dotted curves) with respect
to operating frequency.

3.3 Summary and Conclusions

The effects of voltage-scaling on SRAMs are severe. In particular, standard tech-

niques, especially with respect to the bit-cells (i.e. 6T), fall short for reliable operation
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at the low voltage (i.e. < 0.5V) necessary for highly energy-constrained applications.

The severe effect of variation intolerably degrades the read and write margins, though

the hold margin is maintained down to the target supply-voltage. Additionally, how-

ever, in the presence of bit-line leakage, read-current degradation affects not only

performance, but also the ability to sense read-data on the bit-lines.

SRAMs respond much more poorly to voltage scaling than generic logic circuits

because the solutions specifically prescribed to enable voltage scaling in logic directly

oppose the density and area-efficiency enhancing techniques employed by SRAMs.

Accordingly, the simultaneous need to improve density and voltage scalability de-

mands specialized approaches for the bit-cells and sense-amplifiers; the address de-

coders and word-line drivers, whose density is less critical and whose operation is

similar to full-swing logic, can leverage the approaches that are effective for generic

logic.

With regards to the 6T bit-cell, the trade-off inherent between read-margin and

read-current implies that the viable means to improve the read-margin is through

device up-sizing in order to manage variation. However, area comparison in the

presence of variation suggests that the 8T topology holds much greater promise for

low-voltage operation. Additionally, it increases the options for write-margin, read-

current, and sensing-margin (i.e. bit-line leakage) optimization by way of sizing,

device-engineering, and selective biasing using peripheral circuit assists. Accordingly,

the described prototype employs an improved 8T bit-cell that relies on low-area-

overhead peripheral assists to achieve complete operation down to 0.35V.

Finally, redundancy, which is heavily relied upon to manage statistical failures at

the 4 or 5o level in typical bit-cell arrays, is valuable in the periphery when statisti-

cal failures, at even the 3o level, become too significant, as they do at low-voltages.

Of course, the benefits of redundancy must be evaluated against the overhead it

introduces. Further, its effectiveness must be considered with regards to aggressive

density scaling in advanced technologies where variation has increased severity. Anal-

ysis shows that redundancy of the sense-amplifiers, which are emerging as a critical

limitation to array density scaling, improves their area-offset trade-off significantly
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into the 22nm node, despite the associated area overhead.
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Chapter 4

Performance Enhancement for

High-Density SRAMs

In order to minimize sub-array energy, the analysis in Chapter 2 points to the need

to enhance SRAM performance without raising the supply-voltage or reducing the

threshold-voltage. Specifically, a reduced active access-period, TAcc, implicitly low-

ers the leakage-access-energy or, even more significantly, allows further supply- and

threshold-voltage reduction, which optimizes the energy for a given performance con-

straint. Although a variety of techniques, including parallelism and pipelining [4], ex-

ist in order to improve the performance of general logic (and promote voltage scaling),

SRAM design is highly constrained by its structure and need to maximize density,

hence requiring very different approaches. For instance, in high-density, low-power

sub-arrays, bit-line discharge (by the accessed bit-cells) poses the critical limitation

to access-time, and unlike with multi-stage or parallel data-paths, it cannot be de-

composed physically or logically to reduce the overall delay. Further, as described in

detail in this chapter, density and noise margin constraints in 6T bit-cells severely

limit the options for addressing this critical delay. 8T bit-cells (or other asymmetric

topologies) alleviate these limitations greatly, but they increase the complexity of

bit-line sensing. Of course, the sense-amplifier itself plays a key role in determining

the overall access-time as well, and for both these reasons, it can greatly impact the

performance achievable by the sub-array at a given supply- and threshold-voltage.

117



Importantly, however, sense-amplifiers face their own density-offset trade-offs, which

have increased severity in advanced technologies to the point of posing a primary

challenge within high-density sub-arrays. Accordingly, this chapter investigates a

sensing approach to address sub-array performance while maintaining bit-cell and

sense-amplifier density.

Since energy remains the paramount concern, the analysis is undertaken with

consideration to low-power technology optimizations. The target technology used

to demonstrate the proposed techniques is 45nm LP CMOS, which highlights the

variability associated with density maximization. Additionally, the sensing approach

is applied to 0.25pum 2 6T bit-cells, which are the densest achievable in the target

technology and further emphasize noise margin and read-current limitations. Since

8T (and other asymmetric) bit-cells hold increasing promise for low-energy SRAMs,

the issues associated with single-ended sensing are specifically considered.

The following sections start by identifying the challenges associated with both

bit-cells and sense-amplifiers that limit SRAM performance. Then, the advantages of

single-ended sensing, both for alleviating the performance limitations and enabling ag-

gressive voltage scaling, are investigated. Finally, the prototype testchip is presented

that demonstrates a single-ended sense-amplifier to address the critical performance

limitations.

4.1 High-Density SRAM Performance Challenges

Both the bit-cell array and the bit-line sense-amplifiers are critical factors in deter-

mining the overall performance of the SRAM sub-array. This section describes the

basic trade-offs and challenges inherent in both of these in high-density designs.

4.1.1 Bit-Cell Read-Current

The most urgent performance challenges in bit-cells arise from extreme variation. In

the 6T topology this raises an inherent trade-off between read SNM and read-current,

severely limiting the sub-array performance improvement achievable by way of bit-cell
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design alone. As mentioned, the 8T bit-cell (and several other asymmetric topologies)

overcome this trade-off, leading to significant overall performance improvement (as

discussed in Chapter 3).

IRD/CBL Degradation

Low-power SRAMs must incur the reduced read-current that comes with technology

optimizations to manage leakage-currents, such as raising Vt. Figure 4-la shows

how the read-current of a 6T bit-cell scales further with cell size. The reduction in

mean read-current is a direct consequence of reducing the size of the driver devices.

However, the increased variation in the smaller devices also results in more severe

degradation to the weak-cell read-current in proportion to this already reduced mean

read-current. For instance, at the nominal voltage of 1.1V, the 5a read-current for the

6T 0.25upm 2 cell is easily degraded by an additional factor of two, and, as mentioned

in Chapter 3, the degradation is even more severe as supply-voltage is reduced.
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Figure 4-1: Degradation in bit-line discharge time for high-density SRAMs caused by
(a) reduced cell read-current and (b) increased bit-line capacitance.

Furthermore, in high-density arrays, the integration of many cells per bit-line

(up to 256) in order to maximize array area-efficiency, leads to very large bit-line

capacitance. As shown in Figure 4-1b, the resulting ratio of RD, which is critical to
CBL

the array's performance, suffers even further.
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6T Read SNM Degradation

In 6T cells, increased variation in the highest density bit-cells degrades the read SNM

in the same manner as the read-current [79]. Figure 4-2a shows this reduction (at the

5cr level) as the cell area is scaled. Once again, this result is at the nominal voltage of

1.1V, but the impact is even more severe with supply-voltage scaling. Thus, in high-

density 6T bit-cells, read-current and read SNM, which are both critical metrics, are

simultaneously stressed. Exacerbating the matter even further, these metrics exhibit

a strong inverse correlation, as shown in Figure 4-2b [127]. As mentioned briefly in

Chapter 3, this comes about as a result of the bit-cell access-devices, which must be

strong for maximum read-current but weak for maximum read SNM. Unfortunately,

then, optimizations targeting one are likely to worsen the other. Nonetheless, for

functionality, read SNM remains the paramount concern, and cell design trends and

circuit assists preferentially aim to improve it, leading to further reduction in read-

current [39].
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Figure 4-2: Read SNM trade-off in high-density SRAMs limited by (a) cell size and
(b) inverse correlation with cell read-current, caused by opposing access-device re-
quirements.

Density and stability trade-offs imply the urgent need for an alternate method

to recover the ensuing loss in array performance. As mentioned in Section 4.2, 8T

bit-cells (which overcome this interdependence), impose the additional need for single-

120



ended sensing.

4.1.2 Sense-Amplifier Delay and Uncertainty

The total read access-time depends on both the bit-line discharge delay and the

sense-amplifier delay. This section considers the factors affecting the sense-amplifier

delay and those related to the sense-amplifier offset; offset sets the required bit-

line discharge, thereby strongly affecting the overall delay. Further, just like offset

is managed by increasing the timing margin, strobing timing variation introduces

timing uncertainty, raising the need for additional timing margin and further limiting

the overall delay.

Sense-Amplifier Delay

Two commonly used strobed sense-amplifiers are shown in Figure 4-3. The delay

of these structures, after assertion of the STRB signal (whose own impact is con-

sidered in detail below) can be separated into two phases [128]: 1) development of

output differential, and 2) regeneration of output. Though output differential begins

developing (somewhat regeneratively through the NMOS devices) immediately after

STRB assertion, full regeneration is defined to begin after the PMOS loads turn-on,

actively pulling-up one of the output nodes.

RSTB RSTB
RSTB F RSTB

OUTB OUT

IN/OUT INB/OUTB

Ml M2 IN M M2 INB

STRB MS 
M3

(a) (b)

Figure 4-3: Conventional strobed sense-amplifier topologies with (a) one input-output
port and (b) separate input-output ports.

Output differential (which is also the input differential in the case of the first
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sense-amplifier) is developed through the NMOS pull-down devices (MI - 3). As a

result, it depends on the initial input differential and the NMOS transconductances.

Of course, the initial input differential, after full assertion of the word-line, depends

on the bit-cell read-current and the bit-line capacitance. On the other hand, the

delay to regenerate the outputs to restored logic levels depends primarily on the

initial output differential, which is amplified at an exponential rate. Consequently, a

large inital output differential reduces the delay of the rail-to-rail output regeneration

phase. However, as expected, techniques to generate a large output differential can

considerably extend the first phase, and, as a result, the overall optimal conditions

are highly dependant on implementation parameters, including the rate of bit-line

discharge and the sense-amplifier structure used.

For instance, reducing the input common-mode voltage, VN, CM, reduces the

strength of both NMOS pull-down paths, leading to increased time for output differ-

ential development; however, the proportional reduction in strength of the pull-down

path associated with the drooping bit-line is increased, resulting in larger output

differential at the start of the second phase. Hence, rail-to-rail regeneration occurs

more quickly. Accordingly, in [128], the optimal delay for the sense-amplifier consid-

ered is achieved with an initial bit-line precharge voltage at approximately 80% of

VDD. It is important to note, however, that although slightly reducing the bit-line

precharge voltage can improve the read SNM, it degrades the bit-cell read-current

(with increasing impact in advanced technologies).

Reducing the transition rate of the STRB signal has a similar effect to reducing

the bit-line precharge voltage. It, once again, reduces the strength of both NMOS

pull-down paths, increasing the delay of the first phase (i.e. output differential de-

velopment) but also resulting in a larger output differential at the end of this first

phase. In [113], the optimal delay for the entire access-time is achieved by slowing

the STRB edge delay to over twice its minimum transition time.
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Sense-Amplifier Offset

Sense-amplifier offset leads to an increase in the bit-line droop required in order to en-

sure correct data read-ability, extending the read access-time. The trade-off between

device up-sizing and offset is well known, both with regards to area, which affects

Vt variation [119][120], and linear length and width, which affects geometry variation

[122]. This trade-off is the primarily limitation to sense-amplifier area scaling, which

is emerging as a dominating limitation in high-density sub-arrays [111].

The bias conditions of the sense-amplifier devices also strongly impact its overall

offset in the presence of variation. For instance, during the first phase (i.e. output

differential development), lowering the gate overdrive (VGS - Vt) of the input devices

(M1 - 2) reduces the relative impact of geometric and load-capacitance imbalance

between the two sense-amplifier branches compared to the intended input voltage

imbalance. As a result, offsets due to geometry and capacitance variation lead to

reduced input offset [129][130]. This serves as motivation to minimize the edge rate

of the STRB signal, which is shown to reduce offset by over 40% [113]; and it serves

as motivation to reduce the bit-line precharge voltage, which improves the sensing

yield by over 30% (for a 60% reduction in the precharge voltage) [128].

In addition to sense-amplifier offset mitigation through device sizing and bias-

ing, various forms of active offset cancellation have also been investigated. For in-

stance, the DRAM designs in [131] and [131] actively bias the bit-lines to compen-

sate the sense-amplifier's input offset. Since the bit-line capacitance is quite large,

these schemes can lead to long offset-compensation phases and high power consump-

tion. Alternatively, the offset can be compensated by triming the discharge rate of of

the sense-amplifier's differential branches; using switchable current-sources and load-

capacitors, this can be accomplished with a highly digital scheme [132][133], though

an explicit calibration phase and control circuitry is necessary.
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Sense-Amplifier Strobing Uncertainty

The sense-amplifier strobe signal must ensure that enough time is allocated for bit-

line discharge to overcome the sense-amplifier offset. However, as shown in Figure

4-4a, the bit-line discharge time depends on the delay through the array read-path,

which is limited by the weakest bit-cell. Such a cell, whose statistical characteristics

might be beyond the 5a level, is impossible to replicate in the strobe control path.

Consequently, as shown in Figure 4-4b, the timing of the two paths diverges greatly

over process, voltage, and temperature corners [134], even if carefully laid-out SRAM

devices are employed in the strobe path, as in [135].

For this simulation, the read-path is designed to overcome a sense-amplifier offset

of 50mV, and an array configuration of 256 x 256 is considered; however, the strobe

path must be designed such that it is longer than the array read-path in all cases.

As shown in Figure 4-4b, this implies that in many cases it will be much longer

than it needs to be, thereby excessively limiting the overall performance. In fact, the

overall worst-case delay need only be 820ps based on the read-path delay; however,

the actual worst-case delay is 980ps, limited by the strobe-path, imposing an excess

overhead of nearly 20%. To recover this, designs such as [134] have gone as far as

using temperature sensors to adjust the relative read-path and strobe-path delays, and

automatic compensation based on process and voltage can be even more challenging.

4.2 Single-Ended Sensing

With regards to the bit-cell, one way to address the severe read SNM limitation and

independently improve the read-current is to use an alternate structure. Asymmet-

ric cells, including 6T [97], 7T [127], and 8T [93] topologies, can have much wider

operating margins and significantly increased read-current, making them particularly

compelling in the face of increasing variation [103][13][136]. However, none of these

provides a differential read-port, and, therefore, they require a compatible means for

efficient single-ended sensing.

The most common technique used with single-ended-read bit-cells is full-swing
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Figure 4-4: Array read-path and sense-amplifier strobe-path (a) limited by match-
ing to 5a bit-cell and (b) exhibiting severe delay divergence over process-voltage-
temperature conditions, leading to excess overall delay.

sensing [111]. Here, the read bit-line must discharge almost completely so that the

read data can be detected by a sensing structure that may be reduced to essentially

a logic gate. This, however, leads to excess active-switching energy, and, in order

to maintain performance, bit-line discharge times must be reduced by enhancing

the read-current and minimizing the bit-line capacitance. Since altering supply- and

threshold-voltages impacts the energy, this implies the need for large bit-cells and very

125



short bit-lines. Unfortunately, both of these directions severely degrade the density.

Alternatively, small-signal sensing can be retained by employing a pseudo-differential

sense-amplifier, as in [137]. However, the need to generate a complementary reference

is unavoidable, and, importantly, it must track all operating conditions even with re-

spect to cells in the tails of the arrays statistical distribution. As a result, design and

testability of the complementary reference is highly complicated.

Noise Sensitivity

An important draw-back to any single-ended sensing scheme is the loss of common-

mode noise rejection capability on the power-supplies, bit-lines, and substrate. Since

no distinction can be made between noise on the bit-line and read-data droop, it

becomes critical to ensure a desired level of bit-line noise-margin. Consequently,

an inherent trade-off is introduced between sense-amplifier input sensitivity, which

ultimately affects the sub-array's performance, and its robustness to noise. For power-

supply and substrate noise, though there is no inherent trade-off between sensitivity

and noise-rejection, it is critical to characterize the sense-amplifier's noise margins.

This can be extremely challenging since, in general, phase and frequency content of

the transient noise can change its impact on the sense-amplifier as they do for bit-cells

[138].

4.3 High-Density SRAM Prototype

In this section, a sense-amplifier designed to maximize the performance of high-density

low-power arrays is presented. It is prototyped in an 45nm LP CMOS process and

integrated with a 64kb array composed of 0.25,pm 2 bit-cells. The high-density bit-

cells and low-power technology optimizations stress read-current limitations, and the

array configuration (256 x 256) stresses read-bit-line capacitance, which all lead to

long discharge times.
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4.3.1 Non-Strobed Regenerative Sense-Amplifier

The non-strobed regenerative sense amplifier (NSR-SA) shown in Figure 4-5 ad-

dresses the limitations described in Section 4.1. Two cascaded inverters (MI - 2

and M3 - M4) form an amplification path that is self-biased for high-gain by the

feedback switches, SAZ. As described below, these also perform offset-compensation

of the inverter amplifiers via input auto-zeroing [139]. Importantly, to support small-

signal sensing, which greatly improves the density, performance, and power trade-offs

of the array, the large gain required is achieved most efficiently through regeneration

[140]. Accordingly, the regenerative device, M5, provides very large positive-feedback

gain. A critical feature is that regeneration requires no external enable or strobe sig-

nal, thereby overcoming the severe tracking uncertainty described in Section 4.1.2.

Instead, the ideal DC transfer function, shown in Figure 4-5, is implemented in contin-

uous time, and the precise point at which regeneration is enabled depends only on the

input bit-line voltage (with respect to the internal reference, VTRIP). Further, VTRIP

is very stable despite variation since it is generated implicitly by the original auto-

zeroing, and, additionally, its precise value can be selected by design. Accordingly,

this sense-amplifier, which is single-ended and compatible with asymmetric bit-cells,

can enforce a desired balance between sensitivity and noise-rejection.

Inverter amplifiers

RSTB M2 : M4RST&-

SAZ : : SAZ

IN sAQB

Regenerative M i M3 M6 t
feedback ...

device* i. SREG Infinite gain

M5I -4-at VTRIP

SREG

VTRIP VDD-IN

Figure 4-5: Non-strobed regenerative sense-amplifier (NSR-SA) schematic and ideal
transfer function.
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Basic Operation

The NSR-SA operates over two phases: reset and detection. The reset phase occurs

during SRAM bit-line pre-charge, where the sense-amplifier does not need to detect

bit-line droop. Hence, this time is used to perform self-correction of offsets via auto-

zeroing. The detection phase corresponds with bit-line discharge, where the actual

read-data must be quickly resolved. Details of the reset and detection phases, as

well as how they overcome the need for output-register clocking-margin, are provided

below:

(1) Reset Phase. The purpose of the reset phase is to charge the internal nodes

so that the inverters formed by M1 - 2 and M3 - 4 are biased in their high-gain

regions very close to their ideal trip-points. Simultaneously, this initializes the

regenerative device, M5, such that its positive feedback gain is very low.

Although the reset phase occurs during bit-line pre-charge, it is actually meant

to occupy only a small portion of this period. For instance, as shown in Figure

4-6, a short RST pulse is asserted (even its duration as shown is much longer

than required). During this time, the input node and output stage (M6) are pre-

charged, while, simultaneously, the negative feedback switches, SAZ, are closed

and the regeneration switches, SREG, are opened. Consequently, as shown in

Figure 4-6, nodes X and Y get biased to mid-rail voltages at the inverter trip-

points, which are nominally designed to be equal. Offsets can lead to differences

in their precise value, but the offset compensation analysis describes how this

biasing greatly attenuates the errors.

It can be seen that nodes X and Y settle to their required reset values in less

than 100ps, implying that only a very small RST pulse is required. It should be

noted, however, that while nodes X and Y remain at these mid-rail voltages, a

static current path exists through M1 - 2 and M3 - 4. As discussed in Section

4.3.3, however, the total power overhead introduced as a result is small.

(2) Detection Phase. Following reset, bit-line discharge must be detected. First,

the case where the bit-line remains high at its pre-charge value (i.e. logic
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Figure 4-6: NSR-SA circuit and waveforms during reset phase.

"1") will be considered. Here, the bit-line voltage, BL, remains unchanged,

so all internal voltages remain essentially at their reset bias values. For in-

stance, as shown in Figure 4-7, after the negative feedback switches, SAZ, are

opened, nodes X and Y remain unchanged aside from small perturbations aris-

ing from charge-injection errors from the SAZ switches (which will be addressed

below with consideration to false regeneration immunity). Accordingly, when

the SREG switches are closed to enable M5 and M6, the VGs of these devices re-

mains very small; in fact, it is even designed to become slightly negative thanks

to charge-injection errors originating from the specific choice of the devices used

to implement the SAZ switches (this is discussed further later). As a result, the

output logic level of QB = 0 is sustained. Of course, bit-line leakage arising from

the unaccessed cells sharing BL can compromise the logic "1" value, leading to

detection errors. Although the NSR-SA's BL noise-margin can be designed to

reject these (as discussed with regards to the regeneration trip-point design),

maximum-leakage simulations in the target LP process indicate that, for the 256

cells/BL configuration considered, the nominal NSR-SA rejects bit-line leakage

for access-times up to 35ns, which are much longer than the target delays.
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Figure 4-7: NSR-SA circuit and waveforms during detection phase (for both bit-line
logic cases).

Alternatively, in the logic "0" case, also shown in Figure 4-7, an intentional bit-

line droop is detected. Here, the voltage of node X rises rapidly as a result of the

inverter gain, and the voltage of node Y decreases even more rapidly as a result

of the cascaded inverter gains. Correspondingly, at some point the regenerative

device's (i.e. M5's) VGS, which is the difference between the voltage of nodes

X and Y, becomes large enough that the device turns on, triggering positive

feedback. Subsequently, the input of the first inverter is actively pulled low,

and the entire NSR-SA quickly latches. The precise point where regeneration

is enabled can be seen at the annotated inflection in the waveform of node Y.

130



Shortly after this, the output, QB, quickly changes its state.

(3) Output Clocking Margin. As mentioned, an important feature of the NSR-

SA is that regeneration is triggered by the input bit-line droop itself, rather

than an explicit strobe signal. Nonetheless, the read data must ultimately be

clocked at the array output. However, as shown in Figure 4-8a, the timing

problem described in Section 4.1.2 has actually been overcome and not just

propagated to the subsequent output clock, OCLK.

4.5 5 5.5 6 6.5 7

0.5
c RS

4.5 5 5.5 6 6.5 7
S QB valid beyond

NSR-SA " PRE, until RST
1

c 0 > 0.5

C4.5 5 5.5 6 6.5 7

Time (ns)

(a) (b)

Figure 4-8: Output clocking (a) at array-level with (b) waveforms showing decoupling

from internal critical read-path.

By comparison, for instance, the strobe signal of a conventional sense-amplifier

must arrive during the bit-line discharge phase, before the next pre-charge phase

can begin. As a result, the timing of the strobe signal limits the critical read-

path inside the array. However, as shown in Figure 4-8b, the NSR-SA latches

the output without a strobe signal, and the output state remains valid until

the reset pulse is asserted. Since the reset pulse can be a small fraction of the

pre-charge phase, the output data can be clocked well after the pre-charge phase

begins, until the data is cleared by the reset pulse. As a result, the timing of

OCLK is decoupled from the critical read-path inside the array.
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Offset Compensation

For reliable small-signal sensing, stability of the input trip-point, VTRIP, is critical.

This is achieved by the autozeroed biasing enforced by the SAZ switches. To analyze

the effect of these switches, Figure 4-9a abstracts the inverters of the NSR-SA by

their logic symbol. Each of these inverters is modeled as being ideal and offset-free,

and the offsets are modeled as the series voltage sources, VOSl3, which are associated

with each inverter and the regenerative device.

Ideal inverter (with
trip-point VM)
/ \ SAZ

Figure 4-9: Offset compensation (a) technique and (b) analysis.

During the reset phase, the SAZ switches are closed, forcing the inverters into

negative feedback. Analytically, this implies that the input and output values of the

voltage transfer characteristic (VTC) must be equal, as shown by the diagonal line.

Accordingly, if the inverter is offset-free, as in the case of the solid VTC, its input

would settle to the voltage VAI, which is the ideal trip-point. However, offset shifts the

VTC to the left by an amount equal to Vos. Now, as shown by the dotted VTC, the
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input instead settles to a value approximately equal to VM - Vos. In particular, this

requires that the VTC is nearly vertical near these trip-points, which corresponds to a

large inverter gain. If this is the case, the resulting voltage of VM - Vos gets stored on

the preceding coupling capacitor. As a result, -Vos appears in series with the actual

Vos, canceling the offset-voltage and biasing each inverter to its ideal trip-point.

Complete offset cancellation in this manner, however, requires that the gains of

the inverters be infinite. Practically, the offset is only reduced by a factor equal to

the finite inverter gain [139], which is approximately given by gmro, where gm is the

transconductance and ro is the output resistance of the inverter devices. As shown

in Figure 4-9b, however, the residual offset of the second inverter stage is reduced

by an additional factor of gmro when input referred, which requires dividing by the

preceding inverter's gain. Finally, nothing explicit is done to manage the offset of the

regenerative device, but, once again, its contribution to the overall offset is very small

when input referred, since the gain from the input to its VGS is given by gmro + (gmro)2

through the inverter path. Accordingly, after all of the attenuation factors in Figure

4-9b, the offset of the first inverter dominates, but it is significantly reduced thanks

to the offset-compensation.

A Monte Carlo simulation of the access-time distributions for the NSR-SA and a

conventional strobed sense-amplifier is shown in Figure 4-10. In this context, access-

time includes the delay of the word-line driver, bit-line discharge, and sense-amplifier,

and it is measured from the word-line enable signal to the sense-amplifier output

valid. A 256-by-256 array configuration is considered with a mean bit-cell, so that

the variation in the sense-amplifiers can be isolated. The conventional sense-amplifier

has been sized for minimum offset while occupying a layout area of 12Pum 2 . In order

to determine the appropriate delay of its strobe signal, two factors are considered: (1)

the bit-line discharge required to overcome its offset and generate the correct output

within 200ps of strobe assertion, and (2) the timing-divergence of the array read-path

(as described in Section 4.1.2). Simulations of the standard strobed sense-amplifier

show that with an input much larger than the offset, approximately 70ps is required

after the arrival of the strobe signal in order for the output to regenerate to the correct
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state. Hence, the strobe signal is designed to allow enough bit-line discharge in order

to ensure a sense-amplifier delay less than 100ps. An additional delay of 160ps is

also inserted, based on process, voltage, and temperature (PVT) corner simulations,

to account for read- and strobe-path timing divergence over operating conditions.

Finally, the transition time of the strobe signal is set to 100ps.

As shown, the standard strobed sense-amplifier achieves good mean performance

thanks to its differential operation, as, nominally, it must wait long enough for only

a very minute differential to develop on the bit-lines. However, because it is more

sensitive to variation, its sigma is worse at 37ps, compared to 18ps for the NSR-SA,

and, therefore, it achieves slower worst-case performance.

2500

RST RST NSR-SA
2000 .. Mean:. 418ps.

IN Sigma: i18ps

1500 STR

gU,, . .
o Conventional SA

Mean: 500ps:
500 Sigma; 37ps

o 160 200 300 400 500 600 700
Access Time (ps)

Figure 4-10: 10k point Monte Carlo simulation showing improved sigma of NSR-SA

access-time compared to conventional sense-amplifier access-time.

In addition the statistical access-time distribution shown, the NSR-SA offset com-

pensation can also be analyzed by means of an input-output voltage transfer char-

acteristic in order to evaluate the stability of its trip-point, VTRIP. This analysis is

provided below, with consideration to noise-margins. Finally, the improved stability

achieved by the NSR-SA points to the benefit of offset compensation, but the next

limitation to its sigma comes from variation in the charge-injection errors introduced

by the SAZ switches.
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False Regeneration Immunity

Apart from residual standard deviation in the delay, an even more urgent failure

mode arising from charge-injection errors is that, in an amplifier with high gain and

regeneration, these can potentially result in resolution to the wrong output state,

from which recovery might not even be possible. For instance, in the NSR-SA, if

charge-injection errors were to cause the input of the first inverter to decrease and

the input of the second inverter to increase, the gain through the inverters would

cause a large positive VGS on the regenerative device, M5, causing the output to

transition and latch, regardless of the input bit-line voltage.

The NSR-SA exploits the fact that it only needs to respond to bit-line discharge,

not up-charge. As a result, regeneration only needs to occur in one direction, and the

charge-injection error sources can be designed to oppose that direction, as shown in

Figure 4-11. Specifically, the main device used for the first SAZ switch is a PMOS,

whose charge-injection errors tend to increase the input of the first inverter, and the

main device used for the second SAZ switch is an NMOS, whose charge-injection

errors tend to decrease the input of the second inverter. As a result, nodes X and

Y decrease and increase respectively, giving a negative VGS on M5, pushing it away

from false regeneration. While false regeneration can be avoided in this manner by

proper design of the SAZ switches, the effect of charge injection-error variation on the

NSR-SA's trip-point cannot. This is considered in more detail below with regards to

the noise margins.

Regeneration Trip-point

Although offset-compensation improves the stability of the NSR-SA in the presence

of variation, it is also important to set its nominal trip-point, VTRIP, based on speed

and noise-rejection considerations. One way to achieve this control is by adjusting the

reset voltages of nodes X and Y, which change the VGS of M5 and trim the amount

of additional bit-line discharge required to actually trigger regeneration. This can

be implemented, for instance, with the addition of an appropriately sized device at
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Figure 4-11: NSR-SA robustness to false-regeneration in the presence of charge-

injection errors.

the inverter outputs, as shown in Figure 4-12. This device can be either an NMOS

or PMOS (NMOS is shown) depending on the trimming required, and, with its gate

connected to an appropriate rail voltage, even a very small device (less than 0.2pm x

0.2pm) results in a wide range of output reset voltages (covering almost 0.3V in this

case).

Noise Margins

As mentioned in Section 4.2, noise on VDD, Vss, BL, and substrate all compromise

correct data-sensing by the NSR-SA. In particular, noise at these nodes can result in

false regenerations, which will be called output errors, and deviation from the intended

nominal input trip-point (VTRIP), which will be called input errors. As before, false

regenerations are the primary concern, since they directly imply erroneous sensing

and cannot be recovered from. However, in the presence of BL noise, input errors

also lead to erroneous sensing and degrade sensitivity by increasing the amount of
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Figure 4-12: NSR-SA technique to set regeneration trip-point (VTRIP) for noise-
rejection and sensitivity considerations.

nominal bit-line noise margin required.

As far as sensitivity to noise is concerned, generally speaking, the sense-amplifier

response depends on the precise phase and frequency of the relevant transients. As

a result, very specific transient analysis is required. Often, static analysis is used

as a conservative means to characterize noise response, and it has been observed

that for certain circuit structures (e.g. bit-cells), static analysis captures the worst-

case conditions [138][40] since the possibility of sustained noise is considered. In

general, unequal phase-delays to differencing nodes in the amplifier can lead to worse

conditions than those assumed by a static analysis; however, reset biasing in the

NSR-SA is meant to enforce balanced conditions throughout the gain path, and, as

a result, margins to sustained noise are characterized with the intention of gaining

a conservative estimate. As an example, Figure 4-13 shows how transient spikes

on VDD can affect the critical nodes (X/Y) of the NSR-SA without causing output

errors (Figure 4-13b); but sustained noise steps cause stringent noise conditions that

are more likely to cause output errors on QB (Figure 4-13c).

Since the NSR-SA relies on dynamic charge-storage to set the voltage of internal

nodes, a purely static analysis is impractical. Instead, the procedure shown in Figure

4-14 is used. Here, a transient simulation is performed, and during the RST phase,

the nominal value is applied to each of the noisy inputs (i.e. VDD, Vss, BL, and

SUB). However, immediately following RST, a deviation step is applied to one of
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Figure 4-13: NSR-SA (a) circuit showning noise sensitive nodes (X/Y), and (b)
reponse of X/Y due to transient spikes on VDD, and (c) Response of X/Y leading to
output errors on QB due to sustained step on VDD.
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the noisy inputs, and the value of that deviation is incrementally swept over the

simulation time. To derive a transfer characteristic with respect to deviation in the

noisy input (e.g. AVDD) , the output value (QB) is sampled 2ns after de-assertion of

RST, which is the longest read access-time expected.

Step deviation of noisy input
swept over simulation time

VDDVDD

Vss NSR-SA QB vDD
DL RST

SUBQ
A QB

.. .... ... .t............. ...............

QB output sample points

Figure 4-14: NSR-SA noise measurement simulation setup.

Using this simulation technique, the noise response of the NSR-SA is characterized

below:

(1) Bit-line noise. In determining the desired bit-line noise margin, it is worth

considering potential noise sources within the sub-array. Transitioning signals

that can couple to the bit-line include the bit-line precharge control (PRE),

column select control (cSEL), word-line (WL), and adjacent bit-lines. Proper

layout (including shielding) can minimize these but cannot guarantee elimina-

tion of their impact. PRE, cSEL, and WL couple to the BL as shown in Figure

4-15a. Both PRE and WL cause a positive noise step on BL. Although this

increases the bit-line droop required in order to cross the sense-amplifier trip-

point, it opposes false regeneration and can hence be overcome. On the other

hand, cSEL causes the net noise step on BL to be in the negative direction (by

nearly 5mV, as shown in the waveforms of Figure 4-15a), and noise margin is

necessary to distinguish between this noise step and intentional bit-line signal

droop.

In addition to coupling from transitioning signals, the substrate also couples
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Figure 4-15: Example bit-line noise sources originating (a) from precharge, word-line,
and column-select control signal coupling, and (b) substrate coupling.

to BL through the source/drain junction capacitances from the access-devices

of all bit-cells sharing the bit-line. The equivalent circuit is shown in Figure

4-15b. When the word-line is asserted, the bit-cells in the accessed row sink

read-current, which gets aggregated for the entire row and injected into the Vss

grid. The Vss grid is connected to the substrate (SUB), and assuming a highly

conductive substrate, the resulting voltage drop couples to the bit-lines through

the junction capacitances. Figure 4-15b shows the resulting bit-line noise for

a 256 x 256 array configuration. Here, the noise observed tends to increase the

voltage of BL (as compared to the dotted waveform), and hence does not require

additional noise margin. Nonetheless, as with PRE and WL coupling, the noise

increases the bit-line voltage droop required to trip the sense-amplifier.

Based on the predictable and unpredictable noise sources, two features of the
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NSR-SA are critical in order to balance the noise-margin and sensitivity require-

ments: (1) the ability to set the desired margin (i.e. input trip-point, VTRIP)

and (2) the stability of VTRIP over PVT conditions.

Figure 4-16 shows the input bit-line transfer characteristic derived using the

setup of Figure 4-14. Here, the transfer characteristic is derived in the presence

of process variation (both global and local) and temperature variation (voltage

is considered in detail below), and the NSR-SA is designed for a nominal input

noise margin of 100mV. For comparison, the transfer characteristic of two in-

verter configurations are also shown in Figure 4-17: (a) considers a single stage

inverter occupying the same active layout area as the NSR-SA and (b) considers

a two stage cascaded inverter occupying the same layout area. Compared to

these straight-forward inverter configurations, two features of the NSR-SA are

important. First, regeneration in the NSR-SA leads to a very steep transfer

characteristic. This greatly improves the speed with respect to bit-line droop,

but also the noise margin selectivity (i.e. ambiguity); specifically, the steep

output transition dramatically diminishes the impact of variation or noise in

determining the trip-point of the following read-out stage. Second, the stan-

dard deviation of the NSR-SA due to local variation in the devices is 12mV,

whereas those of the inverter configurations are 20mV and 26mV respectively.

Additionally, the deviation of the nominal VTRIP due to just global and tem-

perature variation (i.e. on top of local variation), is 28mV in the NSR-SA,

while that of the inverter configurations is llOmV and 98mV respectively. Fur-

ther, the additional complexity of setting the desired nominal trip-points in the

inverters is not considered. Accordingly, these results show that compared to

inverter based single-ended sense-amplifiers, uncertainties in the noise-margin

of NSR-SA (i.e. due to input errors) are minimized and high bit-line selectivity

is achieved.

(2) Power-supply noise. Due to reset biasing before every detection phase, static

noise on the power-supply cannot cause output errors in the NSR-SA. Transient

141



0.4 -

0.2-

0.

0

a VTRIP = 12mV

A VTRIP = 28mV (global process, temp.)

(10%-90% output transition
achieved over 6mV input range)

0.2 0.4 0.6
VDD-BL (V)

0.8 1

Figure 4-16: NSR-SA input transfer characteristic.
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VDD-BL (V)
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Figure 4-17:
cascade.

Input transfer characteristic for (a) inverter and (b) two stage inverter

noise, however, that specifically occurs after the reset phase can cause output

errors. Figure 4-18 shows the transfer characteristic of such supply noise. As

shown, very large negative transients are rejected at the output, as are positive

transients up to 0.24V. Larger positive transients, however, do result in output

errors.

Although Figure 4-18 shows that the NSR-SA is robust to output errors, the
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Figure 4-18: NSR-SA VDD noise transfer characteristic.

effect of supply-noise on input errors must also be considered. Figure 4-19

shows how the input transfer characteristic of the NSR-SA changes as a result of

±50mV noise transients on the power-supply, applied immediately following the

reset-phase. As shown, the deviation from the noise-free transfer characteristic

(i.e. up to 35mV) is considerable and must be accounted for when determining

the nominal input noise margin.

0.

= 0.

0.

0 0.2 0.4 0.6
VDD-BL (V)

0.8 1

Figure 4-19: NSR-SA input transfer characteristic with +50mV VDD noise.
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(3) Ground noise. Ground noise behaves in a complementary manner to power-

supply noise. Correspondingly, the transfer characteristics illustrating both

output errors and input errors are shown in Figure 4-20. Once again, the NSR-

SA is highly robust to output errors, but input errors of up to 17mV are observed

for ±50mV noise transients.

-0.4'
-0.4

1

0.8

R 0.6

a 0.4

0.2

0

0

-0.3 -0.2 -0.1 0 0.1 0.2 0.3
A VSS (V)

(a)

0.2 0.4 0.6
VDD-BL (V)

0.8 1

Figure 4-20: NSR-SA transfer characteristic for
±50mV Vss noise.

(a) Vss noise and (b) input with

Figure 4-21 shows the input errors that result as the VDD and Vss noise is swept

in the manner of Figure 4-14. As shown, the input trip-point can shift by 30mV
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and 70mV due to 100mV of Vss and VDD noise respectively. Hence, these noise

source must be considered when setting the nominal trip-point of the NSR-SA.

0.1

0.05 ----- - ---------

Vss nnoise

-0.05 --0.
I-

-0.1 -0.05 0 0.05 0.1
V DD' Vss Noise (V)

Figure 4-21: Input errors resulting from VDD and Vss noise.

(4) Substrate noise. Unlike the power-supply and ground noise, simulations show

that even very large substrate noise has nearly no impact on NSR-SA output

or input errors.

4.3.2 Test-Chip Architecture

A block diagram of the test-chip architecture is shown in Figure 4-22. Here, two 64kb

(256 x 256) arrays of high-density 0.25,um 2 6T SRAM bit-cells are integrated. The

first drives a set of conventional strobed sense-amplifiers of the structure shown in

Figure 4-10, and the second drives a set of NSR-SAs, so that the relative performances

can be accurately compared.

To measure the access-time with the NSR-SA, the word-line enable signal, WLE,

must be asserted, and the CLKIN signal must be swept inward, as shown in Figure 4-

22, until bit-failures appear. To measure the access-time with the conventional sense-

amplifier, however, first the STRB signal must be swept inward, with the CLKIN

signal held at a much larger delay, until bit-errors appears. Then, to measure the
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Figure 4-22: Block-diagram of prototype test-chip and access-time measurement

methodology.

WLE - CLKIN access-time, the STRB signal must be delayed (by a predetermined

amount) in order to avoid excessive sense-amplifier delays that can result from meta-

stability. During actual measurements, this delay was conservatively set to be very

large (i.e. ASTRB=Ins). Then, the CLKIN signal is swept-in, and this excess

STRB delay is subtracted to get an estimate of the final WLE-CLKIN access-time.

This two sweep procedure is also shown in Figure 4-22. The final WLE - CLKIN

access-times can then be suitably compared, since the WLE and CLKIN paths for

the two arrays are carefully matched on-chip.
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Bit-line Noise Margin Measurement Circuit

As mentioned in Section 4.2, with any single-ended sensing scheme it is important

to characterize the noise-rejection versus sensitivity performance. In the case of bit-

line noise, this requires dedicated additional circuitry, which is shown in Figure 4-23,

to inject a controllable noise-amplitude on one set of bit-lines. In particular, the

coupling capacitors, CNOISE, can be pulsed from off-chip, and the bit-line noise can

be estimated from the amplitude of the off-chip pulse (set by the potentiometer) and

the nominal ratio of the capacitor divider formed by CNOISE and the actual parasitic

bit-line capacitance, CBL. Simultaneously, the regeneration trip-point of the NSR-SA

can be adjusted by injecting a controllable current at the inverter outputs using M7

and M8, whose gates are biased off-chip. This allows both the bit-line noise and

NSR-SA sensitivity to be varied, allowing noise-rejection to be characterized versus

access-speed.

C BLB[255] BL[255]
CNOISE

Noise estimated
50 Ohm - from ratio of

CNOISE CNOISE to CBL
MC

Trimlnv1 Trimlnv2

CBL -;7BL

M8 V NSR-SA

__.._... M7-8 adjust reset point of
.. inverters to trim VGS,M5

Figure 4-23: Dedicated circuitry to inject a controllable noise-amplitude on one set
of bit-lines and independently adjust the sensitivity/noise-rejection of the NSR-SA.
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4.3.3 Measurements and Characterization

A photograph of the prototype test-chip, which is implemented in 45nm LP CMOS,

is shown in Figure 4-24. Measurements were taken from 53 chips in order to capture

some statistical behavior. Two sets of test patterns were written and read from the in

order to perform the characterization: (1) a checker-board pattern and its complement

and (2) a binary count and its complement down the rows of the array.

With the supply-voltage set to 1V, the access-time distributions for the NSR-

SA and the conventional sense-amplifier are shown in Figure 4-25. Additionally, a

distribution of the difference between the access-times on each chip is also plotted to

de-embed the absolute delays through board traces and chip packaging. As shown,

the NSR-SA achieves superior sigma, as expected from Monte Carlo simulations.

Unlike Figure 4-10, however, the measurement results include the effect of variation

in the bit-cells, and as a result the absolute delays here are larger. Nonetheless,

especially in the presence of this extra variation, which implies lower worst-case bit-

cell read-current, the NSR-SA performs very well, achieving a factor of four reduction

in access-time sigma. Accordingly, the overall worst-case delay improves from 2.46ns

to 1.63ns, representing a speed-up of 34%.

E

H I I d UI t

1.80mm

Figure 4-24: IC die photo of prototype implemented in low-power 45nm CMOS to

compare performance of NSR-SA with conventional sense-amplifier.

The bit-line noise-rejection observed with respect to access-time is shown in Figure
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Figure 4-25: Access-time measurements from 53 chips (at 1V) showing a factor of
four improvement in the NSR-SA distribution sigma compared to the conventional
sense-amplifier sigma.

4-26. Here, the NSR-SA is tuned for each plotted access-time point, and the bit-line

noise is increased until erroneous data is observed, yielding the corresponding bit-line

noise rejection point. In the case shown, for instance, the NSR-SA can be tuned

for nearly 50mV of noise-margin, corresponding to an increased amount of bit-line

discharge required for data sensing. Alternatively, the speed can be increased by

tuning for increased bit-line discharge sensitivity at the cost of noise-margin.
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Figure 4-26: Measured bit-line noise-rejection with respect to access-time, showing
ability to tune one at the cost of the other.
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A performance summary of the NSR-SA and conventional sense-amplifier is pro-

vided in Table 4.1. Each conventional sense-amplifier occupies a layout area of 12pm 2,

while each NSR-SA occupies 19pm 2, though this includes all of the testability features

that have been integrated for characterizations purposes only. Additionally, during

the reset phase, each NSR-SA draws static-power of 23pW while its inverters are at

their trip-points; in total, the NSR-SA sense-amplifiers contribute 7% to the overall

array power when the array is running at 100MHz.

Table 4.1: Test-chip performance summary.
Conventional SA NSR-SA

Technology 45nm low-power CMOS
Cell size 0.251Jm2

Array configuration 256 x 256
Capacity 64kb
Area 121pm 2  19p m2 *

Power in reset - 23pW
% of array power (at 100MHz) 2% 7%
Mean access-time 1.59ns 1.27ns
Max. access-time 2.46ns 1.67ns
Access-time sigma 401ps 103ps

*Includes testability features

4.4 Summary and Conclusions

Improving sub-array performance without increasing the supply-voltage or reducing

the threshold-voltage is critical for minimizing the total energy, as lower access delays

enable more aggressive supply- and threshold-voltage scaling for a given performance

constraint. Performance, however, depends on bit-cell read-current as well as sense-

amplifier delay and operating margins (which are associated with both timing and

voltage offsets). Unfortunately, bit-cell and sense-amplifier density constraints, which

are critical metrics in very high density sub-arrays, strongly oppose straight-forward

techniques to improve their performance.

In the case of the bit-cell, for instance, raising the read-current and alleviating

150



its degradation due to variation requires strengthening the access and driver devices;

in 6T cells, however, it is critical to maintain a required ratio between the driver

and access device strengths for sufficient read SNM; as a result, increasing the read-

current requires a large increase in cell area. 8T cells overcome the trade-off between

read-current and read SNM, and offer several options for performance enhancement

without area increase; however, they require specialized single-ended sensing tech-

niques, which thus far have relied primarily on full-swing read-bit-lines. Accordingly,

to retain performance, the read-bit-lines must be drastically shortened (down to eight

cells [103][13]), which reduces their capacitance but degrades sub-array density.

Although sense-amplifiers face severe density and offset trade-offs themselves, their

area is less constrained than the bit-cells'. Additionally, divergence between the

sense-amplifier strobe delay and the read-bit-line discharge delay is emerging as a

major performance limitation. Accordingly, alternate sensing structures stand to

significantly improve performance with minimal impact on the total sub-array area.

A non-strobed, offset-compensating, regenerative sense-amplifier (NSR-SA) is pre-

sented in this chapter to provide small-signal, single-ended sensing capability. This

makes it compatible with 8T bit-cells, and, by allowing minimal discharge on long

read-bit-lines, it improves array area-efficiency, performance, and active-switching-

energy. The NSR-SA's performance, compared to a standard strobed sense-amplifier,

is better by up to 34%, with 4x reduction in delay sigma, when integrated with

0.25pm 2 high-density bit-cells with 256 cells per read-bit-line in a 45nm LP CMOS

technology.

With any single-ended sensing scheme, however, sensitivity to noise is a major

concern. Accordingly, the presented sense-amplifier is analyzed for noise margins,

suggesting that specific transient profiles can affect the input trip-point. Hence, the

ability to set a desired read-bit-line noise margin in the sense-amplifier is a criti-

cal feature, along with stability of the noise margin in the presence of process and

temperature variations.
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Chapter 5

Conclusions

This work analyzes SRAMs with two objectives: (1) to determine how their energy

can be minimized, and (2) to determine how their structure can be modified at the

circuit and architecture levels to facilitate reliable operation under the optimal en-

ergy conditions. Energy minimization tends to require low supply-voltages and high

threshold-voltages, and the main challenge associated with these is robustness in the

presence of variation. Of course, device variation is also emerging as one of the pri-

mary limitations to technology scaling. As a result, ultra-low-energy techniques that

primarily aim to improve robustness in the presence of extreme variation can have

much broader usefulness for general circuits targeting highly advanced technologies.

5.1 Summary of Contributions

The first contribution made by this work is SRAM energy analysis, and two important

directions for energy minimization are established from this: (1) ultra-low-voltage

operation, and (2) performance improvement. Based on this, the second contribution

is analysis and development of circuits for ultra-low-voltage SRAM, and the third

contribution is analysis and development of circuits to improve SRAM performance.

The details of these contributions are summarized below:
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SRAM Energy Analysis

* Energy characterization for practical SRAM considering an idle-mode power-

management strategy (which is essential for energy minimization).

* Identification of major SRAM energy components (i.e. EACT, ELKG, EIDL, and

EOH), and characterization of the parameters affecting these components.

* Isolation of VDD and Vt targets for minimizing SRAM energy, and investigation

of how these depend on various performance constraints. Generally, the need

to aggressively reduce VDD and raise Vt is motivated, for which performance

constraints pose an important limitation.

* Characterization of critical SRAM metrics (i.e. read-margin, write-margin,

hold-margin, and read-current) with respect to VDD and Vt in the presence

of variation. All of these degrade drastically at low-voltages, but read-margin

and write-margin are the dominating functionality limitations.

* Characterization of the impact of variation (which itself depends on VDD and

Vt) on SRAM energy. Performance degradation limits VDD and V scaling, de-

grading the total energy. Increased VDRv degrades the energy savings achieved

during idle-mode, severely impacting the absolute energy in low-performance-

constraint cases.

Ultra-Low-Voltage SRAM Design

* Identification of major low-voltage SRAM functionality failures (in LP technol-

ogy) arising from basic MOSFET characteristics, variation, and manufacturing

defects, and analysis of the overhead imposed, using standard topologies, in

order to manage these. The failures include read-margin, write-margin, and

bit-line leakage.

* Analysis of 8T bit-cell, in terms of operating margins and read-current, for low-

voltage. 8T bit-cell achieves better area-efficiency than 6T at ultra-low-voltages.
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* Proposal of ultra-low-voltage 8T bit-cell incorporating peripheral circuit assists

for aggressive voltage scaling.

* Proposal and analysis of sense-amplifier redundancy in order to improve area-

offset trade-off. Despite the added selection circuitry overhead, redundancy

holds promise even for highly scaled sensing networks into the 22nm node.

* Development and testing of ultra-low-voltage SRAM test-chip in 65nm LP

CMOS incorporating proposed techniques and demonstrating operation down

to 0.35V.

Performance Enhancement in High-Density SRAM

* Analysis of performance trade-offs and limitations in high-density SRAMs. Sense-

amplifier strobe-path and array-read-path divergence is characterized and iden-

tified as a significant limitation.

* Proposal of non-strobed, regenerative sense-amplifier (NSR-SA) that provides

small-signal single-ended sensing for compatibility with 8T bit-cells (which hold

promise for improved energy-efficiency and performance). NSR-SA performs

offset compensation to improve stability of sensing.

* NSR-SA is analyzed for input and output errors in the presence of BL, VDD,

Vss, and substrate noise, and a technique is demonstrated to ensure desired

noise-margin at the cost of sensitivity.

* NSR-SA is prototyped in 45nm LP CMOS with 64kb array of high-density

0.25 Pm2 bit-cells. Access-delay variability is compared against conventional

strobed sense-amplifier, demonstrating 34% worst-case speed-up and 4x sigma

reduction.
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5.2 Concluding Thoughts and Future Directions

This work examines the key trade-offs associated with SRAM energy and how they

relate to functionality and performance constraints. In all, a tight coupling exists be-

tween energy, performance, and density, and although their various interactions raise

several limitations, they also increase the options for addressing target objectives.

For example, performance enhancement via the sense-amplifier allows more aggres-

sive optimization of the bit-cell for low-energy. Nonetheless, the opposing trade-offs

ultimately raise the need for alternate topologies that are less constrained when it

comes to energy minimization approaches. A main focus of this work is to improve

the practicality of these alternate topologies by investigating and exploiting the ad-

ditional dimensions of freedom they introduce. Bit-line leakage and read-current

improvement via peripheral circuit-assists is an example of how the 8T bit-cell can

be further enhanced in this manner. These approaches to improve the practicality

and enable very aggressive application of low-energy trade-offs have led to the inte-

gration of relatively large ultra-low-energy embedded caches in demonstrated system-

on-chips (SoCs) [11][23]. Finally, since the objective of density maximization is not

limited just to SRAMs and, in fact, applies broadly to the semiconductor industry,

limitations that emerge when the energy-density trade-off is aggressively stressed serve

as a lead indication of broader scaling challenges. For instance, perhaps the much

wider use of redundancy, as in the case of sense-amplifiers at ultra-low-voltages, will

find increased applicability.

Upon identifying operational targets and objectives, this work aims to solve the

major challenges of achieving reliable SRAM functionality under the associated con-

ditions. Nonetheless, several major issues remain. Further, the energy trade-offs

illustrated are trends that result due to some fundamental dependencies. Though

these trends are difficult to overcome, the precise trade-offs governing them can be

improved significantly through a variety of supplemental techniques. Here, these areas

for future work are discussed briefly.

Chapter 3 and Chapter 4 present circuit techniques to expand the supply-voltage
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and threshold-voltage region where the functionality and performance constraints can

be met in order to facilitate energy optimization of the SRAM sub-array. Due to their

dependence on variation, highlighted in Chapter 2, these constraints are statistical in

nature. As a result, redundancy, combined with sophisticated repair and replacement

algorithms already play an important role in overcoming SRAM failures. Increasing

statistical failure sources emphasize the need for optimized error-correction techniques

and simulation methodologies to accurately characterize their impact [141].

An unavoidable drawback to these approaches, however, is the overhead they in-

troduce, both in terms of the area occupied by redundant elements and the latency im-

posed by error detection/correction computations. Although the area overhead must

be incurred, the analysis of sense-amplifier redundancy seems to indicate that they

hold very significant promise, especially in the face of rapidly increasing error-rates.

To mitigate the latency overhead (as suffered with error detection and correction tech-

niques), a variety of options must be investigated. Namely, raised supply-voltages can

be heavily leveraged for ECC read-out blocks [142] since the associated digital com-

putations are performed outside the bit-cell array, and as a result VDD/Vt scaling is

less urgent. Further, Other techniques for energy reduction in digital logic can also

be used much more amenably [4].

Importantly, as the analysis in Chapter 2 shows, for low-performance but highly

energy constrained applications, minimizing the idle-mode energy is extremely crit-

ical. Strategies that use run-time monitors to accurately estimate the hold-margin

have an important role so that the idle-mode VDRV can be aggressively minimized.

However, approaches to actually improve the hold-margin to further reduce VDRV

will also be critical. for instance, both static repair/replacement and run-time error

detection/correction, have been used very effectively to alleviate read-failures; but in

applications limited by data-retention energy, they can be used specifically to enable

further VDRV scaling. Of course, in addition to hold-margin enhancement, technol-

ogy optimizations to reduce idle-mode leakage sources (i.e. sub-threshold current,

gate-current, junction-current, etc.) are also necessary.

Depending on the relative magnitude of the active- and idle-mode energy compo-
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nents, many applications might require even more aggressive leakage-power reduction.

For instance, the performance constraints considered in Chapter 2 lead to a strong

dependence on both the active-energy and the leakage-energies. However, many appli-

cations can require substantially longer data-retention periods, greatly elevating the

relative importance of idle-mode leakage-energy. For these applications, alternate em-

bedded memory technologies must investigated. Specifically flash memory promises

ultra-low leakage-power but incurs increased switching-energy for active data writes

due to the need for high voltages to program the cells. Hybrid memory architectures,

utilizing small SRAM caches in conjunction with flash arrays, have been proposed to

mitigate write energy [143]. Accordingly, leveraging flash memory in highly energy-

constrained applications with long data-retention periods can be a powerful means

to reduce the total SRAM energy. Although additional processing steps are required,

TSMC offers embedded flash memory with a 180nm CMOS technology (at the cost

of seven additional mask layers), and it plans to offer the technology for an LP 90nm

node in the future.

The analysis of Chapter 2 considers the average energy of homogeneous sub-arrays

for an architecturally flat cache. In reality, however, hierarchical caches (and register-

files [144]) can reduce the total cache access energy, thanks to reduced switching

overhead in small caches [145]. With such a cache structure, the energy trade-offs

and sub-array constraints change, requiring new analysis for optimal targets.

As the emphasis on embedded SRAMs increases, along with the need to optimize

sub-arrays for specific applications, the optimization targets on-chip will be highly

diverse. This is also true in the case of composite sub-arrays of a heterogeneous

hierarchical cache. Accordingly, the biasing required will be extremely demanding.

As a result, very efficient and compact embedded power-supplies (as in [146]) will

play an increasing role.

Of course, they will also offer the possibility of richer dynamic voltage scaling

(DVS), allowing dynamic optimization of the SRAM performance and energy. As

the applications for highly energy-constrained digital circuits increase, performance

responsiveness through DVS will be a critical feature of low-energy SRAMs. Though
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highly scalable proof-of-concepts have been demonstrated [103] [88], their practicality

in energy-constrained systems requires achieving near sub-threshold operation with

much better array-efficiency, as the use of reconfigurability, even in the periphery, can

have a severe area cost.

Bit-cells, such as the 8T topology, that are free of the read-margin limitation

hold great promise for low-energy SRAMs. As a result, array-level optimizations

associated with these need to be investigated much more extensively. Chapter 3

highlights the many new optimization options afforded at the bit-cell level; however,

at the array-level new biasing circuit assists and layout structures can also have a

major impact. An important direction for these is a structure that enables efficient

column interleaving to ease soft-error ECC and allow sense-amplifier multiplexing.

Beyond this, the 8T bit-cell also provides dual port access. This feature can

be highly beneficial for specific computations (such as in-place FFT algorithms), and

should be investigated. In a similar manner, the 8T bit-cell can be extended to support

multiple additional read-ports with minimal extra area cost. To enable simultaneous

multiple address reads, all that is required is additional two-device read-buffers that

are coupled to the existing bit-cell; the ability to read from multiple addresses at the

same time can have a significant impact for many architectures and applications.

Of course, single-ended sensing, to further support 8T bit-cells is an important area

for continued investigation. Generally, sense-amplifiers, due to their strong impact

on the overall array-performance, are an important leverage-point to enhance SRAM

speed and energy. The NSR-SA of Chapter 4 begins to illuminate, and even address,

the major concerns associated with sense-amplifiers in general, and those associated

with single-ended sensing in particular. However, it can be extended in several ways:

(1) being made more amenable for ultra-low-voltage operation (currently, its reset-

phase requires a supply-voltage of almost 2Vt); (2) being made more compact through

the use of highly area-efficient coupling capacitors; and (3) being integrated with

careful system timing control to minimize VDD and Vss noise, which stands to worsen

the noise margin required with any single-ended sensing approach. In principle, the

predictable node-activity during sub-array accesses should help towards managing
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the issues associated with supply-noise from IR drop and coupling-noise from other

sources.

Finally, the primary objective of this work has been to improve the efficiency of

SRAMs for highly-energy constrained applications. Since they have posed a domi-

nating power, performance, and reliability concern in the associated systems, SRAM

use has had to be very cautious. With improvements in their energy and reliability,

however, it is the hope that these systems can employ architectures that preferentially

favor embedded SRAM use, opening up the possibility of many more architectural

options. As a result, severely energy-constrained applications will also benefit from

the superior trade-offs afforded by highly-parallel and memory-rich processor archi-

tectures.

Driven by low-energy SRAMs, these architectural approaches will be applied more

and more aggressively. To facilitate them, 3D integration is emerging as an important

mainstream technology solution for extreme-parallelism and extreme multi-core. It

is motivated primarily by an insatiable need for embedded-memory. Although, 3D

integration is unlikely to improve the basic metrics of the SRAM sub-array (such

as access-delay) [147], it greatly enhances the use-ability of SRAMs by introducing

high-bandwidth, flexible, and low overhead access-interfaces. As a result, energy

minimization techniques (like those presented in this work) will increase the appeal

of SRAMs, and 3D memory-rich integration will support their heavy utilization in

highly-energy constrained applications [148].
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Chapter 6

Appendix A: Acronyms

six-transistor SRAM bit-cell (6T)

seven-transistor SRAM bit-cell (7T)

eight-transistor SRAM bit-cell (8T)

nine-transistor SRAM bit-cell (9T)

ten-transistor SRAM bit-cell (10T)

complementary metal-oxide semidonductor (CMOS)

drain induced barrier lowering (DIBL)

digital signal processor (DSP)

dynamic voltage scaling (DVS)

error correction coding (ECC)

general-purpose (GP)

integrated circuit (IC)

low-power (LP)

metal-oxide semiconducting field-effect transistor (MOSFET)

negative bias temperature instability (NBTI)

N-channel metal-oxide semiconductor (NMOS)

non-strobed regenerative sense amplifier (NSR-SA)

P-channel metal-oxide semiconductor (PMOS)

process, voltage, and temperature (PVT)

random dopant fluctuation (RDF)
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reverse-short-channel effect (RSCE)

strong-arm flip-flop (SAFF)

static noise margin (SNM)

system-on-chip (SoC)

static random access memory (SRAM)

voltage transfer characteristic (VTC)
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