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RÉSUMÉ 

L'utilisation de systèmes sans fil connait une croissance rapide dans divers domaines tels 

que les réseaux de téléphonie cellulaire, Wi-Fi, Wi-Max, la radiodiffusion et les communications 

par satellite. Cette croissance mènera à une quantité considérable d'énergie électromagnétique 

générée dans l'air ambiant, mais toujours en dessous des limites de sécurité internationales. Ainsi, 

la recherche au niveau des systèmes de récupération d'énergie RF pour alimenter des appareils 

électroniques miniaturisés à faible consommation de puissance devient attrayante et prometteuse. 

Le bloc principal dans un système de récupération d'énergie RF est le redresseur qui 

détermine l'efficacité et la sensibilité de l'ensemble du système. Étant donné que la puissance RF 

ambiante est très faible, la quantité d'énergie captée par l'antenne l’est également. En outre, il y a 

des pertes au niveau du réseau d'adaptation d’impédance qui réduisent encore plus la puissance 

transmise au bloc redresseur. Par conséquent, la puissance disponible est trop faible pour faire 

fonctionner des redresseurs classiques.  

Dans ce mémoire, nous proposons trois redresseurs à trois-étages et à grilles totalement 

croisées-couplées en utilisant des transistors à faible tension de seuil afin d’opérer à de faibles 

puissances d'entrée. Les trois redresseurs ont été conçus et intégrés au sein d’une même puce 

fabriquée en utilisant une technologie CMOS 130nm d’IBM. Ils ont été optimisés à des fréquences 

de 880MHz, 1960MHz et 2.45GHz respectivement. Les résultats expérimentaux démontrent qu’ils 

atteignent une efficacité de conversion de puissance maximale de 62%, 62% et 56.2% 

respectivement. Les mesures montrent également une grande amélioration de l'efficacité à de 

faibles niveaux de puissance d'entrée. Afin de récupérer l'énergie ambiante de trois principales 

sources RF au Canada – GSM-850, GSM-1900 et Wi-Fi, un système de redresseur utilisé pour la 

combinaison de la puissance de ces trois canaux est simulé et analysé. Le système utilise une 

topologie consistant simplement à connecter les sorties des redresseurs ensemble pour charger le 

condensateur de charge. En dépit de la grande amélioration de l'efficacité et de la sensibilité dans 

la plage de 0-5μW, une baisse d'efficacité indésirable se produit aux puissances plus élevées. Ainsi, 

un nouveau bloc de gestion de l'alimentation est proposé. De plus, une antenne tri-bande est conçue 

et simulée pour diminuer le volume de l'ensemble du système de récupération d'énergie RF. En 

particulier, les pertes par réflexion obtenues sont de -25.43dB, -13.92dB et -12.73dB aux 

fréquences citées plus haut respectivement. 
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ABSTRACT 

Nowadays, the use of wireless systems has grown rapidly in various domains such as 

cellular phone networks, Wi-Fi, Wi-Max, radio broadcasting and satellite communications. The 

growing use of these wireless systems leads to considerable amount of electromagnetic energy 

generated in ambient air (of course, still below international safety limits). Thus the research in 

ambient RF energy harvesting system dedicated for powering up low-power-consumption 

miniaturized electronic devices becomes attractive and promising. 

The main block in a RF harvesting system is the rectifier which determines the efficiency 

and sensitivity of the whole system. Since ambient RF power is very low, the amount of power 

captured by the antenna is extremely low. Besides, there is loss on matching networks, thus the 

available power given to the rectifier block is too low for traditional rectifiers to operate. Therefore, 

in this master thesis, three three-stage fully gate cross-coupled rectifiers using low-threshold-

voltage transistors are proposed to overcome the dead zone in low input power range. The three 

rectifiers optimized at 880MHz, 1960MHz and 2.45GHz frequencies respectively are designed on 

one chip layout. Their experimental results are retrieved from this custom fabricated integrated 

circuit using IBM 130nm CMOS technology. They achieve peak efficiencies of 62%, 62% and 

56.2% respectively and show great improvements on power conversion efficiency at low input 

power level. 

In order to harvest ambient RF energy from the three main RF contributors in Canada – 

GSM-850, GSM-1900 and Wi-Fi 2.4GHz, a rectifier system used for power combination from 

these three channels is simulated and analyzed. The system employs a simple topology by 

connecting the outputs together to charge the load capacitor. In spite of its high improvements on 

efficiency and sensitivity in 0-5μW range, an undesirable efficiency drop happens at higher input 

power levels. Thus an idea of power management block is proposed. 

In addition, a tri-band antenna is designed and simulated so as to decrease the volume of 

the overall RF energy harvesting system. It achieves return loss of -25.43dB, -13.92dB and -

12.73dB at each desired band respectively. 
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CHAPTER 1 INTRODUCTION 

1.1 Background 

Energy harvesting or power harvesting or energy scavenging is an approach to collect 

energy from external sources. One of the most popular energy harvesting (EH) method nowadays 

is radio-frequency (RF) EH (RF-EH), which seems to be initiated by radio-frequency identification 

(RFID) applications. 

The existing applications of RF-EH are RFID (Shameli et al. (2007)), wireless sensor 

networks (Nishimoto et al. (2010)), RF-powered devices (Ouda et al. (2013)) and ambient-RF-

powered devices (Li et al. (2013)).  

Some modern medical devices (Ho et al. (2014)) tend to be RF-powered instead of battery-

powered. This is mainly because the RF-powered medical devices can reduce the chances of 

infection and chemical instability, especially when the devices are implantable. RF-powered 

implants can prevent the patients from undergoing repeated surgeries to replace the out-of-power 

old device at intervals of several years. Furthermore, the battery size is always too large compared 

with the chip’s physical size. With the maturity of RF-EH technique, researchers can miniaturize 

the last thing that makes medical devices so large. However, so far, all reported RF-powered 

medical devices need a dedicated and specified RF source to supply enough RF power for the RF 

harvesting module of the biomedical device at a designated frequency and power density, which 

means that the patients need to carry a RF source at hand or keep staying near the RF source to 

make their implants work. Authors Visser and Vullers (2013) consider it as “RF energy transport” 

instead of “RF energy harvesting”.  

In order to make the devices totally portable, ambient-RF-powered technique draws great 

attention of designers. Ambient RF-EH is the process where electromagnetic waves in the 

surrounding air, due to the growing presence of cellular phones and corresponding local area 

networks, are harvested and collected. However, not all RF–powered devices (near-field RF or far-

field RF) can be turned to ambient-RF-powered ones. This is because the available/existing RF 

energy in the free air is limited and very low, thus only extremely low-power-consumption (only 

several microwatts) miniaturized electronic devices can be powered by ambient RF. 
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Figure 1.1. General diagram blocks for RF-EH 

 

A RF-EH system needs an antenna for sensing electromagnetic waves and a rectifier for 

converting the sensed AC power to DC power. The DC power can then be used to power up an 

ultra-low-power system. Figure 1.1 shows the building blocks of a RF energy harvester, 

encompassing an antenna, an impedance matching network, a rectifier and a DC/DC up converter. 

Commonly multi-stage rectifier can be used to increase the rectified DC voltage instead of using 

an additional DC/DC up converter. Far-field RF energy transmission is concerned in this case, 

which is different from the near-field resonant inductive coupling and magnetic resonance coupling. 

Normally the power conversion efficiency (PCE) of the harvesting system is defined as the ratio 

of the load DC power to the available RF power at the antenna. 

1.2 Objectives 

In this Master work, the main objective is to develop a high-efficiency CMOS rectifier 

dedicated to recover energy from ambient RF through GSM-850, GSM-1900 and Wi-Fi 2.4GHz 

bands in the surrounding air.  

In addition, multi-band rectifier system should be studied for the purpose of multi-band 

ambient RF-EH. In the meanwhile, a power management block should be proposed if needed. 

1.3 Thesis organization 

This master thesis contains seven chapters. Chapter 1, this chapter, introduces the 

background and the objectives of this Master work. Chapter 2 provides the literature review on 

topics: EH, RF-EH, feasibility of harvesting ambient RF energy and rectifier design. At the same 

time, main design challenges and optimizations on basic circuit structures are also stated. In 

Chapter 3 classification of rectifier structures are studied in the first place. Then a rectifier is 

proposed and presented with its post-layout simulation results. The implementation of the proposed 

rectifier system is reported in Chapter 4 with its post-layout simulation results and analysis. A 
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theoretical power management block is proposed straight after for the purpose of multi-band EH 

without reverse leakage. In Chapter 5, the measurement results of the fabricated rectifier using 

130nm IBM CMOS Technology are presented. Then, a tri-band antenna dedicated for the whole 

RF-EH system design is presented with its simulation results in Chapter 6. Finally, Chapter 7 

covers the comparison of this master thesis with several published works. 
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CHAPTER 2 LITERATURE REVIEW 

2.1 Energy harvesting 

Nowadays, batteries play the dominant role of energy sources for a broad variety of devices, 

such like smartphone, MP3 player, quartz watch and implantable medical devices (for example, 

cardiac pacemaker). The typical autonomy of several battery-powered electronic devices is shown 

in Table 2.1.  

Table 2.1: The typical autonomy of several battery-powered electronic devices, from Vullers et al. 

(2009) 

Device type Power consumption Energy autonomy 

Smart phone 1 W 5 h 

MP3 player 50 mW 15 h 

Hearing aid 1 mW 5 days 

Wireless sensor node 100 μW Lifetime 

Cardiac pacemaker 50 μW 7 years 

Quartz watch 5 μW 5 years 
 

In spite of the fact that energy density of batteries has largely increased and the fact that 

silicon-based electronic devices have greatly reduced the power consumption, the battery-powered 

devices mentioned above need to be recharged or replaced at intervals of several years or hours. 

For example, the battery of cardiac pacemaker is usually out of power after 7 years as shown in 

Table 2.1. In addition, since the emerging integration technologies enable even smaller electronic 

systems, the size of the battery becomes constrain. As systems continue to shrink, less energy is 

needed for certain miniaturized devices, research toward power-autonomous is going on. 

The power-autonomous devices do not require any internal power source while extracting 

the needed power from the ambient robust energy. Many kinds of robust energy can be harvested 

and extracted:  

- Motion, vibration and movement 

The three main transduction mechanisms for mechanical EH are electrostatic, 

piezoelectric and electromagnetic. For typical electrostatic transducer, a variable 

capacitor structure, whose capacitance changes when the overlap area of two electrodes 

varies in response to an external movement, will change the voltage across the capacitor, 
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and thus a current will flow to the external circuit (Wang and Hansen (2014)). Generally 

in piezoelectric devices, a voltage is generated when the piezoelectric material is under 

mechanical strain (Hajati and Kim (2011)). And for electromagnetic transducer, the 

relative displacement of a number of turns of coil generates a magnetic field and then 

delivers an AC current (Tang et al. (2014)). 

-  Electromagnetic (RF) 

A RF-EH system mainly depends on AC to DC rectifier. Takacs et al. (2014) reported 

a system which is dedicated for harvesting the RF energy on board of geostationary 

satellites for health satellite monitoring. Tallos et al. (2014) designed a body-worn 

ambient RF-EH system which is able to harvest freely available RF energy in an office 

environment using the 2.45-GHz WLAN band. 

- Thermal 

The basic TE generator is realized by heating one face of TE module, and cooling the 

other face. By doing so, an electrical current is generated by connected a load to the end 

terminals of the TE module. Works proposed by Kishi et al. (1999) was the first thermal 

EH system being used in customer products. 

- Solar and light 

Solar EH (SEH) system mainly employs photovoltaic cells to convert the incident 

photons into electricity. The most critical issue of SEH is the matching between the 

harvesting components (solar panels) and the energy storage elements (batteries or 

ultracapacitors) in order to maximize harvesting efficiency. Some well-known SHE 

systems include, but are not limited to, these two proposed by Simjee and Chou (2006) 

and Park and Chou (2006). 

- Biological 

Biological EH has a relatively large range of use. For example, a recently published 

work proposed by Bandyopadhyay et al (2014) is a system that harvests energy from 

endocochlear potential, which is a biological potential at around 80mV-100mV inside 

the mammalian ear and changes either positive or negative in the endolymph depending 

on a coming sound. The system is able to provide 544pW to 4nW power at output with 

http://ca.mouser.com/energy_harvesting_storage
http://en.wikipedia.org/wiki/Endolymph
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a low quiescent power consumption of 544pW. On the other hand, Laursen (2012) 

reported that a fuel cell made from enzyme-equipped buckypaper electrodes generates 

electricity when implanted into a snail. 

In addition, there are also other types of energy that can be harvested, for example nuclear 

and tidal energies. But they will not be discussed here, since this Master thesis focus on small-

dimension and low-power-consumption electronic devices. 

2.2 RF energy harvesting (RF-EH) 

Nowadays, the use of radio transmitters in variety of applications, such as mobile 

telephones, mobile base stations, television/ radio broadcast stations and local wireless networks, 

keeps increasing. This leads to lots of electromagnetic energy broadcasted from billions of radio 

transmitters around the world. Almost every public place in an urban area is covered by cellular 

signals from GSM base station, and it is possible to detect tens of Wi-Fi access points at a single 

location. The available energy in the ambient air provides an opportunity to harvest that energy. 

Furthermore, the number of radio transmitters continues to increase. Aware of this fact, we may 

predict that low-power-consumption miniaturized electronic devices may be powered by ambient 

RF energy. Thus the research in ambient RF-EH system becomes attractive and promising. 

In Table 2.2, some previously published RF energy harvesters, from year of 2006 to now, 

are presented for readers to have access to a clear literature review on RF-EH systems. As stated 

in the first chapter, the existing applications of RF-EH are RFID, wireless sensor networks, RF-

powered devices and ambient-RF-powered devices. Works done by Li et al. (2013) and Md Din et 

al. (2012) in Table 2.2 are exactly dedicated for ambient RF-EH. Md Di et al. (2012) report that 

their harvester on PCB board is able to generate 2.9V to the load (a temperature sensor) with a 

distance of 50m to a GSM base station antenna tower. Li et al. (2013) designed a RF-EH system 

with a CMOS rectifier biased by large amount of off-chip resistors. They claim that this system 

has the same output as in measurement lab when they simply walk outdoors in Maryland campus 

with it. 

It is difficult to make a fair comparison among these works due to the large number of 

parameters which determine the performance of the harvesters, for example, minimum input 
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Table 2.2: Comparison of published works (* calculated from graph) 

Work Frequency 
Rectifier 

structure 

Minimum input 

@ output voltage 

and load 

Peak efficiency 

@ input power 

and load 

Technology 

Kocer et al.   

(2006) 
450MHz 

charge 

pump 

-19.5dBm* 

@ 1V, 1MΩ 

10.94%  

@ -12dBm, 1MΩ 

0.25μm 

CMOS 

Yi et al.  

(2006) 
900MHz 

charge 

pump 
N/A 

26.5%  

@ -11.12dBm, 

35/200/473kΩ 

0.18μm 

CMOS 

Mandal et al.  

(2007) 
950MHz FGCC 

-20.97dBm 

@ 0.5V, 125kΩ 
N/A 

0.18μm 

CMOS 

Shameli et al.  

(2007) 
920MHz 

charge 

pump 

-14.1dBm 

@ 1V, 500kΩ 
N/A 

0.18μm 

CMOS 

Le et al.  

(2008) 
906MHz 

charge 

pump 

-22.6dBm 

@ 1V, 5.6MΩ 

60% 

@ -8dBm*, 5.6M

Ω 

0.25μm 

CMOS 

Yao et al. 

 (2009) 
900MHz 

charge 

pump 

-14.7dBm 

@ 1.48V, 500kΩ 

15.76% 

@ N/A 

0.35μm 

CMOS 

Salter et al.  

(2009) 
2.2GHz 

charge 

pump 

−25.5 dBm 

@ 1V, 5MΩ 
N/A 

0.13μm 

CMOS 

Vera et al.  

(2010) 
2.45GHz 

voltage 

doubler 
N/A 

42.1%  

@ -10dBm, 5kΩ 

Schottky 

diode 

Papotto et al.  

(2011) 
915MHz 

charge 

pump 

-18.8dBm 

@ 1.2V, 1MΩ 

11.5%* 

@ -14dBm, 0.5M

Ω 

90nm 

CMOS 

Seunghyun et al. 

 (2012) 
915MHz 

charge 

pump 

-32dBm 

@ 1V, no resistive 

load 

N/A 
0.13μm 

CMOS 

Masuch et al.  

(2012) 
2.4GHz FGCC 

-10dBm 

@ 1V, 111kΩ* 

22.7% 

@ -3dBm, 8.8kΩ
* 

0.13μm 

CMOS 

Scorcioni et al.  

(2012 September) 
868MHz 

charge 

pump 

-17dBm 

@ 2V, no resistive 

load 

60% 

@ -3dBm*,  

no resistive load 

0.13μm 

CMOS 

Taris et al.  

 (2012) 
900MHz 

voltage 

doubler 

-22.5dBm 

@ 0.2V, no resistive 

load 

N/A 
Schottky 

diode 

Sun et al.   

(2012) 
2.45GHz 

voltage 

doubler 

-3.5dBm* 

@ 1V, 2.8kΩ 

83% 

@ -1dBm*, 1.4k

Ω 

Schottky 

diode 
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power, the efficiency, the output voltage, the value of the load, the operating frequency, the rectifier 

topology, the response time, the application, the size of the harvester and discrete components 

versus microelectronics, the technology cost, the availability, abundance and vicinity of the energy 

sources, etc. However, it is still possible to compare these presented works to some extent. They 

can firstly be classified into two parts: harvester on PCB and harvester on chip.  Harvesters on PCB 

employ Schottky diode in a multi-stage voltage doubler topology. The work of Sun et al. (2012) 

gives a PCE of 81% at -1dBm which is a relatively very high efficiency ever been reported. For 

harvesters on chip, there are more options of rectifier topologies. Seunghyun et al. (2012) employed 

charge-pump based rectifier structure and their rectifier generates 1V at -32dBm input which is the 

Table 2.3: Comparison of published works (* calculated from graph) (continued) 

Karolak et al.  

(2012) 

900MHz 

2.45GHz 
FGCC 

-22.4dBm @ 1.2V, 

400kΩ 

-22.3dBm @ 1.2V, 

400kΩ 

63% @-22.3dBm, 400k

Ω 

61% @-22.4dBm, 400k

Ω 

0.13μm 

CMOS 

Md Din et al.  

(2012) 
945MHz 

voltage 

doubler 

-22.6dBm 

@ 2.61V, 326kΩ 
N/A 

Schottky 

diode 

Scorcioni et al.  

(2013 May) 

840-975 

MHz 
FGCC 

-16dBm 

@ 2V, no resistive load 

60% 

@ -3dBm*, no resistive 

load 

0.13μm 

CMOS 

Stoopman et al.  

(2013) 
868MHz FGCC 

-26.3dBm 

@ 1V, no resistive load 

31.5% 

@ -15dBm, 0.33MΩ 

90nm 

CMOS 

Li et al. 

(2013) 

900MHz 

2000MHz 

charge 

pump 

-19.3dBm @ 1.15V, 

1.5MΩ 

-19dBm @ 1.05V, 1M

Ω 

9.1% @-19.3dBm,  1.5M

Ω 

8.9% @-19dBm,  1MΩ 

0.13μm 

CMOS 

Thierry et al.  

(2013) 

900MHz 

2.4GHz 

voltage 

doubler 

-10dBm @ 2.2V, no 

resistive load 

-20dBm @0.4V, no 

resistive load 

N/A 
Schottky 

diode 

Nimo et al.  

(2013) 
13.56MHz 

voltage 

doubler 

-30dBm 

@ 1.9V, no resistive 

load 

55% 

@ -30dBm, no resistive 

load 

Schottky 

diode 

Alam et al.   

(2013) 
2.45GHz 

voltage 

doubler 

-15dBm 

@ 0.55V, 5kΩ 
N/A 

Schottky 

diode 

Agrawal et al.  

(2014) 
900MHz 

voltage 

doubler 

-10dBm 

@ 1.8V*, 50kΩ 

79% 

@-10dBm, 50kΩ 

Schottky 

diode 

Stoopman et al. 

(2014) 
868MHz FGCC 

-27dBm 

@ 1V, no resistive load 

40% 

@-17dBm, 0.5MΩ 

90nm 

CMOS 
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highest sensitivity ever been reported. Scorcioni et al. (2012 September) also employed charge-

pump based rectifier and reported a PCE of 60% which is very high compared to other works 

operating in 900MHz range.  

Generally looking at Table 2.2, we may conclude that, to achieve 1V DC output, -22dBm 

to -10dBm harvested RF power is required. Though the threshold voltage of standard CMOS 

transistors (e.g. 355mV for nMOS transistor in IBM 130nm technology) is higher than that of a 

Schottky diode (e.g. 150mV for schottky diode HSMS-2852), the minimum input power of a 

CMOS-based RF-EH system can also be lower than a PCB-based one by using several threshold 

cancelation techniques, which will be introduced in the following section. Besides, it should be 

noted that the value of the load resistor is quite important when talking about output voltage. 

Normally, the output voltage can be boosted up by the increasing of the load resistance. Thus it is 

unfair to compare the output voltages of different works without mentioning the load resistance. 

Furthermore, the devices presented in Table 2.2, working on dual frequencies, have two outputs 

dedicated for each frequency band separately, which means that there is no power combination of 

their two bands. 

2.3 Ambient RF energy 

Visser et al. (2008) claim that in between 25m and 100m from a GSM-900 base station in 

Netherland, the power density is between 0.1mW/m2 and 1.0mW/m2 (10-5-10-4 mW/cm2) according 

to their measurement. Pinuela et al. (2013) conducted a citywide RF spectral survey (0.3-3GHz), 

giving conclusion that GSM900, GSM1800 and 3G are main contributors to the ambient RF power 

density in London. 

As previously stated, Md Din et al. (2012) report their designed harvester is able to generate 

2.9V with a distance of 50m to a GSM base station antenna tower and Li et al. (2013) claim that 

their RF-EH system has output when they simply walk outdoors in Maryland campus with it. 

Besides, Russo et al. (2013) report that about -26dBm (2.5μW) GSM900 downlink (935MHz-

960MHz) power can be harvested in their university building by the 3dBi measuring antenna of 

spectrum analyzer. They also conducted more measurements at different locations and obtained 

similar data. Moreover, they demonstrate the possibility of harvesting energy from a ringing phone 

in near distance.  
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These results give the fact that it is feasible to harvest ambient RF from GSM base station. 

But the amount of the harvested power is very small (only 0 to 10μW, if we assumed an antenna 

with a dimension of 10cm*10cm is used) and only low-power-consumption devices can be 

supported and driven by such small amount of power. 

2.4 Rectifier 

The conventional structures of MOS-based rectifier are charge pump, full-wave bridge, 

FGCC and partially gate cross-coupled (PGCC), which will be all analyzed and discussed in 

Chapter 3. Some recently published works, relating improvements and modifications on these basic 

rectifier structures, will be introduced and presented here.  

- Improvements on PGCC structure 

Ahmadi et al. (2005) adopted Dynamic Bulk Switching (DBS) technique to the PGCC 

rectifier. As shown in Figure 2.1, the bulks of the diode-connected transistors are 

connected with the higher voltage, either input or output. This method will effectively 

reduce the possibility for latch-up. As we know that latch-up is a critical issue for PGCC 

rectifier, since all the sources of the transistors are connected with the input signals. 

Ghovanloo and Najafi (2002) use DBS technique not only on the diode-connected 

transistors but also on the switch-connected transistors. They claim that, by doing so, 

the substrate leakage current and parasitic components are decreased and the possibility 

of latch-up is reduced, and efficiency is improved. Note that this conclusion is drawn 

on the fact that this circuit structure is tested only on 4MHz input AC signal. Using DBS 

at high frequency levels does not provide great improvements. 

 

     Figure 2.1 DBS on diode-connected transistors, from Ahmadi et al. (2005) 

 

Ghovanloo and Najafi (2004) not only employs DBS technique on the diode-connected 

transistors, but also add additional diodes on the diode-connected transistors sides, as 
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shown in Figure 2.2 (a). The added parallel diodes help to facilitate the current to flow 

back to the coil. The same technique is also used in Atluri and Ghovanloo (2007) and 

Ghovanloo and Atluri (2008). 

Bootstrapped capacitor technique is usually used in rectifier design for the purpose of 

reduce threshold voltage of the transistors. When the rectifier is exploited for an ambient 

RF-EH system, the threshold cancellation techniques are necessary since the voltage 

generated on the receiving antenna is relatively low compared with the standard MOS 

threshold voltage. Lower threshold voltage can not only reduce the “dead zone” of the 

harvester but also can increase the PCE value due to the smaller voltage drop of the 

“ON” resistance. Jianyun et al. (2005) and Hu and Min (2005, October) designed a 

rectifier based on PGCC where the bootstrapping capacitors are connected to the gate 

of the main pass switches. Authors claim that the voltage drop between the drain and 

source of the main pass transistor when it is in “ON” state can be close to zero after 

properly optimize the size of bootstrapped capacitor and the main pass transistor. Thus 

the PCE is higher compared to the conventional gate cross-coupled rectifier structure 

under the same load and source conditions. Hashemi et al. (2012) employ both DBS 

and bootstrapped capacitor techniques, as shown in Figure 2.2 (b), and successfully 

achieve an increase in PCE. Transistor M5 and M6 form the paths to charge up the 

bootstrapping capacitors at start up via M7 and M8. The combination of M5, M7 and CB1 

reduces the threshold voltage of main transistor M3. DBS technique is employed on 

transistor M5 and M6 by selectively connecting their bulks to the highest available 

voltage (either VOUT or input) in order to avoid latch-up, as shown in the right part of 

Figure 2.2 (b). 

 

- Improvements based on FGCC structure 

Theilmann et al. (2010) employs zero-threshold-voltage transistors in FGCC structure 

in order to push the rectifier to operate into a lower input power level. However, since 

the threshold is zero, the source-bulk (or drain-bulk) diodes of pMOS transistors will 

be forward-biased during their “OFF” state. Thus a considerable amount of leakage 
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current will flow to the ground. To suppress this leakage, authors proposed a version of 

FGCC rectifier, as shown in Figure 2.3. 

 

Mandal and Sarpeshkar (2007) employ floating-gate techniques to decrease the 

threshold voltage. This technique is realized by injecting charges into the gate oxide of 

the transistors, thus a gate-to-source bias voltage is formed to reduce the threshold 

voltage. This technique is less area-efficient since extra pre-charge circuit is necessary. 

Furthermore, it is difficult to control the injected charge on the floating gate. The 

performance of the rectifier may become worse after several years due to the leakage of 

injected charge (Hashemi et al. (2012)). 

                 
(a)                                                                 (b) 

Figure 2.2 (a) DBS and parallel diodes, from Ghovanloo and Najafi (2004). (b) DBS and 

bootstrapped capacitors, from Hashemi et al. (2012). 

 

 

Figure 2.3 Improved FGCC, from Theilmann et al. (2010) 
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- Optimized charge pump structure 

Wang et al. (2007) replace the diode-connected MOS transistors in charge-pump based 

rectifier with a new structure as shown in Figure 2.4 (a). Two auxiliary transistors (Misl 

and Mis2) as switches are used to update the body voltage of transistor Mi, for the 

purpose of reducing the body effect in substrate. The threshold voltage of a MOS 

transistor is a function of the bulk-source voltage (VBS) as a result of the body effect. 

Diode-connected PMOS Mpi is used to provide bias voltage Vbias for Mi to reduce the 

threshold voltage. 

Le et al. (2008) uses floating-gate techniques to realize threshold cancelation effect to 

a multi-stage charge pump rectifier. Its single stage is shown in Figure 2.4 (b). Authors 

Le et al. (2006) proposed a rectifier topology with bootstrapped capacitor technique 

based on charge-pump topology. It indeed gives higher PCE but it needs large off-chip 

capacitors and gives small output current. 

    

(a) (b)   

Figure 2.4 (a) DBS technique from Wang et al. (2007). (b) Floating-gate technique from 

Le et al. (2008). 
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CHAPTER 3 RECTIFIER DESIGN AND POST-LAYOUT 

SIMULATION 

Rectifier is the most important block of a RF-EH system and should be critically designed 

because it greatly influences the overall performance of the harvesting system. In this chapter, 

popular rectifier structures are studied in the first place. Then the designed 3-stage FGCC rectifier 

dedicated for 880MHz GSM band is presented in the second part. The benefits of employing 

multiple stages, low-threshold-voltage (LTV) transistors and bulk-GND connection are discussed 

at the same time. In addition, the layout design of this rectifier is also presented. The post-layout 

simulation results are given at the end of this chapter. 

3.1 Overview of rectifiers: popular CMOS rectifier structures 

Diode is the main component in a rectifier, which allows one-way flow of the electrons. In 

CMOS technology, a PN junction is usually used as a diode for designers. However, it has a typical 

threshold voltage of 0.7 V, which is apparently too high for the input signal to exceed in our 

application. In other words, it is not suitable for rectifying low level signals. As we know, schottky 

diode has very low threshold voltage, low conduction resistance, low junction capacitance and also 

very large saturation current. However, since conventional CMOS integrated circuits generally do 

not employ Schottky junction diodes, Schottky diodes are not known to be available in all standard 

CMOS semiconductor fabrication processes (Ma et al. (2014)). Schottky junction diodes of the 

prior art require specialized semiconductor fabrication processes, which raises the cost of chip 

fabrication because extra masks need to be produced by the Fabs which use modular process 

(Shokrani et al. (2014)). Besides, although the foundries have already began to adopt Schottky 

diodes into modular process in recent years, accurate model of the schottky diode for simulation 

are not well prepared and matured enough (Yuan et al. (2015)). Thus schottky diodes in rectifier 

design are replaced by diode-connected CMOS transistors. However, the voltage needed for 

turning on the transistor diode is higher than that of a schottky diode. Therefore, transistors working 

as switches are adopted in some rectifier structures. In this section, different popular CMOS 

rectifier structures are analyzed. All the recently published advanced rectifiers are derived or 

improved from these basic and conventional CMOS rectifier structures. 
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3.1.1 Basic structures of MOS-based rectifier 

A: Half-wave structure 

The MOS-based half-wave rectifier circuit normally utilizes a single diode-connected MOS 

transistor, as shown in Figure 3.1. When it is placed in series with the load capacitor across an AC 

supply, it converts alternating voltage into uni-directional pulsating voltage. It uses half cycles of 

the applied voltage, either the positive or negative half of the AC wave, and the other half cycle is 

suppressed because the diode-connected MOS transistor conducts only in one direction.  

An analysis of one-stage conventional MOS-based half-wave rectifier was presented in Yi 

et al. (2007) based on the BSIM3 transistor model with appropriate approximations. Figure 3.2 

gives the steady-state waveforms of a half wave rectifier. Between t1 and t2, the diode-connected 

transistor begins to conduct in sub-threshold region. At t=t2, the input voltage rises higher than the 

output voltage by VTH (threshold voltage of the diode-connected transistor). At this moment, the 

transistor gets into saturation region. Between t2 and t3, the transistor keeps working in saturation 

region, and the drain-to-source current of the transistor id(t) equals to
2( )gs THV V  . This state 

continues until the input voltage drops to just higher than the output voltage by VTH at t=t4. Between 

t3 and t4, the transistor works in sub-threshold region again. Between t4 and t1+T (T is the period of 

the input AC voltage signal), the drain and source of the transistor are interchanged. The transistor 

works in sub-threshold region with 0gsV  and ( ) ( )ds out inV V t V t  . During this time period, the 

current id(t) is considered as leakage current Ileak. In the micro-power regime, Ileak cannot be 

neglected. This is because: 

(1) Ileak increases exponentially with the decrease in VTH, and, for low-VTH and zero-VTH 

devices, Ileak can be of the order of μA and is thus not negligibly small;  

(2) Ileak is comparable to the load current in micro-power rectifiers; 

(3) the power consumed by Ileak is significant as the transistor stays in the reverse-biased 

region for a considerable period of time. (Yi et al. (2007)) 

Half-wave topology is simple and easy to be understood. However, it is not efficient 

because it uses only the half of the input signal cycle. For low-power-consumption electronic 

devices, half-wave topology is not the best choice. 
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Figure 3.1 Conventional MOS-based half-wave rectifier 

 

 

 

Figure 3.2 Waveforms of the conventional MOS-based half-wave rectifier from Yi et al. (2007): 

(a) Waveforms of input and output voltages, (b) Waveforms of transistor current. 

 

B: Full-wave bridge structure 

The full-wave rectifier is a little more complicated than the half-wave one. It utilizes both 

halves of the input AC waveform to provide an output. This greatly improves the efficiency and 

leads the output to be much easier to be smoothed. The full-wave bridge nMOS-based topology is 

presented in Figure 3.3. 

Taking this circuit as an example, during the positive half cycle of the supply, diodes N3 

and N2 conduct in series while diodes N4 and N1 are reverse biased and the current flows through 
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the load from top to bottom. During the negative half cycle of the supply, diodes N4 and N1 conduct 

in series, but diodes N3 and N2 switch "OFF" as they are now reversed biased. The current flowing 

through the load has the same direction as that of the positive half circuit. As the current flowing 

through the load is unidirectional, the voltage developed across the load is also unidirectional. 

The bulk of the nMOS transistors in Figure 3.3 are connected to the rectifier output. This 

bulk biasing method leads to latch-up hazard, and leakage current Ileak during “OFF” state, same as 

what we discussed earlier in the half-wave topology section. To overcome the disadvantages, 

Onizuka et al. (2006) use DBS technique to reduce the undesirable body effect of the main diode-

connected PMOS transistor, as presented in Figure 2.1. 

The efficiency of full-wave rectifier is higher than the half-wave one, but it is still limited 

by the voltage drop of two diodes in each single cycle, especially in low-voltage applications. 

 

Figure 3.3 Conventional MOS-based full-wave bridge rectifier (nMOS transistors are used) 

 

3.1.2 Advanced bridge MOS-based rectifiers 

As we saw in the previous section, conventional full-wave bridge rectifier uses two pairs of 

diode-connected MOS transistors. The effective turn-on voltage of the diode-connected MOS 

transistor is almost equal to the threshold voltage of the MOS transistor, which is smaller than a 

PN-junction diode, but generally larger than a Schottky diode. Since a pair of diodes turns on at 

each cycle in series with the input RF signal, the output voltage is twice as low as the threshold 

voltage of the MOS transistor below the amplitude of the input RF signal. Therefore, in such 

structure, high PCE cannot be achieved. In order to get high PCE, several advanced rectifier 

topologies have been proposed. 
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A: Partially Gate Cross-Coupled structure (PGCC) 

In partially gate cross-coupled structure, two diode-connected transistors in conventional 

full-wave bridge structure are replaced by two cross-coupled transistors (N1 and N2) as shown in 

Figure 3.4. During the positive half cycle, only diode N3 and switch N2 turn on. The current goes 

out of node Vout from terminal Vin+ through diode N3 and flows through the load Rload. Then the 

current goes back to terminal Vin- from the load through switch N2. Ground acts as a reference 

voltage. During the negative half cycle, diode N4 and switch N1 turn on. At this time, the current 

goes out of node Vout from terminal Vin- through N4 and flows through the load. Then the current 

goes back to terminal Vin+ from the load through N1. In each case, the negative terminal of the 

source is connected to the ground and the positive terminal transfer the positive voltage to the 

output. A DC voltage is generated across the load resistor. 

The advantage of this topology comparing with the conventional diode-connected full-wave 

topology is that the voltage drop across the switch transistors can be lower than threshold voltage 

if they are properly sized. Thus DBS technique is adopted in some works as we introduced and 

presented in section 2.4. However, the switch transistors lead to substrate leakage and possible 

latch-up. 

 

Figure 3.4 Partially gate cross-coupled rectifier (nMOS transistors are used) 

 

B: Fully Gate Cross-Coupled structure (FGCC) 

As shown in Figure 3.5, this circuit has a cross-coupled differential CMOS configuration 

with a bridge structure. In this rectifier, all the four transistors are used as switches.  
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When Vin+ is high and Vin- is low (during the positive half of the switching cycle), 

transistor P1 and N2 are on and P2 and N1 are off, assuming that Vin+ and Vin- are large enough to 

turn the transistors on and off. Current flows out of Vout through P1 and flows into negative 

terminal of the source through N2. During the other half of the cycle, P1 and N2 are off and P2 and 

N1 are on. In this case, current flows out of Vout through P2 and flows into positive terminal of the 

source through N1. Therefore, a DC voltage is generated across the load resistance.  

In this circuit, the on-resistance of the transistors is decreased by increasing gate-source 

voltage (|VGS|) of the transistors and the reverse leakage is reduced by reversing the polarity of the 

VGS in the cross-coupled structures. Thus, the PCE of this circuit is higher than those of the previous 

rectifier circuits. 

 

Figure 3.5 Fully gate cross-coupled rectifier 

 

C: Charge-Pump Based Rectifiers 

The charge-pump based rectifier is mostly based on the Dickson's topology. In this topology 

as shown in Figure 3.6 (nMOS and pMOS complementary version), diode-connected transistors 

are used as pumping devices. During the negative half cycle, MP2 turns off and MN1 turns on 

resulting in capacitor C being charged to |Vin|. When Vin goes into the positive half cycle, MN1 

turns off and MP2 turns on. In this case the charges stored in capacitor C flows into load capacitor 

CL through MP2, thus the top plate of capacitor C (its right side in Figure 3.6) is pushed up to 2|Vin| 

and this voltage appears at the output. 

Ideally the output voltage should be 2|Vin|, but in fact the output voltage is reduced by the 

threshold of the rectifying transistors. The output voltage of a single stage charge-pump based 

rectifier can be expressed as (Dickson (1976)):  
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where Vinpp is the peak-to-peak voltage of the input signal Vin, C is the coupling capacitor as 

shown in Figure 3.6, Cp is the parasitic capacitor at pumping node, Iout is the average current drawn 

by the load resistor, f is the frequency of the input AC signal, and VTH is the threshold voltage of 

transistor. 

 

Figure 3.6 Charge-Pump based rectifier 

 

3.2 Design of a 3-stage FGCC rectifier 

3.2.1 Attempt to improve the work proposed by Hashemi et al. (2012) 

A high-efficiency CMOS rectifier introduced by Authors Hashemi et al. (2012) was 

described in section 2.4 and was shown in Figure 2.2 (b). It achieves highly improved efficiency 

compared to some recently published works which are based on gate cross-coupled structure. It is 

dedicated for powering biomedical implants in MHz range, thus the sizes of their transistors are 

optimized to be suitable for application at 3.3V peak input amplitude and 10MHz power transfer 

frequency using 180nm CMOS technology. Here, this previous work in our Lab Polystim is rebuilt 

in 130nm CMOS technology and adjusted for low input voltage and GHz range applications.  

After plenty of parametric simulations, the best performance is found when the size of the 

main paths transistors (M1-4) is 160/120nm with a multiplier of 50 and the bootstrapping capacitors 

(CB1-2) are 50pF. The PCE of this structure is obtained and compared with those of fully and 

partially gate cross-coupled structures as shown in Figure 3.7. The main paths transistors in fully 
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and partially gate cross-coupled structures have the same size as those in this structure. The 

frequency of the input AC signal is 1960MHz and the resistive load is 2kΩ. 

We can see from the PCE curves in Figure 3.7 that the FGCC structure gives highest PCE 

at 0.6-1.4V input (peak magnitude) range and after 1.4V the rebuilt rectifier begins to become 

superior to the others. This is because that the rebuilt rectifier has dynamic bulk switching blocks 

which effectively prevent latch-up effect at higher input levels. However it is because of the use of 

dynamic bulk switching blocks, and also because of the use of bootstrapped capacitors, the 

 rebuilt rectifier has large value of parasitic capacitors, which becomes critical at high frequency 

levels. Thus its efficiency at 0.6-1.4V input is always restricted. By contrary, the FGCC rectifier 

structure has four transistors working as switches, which are highly sensitive to turn “ON” or “OFF” 

at low input power (LIP) levels. Hence it shows high efficiency in 0.6-1.4V input range. In this 

work, we are focusing on LIP use, which means that the magnitude of the input signal will be no 

more than 1V, maybe even lower than 50mV. Thus only the case that the magnitude of the input is 

lower than 1V needs to be concerned. So in this master project, fully gate cross-coupled rectifier, 

also known as self-driven synchronous rectifier, is adopted due to its remarkable higher PCE at 

LIP levels comparing with other MOS-based structures. 

 

Figure 3.7 PCE of the rebuilt rectifier of Hashemi et al. (2012) and comparison with those of fully 

and partially gate cross-coupled structures 
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3.2.2 Analysis of single-stage FGCC rectifier 

As shown in Figure 3.8, a single-stage FGCC rectifier consists of two NMOS (N1, N2) and 

two PMOS (P1, P2) transistors. A differential input AC signal is fed to this circuit. In order to 

better illustrate its operation, the differential input signals (vin+, vin-) and currents through P1 and 

N2 (iP1, iN2), which are derived from simulation results, are given in Figure 3.9. 

 

The operation of this circuit can be summarized as follows. During the positive half cycle 

of the input AC signal, for example at point A in Figure 3.9, transistors P1 and N2 are “ON” and 

P2 and N1 are “OFF”. Current flows out of “Vout” to the load through P1 from the positive terminal 

of the input source and flows back to the negative terminal of the input source through N2, as 

indicated in Figure 3.8 (a). By doing this, a DC voltage is generated across the load. Here P1 and 

N2 work in linear region as two switches. Currents through P1 or N2 can be expressed as: 

 

 

 
 

 

Figure 3.8 Operation of P1 and N2 of single-stage FGCC CMOS rectifier: (a) Conduction on 

linear mode (point A in Figure 3.9), (b) Conduction on subthreshold mode (point B in Figure 

3.9). 
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where iP1/N2 is the drain-to-source current of transistor P1 or N2 (Ampere); μ0-P1/N2 is the electron 

mobility of n- or p-type transistor (cm2·V-1·s-1); Cox is the gate-oxide capacitor per unit area (F/cm2); 

WP1/N2 and LP1/N2 are effective channel length and width of P1/N2 respectively (μm); VTH-P1/N2 is 

the threshold voltage of P1/N2 (V); vGS-P1/N2 and vDS-P1/N2 are gate-to-source and drain-to-source 

voltage of P1/N2 respectively. Transistors P2 and N1 work in the same way during the negative 

half cycle since this circuit has a symmetrical structure. Therefore, we only discuss transistor P1 

and N2 here. 

 

          We may easily draw one conclusion from Eq.(3-2) that lower threshold voltage will give 

larger iP1/N2. In other words, lower threshold voltage will make the transistors transfer the current 

to the load more easily during their “ON” mode, which may lead to a higher PCE. The on resistance 

of transistor P1 or N2 (rON-P1/N2) can be derived from Eq.(3-2): 

 

 

 

We may draw the second conclusion from Eq.(3-3): larger width/length ratio may decrease 

the on resistance, meaning that the voltage drop across the conducting transistor will decrease, 

which may improve the PCE. PCE is defined by: 

 

Figure 3.9 Theoretical analysis of single-stage FGCC rectifier 
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                                                                                                                                    (3-4) 

 

where T is the period of the input AC signal. However, note that we are discussing the transistors 

working on “ON” mode and in linear region (for example at point A in Figure 3.9). Later, when 

the magnitude of vin+ falls, for example, to point B in Figure 3.9, the advantages of low threshold 

and large width/length ratio transform into disadvantages. 

In the shadow area in Figure 3.9, vin+ falls to a smaller value which makes [(vGS-N2) - VTH-

N2] 0 and [(vGS-P1) - VTH-P1]  0. Considering from the perspective of a switch, in this case, 

transistor P1 and N2 get into “OFF” mode. Ideally, it is supposed to have no current going through 

them. However, since P1 and N2 operate in weak inversion region, there is a small subthreshold 

current going through them, as illustrated in Figure 3.8 (b). This small current iP1/N2-rev, flowing in 

the reversed direction of the previous working mode, can be expressed by: 

 

                                                                                                        (3-5) 

 

where k is Boltzmann constant; T is the absolute temperature; q is the electron charge; n is 

subthreshold slope factor; ID0 is a parameter related to process. In this situation, both larger 

width/length ratio and low threshold voltage provide convenience for this reversed small current 

to go through, which reduces the total charge delivered to the load, resulting lower efficiency. 

In conclusion, the design of FGCC rectifier should make trade-off between “ON” current 

and reversed subthreshold current by carefully selecting the size and threshold voltage of the 

transistors. 

3.2.3 Necessity of cascading stages of the FGCC rectifier 

Since the maximum output DC voltage can be obtained from a single-stage rectifier is 

limited, more stages are needed to produce a higher DC voltage across the load resistor. However, 

increasing the number of stages causes more leakage because: (a) body bias on nMOS transistors 

in later stages increases with the number of stages, which may reduce the “ON” charging current 
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through these nMOS transistors, thus pulls down the PCE, and (b) the total number of transistors 

also increases which apparently augments the total reversed subthreshold current (may vary from 

several nW to tens of nW depending on the input power, Yi et al. (2007)), thus PCE decreases. 

In this work, we expect to have an output to be around 1V to 1.2V at the output. However, 

the available magnitude of the input signal in front of the rectifier depends not only on the antenna 

but also on the matching network. If we assume a 350mV magnitude of the input signal can be 

obtained, after plenty of simulation, three is selected as the number of stages since 3-stage rectifier 

gives enough output DC voltage and at the same time it does not lead to too much power loss, as 

shown in Figure 3.10. Another reason for choosing number 3 is that, according to some published 

works, single-stage and 3-stage FGCC rectifiers are reported to have a peak efficiency higher than 

60%. The efficiency cannot be remained this high when the number of stages exceeds five due to 

the leakage. For example, the 5-stage FGCC rectifiers developed by Le and Luong (2010) and 

Ouda et al. (2013) have efficiency only around 25% when input power is below 0dBm.  

The main role of the four capacitors C1-4 is to prevent the generated DC signals at the 

outputs of each rectifier stage from flowing back to the input. There is no capacitors at the first 

stage, since the output voltage at the output of the first stage is lower than the magnitude of the 

input signal. Thus there is no need to prevent the reverse flowing. This explains why for some 

designed single-stage FGCC rectifier, no capacitor is used in the input path. In addition, the sizes 

of the transistors do not need to be the same in each stage. Simulation results show that adjusting 

pMOS transistors to be slightly larger than nMOS transistors and making the transistors in first 

stage larger than the others help to improve the efficiency. 

 

 

 

Figure 3.10 Proposed three-stage FGCC rectifier 
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3.2.4 PCE comparison of 3-stage FGCC rectifiers using various transistors 

The device library of IBM130nm CMOS8RF technology provides low-threshold-voltage 

(LTV) transistors. In this technology, the on-current for standard nMOS is 530μA/μm of the device 

width, and the standard threshold voltage is 355mV. For LTV nMOS, the on-current is improved 

to 605μA/μm. Thus a lower threshold voltage of 260mV is achieved. As explained previously, 

lower threshold voltage may give larger “ON” current, which may help to increase the efficiency. 

However, the expense of lower threshold is the relatively larger leakage current. Hence, the 

performance of rectifiers using low-threshold transistors needs to be simulated and explored. 

Therefore we built the schematics of one 3-stage FGCC rectifier using LTV transistors and 

another using standard-threshold-voltage (STV) transistors. Both 3-stage rectifiers have the same 

transistor sizes and load values. The only different thing is their transistor types. The frequency of 

the input AC signal is 2.45GHz and the resistive load at the output is 100kΩ. The simulated PCE 

of the two rectifiers are presented in Figure 3.11. As we can see from their PCE curves, from 0uW 

to 18uW input, the 3-stage rectifier using LTV transistors apparently improves the efficiency. Note 

that only the performance of the rectifier at LIP levels deserves to be discussed, since we focus on 

applications at around several microwatts. Therefore, LTV transistors are adopted in this work 

motivated by their higher PCE at LIP levels. 
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Figure 3.11 PCE comparison of 3-stage FGCC rectifiers using LTV and STV transistors 
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3.2.5 PCE comparison of 3-stage FGCC rectifiers using different bulk 

connections 

IBM130nm CMOS8RF device library provides LTV nMOS transistors within a p-well that 

is isolated from the substrate. The cross section of the device is shown in Figure 3.12 (a). Isolation 

is achieved by inserting a buried n-type layer between the local p-well and the P-substrate. This is 

a 6-terminal device as shown in Figure 3.12 (b). The isolating n-type layer should be tied to a quiet 

power supply that is at a high enough potential to prevent forward biasing. 

As was previously discussed in section 2.4, latch-up is a critical issue in rectifier design. In 

order to eliminate the latch-up effect, we may turn to triple-well LTV nMOS transistors instead of 

standard n-Well LTV nMOS. In order to know if triple-well LTV nMOS would improves the PCE, 

the schematics of two 3-stage rectifiers, one uses LTV nMOS transistors with bulk-GND 

connection and another one uses triple-well LTV nMOS transistors with isolating layer connected 

with the output node, are built and simulated. Both rectifiers have the same transistor sizes and 

load values. The only different thing is the method of bulk connection. The frequency of the input 

AC signal is 2.45GHz and the resistive load at the output is 100kΩ. 

           
(a) (b) 

 

Figure 3.12 PI triple well LTV nMOS transistor: (a) Cross section view from IBM Training file, 

(b) Symbol view. 

 

The simulated PCE of the two 3-stage rectifiers are present in Figure 3.13. We may find 

out from the PCE curves that the rectifier with bulk-GND connection has slightly higher efficiency 

from 0uW to 16uW input. After 16uW, it seems to become inferior to the rectifier using triple-well 

transistors. The reason of this phenomenon is that the output voltage is too low in range of 0-16uW 

input and the isolating layer is connected with the output with no other choice, thus the triple-well 

topology does not prevent latch-up at all and in contrary they themselves generate leakage. When 

the two rectifiers deal with higher input power, rectifier with triple-well transistors effectively 
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prevents latch-up and as a consequence it gives higher efficiency. However, note that the focus of 

this project is on LIP use. Therefore, we chose the rectifier using bulk-GND connection. 
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Figure 3.13 PCE comparison of 3-stage FGCC rectifier structure using different bulk connection 

 

3.2.6 Design of 3-stage FGCC rectifier 

Following the preliminary analysis shown above, we can get to the conclusion that, in order 

to design a rectifier intended to operate with several microwatts of input power, and having a higher 

efficiency at low power levels, a FGCC structure, composed of three stages in series, and based on 

LTV transistors, and bulk-GND connection for nMOS transistors.  

Figure in APPENDIX B shows the resulting 3-stage FGCC rectifier built in Virtuoso 

Schematic Editor. Power excitation is an 880MHz AC source with zero port resistance. By 

carefully selecting the transistor sizes, we obtained good performance.  

 

3.2.7 Layout design 

The layout is designed in Virtuoso Layout Suite Editing, using IBM 130nm cmrf8sf 

Technology with MA last metal Back End Of Line (BEOL) Metallization Options. The cross 

section of this MA last metal Option is presented in APPENDIX A. 
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- Layout of transistors 

As shown in Figure 3.14 (a), the gate of nMOS transistor is connected with Metal One 

(M1) at both of its two ends, in order to have low resistance gate connection. M1 forms 

a gate contact ring. Then a substrate contact ring is designed just outside of the gate 

contact ring (p-well tie downs). For the nMOS transistors at the first stage of the rectifier 

whose sources and drains are connected with the pads, an N-well guarding is designed 

to collect minority electrons injected into the substrate. 

As shown in Figure 3.14 (b), the pMOS transistor also has a gate contact ring. And an 

N-well contact ring is designed right outside the gate contact ring. This N-well is tied 

down by a n+/P-well diode in order to prevent N-well potential from rising too high to 

the P-substrate by providing the reverse biased leakage path, as explained in IBM 

cmrf8s Design Manual. 

 

 

(a)                                                                      

 

(b)  

Figure 3.14 Layout of transistors: (a) nMOS LTV, (b) pMOS LTV. 
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- Layout of capacitors 

In this design, dual HP MIM capacitor is employed due to its advantage of area-saving. 

Dual HP MIM insert add an additional HY layer to realize parallel connection of two 

capacitors. In this way, the capacitance density is increased to 4.10fF/um2. 

- Layout of the whole 3-stage FGCC rectifier 

The overall area of the designed 3-stage FGCC rectifier including pads is 0,215mm2, as 

shown in APPENDIX C. 

3.3 Post-layout simulation results of the designed 3-stage FGCC 

rectifier 

After the layout of the designed 3-stage FGCC rectifier passed Design Rule Check (DRC) 

by Calibre DRC and Layout Versus Schematic (LVS) by Calibre LVS, its parasitic capacitors and 

resistors are extracted by Assure QRC. Post simulations are run using the extracted file. 

3.3.1 Vout simulation 

There are different methods to measure power metrics for a circuit using Spectre simulator 

and Cadence tools. Since the designed rectifier circuit does not have any power supply, and it is a 

non-linear circuit where transistors operate through subthreshold region to linear region, the most 

suitable method to know the input power is to measure the input voltage and input current. Then 

by applying Eq.(3-6) to the Tool Calculator of Analog Design Environment (ADE), the average 

input power P can be plotted. 
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                                                           (3-6) 

where v(t) is the transient input voltage, i(t) is the transient input current, T is the period of the input 

AC signal. 

We simulated output voltages of the completed rectifier layout after being extracted, with 

50kΩ, 100kΩ and 200kΩ load respectively as shown in Figure 3.15. Being powered by an 880MHz 

input AC signal, the designed rectifier can generate 1V at the output at around 15μW (-18.24dBm) 

input with 100kΩ load. We find out that the load resistance has 
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impact on the output voltage of the rectifier. When the output is connected with 50kΩ load, 1V 

output is generated at around 32μW (-14.95dBm) input power. And if with 200kΩ load, it can 

generate 1V at the output at around 7.5μW (-21.25dBm) input. We find that the higher the load 

resistance, the lower amount of input power is needed to generate 1V at the output. In other words, 

higher load resistance can improves the sensitivity of the rectifier. But it should be noted that 

increasing load resistance is not a good method to increase the output voltage, since the load 

resistance is always decided and restricted by the circuit block following the rectifier. Hence in this 

thesis, the performances of the designed rectifier with different load resistances, 50kΩ, 100kΩ and 

200kΩ, are all reported. 

3.3.2 PCE simulation 

As for the average output power, it can by calculated by: 

2( )out
out

load

V
P

R
                                                               (3-7) 

where Vout is output voltage (V), Rload is the load resistance (Ω). 
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Figure 3.15 Vout vs. input power of the designed rectifier with different loads 
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After obtaining both the input and output power, the PCE can be calculated by: 

out

in

P
PCE

P
                                                                (3-8) 

We simulated the PCE of the designed 3-stage FGCC rectifier with 50kΩ, 100kΩ and 

200kΩ load respectively as shown in Figure 3.16. Being fed by an 880MHz input AC signal, the 

designed rectifier gives a PCE of 16% at 1μW (-30.0dBm) input and achieves a peak PCE of 70% 

at 20μW (-17.0dBm) input with 100kΩ load. The load resistance also has impact on PCE. With 

50kΩ load, it gives a PCE of 8.8% at 1μW (-30.0dBm) input and achieves its peak PCE after 30μW 

(-15.23dBm) input. And with 200kΩ load, it gives a PCE of 28.5% at 1μW (-30.0dBm) input and 

gets to its peak PCE of 67.8% at 8.3μW (-20.81dBm) input. The peak efficiency moves toward 

lower input power with the increase of the load resistance, but its value slightly decreases. 

 

Although the proposed rectifier shows great efficiency improvement in LIP range, it still 

needs at least 10μW (-20dBm) input power to generate 1.2V at the output. It is not guaranteed that 

10μW can be always harvested from single GSM-850MHz band. Thus power combination from 

multiple bands is proposed and it will be presented right in next chapter. 
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Figure 3.16 PCE vs. input power of the designed rectifier with different loads 
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CHAPTER 4 SYSTEM IMPLEMENTATION AND POST-LAYOUT 

SIMULATION 

According to the post-simulation results of the designed 3-stage FGCC rectifier at 880MHz 

in Chapter 3, in order to obtain a 1V DC voltage across a 200kΩ resistor at the output, at least 

7.5μW (-21.25dBm) input power should be available in front of the rectifier. However, as was 

previously explained in Chapters 1 and 2, the power density of channel GSM-850 is extremely low, 

which means that scavenging 7.5μW (-21.25dBm) RF energy is rather difficult and thus 1V DC 

voltage at the output is not guaranteed. Therefore, we attempt to harvest the energy from GSM-

850, GSM-1900 and Wi-Fi 2.4GHz bands at the same time and assemble the energy from these 

three channels at the output. In this chapter, a tri-band rectifier system is implemented and 

simulated. The topology of the rectifier system is presented in the first place to provide a clear view 

for the readers. Furthermore, the post-layout simulation results are reported and discussed. A power 

management block to be used for preventing multi-channel reverse leakage is proposed at the end. 

4.1 General concept of multi-channel power combination 

In Canada, GSM-850, GSM-1900, Wi-Fi 2.4GHz are three largest RF energy contributors. 

Generally, GSM-850 uses 824–849 MHz to send information from the mobile station to the base 

station (uplink) and 869–894 MHz for the other direction (downlink); GSM-1900 uses 1850–1910 

MHz as uplink and 1930–1990 MHz as downlink. Downlink power is always present, and more or 

less constant (small power variations during the day), while uplink power depends on the number 

of mobile phones in the vicinity of GSM energy harvester (Russo et al. (2013)).Therefore, for 

rectifier dedicated for harvesting energy from GSM-850, which is already designed and simulated 

in Chapter 3, the center operating frequency of the rectifier is set to be the center frequency of the 

GSM-850 downlink band — 880MHz. Similarly, the center operating frequency of rectifier 

dedicated for GSM-1900 should be 1960MHz. According to the specifications of IEEE 802.11 for 

Wireless Local Area Network (WLAN) computer communication, the center frequency of Wi-Fi 

2.4GHz band is 2.45GHz. Therefore, the rectifier dedicated for harvesting energy from Wi-Fi 

2.4GHz should have a center operating frequency at 2.45GHz in order to cover the whole band. 

For harvesting energy from all these three bands discussed above, another two rectifiers dedicated 

for center frequency at 1960MHz and 2.45GHz are designed. The three rectifiers have the same 3-
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stage FGCC structure, but with different transistor sizes and coupling capacitances which are 

optimized for different center frequencies. The method of optimization is mainly dependent on 

parametric simulations. Several parameters such as coupling capacitance, width of nMOS 

transistors in first stage, width of pMOS transistors in first stage, width of nMOS transistors in 

second stage and so on are set to be variables. Only one variable is stepping up or down for each 

parametric simulation and meanwhile other variables keep unchanged. The trend brought by the 

change of this variable can be observed from the simulation results. Keeping the best value of this 

variable, the second parametric simulation begins to run for the second variable. The rest can be 

done in the same manner. By doing so, all parameters are improved. In order to further optimize 

and verify the rectifier, a second round of parametric simulations can be done. 

In order to combine the power from these three bands, we first proposed a power 

combination strategy as shown in Figure 4.1.  

 

Three channels will be used to collect energy from the desired frequency bands and after 

turning AC signals to DC signals they will transport this DC energy to the same load. In each 

channel, there is one antenna, one matching network and one rectifier, and all of these blocks are 

designed to be operating at desired center frequency. RF energy of GSM-850, GSM-1900 and Wi-

Fi 2.4GHz in the surrounding air will be captured by the three dedicated antennas, having center 

frequency at 880MHz, 1960MHz and 2.45GHz respectively. In each channel, the captured RF 

 

Figure 4.1 Simplified block diagram of tri-channel rectifier system dedicated for EH from 

three RF bands, Wang and Sawan (2014). 
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energy will be fed to the rectifier by the matching circuits. Then the output from each channel will 

charge the load capacitor together in the same manner.  

This tri-band rectifier system for power combination can be easily realized. However, on 

account of the different paces of operation among these rectifiers, we may predict that each rectifier 

will be influenced by the other two. The influences could decrease the power efficiency or change 

the input impedance. Hence, this power combination topology is being studied and explored 

through simulations. 

4.2 Post-layout simulation results of multi-channel rectifier 

Another two 3-stage FGCC rectifiers dedicated for 1960MHz and 2.45GHz center 

frequencies are implemented using the same technology and same transistors/capacitors 

arrangements in layout as rectifier for 880MHz. 

- PCE simulation 

We simulated the PCE of each single-channel rectifier and also those of the tri- and 

dual-channel rectifier systems. We define the PCE of multi-channel rectifier system as: 

2

, 1 , 2 , 3

/out out load

in in ch in ch in ch

P V R
PCE

P P P P
 

 
                                    (4-1) 

where Pin,ch1/2/3 is the input power to each channel (1, 2 and 3). The method of measuring 

Pin,ch1/2/3 is just as we mentioned earlier in chapter 3. 

According to our simulation results as presented in Figure 4.2, with 100kΩ load resistor, 

the tri-channel rectifier system gives the highest PCE in the range of 0-5μW input power 

per channel, improves the PCE by maximum 25% in this input power range, and has a 

peak efficiency of 66.3% at 4.9μW input per channel. The dual-channel rectifier system 

(880MHz and 1960MHz channels) gives the highest PCE in the range of 5-12μW input 

power per channel, improves the PCE by around 20% in this power range, and has a 

peak efficiency of around 68% at 8μW input per channel. The three single-channel 

rectifiers provide highest PCE after 12μW input power, and have peak efficiencies of 

67-70% at around 20μW input power. We find that the peak efficiency moves toward 

lower input power levels along with the increase of number of channels. 
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Although the tri-band and dual-band rectifier systems show greatly improved efficiency 

at LIP levels, they show non-ideal performance when the input power goes higher than 

10μW. Both of them have severe efficiency decrease at HIP levels. The reason for this 

phenomenon is that the leakage increases significantly with the increase of number of 

channels at HIP levels, which will be discussed in detail in next section.  

 

- Vout Simulation 

We simulated the output voltage of each single-channel rectifier and also that of the tri-

channel rectifier system. Although the tri-channel rectifier does not show advantages 

on PCE at HIP levels, it has higher sensitivity since its output voltage stays higher than 

those of single-channel rectifiers, as shown in Figure 4.3. With 100kΩ load resistor, the 

needed input power for single-channel rectifier to generate 1V DC voltage at the output 

is 15μW. However, the tri-band rectifier system can generate 1V when the input power 

is only 5μW per channel. 

-2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

0

20

40

60

80
@ 100kOhms load

P
C

E
 (

%
)

Input power per channel (uW)

 channel 1 (880MHz)

 channel 2 (1960MHz)

 channel 3 (2.45GHz)

 Dual-channel (880MHz &1960MHz)

 Tri-channel (880MHz &1960MHz&2.45GHz)

 

Figure 4.2 Comparison of PCE of rectifiers with different numbers of channels 
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From Figure 4.2, we know that, when the input power is 5μW per channel, the tri-band 

rectifier system still works in its advantageous region. It has an efficiency of 66%. If 

we only focus on the circumstance that no more than 5μW can be harvested from each 

channel, the tri-band rectifier is definitely superior to the dual-channel rectifier system 

and signal-channel rectifiers. 

 

4.3 Reason of the efficiency drop at higher power levels 

The reason of the severe efficiency drop, observed from Figure 4.2, for tri- and dual-channel 

rectifier systems is explained as follows.  

The impedance of the later two channels (1900MHz and 2.4GHz) seen from the output can 

be modeled as one resistor Reqi-cha2,3 in parallel with a reactance Xeqi-cha2,3, as shown in Figure 4.4. 

The equivalent resistance Reqi-cha2,3 varies with the input power of channels 2 and 3. When the input 

power is extremely low, resistance Reqi-cha2,3 has a relatively large value. Thus current mainly flows 

through Rload which explains the noticeable improvement in PCE from 0 to 5μW input power. 
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Figure 4.3 Comparison of Vout of rectifiers with different numbers of channels 
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However, when the input power gradually goes up to a higher level, resistance Reqi-cha2,3 begins to 

drop. Thus a considerable stream of current goes through resistor Reqi-cha2,3 which is supposed to 

flow through Rload. And this causes the reduction of PCE.  

In order to avoid this leakage and improve the efficiency, a power management module at 

the output should be prepared. 

 

4.4 Strategy for preventing reverse leakage 

4.4.1 General concept of micropower management 

Generally, when power management of an RF harvesting system is mentioned, it is 

considered to have the following features: 

- It should have a regulator circuit to avoid variations of voltage for the next circuit that 

needs to be powered up. 

- It should be self-starting. 

- It should be able to start up at very low feeding power. 

- It should be able to adapt the input impedance to the maximum power point of the 

harvester. 

- It should shut down when the input power is too low in order to prevent discharging the 

output. 

 

Figure 4.4 Theoretical analysis of the efficiency drop 
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In this work, the main function of the power management block in our case should be 

preventing the reverse leakage for multi-channel rectifier system at high input power levels. The 

desired power management block should have the capacity of recognizing the channel bringing in 

most power, and the capacity of controlling the connection between the load and channels. At the 

same time, it should satisfy as much as possible the requirements stated above for being a 

management block. Hence, a power management block having the mentioned two capacities and 

also being self-starting are proposed and presented in next section. 

4.4.2 Proposed strategy for power management 

The proposed RF-EH system with power management function is shown in Figure 4.5.  

As we can see from the block diagram, the power collected from one of the three channels 

(Vout1 in Figure 4.5) is used to power up a comparator and an inverter. The comparator 

continuously compares the output voltages of the two remaining channels (Vout2 and Vout3 in 

Figure 4.5) and provides the result at the output with a digital signal (contr in Figure 4.5). In theory 

this output should be a digital signal, but as we know that the harvested power from channel 1 

varies all the time. Thus the high level of this digital signal also varies all the time without doubt. 

However, in spite of the fluctuating of the high level of this signal, it still works in a digital way. It 

itself and its inverted signal control (contr-inv in Figure 4.5) the switches on the passage to the 

load. The switches could also be transmission gates. But note that the voltage drop across these 

switches should be as low as possible for fear of efficiency reduction. By doing so, between 

channels 2 and 3, the channel that transports more energy will be connected with load. Thus we 

effectively shut down the passage of reverse leakage. 

A comparator and an inverter were built in Cadence schematic Editor in order to realize the 

proposed idea of power management. Their schematic views are shown in APPENDIX D. Figure 

4.6 (a) shows the transient simulation results of the proposed rectifier system with power 

management when the rectifier of channel 1 is fed by 2μW input power (Pin1= 2μW), rectifier of 

channel 2 has 3μW input (Pin2= 3μW) and rectifier of channel 3 has only 100nW input (Pin3= 100nW). 

In this situation, channel 2 is fed with more power than channel 3. Vout2 gets to 523.5mV and Vout3 

is only 105.7mV. The comparator powered by channel 1 compares Vout2 and Vout3, then generate a 

control signal (contr) in high level, which can be seen from Figure 4.6 (a). Signal contr turns on the 

switch in channel 2 (s2 in Figure 4.5) and thus channel 2 is connected to the load (200kΩ resistive load 
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in this simulation). Observing from Figure 4.6 (a), the curve of Vout is almost overlapped with the 

curve of Vout2. 

Figure 4.6 (b) shows the transient simulation results of the proposed rectifier system with 

power management when Pin2= 100nW and Pin3= 3μW. In this case, being contrary to Figure 4.6 

(a), channel 3 is given more energy than channel 2. Vout3 gets to 507.1mV but Vout2 is only 

172.1mV. Besides, only 0.4μW power harvested from channel 1 (Pin1= 0.4μW) makes the 

comparator and inverter become well functional. As we can see from Figure 4.6 (b), the output 

signal of the inverter (contr-inv) is in high level, overlapped with signal Vout1. And this signal 

contr-inv successfully turns on the switch in channel 3 (s3 in Figure 4.5), thus connecting channel 

3 to the load. The curve of Vout is almost overlapped with that of Vout3, which means that channel 

3 is chosen by the comparator since Vout3 is higher than Vout2.  

Several transient simulations like these have been conducted and the results of the 

simulations preliminarily verify the feasibility of this proposed topology. 

 

 

 

Figure 4.5 Proposed RF energy harvesting system with power management 

Matching 

880MHz

Antenna

(880MHz)

3-stage Rectifier

(880MHz)

Matching 

1960MHz

Antenna

(1960MHz)

3-stage Rectifier 

(1960MHz)

Matching 

2.45GHz

Antenna

(2.45GHz)

3-stage Rectifier 

(2.45GHz)
Cload Rload

Vout

Channel 1

Channel 2

Channel 3

comparator inverter

Pin1

Pin2

Pin3

Vout1

Vout2

Vout3

contr contr-inv

s2

s3



41 

 

 

(a) 

 

(b) 

Figure 4.6 Transient simulation results of the proposed rectifier system with power management: 

(a) when Pin2 >Pin3, (b) when Pin2 <Pin3. 
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CHAPTER 5 MEASUREMENT OF RECTIFIER 

The designed rectifier is fabricated with IBM 130nm process. In this chapter, the 

measurement setup for testing the fabricated chip is presented in the first place. Then measurement 

results of efficiency, output voltage and input impedance are reported.  

5.1 Measurement Setup 

Measurements were carried out using equipment Agilent (Keysight) PNA-X Network 

Analyzer N5247A 10MHz-67GHz, Agilent N1914A EPM Series Power Meter and Oscilloscope. 

Due to our analysis in Chapter 3, the FGCC rectifier is a large-signal non-linear circuit. Thus 

conventional mixed-mode S-parameter measurements for linear differential circuits using a single-

ended stimulus cannot be used in our case. Although a balun (or hybrid junction) can be used to 

feed true differential signal, it is necessary to characterize the hybrid junction itself to obtain its 

Touchstone s4p data file before making the measurements which is time-consuming and degrades 

measurement accuracy. Thus, in this work, the True-Mode Stimulus Application of PNA is adopted 

to apply truly differential input AC signals. 

5.1.1 PCB design 

In order to guarantee the high-frequency performance of the chip under test and avoid the 

influence of parasitic parameters of the chip package, the chip is glued on a substrate Rogers 6002 

and the pads on it are directly connected to the copper trace on the substrate by wire bonding. Here, 

the main five pads of the rectifier are shown in Figure 5.1. The other pads are test points and are 

not presented here since they are dedicated for detailed observation and analysis. The 

photomicrograph of the five main pads with wire bonding is shown in Figure 5.2. 

The simplified layout view of the PCB is presented in Figure 5.3. The back side of the 

substrate is covered by copper as GND. The pads of two inputs (Vin+ and Vin-) are designed to be 

connected with two 50Ω SAM Female Jack connectors (leg length 3.8mm) on the left side of Figure 

5.3. The two copper transmission lines connecting the inner Pins of connectors and the pads on 

chip are designed symmetrically since a truly differential signal will be fed to them. The width of 

the two transmission lines is designed to be 25mil, and so does the other lines on the substrate. 

Substrate Rogers 6002 has a dielectric constant of 2.94, thus copper transmission lines with a width 
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of 25mil gives a characteristic impedance of 50Ω. By designing like this, the 50Ω lines on substrate 

will match with the 50Ω connectors and also match with the 50Ω system of the network analyzer. 

The pads of two outputs (Vout+ and Vout-) are designed to be connected with the two horizontal 

transmission lines, as shown on the right part of Figure 5.3. A surface-mounted load capacitor and 

resistor are connected across the two lines. Two squares of copper are added at the terminals of the 

two lines at the edge of substrate for later placing the probe of oscilloscope. The pad of GND_DC 

is connected with the transmission line at the upper part of Figure 5.3. This line will be firstly 

connected to a DC power supply with zero Volt, and after making sure it works properly, it will be 

connected with the GND at the back side. 

 

 

 

Figure 5.1 Five main pads shown in schematic view 
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Figure 5.2 Photomicrograph of fabricated rectifier with its five main pads with wire bonding 
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The layout of the designed PCB is done in software ADS as shown in Figure 5.4. The line 

of Vout- is connected with copper layer on the back side of the substrate (GND) through the holes 

right beside it. The line of GND_DC can also be connected with the GND by soldering a zero Ω 

resistor between the lines and the holes beside it when necessary. The total substrate area is 

1000*1000mil2, equal to 2.54*2.54cm2. The fabricated PCB for chip testing, with connectors, chip 

under test and load capacitors/resistors on it, is shown in figure 5.5.  

 

 

 

Figure 5.3 Simplified layout view of the connections of the main five pads (not scaled) 
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Figure 5.4 Layout view of the designed PCB in ADS 



45 

 

 

5.1.2 Equipments and calibration 

- Power Meter self calibration 

Power meter N1914A needs to be self calibration, as shown in Figure 5.6 (a), before it 

is used to measure the power from network analyzer.  

 

- Network Analyzer calibration 

A: Network Analyzer source calibration 

As BAL-BAL (balance to balance) measurement mode of Agilent N5247A Network 

Analyzer is used in our case, port 1 and port 3 are set to be the “Balance Port 1”, which 

will be fed a truly differential stimulus. In other words, the signals in port 1 and port 3 

have the same magnitude and same frequency but 180 degree difference of phase. The 

two sources in port 1 and port 3 respectively need to be measured by the power meter 

to make sure that they have accurate outputs, as shown in Figure 5.6 (b).  

B: Network Analyzer vector calibration 

This calibration process employs a technique called vector error correction, in which 

error terms are characterized using known standards so that errors can be removed from 

actual measurements. For example, the calibration eliminates the impacts of test cables. 

The two-port E-cal Agilent 85093-60008 is used as shown in Figure5.6 (c). 

 

Figure 5.5 PCB for chip testing 
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(a)                                                         (b) 

 

               
(c)                                                          (d) 

 

 

Figure 5.6 Calibration: (a) Power meter self calibration, (b) PNA source calibration,  

(c) PNA vector calibration, (d) Port extension. 

 

Figure 5.7 Purpose of port extension 
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C: Port extension (Measure OPEN) 

When measuring the chip on PCB fixtures, it is necessary to eliminate both the loss and 

delay of the PCB fixtures and connectors, allowing us to measure the true characteristics 

of chip, as illustrated in Figure 5.7. The common practice is to design an open to the 

portion of fixture, as presented in Figure 5.8, and use it to perform port extension, as 

shown in Figure 5.6 (d). The traces on the PCB fixture are considered as extensions of 

the coaxial test cables that are between the network analyzer and the chip. By 

performing port extension as shown in Figure 5.6 (d), we can extend the coaxial test 

ports so that our calibration plane is right at the terminals of the chip, and not at the 

connectors of the fixture. 

 

 

5.2 Measurement results 

After calibration, the PCB for chip testing is connected with the test cables. By setting the 

frequency and power (in dBm), the S-parameters S11 (return loss of port 1) and S33 (return loss of 

port 2) are measured by the network analyzer.  

The S-parameters vary with the change of signal frequency and input power. Besides, for 

each frequency and each power level, more than 100 sample data will be saved by the network 

analyzer (.s4p files). Thus a considerable amount of data of S-parameters is obtained, and they 

need to be processed to obtain the real input power and input impedance of the rectifier. 

The output voltage is read out through an oscilloscope by using a probe as we previously 

described. 

 

Figure 5.8 Design of an open to the portion of fixture 
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5.2.1 Process of data 

In order to process the large amount of data with high efficiency and high accuracy, a s4p 

block in 50Ω system is modeled in ADS as shown in Figure 5.9. By filling the s4p files from 

network analyzer into the model, we can plot the input impedances of the rectifier at different 

frequency and different input power by setting equations: 

11
1

11

1
50

1

S
Z

S


 


                                                            (5-1) 

33
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
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
                                                            (5-2) 

Ideally, the value of Z1 and Z3 should be the same since the FGCC rectifier structure is 

symmetrical. However, due to the different layout routing, they are slightly different at low 

frequency and much more different at higher frequency range. The consequence of this will be 

discussed in the flowing section. Here the reported input impedance is the average of Z1 and Z3. 

 

5.2.2 Measurement results 

- Efficiency measurement 

The real input power Pin, the power really fed into the rectifier, is calculated by 

 

Figure 5.9 Model of s4p block in ADS for processing data 
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2 2

11 11(1 )in s dd cdP P S S                                                                  (5-3) 

where Ps is the source power, Sdd11 is the differential-to-differential mode reflection 

coefficient, and Scd11 is differential-to-common mode reflection coefficient. 

Sdd11 can be directly plotted on the network screen, and it also can be obtained through 

the built s4p block in ADS by setting equation: 

 
11 11 31 13 33

1
( )

2
ddS S S S S                                                                (5-4) 

So does Scd11:  

11 11 31 13 33

1
( )

2
cdS S S S S                                                                 (5-5) 

Firstly, the PCE curves of the fabricated rectifiers are presented. They are the average 

results measured from nine chip samples. Each sample was measured three times. 

 

-30 -25 -20 -15 -10 -5 0 5

-5

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

P
o

w
er

 c
o

n
v

er
si

o
n

 e
ff

ic
ie

n
cy

 (
%

)

Input Power (dBm)

 100kOhms resistive load

 50kOhms resistive load

 10kOhms resistive load

@880MHz

 

Figure 5.10 Measured PCE as a function of input power at 880MHz with 100kΩ, 50kΩ and 10kΩ 

load resistor 
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It can be noticed from Figure 5.10 that lower load resistance pushes the peak efficiency 

toward higher input power range, and the value of the peak efficiency decreases with 

the increase of load resistance. For example, with 10kΩ load resistor, the peak 

efficiency of 62% is achieved at -3.7dBm (426.6μW). However, if a 100kΩ load is 

connected with the output, the value of the peak efficiency decreases to around 34% 

and this peak efficiency arrives when there is only -15dBm (31.6μW) input power. 

In Figure 5.11, the PCE curve of the fabricated rectifier dedicated for 1960MHz channel 

is measured with different load resistances. The overall efficiency is slightly lower than 

that of the rectifier for 880MHz, and all three curves are shifted slightly to the right. In 

other words, the peak efficiencies come at higher input power. The peak efficiency of 

62% is achieved at -2.6dBm (549.5μW) with 10kΩ load resistor and 62pF load capacitor. 
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Figure 5.11 Measured PCE as a function of input power at 1960MHz with 100kΩ, 50kΩ and 

10kΩ load resistor 
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In Figure 5.12, the PCE of the fabricated rectifier dedicated for 2.45GHz channel is 

measured with different load resistances. The overall efficiency is lower than those of 

the rectifiers for 880MHz and 1960MHz channels due to its parasitic resistance, which 

increases with the increase in the high-frequency current flowing in the circuit. The 

peak efficiency of 56.2% is achieved at -1.9dBm (645.6μW) with 10kΩ load resistor 

and 62pF load capacitor.  

 

In Figure 5.13, the measured PCE curves of the three fabricated rectifiers are compared 

with the simulated ones under the same load condition of 100kΩ resistor. The reason 

for the worse performance of fabricated rectifiers is the asymmetrical layout design of 

the two paths for signal Vin+ and Vin- to the load. As we previously mentioned, the 

reflection coefficients measured at port 1 (S11) and at port 3 (S33) respectively are 

slightly different at 880MHz but much more different at 1960MHz and 2.45GHz. The 

difference between S11 and S33 indicates that the paths in layout for signal Vin+ and 
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Figure 5.12 Measured PCE as a function of input power at 2.45GHz with 100kΩ, 50kΩ and 

10kΩ load resistor 
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Vin- to the load are not the same due to the different connections between different 

metal layers and different length or width of certain metal layers, thus the two signals 

are not exactly 180° out-of-phase when they reach to the terminals of the transistors. 

The change of the phase difference of the two signals at transistor terminals causes 

leakage due to the disorder of operations of the transistors.  

 

 

- Vout measurement 

The output voltage of the fabricated rectifier dedicated for 880MHz channel as a 

function of input power is presented with different load resistances in Figure 5.14. The 

rectifier is capable of providing an output voltage of 1.2V at -13.5dBm (44.7μW) input 

when it is connected to 100kΩ resistive load, at -11.7dBm (67.6μW) input with 50kΩ 

load, and at -5.9dBm (257.0μW) input with 10kΩ load. 
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Figure 5.13 Measured PCE vs. Simulated PCE as a function of input power at 880MHz with 

100kΩ load resistor and 60pF load capacitor 
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It should be mentioned that the sensitivity of a rectifier is defined as the variation of the 

output voltage divided by variation of input power. As we can see from measured and 

simulated results, larger load resistor helps to improve the sensitivity. Thus when 

sensitivity is concerned, it is meaningless if the load resistance is not mentioned. 

In Figure 5.15, the output voltage of the fabricated rectifier dedicated for 1960MHz 

channel as a function of input power is presented with different load resistances. The 

rectifier is capable of generating an output voltage of 1.2V at -11.8dBm (66.1μW) input 

when it is with 100kΩ resistive load, at -10.5dBm (89.1μW) input with 50kΩ load, and 

at -5.3dBm (295.1μW) input with 10kΩ load. 

The output voltage of the fabricated rectifier dedicated for 2.45GHz channel as a 

function of input power is presented with different load resistances in Figure 5.16. The 

rectifier is able to provide an output voltage of 1.2V at -11.7dBm (67.6μW) input when 

it is connected to 100kΩ resistive load, at -10.4dBm (91.2μW) input with 50kΩ load, 

and at -5.5dBm (281.8μW) input with 10kΩ load. 
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Figure 5.14 Measured Vout as a function of input power at 880MHz with 100kΩ, 50kΩ and 

10kΩ load resistor 
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Figure 5.15 Measured Vout as a function of input power at 1960MHz with 50kΩ, 100kΩ and 

200kΩ load resistor 
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Figure 5.16 Measured Vout as a function of input power at 2.45GHz with 50kΩ, 100kΩ and 

200kΩ load resistor 
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- Input impedance measurement 

The output waveform of a rectifier commonly has ripples due to the charging and 

discharging procedures of the load capacitor. It is often desirable for designers to reduce 

the amount of output ripples. The magnitude of the rectifier output ripples can be 

reduced by increasing the source operating frequency, or by using larger load 

capacitances. In this work, a 62pF load capacitor is employed. Thus the following 

reported input impedances of the rectifiers include this 62pF load capacitor and 100kΩ 

load resistor. 

Setting up in a 50Ω system, the measured real part of Zin as a function of input power 

at 880MHz, 1960MHz and 2.45GHz respectively is presented in Figure 5.17. The real 

part of Zin (rectifiers for channel 880MHz and 1960MHz) increases with the increase 

in input power. 
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Figure 5.17 Measured real part of Zin as a function of input power of the rectifiers dedicated for 

880MHz, 1960MHz and 2.45GHz respectively 
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In Figure 5.18, the measured imaginary part of Zin is presented under different 

frequencies. They do not vary obviously at LIP range but increases at higher level. 
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Figure 5.18 Measured imaginary part of Zin as a function of input power of the rectifiers 

dedicated for 880MHz, 1960MHz and 2.45GHz respectively 
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CHAPTER 6 TRI-BAND ANTENNA DESIGN 

The designed rectifier block of RF-EH system was discussed in chapter 3-5. In this chapter, 

design of the antenna block is presented. Firstly, basic concept of RF power transmission is 

introduced. The vital functions of antenna design are also explained. In the second part, general 

characteristics and advantages of microstrip patch antenna (MPA) are introduced. Then a new low-

volume RF harvesting system is presented. This new system uses a tri-band antenna instead of 

three discrete single-band antennas. The geometry of the designed tri-band MPA antenna with its 

simulation results are presented and reported. 

6.1 RF power transmission 

The function of the antenna in an RF-EH system is to receive instead of to radiate. It 

captures energy from an incoming electromagnetic field and converts the electromagnetic waves 

into electric current. 

The concept of RF power transmission is shown in Figure 6.1. For our case, the base station 

works as the source and the power transmitted by it will be received by the harvesting devices. 

Friis equation: 

2

4
r t t rP PG G

r





 
  

 
                                                             (6-1) 

one of the most important equations in antenna design, gives an estimate of received power from 

the source, where Pr and Pt are the received power and transmitted power in Watts at the antenna 

terminals, respectively. Gr and Gt are the antenna gain at receiving and transmitting. λ is the 

wavelength of the signal and r is the distance between the transmit and receive antennas. This 

equation reveals that, in order to receive large amounts of energy (Pr) at the devices, either the 

harvesting devices stay near to the source (r) or they have a high-gain antenna (Gr), in the case of 

fixed signal frequency (f), fixed Gt and fixed Pt. 

The received power Pt can also be expressed as: 

t eP S A                                                                      (6-2) 

where S is the power density at the receive antenna and Ae is the effective area of the receive 

antenna. 
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The amplitude of the voltage generated on the antenna va depends on the receiving power 

Pr and the antenna radiation resistance Rr: 

2 2a r rv R P
                                                              

 (6-3) 

According to Eq.(6-3), we may deduce that va will be very low and will be on the order of tens of 

millivolts. For example, a typical half wave dipole operating in free space has a radiation resistance 

of around 73 Ω and the received power of this dipole antenna is assumed to be 5μW. Then we may 

calculate that va equals to 54.04mV. Faced with such a low voltage generated by the antenna, the 

following matching network bears the responsibility of increasing the magnitude of this voltage, 

in order to make the rectifier stay no longer in the dead zone and begin to operate. 

 

6.2 Microstrip patch antenna 

6.2.1 General characteristics 

The basic geometry of a MPA consists of a “sandwich” of two metallic layers separated by 

a substrate, as shown in Figure 6.2. The thickness and dielectric constant of the substrate (εr) can 

have effects upon the operating frequency and bandwidth. Lower εr provides better efficiency and 

 

Figure 6.1 Illustration of power transmission from base station to harvesting devices 

 

Device 1 Device 2

r1

r2

Base Station
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larger bandwidth, but leads to larger area. Nowadays plenty of substrates are available in the market, 

and one can determine the suitable substrate material for use. 

Apart from the substrate, the shape of the top metal layer determines the radiation pattern 

and directivity of the antenna. Common patch shapes contain rectangle, circle, annular-ring and 

equitriangle. Normally, the MPA radiates strongest in the broadside direction. Its pattern is broad, 

the gain is typically 5 dB and polarization is linear (Lee et al. 2012). Note that circular polarization 

can also be realized by employing multiple feed points, or a single feed point with asymmetric 

patch structures. In addition, the antenna works as if it has a larger dimension then its real one due 

to its fringe field at the edges of top metal layer as shown in Figure 6.2. The fringe field is the 

electric field which extends past the patch's outer periphery.  

There are three commonly used feeding methods for MPA: coaxial feed, stripline feed, and 

aperture coupled. For coaxial-fed antennas, the input impedance depends on the feed position. 

Usually, the input impedance can be reduced by putting the feed point closer to the center, as the 

current is low at the edge of the patch and increases in magnitude toward the center. The input 

impedance of a MPA can be from tens to hundreds of Ω. 

 

6.2.2 General advantages of MPA 

MPA is used in a wide range of applications. It offers the advantages of low profile, low 

fabrication cost, conformability to a shaped surface. In addition, other discrete electronic devices 

can be mounted on the same substrate with MPA. Also, as we know that antenna array is able to 

provide higher gain and directivity compared with single antenna, it is relatively easy to print a 

patch antenna array on a single large substrate using lithographic techniques. Even though the basic 

 

Figure 6.2 Cross section of a MPA in its basic form 
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geometry of MPA suffers from narrow bandwidth, MPA attracts more and more attention from the 

antenna designers, especially after plenty of broadband techniques for MPA were reported (Wong 

et al. 2001 and Chiou et al. 2002) in literature. 

6.3 Designed tri-band microstrip patch antenna 

In order to reduce the total area of the tri-band RF harvesting system as shown in Figure 

4.5, a tri-band antenna is designed to replace the three single-band antennas. The new volume-

reduced RF harvesting system with only one antenna is proposed and presented in Figure 6.3. 

 

Starting from the complexly structured multi-band MPA for 2.45, 3.42 and 5.32GHz bands 

proposed in Pazin et al (2008), we examine the possibility of decreasing the three operating 

frequencies. The geometry of the resultant tri-band MPA is shown in Figure 6.4. It consists of a 

 

Figure 6.3 Proposed volume-reduced RF harvesting system 
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dual-arm monopole, a shorting strip and a ground plane, all printed on Rogers RO3003 substrate 

with relative permittivity of 3 (εr=3) and thickness of 0.127mm. 

 

It has two radiating structures. The first one is the T-shaped monopole operating in two 

frequency bands (Su et al. (2004)). The longer arm of the monopole (LL=67.59mm) and the vertical 

arm (12.60mm) together generate lowest resonant mode for 880MHz band. The shorter arm of the 

monopole (LM=22.54mm) and the vertical arm (12.60mm) together form the medium resonant 

mode for 1960MHz band. As we see in Figure 6.4, the longer and shorter arm of the monopole is 

L-shaped in order to reduce the antenna size. Another radiating structure is the slot formed by the 

inverted-L shorting strip, the right arm of the monopole T-shaped part, and the ground plane. The 

antenna is designed to be fed later by a 50-coaxial cable. The central conductor of the cable will be 

connected with the feeding point A and its outer conductor (ground) will be soldered with the 

ground plane at point B. 

 

Figure 6.4 Geometry of the designed tri-band MPA (dimensions in millimeter) 
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The antenna is built in Ansoft simulation software HFSS (High Frequency Structure 

Simulator). Figure 6.5 shows the simulated return loss of the antenna. The low band has a return 

loss of -25.43dB (point m1 in Figure 6.5), the medium band has -13.92dB (point m2 in Figure 6.5) 

and high band has -12.73dB (point m3 in Figure 6.5). Figure 6.6 plot the simulated 3D radiation 

patterns at 880MHz, 1960MHz and 2.45GHz, respectively. The peak antenna gains are 2.35dBi for 

low band, 4.57dBi for medium band and 5.55dBi for high band.  

 

The low return loss and good radiation pattern (donut shape) of the proposed antenna at 

880MHz are observed through these simulation results. As the operating frequency increases the 

“donut” directional is not preserved, because of the change the resonant length of antenna. 

Although the return losses at 1960MHz and 2.45GHz are around -14dBm (worse performance than 

880MHz band) and the directions of maximum radiation of 2.45GHz and 1960MHz bands are not 

z-direction, this does not influence its capability of tri-frequency operation. 

Since the proposed antenna is planar, the matching networks (on 880MHz, 1960MHz and 

2.45GHz band respectively) and the antenna can be integrated on the same substrate, where the 

fabricated chip of rectifier can also be mounted on. These are recommended for future works. 

 

Figure 6.5 Simulated return loss of the designed antenna 
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(c) 

 

Figure 6.6 Simulated 3D radiation pattern of the designed antenna: (a) at 880MHz, (b) at 

1960MHz, (c) 2.45GHz 
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CHAPTER 7 GENERAL DISCUSSION: RECTIFIER COMPARISON 

WITH PREVIOUS WORKS 

This master work is driven by the application of ambient RF-EH instead of RF energy 

transport, as stated in Chapter 1. Its operating power range will be under 0dBm. Thus in spite of 

large amount of published rectifiers, only several works, which are specifically dedicated for LIP 

range, are compared with this work, as presented in Figure 7.1 and Table 7.1.  

As shown in Figure 7.1 and Table 7.1, the proposed rectifier achieves higher efficiency 

compared to the other four works, especially in the range of -25 to -15dBm input power. The 

rectifier proposed by Scorcioni et al. (2012, September) is able to achieve two peaks, but only with 

the help of an auxiliary control circuit to switch the stages of the rectifier. Kotani and Ito (2007) 

and Umeda et al. (2006) employed Vth-cancellation techniques to push their rectifiers to operate 

in lower power range. However, their rectifiers didn`t show great improvements as expected.  
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Figure 7.1 Comparison with published works (PCE as a function of input power) 
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Table 7.1: Comparison with published works (*calculated from figures) 

Work Frequency 

Minimum input 

@ output load 

resistance 

Peak efficiency 

@ input power  
Tchnology Others 

Umeda et al. 

(2006) 
950MHz -15dBm*@3MΩ 

11% 

@ -6dBm input 
0.3μm 

External Vth-

cancelation technique 

Kotani and Ito  

(2007) 
953MHz -20dBm*@10kΩ 

29% 

@ -9.9dBm 
0.35μm N/A 

Scorcioni et al.  

(2012, April) 
868MHz Not reported 

45% 

@ -7.5dBm* 
0.13μm N/A 

Scorcioni et al.  

(2012, September) 
868MHz 

-17dBm* 

@ no load 

60% 

@ -4dBm* 
0.13μm 

Two rectifiers 

controlled by auxiliary 

control circuit 

This work 880MHz -26dBm @10kΩ 
62% 

@ -3dBm input 
0.13μm  

Low-threshold 

transistors 

 

Moreover, the efficiency of the proposed work is compared with the works of Kotani and 

Ito (2007) and Hashemi et al. (2012) as a function of input magnitude with the same load condition, 

as shown in Figure 7.2. The proposed rectifier is able to start operating at around 200mV input 

magnitude. This remarkable improvement in overcoming dead-zone owes much to the employment 

of LTV transistors. 
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Figure 7.2 Comparison with published works (PCE as a function of magnitude of Vin) 
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CONCLUSION 

In this master thesis three CMOS rectifiers dedicated for ambient RF-EH have been 

designed. Each rectifier consists of three stages of fully gate cross-coupled basic structure and 

employs low-threshold-voltage transistors. The three rectifiers are fabricated on one single chip 

using IBM 130nm CMOS technology. The measurement results show that they have great 

capability of working at low input power range. They achieve peak efficiencies of 62%, 62% and 

56.2% respectively for 880MHz, 1960MHz and 2.45GHz channel and they are capable of operating 

at lower magnitude of input signal compared to certain published works. 

In addition, a rectifier system with power combination at the output is proposed and 

analyzed. The efficiency drop demonstrates the necessity of power management at higher input 

range. Thus a power management block is proposed and simulated. The energy harvested from one 

of the three channels is used to power up a comparator and an inverter, and the output of the 

comparator picks up the higher output voltage between the other two channels to be connected with 

the load.  

Last but not least, a tri-band antenna is redesigned and simulated. Using a tri-band antenna 

brings the benefit of lower volume of the overall RF-EH system. Simulation results show that it 

gives relatively high gain and low return loss. Optimization and fabrication of this antenna are 

recommended for future work. 

To implement the proposed power management block is also recommended in the future 

work. There are several critical issues about this topology. For example, the power consumption 

of the comparator should be around several micro watts, and its response time or transmission delay 

should be as low as possible, and the switches on the routes to the load should be designed carefully 

to avoid severe voltage drop across them.  

Three matching networks between the tri-band receiving antenna and the rectifier is 

indispensable to reduce the transmission loss and also to increase the voltage at the input of the 

rectifier. The transmitted power reaches its maximum when the antenna sees at its output 

impedance that is the conjugate of its own impedance. High-Q components (for example: off-chip 

inductors, capacitors, or transmission lines) are recommended to be exploited for impedance 

matching in the first step due to their flexibility on change of values. Later, on-chip matching 
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network should be implemented since it is more preferable due to the trend of integrating all 

discrete electronic components on chip. 
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APPENDIX B – SCHEMATIC VIEW OF THE DESIGNED 3-STAGE FGCC RECTIFIER 
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APPENDIX C – LAYOUT OF THE DESIGNED 3-STAGE FGCC RECTIFIER 
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