587 research outputs found

    Design for novel enhanced weightless neural network and multi-classifier.

    Get PDF
    Weightless neural systems have often struggles in terms of speed, performances, and memory issues. There is also lack of sufficient interfacing of weightless neural systems to others systems. Addressing these issues motivates and forms the aims and objectives of this thesis. In addressing these issues, algorithms are formulated, classifiers, and multi-classifiers are designed, and hardware design of classifier are also reported. Specifically, the purpose of this thesis is to report on the algorithms and designs of weightless neural systems. A background material for the research is a weightless neural network known as Probabilistic Convergent Network (PCN). By introducing two new and different interfacing method, the word "Enhanced" is added to PCN thereby giving it the name Enhanced Probabilistic Convergent Network (EPCN). To solve the problem of speed and performances when large-class databases are employed in data analysis, multi-classifiers are designed whose composition vary depending on problem complexity. It also leads to the introduction of a novel gating function with application of EPCN as an intelligent combiner. For databases which are not very large, single classifiers suffices. Speed and ease of application in adverse condition were considered as improvement which has led to the design of EPCN in hardware. A novel hashing function is implemented and tested on hardware-based EPCN. Results obtained have indicated the utility of employing weightless neural systems. The results obtained also indicate significant new possible areas of application of weightless neural systems

    EEG-Analysis for Cognitive Failure Detection in Driving Using Type-2 Fuzzy Classifiers

    Get PDF
    The paper aims at detecting on-line cognitive failures in driving by decoding the EEG signals acquired during visual alertness, motor-planning and motor-execution phases of the driver. Visual alertness of the driver is detected by classifying the pre-processed EEG signals obtained from his pre-frontal and frontal lobes into two classes: alert and non-alert. Motor-planning performed by the driver using the pre-processed parietal signals is classified into four classes: braking, acceleration, steering control and no operation. Cognitive failures in motor-planning are determined by comparing the classified motor-planning class of the driver with the ground truth class obtained from the co-pilot through a hand-held rotary switch. Lastly, failure in motor execution is detected, when the time-delay between the onset of motor imagination and the EMG response exceeds a predefined duration. The most important aspect of the present research lies in cognitive failure classification during the planning phase. The complexity in subjective plan classification arises due to possible overlap of signal features involved in braking, acceleration and steering control. A specialized interval/general type-2 fuzzy set induced neural classifier is employed to eliminate the uncertainty in classification of motor-planning. Experiments undertaken reveal that the proposed neuro-fuzzy classifier outperforms traditional techniques in presence of external disturbances to the driver. Decoding of visual alertness and motor-execution are performed with kernelized support vector machine classifiers. An analysis reveals that at a driving speed of 64 km/hr, the lead-time is over 600 milliseconds, which offer a safe distance of 10.66 meters

    Deep Learning and Polar Transformation to Achieve a Novel Adaptive Automatic Modulation Classification Framework

    Get PDF
    Automatic modulation classification (AMC) is an approach that can be leveraged to identify an observed signal\u27s most likely employed modulation scheme without any a priori knowledge of the intercepted signal. Of the three primary approaches proposed in literature, which are likelihood-based, distribution test-based, and feature-based (FB), the latter is considered to be the most promising approach for real-world implementations due to its favorable computational complexity and classification accuracy. FB AMC is comprised of two stages: feature extraction and labeling. In this thesis, we enhance the FB approach in both stages. In the feature extraction stage, we propose a new architecture in which it first removes the bias issue for the estimator of fourth-order cumulants, then extracts polar-transformed information of the received IQ waveform\u27s samples, and finally forms a unique dataset to be used in the labeling stage. The labeling stage utilizes a deep learning architecture. Furthermore, we propose a new approach to increasing the classification accuracy in low signal-to-noise ratio conditions by employing a deep belief network platform in addition to the spiking neural network platform to overcome computational complexity concerns associated with deep learning architecture. In the process of evaluating the contributions, we first study each individual FB AMC classifier to derive the respective upper and lower performance bounds. We then propose an adaptive framework that is built upon and developed around these findings. This framework aims to efficiently classify the received signal\u27s modulation scheme by intelligently switching between these different FB classifiers to achieve an optimal balance between classification accuracy and computational complexity for any observed channel conditions derived from the main receiver\u27s equalizer. This framework also provides flexibility in deploying FB AMC classifiers in various environments. We conduct a performance analysis using this framework in which we employ the standard RadioML dataset to achieve a realistic evaluation. Numerical results indicate a notably higher classification accuracy by 16.02% on average when the deep belief network is employed, whereas the spiking neural network requires significantly less computational complexity by 34.31% to label the modulation scheme compared to the other platforms. Moreover, the analysis of employing framework exhibits higher efficiency versus employing an individual FB AMC classifier. Advisor: Hamid R. Sharif-Kashan

    ROBUST DETECTION OF CORONARY HEART DISEASE USING MACHINE LEARNING ALGORITHMS

    Get PDF
    Predicting whether or not someone will get heart or cardiac disease is now one of the most difficult jobs in the area of medicine. Heart disease is responsible for the deaths of about one person per minute in the contemporary age. Processing the vast amounts of data that are generated in the field of healthcare is an important application for data science. Because predicting cardiac disease is a difficult undertaking, there is a pressing need to automate the prediction process to minimize the dangers that are connected with it and provide the patient with timely warning. The chapter one in this thesis report highlights the importance of this problem and identifies the need to augment the current technological efforts to produce relatively more accurate system in facilitating the timely decision about the problem. The chapter one also presents the current literature about the theories and systems developed and assessed in this direction.This thesis work makes use of the dataset on cardiac illness that can be found in the machine learning repository at UCI. Using a variety of data mining strategies, such as Naive Bayes, Decision Tree, Support Vector Machine (SVM), K-Nearest Neighbor (K-NN), and Random Forest, the work that has been reported in this thesis estimates the likelihood that a patient would develop heart disease and can categorize the patient\u27s degree of risk. The performance of chosen classifiers is tested on chosen feature space with help of feature selection algorithm. On Cleveland heart datasets of heart disease, the models were placed for training and testing. To assess the usefulness and strength of each model, several performance metrics are utilized, including sensitivity, accuracy, AUC, specificity, ROC curve and F1-score. The effort behind this research leads to conduct a comparative analysis by computing the performance of several machine learning algorithms. The results of the experiment demonstrate that the Random Forest and Support Vector machine algorithms achieved the best level of accuracy (94.50% and 91.73% respectively) on selected feature space when compared to the other machine learning methods that were employed. Thus, these two classifiers turned out to be promising classifiers for heart disease prediction. The computational complexity of each classifier was also investigated. Based on the computational complexity and comparative experimental results, a robust heart disease prediction is proposed for an embedded platform, where benefits of multiple classifiers are accumulated. The system proposes that heart disease detection is possible with higher confidence if and only if many of these classifiers detect it. In the end, results of experimental work are concluded and possible future strategies in enhancing this effort are discussed

    Intelligent Computing for Big Data

    Get PDF
    Recent advances in artificial intelligence have the potential to further develop current big data research. The Special Issue on ‘Intelligent Computing for Big Data’ highlighted a number of recent studies related to the use of intelligent computing techniques in the processing of big data for text mining, autism diagnosis, behaviour recognition, and blockchain-based storage

    APIC: A method for automated pattern identification and classification

    Get PDF
    Machine Learning (ML) is a transformative technology at the forefront of many modern research endeavours. The technology is generating a tremendous amount of attention from researchers and practitioners, providing new approaches to solving complex classification and regression tasks. While concepts such as Deep Learning have existed for many years, the computational power for realising the utility of these algorithms in real-world applications has only recently become available. This dissertation investigated the efficacy of a novel, general method for deploying ML in a variety of complex tasks, where best feature selection, data-set labelling, model definition and training processes were determined automatically. Models were developed in an iterative fashion, evaluated using both training and validation data sets. The proposed method was evaluated using three distinct case studies, describing complex classification tasks often requiring significant input from human experts. The results achieved demonstrate that the proposed method compares with, and often outperforms, less general, comparable methods designed specifically for each task. Feature selection, data-set annotation, model design and training processes were optimised by the method, where less complex, comparatively accurate classifiers with lower dependency on computational power and human expert intervention were produced. In chapter 4, the proposed method demonstrated improved efficacy over comparable systems, automatically identifying and classifying complex application protocols traversing IP networks. In chapter 5, the proposed method was able to discriminate between normal and anomalous traffic, maintaining accuracy in excess of 99%, while reducing false alarms to a mere 0.08%. Finally, in chapter 6, the proposed method discovered more optimal classifiers than those implemented by comparable methods, with classification scores rivalling those achieved by state-of-the-art systems. The findings of this research concluded that developing a fully automated, general method, exhibiting efficacy in a wide variety of complex classification tasks with minimal expert intervention, was possible. The method and various artefacts produced in each case study of this dissertation are thus significant contributions to the field of ML
    corecore