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Abstract 
Pierre Lorrentz, PhD 2009 

 

    Weightless neural systems have often struggles in terms of speed, performances, and 
memory issues. There is also lack of sufficient interfacing of weightless neural systems to 
others systems. Addressing these issues motivates and forms the aims and objectives of 
this thesis. In addressing these issues, algorithms are formulated, classifiers, and multi-
classifiers are designed, and hardware design of classifier are also reported. Specifically, 
the purpose of this thesis is to report on the algorithms and designs of weightless neural 
systems. 
   A background material for the research is a weightless neural network known as 
Probabilistic Convergent Network (PCN). By introducing two new and different 
interfacing method, the word "Enhanced" is added to PCN thereby giving it the name 
Enhanced Probabilistic Convergent Network (EPCN). To solve the problem of speed and 
performances when large-class databases are employed in data analysis, multi-classifiers 
are designed whose composition vary depending on problem complexity. It also leads to 
the introduction of a novel gating function with application of EPCN as an intelligent 
combiner. For databases which are not very large, single classifiers suffices. Speed and 
ease of application in adverse condition were considered as improvement which has led to 
the design of EPCN in hardware. A novel hashing function is implemented and tested on 
hardware-based EPCN. 
    Results obtained have indicated the utility of employing weightless neural systems. The 
results obtained also indicate significant new possible areas of application of weightless 
neural systems. 
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1. THESIS INTRODUCTION  

1.0 Introduction 

     A neural network attempts to solve a particular problem with which it is identified as an 

expert. The methods with which neural networks provide solution vary. Any of the method 

usually relies on mathematical calculations. The definition of neural network assumed in 

this thesis is due to Haykins [49], and it states:- 

A neural network is a massively parallel distributed processor made up of simple 

processing unit, which has natural propensity for storing experiential knowledge and 

making it available or use. It resembles the brain in two respects: 

1)   Knowledge is acquired by the network from its environment through a learning 

process. 

2)   Inter-neuron connection strengths, known as synaptic weights, are used to store the 

acquired knowledge. 

It is noteworthy that the term “neural network” and “classifier” may refer to the same 

network loosely in this thesis sometimes. Most pattern recognition problems can however 

be solved by performing operations, such as one-to-one or one-to-many mappings on input 

patterns to output. When an input pattern is binary, the problem is reduced to a simple 

logic problem. Under this condition, Random Access Memory (RAM) based weightless 

Neural Networks (classifier) are well suited. Pattern recognition problems become 

attractive given that it is a simple case of transforming problems to its logical equivalent 

and supplying it to a RAM-based Network for solution. An early variation of RAM-based 

classifier known as n-tuple recognition system was introduced in the 1950s by Bledsoe and 

Browning [10].   

       Most customary weighted neural networks, during training, passes through many 

epochs. Epochs refers simply as the number of times the input data will be accessed by the 

network, before the error rate decreases appreciably. The epochs of training are often quite 

large, ranging from the order of tens to order of thousands sometimes. During the epochs, 

it is expected that the input data does not change value or structure, i.e. it is typically 

required that input dataset be static during learning. This period could last for minutes and 

hours. This is disadvantageous for dynamic and real-time systems and systems from which 

fast and intelligent response is required. In such situation as these, a neural network from 

which one epoch of learning is required is more beneficial. One epoch of learning is also 
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referred to as one-time pass over the input database; which is also referred to as one-shot 

learning for weightless nets. One epoch of learning implies time reduction as compared to 

many epochs of learning. It also implies a reduction in time required for input pattern to be 

stationary. Stationary in the sense that input pattern must not change between sampling 

intervals. Although it is possible for RAM-based classifier to make several passes over an 

input space, this may not be required for an increased performance. Quite often, one-pass 

over the input data may be sufficient. Austin [7], Howells [57], and some other authors 

have experimentally confirmed this on RAM-based classifiers. RAM-based classifiers 

identify itself with binary number. So that both input and output data are inherently binary. 

Because of this and the reasons in subsequent paragraphs, the decision to work in areas of 

weightless neural system may be beneficial and significant. 

       Examples of RAM-based classifier that has combined advantages of one-pass over 

input data-set, sometimes called one-shot learning, and the ability to process probabilistic 

reasoning have not been successfully produced. Recall that probability is usually expressed 

as a number lying between 0 and 1. Secondly, associated with it is the frequency of 

occurrence of events. These characteristics are specific to RAM-based classifiers reported 

in this thesis. For this reason, the study of weightless classifier is attractive.  

  All neural systems presented in this thesis require mainly reading from and writing to 

RAM-memory locations for their functionality. For this reason, they are commonly called 

RAM-based classifiers, since almost all mathematical functions are converted to their 

Boolean equivalent. For example, Boolean addition does not demand a high memory 

requirement as does floating-point calculations. Thus the amount of mathematical 

calculation performed is relative to the amount of data supplied to the classifier. Based on 

this fact, the decision to implement weightless neural network is motivated. Secondly, 

floating-point and continuous mathematics require a relatively long time to complete. The 

long completion time of processes also implies long training and recognition time of neural 

network. Thus the elimination of time required for traditional mathematical calculation, by 

replacing many forms of mathematical calculation with their equivalent Boolean logic, 

will be beneficial, and it is a significant venture. It also constitutes one of the main reasons 

for deciding to consider mainly weightless neural networks in this thesis.  

       In order to increase the speed of weightless neural networks, methods such as 

pipelining and parallelism are introduced. Parallel execution of processes means different 

and many events occur concurrently. Pipelining is a group of parallel processes with a shift 

in time. But pipelining and parallelism has no software equivalent, they apply almost only 
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to hardware design. Employment of pipeline and parallelism in hardware design is 

required when confronted with an implementation of a complex system such as addressed 

in this thesis. To enable the employment of weightless classifier on large-class database, 

the implementation of a pipelined system is significant. Now and in future, neural 

networks will have an increasing number of large-class databases to classify. For this 

reason, it is decided to implement RAM-based neural network in hardware. 

       The Probabilistic Logic Neuron (PLN) [71] and Generalised Convergent Network 

(GCN) [57] are notable examples of weightless neural networks. Probabilistic Convergent 

Network (PCN) is introduced due to its ability to process probabilistic reasoning. 

Probabilistic reasoning finds itself in PCN and is beneficial in many respects. One of the 

most important benefits is the confidence measure obtainable at the output of PCN.   

1.1 Aims and Objectives 

       When PCN was first developed, connectivity are formed as specified in [57]. This 

method fails to consider other attributes and features of patterns well suited to connectivity 

formation. Secondly, it does not consider alternate method of forming connectivity [65], 

[76]. These motivate the intention to introduce other methods of connectivity formation 

algorithms to PCN. Introduction of new connectivity methods to PCN facilitates its 

application to many other problem domains such that the word “enhanced” is added to the 

PCN, and the new neural network is called Enhanced Probabilistic Convergent Network 

(EPCN). When other connectivity formation methods are introduced, different types of 

PCN may result as different types of connectivity methods are utilised, and thus able to 

solve different types of problems.  

       Multi-classifier (MCS) design is motivated by the need to improve performance on 

“difficult” patterns such as found in some handwritten characters. Weightless MCS have 

an added advantage of reducing problems to simple logic problem. A pattern is termed 

“difficult” if it could not be classified, or if it may be classified wrongly by a neural 

network. A Multi-classifier System consists of a number of single classifier arranged in 

such a way as to decrease classification errors beyond that which is possible for a single 

neural network. The need to design an MCS consisting wholly of weightless classifier is 

motivated by computation overhead, speed, and memory requirement. These are much 

reduced in a random access memory based MCS as compared to a customary (other 
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alternative) MCS.  Weightless multi-classifier design is motivated by very low 

computation overhead, high speed, and low memory processing requirement.  

    Currently, most traditional MCS often struggles with large-scaled multi-class databases 

such as found in biometric domain. For this reason the state-of-the-art MCS may utilise 

very many base classifiers when classifying very large-scaled multi-class databases. There 

are other problems associated with traditional MCS such as bias, and saturation effects. 

Bias and saturation effects may affect weightless MCS also. Providing solution to these 

problems constitute the motives for specific weightless MCS design in this thesis. Such 

that, it may be demonstrated that a weightless MCS consisting of few base classifiers is 

capable of classifying biometric database without performance trade-offs. In short, 

solutions to bias and saturation effects in weightless MCS will be addressed. The potential 

industrial benefit of each MCS will be demonstrated by their application to databases such 

as handwritten character (such as are found in filling of forms), and in fingerprint 

verification. 

       One of the aims of this thesis is to research, in practical terms, the possibility of 

implementation in hardware (possibly FPGA) of a weightless classifier. Currently, a 

hardware implementation of a complex weightless NN is very rare. The possibility of a 

hardware implementation offers many benefits such as ease of application (e.g. a PC is not 

required), higher speed of execution of processes etc. An extension of the hardware 

implementation may be enabling and enhancing a variance of the neural network to 

portable devices. Thus a hardware implementation is significant and beneficial when time 

and ease of application are considered. For these reasons, this thesis examines the 

implementation in hardware of weightless classifier, and RAM-based multi-classifiers. 

Hardware implementation of EPCN also shortens the time requires for learning and 

recognition. Additionally, hardware implementation of EPCN is motivated by the scarcity 

of a digital classifier hardware that classifies a pattern, and at the same time provides a 

level of confidence that a pattern meant for recognition belongs to each class. Hardware 

implementation of EPCN is attractive because of its speed and portability which are 

comparable to (and may surpass) that of existing neural networks. This means that it is a 

good alternative (and even a better alternative) to a state-of-the-art neural system. Software 

implementation of weightless multi-classifier systems and Hardware implementation of 

EPCN has memory consumption overhead, and also the problem of mapping all 

probabilistic values (between 0 and 1) to positive whole number values. Research efforts 

in these implementations should place adequate consideration on these problems. 
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       This research is of academic significance since; the experimentation with different 

types of connectivity usage on PCN has exhibited different types of characteristics of the 

network which has not been encountered. Secondly, these implementations have made 

possible using weightless NN in parallel and hierarchical design of MCS. Works in this 

thesis may be useful in providing a hardware and software prototype of EPCN, and also a 

software prototype of a MCS, for industrial and academic benefits. Since the MCS and 

EPCN, when implemented, may also be used in Banks and Hospitals for recognition on 

handwritten character, therefore for “good” pattern target performance may be expected to 

be very high, whereas for “difficult” patters target performance may be expected to be 

high. False recognition and low % recognition of handwritten characters may be 

intolerable in banks and hospitals, because of aftermath consequences. 

       The work is also motivated by the intension to produce intelligent neural systems 

which have applications in industries and also in, land, sea, and air based exploration 

systems. Production of this system concerns mainly the production of sub-systems that 

carry out the perception of data, interpretation of these data, pattern recognition, and 

control signal. This will be achieved by using real-world data, and external industrial 

application. The projects could be grouped as follows: 

1.   Input data sensing, and input data pre-processing. 

2.   Weightless Neural Networks (NN):- RAM-based and using formal logic. 

3.   Weightless Multi-Expert System. 

4. Hardware development. 

     The rest of this chapter is organised as follows. The projects contained in this thesis 

employ the work in [57] as background materials so that, in section 1.2, the content of [57] 

with respect to PCN is reviewed as a background material for the thesis. The organisation 

of the projects reported in this thesis is explained in section 1.3. In executing these plans, 

the areas where difficulties might arise are explained in section 1.4. This is followed by 

conclusion in section 1.5. 

1.2 Weightless Neural Networks 

      Weightless neural network is formally defined as a neural network whose functionality does 

not explicitly depend on activation function and weights. One of the advantages of this class 

of neural network is that it neither requires high mathematical computation nor high 

linguist demand. But require only two values “1” and “0” for its functionality. Since 

only two values are involved, they may be referred to as binary (dependent) neural 
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networks.  

     Most problems which may be difficult for other classes of NN or require high 

resource demand are solved easily by binary neural network, thus making this class of 

neural network an important class. The binary neural network is also called RAM-based 

or weightless NN. They depend, for their functionality, on Boolean logic. So that, 

mapping problems to their Boolean equivalent is the only requirement. Mapping 

problems to their Boolean equivalent signifies a mapping to binary domain. 

     The necessity of design and application of weightless NN could thus be seen from 

the much less resource demand, high speed, and comparable performance. A simple and 

quick illustration of how problems may be mapped to logic domain is the recognition of 

the character “0”. The character “0” is shown in figure 1.0. The problems become very 

simple to resolve when they are threshold-binarised to give binary pattern. Thus pattern 

recognition problems could be expressed as Boolean or Logic function involving only 

two values, 1 and 0. 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

      

RAM-based (N-tuple) weightless NN is normally employed to implement and map these 

logic functions. There is one-to-one mapping between the recognition problems and the 

logic functions. RAM-based NN provide solution to these problems by mappings to 

these logic functions. Besides, weightless NN offers considerable advantages over 

Figure 1.0: Example of input pattern. 
 

Pixel for digit “0” 
is converted to “1”. 
 

Background pixels 
are converted to 
“0”. 
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weighted ones; these are:- 

• One-shot learning: - This refers to one-time pass over the input database. RAM-

based NNs does not go through many epochs of learning as the weighted ones. 

• It is fast: - They are often arranged in look-up Tables (LUTs). And learning is a 

process of modifying the content of these LUTs. No complex mathematical 

computation involved. 

• RAM-based NN will attempt to provide input-output Boolean logic mapping for 

any arbitrary problem. 

The operation of RAM-based classifier is analogous to that of conventional RAM chip, 

namely, it consist of address-line(s) and memory locations. Because RAM-based NN is 

binary in nature, for n number of address-line, 2n memory locations can be addressed. 

The relationship between the address-lines and memory location is 

y = 2n 
Where: 
n = number of address lines; here, this may be referred to as connectivity of the neuron. 

y = number of memory location; this is referred to as a neuron with n connectivity. 
 

 

 

 

 

 

 

 

 

 

 

Of a particular interest is the architecture espoused in [110] which will be explained 

here. 

    Figure 1.1 shows a diagram of weightless classifier whereby the input pattern is a 

threshold image. An algorithm often exist, known as learning algorithm, which connects 

the image features to the neurons located in the RAM. Within each neuron are 2^n 

numbers of locations where n = number of address-line (the connectivity). A good 

example of weightless classifier is PCN. For this reason PCN is also referred as n-tuple 

Figure 1.1: A schematic of a general weightless artificial neural network. 
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classifier. The process whereby the RAM accesses the input pattern, and some locations 

within the neurons in each layer are assigned non-zero values, is called learning process. 

    Similarly, the process whereby the RAM accesses both the input pattern and the 

learned RAMs, and some locations within the neurons in the RAM are assigned non-

zero values, is called recognition process. These RAMs (the “recognition” RAMs) are 

combined to the output. This represents the output of the neuron. The output may be 

feed-back iteratively until convergence or a fixed number of times (see figure 1.1) 

during a recognition process.  

1.3 Organisation of the Research Projects in the Thesis 

  This section introduces the projects that constitute the research. It then explains the 

planning of the projects logically. Some terminologies will be introduced as follows. 

   Difficult pattern:  A “difficult” pattern is a patter class that cannot be classified by 

weightless NNs when they generalise. The weightless NN require an auxiliary system 

and/or be put into a special behavioural mode before they are able to classify “difficult” 

pattern. Example of methods used to classify difficult pattern are Boosting and Bagging. 

The “good” pattern class can always be classified correctly by weightless NN when they 

generalise well. 

Ambiguous cases: Ambiguous case of pattern recognition occurs when a pattern is said to 

belong to more than one class with equal probability during recognition. Thus the 

ambiguous pattern cannot be assigned to a specific class by the weightless NN during 

classification. Ambiguous case may be event-driven (behavioural) within the NN structure 

such that in some cases it may be correctly classified. Bias (see below) may also give rise 

to ambiguous cases. These have nothing to do with a pattern (a “difficult” pattern) that is 

consistently classified wrongly. When a specific pattern is consistently ambiguous, it may 

also be called a “difficult” pattern. 

Saturation effect: as patter class becomes large and also for increasing large number of 

classes, the weightless NN distinguishing features for inter-class classification diminishes, 

this phenomenon is known as saturation effect. 

Bias: The weightless NN is said to be biased when the performances depend on a specific 

arrangement of the training classes. 
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    By formulating some problem areas associated with these projects and explaining 

method(s) which shall provide solution to them, the project plans will become clearer. 

A) Problem: How to optimise PCN/MCS to achieve better recognition performance? 

Secondly, what effect will system parameter modification have on performances? 

    Proposed Solution: Paramount in this area is the address formation methods. It is 

intended to perform both literature research and practical research into optimisation 

techniques. The introduction of novel weightless NN will be attempted. If the novel NNs 

give promising result, then improvement of the NN for performances and robustness is 

required. In such situation, Genetic Algorithm (GA) may be considered for parameter 

optimisation. A better solution is an intrinsic improvement to the weightless NN which 

does not warrant an auxiliary system like GA. One or two of these techniques may be used 

on PCN/MCS. And their effect on performance will be considered.  

B) Problem: What modification to what aspect of the PCN/MCS will increase 

generalisation, most especially on “difficult” patterns? There are other problems such as: 

(1.) ambiguous cases (2.) saturation effects. (3) bias 

     Proposed Solution: It is to be expected that performance depends, to some extent, on 

type of input database also. Large number of inputs may also lead to saturation. These 

projects may also consider: 

1) Investigate effects of tuple-size. 

2) Consider using filter. 

3) Consider using Particle swarm/Ant-colony optimisation. 

4) Genetic Algorithm. 

5) Reconfiguration:  Dynamic and static adaptation techniques. 

  To extend the functionality of PCN (i.e. increase the situations where it may be utilized), 

reviewing the input mapping method is in order. The first part of this work will focus on 

PCN and its enhancement, whereby two novel types of connectivity will be introduced. 

The first part of this work focuses on two types of PCN. The main differences between 

these PCNs are in their input mapping methods. It is envisaged that the address formation 

method be substantially different from that of [57]. 

     Secondly, since PCN expects its input to be binary and most real-life input varies 

greatly, tools for processing input to give binary patterns are developed. 

     Howells [57] explains the advantages of RAM-based classifier but does not point out 

serious limitations to its areas of application. Of a particular interest is a large multi-class 

problem that is databases which consist of large classes. With this type of databases there 
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are two major problems. One is known as bias and the other is called saturation effects. 

Bias toward a class occurs when the probability of recognition of a class is unusually high. 

Saturation occurs when distinguishing features of classes are no longer represented within 

the network. The network is said to saturate. For these reasons single neural network 

becomes incapable of classification of large databases.  It is to be noted that all intended 

neural networks designed depends on logging and retrieval of information from RAM-

locations in a neuron. By “good” pattern is meant those patterns easily recognisable by any 

classifier, while “difficult” patterns are those patterns that are classifiable only by special 

techniques such as Bootstrapping, Bagging and Boosting. Weightless classifiers capable of 

classifying large-scaled multi-class databases are very few. The aim therefore is to 

implement multi-classifier using RAM-based neural networks as component (base) 

classifier. The proposed MCS (see paragraphs below) may not require a special technique, 

such as Bootstrapping, on “difficult” pattern (see section 4). The proposed Multi-classifier 

system has some advantages over the contemporary MCS. For more details see section 2.2.  

      It is worthy of note that the input format of Enhanced Probabilistic Convergent 

Network (EPCN) demands an encoding of its input if it is intended as an intelligent 

combiner. In order to map the output of the base classifiers to the input of the intelligent 

combiner, none of the existing gating functions were found suitable. The unsuitability of 

existing gating function motivates a new gating function. The new gating function 

introduced constitutes a combination strategy and is known as a combiner unit. Thus the 

design of a RAM-based MCS automatically entails a design of a novel combining strategy 

– the combiner unit. To fully test the impact of the combination scheme, a parallel  

 

 

 

 

 

 

 

 

 

 

 
Figure 1.2: Schematic diagram of a multi-classifier. It consists of 
different types of base network in parallel. [40] 
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arrangement of component classifiers is preferred, of the type shown in figure 1.2.  

     When the proposed multi-classifier have been designed, it becomes appropriate to 

explore its usefulness by experimentations. Experimentations on some databases then 

follow. Experimentation on the MCS employs fingerprint databases. Areas of automatic 

template-free fingerprint verification have been subject of intensive research. It is also 

noteworthy that biometric databases are characterized with large classes. This large-class 

criterion makes it a suitable candidate database for the MCS reported in the thesis. If the 

MCS is able to generalise, it may found application as a biometric template-free 

fingerprint verifier. 

     There are situations which demands autonomous operations such as in automated 

machines, Robots, etc. There is also electronic harsh surrounding in which an intelligent 

weightless neural network might operate, e.g.; sea exploration. To enhance the capability 

of the presented software-designed EPCN and weightless multi-classifier in such 

environment, the implementation platform needs to be changed. Secondly, a quick and 

accelerated response is required in cases of emergencies. These conditions suggest a 

hardware implementation, because a hardware-based classifier operates very fast as 

compared to a classifier designed in software. High speed of hardware based design is very 

suitable for cases of emergency and adverse conditions. It suggests a digital hardware 

which is reconfigurable. Virtex-II pro is an advance Field Programmable Gate Array 

(FPGA), and belong to a group reconfigurable (see paragraphs below) FPGA. The high 

level of integration possible with FPGA means it lends itself easily to implementation of 

complex electronic systems. Reconfigurable FPGA, like Virtex II pro, offers rapid design 

process and reprogrammable functions. 
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This is in contrast to micro-processing whereby functions are not reprogrammable and a 

long time is required to produce working silicon. Also, since EPCN is adaptive in nature, 

to adequately represent its characteristic, a reconfigurable FPGA is required. The Virtex-II 

pro development board, Figure 1.3, is an advanced digital prototyping board, it is 

reconfigurable and found suitable for EPCN implementation. The proposed hardware is 

expected to operate autonomously, thus suitable for electronically harsh surrounding, 

autonomous machines and robots. 

 

ORGANISATION: - The researches investigated have been organised into chapters. The 

chapters are organised as follows. 

     In chapter 3, other forms of connectivity were successfully introduced, followed by 

additional enhancement in what is now called Enhanced Probability Convergent Network 

(EPCN). For example, PCN cannot train/recognize objects of type shown in figure 1.1 

(section 3.1) while EPCN can. Two types of EPCN are designed in software and they are 

employed on a benchmark of unconstrained handwritten numbers. It is expected that the 

classifiers, taken singly, may be unsuitable for applications that demands higher accuracy. 

Figure 1.3: Annotated Diagram of Virtex-II pro which will be used in EPCN 
prototyping. [134] 
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Secondly, a single classifier will often struggle with large-class classification tasks.  These 

motivate the design of multi-classifier. 

     In chapter 4, and 5, various classifiers are designed and used for various purposes. The 

multi-classifiers designed in chapter 4 introduces a combination strategy (i.e. classifier 

fusion methods) suitable for weightless multi-classifiers. This combination strategy 

together with a weightless multi-classifier is tested on unconstrained handwritten 

numerals. The multi-classifiers are unsuitable for very large classification tasks due to 

bias, and saturation.  

     In chapter 4, a multi-classifier is designed, and solutions to bias and saturation 

problems are provided. The target application in this chapter (i.e. chapter 4) is biometric 

problem domain. Biometric database classification tasks demand very high performance 

accuracy, and are usually very large databases. High accuracy is required because it deals 

with issues such as authentication, and identification of individuals. The biometric 

database utilised here is fingerprint databases. The input, and the training strategy of the 

optimised multi-classifier utilised is specially planned so as to minimise problems of 

saturation and biases. Excellent performances are achieved. But very poor performances 

are also achieved.  

This motivates a consideration for, possibly, a new combiner or optimisation of the 

existing one. 

     So that in chapter 4, the coding scheme of the combiner is replaced by a better encoding 

scheme, and again tested on larger classes for which the multi-classifier of chapter 4 fails. 

In the same chapter, comparisons are drawn between classifier fusion using EPCN and 

majority voting method. No 0% performances are observed, rather all performances are 

above 60%. 

      The speed of software implemented EPCN is determined by sequential execution of 

function calls, refresh rates, etc. This is to such an extent that, it is difficult to employ 

EPCN in certain professional areas. This speed constraint might be minimised by 

considering parallel execution of function calls, pipeline of certain processes, and memory 

management within EPCN. These scenarios motivate the hardware design of EPCN in 

chapter 6. Reconfigurable field programmable gate array (FPGA) of advanced type is 

considered as a suitable hardware. Secondly, since EPCN is adaptive, its re-configurability 

and/or adaptability are investigated also in chapter 6. 

     The conclusion, in chapter 7, of the thesis summarises all the works accomplished, and 

reflect on their merits, demerits, and their application potentials. 
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      There are problems envisaged in the design of these systems as presented below. These 

problems are however surmountable.  

1.4 Major Challenges 

     The current PCN could only process data of known size explicitly specified to it. And it 

is required that the number of classes in one training session not to be too large. This 

makes possible a one-shot learning since most system parameters and database parameters 

are explicitly specified a priori. In this thesis however, the removal of these constraints is 

desirable. Since the aim of the thesis is also a design which is generic, adaptive, and 

reconfigurable, the removal of explicit specification of both systems and database 

parameters represent a right step in the direction of adaptability and wider applicability. It 

is challenging to design such a system that identifies an “optimal” database and system 

parameters to use in learning and recognition. More so of a challenge as to add to this the 

possibility of high recognition rate in one pass over the input database. 

     Currently, most weightless classifier converts any mathematical calculation to its 

equivalent Boolean calculation automatically, and fails completely where the classifier 

cannot convert the problem to its Boolean equivalent. To widen the scope of mathematical 

calculation possible for conversion to its equivalent Boolean logic and wherever the 

weightless neural system fails to convert a given function to its Boolean equivalent, a 

coding scheme is employed. The coding algorithm is a conversion, a priori, of a given 

mathematical function to a simpler form suitable for conversion to its Boolean equivalent. 

Deciding on the best possible coding algorithm to replace a given mathematical function 

posses a significant challenge. 

    The advanced nature of the classifier planned demands reduction in execution time as 

and where possible within the algorithms. The nature of the classifier allows training and 

recognition in one period (one epoch) of learning, the so-called one-shot learning. 

Recognition in one epoch is beneficial and posses a significant challenge to this project. 

The benefit and significance of one-shot learning become pronounced when dealing with 

large classes and large-class databases. This is lacking in the present-day weighted 

classifiers.  

     Pipeline processes is desirable within the functionality of the classifiers, so also is 

parallelizing of processes as both saves time. The structural impact and significance of 

pipelining and parallelism is the reduction in overall size of each classifier. It is believed 
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that utilisation of pipeline and parallel processes may enable the classifier to fit wholly 

onto the FPGA. It is a big challenge to determine when and where, within the neural 

networks’ functionality and structure, is a pipeline or parallel process required, and if so 

does it lead to an overall reduction in size of the classifier?.  

     Other difficulties encountered are the processing of large amount of data, and real-

time processing. Real-time processing of data involve a multi-classifier system capable 

of “online” training, rapid adjustment of its parameters, and capable of handling data 

stream in a timely manner. Multi-classifier shell is best suited to pattern recognition and 

interpretation of data. A multi-classifier has (for its input) results from the subsystems 

and combine these result, in order to produce appropriate responses. The multi-classifier 

section often starts by introducing classifier in general, whereby specific types of 

classifier are described briefly. In conclusion, programming challenges in the software 

and the hardware design are as follows. The major areas where these challenges arise are 

stated below. 

1. Index and indexing: These problems occur mainly at the boundaries. 

2. Encoding method to the MCS combiner: The problem here is deciding which 

encoding method is suitable for a given application. 

Programming challenging areas to the Hardware design of EPCN are:- 

1) Glitches and race conditions. 

2) Memory issues. 

3) Time and timing. 

       It is also a big challenge trying to write such portable code as to fit into Virtex II pro 

or Single-chip-microprocessor. It seems that testing and verification demands more time 

and expertise. 

1.5 Summary 

    Boolean logic is simpler and execute faster so that if the conversion is either 

automatically done by a tool or by algorithmic programming, there will be a gain in time. 

     Considering that the learning is a one-shot learning and that the epoch of learning can 

be limited to one without appreciable error, the system thus designed will be very fast as 

compared to a typical classifier. Projects reported in subsequent chapters will determine if 

the systems designed based on these concepts are usable and useful both industrially and 

academically. 
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    In previous sub-section, the decision to parallelize and pipeline as many of the 

procedures as possible, were explained. This decision should result in design which are 

economical (monetary or otherwise) and portable. The feasibility of implementation of 

parallel processes in NNs and MCSs, and resultant benefits are elucidated in subsequent 

chapters. 
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2. INTRODUCTION TO ARTIFICIAL NEURAL SYSTEMS 

The aims and objectives of this thesis are explained in chapter one. By means of 

introduction to subsequent chapters, this chapter aims to present current methods in 

design and application of neural networks. 

     Neural networks aims to mimic human experts. A human expert is a person very 

intelligent and knowledgeable in a specific area, and is based on certain number of 

characteristic outward behaviours. Intelligence is neither proportional to the size nor 

number of neuron in the brain, nor the biochemical activities going on in a neuron. But 

all these contribute to intelligence, including the biochemical activities which are all the 

same in all neurons (names of minerals and extent of activity may differ) of every being. 

Thirdly, though one neuron is no more intelligent than any other neurons [49], they are 

nevertheless responsible for sensory perception of beings. 

     The interaction of neurons within themselves, and with their surrounding, play major 

roles in acquisition and processing of knowledge and knowledge related information. 

Although, current research efforts have not given a definition of intelligence, it is widely 

agreed that an intelligent system possesses one or more of the following characteristics:- 

• Ability to invent 

• Common sense 

• Sensory perception 

• Learning and inductive reasoning. 

• Pattern recognition and classification. 

• Inference from incomplete or approximate information. 

• Adaptability to new or unfamiliar situations. 

• Display of emotions. 

     Neural Networks belong to a group of machines called intelligent machine. Currently, 

hardware based artificial neural network (ANN) are also referred to as Neuro-computers, 

Parallel distributed processors, connectionist network, etc. [49]. Neural network, being 

an intelligent machine possesses many of aforementioned characteristics. The definition 

of neural network assumed in this thesis is due to Haykins [49], and it re-states:- 

A neural network is a massively parallel distributed processor made up of simple 

processing unit, which has natural propensity for storing experiential knowledge and 

making it available or use. It resembles the brain in two respects: 
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1)   Knowledge is acquired by the network from its environment through a learning 

process. 

2)   Inter-neuron connection strengths, known as synaptic weights, are used to store the 

acquired knowledge. 

The procedure followed by classifiers to acquire the knowledge is called learning 

algorithm. In case of weightless (also called RAM-based or N-tuple) neural network, 

“synaptic weights” may be replaced by “neuron connectivity”. Referring to the 

characteristics of intelligent, explained in previous paragraph, classifier concerned in 

this thesis shares many of these characteristics [49], the relevant ones are briefly 

explained below:- 

    Sensory perception: This is made by deriving some parameters or values from input 

pattern or data-set. 

    Learning (also called training).: See section 2.1. 

    Pattern recognition and classification: Classification refers to how best a given 

pattern is said to belong to certain class. Recognition concerns a pattern being known. 

The recognition algorithms of supervised learning involve minimising the error function 

derived from the actual output and the desired output. An output is accepted after a 

certain number of epochs or iteration, or when the error has fallen below a set minimum 

value. In unsupervised learning, classification/recognition is achieved when a winning 

node achieves a certain value or by simply observing the output after a fixed number of 

iteration.  

    Adaptability to new or unfamiliar situation: This is achieved through the 

specialisation/generalisation capability of neural networks [73]. 

    Ability to acquire knowledge: This is done by high-level processing of information. 

Enhanced acquisition of knowledge in a specific field is termed expertise, hence the 

term multi-experts (or multi-classifier) [49].   

    Since specialisation and generalisation capability is the backbone of every neural 

network, a more elaborate explanation of specialisation and generalisation is in order, 

due to their importance. 

     Specialisation and Generalisation: Generalisation refers to the ability of neural 

networks to produce reasonable result for input patterns not encountered during training. 

Specialisation refers to high-level processing of knowledge acquired in a specific area. 

Many neural networks having the ability to generalise or specialise [49, 73], are often 

combined in numbers of forms and termed multi-classifier (expert) shell.  
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     This chapter is organised as follows. Section 2.1 introduces weighted neural network, 

their learning and recognition algorithm, and application areas. Section 2.2 presents an 

introduction to multi-classifier systems, while section 2.3 introduces many other types of 

neural networks. Section 2.4 explains methods of hardware implementations of neural 

systems. While their testing and validation methods are explained in section 2.5. A 

summary, which concludes this chapter, is found in section 2.6 

2.1 Weighted Neural Network 

    The human brain has great capabilities in processing information and making 

immediate decisions. This is as a result of a massive network of parallel and distributed 

computational element called neurons. The linking and interaction of these neurons 

provides living organisms a very powerful capability to learn. This is very much unlike 

computers that only implements specific algorithms. Neural Networks (or classifiers) are 

designed to model these neurons, their linkages, and their interactions. These could be 

achieved by using electronic components or software. The general procedures involved 

in modelling of neurons are:- 

• Network architecture [73] 

• Learning [73] 

• Recognition/classification [73] 

    In early 1940s, W.S. McCulloch and W. Pitts were the first to make a serious attempt 

at modelling the neuron [106]. This ultimately sparked a series of research into neuron 

models. The result is the existence of a set of weighted classifiers whose neuronal 

interconnection, i.e. the synapses, are modelled by weights. The first attempt at neuron 

models were made by Bledsoe and Browning [10], which does not involve weights or 

weight adjustment. But rather, certain logic functions will be derived from the problem 

set, evaluated by the classifier, stored in RAM-memory. This type of classifier is called 

RAM-based classifier or N-tuple classifier. The main aim of a learning algorithm is to 

combine the major features of a computer with those of human expertise. A system 

capable of learning without a guide could acquire and gain knowledge of its own. Two 

main features are desirable in a classifier. 

1)   Adjustment of their parameter in response to unpredictable changes in their 

dynamics. 

2)   Ability to adjust to a new operating environment. 
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To (1), Evolutionary methods e.g. Genetic Algorithm (GA) and the like [11] is often 

used to evolve optimum parameters to suit the changes in dynamics. GA is also used to 

evolve a new configuration whenever a new operating environment is encountered. Thus 

learning could always proceed unsupervised and autonomous in any environment. 

Learning of classifier normally proceeds in one of the following ways:- 

• Symbolic Learning:- Symbolic learning refers to maintenance of a knowledge 

base from an operating set of rules. These rules are derived from input data-set and 

data relating to the performance of the system. A good example is the self-

organising fuzzy logic system. [73] 

• Numerical learning:- This often involve minimising the cumulative sum of 

errors between the desired output vector and the NNs’ output vector. E.g. Back-

propagation algorithm. 

• RAM-Based learning:- Some features of the input pattern is converted to 

numbers and stored in RAM-memory, or these features are used to form 

addresses to memory location. A classifier that implements RAM-based learning 

is simple and learns very fast. It neither depends on guided rules nor is any 

rigorous numerical analysis involved [7]. 

The types of learning introduced in this sub-section constitute supervised learning i.e. 

learning from examples. But in sub-section 2.1.1, unsupervised learning will be 

introduced. 

2.1.1. Unsupervised  Learning 

   All neural networks pass through a process of learning. Having introduced supervised 

learning in section 2.1.1, it becomes important to introduce the counterpart, which is 

known as unsupervised learning. Unsupervised learning is a type of learning where the 

classifier is left to discover pattern regularity within classes and organise these pattern 

into clusters or categories depending on collective properties discovered. There is no 

comparison with a target pattern hence it is sometimes called open-loop adaptation 

learning. The result produced at the output is as a result of competition between the 

nodes of the output layers. At any point in time, the node with the highest value is the 

winner. The connection weight between the input layer and the output layer are often 

adjusted in favour of the winning node. Some unsupervised learning schemes exist 

where, at the output layer, winning nodes and neighbouring nodes’ connectivity are 
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strengthened. This is achieved by employing a neighbouring parameter. 

  The fuzzy classifiers possess knowledge acquisition system which is capable of 

deriving knowledge base rules from historical data. The fuzzy classifiers also possess 

the ability to modify its knowledge base and change its configuration without an external 

teacher – thus an unsupervised learning. Self-organizing fuzzy logic systems represent a 

good example of unsupervised learning [77]. RAM-based classifier exhibit unsupervised 

learning when the RAM-locations are modified by the learning algorithm with respect to 

intrinsic regularities discovered in the input pattern. In most cases, with RAM-based 

classifiers, features are converted into connectivity and used as addresses for the RAM- 

location. 

2.1.2. Matched-based Learning and other Learning Algorithms 

   Matched-based learning is based on similarity between the input, and target pattern (or 

desired output). Match-based learning may be regarded as a template-matching with 

integrated learning and generalisation capability, and thus able to override noise in 

pattern. Also once it is trained, a classifier using match-based learning possesses the 

capability of detecting an incomplete version of pattern or a modified version, and thus a 

desirable class of classifier. Other advantages over error-based learning are:- 

• Easy knowledge extraction 

• No catastrophic forgetting 

• Fast (one-shot) learning.[19] 

 Implementation of matched-based learning algorithm is network dependent. It may be 

feed-forward or recurrent Network. An example is a Hopefield network. A Hopefield 

network is a topology of recurrent network within which a certain associative (content 

addressable) memory is formed. The process of storage goes through a learning 

algorithm called Hebbian learning rule. In memory, locally stable states are formed by 

the outer product of adjacent nodes, hence the memory is called associative memory 

(association of adjacent weights (nodes)). Thus the memory forms series of locally stable 

states from any input pattern. These stable states become centres of attraction for any 

pattern meant for recognition. Hence the associative memory is capable of overwriting a 

noisy or an incomplete pattern presented to it, by using these stable states. Hopefield 

statement explain that: “Any physical system whose dynamics in phase space is 

dominated by a substantial number of locally stable states to which it is attracted can 
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therefore be regarded as a general content-addressable memory.”  [54]. Consider a set q 

of pattern pk (k=1,…q) presented to the classifier with n number of neuron, then the 

weight is expressed as 
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where w = synaptic weight update 
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After weights initialisation and weight adjustment as in equation (2.2) and (2.3), the 

activation rule is applied to produce the output oi (which gives +1 or –1) depending on 

the value of the threshold θι  .Hopefield network found extensive application in 

information retrieval, pattern and speech recognition, and optimisation problems, e.g. the 

travelling salesman problem [63]. 

     Another NN that employs match-based learning is Adaptive Resonance Theory Map 

(ARTMAP), and its derivative Reward/Punishement Adaptive Resonance Theory 

(RePART). ARTMAP consist of two modules, ARTa and ARTb. Input patterns are 

addressed by ARTa and the target or desired output is addressed by ARTb. These 

patterns are linked by an algorithm called outstar learning [19], in a module called the 

map-field. A vigilance parameter is used to adjust the minimum level of similarity 

before a pattern is accepted as belonging to a certain class. This is the scope of 

advantages which this type of neural network has as compared to other types of 

neural systems. The fuzzy ARTMAP extract its rule in the form of “if-then” from the 

patterns and match this with its knowledge base. An added advantage of the fuzzy 
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ARTMAP (variance of ARTMAP) is that it is capable of autonomous learning in a non-

stationary surrounding. Fuzzy ARTMAP employs the winner-take-all in its decision. The 

RePART NN [19] uses the reward/punishment strategy for its decision. These NNs 

learns by creating a new set of neurons, or RAM-locations are created to store 

information about new patterns. These new neurons created are called category neurons. 

In case of fuzzy ARTMAP, new rules are created and added to the knowledge base. The 

ARTMAP NN and its variance have the following disadvantages: 

• They are sensitive to noise which may cause category (neuron) proliferation. 

• Misclassification of pattern during recall process. 

    When results from ARTMAP family of NN have been compared with those of error-

based learning NNs, it was found that the ARTMAP NNs out-performed those of error-

based learning [19] in many cases. ARTMAP NN found application in medical 

diagnosis. Other forms of learning Algorithms are: 

• Conventional algorithm. [39] 

• Deterministic algorithm. [14] 

• Lazy conventional algorithm. [32] 

• Lazy deterministic algorithm. [32] 

• Progressive algorithm. [33] 

The Goal seeking neuron (GSN) network is a good candidate for these algorithms. 

The question as to when does a neuron starts learning and when does it stop is answered 

in the concept of activation function. This is a topic of sub-section 2.1.3. 

   Reinforcement learning: - This is a type of learning that includes effects from its 

surrounding. Reinforcement learning is hereby explained with respect to RAM-based 

classifier as follows. Weights are set to initial random values. In RAM-based classifier, 

the RAM-locations are initialised to u or zero (0). The weight connection, or the 

connectivity (in case of RAM-based classifier) are adjusted according to the feedback 

from the surrounding and the classifier’s output [73]. This is a positive feedback system, 

since the output nodes with highest value have their connectivity strengthened while 

those of lower values have their connectivity weakened. This form of learning is also 

called graded learning because the adjustment of connectivity or the update of weights 

is regulated by the feedback from the surrounding. When excited by its surrounding, a 

random search method is used by the classifier to reach a correct output. Examples of 

reinforcement learning are Adaptive heuristic critic and the Q learning. Reinforcement 
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learning algorithm differs from supervised learning in that there is no target pattern 

present a priori. It also differs from unsupervised learning because it involves feedback 

from its surrounding. 

 

2.1.3. Activation Functions 

   An Activation function is an important function required by a neuron for turning on 

and off its activity. The study of this function is important for the full understanding of 

learning procedure of classifiers. An activation function is a mapping applied to a 

weighted sum of inputs. These inputs are supposed to come from other nodes or neuron, 

and the output of this mapping is delivered to the next neuron. The mapping could also 

be regarded as transfer functions. Prior to application of activation function f, to every 

incoming signal x, is applied a weight wjk. The weights are then summed, and a 

threshold θκ   is applied as shown in equation (2.5). 
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The output ok (equation (2.5)) of application of activation function goes to the next node. 

Activation functions have the following characteristics: 

• Ability to model the density of joint probability P(X|Y) for X input and Y output. 

• Ability to approximate an arbitrary continuous function on a compact domain 

with arbitrary precision. 

• Ability to, in conjunction with other processes, classifies images. 

The function used as activation function depends on any of the aforementioned 

characteristics, and also on dimension. Some names of activation functions are step 

(Heaviside) function, equation (2.6) above, sigmoid function, bi-radial function etc. 

These are not multidimensional functions. For multidimensional purposes, activation 

functions like arc tangent, hyperbolic tangent or multi-quadratic function could be 

employed. Sums of one-dimensional activation functions have been reported to yield 
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good performance [49] e.g. Gaussian bar functions, sigmoid bar function. Products of 

activation functions have also been used. The multivariate Gaussian gives hyper-

ellipsoidal output densities. A good activation function should not be trapped in local 

minima, caught in plateau or oscillate excessively. Activation functions are used mainly 

in NNs that involve weights and weight adjustment. 

     In RAM-based NNs, activation functions are not used. But it could be argued that 

activation function, the Heaviside function, is used since this result in equation (2.5) 

which is compatible with digital systems. The RAM-location and the LUTs will be 

modified, read from, or written to according to the result or combinations of result of 

H(x). This is referred to as address formation or connectivity formation. Otherwise it is 

the value of the H(x) or its combination that is written to LUTs or RAM-locations 

directly. 

 Activation functions are also employed in the process of recognition. The process of 

recognition is introduced in sub-section 2.1.4 

 

2.1.4. Recognition and Classification 

Classification refers to how best a given pattern is said to belong to certain class. 

Recognition concerns a pattern being known. The recognition procedure that follows 

reinforcement learning involves the strengthening of connections between a winning 

node and input layer. Reinforcement recognition procedure involves a method of 

querying the environment in order to validate its output. A reinforcement learning and 

subsequent recognition procedure has proved to be closest to human reasoning 

procedures by interacting with its physical environment.  

    In match-based learning, the actual output is compared with the desired output for 

each pattern. Acceptance depends on similarity between the target output and the actual 

output. Hopefield neural network for example employs content-addressable memory to 

form locally stable states from any input pattern which is used to overwrite an 

incomplete or inaccurate version of that pattern when presented to it for recognition. 

This is useful in error-correction tasks. The RePART neural network [19] on the other 

hand employs reward/punishment strategy during recognition. The winner node will be 

rewarded, that is, have the connectivity between them and the input layer strengthened. 

While the “looser” nodes will have the strength of their connectivity reduced (i.e. 

punished). 
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2.1.5. Architecture 

    Most weighted NNs are arranged in layers which are input, hidden, and output layers 

each layer ends in a series of nodes, and within each node are a summation, threshold, 

and activation function. Figure 2.1 shows generalized schematics of a node of neural 

system. 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The diagram (Figure 2.1) shows an input layer Xi(t) i =1,2,3,…  connected to the input 

pattern. The layer connected to the output layer is called output layer. All layers in 

between are called hidden layers. The layers are interconnected (either unidirectional or 

bi-directional) by means of synaptic weights, wi, classifiers with a unidirectional 

synaptic weights connection are called feed-forward (FF) or open-loop network while 

classifiers with bi-directional synaptic weight connection are called recurrent network 

(RN). The output of feed-forward network is independent of previous output while the 

outputs of RN are fed back and thus depends on the previous output (or state). Examples 

of RN are Hopefield network, and time delayed classifier. The supervised learning is 

also called active learning [49]. Figure 2.2 shows schematics of typical supervised 

learning. Supervised learning requires the input and desired output pattern being 

presented to the classifier a priori. During training, the classifier output is continuously 

Figure 2.1: The operation at a node of a neural network. Xi(t) – Neural 
input; Wi – Synaptic weights; i – 1,2,3.... y(t) = Nodal output. [3] 
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compared with the desired output pattern. The measure of discrepancies between the 

classifier output and the desired output, the error, is used to adjust the weight 

connections between the nodes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 The most commonly used error measure is the mean square error called the error 

function. Good examples of supervised learning algorithm are the back-propagation 

algorithm and least mean square (LMS) algorithm [49]. These algorithms use mean 

square x2 error, (see equation (2.7) below) to updates the connection weights. 

Supervised learning is used often in feed-forward NN topology, such as Multilayer 

perceptron (MLP), and Radial basis function (RBF). Back - propagation algorithms find 

application in MLP while Least-mean-square method is used in RBF. Though supervised 

learning exists in fuzzy system and RAM-based NN, it is not a common practice to use 

error function to adjust weights. 

 

                                                                                               (2.7) 

 

Where y2 = output of Neural Network; 

tp = desired (target t) output; 

and x2 = mean-squared error. 

    In some RAM-based and fuzzy NN, features of input patterns are compared with a 

knowledge base in look-up-Tables (LUTs), or some values stored in RAM-neurons. The 

Figure 2.2: A schematic of supervised learning rule.[49] 
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content of the RAM and LUTs are then modified with respect to the target pattern e.g. 

Goal Seeking Neuron (GSN) [19]. 

 

ADVANCES IN ARTIFICIAL NEURAL NETWORK RESEARCH: - research 

publications in weighted neural network extend both the architecture and the learning 

algorithms of this section and prevous sections. Such that neural network could now be 

grouped into the following groups:- 

    Support Vector Machines (SVM): These are kernel based, and the learning algorithms 

depend often on distribution such as Gaussian distribution. The most notable and 

industrially applied example is the Radial Basis Function. Significant research publication 

in SVM includes Bernad [8], Lopez [80], and these has, in various ways, increase the 

application arreas. RBF is a good example of support vector machine. 

     Fuzzy dependent Neural Network: Fuzzy algorithms are often applied independent of a 

neural network, but current research results have changed the trend to include fuzzy neural 

network. In Canuto [30], fuzzy neural netwok is designed and applied to character 

recognition. In Karray [73], fuzzy neural network is applied to PID control scheme. 

    Bayesian neural networks: These are neural networks whose learning/classification 

algorithms are based on conditional probability. Though the concept of conditional 

probability has been around for decades, it is only grace to the current research that great 

numbers of neural networks has been developed based on Bayesian rule. Notable examples 

are Beyers [9] and Bocsi [13]. The variation in the individual algorithm and 

implementation are significant and thus the grouping into a distinct group is necessary. 

    Percepteron: Backpropagation and percepteron learning is one of the oldest learning 

method in history. But current research has introduces very many variations and hybrids of 

Multi-layered percepteron. Some notable publications includes; Sukanesh [127], Lahoz 

[78], and Nahid [98]. 

 

2.2 Weightless Neural Networks 

2.2.1 Introduction 

    Previous sections have introduced weighted neural networks. Weighted neural 

networks utilises high mathematical functions. Accompanying the utilisation of 

mathematical function is high memory demand and high resource utilisation. The 
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fundamental principle behind n-tuple network is that pattern recognition may be assumed 

to be the process of building a set of Boolean logic functions which describe the problem. 

A standard weightless classifier may be regarded as a discriminator composed of m RAM-

based neurons. A discriminator is a 1-to-N decoder followed by storage cells. A summing 

device following the storage cell of a discriminator completes a weightless neuron. 

    At initialization, all storage cells may be set to zero. For each training pattern, a “1” is 

stored in the memory location addressed by the pattern. When learning completes, some 

memory locations will have been set to “1” by corresponding training patterns, while other 

locations may remain at “0” or “u” (where “u” denote unknown). The learning record of 

the RAM-memory will be used to solve previous unseen problems when one is given as 

pattern. During recognition stage, RAM-memory content addressed by the input pattern 

are read and summed by the summing device to obtain what is called the discriminator 

response. 

  Illustration of a basic weightless neural network follows. When input data is presented to 

WNN for classification, sub-sets of the Boolean logic function will evaluate to true for a 

specific pattern class whereas other sub-sets will evaluate true for other pattern classes; 

thus solving a classification task. A simple example is given below for illustration. 

 

Example Basic Look-Up Table (LUT) 
Consider a 3x3 LUT below; 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.3 is a LUT of tuple-size = 3. Each class of patterns has a set of Boolean logic 

function that evaluates to true to indicate the recognition of that pattern class. For “T”, the 

Boolean logic function that may express “T” recognition is given by: 

 
                                                                      (2.8) 

 
 
Equation (2.8) is shown schematically in figure 2.3. Thus f(T) may classify “T” and all 

Figure 2.3: This (3x3) LUT can recognize the letter “T” 
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letters that resemble “T”. Similarly f(K) may classify “K” and all letters written as “K”. 

 

 
 

 

 

 

 

 

 

By using a logical 1-to-N decoder followed by a set of binary storage memory for each 

term of the Boolean logic equation, each tuple (e.g.; ABC or DEF of equation (2.8)) 

require one storage unit. The Boolean logic decoder is able to calculate all possible 

Boolean function of the N inputs. So that when presented with learning input data, various 

decoder will indicate which function they have derived from the input learning data. To 

classify the test/validation data, the test data is presented to the NN of figure 2.4. The NN 

will access the storage cells and evaluate the Boolean functions that are true for each 

pattern class. Evaluated values are summed to output. Thus the basic Boolean neural 

network learns and classifies patterns.  

      Multiples of discriminators are often employed in parallel to learn/classify patterns, 

example of which Shefa [116] called m-RAM weightless neural network for handwritten 

digit recognition. This is the same as in figure 2.4 except that N = m and m may be any 

number greater than 2. When figure 2.4 is implemented in a microcontroller of a robot for 

sensor control and/or monitor, we have the scenario of Siti Nurmaini [123]. Though the 

basic principle may appear simple, it forms the building block of WiSARD [5] architecture 

with a recent application to change detection by Massimo [92] and deformable objects by 

Massimo [93].  

 

2.2.2 Probabilistic Convergent Network (PCN) 

Many prediction problems and pattern recognition problems can be solved by performing 

Boolean logic on them. In situations whereby prediction or recognition problems can be 

interpreted in terms of Boolean logic, a type of random access memory (RAM) based 

network called Probabilistic Convergent Network (PCN) becomes suitable. An added 

Figure 2.4: A basic weightless neural network. 
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advantage of PCN over existing RAM-based network is the inclusion of confidence 

measure. 

    To perform a logic mapping, it is expected that all inputs be reduced to binary pattern. 

Due to the complexity of architecture and function of PCN, it is worth introducing some 

terminologies which will be used throughout this thesis. They are explained below 

       Binary inputs: - The Probabilistic Convergent Neuron (PCN) accepts as input, 

binary images only. Any input data is threshold-binarized and appropriately resized 

so that PCN may make sense of the data.  

       Compound symbol: - Symbols are used to denote the neuron output of PCN. The 

architecture of PCN is shown in figure 2.5 below. Neuron outputs are inherently 

restricted to a small set of symbols often only “1” and “0”. These are set of symbols often 

called base symbols. To increase the set of base symbols for a neuron, other symbols 

may be introduced. For example, for numbered classes 0 – 9, one may allow the same 

number 0 – 9 as possible symbols. This permits the storage and retrieval of multiple 

symbols consistent with input classes. The symbols thus employed are known as 

compound symbols. Thus for example, a compound symbol consistent with class “5” and 

“6” will be “56”. This means that class “5” and class “6” has been presented to the NN. 

The main difference in neuron output of PCN, as compared to other weightless nets, is 

the indication of frequency. The frequency at which one class addresses a given location 

is indicated in PCN and EPCN.  For example, for two classes addressing a location, if 

class “1” addresses this location 75 times and class “2” addresses this location 25 times, 

the output of the RAM-neuron will be: [75 25]. If class “2” addresses the location 25 

times and class “1” addresses the location 75 times, the output will be: [25 75]. Thus 

PCN and EPCN give the “probability” of occurrence of each pattern. 

     Adjustment: - For N training pattern and x division, a number “a” occurring in a 

memory location will be adjusted as in equation (2.9): 

 

 

                                                                                                       (2.9) 

 

 

This adjustment is necessary to restrict the probability measure of all classes to the 

number of division that has been set a priori. If the number of training pattern per class 

varies, classes with large training set would have large probability even when they are 
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not many in the test set or validation set. Adjustment reduces this large probability to the 

real value present during recognition. Adjustment is also used to remove rounding errors 

and truncation errors. 

     Division: - This is a value set as the sum of all the scaled probability of the classes. 

The probability of occurrence of the classes is proportional to division. For example, if 

there are 3 classes and the division is set to 100, then if the output of PCN is, say [50 25 

25], the sum of this should equal 100. This result will be interpreted as: The pattern 

presented to the NN belongs to class “1” with probability 0.5, to class “2” with 

probability 0.25, and to class “3” with probability 0.25. Notice that the length of vector 

output from PCN is always equal to the number of classes under consideration. 

     Merging: - The term merging referred to a group of layers, composed together so as 

to form one layer. Merging of main-group layers consist of averaging the values in the 

memory locations with respect to class to form a single compound symbol. 

    Neuron: - The smallest complete functional information-processing unit in the PCN 

and EPCN is known as a neuron (see section 3.2 for a detailed discussion). 

2.2.3 PCN Network Architecture 

The PCN consist of a pre-group, a merge layer for the pre-group, the main-group, and 

merge-layer for the main-group. A feedback path from the merge layer of the main-

group to the main    group layers is included in the design. Each group is arranged in 

layers. Each layer consists of neurons. Each neuron consists of storage locations called 

the N-tuple locations.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5: A      
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  An alternative view is to regard each layer as a look-up table (LUT). The neurons are 

arranged in (x * y)-matrices where (x* y) represents input pattern dimension. Every 

element in an input pattern is associated with a neuron in each layer. . A feedback path 

from the merge layer of the main-group to the main group layers is included in the 

design as shown in figure 2.5. The pre-group layers are meant for learning while the 

main-group layers are meant for patter recognition. Pattern learnt during training are 

merged and stored in pre-group merged-layer such that the main-group layer 

connectivity can be formed. Results of the main-group layers are merged such that they 

can be sent to output and feed back unmodified. 

 

2.2.4 Learning or Training 

Learning starts when a new pattern is presented to the NN. It is assumed the pattern is 

thresholded (binary). The procedures are as follows: 

• Addresses are formed from input pattern. These addresses (also called 

connectivity) are used to access neurons within a layer and location within neuron. 

• The locations within a neuron are relative to number of classes.  

• The size of a layer is relative to the size of pattern (Further information are found 

in chapter 3). 

• Depending on which pattern class an address is formed from, a corresponding 

location will have its value incremented [83]. Otherwise zero will be stored in 

the location. 

• A normalisation phase followed. This consist of dividing the value in each neuron 

location by the number of training pattern of a corresponding class, this is 

multiplied by the number of division. The result is rounded to the nearest whole 

number as in equation (2.9) of section 2.2.2. 

• These whole numbers will be stored in neuron locations of the pre-group. 

2.2.5 Recognition or Classification 

A recognition procedure is as follows: 

• The pre-group layers will be merged into a single layer; this is called pre- group 

merge-layer. 

• Values in the neuron location of the merge layer will be adjusted to make the 
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“sum-of probabilities” [57] equal to the number of division. 

• The connectivity and pre-group merge-layer will be employed in the formation of 

the main-group layers. 

• Adjustment of values in the RAM-location follows. 

• Merging of main-group layers gives main-group merge-layer. 

• Values in the merge layer will be summed and adjusted to become neural network 

output. The output may be feed back iteratively into the main-group layers. 

 

ADVANCES IN CURRENT RESEARCH: After the invention of WIZARD [5], and 

AURA [7], there has been extension and variation of application of pyramidal neuron and 

Correlation Matrix Memory (CMM). Major researches into weightless neural networks 

have been mainly extension of the previous one, and application based. Few exceptions do 

exist as in Howells [55]. Most current research efforts has aimed to expand the areas of 

applications of weightless neural networks as evidenced in Sirlantzis [122], and Lorrentz 

[84], where weightless classifiers are applied to biometric and other databases. A future 

quantum weightless neural network is also “available” in W. De Oliveira [131]. 

 

2.3 Multi-Classifier Systems 

   Multi-classifier systems begin in the early 18th century. A notable invention in the 

18th century is the Borda Counts, for combining multiple rankings, named after the 

inventor Jean-Charles de Borda. Subsequently, a pandemonium was invented in 

about 1958 by Selfridge. A pandemonium is a learning paradigm whereby a head-

demon would select a demon that performs best. Thereafter follows several 

publications about multi-classifier systems, in which the most notable among these 

are Kanal [72] and Minsky [94]. Early works on multi-classifier centred on 

combining multiple models of the same problem. 

    In the late seventies emerges distinction between models; those which are heuristic 

and/or statistical, and those that are not. Many more and differing approaches 

evolved. It has now been discovered that the concept of integrating multiple data 

sources and/or multiple intelligent system models occurs naturally e.g. combining of 

estimators in econometrics, combining of evidences in rule-based systems, multi-

sensor data fusion, and combining of senses in the human central nervous system. It 
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has been explained that neural networks are expert in one area and not in other areas. 

This means that many neural networks are experts in different areas. Could a single 

system be designed which, given different and varied problem domain, is capable of 

providing reasonable solution? The design of such a system is significant in that it 

saves time and resources. The answer to this question is the design of multi-

classifiers and is the subject of this sub-section. The development of classifier shell 

demands human experts in the field of interest. One set of human experts deals with 

problem representation; they could be engineers, managers, and programmers. They 

define and model the domain of problems to be solved. Another set of engineers will 

be involved in design of appropriate expert shell. A “shell” in the sense that the 

experts should not contain a specific prior solution to a specific class of problem but 

rather capable of providing solution to various problem sets. Ideally, an expert system 

should have the capability to learn and continuously update itself [73]. Expert shells 

are combined in various form to form Multi-classifier Shell (multi = many). There are 

four main architectural category of multi-classifier shell, they are: 

• Parallel system. 

• Modular (Hierarchical) system. 

• Sequential (serial) system. 

• Hybrid system. 

These architectures will be explained below. 

 

2.3.1 Parallel System 

 A parallel system here refers to a case whereby a machine and one or more NNs are 

arranged to accept input simultaneously, and their output are combined concurrently. A 

parallel system is sometimes called ensemble-based system. An example of ensemble 

based system is shown in Figure 2.6 which shows the arrangement of NNs in parallel. It 

is to advantage if these NNs are as different as possible. The same input signal may be 

used to excite these parallel NNs. 
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The output may be combined by: 

• Summation and averaging. [20] 

• Summation and weighted averaging. 

• Winner-take-all approach may be employed. 

In a variant called the blackboard system, various inputs go into a global database 

system called the blackboard. This database is then made visible to all the NNs. Since 

the NNs are different, different decision is to be expected at their output layers. 

2.3.2 Hierarchical System 

This is an approach in which input is divided into many tasks, and experts divided into 

modules or clusters. One cluster of expert is assigned to one task. Modular network is 

formally defined as follows: 

“A neural network is said to be modular if the computation performed by the network 

can be decomposed into two or more modules (subsystems) that operates on distinct 

inputs without communicating with each other. The outputs of the modules are mediated 

by an integrating unit which both (1) decide how the output of the modules should be 

combined to form the final output of the system, and (2) decides which modules should 

learn which training patterns” [49]. A schematic of hierarchical system is shown in 

 2.6          
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figure 2.7. It is possible for one cluster of experts to learn, supervised, while the others 

learn, unsupervised. A simple form of modular network consists of single NN as a 

module and a gating network. 

 

 

 

 

 

 

 

 

 

 
 
 
 

Before combination of NNs as modules, experiments are performed to determine their 

area of expert. And portion of tasks are allocated to each modules of neural network, by 

the gating network, according to their capability. Just as synapse work by getting the 

right information at the right time for optimum performance so does the gating network 

works by getting the right type and amount of training data to the right module at the 

right time. The gating network receives the error between the actual output and the 

desired output of the neural network; use this in a feedback system to decide which 

module of neural network learns which task. Thus the gating network performs the role 

of a mediator. It is also responsible for implementing a combination strategy to the 

output of the ensemble. 

    In a complex system, the modules are arranged into hierarchy. And the amount of 

information to each hierarchy is graded, with the module of the highest hierarchy having 

the least information resolution. Generally, the NNs in higher hierarchy are “more 

intelligent” than the ones at lower levels. [73] 

 

2.3.3 Serial System 

The serial system, also called sequential system, comprises of linking the output of one 

 2.7          
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neural network to the input of the other. One type of neural network is used as input 

layer, one or more types of neural network processes the fan-in from the input nodes, 

and one type of neural network may be used as the output layer. Serial system is 

common in Neuro-fuzzy system in what is called cooperative neuro-fuzzy system. As 

shown in figure 2.8 

 

 

 

 

 

 

 

 

 

 

This is a Multi-expert shell whereby the conventional neural network extracts fuzzy sets 

(membership function) from training data. Fuzzy neural network accepts fuzzy sets as 

input from conventional neural network; compare it with the fuzzy rules in a rule base 

(figure 2.8). Other possibility exist whereby the conventional neural network (e.g. 

MLP) extract fuzzy rules from training data or where the neural network is used for 

parameter tuning before the input is piped to the fuzzy system. Data clustering 

techniques is used by neural network to identify and extract fuzzy rules from training 

data, which is then transferred to the fuzzy system. The fuzzy system implements the 

membership function and updates its knowledge base. One important sequential system 

is Neural Network-driven Fuzzy Reasoning (NNDF) designed by Takagi and Hayashi. 

[128] 

 

2.3.4 Hybrid System 

  All other forms of combination of neural networks (the neural networks must be 

independent) that is neither, sequential, parallel nor hierarchical (modular) is 

hybrid. Various forms exist and could be grouped as follows: 

1. Those that have the conventional topology but uses fuzzy neurones at their 

Figure 2.8: Cooperative neuro-fuzzy system. [73] 
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nodes. 

2. The conventional fuzzy system that employs classical neural network for 

numerical computations either during derivation of membership function or during 

derivation of fuzzy rules. This is different from the sequential system, since the 

classical neural network could be located anywhere within the fuzzy system. 

3. There exist a group of classical neural network that employs fuzzy methods to 

update their weights instead of a learning parameter and sensitivity function (i.e. 

differential of log-likelihood function with respect to weights). 

4. A group consist of fuzzy systems and classical neural network, working 

independently, and synchronised. 

5. A group involve one or more mixtures from the above-mentioned neural networks. 

One example of Neuro-fuzzy hybrid NN was designed by Canuto [20]. In this, a fuzzy 

neural network called RePART, a fuzzy multi-layer perceptron (F-MLP) and radial RAM 

was used. The RePART neural network is a normal ARTMAP but with reward/punishment 

process. The fuzzy MLP is a normal MLP but with fuzzy nodes at the output nodes. Radial 

RAM is a normal neuron but employs a radial region, defined by its Hamming distance 

from a reference point in its training and recall phase. The final output is then compared 

with a radial region defined by Gaussian distribution. 

     Another important example is the Adaptive-Network-based Fuzzy inference System 

(ANFIS), proposed by Jang [67]. ANFIS is a Sugeno-type fuzzy system. The commonest 

ANFIS system is a first- or zero-order Sugeno system.  

 

CURRENT RESEARCH MILESTONE IN MCS: - Research publications on multi-

classifier are increasing with notable methods of combinations. Breiman [16], [17] utilizes 

decision tree as base “classifiers” with boosting, and refers to decision tree multi-classifier 

system as the most significant development in classifier design in this decade. Refering to 

classifier diversity and biases, Gemam et al. [44], and Mitchell [95] maintained that 

different types of classifiers have different types of “inductive biases”. The combination of 

base classifiers has witness sequences of development - from averaging [108], to majority 

voting by Bodgan [12], to using special techniques and/or function by Gunter [119]. The 

most advanced stage is the usage of other classifiers for combination [109]. Using 

classifier for classifier fusion is termed intelligent combination. The methods used in this 

thesis belong to intelligent combination method.  
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2.4 Hardware Implementation 

Neuron was first implemented by McCullogh and Pitts in 1943 when it was represented 

by a threshold-logic unit. There after begin hardware development when, in 1959, 

Bledsoe and Browning developed the first weightless neural network. Following it is the 

RAM-neuron developed by Aleksander in about 1979. There was a brief silence in 

hardware neural system development until the mid-eighties, when it was realised that 

the massive parallelism inherent in neural network models could be utilized to profit 

only by implementation in hardware. This led to industrial development of various 

neural systems in hardware. For example WISARD was developed from RAM-neuron 

and in 1986 marketed; AURA was developed by Austin, etc. The early hardware 

development also spread to other neural systems such as MLP, RBF, etc. The hardware 

platforms utilized also vary from digital, analog electronics, optical, to hybrids of these 

platforms. Neural network research became widespread in the mid-eighties when it was 

realized that the massive parallelism inherent in neural network models promised great 

advantages which is realizable only when implemented in hardware. This has given rise 

to variety of hardware implementations ranging from digital and analog electronics, 

optical, to hybrid techniques. 

     Most ANNs are implemented in software. However a hardware implementation offers 

considerable advantages over software implementation. These are: 

   Speed: - Pipelining and parallel execution of instructions is faster than sequential 

execution. Pipeline instructions are more associated with hardware implementation of 

ANN. Concurrent implementation of both pipeline and parallel instructions are 

possible in hardware but scarce in software. 

   Cost: - In high-volume applications, hardware implementation will provide overall 

reduction in system cost, by reducing total component count. Total component count is 

reduced in integrated systems. 

    Reliability: - The decision (output) from hardware neural network is more reliable 

when concerned with large input data that involve large amount of computation. 

Building of fault tolerance into a neural network system is easier done in hardware. 

The performance of software neural network (e.g.; speed) is dependent on hardware 

computer on which it is installed. 
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    Property protection: - Hardware offers protection against “reverse Engineering” 

which could be made use of by competitors. The protection offered against “reverse 

Engineering” may or may not be effective. Decryption and decoding is always possible 

with software based neural networks. 

  As components, hardware neural networks are available in different forms. These 

include embedded microcomputers, Neuro-computers, Cell libraries, chips and PC 

accelerators. Hardware NN implementations are divided into three main categories. 

These are:- 

1. Digital implementation. 

2. Analogue implementation. 

3. Hybrid implementation. 

The advantage of software NN is:- 

    Flexibility: - Software neural network could be implemented on any general purpose 

computer. And is generally advisable to do so during experimentation of a new 

technology or/and a new neural network. Low-volume applications software neural 

network offers (1) considerable advantage in terms of consumption of resources; (2) 

more possibility of parameter tuning and dynamic reconfiguration. For high-volume 

application however, software neural network is unsuitable due to decreased precision 

and long execution time. 

 

2.4.1 Digital Implementation 

Digital implementation of NN are characterised by having all values represented in 

binary word length. Exact precision values and operations on values are made easy. 

Weights and coefficients stored in RAM do not need to be refreshed and are free from 

noise. Since inputs from the real world are analogue in nature, converting this to digital 

signal may lead to distortion, and loss, e.g. during quantisation. The followings are 

different method of digital implementation of NN:- 

A) Random Access Memory (RAM) based NN: - When used to classify patterns 

not used during learning, neural networks tend to generalise. Depending on a 

specific NN, there are various variations of the learning process. The 

Probabilistic Convergent Neuron PCN, outputs a graded response due to 

decision reached from the main group. Sample hardware implementations of 
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weightless NN include WISARD, designed by Alexander and Stonham [3]. A 

specialised processor, the C-NNAP, has also been designed to implement 

Advanced Distributed Associative Memory (ADAM) in parallel [74]. ADAM 

hardware implemented, applies the Generalised Hough transform (GHT) to 

inputs, e.g. document images. Other weightless hardware implementation 

includes pRAM, GSN, etc. 

B)  Slice Architecture: - These are building blocks for NN of arbitrary word length and 

size e.g. Neuralogic NLX-420, Neural Processor, MicroDevices MD 1220, Philips 

LneuroChip. 

C)  Multiprocessor Chips: - This involves having many simple processors on a single 

chip.  Multiprocessors have two method of operation; one is SIMD (Single Instruction, 

Multiple Data). Here all processors work in parallel, executing the same instruction but 

on different input data. The other is systolic arrays, the processors operate sequentially, 

and one step of an instruction is performed by a processor before passing it to the next in 

the array. Examples of SIMD chip are Inova N64000, HNC 100NAP, Siemens MA-16. 

D)  Radial Basis Function (RBF):- This involves defining and storing regions of 

influence or attractions around training input data using basis functions. RBF will often 

define hyper-surface around points of influence. Commercial RBF are IBM ZISC (Zero 

Instruction Set Computer) chip and Nestor Ni1000 Chip. 

E)  Other digital designs: - Other digital designs are those that could not be grouped as 

belonging to any of the groups above. Examples are: Micro Circuit Engineering 

MT19003 NISP (A multilayer Perceptron), Hitachi wafer Integration Chips (Hopefield 

Network). 

2.4.2 Analogue Implementation 

     Analogue neural networks are those neural networks, in hardware implemented, 

which employ other alternative means for storage apart from random access memory. 

Information is not explicitly stored in 1’s and 0’s. Information is stored in charged 

capacitances most of the time. For optical neural networks, information is stored in light 

intensities. 

     The commonest problem associated with analogue neural network hardware is system 

noise. System noise is more pronounced in analogue neural network as compared to any 

other hardware alternatives, and it causes limited accuracy for the network. Secondly, the 

components of analogue neural network (electronic or optical) are non-uniform. This 
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arises mainly from the fabrication process and the operating condition. Most learning 

algorithms are implementable in analogue, and does give reasonable results. The 

algorithms are, in most cases, discretised, and derivatives are replaced by a suitable 

approximate equivalent. Most difficulty encountered in implementation of algorithms, in 

analogue, is due to representation of non-linear functions. A good example is the use of 

Heavyside function in place of sigmoid function. Another example is the replacement of 

the Gaussian function in radial basis function network by a triangular function. 

      The implementation of neural networks in analogue has beneficial effects. Beneficial 

effects may motivate design of neural networks. Of these benefits, the most important 

for hardware analogue implementation of neural networks over all other alternatives 

are:- 

1.   Real-time processing: - The processing of information is real-time. Intermediate 

storage is not essential for its functionality per see during information exchange 

between the neural network and its surrounding, but is an advantage. Thus real-

time processing of information by this type implementation is inherent. 

2.    High density of NN: - Many components are multi-functional e.g. filters. Multi-

functional utilisation of component saves resources. If there is little or no 

intermediate storage required, then the system could be very compact. 

3. High speed: - The possibility of real-time processing and parallel processing 

increases its speed considerably. 

But the difficulties to be surmounted are:- 

1.   Problems of reliability and accuracy: - Variation in operating conditions, such as 

changes in temperature, thermal noise, etc., changes the tolerance of circuit 

components. This in turn makes many components unstable and may change 

“weights” stored in capacitors. 

2.   Problems of consistency of weights: - It is difficult to store charges in a capacitance 

without changes. Charges stored in capacitances represent the weights. The 

capacitances need to be refreshed periodically to avoid loss of weights. 

2.4.3 Neuromorphic design 

      Neuromorphic refers to circuitry designed which closely emulates biological neuron. 

The function ranges from classification to being used as sensor e.g. silicon retina, 

synaptic touchpad. The Pulse Coupled Neural Network (PCNN) is an example of a 

neuromorphic neural network. A common biological model of neuromorphic neural 
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network is a model of the cortical column. This follows from the fact that the brains’ 

cortical column is mainly responsible for information processing in the cerebral cortex. 

The cerebral cortex consists of neurons which vary slightly in anatomy. It is the 

interconnection between the neurons that plays a vital role in learning. A neuron model 

often used in Engineering is known as the Hodgkin and Huxley model [52]. The 

Hodgkin and Huxley model of a neuron is characterised by membrane potential Vmem, 

potassium ionic current ik, sodium ionic current iNa, leakage current ileak, and a 

modulating current im. These currents are voltage V dependent. The time dependent 

equivalence of events at a synapse is described by a concept of spike timing-dependent 

plasticity (STDP). This describe the spike train (or the waveform against time) of an 

event at a synapse.  

      Hardware neuromorphic design of neural networks in analogue implementation is 

very promising because this has the capability to mimic the biological neurons and 

synapses. E.g. Intel 8017 ETANN [101]. In a proton-antiproton collider at Fermilab 

Tevatron, Intell ETANN chip is employed in the classification of energy deposited in a 

calorimeter as either from electron or from gamma rays. 

2.4.4 Hybrid Design 

     Hybrid design aims to combine digital and analogue methods. External 

communications (excluding input sources) and weight storage may be done digitally 

(apart from source) while signal processing is in analogue domain. Bellcore CLNN-32 

Chip performs simulated annealing using analogue circuitry. The simulated annealing 

schedules store weights coefficient in the digital domain. Other examples are Neural 

Semiconductor Chip set comprising SU3232 synapse unit, the NU32 Neurone unit, and 

Ricoh RN-100. 

 

2.4.5 Comparison of Implementation Practises 

   In hardware, NNs are implemented in analogue or digital. The analogue 

implementation demands for reference voltage. Reference voltages are difficult to 

maintain. Analogue implementation has a very good performance and low cost. Once 

built, the architecture is fixed, therefore suited only to one type of target task. Whereas 

the embedded system is more robust and reconfigurable, this involves the use of 
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software and hardware. The digital system is divided into ASIC and FPGA. Like the 

analogue, the digital ASIC is fast to implement, has fixed architecture and very good 

performance. The disadvantage being that it is only suitable for one type of problem. 

The reconfigurable FPGA has lots of attractions. In addition to having all the advantages 

of analogue counterpart, its architecture and system parameters are reconfigurable at 

any time. A reconfigurable FPGA may be slower than a “corresponding” ASIC because 

of extra time required for modification of system parameters. Digital implementation of 

NN does not support floating-point arithmetic, thus runs the risk of non-convergence, 

and wrong output. Software implementation is low cost, possibility of high precision, 

compact, less tedious, and the problem of non-convergence, and inaccurate output could 

be adequately addressed. NNs could be implemented using any programming language; 

among them are Matlab and C. 

 

2.5 Methods of Testing and Validation 

     By images we mean any picture, character, or number written, painted or captured (in 

camera) by man or machine. All images are processed by some functions to scale them 

to manageable size. Afterwards follows the binarisation procedure that renders a binary 

image. Once they have been converted to binary images, which are regarded as patterns 

(or set). Group of similar patterns are grouped into one class e.g. unconstrained 

handwritten character “2” written by different people all fall in the same class. For 

neural network that depends on weight adjustment during training, conversion to binary 

images may not be required. Generally, patterns are divided into three parts:- 

A) Training set: - These are patterns used for training. Training sets are often selected 

as representative of a class of object. 

B) Test set: - These are pattern which were not used during training and which the NN is 

expected to generalise to. Test set is often used, during recognition phase to obtain an 

unbiased estimate of the generalisation error. Generally, this set will be chosen from a 

population of a class randomly. 

C) Validation set: - Validation set may be the same as test set or be different. This set is 

often used to determine the suitability of NN for any task. And is therefore used to test 

how robust the NN is. 

D) Measure: - For patterns without cross-correlation, the percentage of correct 

classification could be used as performance measure. This is the case in most of the 
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projects treated in the thesis.  But generally, for an output y, and a target output t, the 

sum of squared error is often used as measure of performance. The sum of squared error 

is defined as: 

 

                                                                                                       (2.10) 

where yn = actual output; 

tn = desired output; 

and ξ =sum of squared error. 

If the target variable is binary, for a single output y, we use Bernoulli random variable to 

represent the conditional probability of equation (2.11): 

                                                                                                (2.11) 

 

where P(t|x) = posterior probability; 

y = output; 

and t = target coding scheme. 

Taking the negative logarithm and summing yields the cross-entropy error function 

given in equation (2.12): 

 

                                                                (2.12) 

Where n = number of pattern; 

yn = actual output; 

tn = desired output; 

E = sum of errors raised to power of n. 

   For example, for a target class one t = 1, for class one, and t = 0 for the rest classes. 

E) Model Testing: - Model testing aims to investigate how system parameters affect the 

performance of NNs. For NNs with weight adjustment, this may refer to the learning 

rate, biases and decay terms. For weightless NN, specifically for PCN, this refers to the 

number of layer in the pre-group, the number of layer in the main group, the division, 

and the connectivity pattern. Here, the graph of percentage recognition versus pre-group, 

main-group number of division, and connectivity may be used as performance criteria.  

F) Test for Application: - The aim of testing for application is to obtain an unbiased 

estimate of the generalisation error. Cross-validation and Bootstrapping are both 

methods used to obtain an unbiased estimate of the generalisation error. The process is 
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as follows:- 

• Divide the pattern into m subset. 

• Train the net m times. Then, after every training period, leave one or more patterns 

out. 

• Use the omitted pattern to compute the generalisation error. 

Since the number of unclassified and misclassified patterns is under consideration, 

leave-v-out cross-validation is more suitable, where v is an integer greater than one. A 

suitable error function should be capable of processing discontinuous cases. Cross-

validation v, is approximately; 

 

                                                                                              (2.13) 

 

where n = number of training times; 

v = number of patterns to be left out. 

 

Sub-samples for training will be selected randomly without replacement. Few patterns 

per class may be employed for learning. 

 

2.6 Summary 

The current state of the art in classical neural systems has been introduced in general 

terms. This is followed by weighted neural systems. Their implementation and 

application in a multi-classifier is introduced. Also a class of neural network, the 

fuzzy neural network, is introduced as currently and industrially been used. An 

introduction to their functionality and application were provided. 

  Afterwards, the other type of neural network called the weightless neural network is 

introduced. The state-of-the-art learning algorithm, implementation, and applications 

were explained. This is followed by introduction to PCN. The current state of work 

on PCN and its current functionality is introduced. 

  In the next chapter however, novelty (ies) in the architecture and functionality of 

PCN will be identified. The novelties may lead to realization of PCN potentials, 

thereby making it more beneficial than other existing or similar networks.  
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3. THE ENHANCED PROBABILISTIC CONVERGENT 

NETWORK - EPCN 
 

This chapter presents a novel adaptation of a weightless neural network entitled the Enhanced 

Probabilistic Convergent Network (EPCN). This work is motivated by the need of PCN to improve 

its performance and widen the problem domain on which it may be applied. One of the problem 

domains is handwritten characters. For this reason, the input mapping methods of EPCN will be 

enhanced and tested on handwritten numerals. The EPCN possesses the ability to associate a 

relative probability with each candidate class when a test pattern is presented for classification. 

The relative probability measures the certainty that a pattern meant for recognition belongs to a 

class with the highest probability measure. Two distinct types of EPCN are presented; one is 

termed rand-EPCN and the other fix-EPCN. The rand-EPCN employs random selection of bits 

within the input patterns to form connectivity, while fix-EPCN uses consecutive bits within the 

input patterns during connectivity formation. These EPCNs are contrasted. 

3.1 Introduction 

This chapter proposes some major modifications to the customary PCN. These 

modifications concern the input mapping method, the introduction of input scaling of 

patterns, and image processing possibilities. The customary PCN employs a static 

method for formation of connectivities, while the methods of connectivity formation 

here is dynamic. Possibility of input scaling has been introduced which enhances the 

portability of the whole system. Programs for image conversion to binary image have 

been introduced. They are employed on figure 3.1(a) resulting in figure 3.1(b) as an 

example of its usefulness. Figure 3.1(b) is the form acceptable to EPCN. Thus input 

methods to PCN has been modified and incorporated into EPCN to support other 

sources and types of data. Any other forms, e.g. JPEG, MPEG etc is automatically 

converted (thresholded) to binary image before being presented to EPCN’s input. A 

sample image, e.g. hurricane Rita (Figure 3.1(a)) will be compressed and converted, 

using a function, to a binary image as in figure 3.1(b). 
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The sea body (marked “S” in both figures 3.1(a) and 3.1(b)) is converted to “1” 

essentially in figure 3.1(b). Land and green vegetation (Example is marked as “L” in 

both figures 3.1(a) and 3.1(b)) is represented by”0”. There are regions of mixed “1” 

and “0” in figure 3.1(b) representing mixed vegetation in figure 3.1(a). 
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The EPCN is a classifier which gives a confidence measure to all classes, based on 

supervised learning, when a pattern is presented to it for classification. Two types of 

EPCNs are implemented; one is called rand-EPCN and the other termed fix-EPCN. The 

major differences between the EPCN designed by the thesis author, and the customary 

PCN [55] are:- 

• The possibility of adjusting and rescaling any input pattern. 

• Formation of connectivity by using consecutive bits within input pattern coupled 

with rejection criteria. 

• Random selection method of address formation. This method is the customary 

method of connectivity formation but with the exception that coordinates are 

functionally initialized and dynamic. 

• Improved system interfacing: For example, EPCN can learn/recognize pattern of 

type shown in figure 3.1(b), while PCN cannot. This is because the input interface of 

EPCN is adaptive and can sense which pre-processing steps may be required on the 

input pattern. 

From henceforth, and because of these modifications (enhancements), the PCNs are known 

as EPCN – Enhanced Probabilistic Convergent Networks.  

3.2 The Input Pre-processing  

The input pattern pre-processing into binary pattern will be explained in general 

perspective because pre-processing procedures follow similar sequence for most data 

sources. A holistic processing method is hereby presented. 

1) Noise filter is applied to minimize the effect of noise. 

2) Edge enhancing filter id applied 

3) A threshold is determined for binarization 

4) Pixels in patter below the threshold will be converted to “0” whereas those equal to or 

above the threshold will be converted to “1”. 

Figure 3.1(a) is an aerial picture of advancing hurricane. As the composition of water-to-

land aerial image changes, figure 3.1(b), the counterpart to figure 3.1(a) also changes in 

unison. The pre-processing procedure is applied to benchmark databases (known as 
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CEDAR and NIST). Example of handwritten digits from CEDAR is shown in figure 3.2(a) 

while samples of its binary pattern are shown in figure 3.2(b). CEDAR and NIST 

databases are employed in the experimental section of this chapter. 

 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2(a): An extract of handwritten digits from a 
benchmark database known as CEDAR. 
 

Figure 3.2(b): A binarised handwritten digits from a benchmark 
database known as CEDAR.  
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3.3 EPCN – The Enhanced Probabilistic Convergent Network 

  Weighted Neural Networks are those Neural Networks whose modification to system 

parameters and performance depend on weights and weight adjustment. On the other hand, 

Neural Networks whose performance and system parameters are independent of weights 

(and their adjustments) are called weightless Neural Networks or RAM-based Neural 

Networks [7]. One of the advantages of a weightless Neural Network is its fast learning 

algorithm, of which the EPCN is an example. The EPCN consist of neurons which are 

arranged into layer. The architecture of EPCN consists of two groups of layers. The group 

of layers utilized during the training process is known as pre-group layer. The group of 

layer utilized mainly during the recognition process is called the main-group layers. The 

architecture of EPCN consists primarily of these four component layers termed the pre-

group, a merge-layer for the pre-group, the main-group, and merge-layer for the main-

group. It incorporates a feedback path from the merge layer of the main group to the 

main-group. Each group of the layer is made up of a number of layers with each 

constituent layer consisting of component neurons (defined in section 2.2) which 

themselves consist of a number of storage locations known as RAM-locations, as shown 

in figure 3.3. 

 

 

 

 

 
  
 

 

 

Each storage location itself is divided into separate values for each pattern class under 

consideration for the neuron. An alternative view is to regard each layer as a look-up 

table (LUT). The neurons are arranged in (x * y)-matrices where (x* y) represents the 

input image dimensions. Every element in an input image is associated with a neuron in 

each layer. The EPCN possesses a learning algorithm which percolates the pre-group layer 

and end in a merged layer for the pre-group as depicted in figure 3.4. It also has a 

recognition algorithm which percolates both the pre and the main-group layers, ending in a 

Figure 3.3:  An EPCN neuron. 
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Figure 3.4:  A schematic representation of EPCN. 

merged layer for the main-group. During learning and recognition, an integer number 

called division is required for adjustment purposes. The term adjustment refers to 

multiplying values in a RAM-location by division and dividing by the number of pattern 

per class. Two types of EPCN are implemented; one is called rand-EPCN and the other 

termed fix-EPCN. A comparison is presented below: 
 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

The functionality of the architecture depicted in Figure 3.4 is divided into two procedures 

called Learning and Recognition procedure.  

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.1: Comparison of fix-EPCN and rand-EPCN. 
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Both learning and recognition algorithms are now presented. 

 

3.3.1 Learning procedure 

1) Only the pre-group layers will be trained for a given pattern class. 

2) For each neuron in the pre-group layer, an address is formed from binary threshold input 

pattern, governed by the given connectivity pattern for the layer. 

3) Depending on the address so formed, the respective RAM-location is incremented for the 

given pattern class. Let the input pattern be 
 
Let the set of addresses [m, 

n][p, q][r, ..., s] be required; where [r, ..., s] depends on size and dimension of input pattern. 

The set of addresses are derived from input pattern Xi feature vectors, or pattern attributes. It 

is employed to access a given memory location, M. Depending on the address, A, formed, 

(where A = [m, n][p, q][r, ..., s]) a corresponding memory location will be modified as given 

by equations (3.1) to (3.3): 

                                                                                                                                                      (3.1) 
 
 
when A is activated.   
 
     (3.2) 
     
when A is not active    
 
The equation above is an iterative sequence of tc = 1, 2, 3 , ..., ∞; where tc is the learning 

cycle; t = time, and c = a constant. In practice, the iteration is limited by the constraint given 

by: 

 
                       (3.3) 

 
where D = the number called division. 

4) Subsequent to the completion of training, an adjustment phase occurs to normalize the natural 

number in each memory location. For N training patterns and D division, a frequency of 

occurrence of a value “a” in a memory location will be adjusted as: 

 

Xi xi1 xi2, xi3, ..., xin, 

MA( )tc 1+ MA( )tc 1+

MA( )tc 1+ MA( )tc
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 (3.4) 

 
 (3.5) 
 

This adjustment is necessary to restrict the probability measure of all classes to the 

number of division that has been set a priori. Also if the number of training pattern per 

class varies, classes with large training set would have large probability even when 

there are not many examples in the test set or validation set. The learning algorithm 

utilizes the pre-group layers which are merged to produce the merge layer for the pre-

group. Similarly, the recognition procedure utilizes mainly the main-group layers which 

are then merged to produce the main-group merge layer. After the Learning procedures 

terminates, EPCN is able to recognise similar objects and patterns. This is done by 

employing Recognition procedures. Other views about the training procedure may be 

found in [57]. The recognition procedure is now presented.  

 

3.3.2 Recognition procedure 

The Recognition procedures for EPCN are as follows:- 

1) An Address is formed for each neuron, within the pre-group as for training. The 

address formed is from input pattern and corresponds to the connectivity patterns of 

various layers. 

2) The main-group layers will be merged to form one layer. Locations within the 

neuron of this merge-layer contain independently calculated averages from 

corresponding locations of the main-group layers. 

3) After merging, an adjustment is required to make the “sum of probabilities” [57] 

equal to the number of division. 

4) The output of the main-group merge-layer is fed back iteratively, a fix number of 

time, or until the solution stabilises, whichever happens first.    
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3.3.3 The PCN Software Implementation 

     In this sub-section, the PCN functions, PC configuration, and Matlab configuration on 

which EPCN was prototyped will be introduced.  The software modelling of EPCN 

employs Matlab because of its availability, costum functions (e.g. sin, cos, plot, etc. 

functions) exist already, and because it is more suitable for engineering prototyping. As 

compared to alternative modelling software, matlab require less effort in order to produce 

simulations. The Matlab is the medium of software implementation. In Matlab, help 

about a PCN functions is obtainable for individual function by typing: 

>>help function_name 

on the command-line. Here, function_name is the name of an EPCN function under 

inquisition. These functions are written in Matlab, with the usual Matlab’s function 

naming method i.e. 

function ans = function_name(variables) 

as the first line in the M-file. After that, important constants are specified, which 

followed by the algorithm which the function implement when called. It is often the case 

that one function calls another. This maintains interrelationship between PCN functions, 

analogous to the synapse between neurons. The Matlab used in this case was installed on 

a PC situated in the Digital Research Laboratory.  

 

3.4 Experiments and Analysis 

Experimental Data   
     For EPCN to be able to learn and recognise objects and images by following the 

procedures above, pattern and images are first binarised. A binarised image serves EPCN 

as experimental data for training and recognition. These experimental data used here are 

handwritten digits “0” to “9”, and letter “T” and “I”, binarised, and come from sources 

listed below. The sources are:- 

• The Centre of Excellence for Document Analysis and Recognition (CEDAR), 

University at Buffalo, State University of New York, Department of Computer 

Science. Handwritten numbers from CEDAR were resized and binarised to 16-by-24 

in dimension. 
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• National Institute of Standards and Technology (NIST) in Gaithersburg USA. NIST 

provide the handwritten simple form (HFS) of numerals, which were binarised and 

resize to 32-by-32. 

The pattern used from CEDAR and NIST are handwritten number “0” to “9”. These are 

thus named class 0 to class 9. The number of patterns in each class varies from 200 to 1000 

depending on class. These numerals are divided into training patterns and test patterns. 

Training patterns and test patterns are stored in different directory. Test patterns do not 

form part of training patterns and vice versa. 

  Statistical analysis reveals that the errors incurred are negligibly small when sample size 

[96] equal to or greater than 30 patterns were used from each pattern class. This applies to 

both the test and training classes. Thus in this work, sample size between 30 – 50 patterns 

per class will be used. 

---    ---   --- 

    The aims of this experiment are to evaluate the networks, and to investigate the effects 

of changes in system parameters with respect to performances. The first two databases 

mentioned are more relevant to these tests since they are complete, large, and benchmark 

databases. These databases are independently collected from the society. They represent 

unconstrained handwriting of various individuals. Each hand writing is independently 

collected. Thus these databases correspond to real and natural tests for EPCN on 

unconstrained handwriting of numerals. Simulations were performed on EPCN using the 

experimental data detailed above. The training patterns from experimental data are 

supplied to both EPCNs at its input during learning while the test data, also from 

experimental data, are supplied to the EPCNs at its input during recognition. This is done 

during all the experiments. Three types of simulations were performed on fix-EPCN in 

order to determine dependence of percentage (%) recognition on pre-group layers, main-

group layers, and division. For rand-EPCN, variation in connectivity pattern is not 

measurable when division is varied. For this reason, two types of simulations were 

performed on rand-EPCN; these are variation of % recognition with respect to pre-group 

layers, and variation of % recognition with respect to main-group layers. 

    Previous works on EPCN detailed in [55], hypothesised that the major causes of 

variation in performance of EPCN depends on the group layers, number of division, and 
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the connectivity pattern of layers concerned. The experiments detailed here aims to verify 

these hypotheses. 

1. In the first experiment, the number of divisions and the number of pre-group layers 

is held constant while the number of main-group layer is increased from 

approximately 2 to 9. Percentage (%) recognition is used as performance measure. 

The percentage recognition is recorded after every increase in the number of main-

group layer. This is done both for fix-EPCN and rand-EPCN. 

2. In the second experiment, the number of divisions, and the number of main-group 

layers is held constant while the number of pre-group layer is increased from 

approximately 1 to 11. Percentage (%) recognition is used as performance measure. 

The percentage recognition is recorded after every increase in the number of pre-

group layer. This is done both for fix-EPCN and rand-EPCN. 

3. To investigate the dependence of performance on division, the number of pre- and 

main-group layers is made constant while the division is varied from approximately 

100 to 1000. Values of % recognition are recorded after every change in division. 

This experiment is performed on fix-EPCN only. Results obtained are recorded in 

the table 3.2 and 3.3. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Considering Figures 3.5 and 3.6 below, we note that as the number of layers increases, 

more class representative features are extracted from input patterns, and the 

performance increases until the maximum is reached. 

Table 3.2: rand-EPCN; Record of percentage recognition when 
system parameters are varied. Numbers of pre- and main-group 
layers, and numbers of division constitute system parameters.  



 
 68 

 

 

 

 

 

 

 

 

 

 

 

 

 

Maximum performance occurs at 85.7% in figure 3.5, and 67% in figure 3.6. From point 

(85.7,5) in figure 3.5, and point (67,9) in figure 3.6 onward, a decrease in performance 

is observed. This is because the number of iteration is not sufficient to account for other 

additional features extracted from input patterns.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.3: Fix-EPCN; Record of percentage recognition when system parameters are varied. 
Numbers of pre- and main-group layers, and number of division are system parameters. 
 

Figure 3.5: A graph showing the effect of the main-group layer on 
performances. This is a plot of table 3.2 and 3.3 column 1 vs.2. 
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Figure 3.6: A graph showing the effect of the pre-group layers on the 
performances. This is a plot of table 3.2 and 3.3 column 3 vs. 4. 
 

Figure 3.7: A graph showing the effect of the Division on performance. 
This is a plot of table 3.3 column 5 vs. 7. 
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Additional features of EPCN is its ability to leave areas of local maximum as shown at 

point (65,5) in figure 3.6. It is not unusual to obtain a local maximum solution for a 

problem. As long as the network is able to leave the local maximum and achieve a global 

maximum in quest, the aim has been achieved, and local maximum may be ignored. 

Saturation of RAM-neurons can also prevent performance from increasing. From figure 

3.6, there is no (except at point pre-gp = 3) difference between the performance of fix- and 

rand-EPCN. But from figure 3.5, the performance of fix-EPCN (maximum at 79%) is 

lower than that of rand-EPCN (maximum at 86%). Since the difference between fix-EPCN 

and rand-EPCN is in their method of connectivity formation, it would be concluded that 

their methods of connectivity formation has led to this performance difference.  The 

division value is employed in the adjustment phase to limit the probability measure. 

Percentage recognition is related to the probability measure through an averaging 

procedure. This means that changes in the value assigned to division is directly related to 

changes in performance. As the value of division increases, more bits become available to 

enumerate the features of input patterns. This leads to stabilisation of probability measure 

for the different classes as the neurones reaches a consensus concerning the different 

classes. This leads, in turn, to increase in percentage recognition. And thus the percentage 

recognition increases to 69.35% in figure 3.7. As the value of division becomes very large, 

same sets of features are enumerated repeatedly and this forces EPCN to reach a repeating 

sequence of state. This event is witnessed, in figure 3.7 when the division is 500 and 1000. 

3.4.1 Benefits of weightless Neural System-EPCN 

Benefits derived from using the implemented neural network are: 

• One-shot learning (as explained in chapter 2) 

• Easier to make fault tolerant because of its binary nature. 

• More amenable to digital implementation 

• Minimum of mathematical (floating-point) computation 

• Increased speed 

Though these benefits are not exclusive to weightless neural networks only, only 

weightless neural system possesses all the mentioned characteristics concurrently. These 

points might be exemplified by comparing EPCN with state of the art neural networks 

such as MLP. 
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3.5 Comparison of EPCN with other Neural Networks 

     A learning cycle is known as (one) epoch in weighted neural system while in weightless 

neural system referred to as one-pass or one-shot. Weighted neural network requires more 

than one epoch of learning cycle, while the weightless network require a one-pass over the 

input data. 

     Digital system is known to be resistant to noise because of its binary nature. Since 

weightless system does not require weights and activation function, spectral functions (e.g. 

Fourier) are known and discrete. Thus noise sources are easily identified and, when 

necessary, removed. A great deal of effort is required to maintain an analogue weights or 

the charge on an ion for a long time. Thus the weightless neuron is more amenable to 

digital implementation. 

Table 3.4 shows a comparison of EPCN with other similar weightless neural networks. 

 

   

 

 

 

 

 

 

 

It is possible, either automatically or otherwise, to map almost all algebraic computation to 

its Boolean logic equivalent. Mapping problems to its Boolean logic equivalent avoids any 

computation (most especially floating-point) overheads that might be required in, for 

example, a weighted neural system or any other alternative systems. Mapping problems to 

a Boolean logic equivalent is not a trivial task. 

     An increased speed may be inferred from lower computation demand and a 

learning/recognition cycle of one-pass over the input data. 

    Inferring from the result obtained, for practical purposes, EPCN may be useful in 

preliminary decision making and routine classification purposes. Both EPCNs are 

unsuitable in their present form (they require optimisation) for sensitive application, for 
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example, in security issues and in life-death issues. In these areas, one expects error of less 

than 1%. 

3.6 Summary 

  Novel methods of connectivity formation have been introduced to EPCN. The random 

selection of input bits within the input pattern to form connectivity has been shown to 

improve percentage recognition. The dependence of performance on values of division and 

the number of pre- and main-group layers has been verified. In this experiment, all inputs 

were static during learning and recognition. Cases of moving object and/or moving 

surrounding were not investigated. This experiment was designed to investigate 

performances of EPCN with respect to their system parameters and emphasis was not 

placed on state of database. This may be considered as areas of future research and 

development. 

  The results of this chapter call for improvement in implementation as the performances of 

both EPCNs are generally low.  

  Two types of EPCN have been implemented. Combination of these two novel classifiers 

may form a multiple classifier structure (with or without addition of other NNs) which 

may find application in Automated Control and Guidance Systems, Robot visual guidance 

systems, etc. In the next chapter however, use will be made of a multi-classifier derived 

from these two EPCNs. 
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4. A WEIGHTLESS ARTIFICIAL NEURAL BASED 

MULTI-CLASSIFIER 
 

       Recent years have witnessed intense research in the general area of Multi-Classifier 

systems (MCS), but this has rarely incorporated any utilisation of weightless neural 

systems (WNS) as the combiner of an MCS ensemble. This chapter explores the 

application of weightless networks within the multi-classifier environment by introducing 

an intelligent multi-classifier system using a WNS called the Enhanced Probabilistic 

Convergent Neural Networks (EPCN). The chapter explores the use of EPCN by 

illustrating its major features, such as the specification of disjoint or overlapping input 

subset to the MCS, and the parallel nature of the design. Within the proposed system, the 

number of base classifiers per MCS could be specified manually or automatically. The 

proposed MCS is problem-domain independent and, our investigation is performed on 

handwritten characters. The proposed MCS is adaptive; its combiner is capable of 

extracting absolute or weighted classification decision (output) from base classifier. 

Diversity is increased in the base classifier by injecting randomness into the system 

parameters. Two types of EPCN classifiers are employed: fix-EPCN and rand-EPCN. 

These EPCNs are independent and orthogonal in behaviour because one uses a fixed 

method of forming connectivity while the other uses random method of forming 

connectivity. 

  In order to verify the performance of the recognition system, tests were performed, off-

line, on benchmark datasets of unconstrained handwritten numerals.  Experimental results 

suggest that MCS outperforms single EPCN in classification of handwritten characters. 

    Artificial Neural Systems in general and Weightless systems in particular, have traditionally 

struggled in performance terms when confronted with problem domains possessing a large number 

of independent pattern classes. The overloading and saturation experienced by traditional 

networks is addressed by training the base classifiers on differing subsets of the required pattern 

classes and allowing the combiner classifier to derive a solution based on the whole ensemble. The 

system is demonstrated on the exemplar of fingerprint identification and utilises a Weightless 

Neural System called the Enhanced Probabilistic Convergent Neural Networks (EPCN). 
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4.1 Introduction 

    Motivated by the performance of each of the EPCN in chapter 3, the implementation of 

a multi-classifier is conceived. The aim of the multi-classifier design is to improve 

recognition on handwritten characters; most especially an improvement on classes with 

low performance (i.e. the “difficult” pattern) rate is desired. Over recent years, a 

significant research effort has been devoted to the development of multi-classifier systems 

(MCS) [109]. MCS consist of component classifiers, possibly of an artificial neural 

configuration, called base classifiers, arranged in a specific fashion so as to carry out a 

specific task which would otherwise yield a poorer performance should such a task be 

performed by a single neural network or classifier. The specific arrangement of this 

classifier s is commonly referred to as a classifier selection. R. Ranawana [109] 

summarises various methods used in classifier selection but does not significantly include 

weightless classifier. Weighted classifiers are that classifier whose performance and 

system parameters depend on weights and weight adjustment. In contrast, classifier s 

whose performance and system parameters do not depend on weights (and their 

adjustments) is called weightless classifier. It is highly suitable for implementation in 

portable embedded systems and its ability to efficiently learn with a reduced number of 

training iteration. In a weightless classifier, binary weights are stored and retrieved from 

RAM. To date, most significant research in classifier used in MCS has involved weights, 

for example [36] uses classifier selection based on weights. This chapter presents an MCS 

employing weightless classifiers. The base classifiers employed in this work are derived 

from The Enhanced Probabilistic Convergent Network, EPCN. Details of the base 

classifiers were published in [85]. 

     But the multi-classifier designed is useful only if the number of classes is large, ten (10) 

classes and more will be employed. A multi-classifier for large-scaled multi-class 

classification is motivated by the fact that most state-of-the-art multi-classifiers has been 

shown to fail, in performance term, when the number of pattern classes becomes very 

large. This scenario forms the motivation of this chapter. The issue of applying a RAM-

based multi-classifier to large-scaled multi-class classification tasks is addressed here. As 

the number of pattern classes required to be recognised by an artificial neural systems are 

increased, problems associated with the overloading and saturation of the network begin to 

manifest themselves. This chapter presents a novel method which not only aims to solve 

these problems, but is also able to produce an appreciable recognition performance when a 
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large classification is required. The solution that this chapter presents comprises of 

partitioning the pattern classes into disjoint sub-sets, and employing a multi-classifier 

system (MCS). The component classifiers are derived from The Enhanced Probabilistic 

Convergent Network, EPCN. 

      This chapter is organised as follows. Sub-section 4.1.1 introduces multi-classifier 

system. The design of the MCS commences in section 4.2 where an MCS implemented 

using EPCN is introduced, and then experimented on in section 4.4. The results obtained 

were recorded and analysed in section 4.5 and 4.6. The chapter completes with a 

summary and areas of further possible experimentation in section 4.7 and 4.8. 

 

4.1.1  Introduction to RAM-based Multi-classifier  

Two types of EPCN were introduced in chapter 3. They were tested on handwritten 

numerals. Here, base (component) classifiers are derived from these EPCNs. The base 

classifiers derived from EPCN (Chapter 3) will be employed in a multi-classifier 

framework. In order to facilitate the employment of EPCN in sector such as security and 

health, an improvement on the performance of chapter 3 is required. Whilst maintaining 

the benefits of section 3.4.1, it is considered significant to achieve a performance in excess 

of 90% on handwritten characters and numerals such as that EPCN are further useful. It is 

expected that the design and employment of Multi-classifier on handwritten character will 

improve performances as compared to when a single EPCN classifier is employed. The 

EPCN is a classifier which allocates a confidence measure to each candidate class, based 

on supervised learning, when a pattern is presented to it for classification. An interested 

reader could consult [85] for more detail on EPCN. 

     A significant component within the design process of an MCS system is the selection of 

the base classifiers to employ. The most common selection methods used for base 

classifiers are: input data [109], Genetic Algorithm (GA) [2], Objective functions [112], 

[119], Random selection [42], Boosting [42], and Bagging [119]. Some designers [42], [55] 

make classifier selection to depend on certain diversity measures.  

    One of the most successful ensemble creation methods is the random subspace method 

[42]. Here input space is partitioned by random selection into subspaces of equal length 

and a classifier is assigned to each subspace. 
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     The most common arrangement of base NN used in an MCS is the parallel method. 

Other topologies are the cascading and hierarchical topology [34]. Cristian Dima [26] 

proposes the implementation of a hierarchical mixture of experts and the employment of 

dynamic reconfiguration to analyse robot dynamics.  

     It is essential that for classifier to be included in an MCS, either the performance must 

be significantly above average (50%), or the classifier must make other significant and 

positive contribution to the ensemble after combination, which may not be expressed in 

terms of percentage performance. Lam [79] states that orthogonality; complementarities 

and independence of a base classifier determine its inclusion in an MCS. During training 

and recognition, each base classifier utilises its normal training and recognition algorithm. 

The combination of base classifier output is called classifier fusion. Various techniques for 

classifier fusion are broadly divided into:  objective functions [120]; Qualitative 

combination [11]; intelligent combiners [35]; Fixed combiners or balanced classifiers 

[112]. Significantly, EPCN, when used as a combiner, is a novel weightless intelligent 

combiner since it possesses its own learning and recognition algorithms. 

     A. Krzyzak [135] categorizes combiners of MCS into two, namely, feature-vector-

based method (i.e. using neural network) and syntactic-and-structural (i.e. fuzzy-rule 

based) method. [119] categorises them as: Linear, Non-linear, Statistical, and 

Computational Intelligent combiners. 

     The overall performance of an MCS is often compared to a single base classifier. At 

present, it is difficult to quantify how diversity measure affects performance, most 

especially for MCS comprising large number of base classifiers. Gabrys and Ruta [12] 

maintain that diversity measure has limited correlation with MCS performance. It should 

be emphasised that MCS performance depends on careful selection of base classifiers. Min 

[77] uses a Rejection criterion and reliability to measure performance. The rejection 

criterion and reliability are numerical quantities derived from a fuzzy integral. A 

performance improvement has been made on isolated handwritten characters [126], whole 

words [121], postal addresses [70], [77], and bank cheques [63]. It is difficult to achieve a 

high recognition rate using a set of features and a single classifier. This is because totally 

unconstrained handwritten numerals, as is the case in this work, contain an appreciable 

level of pattern variation which mainly depends upon individual writing style.  

    The design of MCS using EPCN as an intelligent combiner will be the subject of the 

next section. 
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4.2 The Design of an MCS from EPCN 

     Multi-classifier utilising weightless classifiers are currently rare. This section presents 

an MCS that utilises weightless NN called Enhanced Probabilistic Convergent Network 

(EPCN) [85]. MCS may be grouped according to their output. A formal grouping of such 

classifiers is: abstract form, rank level, and measurement level [109]. Of these, the 

measurement level group is relevant. 

• Measurement level: - No attempt is made to arrange the output of a base classifier in 

any order, since the order of values in itself has meaning. Each class is assigned a 

belief of the classifier about the input. The result is an array of belief values. These 

classifiers are also called probabilistic classifiers. Fix-EPCN and rand-EPCN are 

novel weightless probabilistic classifiers. 

Previous studies have shown the performance of both EPCNs to be well above 50% [85]. 

Fix-EPCN is orthogonal to rand-EPCN due to its inherent method of forming connectivity. 

The rand-EPCN uses random method while fix-EPCN uses a pre-defined or “fixed” 

method, a systematic method which is reproducible. 

     These EPCNs are designed to be independent and without correlation with regards to 

their errors, giving no consideration for any future input dataset. Varying the system 

parameter of each EPCN has a profound effect on their decision making. These decisions 

(outputs) do not give rise to error correlation, for disjoint input dataset. Thus EPCNs are 

good candidates for MCS production. 

    In this work, the input space is partitioned into overlapping subsets and a classifier is 

assigned to each subspace. This allows for a clear comparison with a standalone single 

classifier. Since this MCS uses EPCN, it will henceforth be denoted by MCSPCN for 

short. MCSPCN is designed with the possibility for dynamic reconfiguration, and the 

parallel scheme is employed. In a changing environment, system parameters could be 

made dependent on changes in the environment. 

 Diversity is increased in MCSPCN by incorporating diversity within the training 

algorithm [106], [109] of all EPCNs. This influences their behaviour during training and 

recognition. For example, if F classifier is required, and Ni classes each, this will be 

specified as: 

>> mcspcn(F,Ni,r,c); i = 1,2,3, ...                                                                                   (4.1) 

where, 

r = number of rows in pattern. 
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c = number of column in pattern. 

For each F, the size of Ni may vary or overlap. 

    This work utilises the Computational intelligent method for classifiers fusion by 

employing another EPCN as the combiner. 

4.2.1 Combiner Unit 

The term Combiner Unit refers to the EPCN combiner [Pc, Mc], and the gating function f 

(.) (See fig. 4.1). The gating function consists of a decision maker and a converter. The 

Decision maker is required for the following reasons:- 

• If the same character is classified or assigned by different NN to differing classes and 

these classifications are correct, without the decision maker, these two interpretation 

will be converted to different images by the converter. A correct classification of a 

pattern by different NN should produce similar pattern for the EPCN-combiner to 

train. 

• The combiner EPCN does not know if the input space overlaps or not. The decision 

maker is also required to monitor overlap and to reflect this it its output by 

weighting. 

Decision Maker: - The decision maker considers the performance of the component 

classifiers with respect to the classes, and passes its decision to the converter. It utilises a 

weighting strategy on the output of the base classifiers when inputs overlap. This 

weighting strategy affects only those outputs corresponding to the region of input overlaps. 

A zero weight switches off an output of a base NN with respect to a given class, while a 

weight greater than zero switches it on. The decision maker does not eliminate a base 

classifier, but only inhibits certain outputs with respect to certain classes. This inhibition 

depends on input space overlap and performance on that class. For example, consider a 

character "a" is trained to one NN as class 1, and trained to another NN as class 2. During 

recognition, correct classification requires the first NN to classify "a" as class 1 and the 

second NN should classify it as class 2. The decision maker is responsible for informing 

the converter that the two output are the same i.e. are correct classifications of "a". 
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Converter: - This converts the Decision maker's integer output into binary, e.g. for 

division = 1000, [0, 0, 65, 45, 0, 0] will be converted to: 
[0000000000 

0000000000 

0001000001 

0000101101 

0000000000 

0000000000]; 

EPCN-combiner configuration: - An example configuration of EPCN combiner is shown 

in figure 4.2. 

 

 

 

 

 

Figure 4.1: The MCS unit is divided into multiple EPCN group and combiner EPCN group. 
The multiple EPCN group consist of EPCNs in parallel. Pi = pre-group; Mi = main-group; 
‘i = 1,2,3,… ‘f(.) = gating function. Pc = combiner’s pre-group. Mc = combiner’s main-
group.  
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In the first field, nost, each number represents the number of training patterns per class. 

The second field, nclas, represents the total number of classes. The third field is the 

number of layers in the pre-group. The 4th field is the number of columns in the image 

while the 5th is the number of rows in the image. The last field, ntuple, is the tuple-size. 

The combiner's main-group's configuration is the same, except the field “nlay" is replaced 

by "mglay", where "mglay" is the number of layers for the main-group. Thus we have a 

MCS that looks like fig. 4.1, where [Mi, Pi] is a base classifier; i = 1, 2, 3 … This multi-

classifier will be tested in experiment section. 

    Advantages of weightless classifier are their fast learning algorithms, ease of 

implementation in digital hardware, and ease of implementation in a portable embedded 

system. It could be argued that in a weightless classifier, binary weights are stored and 

retrieved from RAM. An important component within the design process of an MCS 

system is the selection of the base classifiers to use. The combination of base classifier 

output is called classifier fusion. The design of MCS in this section is input independent 

and it uses EPCN as an intelligent combiner. 

 

4.3 Multi-Classifier System for Biometric Databases 

    Much research is currently based on biometric identification, but most of these research 

efforts have utilized other means, not involving weightless neural networks. This is 

because of problems of biases and saturation which accompanies such venture when 

weightless neural networks are employed [7]. For these reasons, a multi-classifier is 

proposed in this chapter in which problems such as biases and saturation is specifically 

considered. Fix-EPCN and rand-EPCN are novel weightless probabilistic classifiers. 

Figure 4.2: An EPCN configuration. 
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    From the fact that no error correlation exists between their outputs for disjoint input, and 

varying the system parameter of each EPCN has a profound effect on their decision, these 

make them diverse. Thus, by varying their configuration, EPCNs are very good candidates 

for MCS production. 

     Since this work is concerned with large classification domain, the pattern classes are 

partitioned into disjoint subset and a classifier is assigned to each subspace. This also 

allows for clear comparison with a standalone single classifier. The system parameters of a 

component EPCN are shown in a structure of figure 4.4, and an extract of fingerprint from 

FVC2004 database is shown in figure 4.3. The system parameters influence their 

behaviour of the base classifiers during training and recognition. A desired number of 

classifier required and number of class per classifier is usually specified to MCSPCN 

(equation (4.1)). For example, if F classifier is required and with Ni classes each, these 

values will be utilised for multi-classifier initialisation. For each F, the size of Ni may vary, 

overlap, or be disjoint as in this case. 

     In this work, the classifiers fusion method used is the Computational intelligent 

method. This is a case where another EPCN acts as the combiner.  
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Figure 4.4: A component (base) neural network’s configuration. 
 

Figure 4.3: A sample Fingerprints from database DBA_1 
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In figure 4.1, [Pi, Mi] are the component classifiers, i = 1, 2, 3…, f(.) is the gating function, 

while [Pc, Mc] is the combiner. 

 

The  Input Pre-processing  

The pre-processing steps are experimentally determined so as to minimise distortion of 

local features. Global features of the fingerprints are pre-processed as this will leave local 

features as they are. The proposed pre-processing steps are summarised below.  

• Geometric alignment: The smallest bounding box for each fingerprint is found. This may 

require rigid (uniform) rotation and/or translation of the fingerprint involved. The 

alignment serves to isolate only relevant region of the fingerprint for pre-processing.  

• Effects of uneven illumination are removed by morphological element (window).  

• Noise is removed by filtering.  

• The edges of ridges and valleys are emphasized by edge enhancing filters.  

• Pinches and punches are corrected for by interpolation.  

• downsampled fingerprints are binarized (see figure 4.5) using a one-value thresholding. 

The binarised fingerprints are of the form accepted by EPCN. The resulting fingerprint is 

downsampled. Though the downsampling is uniform, no adverse effects were observed on 

the local features.  
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4.4 Experimentation 

     Chapter 3 demonstrate the difficulty experienced by a single classifier when a high 

performance rate is required. For this reason, the same CEDAR database is employed in 

this experiment. The aim is to achieve higher performance rate on databases of 

unconstrained handwritten numerals, a performance such as may not be possible for a 

single classifier. Off-line handwritten characters and numerals recognition has been a topic 

of intensive research for many years. The performance of EPCN as combiner should equal 

or surpass that of feature vector based classifiers or syntactic/structural based classifiers. 

The MCSPCN is problem-domain independent and as such should perform well on 

handwritten characters. The source of totally unconstrained numerals used in this work is:- 

• The centre of Excellence for Document Analysis and Recognition (CEDAR), 

University at Buffalo, State University of New York, Department of Computer 

Science. Handwritten numbers from CEDAR were resized and binarised to 16-by-24 in 

dimension. 

The pattern used from CEDAR is handwritten numerals “0” to “9”. These are thus labelled 

class 0 to class 9. The number of patterns in each class varies from 200 to 1000 depending 

on class. These numerals are divided into training patterns and test patterns. Training 

(a)                                        (b) 
Figure 4.5: (a) Processed fingerprint, (b) binarised picture of fingerprint. 
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patterns and test patterns are treated independently. Test patterns do not form part of 

training patterns and vice versa. 

 

     Experiment 1 (five NN; five classes each)  

The aim of this experiment is to determine if the combiner can successfully interpret result 

and ignore individual erroneous result from the component classifiers. In this experiment, 

the input space was partitioned as shown in Table 4.1. In this experiment, the training set 

of the classes overlaps. Cases of disjointed training set of classes are discussed in 

experiment 3. Where, for example, classifier NTW1 is only trained on classes 0 through 4. 

The component base classifiers, NTW# (where # = 1, 2, 3,…), are assigned to be trained 

on the subset of classes depicted in each row of Table 4.1. This sub-setting strategy has 

been employed in order to artificially lower the performance of each of the base classifiers 

to observe if the PCN combiner, [Pc, Mc], is able to allow for the poor performances and 

give a good overall result – this is significant.  

  During recognition, each network is required to classify patterns belonging to all the ten 

classes. All patterns that result were collected in a directory. These were afterwards 

separated into training set and test set. The training set is used to train the combiner while 

the test set was employed during recognition. The performance metric used is the 

percentage (%) of patterns recognised. All results obtained were processed and important 

results recorded in Table 4.2. 
 

    Experiment 2 (five NN, ten classes each) 

 Obviously in practice, base classifiers would be trained on the entire pattern class set. The 

second experiment is therefore aimed at determining if the MCS performs better than any 

of the component classifiers alone.  

     Experiment 1 is thus repeated with each of the five component classifiers trained on all 

10 classes. In practice, this is done by setting Fi =5 and Ni = 10 in MCSPCN (equation 4.1 

of section 4.2). During recognition, each network is required to classify patterns belonging 

to all the ten classes. The results were later collected and processed by the gating function f 

(.). Again all patterns that result were collected in a directory. These are afterwards 

separated into training set and test set. Training set is used to train the combiner while the 

test set was employed during recognition. The performance metric used is the percentage 

(%) of patterns recognised. This follows because all numerals were written independently 
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by distinct writers, and no correlations were found between them. All results obtained were 

processed and important results recorded in Table 4.3. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Experiment (3) on Large-scale Multi-class database 

     The  aim  of  this  experiment  is  to  explore  how  EPCNs  in  a  Multi-expert  

configuration perform when exposed to large classification problems with few patterns 

per class. 

    For  the  experiment,  the  input  space  is  partitioned  into  disjoint  subset  and  a  

Table 4.2: Comparison of a combiner with base neural networks when F = 5; Ni = 
5. Clasf. = classifier; NTW# = Network, where # = a number. % = percentage. 

Table 4.I: Partitioning of the input space in experiment 1; 
NTW = Base classifier; # = number. 

Table 4.3: Comparison of a combiner with base neural networks when F = 5; Ni = 10. 
Clasf. = classifier; NTW# = Network, where # = a number. % = percentage. 
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classifier  is assigned  to  each  subspace.  This allows    for a clear  comparison  with  a  

standalone  single classifier. The performance of the NN-based classifiers, EPCN as 

combiner, should equal or surpass   that   of   feature   vector   based   classifier   or   

syntactic/structural   based   classifier. MCSPCN   is   problem-domain   independent   

MCS   and as   such should perform well  on fingerprint databases. 

     The  database  used  for  this  experiment  is  DBA1  from  the  Third  International  

Fingerprint Verification Competition 2004, FVC2004.   “NOTE: FVC2004 databases 

are markedly more difficult   than   FVC2002   and   FVC2000   ones,   due   to   the   

perturbations   deliberately introduced…” [43]. Most  experimentation  methods  rely  

heavily  on  minutiae  and  template matching  of  minutiae.  Holignum  [53]  employs  

the  graphical  method,  Jain [65], [66]  uses point  pattern  matching,  Wahab [132]  

employ  structural  matching  techniques  to  minutiae, and Tico [129] uses 

transformation operation. To improve on these methods, Maio and Maltoni [90] 

introduce the detection of false positive. [60], [106], [133] provides methods aimed at 

removing false minutiae, and [85] uses NN for minutiae filtering. The  advantage  of  

using  an  artificial  neural  network  (ANN)  instead  of  minutiae  analysis [85], [106],  is  

that  a  global  operation  on  the  images  is  less  sensitive  to  local  distortion  that 

normally occur during extraction of local features.  Fingerprints in this database, of the 

type shown in figure 4.5, are extracted into a directory (see figure 4.5(a)).  They are then 

filtered, centred, and then binarised  (see figure 4.5(b)). Each finger printed in various forms 

represents a class. The binarised fingerprints are divided into two sets, the training set 

and the test set. Each set consist of 100 classes. This motivates the initialisation of MCS 

consisting of 10 classifiers, and 10 classes per classifiers. In practice, F, the number of 

NN, is set to 10, and Ni, the number of class/NN is set to 10, these are passed to the 

program MCSPCN (in equation 4.1 of section 4.2). 

 

4.5 Results and Analysis on Large-scale Multi-class database 

Table 4.4 is obtained with an MCS of ten classifier and ten classes per classifier. 

During the experimentation, the input space is partitioned into disjoint subset and a 

classifier is assigned to each subspace, and little corrections were made for the following 

deformations: 

• Shifts 
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• Rotations 

• Intensity changes. 

 
 

 

 

 
• Occlusion 

• Pinch 

• Punch. 

The conditions under which these fingerprints are collected are as specified in [43]. Edge-

enhancing filter is applied, and this is followed by binarisation of the fingerprints. The 

reason for avoiding intensive pre-processing is to prevent artificially adding to local 

distortions already present, and leave all decision making processes to the NNs. This 

makes the processes close to real-life recognition system, and also decreases processing 

time. 
   

Performance Measures: - On databases such as fingerprints, the most commonly used 

performance measures are: True Acceptance rate (TAR), true rejection rate (TRR), 

Predictive value positive (Pos), and Predictive value negative (Neg). These are quantitative 

measures of the trustworthiness of results obtained. However every output of EPCN, in 

Table 4.4: This table shows the performance (in % of patterns recognised) of MCS 
with respect to large pattern recognition problems. In this case fingerprints. 
 



 
 89 

recognition mode, includes confidence measure. The confidence measure or the 

trustworthiness measure is a scaled probability measure, scaled by a value called the 

Division. For example, an output of EPCN is as shown in figure 4.6. 

 

 

 

 

 

 

 

     

 

 

 

 

 

The important field in this structure is “desout”. This states that the network is trained on 

ten classes. When a pattern is presented to it for recognition, it is (450/1000)% (the 

confidence measure) likely to belong to class ten, (118/1000)% likely to belong to class 

two, etc. The summation of the numbers (variables in the field “desout”) should equal the 

variable in the field division. Thus results from EPCNs, and Multi-classifiers dependent on 

EPCN, are inherently with trustworthiness measure. From table 1, the results show 

recognition performances ranging from 0% to 100%. In the MCS configuration utilised, no 

self-reconfiguration was employed, the component classifiers employed are feed-forward 

supervised EPCNs. It may also be noted that most classes has their recognition well above 

50%. 

   Because of zero cross-correlation and independent update of classes, percentage of 

pattern correctly classified may be regarded as optimum performance metric. 
 

4.6 Result and Analysis on experiments 1 and 2 

    Table 4.2 illustrates the result of experiment 1 and is obtained when F = 5; Ni = 5 is 

specified to MCSPCN (function 4.1 of section 4.2) with the databases specified in section 

4.3 is employed. Table 4.3 represents the result of experiment 2 and is obtained when F = 

Figure 4.6:  An Output of EPCN. 
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5; Ni = 10 is specified to MCSPCN (function 4.1 of section 4.2) with the databases 

specified in section 4.3 were employed. Averages were calculated with respect to training 

set. 

     The first column of both tables shows the component classifiers, the second column 

shows their respective performances, and the third column shows the overall performance 

of the MCSPCN. In table 4.2, NTW1 shows an average (50%) recognition rate while 

NTW2 shows a high percentage recognition rate (80%). NTW3 shows a poor recognition 

rate (36%) while NTW4 shows a high percentage recognition rate (74%). In table 4.3, 

NTW1 shows an average (74%) recognition rate while NTW2 shows a high percentage 

recognition rate (80%). NTW3 shows a fairly good recognition rate (63%) while NTW4 

shows a high percentage recognition rate (79%). From this trend, it could be inferred that 

when some base classifier performs fairly well on a database, others perform very well on 

the same database. This shows the inherent orthogonal properties of fix-PCN and rand-

PCN. 

     Comparing the second column of both tables, the classifiers are seen to perform better 

when trained on all ten classes than when trained on sub-section of the classes. This affects 

the combiner positively with an average improvement of about 2%. 

     In table 4.2, the performance of the combiner (at 93.37%) was well above that of the 

component classifiers and shows that the combiner is able to filter out poor component 

classifier results. In table 4.3, the performance of the combiner (at 95.14%) was also well 

above that of the component classifiers. From this we may deduce that the gating function 

f (.) considers only the merits of the base classifiers. The individual entries in the 

difference column (in %) show the performance of the combiner over their corresponding 

base classifiers.  
 

4.7 Summary on Large-scale Multi-class database 

    In this work, we have focused on utilisation of EPCN in an MCS framework on large 

class problem domain - an instance of this is fingerprint identification. The multi-classifier 

shows performances ranging from 0% to 100%. This is to be expected because little 

corrections were made for deformations, same pre-processing steps are applied equally to 

all fingerprints, and also because the level of noise and deformations varied and are 

distinct from one fingerprint to the other.  
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    Given the fact that 100 classes are presented for classification, the possibility of high 

recognition rate (up to 100%) shows that this configuration provides a solution to 

overloading and saturation that result when very large class problem is given to a single 

neural network. 

     To further this research, utilisation of adaptive pre-processing techniques to make pre-

processing each image dependent on level of noise and deformation in them, is in order. 

Recall that no NN selection strategy were employed to remove, modify system parameters, 

or replace the less performing NNs, these are also considered to be subjects of next 

research possibility. It is not possible, due to various reasons that include resource and 

time, to conduct all suggested future research possibilities in this single thesis. For this 

reason, a key research point – that of implementation of a novel combination strategy is 

conceived. The next chapter explores the possibility of a new combination strategy for a 

multi-classifier system. 

 

4.8 Summary 

In this chapter, we have focused on a multi-classifier combining strategy using a novel 

RAM-based artificial neural network EPCN. The combiner of the multi-classifier has been 

shown capable of interpreting results from component classifier and ignoring individual 

erroneous results. Significantly, the multi-classifier is shown to have achieved a high 

performance rate (93.37% in Table 4.2, and 95.14% in Table 4.3) compared to the 

component classifiers. It is to be noted also that this performance compares favourably 

well with other multi-classifiers derived from weighted base classifier or neural network, 

using other techniques, e.g. [77]. Experimental results suggest that MCS outperformed 

single EPCN [85] in classification of handwritten characters. 

   The problems associated with the multi-classifier designed in this chapter are: 

• The input may be biased. 

• The network may be easily saturated. 

• Its support for large-scaled multi-class databases poor. 

Some of these problems are addressed in chapter 5, most especially the problems of 

classifying large-class databases. 

    Other areas of further investigation may include other configuration methods, such as 

Boosting, Bagging, or using performance criteria to initialise and choose base classifiers. 
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As this is likely to have the effect of eliminating such network as NTW3 (at 36 % in Table 

4.2) from the WNS since its performance is sometimes below 50%. 

    Following a very good performance in this chapter, the classification of very large-class 

databases is considered in the next chapter. 
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5. AN ADVANCED COMBINATION STRATEGY FOR 

MULTI-CLASSIFIERS 

     An advanced combination strategy is hereby introduced which addresses the scale problems 

exhibited by traditional artificial neural networks. The encoding scheme introduced here produces 

a different and significant approach to solving the problems of memory demand, execution time, 

and performances. 

    A sub-setting strategy of the required input pattern classes is introduced in this chapter which 

provide a more robust solution to the problems of overloading and saturation experienced by 

traditional neural networks. 

    Current Multi-classifier Systems faces the problem of bias when classes are arranged and 

maintained in a specific fixed pattern. A novel statistical arrangement method is hereby presented 
which aims to solve the bias problem. This statistical arrangement method also enhances 

independence of component classifiers.   

     The system is demonstrated on the exemplar of fingerprint identification and utilises a 

Weightless Neural System called the Enhanced Probabilistic Convergent Neural Network (EPCN) 

in a Multi-Classifier System. 

5.1 Introduction 

     Most combination methods for multi-classifiers are meant for weighted neural 

networks. Attempts to utilise EPCN as a multi-classifiers combiner has till now failed. 

However, there are successful attempts made in chapters 4. But the combination method 

implemented in chapters 4 could not combine the output of very large classes. There is 

clearly lack of RAM-based solution to the problems of combination of RAM-based 

component classifier. So that, the objectives of this chapter is to implement a combination 

strategy. Implementation of the component classifier combination method is thus 

motivated by the need to encode the output of the base classifier, so that an EPCN 

combiner is able to combine large-classes.  

    Multi-classifier systems have traditionally struggled in performance terms when 

confronted with problem domains possessing a large number of independent classes and 

containing few patterns per class. Such Multi-classifier systems (MCS), consist of 

component classifiers, called base classifier, arranged in a specific fashion so as to carry 
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out a specific task which would typically yield a poorer performance should such a task be 

performed by a single classifier. 

         Currently, large number of distinct pattern classes is a classification bottle-neck for 

typical MCS because they suffer from large storage requirement, and long execution time. 

This is mainly due to the fact that floating point mathematical calculations take longer to 

complete as compared to simple Boolean logic. For this reason, only weightless (also 

called Random Access Memory (RAM) based) neural networks are used as component 

classifier in this chapter. The decision to use only RAM-based neural networks as 

components to solve the aforementioned problems is faced with yet another problem, 

which is that of combining the output of base neural networks.  

     This chapter presents a solution to the above problems via a novel combination method. 

The combination method consists of a gating function which implements an encoded 

pattern for the combiner.  The combiner is a neural network entitled the Enhanced 

Probabilistic Convergent Network (EPCN) [81], [85]. The difference between an ordinary 

EPCN and the EPCN used for the combination, hereby termed EPCN-Combiner, is its 

input and configuration as shown in figure 5.1. An encoding system is required in the 

gating function because the combiner neural networks expect a binary threshold pattern as 

input, and the encoded pattern is binary. The encoding system is hereby termed engine 

encoding. The term gating function and combination method will be used interchangeably. 

There are two types of EPCN utilised in this work. Their difference lies chiefly in their 

method of connectivity  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1: A schematic diagram of combiner-EPCN 
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formation [85], details of which are found in chapter 3. The base classifiers derived from 

the two types of EPCN has been found, by experimentation, to be error independent. Their 

advantages, over weighted Neural Networks are that their employment in a parallel scheme 

does not incur additional high mathematical computations.  

    Overloading and saturation are often associated with decrease in distinguishing features 

between classes, and limited means of enumerating these features. The problems of 

overloading and saturation experienced by traditional networks [57] are solved for EPCN 

based MCS by assigning the base classifiers on differing subsets of the required input 

pattern classes. 

     When a class is trained to more of the base classifiers than other classes, this class will 

be more recognise than other classes. Equal chances are not been given to all classes for 

classification or miss-classification; this is called bias.  To solve this problem, a novel 

randomisation technique is introduced in section 5.2 which produces an arrangement of 

input patterns suitable for the removal of Classifier bias. When this randomisation 

technique is employed, a base classifier sees a sub-set of the classes with approximately 

equal probability. It is expected that when input pattern classes are randomised and evenly 

distributed, bias within the network will be removed. 

 

5.2 Multi-classifier Systems 

5.2.1 Selection 

    The decision to include a Neural Networks (NN) in a MCS is commonly referred to as 

classifier selection. Two selection strategies are currently widespread. They are: 

• The direct method. 

• The “pool of network” method. 

The direct method consists of selection of NN which are error-independent of one another. 

This selection is often a static selection method. The “pool of network” method is a case 

whereby an initial large set of neural networks are available and various methods such as 

error diversity measure is employed to select an error independent set from this large set of 

neural networks [117]. 

    The direct strategy is employed in this chapter as the “pool of network” method requires 

a very high computing resources and time.  
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    The selection of base classifiers may broadly be divided into static selection and 

dynamic selection. Static selection methods are those methods used to select base 

classifiers before learning/recognition and can not change the composition of the ensemble 

in an experiment. Dynamic selection method on the other hand can modify the 

composition of the ensemble in an experiment. An appropriate feedback mechanism of 

error correlation, for example, may change a static method to a dynamic method. 

     Common selection methods used to select base classifiers can be grouped as static or 

dynamic selection methods depending on the presence or absence of a feedback system.  

Given 
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where f = the experimental outcome. 

fX = experimental outcome of X; 

fY = experimental outcome of Y; 

x = an element of X; 

y = an element of Y. 

The statistical selection method [34] is employed in this work as it possess the potential to 

alleviate the problem of bias. An outline of the method is as follows. 
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  In this statistical selection method, n is the total number of class used and r is the amount 

of class picked without replacement. Since the aim here is to minimise bias, randomisation 

is done according to equation (5.2). Two independent randomisations are performed and 

the results multiplied according to equation (5.3).  Setting n =50 and r = 1 in equation (5.2); 

 

 

 

 

 

Similarly, 

 

 

and we have 

 

 

In f(x,y) (Table 5.1) we have 100 classes in which each class is repeated twice. In Table 

5.1, each row represents pattern classes for one base classifier. The component classifiers 

are named NTW# (where # = 1, 2, 3, …). The arrangement and the reoccurrence of a class 

is random and independent. 

 
 

 

 

 

 

 

  

 

 

 

 

 

 

 The component classifier, named NTW# (where # = 1,2,3,…), are trained following the 

scheme depicted in Table 5.1. An entry in a row is a number that represent a class. As an 

Table 5.1: Randomised input classes. NTW# = Network, where # = 
1,2,3,…n. 
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illustration, NTW2 refers to the second neural network. All numbers in the row 

corresponding to NTW2 refers to the classes on which NTW2 is trained, first class being 

45, second class being 26, third class being 13, etc. The numbers, e.g. 45, 26, are instances 

of fingerprints. They are files containing real-life finger-prints [91] printed in various 

forms. This method of arrangement is known as the statistical arrangement method. The 

statistical arrangement is employed in the MCS to alleviate bias and maintain 

independence of base classifiers. An optimal arrangement of the conmponent classifiers 

has been found, experimentally, to be 10 classifiers and 10 classes per classifier. 

    For component base classifiers to make a significant contribution to an MCS, they must 

be as diverse and independent as possible. Dependence of performance on diversity and 

correlation measures decreases rapidly as the number of Neural Networks increases. Lam 

[79] states that orthogonality, complementarities and independence of a base classifier 

determine its inclusion in an MCS. Some designers like Mladenic [36], and Zouari [50] 

employ certain diversity measures in Neural Networks classifier selection. A criterion for 

Neural Networks selection is lack of error correlation among selected Neural Networks 

[109]. Dynamic methods such as Bagging, is employed by Gunter [119] while Boosting is 

employed by Freund [42]. The term Bagging (Bootstrapping and AGGregatING)  refers to 

a selection mechanism for ensemble creation implemented by randomly drawing N 

training sample from a training set S of size n with replacement, and assigning a classifier 

to each group of samples drawn. The probability of being drawn is equally distributed over 

the training sample. Boosting is a different selection method from Bagging in that the 

probability of selection increases in favour of “difficult” pattern and decreases for “easy” 

patterns. The most widely used variant of Boosting is AdaBoost. AdaBoost.M1 [42] is a 

variation of AdaBoost for multi-class problems. In AdaBoost.M1 a classifier is assigned to 

each subset of training pattern drawn. 

    The next step that follows the selection of base classifiers according to the conditions 

specified here the arrangement of these classifiers. 

5.2.2 Topology   

    Topology refers to the arrangement of base classifiers in an ensemble. Common 

arrangement methods are serial, parallel, and hierarchical arrangements. The parallel 

method is the most common arrangement of base Neural Networks in MCS. The 

introduction of dynamic self reconfiguration may enable the MCS to switch between these 
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topologies, depending on new environment, new tasks or both. During training and 

recognition, each base classifier utilises its normal training and recognition algorithm.   

   The decision to employ a parallel combination method in this work follows from the fact 

that the output of all component neural networks will be combined. All output of the base 

NN will be combined because the base neural networks are error uncorrelated and diverse. 

Parallel method of combination is known to incur high computation costs [109]. This 

problem is solved here due to the decision to employ RAM-based (weightless) neural 

networks. RAM-based neural network performs mainly logical mathematical computation 

and thus does not involve high computation costs such as would a floating-point 

computations for example.  

    The parallel method is employed in [109], while the serial method is employed by 

Austin [7]. Dima [26] proposes a hierarchical mixture of experts and the employment of 

dynamic reconfiguration to analyse robot dynamics.  

 

5.2.3 Combination methods 

    The combination of component classifier output is called classifier fusion. Multi-

classifier (MCS) design is usually problem dependent, which may imply data-dependency. 

The idea of flowchart figure 5.2 is to represent in a diagram a non-exhaustive combination 

strategy of MCS. When an MCS developer chooses an explicit data-dependent 

combination method of MCS, large prior experimentation is usually required to determine 

the composition of the ensemble. Each of these methods of MCS combination is very 

extensive and beyond the scope of this chapter with one exception. The one exception is 

the data-independent combination method which consists mainly of trained combiner. 

MCS with trained combiner usually require no prior experimentations because the 

component classifiers can adapt themselves to match the given problem. The MCS 

designed in this chapter with EPCN as a trained combiner is an example. 
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Figure 5.2: Multi-classifier combination scheme with respect to database. 
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Every output of each base classifier is a one dimensional vector of positive whole 

numbers. The one-dimensional vector output of all base classifiers are arranged into a 

multi-dimensional matrix, as shown in equation (5.4), at any time during combination. 
 

 

 

 

 

 

 

 

 

(5.4) 

 

 

 

 

 

 

 

 

Each entry in equation (5.4), n(x)i,j, is derived from the output of EPCN of the type shown 

in figure 5.4. The resulting multi-dimensional matrix requires an encoding scheme which 

speaks the language of the trained neural network combiner. We require an encoding 

scheme such that equation (5.4) will convey knowledge of input space to the trained 

combiner when encoded appropriately. This is one of the main themes of this chapter.  

    Areas of multi-classifier combination has attracted intense research lately, most [110], 

[114], [76] of which maintains that a benchmark combiner is non-existent. The majority 

voting is suitable in situations where common consensus is required. But it ignores the fact 

that some neural network, though in minority, do produce the correct result [114], 

especially in area of their specialisation. Secondly, the existence of diversity is ignored by 

majority voting as one of the motivation for ensemble creation, but favours common 

consensus. Hansen and Salamon [48] showed that only when the nets make independent 
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errors does majority voting provide increased accuracy. Tumer and Ghosh [130] maintain 

that error-independence leads to better accuracy than a specific combination method. 

     Gunter [119] called objective functions the functions used in combination. Qualitative 

combination is used by Blue [11]. Duin [35] refers to intelligent combiners as trained 

combiner, and maintains that trained combiners outperformed fixed combiners. Roli and 

Giacinto [112] calls component classifiers balanced classifiers provided they are 

combined by any of the fixed combination method, and have zero or negative correlation. 

De Carvallo et al. [31] combined two Boolean neural networks in series. Prabhakar [105] 

grouped Multi-classifiers according to their output.  
 

5.2.4 Experimentation 

   There are MCS designed for specific purposes, and they make explicit use of features of 

their database, for which they are required to classify, for the design.  An MCS, derived 

from weighted Neural Networks, is specifically designed for fingerprint classification in 

Cappelli [107]. There Cappelli et al. identify two types of fingerprint classification: the 

exclusive classification and continuous classification. Continuous classification is specific 

to fingerprint classification, and refers to a multi-dimensional numerical feature vector 

which is obtained from a fingerprint. The vector is used in nearest neighbour (or similar 

distance measure) search to map close finger prints into cluster. This method inhibits 

“ambiguous” classification of a fingerprint from being exclusively classified as belonging 

to a cluster. Exclusive classification (also specific to finger prints) is a partitioning of 

fingerprint database into a given number of classes according to their macro-features. A 

class can only belong to one partition. 

    Most  other experimentation  methods  on fingerprints rely  heavily  on  minutiae  and  

template matching  of  minutiae.  Hollignum [53]  employs  the  graphical  method,  Jain 

[66]  uses point  pattern  matching,  Wahab [132]  employs  structural  matching  techniques  

to  minutiae, and Tico [129] uses transformation operation. To improve on these 

methods, Maio and Maltoni [90] introduce the detection of false positive. Hung [60], 

Prabhakar [106], Xiao [133] provides methods aimed at removing false minutiae, and Maio 

[90], [91], uses Neural Networks for minutiae filtering. 

    In this chapter, the MCS, derived from weightless Neural Networks, is adaptive and 

assumes no knowledge of the databases employed a priori. It is expected that the base 

Neural Networks are capable of detecting features necessary for their classification. Thus 
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this configuration should work for any large multi-class problem domain. A typical large 

multi-class problem domain is a biometric database such as fingerprint database. The 

proposed MCS configuration will be applied to biometric databases, specifically 

fingerprint databases that comprise of large classes with relatively few patterns per class, 

in an experimental set-up.  

                                           

5.2.5 Performance measure 

     When inputs to the component classifier are randomly permuted and approximately 

equally distributed, it makes the performance independent of a specific arrangement of 

input to the component classifier.  

    The performance of a MCS is often compared to that of a single component Neural 

Networks that forms part of the MCS. Gabrys and Ruta [12] maintain that diversity 

measure has limited correlation with MCS performance. The paper states that MCS 

performance depends on careful selection of component classifiers. Generalisation 

performance of MCS should equal or exceed that of base classifiers. The most commonly 

used performance metrics are sensitivity and specificity.  Sensitivity, Sn, is defined as 

 

                                                                                                          (5.5) 

where Tp = true positive; 

and Fn = false negative. 

 

It measures the ratio of positive patterns being correctly classified as positive to the whole 

pattern classes. Specificity, Sp, is defined as 

 

                                                                                                                                    (5.6) 

where Tn = true negative; 

and Fp = false positive. 

 

It is a measure of the ratio of negative pattern being correctly recognised as being negative.   

Min et al. [77] uses a rejection criterion and reliability to measure performance. The 

rejection criterion and reliability are numerical quantities derived from fuzzy integral. 

     On databases such as fingerprints, the most commonly used performance measures are: 

True Acceptance Rate (TAR), True Rejection Rate (TRR), Predictive value positive (Pos), 
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and Predictive value negative (Neg). While performance measures such as False 

Acceptance Rate (FAR), False Rejection Rate (FRR), TERR, [106], [107], [1], and Equal 

Error Rate (EER), [96], [83], are commonly associated with biometric authentication of 

fingerprints. These are quantitative measures of the trustworthiness of results obtained. 

However every output of EPCN (see chapter 3), in recognition mode, includes a 

confidence measure. The confidence measure or the trustworthiness measure is a scaled 

probability measure, scaled by a value called the division. 

 

5.3 Implementation of the Multi-classifier 

    As stated above, a Multi-classifier (MCS) is a system that fuses several base classifiers 

into one. In this context, a base classifier is a neural network that is known to be very good 

at a certain classification task but may be poor at other tasks. The MCS implemented here 

is data-independent in the sense explained in section 5.3. The direct method of base 

classifier selection is used and these base classifiers will be arranged in parallel since every 

output of all base classifiers will be combined. These decisions suggest the MCS 

architecture shown in Figure 5.3.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3. The MCS unit is divided into multiple EPCN group and combiner EPCN 
group. The multiple EPCN group consist of EPCNs in parallel. Pi = pre-group; Mi = 
main-group;‘i = 1,2,3,… ‘f(.) = gating function. Pc = combiner’s pre-group. Mc = 
combiner’s main-group. 
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The specific component classifiers used, Fix-EPCN and rand-EPCN, are weightless 

probabilistic classifiers by reason of the nature of their output. Previous studies have 

shown the performance of both EPCNs to be well above 50% [84].  In the proposed 

system, each component classifier is trained upon, and thus only able to recognise, a subset 

of the available pattern classes. It is thus a challenge for the trained combiner to 

successfully combine the matrix of classifier outputs, i.e. equation (5.4), many of which 

will necessarily have produced incorrect classifications. The input pattern classes are 

randomly permuted, and evenly distributed according to equation (5.1) – (5.3) of section 

5.2. A component classifier is assigned to each sub-set of input pattern classes. This 

ensures that there is no bias within any component EPCN. The selection of base classifier 

does not depend on input pattern classes. Rather a parallel method of arrangement of 

component classifier is made a priori, with randomization injected into the system 

parameter [77]. This ensures independence and de-correlation of the base classifiers. The 

address formation method of both EPCNs is their distinguishing features [85]. Their 

learning and recognition algorithm are equivalent as described in sub-section 3.2.1 and 

3.2.2 respectively. Coupled with the fact that the system parameters of base classifiers are 

distinct and uncorrelated, all base classifiers are expected to produce distinct results during 

recognition.  

     Figure 5.3 is a schematic representation of the proposed MCS. The [Pi, Mi] represent 

the component classifiers, i = 1, 2, 3…, and f(.) represents the gating function, while [Pc, 

Mc] is the combiner. The [Pi, Mi] component classifiers are fix-EPCN and rand-EPCN with 

varied system parameters, so is [Pc, Mc] the combiner. A gating function is a function used 

for weighting, encoding, and synchronizing the output of base classifiers before 

combination. The novel component of this MCS is, f(.), the gating function. The gating 

function in turn consists of various components. The relevant components of the gating 

function are the combiner engine. The combiner engine consists of the interpreter and 

converter, and is the subjects of the following sub-sections. The functional operation of the 

interpreter and the converter constitute an encoding scheme for the EPCN-combiner. The 

output of all component classifiers is combined using an intelligent combiner [Pc, Mc], i.e. 

a neural network which in this instance is an EPCN with alternative configuration. Thus 

the combination method consists of an interpreter, a converter and an EPCN combiner.  
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5.3.1 Combiner engine – the coding scheme 

The term Combiner engine refers to the EPCN combiner [Pc, Mc], and the gating function 

f(.) (see Figure 5.3). The gating function is made up of an interpreter and a converter 

which together produce the encoding scheme. To illustrate the function of the combiner 

engine, if the same character, e.g. “b”, is trained to different Neural Networks as belonging 

to different classes. This means that the first class for classifier 1 is different from the first 

class for classifier 2. During the recognition phase, a correct classification by these Neural 

Networks requires that “b” be classified to their corresponding (respective classes to which 

it is trained) classes. But in classifier fusion stage, and without the interpreter, this same 

character will be converted to false and true pattern classes by the converter. For these 

reasons an interpreter is essential. 

   The intermediate outputs are weighted by the gating function only in special 

circumstances of input space overlap. Weighted results are treated as patterns to be 

processed and not results. In the very special circumstance when intermediate results are 

weighted, they are no longer results but class patterns meant to be binarised and served as 

input to the combiner-EPCN. Traditionally, an MCS is usually named after the constituent 

neural networks and/or with respect to the arrangement of the network. The thesis follows 

this tradition of naming the MCS with respect to the constituting neural networks. Because 

all component classifiers are weightless neural networks, it naturally follows that the MCS 

which is hierarchical composition of the weightless NNs, is a weightless MCS. 

Employment of an external gating function (any type) for input/out pattern pre-processing 

does not affect the weightless MCS both in composition and in learning/generalization 

behaviour, or in any other way. 

   When a Genetic Algorithm (GA) is applied to MLP to modify its parameter (for 

example), it does not change the name of MLP to something else, and it may also not 

change the main behaviours of MLP. But it only enhances the performances of MLP in the 

special circumstances. It is the same analogy here. The gating function is even more 

restricted in this architecture because it applies itself only to the (fan-in) input pattern of 

combiner EPCN. The gating function is usually not an integral part of the MCS and it can 

also be employed with other types of MCS. The weightless MCS implemented here can 

also employ an alternative (any other) gating function. The author recommends that an 

MCS utilising the combiner engine as a gating function may not change its name simply 

because the combiner engine is being used since another gating function may yield 
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equivalent result. The thesis will adopt to use standard nomenclature in which when all 

component NNs are weightless NN, the MCS that is formed is a weightless MCS. In other 

situations such as Lorrentz [81] it may be called a hybrid MCS. 

5.3.2 Interpreter 

The function of the interpreter, as the name implies, is to accept equation (5.4) at its input, 

and make sense of it to the converter. The configuration information, the output, and 

confusion matrix of the base classifiers are also accessible to the interpreter. Based on 

these, a decision per pattern is made by the interpreter as follows. A weighting strategy is 

employed on the output of the base classifiers when inputs overlap. This weighting 

strategy affects only those outputs corresponding to the region of input overlaps. A zero 

weight turns off an output of a base neural networks with respect to a given pattern class, 

while a weight greater than zero turns it on. The interpreter is incapable of eliminating a 

base classifier; rather it inhibits undesirable outputs with respect to certain classes. This 

inhibition depends on input space overlap, configuration, and performance on that class. 

As an illustration, if character "b" is trained to one neural networks as class 1, and trained 

to another neural networks as class 2. During the recognition phase of the component 

classifiers, correct classification by the base classifiers requires the first neural networks to 

classify "b" as class 1 and the second neural networks should classify it as class 2. The 

interpreter informs the converter that the outputs from the two base classifiers are correct 

classifications of "b", and will be weighted by their respective probabilities. 

5.3.3 Converter 

 The converter encodes the Interpreter's integer output into binary. It makes use of an 

integer value, called division, to adjust its output. For example, consider the output of a 

component classifier to be [10, 10, 65, 25, 10]. The vector [10, 10, 65, 25, 10] represents a 

row vector of equation (5.4), and analogous to variable field “decision output” of Table 

5.2. The vector is converted by combiner engine to Figure 5.4(b).  
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A similar encoding scheme in [73] yields Figure 5.4(a). The general methodology is as 

follows. Any decimal number, N, is expressible in the form: 

 

                                                                                        (5.7) 

 

Equation (5.7) is expandable in a polynomial P(d)in equation (5.8); 

 

                                                           (5.8) 

The following algorithm (5.9) converts equation (5.8) to its binary equivalent. 

 

 

 

                                                                                           (5.9) 

 

 

 

 

 

The least probable classes are indicated with low values, 10, in the vector 

[10,10,65,25,10]. The low values are omitted by the combiner engine. In the vector 

[10,10,65,25,10], 65 occurs in the 3rd position. It is binarised according to equation (7) to 

(9), and occurs in the 3rd row in Figure 5.4(a), while the same number is binarised and 

occurs in the 1st row in Figure 5.4(b). The position of 65 in the vector [10, 10, 65, 25, 10] 

is 3. This position number 3 is binarised to 00000000011 and occurs as the 3rd row in 

Figure 5.4(b) by the combiner engine. The pattern concerned here is most probably (the 

highest probability 0.65) classes three and more probably class four (with probability 

Figure 5.4: Encoded information by the gating function f(.), 
(a) Unit encoding from the combiner unit; (b) Engine 
encoding from the combiner  engine . 
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0.25). For this reason, 25 is binarised, and it occurs in row 4 in Figure 5.4(a), while in 

Figure 5.4(b) it occurs in the second position. Both Figures (i.e. 5.4(a) and 5.4(b)) indicate 

that the most probable class to be the 3rd class and following this is the 4th class. Secondly, 

a reversed bit of the most probable class, 3, is also passed on, only by combiner engine, to 

the converter.  Thus, it is included in Figure 5.4(b) in the 4th row. The reversed bit serves 

to make the information detectable by the EPCN-combiner. Figure 5.4 is the form of 

pattern accepted by EPCN-combiner. The functional activity of the interpreter and the 

converter constitute what might be referred to as the coding scheme to the EPCN-

combiner. The engine encoding is deployed in the experiment of section 6.4. 

 

5.3.4 EPCN-combiner configuration 

 An example configuration of EPCN combiner is shown in Table 5.2. In the field, ntppc 

(i.e. number of training pattern per class), each number represents the number of 

training patterns per class. The field, pg-layer (pg stands for pre-group), is the number 

of layers in the pre-group. 

 

Other important fields in this structure are division and n-tuple. Division is used by the 

converter to adjust its output, and used during learning and recognition for other scaling 

purposes. When summing out the output, the division is also used to scale output probabilities. 

The field, n-tuple, specifies the tuple-size. The combiner's main-group's number of layer is 

specified in field mg-layer (where mg stands for main-group).  

  

5.3.5  Comparison to other similar coding scheme for multi-class 

problems 

  The combination strategy addressed here is comparable to Bayes combination strategy, 

and to majority voting. The combination method introduced is much similar to Bayes 

combination strategy than to majority-voting method. The combination strategy in [86] 

Table 5.2: An output of EPCN 
 



 
 110 

employs a combiner unit which also bear many similarities to the combination strategy 

introduced in this section. For this reason, comparisons will be drawn between combiner 

engine, combiner unit, and majority voting as and when possible. 

 The combiner engine has the following advantages over combiner unit in [82]:- 

The combiner engine encoding produce a reduced pattern size, as compared to combiner 

unit encoding, and thus has the following implications:- 

• Leads to a reduced storage requirement. 

 A reduced size of layers in the pre- and main-group (recall that the size of a layer 

equals the size of input pattern). This leads to a reduced amount of data being 

processed at a point in time. 

 An increase in speed of execution since less data will be processed at any given time. 

    A consequence of using the combiner engine instead of combiner unit is that a single 

EPCN will now be able to combine large class sets and this combination possibility no 

longer depends, to a large extent, on a specific configuration. 

    The structural difference between the combiner unit and the combiner engine is the 

utilisation of an interpreter in place of decision maker. This leads further to the following 

advantages of the combiner engine over the combiner unit:- 

• The interpreter considers more information with respect to individual base classifier. 

• More efficient synchronisation between base classifiers. 

We claim that the performance of the combiner engine will supersede other similar 

combiner methods both in speed and in percentage of pattern recognized when employed 

in the same experimentation (section 5.4). 

5.4 Experimentation on the MCS 

      In this section, the MCS designed according to sections 5.3 from weightless Neural 

Networks (EPCN), is tested. It is adaptive and assumes no knowledge of the databases 

employed a priori. It is expected that the base neural networks are capable of detecting 

features necessary for their classification. Thus this configuration should work for any 

large multi-class problem domain. A typical large multi-class problem domain is a 

biometric database such as fingerprint database. The MCS configuration will be applied to 

fingerprint databases, which comprise of large classes with relatively few patterns per 

class, in an experimental set-up.                                               
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   Specifically, the aims of this experiment are to investigate the effect of the combiner  

engine, and the effect of approximately equally distribution of input data (sub-section 

5.3.1) on recognition performance of EPCN based MCS when a  large class database with 

few pattern per class are utilized. The  database  used  for  this  experiment  is  DBA1  from  

the  Third  International  Fingerprint Verification Competition  2004 (FVC’2004) [43]. It is 

available at http://biometrics.cse.msu.edu/fvc04db/index.html. These fingerprints are real 

(as opposed to synthetic) fingerprints.  

 

5.4.1 Pre-processing 

Intensive pre-processing is avoided to prevent local distortions which such procedures will 

add. Instead, global pre-processing steps (see section 4.3) are employed in this work. It is a 

test for this network to determine its own capability to recognise and classify the 

fingerprints amid the noises, distortions, and deformations already present in the source. 

Thus no corrections were made for the following deformations present in the source 

fingerprints: 

(1) Shifts: Change of position or direction 

(2) Rotations: Angular shift of an object with respect to a fixed point. 

(3) Intensity changes: Irregular or changes in illumination. 

(4) Occlusion: Covering of part or preventing of part of fingerprint from being 

processed. 

(5) Pinch: This is squeezing or nipping of parts of a fingerprint. 

(6) Punch: May be a hole or missing parts of a finger print.  

The conditions under which these fingerprints are collected are as specified in [43], [58]. 

However, the following pre-processing operations are performed. This method of pre-

processing avoids the aforementioned pre-processing problems. 

• The fingerprints are filtered to remove noises. The same level of noise-filtering was 

applied equally to all patterns, and the level of noise varies from pattern to pattern.  

• An edge-enhancing filter is then applied. 

• This is followed by the binarisation of the fingerprints. 

 

 

 

http://biometrics.cse.msu.edu/fvc04db/index.html
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5.4.2 Experiment on the MCS 

 The  advantage  of  using  an  artificial  neural  network  (ANN)  instead  of  minutiae  

analysis [87], [106],  is  that  a  global  operation  on  the  images  is  less  sensitive  to  local  

distortion  that normally occur during extraction of local features.  Fingerprints in this 

database are extracted into a directory, an example of which is shown in Figure 5.5(a).  The 

fingerprints are then filtered, centred, edge-enhanced, and  then  binarised; 

 
 
 
 
 

 

 

 

 

        

 
 

(See Figure 5.5(b)). Each finger printed in various forms represents a class. The 

following points represent the main experimental processes:- 

 Prior to the commencement of learning, input classes are randomly permuted as 

stated in equations (1) to (3), and evenly distributed as shown in Table 1, to remove 

any input bias from the network. Training set is sampled randomly from the whole 

fingerprint classes without replacement. 

 Fifty (50) classes are employed in this experiment. Ten base classifiers are initialised 

in parallel, and each network is trained on ten classes arranged as shown in Table 1. 

In Table 1, each row represents pattern classes for one base classifier. The 

component classifiers are named NTW# (where # = 1, 2, 3 …). An entry in a row is a 

number that represent a class. This arrangement of input patterns ensures that each 

class is trained on (at least) two networks. 

 During the recognition phase each network is required to classify all test patterns 

belonging to all classes that participated in the learning phase. 

 The outputs of these base networks are combined as in equation (4), and then 

encoded to the trained combiner by the combiner engine. 

Figure 5.5: (a) Fingerprint, (b) filtered and binarised picture of (a) 

(a) 
 

(b) 
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 For comparison, the outputs of these base networks are also combined using the 

combiner engine in majority voting mode. 

 This experiment could not be performed on combiner unit due to memory issues 

(when the same memory size is used). 

 

 Performance measure:- Every output of EPCN, in recognition mode, includes a 

confidence measure. The confidence measure, or the trustworthiness measure, is a scaled 

probability measure, scaled by a value called the division. We ensure that inputs to the 

component classifier are randomly permuted and evenly distributed as explained in sub-

section 5.2.1. This ensures that performance is independent of a specific arrangement of 

input to the component classifier.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

An example of an output of EPCN is as shown in Table 5.2 of section 5.3.4. The important 

field in this structure is the decision output of the neural networks. This states that the 

network is trained on ten classes. When a pattern is presented to it for recognition, it is 

Figure 5.6: Normal combination mode: The confusion matrix from EPCN combiner. 
Columns 1 to 50 represent classes. The last column is unclassifiable patterns. 
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(1188/5000) % (the confidence measure) likely to belong to class one, (154/5000)% likely 

to belong to class two, etc. The summation of the numbers in the field decision output 

should equal the variable in the field division, in this case 5000.When a pattern is 

presented to it for recognition, it is (1188/5000) % (the confidence measure) likely to 

belong to class one, (154/5000) % likely to belong to class two, etc. The summation of the 

numbers in the field decision output should equal the variable in the field division, in this 

case 5000. Thus results from EPCNs, and Multi-experts dependent on EPCN, are 

inherently with trustworthiness measure. 

5.5 Results 

  When the experiments are performed, each component classifier produces a structure of 

type shown in Table 5.2 for every given pattern meant for recognition.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 

Figure 5.7: Majority Voting mode: The confusion matrix from EPCN combiner. 
Columns 1 to 50 represent classes. The last column is unclassifiable patterns. 
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Based on these and other configuration information the combiner engine is able to produce 

the confusion matrices of figure 5.6 and 5.7. Figure 5.6 is produced by the combiner unit 

in normal operation mode, while figure 5.7 is produced by the combiner engine in majority 

voting mode. Figures 5.6 and 5.7 are known as confusion matrices. In figure 5.6 and 5.7, 

each row represents recognition instances, while each column represents the classes to 

which the patterns are classified. The last column represents ambiguous cases. The values 

along the diagonals represent the number of patterns that are correctly classified, while the 

off-diagonal elements represent the number of patterns that are wrongly classified. 

5.6 Analysis 

The percentage recognition is calculated from the combiner’s confusion matrix, figures 5.6 

and 5.7, and recorded in table 5.3.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5.3 shows the performance on most pattern classes to be 100%. A row consists of 

two numbers; the 1st number is the class while the 2nd number represents the % of pattern 

recognised. The 1st average quoted is the average of the corresponding column, while the 

second average represents the average of the two. Table 3(a) represents the result of the 

combination strategy in majority-voting mode while 3(b) represents the result of the 

combination strategy in normal mode. From Table 5.3, when EPCN-combiner is switched 

5.3(a) 
 

Table 5.3: Summary of results obtained when the experiments in sub-section 5.4.2 were 
performed. Column 1 and 3 represents class numbers, while column 2 and 4 represents the 
percentage (%) of patterns recognised in a test set.  

5.3(b) 
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to majority voting mode, the average performance is 82.276%, while EPCN-combiner in 

normal combination mode gives an average of 92.119%, a difference of about 10%. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

That these aims: 

 A reduced pattern size for the EPCN-combiner:- This leads to a reduced storage 

requirement; 

 A reduced size of layers in the pre- and main-group (recall that the size of a layer 

equals the size of input pattern) of the EPCN-combiner:- This leads to a reduced amount of 

data being processed at a point in time; 

 An increase in speed of execution;  

Figure 5.8: Comparison of EPCN combiner and Majority Voting (Majvot) 
combination method when applied to base neural networks. 
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has been achieved could be inferred from the output of the gating function, Figure 5.3. 

From Table 5.3, it could be deduced that EPCN as combiner outperformed Majority voting 

method where a large class database, with few patterns per class, is concerned. 

    Since the combiner unit is faced with difficulties when confronted with experiments of 

sub-section 5.4.1, this indicates that combiner engine is applicable in situations where 

combiner unit is not.   As seen in figure 5.8, from class 35 to 50, the variation from 100% 

of percentage recognition decreases. Thus the problem of saturation and overloading has 

been solved. 

5.7 Comparison of FVC2004 with MCSPCN 

     The databases employed in Fingerprint Verification Competition (FVC'2004 

competition) are divided into two categories, the “light” category and the “open” category. 

The light database is required for algorithms characterized by low computing resources, 

limited memory usage, and small sized fingerprints. The open category database is meant 

for all other algorithms. All participating algorithms are independently developed by 

various academia and industries. The databases are benchmark databases [58] for real-life 

fingerprint identification, and verification algorithms. In the competition, all participating 

algorithms have the same input-output format, and they are tested in the same 

environment. Most participating algorithms employ fingerprint matching techniques. All 

results emanating from these algorithms are similarly formatted and quantified to enable 

direct comparison between them. Methods used in quantifying results rely on Receivers 

Operating Characteristics (ROC) of certain parameters. The choices of units mainly used 

are False Match Rate (FMR), and False Non-Match Rate (FNMR). These matchings refers 

to matching of minutiae, ridges, or some other features characteristic of fingerprints. The 

point at which FMR equals FNMR is known as equal error rate (EER). The rate employed 

in FMR, FNMR, and EER refers to percentage of fingerprints matched. The ROC analysis 

originates from statistical decision theory, and was originally introduced during World 

War II. Thereafter, in the 1960s, ROC analyses become prominent in medical 

analysis/diagnosis. Though ROC has gained popularity in other disciplines, it has not been 

used in neural system analysis. But since the database hereby processed originates from 

Biometry, it enhances direct comparison to employ ROC analysis on the result of EPCN-

combiner, and majority-voting when they have been trained on biometric databases. It is 

noteworthy that ROC analysis does not indicate, with confidence, how good the MCS 

performs. Similar situation has been noticed Yager [97] among others. Figure 5.9(a) and 
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5.9(b) shows a summary of ROC from FVC2004 while Figure 5.10 shows the ROC of 

EPCN combiner, and figure 5.11 shows the ROC of Majority Voting combination method. 
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Figure 5.10: EPCN-combiner ROC on Fingerprint. 
 

Figure 5.11: Majority Voting ROC on Fingerprint. 
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One of the main reason for larger variation in EER of FVC2004 and that of EPCN-

combiner is that in FVC2004, almost all the available database are employed and the 

participating algorithms vary immensely. The multi-classifier utilized in this chapter does 

not employ any matching algorithms. It is a multi-classifier employed in different 

environment (from that of FVC2004 environment) whose input-output format is distinct 

and much different from that of FVC2004 participating algorithms. Numerical quantitative 

comparisons are to be treated with skepticism. The EER of FVC2004 may be compared to 

the error rate (i.e. (100 – x) % of performance, where x represent the performances quoted 

in table 5) of MCSPCN. In FVC2004, EER vary from 1.97% to 100%, while in MCSPCN, 

the error rate vary from 0% to 100%. Detailed results of FVC2004 are contained in [48] 

while that of MCSPCN on fingerprints are contained in Table 5.3 

5.8 Comparison of the Multi-classifiers employed within the 

Thesis 

• The multi-classifier of chapter four explores unconstrained handwritten numeral 

classification while that of chapter 6 employs different problem domain. 

• Secondly, data partitioning methods for learning the multi-classifier of chapter 4 is 

different from data partitioning method for learning the multi-classifier of chapter 5. 

Within an input to a base classifier of chapter 4, the classes are ordered. This is not 

the case when fingerprint database are employed (i.e. in chapter 5). 

•  One of the main aims of employment of handwritten characters (chapter 4) on the 

multi-classifier is to explore its usefulness and examine its weaknesses. The defects 

of the multi-classifier are also examined with respect to large-scale multi-class 

fingerprint database. 

• This lead to the development of combiner engine in chapter 5 to replace combiner 

unit. 

• We may summarise that the combiner unit of chapter 4 supports large-scaled multi-

class database poorly while the combiner engine of chapter 5 supports large-scaled 

multi-class database very well. 

• Biases, overloading, and saturation effects are considerably minimized with the 

multi-classifier of chapter 5; this is not the case in chapter 4. 
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5.9 Summary 

      An advanced encoding scheme has been introduced for Multi-classifiers employed on 

problem domains possessing a large number of distinct classes with limited available 

training data. Results presented demonstrate an improved performance for the encoding 

scheme over that achievable via the majority voting method on a large-class database. It is 

noteworthy that the Multi-classifier arrives at a good level of performance despite the level 

of deformations, distortions, and noise present in the source fingerprints.  

    RAM-based Multi-classifiers does not template matching as do traditional fingerprint 

verification methods. Thus this MCS could be regarded as an intelligent, automatic, and 

template-free fingerprint recognition system. 

     The input arrangement of chapter 4 is systematic while statistical arrangement method 

is utilised in chapter 5. The bias problem was solved here via the implementation of the 

statistical arrangement method. 

     The overloading and saturation problems associated with large-class databases were 

solved by the sub-setting strategy of input, and appropriate selection of number of base 

classifier that participated in the Multi-classifier systems. 

    A combiner unit was employed in chapter 4 while a combiner engine is utilised in 

chapter 5. Results show that the combiner engine accommodates larger input classes. 

    Area of further research and development includes the application of this combination 

strategy to a wider range of large-class problem domains. 
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6. AN FPGA-BASED WEIGHTLESS NEURAL 

NETWORK HARDWARE 

   This chapter explores the significant practical difficulties inherent in mapping large artificial 

neural structures onto digital hardware. Specifically, a class of weightless neural architecture, the 

Enhanced Probabilistic Convergent Network, is examined due to the inherent simplicity of the 

control algorithms associated with the architecture. The advantages for such an approach follow 

from the observation that, for many situations for which an intelligent machine requires very fast, 

unmanned, and uninterrupted responses, a PC-based system is unsuitable, especially in 

electronically harsh and isolated conditions, The target architecture for the design is an FPGA, the 

Virtex-II pro which is statically and dynamically reconfigurable, enhancing its suitability for an 

adaptive weightless neural networks. This hardware is tested on a benchmark of unconstrained 

handwritten numbers from the National Institute of Standards and Technology (NIST), USA. 

    This chapter also examines the potential offered by adaptive hardware configurations of a class 

of the weightless neural architecture Enhanced Probabilistic Convergent Network targeted on a 

Virtex-II pro FPGA which is reconfigurable.  The reconfiguration and adaptive capability of the 

Enhanced Probabilistic Convergent Network is a highly adaptive architecture offering a very fast, 

automated, uninterrupted response in potentially electronically harsh and isolated conditions. The 

reconfiguration and adaptive potential of EPCN is explored by the employment of a benchmark of 

unconstrained handwritten numerals from the Centre of Excellence for Document Analysis and 

Recognition (CEDAR). 

 

6.0 Introduction 
   Early years of neural network hardware research involve multiple parallel processing 

elements (PE). Amsdahl was one of the main early researchers into neural network 

hardware. He showed that a task is worth parallelizing only when it is possible for about 

50% of the task. “If about 50% of the task is parallelize, the total speed increase is only 

twofold; when more than 90% of the task can be parallelize could a speed increase of 

tenfold or greater occur.”: This is now known as Amsdahl’s law. Amsdahl law is a good 

guide as to when parallelizing leads to speed increase. Generally, only when about 90% of 

the processes constituting the task could be parallelized is parallelizing worth doing.  

     For a neural network to be implemented in hardware, adequate consideration must be 

given to floating-point, and recurrence decimal. Generally, precision is limited to certain 

number of significant figure. Since most neural network could not be implemented wholly 
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in hardware, different variety of hardware neural network has emerged and are categorised 

as: 

1) Off-chip learning: - Off-chip learning occurs when learning the neural network is 

done on a computer using high precision. Weights/results of the learning process is 

downloaded onto a chip where the classification or recognition occurs. 

2) Chip-in-the-loop learning: - Chip-in-the-loop learning is a situation whereby the 

forward propagation part of the learning algorithm occurs in the chip, but update and 

calculation of new weight value occurs on a computer. 

3) On-chip learning: - On-chip learning and classification occurs entirely on chip. The 

EPCN is implemented on-chip, leading to limited precision of calculations. The 

EPCN implementation on-chip is also due to the fact that small amount of 

calculations are involved, thus discretization of values have very little effect on its 

performance because numerical errors are very small. 

    Previous chapters have implemented and applied neural networks, algorithms, and 

multi-classifiers for various purposes. In this chapter, the algorithms of EPCN will be 

considered in a hardware implementation. There are situations and environments that 

require the usage of neural network and do not demand urgency; these conditions are 

suitable for software-based EPCN. The conditions of emergencies (speed) and adverse 

surroundings motivate the consideration of EPCN algorithms in hardware. 

     Large-class databases and large artificial neural structure requires more time as 

compared to small ones. So that the hardware implementation of EPCN algorithms is 

motivated by the need to save time and resources while maintaining the same level of 

performance as compared to the software equivalent. 

      In the process of implementing the hardware equivalent of EPCN, use will be made of 

the learning and recognition algorithms of chapter 3. Learning and reasoning [25], in a 

digital hardware, may lead to adaptation and reconfiguration. Neural networks have shown 

to be well suited to learn from examples and adapt to non-linear environments, but many 

variants are rather resource intensive and therefore prohibitive in practical embedded 

applications [118]. However, one class of neural networks is more suited to 

implementation in hardware - the so-called weightless neural networks can be well 

matched to RAM (Random Access Memory) because their learning and recognition 

algorithms are mainly associated with reading from and writing to memory. 

     The aims and objectives of this chapter is to present the architecture, and the 

implementation of an adaptive RAM-based neural network, called Enhanced Probabilistic 
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Convergent Network (EPCN) [36], in a reconfigurable FPGA. Hardware implementations 

of EPCN are attractive for the following reasons: 

1) Compact size and low power consumption compared to a PC based implementation 

(i.e. it becomes deployable in areas where a PC may not). 

2) The binary weights of RAM-based neural networks are contained in RAM, and 

functions are converted to simple logic gates (AND, NOT, and OR). The logic 

combinations required to operate the EPCN are of lesser computational intensity than 

calculus operations.  

3) Regular structure: Generally, RAM-based Artificial Neural Network (ANN) are 

easier to implement on hardware due to their regular structure. 

4) The use of reconfigurable IC like FPGA to implement neural network allows fast 

prototyping and lends itself to modifications at low cost. This makes it a suitable 

testbed prior to large-volume production.  

5) A well designed VHDL based hardware will allow a significant increase in 

processing thouroughput compared to a software based execution on a general 

processor. 

     Some authors envisaged that Machine Intelligent Quotient (MIQ) may also be a 

measure of its performance. Chalfant [22] introduced a MIQ and proposes the analysis of 

system architecture and configuration as the criteria for its measurement. Commuri [25] 

maintains that architecture of adaptation and learning at all levels of hierarchy simplifies 

the measurement of MIQ. Learning of a neural network by reconfiguration is demonstrated 

in [124] using a Virtex-II 6000 FPGA.  In [122], Simoes employs ALTERA MAX + 

PLUS II in the implementation of Goal Seeking neuron (GSN) on Eraseable Programming 

Logic Device (EPLD). The EPLD is used in classification of British mail postal addresses. 

Spaanenburg [124] implements two neural networks, one is a feed-forward network to 

solve the problem of spatial and temporal computing. The second is implementation of 

Cellular Neural Networks (CNN) for image processing. The FPGA used is Virtex-II 6000 

and the learning of these networks were made to depend on reconfiguration capability of 

this FPGA. Freeman [39], designed a co-processor based on a binary neural unit known as 

Correlation Matrix Memory (CMM) which is used for approximate high-speed search and 

match operations on large datasets. Botelho [14] implements Goal Seeking Neuron (GSN), 

a RAM-based neural network, on Khepera mobile robot for control and navigation. The 

RAM-based neural networks in [124],[14], designed on FPGA were deployed in 

autonomous systems. Most of these systems are application dedicated systems, often for 
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one purpose only. However, the principled EPCN system is generic and highly scaleable. 

The EPCN when implemented on FPGA could be employed both for prediction and 

recognition It would thus become suited to a multitude of applications. In this chapter 

however, the hardware is tested on a benchmark of unconstrained handwritten integers 

from National Institute of Standards and Technology (NIST), USA. 

    The possibility of reconfiguration and adaptability of FPGA-based EPCN will be 

introduced. The motives for the exploration of its reconfiguration and adaptability are 

significant and beneficial – these will be explained in subsequent paragraph.  

    Research into reconfiguration of artificial neural networks (ANN) is an increasingly 

significant area of investigation. This arises partly due to the improvement in performance 

possibilities offered in that it becomes possible for an ANN, when implemented in digital 

hardware, to be capable of adaptation and reconfiguration during learning [25]. Adaptation 

may also be in response to nonlinear environment. However, adaptation and 

reconfiguration may incur a high computation overhead, more so in practical applications 

[115]. This high computation overhead is however minimised in the class of neural 

network investigated in this chapter, the weightless neural network. This follows from the 

observation that the less the computation requirement, the faster an ANN is able respond to 

new input. This reduction in response time becomes very large when the ANN is 

implemented in hardware. 

      ANNs may also be grouped depending on the principle behind their implementation. 

Those whose behaviour closely mimics the intelligence of natural being e.g. the genetic 

algorithm, and those designed from mathematical concepts. Weightless neural networks, 

also called RAM based neural networks [7], are a subgroup of those designed from 

mathematical concept, in this case mathematical logic concept.  Bledsoe and Browning in 

their pioneering work [10] (around 1959) made the first attempt to base their design of 

neural network on mathematical logic concept. More sophisticated networks have naturally 

been developed subsequently. These include the implementation of Enhanced probabilistic 

Convergent Networks (EPCN). The EPCN is an enhanced form of PCN [55]. The specific 

enhancements are as detailed in [85]. EPCN is a feed forward neural networks 

incorporating supervised learning with the addition that the mathematical logic is 

minimised even further when EPCN is implemented in a hardware. 

     A harware implementation of ANN offers significant advantages to a purely software 

implementation due to increased speed. For a weightless NN, the mathematical logic is of 

a reduced complexity than is the case with alternative NN when implemented in a digital 
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intergrated circuit (IC) -  this allows an increase in speed. These advantages, amongst 

others, motivate the work of this chapter. 

  The aims and objectives of this chapter are two fold. One is to present the architecture 

and implementation of an adaptive RAM-based neural network, the Enhanced Probabilistic 

Convergent Network (EPCN) [85], in a reconfigurable FPGA. The second is to explore the 

reconfiguration and adaptive properties of the FPGA-based neural network.  

     The remainder of this chapter is organized as follows. Section 6.1 presents an overview 

of the EPCN, while section 6.2 introduces its hardware configurations. The experiments to 

test the configuration possibilities of FPGA based Hardware architecture of EPCN and its 

results are presented in section 6.2. The experiments and results obtained are presented in 

section 6.3. The experiments and results of re-configurability (or adaptive behaviour) of 

EPCN is presented in section 6.4. Analyses of results are presented in section 6.5. The 

chapter concludes with areas of further research and development in section 6.6. 

6.1 The Enhanced Probabilistic Convergent Network 

The architecture of EPCN consists primarily of four component layers as explained is 

section 5.2. It includes an optional feedback path (represented by dashed arrows) from 

the merge layer of the main group to the main-group. Each layer consists of component 

neurons which are themselves made up of storage locations known as RAM-locations as 

shown in Figure 5.2 of chapter 5. Details of the learning and recognition algorithms are 

contained in chapter 3. 

 

6.1.1 Other similar weightless Neural networks 

  Almost all hardware implemented weightless NN are derived from either of these units: - 

• WISARD discriminator [5] 

• Correlation matrix memory [74] 

To date, these units are used in various combinations to design weightless neural networks. 

A typical state-of-the-art design is employed by Bin Azar [47] who utilizes a WISARD 

discriminator to design a weightless NN for robot navigation. Azar [47] states that 

WISARD discriminator does not exhibit generalisation inherently. In his implementation, 

memorization and generalisation abilities were achieved by setting 120 neurons manually. 

The CMM relies on bitwise OR of input space during learning, and dot-product during 

recall phase. This find application in the design of C-NNAP [74]. 



 
 127 

  Following is a comparison between EPCN designed in this chapter and a typical state-of-

the-art design of FPGA based neural networks. 

 

 

 

 

 

 

 

 

 

 

 

Having compared various FPGA based neural network, the architecture of EPCN will now 

be presented. 

 

6.2 The FPGA-based hardware architecture of EPCN 
In this section, the architecture of EPCN is proposed, by the thesis author that forms a 

complex hierarchical system. The design is sub-divided into pre-processing input data, 

core modules of EPCN, hashing function (unit), reconfiguration, and memory 

management. 

6.2.1 Pre-processing 

 The EPCN’s pre-processing steps include the reading in of the input data, or querying a 

terminal of input source. The EPCN expects the input values to be expressed in binary 

number. A compression algorithm, the Lempel-Zif algorithm [68] is included in the pre-

processing steps. Most of the common identical data points in the classes will be removed 

by Lempel-Zif algorithm in order to permit real-time rescaling of input pattern as and 

when required. For example, the input, Figure 6.1(a), is pre-processed resulting in Figure 

6.1(b) during input processing. 
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                                        (a) 

      

6.2.2 The EPCN Hardware 

    The EPCN is here described using the hierarchical system of design. The design is 

synthesised by Xilinx ISE during which EPCN is analysed and converted into digital 

circuit components. Figure 6.2 shows the main block modules constituting the EPCN 

architecture. In Figure 6.2, the train-block and the recognise-block are both connected to 

the input pre-processing block via the control unit and the hashing function that produces 

the addresses. The control unit initiates pre-processing when data are available at the input. 

After the completion of pre-processing of the input training data, it initiates the training 

processes (section 3.2.1). The train-block signals a finish flag when training completes. On 

reception of learn-flag-complete, the control unit checks the recognition input for data. 

When data is present, pre-pro cessing is done for the pattern meant for recognition. When 

the pre-processing-stop flag is detected by the control unit, the recognition block starts the 

recognition processes (section 3.2.2). The output block is monitored by the control unit 

through a feedback system. Iteration of the recognition processes stops when values in the 

output block are stable, by querying the output block, or after a pre-defined number of 

iteration steps. 

     The overriding majority of the EPCN block architecture consists of memory. Its 

functional behaviour is concentrated on data flow from and to these memory locations. 

The memory location in EPCN is described as single-port block RAM driven by a 

registered read address and a synchronous write operation. 

Figure 6.1:  The pre-processing; (a) is pre-processed resulting in (b). 
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6.2.3 Hashing 

    A hashing function is often used to search and retrieve information from memory. Such 

a hashing function as employed by Freeman [39] is based on bit-folding, XOR, and 

pseudo-random number generator. 

     In this chapter however the hashing function implemented is based on XOR and 

Maximum-length Shift-register [67] code. A maximum-length shift-register code generates 

a systematic code with desired output length; 

 

                                                                                                              (6.1) 

 

Figure 6.2:  The block-diagram of EPCN FPGA architecture. 
 

2 1mn = −
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Where m is the information bit derived from input pattern.  The code words are normally 

generated by m-stage digital shift register with feedback. The generation of the code words 

depend on parity polynomials h(p) given by equation (6.2); 

 

                                                                                  (6.2) 

 

The maximum-length shift-register codes (MLSR) are dual of cyclic Hamming codes. Bits 

in the pattern become the information bits. The hashing is used for address (connectivity) 

formation. Data will be written to or retrieved from the LUT-RAM location whose address 

is so formed. Examples to illustrate this are given below. 

 

  Example I: when m = 3; equation (6.1) becomes 

n = 2m – 1 = 23 – 1 = 7; 

This means that 7 addresses are required. In equation (6.2) the parity polynomial h(p) 

becomes; 

                                                                                  (6.3) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In equation (6.3) it is seen that the coefficient of p7 is 1. hi, (i = 0,1,2,…7) is such that hk-

1pk-1 is an integer between 7 and 0. This is a constraint to be satisfied. Most of the values of 

hk-1pk-1  will be zero. Looking at Figure 6.3, it is seen that non of the values assigned to 

“ttuple” is greater than 7, the corresponding RAM location will be read from or written to 

Figure 6.3. Formation of addresses by hashing from input patterns. This 
is prior to the learning process. 

1 0
1 0( ) ...k k

kh p p h p h p−
−= + + +

7 6 0
6 0( ) ...h p p h p h p= + + +
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as the case may be. The RAM-location is found in a layer whose address is also generated 

by hashing, as values assigned to “tcol” variable, where “tcol” represents address of a 

layer. There it is seen that all values between 0 and 3 have been generated. To distinguish 

between wanted zeros and unwanted zeros, wherever h(p) has values greater than 3 or less 

than 0, this is set to 2n and this make the location inaccessible. 

 

Example II: Suppose ten connectivity are required none of which should be greater than 

10?.  

Answer:  Recall that 24 > 10 > 23. So that when m = 4; equation (6.1) becomes 

n = 2m – 1 = 24 – 1 = 15; 

and in equation (6.2), the parity polynomial h(p) becomes; 

 

                                                                  (6.4) 

 

In equation (6.4) it is seen that the coefficient of p15 is 1. And hi, (i = 0,1,…15) is such that 

hk-1pk-1 is an integer between 15 and 0. Since no connectivity should be greater than 10, 

h(p) is set to 2n for those values that are not required. An example is shown in Figure 6.4, 

here the variable “rclas” shows all addresses derived lies between 0 and 10 inclusive. The 

“rclas” represents addresses of a neuron in the recognition phase.  

  To distinguish between wanted zeros and unwanted zeros, wherever h(p) has values 

greater than 10 or less than 0, this is set to 2n and this make the location inaccessible. 

  Other addresses are derived similar to example I and II. Recall that information bits in a 

pattern characterise that pattern, and thus the connectivity is reproducible. 

 

15 14 0
14 0( ) ...h p p h p h p= + + +
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6.2.4 Memory management  

     As indicated previously, the memory location in EPCN is described as single-port block 

RAM driven by a registered read address and a synchronous write operation in Xilinx’s 

LUT-RAM. The memory management is monitored by the control unit, see Figure 6.2. 

During a read operation from a location, a write operation is disabled with respect to that 

location. During a write operation to a location, any read operation from that same location 

is disabled. 

     As concerning the buses, a read/write enable/disable operation depends on the 

addresses formed from the pattern. The FPGA consists of configurable logic blocks 

(CLBs). These CLBs are inter-connected by buses. Activating a bus, and which bus is 

being activated depends on if its address is formed. Activating a bus is necessary prior to a 

read/write operation; otherwise a read/write operation is not possible on that bus. A read 

and write addresses, with respect to one bus will not be formed at the same time. It is 

either a read address or a write address. It ensures that values are not written to and read 

from the same bus at the same time. This is commonly referred to as bus contention. 

 

 

 

Figure 6.4: Formation of addresses by hashing from input patterns. This 
is prior to the learning process. 
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6.2.5 Reconfiguration 

     The structural architecture of EPCN and the size of its neuron are adaptive, changing 

with learning and classification.  During learning and classification, an integer number 

called the division is required for adjustment purposes, [85]. The term adjustment refers to 

multiplying the integer value in a RAM location by the division and dividing by the 

number of training patterns per class. The adjustment is necessary for all classes to be 

treated equivalently when the number of pattern per class varies between classes. Tuple-

size is the number of bits sampled from input data (at once) that characterize features of 

that data.  For a tuple-size of n, 2n – 1 bit are sampled. 

     In practice the maximum size and structure of EPCN is naturally limited by the 

available hardware resources. The number of pre-group layers, the number of main-group 

layers, the tuple-size, and the division are often referred to as system parameters. The size 

of pre-group layer and the size of main-group layers are modifiable alongside the reconfiguration 

process. 

     The number division used during various adjustment phases could be chosen within a 

value from 1 to 215. This is the binary address range that fits in memory on FPGA. The 

possibility of the variability in system parameters is vital to static and dynamic 

reconfiguration. Modification to the value assigned to division is done by prefixing 

“constant divisn” with a “generic” statement. This is normally done before training and a 

recognition session pair. 

     The EPCN reconfiguration file is stored in Programmable Read Only Memory 

(PROM). Since the golden configuration is stored in revision 0 for FPGA’s self-test, the 

EPCN reconfiguration file is stored in revision 1. The source-select switch is used to select 

any of the revision at any time required. 

     The FPGA is pre-programmed with various possible configuration options. The config-

select, SW8, is a group of three switches, the combination of which gives the selection of 

one of eight possible configurations of EPCN. The source-select, SW9, is a group of two 

switches, the combination of which gives the selection of source of configuration for 

EPCN. 

     Using the config-select switches in conjunction with config-source switches it was 

found that it supports to a maximum of: 

• Tuple-size = 4; 

• Pre-group layers = 5; 
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• Main-group layers = 5; 

• Class = 15; 

• Number of neuron per layer 20-by-15; 

The detection of pattern boundaries is automatically and dynamically done by the control 

unit (figure 6.2).  

    The functional activities of the pre-processing unit and the hashing function (unit) are 

monitored by the control unit to ensure that the size of the pattern used within the EPCN 

fall within the maximum neuron size possible. Secondly, it is always possible to adjust 

every pattern size appropriately before hashing. This solves the boundary problems. The 

solution to the boundary problems increases the range and type of input sources and 

reconfiguration flexibility of EPCN, which will be experimented on in section 6.3 and 

section 6.4. 

6.3 Experimentations 

The EPCN was designed and implemented using Xilinx ISE 9.21i. The NIST data base1 

has been used for testing the functionality of EPCN and has been found suitable for use. 

Testing was done by instantiating the EPCN in a test-bench and associating the NIST 

handwritten data set with its input. 

  The prototyping board is linked to the computer via a USB programming cable. Auto-

recognition of the programming cable by Xilinx ISE enables the download of the bit file 

generated from EPCN, as shown in figure 6.5, and configuration of the board by impact 

(component of Xilinx ISE) using PROM file generated from EPCN. 

 

 

 

 

 

 

 

 

 

                                                 
1 National Institute of Standards and Technology (NIST) in Gaithersburg USA. NIST provide the 
handwritten simple form (HFS) of numerals, which were binarised and resize to 32-by-32. 

Figure 6.5: This shows that EPCN fits Virtex-II pro. 
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  To display the output of EPCN on board the FPGA, RS232 cable is connected via the 

com port and linked to the HyperTerminal at a baud rate of 2400 – 9600. Recognition 

results are displayed on the HyperTerminal in a PC. Internal to the Virtex-II pro FPGA is a 

2MB SDRAM. External SDRAM at 2GB is also attached. This makes possible an 

increased number of LUTS generated and utilized during learning and recognition of 

EPCN in FPGA. 

 An example of the FPGA resource utilisation of EPCN is shown in Table 6.2. These are 

the resource requirements for the following EPCN architecture: 

• Tuple-size = 3; 

• Pre-group layers = 3; 

• Main-group layers = 2; 

• Class = 10; 

• Number of neuron per layer 20-by-15; 

 

 

 

 

 

 

 

 

 

 

 

 

 

From Table 6.2, it is seen that the resource utilisation is relatively low for the given 

example network.  

  Using the NIST handwritten integers, the EPCN is trained on 0 to 9, and during 

recognition requested to recognise “1”. Data for training are selected from the training set 

Table 6.2: An extract of resource utilisation showing the conversion of EPCN to gate-
level components. 
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while patterns for recognition were selected from recognition set. Both training set and 

recognition set form disjoint sets. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Result of type figure 6.6 shown above is obtained when a pattern is shown to the network 

for recognition. Figure 6.6 shows the result when one input pattern is shown to the 

network for recognition. In this figure, the numbers 1,2,3,…,9, on the left-hand-side 

represents the classes while the binary numbers to the right-hand-side represents the 

probability (scaled by division) with which the  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.6: Wrong recognition: A recognition result from EPCN  
when trained on “0” to “9”, and shown “1” in recognition phase. 
 

Figure 6.7: Ambiguous state: A recognition result from EPCN when  
trained on “0” to “9”, and shown “1” in recognition phase. 
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pattern belong to that class. By varying the configuration of EPCN and showing it the 

same pattern for recognition, different other results are obtainable as shown in Figures 6.7 

and 6.8. Three possibilities exist in recognition processes of EPCN. They are correct 

classification (Figure 6.8), ambiguous classification (Figure 6.7), and wrong classification 

(Figure 6.6).  The binary numbers in Figure 6.7 and 6.8 has same meaning as in Figure 6.6. 

 

6.4 Reconfiguration/Adaptive Experimentations 

.The experimentation carried out here explores various configurations of EPCN. The 

EPCN was designed and implemented using Xilinx ISE. It was then tested in software by 

simulations prior to these experiments. The Source of database used in these experiments 

is:- 

• The centre of Excellence for Document Analysis and Recognition (CEDAR), 

University at Buffalo, State University of New York, USA. Department of Computer 

Science. Unconstrained handwritten numbers from CEDAR were resized and 

binarised to 16-by-24 in dimension. 

  The config-select switch consists of three switches while the source-select switch is made 

up of two switches. In any session, learning or recognition, a combination of the three 

Figure 6.8: Correct recognition: A recognition result from EPCN  
when trained on “0” to “9”, and shown “1” in recognition phase. 
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switches on SW8 yields eight possible configurations which enables variation of 

configuration and system parameters of EPCN architecture. The config-source, consist two 

switches which are used to select sources of configuration. The various configurations of 

EPCN in these experiments reside in PROM (in Revision 1) and are fetched during 

reconfiguration automatically. 

    Preliminary investigations, that includes the available size of  both the internal and 

external synchronous dynamic random access memory (SDRAM), has revealed that 

hardware resources supports maximum of 5 layers of pre-group and maximum of 5 layers 

of main-group. Guided by these hardware resource constraints, the experiment aims to 

explore various configuration possibility of EPCN and to determine the possible optimum 

configuration of EPCN. To this end, three experiments were performed on FPGA based 

EPCN using the database mentioned above. They are:- 

• A case where division = 1000; main-group layers = 3; pre-group layer increase from 

1 through to 5. 

• A case where division = 1000; pre-group layer = 3; main-group layer increase from 1 

through to 5. 

• In the third experiment, the main-group layers = 3; pre-group layer = 3; division is 

increase from 100 through to 700. 

Results of these experiments were recorded. They are graphically displayed in Figures 6.9, 

6.10 and 6.11. 

 These same experiments have been performed on the software version of EPCN [85], by 

employing the same CEDAR database. 
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Figure 6.9: A plot of % recognition against number of pre-group layer; division = 
1000; main-group layers = 3; pre-group layer increase from 1 through to 5. 

Figure 6.10: A plot of % recognition against number of main-group layer; 
division = 1000; pre-group layers = 3; main-group layer increase from 1 
through to 5. 
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6.5 Analysis 
  From the design and the example resource utilisation, Table 6.2, it could be inferred that 

static and dynamic variation both of precision (word length) and system parameters are 

possible. As these are fully supported by available resources, up to a certain maximum (see 

the sub-section 6.2.4).  

  Figures 6.6, 6.7 and 6.8 are result types obtainable from EPCN. Figure 6.6 is a case of 

wrong classification, while Figure 6.7 is an ambiguous state. Figure 6.8 shows correct 

recognition. These results are obtained when character “1“’ is shown to EPCN. The 

different outputs, due to changes in system parameters, are indicative of the possibility of 

changes in decision due to changes in environment. 

 A pattern of 15-by-20 in size infers 300 neurons per layer. And there are many of such 

layers in any instance. This demonstrates the possibility of implementing an advanced and 

large weightless neural network, the EPCN, wholly on FPGA, the pre-processing steps 

inclusive.  
 

 

Figure 6.11: A plot of % recognition against division; the main-
group layers = 3; pre-group layer = 3; division is increase from 100 
through to 700. 
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6.6 Adaptive/Reconfiguration Analysis 
 

   The advantages of the FPGA implementation are that it is able to exploit the 

reconfiguration and adaptive capability of the EPCN which is advantageous for many 

situations for which an intelligent machine requires very fast, automated, uninterrupted 

responses, and in potentially electronically harsh and isolated conditions. 

    Figure 6.9 shows that the maximum percentage recognition occurs when the pre-group 

layer is 3. Figure 6.10 shows that the maximum percentage recognition occurs when the 

main-group layer is 4. Figure 6.11 shows that the maximum percentage recognition occurs 

when the division is 300.  

  Comparing Figures 6.9, 6.10 and 6.11, it may be observed that the performance is least 

dependent on division and that performance is most dependent on main-group layers. 

These results are identical to the result obtained from the PC-based EPCN when same 

input databases are used hence demonstrating the validity of the FPGA implementation. 

Further investigation and experimentation shows that the optimum system parameters are:- 

Main-group layers = 4; 

Pre-group layers = 3; 

Division = 300; 

 

 

 

 

 

 

 

 

These values are naturally dependent on the database employed and the number of classes. 

Also it is noteworthy that the hardware is of the order of 105 faster than an equivalent 

software implementation. A comparison between the speed of the FPGA-based EPCN, an 

optically enhanced Multilayer perceptron (MLP) [86][87], and a software based EPCN is 

shown in Table 6.4. There is clearly a substantial gain in speed by the FPGA-based EPCN 

over a software implementation. The EPCN is employed on human eye iris database and 

compared with other neural networks in table 6.5. Table 6.5 shows how different databases 

may give rise to different results (in Table 6.5). The results in Table 6.5 also depend on 
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configuration complexity and on source of database employed. The order of magnitude 

appears more general and thus more reliable. 

  Hardware constraints has been considered, and compared to equivalent software EPCN. 

These are tabulated in Table 6.4. 
 

 

 

 

 

 

 

 

 

 

 

 

 

Experimental results further show that on comparing the software performances with the 

hardware performances: 

1) Figure 3.5 is very similar in behaviour to figure 6.9. 

2) Figure 3.6 is very similar in behaviour to figure 6.10. 

3) Figure 3.7 is very similar in behaviour to figure 6.11 

The FPGA-based EPCN may give the same result for exactly the same system parameters. 

 

 

 

Table 6.5: Comparison of hardware EPCN with other neural networks implemented on 
other platforms. The database employed is human eye Iris 
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Table 6.5 compares EPCN with other neural networks when employed in human eye Iris. 

From Table 6.5 and Figures 6.9, 6.10 and 6.11, it is deductible that the possibility of 16-bit 

word-length has a great effect on the identical result obtainable both from the hardware 

and the software EPCN. 

 

6.7 Summary 
   The EPCN has been shown to be portably and wholly implement-able on FPGA. Pre-

processing steps have been included in this design. The results demonstrate the possibility 

of implementation of a large, advanced, and adaptive weightless EPCN in a re-

configurable FPGA. The FPGA based EPCN has been shown to be adaptive and 

reconfigurable. The results obtained here are comparable in performance terms to that of 

software-based EPCN. This is significant since hardware implementations of weightless 

classifiers are rare. 

   A shortcoming of these experiments is that interaction effects of these parameters were 

not investigated. This may be considered as an area of further experimentation and 

development. Other areas for further research include introduction of machine intelligent 

quotient (MIQ) as a means of self-assessment, and dynamic parameter tuning of the 

network. 
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7. CONCLUSION 

7.1 Introduction 

   The advantages of RAM-based neural networks were enumerated in different places 

within the thesis. Introduction to weightless neural network afterwards focuses on EPCN 

whereby it was introduced. Modifications were made to configurations and connectivity, 

depending on areas of applications. 

   Chapter 3 reveals that other connectivity formation methods are possible. As this forms 

the basis of two types of PCN herein named fix-PCN and rand-PCN. We were able to 

explore various configuration possibilities for this neural network and, using handwritten 

characters, obtain a maximum performance of about 85% there. The levels of performance 

obtainable in this chapter could be improved upon. 

   This prompts investigations into possible multi-classifier systems. In chapter 4, a parallel 

multi-classifier was designed. Performances in excess of 85% were achievable. Further 

areas of study might be other forms of arrangement such as serial or hybrid arrangement of 

component classifiers. It is noteworthy that these depend on objectives of application.      

Low performance is not suitable for sensitive applications and also unsuitable in areas such 

as identification and security. In these areas, a very high % correct recognition is required. 

Secondly, a single PCN may be unable to cope with large-scaled multi-class databases due 

to problems among which are bias and saturation effects. A biometric database identifies 

itself with identification and security. Using PCN in a MCS in chapter 4, it is now possible 

to rapidly (and with high accuracy) classify large-scaled multi-class biometric databases. 

Though only fingerprint database was used in this chapter, there is no reason to suggest 

that it is not applicable to other large-class databases. 

     A novel advanced combination strategies were introduced in chapter 5. These 

combination methods were tested on fingerprint classification. After optimisation of the 

combination methods, performances of about 92% were obtained. Using PCN in a MCS 

with these combination methods, it is now possible to rapidly (and with high accuracy) 

classify large-scaled multi-class biometric databases. Its suitability for application to large-

scaled multi-class database depends on the fact that external feature extraction procedures 

for input data were not required for correct classification. The MCS is capable of detecting 
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features of input database, autonomously, for their classification. This is an intrinsic 

property of this MCS, and applies to any input databases. Industrial application might be a 

good further step. 

    Accelerated character recognition and avoidance of collision may be required in 

electronically harsh and isolated conditions. Such conditions find itself in space 

exploration or in deep sea. Also, there are conditions for which an intelligent machine 

requires very fast, unmanned, and uninterrupted responses. These conditions make PC-

based software very unsuitable, and form the content of chapter 6. Unsuitability of 

conditions conceived the idea of a hardware implementation. Attempts were then made in 

chapter 6 into a hardware design of EPCN. An FPGA based PCN was then applied to 

unconstrained handwritten character. This chapter demonstrates the possibility of 

implementation of an advanced RAM-based neural network wholly in FPGA. Following 

this is a question of its wider applicability, and also question of configuration issues.  

    Issues such as the advantages of a hardware implementation, when applied to sensitive 

and difficult area, were addressed in chapter 6. In chapter 6, system parameters of PCN 

and its various possible configurations were investigated. Results obtained were compared 

with other neural network systems. Hardware PCN was found suitable and applicable in 

areas mentioned in the previous paragraph. This is with a considerable speed and 

performance advantage as compared to many other systems. 

 

7.2 Handwritten characters – Utilisation of a single Neural 

Network 
    The results of chapter 3 are obtained by the employment of a single weightless neural 

network, fix-EPCN and rand-EPCN independently, in turn on unconstrained handwritten 

characters. Filling of form by hand is still much in place in offices of industries and 

academics. The performance of EPCN in chapter 3 is at 87% maximum.  

    Application areas: - The advantage of EPCNs implemented in chapter 3 is that they 

could find application in offices where automated recognition of unconstrained 

handwritten characters, e.g. in bank cheques, in application forms etc., are required. An 

example application is given in section 3.4 which coincide with recognition of handwritten 

(hand writing of every day life) numerals. The EPCN in this chapter is unsuitable for 

applications that are security or health based.  

    Areas of further development: The coding of this EPCN is done in Matlab. 
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• The coding could be improved upon 

• An optimisation algorithm could be introduced 

• A multi-classifier could be constructed so as to improve the performances. 

 

7.3 A Discussion on weightless Multi-Classifier Systems 
      Chapter 4 implements a multi-classifier system consisting only of weightless 

component classifiers. And performance rates of over 93% are obtainable. Though the 

multi-classifier does not utilize any of the classical improvement method such as Bagging 

or Boosting, the error rate of less than 10% has been obtained consistently. 

     Application areas: - The multi-classifier may be applied in low level security sector 

such as verification of absence or presence of materials in bulk. The disadvantage is its 

inapplicability in high-level security sectors. The multi-classifier is capable of 

accommodating more classes, and has a higher (about 20% more) percentage recognition 

rate as compared to a single EPCN.  This Multi-classifier is suitable in recognition of 

hand-filled forms and handwritten characters. In addition to this, its suitability in biometric 

verification purposes is suggested. 

   Areas of further research: - This may include improving the coding to the combiner. 

  

7.4 Classification of Large-Scale Multi-Class Databases 
     Also in chapter 4, the multi-classifier is tested on large-class databases (fingerprint 

databases). The component classifiers each were assigned ten classes. This arrangement 

does solve the problem of saturation, but does not solve the problem of bias. The 

performances of the multi-classifier on each class vary greatly. Such that for the multi-

classifier to be very useful on large-scaled multi-class database, improvement   on the 

MCS performances is required. Nevertheless, the performances of the multi-classifier on 

many classes were substantially above 62.5%.  What has been achieved in the projects of 

this chapter are: 

• The removal of saturation 

• The utilisation of the multi-classifier on biometric databases serves as a pointer to 

the next-line-of-action, should it be required to utilize normally the multi-classifier 

on large-scaled multi-class databases. 
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Application areas: - It is suitable to medium-level security sectors such as biometric 

identification in industries. It is also suitable for character recognition such as found in 

(hand-filled) forms. 

Areas of further research and development are: -  

• The removal (or minimisation) of bias.  

• Improvement in performance of the multi-classifier on large-class databases.  

• Instead of employing a traditional method of boosting and/or bagging, it was decided 

to employ a novel method by replacing the gating function with a more advanced 

gating function so as to improve performance. 

 

7.5 On Combination Strategy for Large-Scaled Multi-Class 

Database of Multi-Classifier 
In chapter 5, 

• A statistical arrangement method is introduced to solve the bias problem. 

• A sub-setting strategy is introduced to solve the saturation problem 

• A novel gating function is introduced to solve the problem of high memory demand, 

and increase speed. 

These steps achieve a performance of 92% on average, on large-class databases, which in 

this case is a fingerprint database.  

Potential Application areas: - An error rate of less than 10% implies that it may be used 

on medium to very large databases. The result obtained here is very good with respect to 

the database on which it is applied. It indicates that it may be used in industries that require 

low to medium level security, e.g. for human fingerprint recognition, handwritten 

recognition, level of alcohol in blood, etc. Generally, it is applicable in situations where 

the risk of false recognition is low. 

  The disadvantage is the low percentage recognition (average is 92%) when it comes to 

“high-level security” databases such as database of national security, databases related to 

health and hazards, etc. The reason is because the risk of false recognition is high (above 

1%). It may be used on “high-level security” database only as an advisor since the output 

of the multi-classifier is a probability output. 

Areas of further research: - Industrial deployment of the developed system. 
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7.6 Hardware-based EPCN 
In chapter 6, the EPCN is ported to FPGA. The portability of EPCN to FPGA is significant 

and widens the areas where it may be applied. Though at an early stage of development, 

results shows that EPCN could be deployed in hardware for possible pattern recognition 

and prediction. 

  A significant achievement of the projects contained in chapter 6 is that it has become 

possible to implement an advanced and complex RAM-based neural network of this type, 

wholly in FPGA, which paves the way for other new areas of application of EPCN. The 

FPGA based EPCN is tested for adaptability and for reconfiguration. The results obtained 

(section 6.5) is good, and signifies: 

• That FPGA based EPCN may be employ in offices of industries and academics 

where automated recognition of unconstrained handwritten characters is required. 

• Wholly portable to hand-held equipment. 

• May be employed in harsh surroundings. 

Areas of application: - The hardware-based EPCN is highly adaptive and automatic with 

respect to its surrounding and to data. This implies its suitability in electronically isolated 

situations; e.g. in space exploration. It is also suitable for portable and/or embedded 

applications. 

  Areas of further research:   An enhancement of the robustness of EPCN to vagaries of 

hardware is in order. 

  

7.7 Summary 
Chapter 7 has reviewed the achievement of previous chapters, the merits, and the demerits. 

Each weightless neural network and each multi-classifier implemented in each chapter is 

independently developed, and may be applied or used as such.  

     The results of projects detailed in this thesis have the following consequences for 

weightless neural systems. It means that (a) more connectivity methods are now possible 

for weightless neural networks; (b) a novel gating function is introduced for neural 

networks; (c) It is the first attempt at utilizing a weightless neural network as a trained 

combiner in a multi-classifier framework with a considerable success; (d) The EPCN is 

ported to FPGA. It signified that it may be possible for other advanced weightless neural 

networks to be ported also to FPGA.  
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    Though a definition for intelligence may not be universally acceptable, and attempt has 

been made to define ANN as an intelligent system, it has nevertheless lead to 

achievements enumerated so far. As research extension to EPCN which will carry over to 

any MCS in which it is a component, it is suggested to include the following researches at 

project level: 

• An attention mechanism; 

• A consciousness mechanism. 

These two modules are considered essential area of future research possibilities in order 

move EPCN toward an intelligent ANN system. Any other research extensions are 

possible and may be considered optional. 
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