
i

DESIGN FOR NOVEL ENHANCED WEIGHTLESS
NEURAL NETWORK AND MULTI-CLASSIFIER

A Thesis Submitted to the University of Kent
For The Degree of Doctor of Philosophy

In Electronic Engineering

By
Pierre Lorrentz
November 2009

ii

TABLE OF CONTENT

 Abstract iv
 Acknowledgement v
 List of Figures vi
 List of Tables viii
 List of Publications ix

Chapter 1 THESIS INTRODUCTION 10

1.0 Introduction 10
1.1 Aims and Objectives 12
1.2 Weightless Neural Networks 14
1.3 Organisation of the Research Projects in the Thesis 17
1.4 Major Challenges 23
1.5 Summary 24

Chapter 2 INTRODUCTION TO ARTIFICIAL NEURAL

SYSTEMS
26

2.1 Weighted Neural Network 28
2.2 Weightless Neural Networks 37
2.3 Multi-Classifier Systems 43
2.4 Hardware Implementation 49
2.5 Methods of Testing and Validation 54
2.6 Summary 56

Chapter 3

THE ENHANCED PROBABILISTIC
CONVERGENT NETWORK - EPCN

57

3.1 Introduction 57
3.2 The Input Pre-processing 59
3.3 EPCN – The Enhanced Probabilistic Convergent Network 61
3.4 Experiments and Analysis 65
3.5 Comparison of EPCN with other Neural Networks 71
3.6 Summary 72

Chapter 4 A WEIGHTLESS ARTIFICIAL NEURAL BASED

MULTI-CLASSIFIER
73

4.1 Introduction 74
4.2 The Design of an MCS from EPCN 77
4.3 Multi-Classifier System for Biometric Databases 80
4.4 Experimentation 84
4.5 Results and Analysis on Large-scale Multi-class database 87
4.6 Result and Analysis on experiments 1 and 2 89
4.7 Summary on Large-scale Multi-class database 90
4.8 Summary 91

iii

Chapter 5 AN ADVANCED COMBINATION STRATEGY
FOR MULTI-CLASSIFIERS

93

5.1 Introduction 93
5.2 Multi-classifier Systems 95
5.3 Implementation of the Multi-classifier 104
5.4 Experimentation on the MCS 110
5.5 Results 114
5.6 Analysis 115
5.7 Comparison of FVC2004 with MCSPCN 117
5.8 Comparison of the Multi-classifiers employed within the

Thesis
120

5.9 Summary 121

Chapter 6 AN FPGA-BASED WEIGHTLESS NEURAL

NETWORK HARDWARE
122

6.0 Introduction 122
6.1 The Enhanced Probabilistic Convergent Network 126
6.2 The FPGA-based hardware architecture of EPCN 127
6.3 Experimentations 134
6.4 Reconfiguration/Adaptive Experimentations 137
6.5 Analysis 140
6.6 Adaptive/Reconfiguration Analysis 141
6.7 Summary 143

Chapter 7 CONCLUSION 144

7.1 Introduction 145
7.2 Handwritten characters – Utilisation of a single Neural

Network
145

7.3 A Discussion on weightless Multi-Classifier Systems 146
7.4 Classification of Large-Scale Multi-Class Databases 146
7.5 On Combination Strategy for Large-Scaled Multi-Class

Database of Multi-Classifier
147

7.6 Hardware-based EPCN 148
7.7 Summary 148

 References 150
 Appendix 164

iv

Abstract
Pierre Lorrentz, PhD 2009

 Weightless neural systems have often struggles in terms of speed, performances, and
memory issues. There is also lack of sufficient interfacing of weightless neural systems to
others systems. Addressing these issues motivates and forms the aims and objectives of
this thesis. In addressing these issues, algorithms are formulated, classifiers, and multi-
classifiers are designed, and hardware design of classifier are also reported. Specifically,
the purpose of this thesis is to report on the algorithms and designs of weightless neural
systems.
 A background material for the research is a weightless neural network known as
Probabilistic Convergent Network (PCN). By introducing two new and different
interfacing method, the word "Enhanced" is added to PCN thereby giving it the name
Enhanced Probabilistic Convergent Network (EPCN). To solve the problem of speed and
performances when large-class databases are employed in data analysis, multi-classifiers
are designed whose composition vary depending on problem complexity. It also leads to
the introduction of a novel gating function with application of EPCN as an intelligent
combiner. For databases which are not very large, single classifiers suffices. Speed and
ease of application in adverse condition were considered as improvement which has led to
the design of EPCN in hardware. A novel hashing function is implemented and tested on
hardware-based EPCN.
 Results obtained have indicated the utility of employing weightless neural systems. The
results obtained also indicate significant new possible areas of application of weightless
neural systems.

v

Acknowledgement

Thanks to:

Prof. K. McDonald-Maier
Department of Computing and Electronic Systems
University of Essex
Wivenhoe Park, Colchester,
CO4 3SQ, UK.

and

Dr. W. G. Howells
Department of Electronics
University of Kent, Canterbury
Kent CT2 7NT, UK.

for their support.

vi

LIST OF FIGURES

Figure 1.0 Example of input pattern. 15
Figure 1.1 A schematic of a general weightless artificial neural network. 16
Figure 1.2 Schematic diagram of a multi-classifier. It consists of different

types of base network in parallel. [40]
19

Figure 1.3 Annotated Diagram of Virtex-II pro which will be used in
EPCN prototyping. [134]

21

Figure 2.1 The operation at a node of a neural network. Xi(t) – Neural
input; Wi – Synaptic weights; i – 1,2,3.... y(t) = Nodal output.
[3]

35

Figure 2.2 A schematic of supervised learning rule.[49] 36
Figure 2.3 This (3x3) LUT can recognize the letter “T” 38
Figure 2.4 A basic weightless neural network 39
Figure 2.5 A schematic representation of Probabilistic Convergent

Network (PCN). This is an example of a RAM-based Neural
Networks (NNs). [55]

41

Figure 2.6 Schematic of a parallel Neural Network system. [73] 45
Figure 2.7 Modular network; the output of the expert networks

(modules) are mediated by a gating network.[49]
46

Figure 2.8 Cooperative neuro-fuzzy system. [73] 47
Figure
3.1(a)

A satellite image of Hurricane Rita 58

Figure
3.1(b)

A binary image of Hurricane Rita. 58

Figure
3.2(a)

An extract of handwritten digits from a benchmark database
known as CEDAR.

60

Figure
3.2(b)

A binarised handwritten digits from a benchmark database
known as CEDAR.

60

Figure 3.3 An EPCN neuron 61
Figure 3.4 A schematic representation of EPCN. 62
Figure 3.5 A graph showing the effect of the main-group layer on

performances. This is a plot of table 3.2 and 3.3 column 1 vs.2.
68

Figure 3.6 A graph showing the effect of the pre-group layers on the
performances. This is a plot of table 3.2 and 3.3 column 3 vs.
4.

69

Figure 3.7 A graph showing the effect of the Division on performance.
This is a plot of table 3.3 column 5 vs. 7.

69

Figure 4.1 The MCS unit is divided into multiple EPCN group and
combiner EPCN group. The multiple EPCN group consist of
EPCNs in parallel. Pi = pre-group; Mi = main-group; ‘i =
1,2,3,… ‘f(.) = gating function. Pc = combiner’s pre-group. Mc
= combiner’s main-group.

79

Figure 4.2 An EPCN configuration. 80
Figure 4.3 A sample Fingerprints from database DBA_1 82
Figure 4.4 A component (base) neural network’s configuration. 82
Figure 4.5 (a) Processed fingerprint, (b) binarised picture of fingerprint. 84
Figure 4.6 An Output of EPCN. 89

vii

Figure 5.1 A schematic diagram of combiner-EPCN 94
Figure 5.2 Multi-classifier combination scheme with respect to database. 100
Figure 5.3 The MCS unit is divided into multiple EPCN group and

combiner EPCN group. The multiple EPCN group consist of
EPCNs in parallel. Pi = pre-group; Mi = main-group;‘i =
1,2,3,… ‘f(.) = gating function. Pc = combiner’s pre-group. Mc
= combiner’s main-group.

104

Figure 5.4 Encoded information by the gating function f(.), (a) Unit
encoding from the combiner unit; (b) Engine encoding from
the combiner engine

108

Figure 5.5 (a) Fingerprint, (b) filtered and binarised picture of (a) 112
Figure 5.6 Normal combination mode: The confusion matrix from EPCN

combiner. Columns 1 to 50 represent classes. The last column
is unclassifiable patterns.

113

Figure 5.7 Majority Voting mode: The confusion matrix from EPCN
combiner. Columns 1 to 50 represent classes. The last column
is unclassifiable patterns.

114

Figure 5.8 Comparison of EPCN combiner and Majority Voting (Majvot)
combination method when applied to base neural networks.

116

Figure
5.9(a)

Open category; ROC curves from FVC2004 n DB1 (only
top 15 algorithms are shown) [27].

118

Figure
5.9(b)

Light category; ROC curves from FVC2004 n DB1 (only
top 15 algorithms are shown) [27].

118

Figure 5.10 EPCN-combiner ROC on Fingerprint. 119
Figure 5.11 Majority Voting ROC on Fingerprint. 119
Figure 6.1 The pre-processing; (a) is pre-processed resulting in (b) 128
Figure 6.2 The block-diagram of EPCN FPGA architecture. 129
Figure 6.3 Formation of addresses by hashing from input patterns. This is

prior to the learning process.
130

Figure 6.4 Formation of addresses by hashing from input patterns. This is
prior to the learning process.

132

Figure 6.5 This shows that EPCN fits Virtex-II pro 134
Figure 6.6 Wrong recognition: A recognition result from EPCN when traine

to “9”, and shown “1” in recognition phase.
136

Figure 6.7 Ambiguous state: A recognition result from EPCN when trained
“9”, and shown “1” in recognition phase.

136

Figure 6.8 Correct recognition: A recognition result from EPCN when train
to “9”, and shown “1” in recognition phase.

137

Figure 6.9 A plot of % recognition against number of pre-group layer;
division = 1000; main-group layers = 3; pre-group layer
increase from 1 through to 5.

139

Figure 6.10 A plot of % recognition against number of main-group layer;
division = 1000; pre-group layers = 3; main-group layer
increase from 1 through to 5.

139

Figure 6.11 A plot of % recognition against division; the main-group layers
= 3; pre-group layer = 3; division is increase from 100 through
to 700.

140

viii

LIST OF TABLES

Table 3.1 Comparison of fix-EPCN and rand-EPCN. 62
Table 3.2 rand-EPCN; Record of percentage recognition when system

parameters are varied. Numbers of pre- and main-group layers
and numbers of division constitute system parameters.

67

Table 3.3 Fix-EPCN; Record of percentage recognition when system
parameters are varied. Numbers of pre- and main-group layers
and number of division are system parameters.

68

Table 3.4 Comparison of EPCN with other neural networks 71
Table 4.1 Partitioning of the input space in experiment 1; NTW = Base

classifier; # = number.
86

Table 4.2 Comparison of a combiner with base neural networks when F
= 5; Ni = 5. Clasf. = classifier; NTW# = Network, where # = a
number. % = percentage.

86

Table 4.3 Comparison of a combiner with base neural networks when F
= 5; Ni = 10. Clasf. = classifier; NTW# = Network, where # = a
number. % = percentage.

86

Table 4.4 This table shows the performance (in % of patterns recognised)
of MCS with respect to large pattern recognition problems. In
this case fingerprints.

88

Table 5.1 Randomised input classes. NTW# = Network, where # =
1,2,3,…n.

97

Table 5.2 An output of EPCN 109
Table 5.3 Summary of results obtained when the experiments in sub-

section 5.4.2 were performed. Column 1 and 3 represents class
numbers, while column 2 and 4 represents the percentage (%)
of patterns recognised in a test set.

115

Table 6.1 Comparison of FPGA-based typical weightless neural network,
and EPCN

127

Table 6.2 An extract of resource utilisation showing the conversion of
EPCN to gate-level components.

135

Table 6.3 Comparison of execution time 141
Table 6.4 Comparison of Hardware and Software implementation of

EPCN. All numerical values referred are positive whole
number.

142

Table 6.5 Comparison of hardware EPCN with other neural networks
implemented on other platforms. The database employed is
human eye Iris

142

ix

List of Publications

1. Lorrentz P., Howells W.G.J., McDonald-Maier K.D., Enhanced Probabilistic
Convergent Network, RASC 2006, K. Sirlantzis (Ed.), pp. 267 – 272, 2006.

2. Lorrentz P., Howells W.G.J., McDonald-Maier K.D., Design and analysis of a novel
weightless neural based Multi-classifier, World Congress on Engineering, July 2007,
Vol. 1, pp. 65-70.

3. Lorrentz P., Howells W.G.H., and McDonald-Maier K.D.: A novel weightless

artificial neural based Multi-classifier for large classification, Neural Processing
Letters: Volume 31, Issue 1 (2010), Page 25.

4. P. Lorrentz, W.G. Howells, K.D. McDonald-Maier: An FPGA based adaptive

weightless Neural Network Hardware, IEEE, NASA/ESA 2008, AHS-2008,
Noordwijk, The Netherlands, June 22-25 2008, pp. 220-227.

5. P. Lorrentz, et al., An advanced combination strategy for multi-classifiers employed

in large multi-class problem domains, Appl. Soft Computing J. (March 2011),
Volume 11, Issue 2, ISSN 1568 – 4946, 2151–2163, doi:10.1016/j.asoc.2010.07.014.

6. Lorrentz P., Howells W.G.J., McDonald-Maier K.D., An Analysis of Hardware

Configurations for an Adaptive Weightless Neural Network, World Congress on
Engineering, July 2008, pp. Vol. 1, pp. 66-71.

 10

1. THESIS INTRODUCTION

1.0 Introduction

 A neural network attempts to solve a particular problem with which it is identified as an

expert. The methods with which neural networks provide solution vary. Any of the method

usually relies on mathematical calculations. The definition of neural network assumed in

this thesis is due to Haykins [49], and it states:-

A neural network is a massively parallel distributed processor made up of simple

processing unit, which has natural propensity for storing experiential knowledge and

making it available or use. It resembles the brain in two respects:

1) Knowledge is acquired by the network from its environment through a learning

process.

2) Inter-neuron connection strengths, known as synaptic weights, are used to store the

acquired knowledge.

It is noteworthy that the term “neural network” and “classifier” may refer to the same

network loosely in this thesis sometimes. Most pattern recognition problems can however

be solved by performing operations, such as one-to-one or one-to-many mappings on input

patterns to output. When an input pattern is binary, the problem is reduced to a simple

logic problem. Under this condition, Random Access Memory (RAM) based weightless

Neural Networks (classifier) are well suited. Pattern recognition problems become

attractive given that it is a simple case of transforming problems to its logical equivalent

and supplying it to a RAM-based Network for solution. An early variation of RAM-based

classifier known as n-tuple recognition system was introduced in the 1950s by Bledsoe and

Browning [10].

 Most customary weighted neural networks, during training, passes through many

epochs. Epochs refers simply as the number of times the input data will be accessed by the

network, before the error rate decreases appreciably. The epochs of training are often quite

large, ranging from the order of tens to order of thousands sometimes. During the epochs,

it is expected that the input data does not change value or structure, i.e. it is typically

required that input dataset be static during learning. This period could last for minutes and

hours. This is disadvantageous for dynamic and real-time systems and systems from which

fast and intelligent response is required. In such situation as these, a neural network from

which one epoch of learning is required is more beneficial. One epoch of learning is also

 11

referred to as one-time pass over the input database; which is also referred to as one-shot

learning for weightless nets. One epoch of learning implies time reduction as compared to

many epochs of learning. It also implies a reduction in time required for input pattern to be

stationary. Stationary in the sense that input pattern must not change between sampling

intervals. Although it is possible for RAM-based classifier to make several passes over an

input space, this may not be required for an increased performance. Quite often, one-pass

over the input data may be sufficient. Austin [7], Howells [57], and some other authors

have experimentally confirmed this on RAM-based classifiers. RAM-based classifiers

identify itself with binary number. So that both input and output data are inherently binary.

Because of this and the reasons in subsequent paragraphs, the decision to work in areas of

weightless neural system may be beneficial and significant.

 Examples of RAM-based classifier that has combined advantages of one-pass over

input data-set, sometimes called one-shot learning, and the ability to process probabilistic

reasoning have not been successfully produced. Recall that probability is usually expressed

as a number lying between 0 and 1. Secondly, associated with it is the frequency of

occurrence of events. These characteristics are specific to RAM-based classifiers reported

in this thesis. For this reason, the study of weightless classifier is attractive.

 All neural systems presented in this thesis require mainly reading from and writing to

RAM-memory locations for their functionality. For this reason, they are commonly called

RAM-based classifiers, since almost all mathematical functions are converted to their

Boolean equivalent. For example, Boolean addition does not demand a high memory

requirement as does floating-point calculations. Thus the amount of mathematical

calculation performed is relative to the amount of data supplied to the classifier. Based on

this fact, the decision to implement weightless neural network is motivated. Secondly,

floating-point and continuous mathematics require a relatively long time to complete. The

long completion time of processes also implies long training and recognition time of neural

network. Thus the elimination of time required for traditional mathematical calculation, by

replacing many forms of mathematical calculation with their equivalent Boolean logic,

will be beneficial, and it is a significant venture. It also constitutes one of the main reasons

for deciding to consider mainly weightless neural networks in this thesis.

 In order to increase the speed of weightless neural networks, methods such as

pipelining and parallelism are introduced. Parallel execution of processes means different

and many events occur concurrently. Pipelining is a group of parallel processes with a shift

in time. But pipelining and parallelism has no software equivalent, they apply almost only

 12

to hardware design. Employment of pipeline and parallelism in hardware design is

required when confronted with an implementation of a complex system such as addressed

in this thesis. To enable the employment of weightless classifier on large-class database,

the implementation of a pipelined system is significant. Now and in future, neural

networks will have an increasing number of large-class databases to classify. For this

reason, it is decided to implement RAM-based neural network in hardware.

 The Probabilistic Logic Neuron (PLN) [71] and Generalised Convergent Network

(GCN) [57] are notable examples of weightless neural networks. Probabilistic Convergent

Network (PCN) is introduced due to its ability to process probabilistic reasoning.

Probabilistic reasoning finds itself in PCN and is beneficial in many respects. One of the

most important benefits is the confidence measure obtainable at the output of PCN.

1.1 Aims and Objectives

 When PCN was first developed, connectivity are formed as specified in [57]. This

method fails to consider other attributes and features of patterns well suited to connectivity

formation. Secondly, it does not consider alternate method of forming connectivity [65],

[76]. These motivate the intention to introduce other methods of connectivity formation

algorithms to PCN. Introduction of new connectivity methods to PCN facilitates its

application to many other problem domains such that the word “enhanced” is added to the

PCN, and the new neural network is called Enhanced Probabilistic Convergent Network

(EPCN). When other connectivity formation methods are introduced, different types of

PCN may result as different types of connectivity methods are utilised, and thus able to

solve different types of problems.

 Multi-classifier (MCS) design is motivated by the need to improve performance on

“difficult” patterns such as found in some handwritten characters. Weightless MCS have

an added advantage of reducing problems to simple logic problem. A pattern is termed

“difficult” if it could not be classified, or if it may be classified wrongly by a neural

network. A Multi-classifier System consists of a number of single classifier arranged in

such a way as to decrease classification errors beyond that which is possible for a single

neural network. The need to design an MCS consisting wholly of weightless classifier is

motivated by computation overhead, speed, and memory requirement. These are much

reduced in a random access memory based MCS as compared to a customary (other

 13

alternative) MCS. Weightless multi-classifier design is motivated by very low

computation overhead, high speed, and low memory processing requirement.

 Currently, most traditional MCS often struggles with large-scaled multi-class databases

such as found in biometric domain. For this reason the state-of-the-art MCS may utilise

very many base classifiers when classifying very large-scaled multi-class databases. There

are other problems associated with traditional MCS such as bias, and saturation effects.

Bias and saturation effects may affect weightless MCS also. Providing solution to these

problems constitute the motives for specific weightless MCS design in this thesis. Such

that, it may be demonstrated that a weightless MCS consisting of few base classifiers is

capable of classifying biometric database without performance trade-offs. In short,

solutions to bias and saturation effects in weightless MCS will be addressed. The potential

industrial benefit of each MCS will be demonstrated by their application to databases such

as handwritten character (such as are found in filling of forms), and in fingerprint

verification.

 One of the aims of this thesis is to research, in practical terms, the possibility of

implementation in hardware (possibly FPGA) of a weightless classifier. Currently, a

hardware implementation of a complex weightless NN is very rare. The possibility of a

hardware implementation offers many benefits such as ease of application (e.g. a PC is not

required), higher speed of execution of processes etc. An extension of the hardware

implementation may be enabling and enhancing a variance of the neural network to

portable devices. Thus a hardware implementation is significant and beneficial when time

and ease of application are considered. For these reasons, this thesis examines the

implementation in hardware of weightless classifier, and RAM-based multi-classifiers.

Hardware implementation of EPCN also shortens the time requires for learning and

recognition. Additionally, hardware implementation of EPCN is motivated by the scarcity

of a digital classifier hardware that classifies a pattern, and at the same time provides a

level of confidence that a pattern meant for recognition belongs to each class. Hardware

implementation of EPCN is attractive because of its speed and portability which are

comparable to (and may surpass) that of existing neural networks. This means that it is a

good alternative (and even a better alternative) to a state-of-the-art neural system. Software

implementation of weightless multi-classifier systems and Hardware implementation of

EPCN has memory consumption overhead, and also the problem of mapping all

probabilistic values (between 0 and 1) to positive whole number values. Research efforts

in these implementations should place adequate consideration on these problems.

 14

 This research is of academic significance since; the experimentation with different

types of connectivity usage on PCN has exhibited different types of characteristics of the

network which has not been encountered. Secondly, these implementations have made

possible using weightless NN in parallel and hierarchical design of MCS. Works in this

thesis may be useful in providing a hardware and software prototype of EPCN, and also a

software prototype of a MCS, for industrial and academic benefits. Since the MCS and

EPCN, when implemented, may also be used in Banks and Hospitals for recognition on

handwritten character, therefore for “good” pattern target performance may be expected to

be very high, whereas for “difficult” patters target performance may be expected to be

high. False recognition and low % recognition of handwritten characters may be

intolerable in banks and hospitals, because of aftermath consequences.

 The work is also motivated by the intension to produce intelligent neural systems

which have applications in industries and also in, land, sea, and air based exploration

systems. Production of this system concerns mainly the production of sub-systems that

carry out the perception of data, interpretation of these data, pattern recognition, and

control signal. This will be achieved by using real-world data, and external industrial

application. The projects could be grouped as follows:

1. Input data sensing, and input data pre-processing.

2. Weightless Neural Networks (NN):- RAM-based and using formal logic.

3. Weightless Multi-Expert System.

4. Hardware development.

 The rest of this chapter is organised as follows. The projects contained in this thesis

employ the work in [57] as background materials so that, in section 1.2, the content of [57]

with respect to PCN is reviewed as a background material for the thesis. The organisation

of the projects reported in this thesis is explained in section 1.3. In executing these plans,

the areas where difficulties might arise are explained in section 1.4. This is followed by

conclusion in section 1.5.

1.2 Weightless Neural Networks

 Weightless neural network is formally defined as a neural network whose functionality does

not explicitly depend on activation function and weights. One of the advantages of this class

of neural network is that it neither requires high mathematical computation nor high

linguist demand. But require only two values “1” and “0” for its functionality. Since

only two values are involved, they may be referred to as binary (dependent) neural

 15

networks.

 Most problems which may be difficult for other classes of NN or require high

resource demand are solved easily by binary neural network, thus making this class of

neural network an important class. The binary neural network is also called RAM-based

or weightless NN. They depend, for their functionality, on Boolean logic. So that,

mapping problems to their Boolean equivalent is the only requirement. Mapping

problems to their Boolean equivalent signifies a mapping to binary domain.

 The necessity of design and application of weightless NN could thus be seen from

the much less resource demand, high speed, and comparable performance. A simple and

quick illustration of how problems may be mapped to logic domain is the recognition of

the character “0”. The character “0” is shown in figure 1.0. The problems become very

simple to resolve when they are threshold-binarised to give binary pattern. Thus pattern

recognition problems could be expressed as Boolean or Logic function involving only

two values, 1 and 0.

RAM-based (N-tuple) weightless NN is normally employed to implement and map these

logic functions. There is one-to-one mapping between the recognition problems and the

logic functions. RAM-based NN provide solution to these problems by mappings to

these logic functions. Besides, weightless NN offers considerable advantages over

Figure 1.0: Example of input pattern.

Pixel for digit “0”
is converted to “1”.

Background pixels
are converted to
“0”.

 16

weighted ones; these are:-

• One-shot learning: - This refers to one-time pass over the input database. RAM-

based NNs does not go through many epochs of learning as the weighted ones.

• It is fast: - They are often arranged in look-up Tables (LUTs). And learning is a

process of modifying the content of these LUTs. No complex mathematical

computation involved.

• RAM-based NN will attempt to provide input-output Boolean logic mapping for

any arbitrary problem.

The operation of RAM-based classifier is analogous to that of conventional RAM chip,

namely, it consist of address-line(s) and memory locations. Because RAM-based NN is

binary in nature, for n number of address-line, 2n memory locations can be addressed.

The relationship between the address-lines and memory location is

y = 2n
Where:
n = number of address lines; here, this may be referred to as connectivity of the neuron.

y = number of memory location; this is referred to as a neuron with n connectivity.

Of a particular interest is the architecture espoused in [110] which will be explained

here.

 Figure 1.1 shows a diagram of weightless classifier whereby the input pattern is a

threshold image. An algorithm often exist, known as learning algorithm, which connects

the image features to the neurons located in the RAM. Within each neuron are 2^n

numbers of locations where n = number of address-line (the connectivity). A good

example of weightless classifier is PCN. For this reason PCN is also referred as n-tuple

Figure 1.1: A schematic of a general weightless artificial neural network.

 17

classifier. The process whereby the RAM accesses the input pattern, and some locations

within the neurons in each layer are assigned non-zero values, is called learning process.

 Similarly, the process whereby the RAM accesses both the input pattern and the

learned RAMs, and some locations within the neurons in the RAM are assigned non-

zero values, is called recognition process. These RAMs (the “recognition” RAMs) are

combined to the output. This represents the output of the neuron. The output may be

feed-back iteratively until convergence or a fixed number of times (see figure 1.1)

during a recognition process.

1.3 Organisation of the Research Projects in the Thesis

 This section introduces the projects that constitute the research. It then explains the

planning of the projects logically. Some terminologies will be introduced as follows.

 Difficult pattern: A “difficult” pattern is a patter class that cannot be classified by

weightless NNs when they generalise. The weightless NN require an auxiliary system

and/or be put into a special behavioural mode before they are able to classify “difficult”

pattern. Example of methods used to classify difficult pattern are Boosting and Bagging.

The “good” pattern class can always be classified correctly by weightless NN when they

generalise well.

Ambiguous cases: Ambiguous case of pattern recognition occurs when a pattern is said to

belong to more than one class with equal probability during recognition. Thus the

ambiguous pattern cannot be assigned to a specific class by the weightless NN during

classification. Ambiguous case may be event-driven (behavioural) within the NN structure

such that in some cases it may be correctly classified. Bias (see below) may also give rise

to ambiguous cases. These have nothing to do with a pattern (a “difficult” pattern) that is

consistently classified wrongly. When a specific pattern is consistently ambiguous, it may

also be called a “difficult” pattern.

Saturation effect: as patter class becomes large and also for increasing large number of

classes, the weightless NN distinguishing features for inter-class classification diminishes,

this phenomenon is known as saturation effect.

Bias: The weightless NN is said to be biased when the performances depend on a specific

arrangement of the training classes.

 18

 By formulating some problem areas associated with these projects and explaining

method(s) which shall provide solution to them, the project plans will become clearer.

A) Problem: How to optimise PCN/MCS to achieve better recognition performance?

Secondly, what effect will system parameter modification have on performances?

 Proposed Solution: Paramount in this area is the address formation methods. It is

intended to perform both literature research and practical research into optimisation

techniques. The introduction of novel weightless NN will be attempted. If the novel NNs

give promising result, then improvement of the NN for performances and robustness is

required. In such situation, Genetic Algorithm (GA) may be considered for parameter

optimisation. A better solution is an intrinsic improvement to the weightless NN which

does not warrant an auxiliary system like GA. One or two of these techniques may be used

on PCN/MCS. And their effect on performance will be considered.

B) Problem: What modification to what aspect of the PCN/MCS will increase

generalisation, most especially on “difficult” patterns? There are other problems such as:

(1.) ambiguous cases (2.) saturation effects. (3) bias

 Proposed Solution: It is to be expected that performance depends, to some extent, on

type of input database also. Large number of inputs may also lead to saturation. These

projects may also consider:

1) Investigate effects of tuple-size.

2) Consider using filter.

3) Consider using Particle swarm/Ant-colony optimisation.

4) Genetic Algorithm.

5) Reconfiguration: Dynamic and static adaptation techniques.

 To extend the functionality of PCN (i.e. increase the situations where it may be utilized),

reviewing the input mapping method is in order. The first part of this work will focus on

PCN and its enhancement, whereby two novel types of connectivity will be introduced.

The first part of this work focuses on two types of PCN. The main differences between

these PCNs are in their input mapping methods. It is envisaged that the address formation

method be substantially different from that of [57].

 Secondly, since PCN expects its input to be binary and most real-life input varies

greatly, tools for processing input to give binary patterns are developed.

 Howells [57] explains the advantages of RAM-based classifier but does not point out

serious limitations to its areas of application. Of a particular interest is a large multi-class

problem that is databases which consist of large classes. With this type of databases there

 19

are two major problems. One is known as bias and the other is called saturation effects.

Bias toward a class occurs when the probability of recognition of a class is unusually high.

Saturation occurs when distinguishing features of classes are no longer represented within

the network. The network is said to saturate. For these reasons single neural network

becomes incapable of classification of large databases. It is to be noted that all intended

neural networks designed depends on logging and retrieval of information from RAM-

locations in a neuron. By “good” pattern is meant those patterns easily recognisable by any

classifier, while “difficult” patterns are those patterns that are classifiable only by special

techniques such as Bootstrapping, Bagging and Boosting. Weightless classifiers capable of

classifying large-scaled multi-class databases are very few. The aim therefore is to

implement multi-classifier using RAM-based neural networks as component (base)

classifier. The proposed MCS (see paragraphs below) may not require a special technique,

such as Bootstrapping, on “difficult” pattern (see section 4). The proposed Multi-classifier

system has some advantages over the contemporary MCS. For more details see section 2.2.

 It is worthy of note that the input format of Enhanced Probabilistic Convergent

Network (EPCN) demands an encoding of its input if it is intended as an intelligent

combiner. In order to map the output of the base classifiers to the input of the intelligent

combiner, none of the existing gating functions were found suitable. The unsuitability of

existing gating function motivates a new gating function. The new gating function

introduced constitutes a combination strategy and is known as a combiner unit. Thus the

design of a RAM-based MCS automatically entails a design of a novel combining strategy

– the combiner unit. To fully test the impact of the combination scheme, a parallel

Figure 1.2: Schematic diagram of a multi-classifier. It consists of
different types of base network in parallel. [40]

 20

arrangement of component classifiers is preferred, of the type shown in figure 1.2.

 When the proposed multi-classifier have been designed, it becomes appropriate to

explore its usefulness by experimentations. Experimentations on some databases then

follow. Experimentation on the MCS employs fingerprint databases. Areas of automatic

template-free fingerprint verification have been subject of intensive research. It is also

noteworthy that biometric databases are characterized with large classes. This large-class

criterion makes it a suitable candidate database for the MCS reported in the thesis. If the

MCS is able to generalise, it may found application as a biometric template-free

fingerprint verifier.

 There are situations which demands autonomous operations such as in automated

machines, Robots, etc. There is also electronic harsh surrounding in which an intelligent

weightless neural network might operate, e.g.; sea exploration. To enhance the capability

of the presented software-designed EPCN and weightless multi-classifier in such

environment, the implementation platform needs to be changed. Secondly, a quick and

accelerated response is required in cases of emergencies. These conditions suggest a

hardware implementation, because a hardware-based classifier operates very fast as

compared to a classifier designed in software. High speed of hardware based design is very

suitable for cases of emergency and adverse conditions. It suggests a digital hardware

which is reconfigurable. Virtex-II pro is an advance Field Programmable Gate Array

(FPGA), and belong to a group reconfigurable (see paragraphs below) FPGA. The high

level of integration possible with FPGA means it lends itself easily to implementation of

complex electronic systems. Reconfigurable FPGA, like Virtex II pro, offers rapid design

process and reprogrammable functions.

 21

This is in contrast to micro-processing whereby functions are not reprogrammable and a

long time is required to produce working silicon. Also, since EPCN is adaptive in nature,

to adequately represent its characteristic, a reconfigurable FPGA is required. The Virtex-II

pro development board, Figure 1.3, is an advanced digital prototyping board, it is

reconfigurable and found suitable for EPCN implementation. The proposed hardware is

expected to operate autonomously, thus suitable for electronically harsh surrounding,

autonomous machines and robots.

ORGANISATION: - The researches investigated have been organised into chapters. The

chapters are organised as follows.

 In chapter 3, other forms of connectivity were successfully introduced, followed by

additional enhancement in what is now called Enhanced Probability Convergent Network

(EPCN). For example, PCN cannot train/recognize objects of type shown in figure 1.1

(section 3.1) while EPCN can. Two types of EPCN are designed in software and they are

employed on a benchmark of unconstrained handwritten numbers. It is expected that the

classifiers, taken singly, may be unsuitable for applications that demands higher accuracy.

Figure 1.3: Annotated Diagram of Virtex-II pro which will be used in EPCN
prototyping. [134]

 22

Secondly, a single classifier will often struggle with large-class classification tasks. These

motivate the design of multi-classifier.

 In chapter 4, and 5, various classifiers are designed and used for various purposes. The

multi-classifiers designed in chapter 4 introduces a combination strategy (i.e. classifier

fusion methods) suitable for weightless multi-classifiers. This combination strategy

together with a weightless multi-classifier is tested on unconstrained handwritten

numerals. The multi-classifiers are unsuitable for very large classification tasks due to

bias, and saturation.

 In chapter 4, a multi-classifier is designed, and solutions to bias and saturation

problems are provided. The target application in this chapter (i.e. chapter 4) is biometric

problem domain. Biometric database classification tasks demand very high performance

accuracy, and are usually very large databases. High accuracy is required because it deals

with issues such as authentication, and identification of individuals. The biometric

database utilised here is fingerprint databases. The input, and the training strategy of the

optimised multi-classifier utilised is specially planned so as to minimise problems of

saturation and biases. Excellent performances are achieved. But very poor performances

are also achieved.

This motivates a consideration for, possibly, a new combiner or optimisation of the

existing one.

 So that in chapter 4, the coding scheme of the combiner is replaced by a better encoding

scheme, and again tested on larger classes for which the multi-classifier of chapter 4 fails.

In the same chapter, comparisons are drawn between classifier fusion using EPCN and

majority voting method. No 0% performances are observed, rather all performances are

above 60%.

 The speed of software implemented EPCN is determined by sequential execution of

function calls, refresh rates, etc. This is to such an extent that, it is difficult to employ

EPCN in certain professional areas. This speed constraint might be minimised by

considering parallel execution of function calls, pipeline of certain processes, and memory

management within EPCN. These scenarios motivate the hardware design of EPCN in

chapter 6. Reconfigurable field programmable gate array (FPGA) of advanced type is

considered as a suitable hardware. Secondly, since EPCN is adaptive, its re-configurability

and/or adaptability are investigated also in chapter 6.

 The conclusion, in chapter 7, of the thesis summarises all the works accomplished, and

reflect on their merits, demerits, and their application potentials.

 23

 There are problems envisaged in the design of these systems as presented below. These

problems are however surmountable.

1.4 Major Challenges

 The current PCN could only process data of known size explicitly specified to it. And it

is required that the number of classes in one training session not to be too large. This

makes possible a one-shot learning since most system parameters and database parameters

are explicitly specified a priori. In this thesis however, the removal of these constraints is

desirable. Since the aim of the thesis is also a design which is generic, adaptive, and

reconfigurable, the removal of explicit specification of both systems and database

parameters represent a right step in the direction of adaptability and wider applicability. It

is challenging to design such a system that identifies an “optimal” database and system

parameters to use in learning and recognition. More so of a challenge as to add to this the

possibility of high recognition rate in one pass over the input database.

 Currently, most weightless classifier converts any mathematical calculation to its

equivalent Boolean calculation automatically, and fails completely where the classifier

cannot convert the problem to its Boolean equivalent. To widen the scope of mathematical

calculation possible for conversion to its equivalent Boolean logic and wherever the

weightless neural system fails to convert a given function to its Boolean equivalent, a

coding scheme is employed. The coding algorithm is a conversion, a priori, of a given

mathematical function to a simpler form suitable for conversion to its Boolean equivalent.

Deciding on the best possible coding algorithm to replace a given mathematical function

posses a significant challenge.

 The advanced nature of the classifier planned demands reduction in execution time as

and where possible within the algorithms. The nature of the classifier allows training and

recognition in one period (one epoch) of learning, the so-called one-shot learning.

Recognition in one epoch is beneficial and posses a significant challenge to this project.

The benefit and significance of one-shot learning become pronounced when dealing with

large classes and large-class databases. This is lacking in the present-day weighted

classifiers.

 Pipeline processes is desirable within the functionality of the classifiers, so also is

parallelizing of processes as both saves time. The structural impact and significance of

pipelining and parallelism is the reduction in overall size of each classifier. It is believed

 24

that utilisation of pipeline and parallel processes may enable the classifier to fit wholly

onto the FPGA. It is a big challenge to determine when and where, within the neural

networks’ functionality and structure, is a pipeline or parallel process required, and if so

does it lead to an overall reduction in size of the classifier?.

 Other difficulties encountered are the processing of large amount of data, and real-

time processing. Real-time processing of data involve a multi-classifier system capable

of “online” training, rapid adjustment of its parameters, and capable of handling data

stream in a timely manner. Multi-classifier shell is best suited to pattern recognition and

interpretation of data. A multi-classifier has (for its input) results from the subsystems

and combine these result, in order to produce appropriate responses. The multi-classifier

section often starts by introducing classifier in general, whereby specific types of

classifier are described briefly. In conclusion, programming challenges in the software

and the hardware design are as follows. The major areas where these challenges arise are

stated below.

1. Index and indexing: These problems occur mainly at the boundaries.

2. Encoding method to the MCS combiner: The problem here is deciding which

encoding method is suitable for a given application.

Programming challenging areas to the Hardware design of EPCN are:-

1) Glitches and race conditions.

2) Memory issues.

3) Time and timing.

 It is also a big challenge trying to write such portable code as to fit into Virtex II pro

or Single-chip-microprocessor. It seems that testing and verification demands more time

and expertise.

1.5 Summary

 Boolean logic is simpler and execute faster so that if the conversion is either

automatically done by a tool or by algorithmic programming, there will be a gain in time.

 Considering that the learning is a one-shot learning and that the epoch of learning can

be limited to one without appreciable error, the system thus designed will be very fast as

compared to a typical classifier. Projects reported in subsequent chapters will determine if

the systems designed based on these concepts are usable and useful both industrially and

academically.

 25

 In previous sub-section, the decision to parallelize and pipeline as many of the

procedures as possible, were explained. This decision should result in design which are

economical (monetary or otherwise) and portable. The feasibility of implementation of

parallel processes in NNs and MCSs, and resultant benefits are elucidated in subsequent

chapters.

 26

2. INTRODUCTION TO ARTIFICIAL NEURAL SYSTEMS

The aims and objectives of this thesis are explained in chapter one. By means of

introduction to subsequent chapters, this chapter aims to present current methods in

design and application of neural networks.

 Neural networks aims to mimic human experts. A human expert is a person very

intelligent and knowledgeable in a specific area, and is based on certain number of

characteristic outward behaviours. Intelligence is neither proportional to the size nor

number of neuron in the brain, nor the biochemical activities going on in a neuron. But

all these contribute to intelligence, including the biochemical activities which are all the

same in all neurons (names of minerals and extent of activity may differ) of every being.

Thirdly, though one neuron is no more intelligent than any other neurons [49], they are

nevertheless responsible for sensory perception of beings.

 The interaction of neurons within themselves, and with their surrounding, play major

roles in acquisition and processing of knowledge and knowledge related information.

Although, current research efforts have not given a definition of intelligence, it is widely

agreed that an intelligent system possesses one or more of the following characteristics:-

• Ability to invent

• Common sense

• Sensory perception

• Learning and inductive reasoning.

• Pattern recognition and classification.

• Inference from incomplete or approximate information.

• Adaptability to new or unfamiliar situations.

• Display of emotions.

 Neural Networks belong to a group of machines called intelligent machine. Currently,

hardware based artificial neural network (ANN) are also referred to as Neuro-computers,

Parallel distributed processors, connectionist network, etc. [49]. Neural network, being

an intelligent machine possesses many of aforementioned characteristics. The definition

of neural network assumed in this thesis is due to Haykins [49], and it re-states:-

A neural network is a massively parallel distributed processor made up of simple

processing unit, which has natural propensity for storing experiential knowledge and

making it available or use. It resembles the brain in two respects:

 27

1) Knowledge is acquired by the network from its environment through a learning

process.

2) Inter-neuron connection strengths, known as synaptic weights, are used to store the

acquired knowledge.

The procedure followed by classifiers to acquire the knowledge is called learning

algorithm. In case of weightless (also called RAM-based or N-tuple) neural network,

“synaptic weights” may be replaced by “neuron connectivity”. Referring to the

characteristics of intelligent, explained in previous paragraph, classifier concerned in

this thesis shares many of these characteristics [49], the relevant ones are briefly

explained below:-

 Sensory perception: This is made by deriving some parameters or values from input

pattern or data-set.

 Learning (also called training).: See section 2.1.

 Pattern recognition and classification: Classification refers to how best a given

pattern is said to belong to certain class. Recognition concerns a pattern being known.

The recognition algorithms of supervised learning involve minimising the error function

derived from the actual output and the desired output. An output is accepted after a

certain number of epochs or iteration, or when the error has fallen below a set minimum

value. In unsupervised learning, classification/recognition is achieved when a winning

node achieves a certain value or by simply observing the output after a fixed number of

iteration.

 Adaptability to new or unfamiliar situation: This is achieved through the

specialisation/generalisation capability of neural networks [73].

 Ability to acquire knowledge: This is done by high-level processing of information.

Enhanced acquisition of knowledge in a specific field is termed expertise, hence the

term multi-experts (or multi-classifier) [49].

 Since specialisation and generalisation capability is the backbone of every neural

network, a more elaborate explanation of specialisation and generalisation is in order,

due to their importance.

 Specialisation and Generalisation: Generalisation refers to the ability of neural

networks to produce reasonable result for input patterns not encountered during training.

Specialisation refers to high-level processing of knowledge acquired in a specific area.

Many neural networks having the ability to generalise or specialise [49, 73], are often

combined in numbers of forms and termed multi-classifier (expert) shell.

 28

 This chapter is organised as follows. Section 2.1 introduces weighted neural network,

their learning and recognition algorithm, and application areas. Section 2.2 presents an

introduction to multi-classifier systems, while section 2.3 introduces many other types of

neural networks. Section 2.4 explains methods of hardware implementations of neural

systems. While their testing and validation methods are explained in section 2.5. A

summary, which concludes this chapter, is found in section 2.6

2.1 Weighted Neural Network

 The human brain has great capabilities in processing information and making

immediate decisions. This is as a result of a massive network of parallel and distributed

computational element called neurons. The linking and interaction of these neurons

provides living organisms a very powerful capability to learn. This is very much unlike

computers that only implements specific algorithms. Neural Networks (or classifiers) are

designed to model these neurons, their linkages, and their interactions. These could be

achieved by using electronic components or software. The general procedures involved

in modelling of neurons are:-

• Network architecture [73]

• Learning [73]

• Recognition/classification [73]

 In early 1940s, W.S. McCulloch and W. Pitts were the first to make a serious attempt

at modelling the neuron [106]. This ultimately sparked a series of research into neuron

models. The result is the existence of a set of weighted classifiers whose neuronal

interconnection, i.e. the synapses, are modelled by weights. The first attempt at neuron

models were made by Bledsoe and Browning [10], which does not involve weights or

weight adjustment. But rather, certain logic functions will be derived from the problem

set, evaluated by the classifier, stored in RAM-memory. This type of classifier is called

RAM-based classifier or N-tuple classifier. The main aim of a learning algorithm is to

combine the major features of a computer with those of human expertise. A system

capable of learning without a guide could acquire and gain knowledge of its own. Two

main features are desirable in a classifier.

1) Adjustment of their parameter in response to unpredictable changes in their

dynamics.

2) Ability to adjust to a new operating environment.

 29

To (1), Evolutionary methods e.g. Genetic Algorithm (GA) and the like [11] is often

used to evolve optimum parameters to suit the changes in dynamics. GA is also used to

evolve a new configuration whenever a new operating environment is encountered. Thus

learning could always proceed unsupervised and autonomous in any environment.

Learning of classifier normally proceeds in one of the following ways:-

• Symbolic Learning:- Symbolic learning refers to maintenance of a knowledge

base from an operating set of rules. These rules are derived from input data-set and

data relating to the performance of the system. A good example is the self-

organising fuzzy logic system. [73]

• Numerical learning:- This often involve minimising the cumulative sum of

errors between the desired output vector and the NNs’ output vector. E.g. Back-

propagation algorithm.

• RAM-Based learning:- Some features of the input pattern is converted to

numbers and stored in RAM-memory, or these features are used to form

addresses to memory location. A classifier that implements RAM-based learning

is simple and learns very fast. It neither depends on guided rules nor is any

rigorous numerical analysis involved [7].

The types of learning introduced in this sub-section constitute supervised learning i.e.

learning from examples. But in sub-section 2.1.1, unsupervised learning will be

introduced.

2.1.1. Unsupervised Learning

 All neural networks pass through a process of learning. Having introduced supervised

learning in section 2.1.1, it becomes important to introduce the counterpart, which is

known as unsupervised learning. Unsupervised learning is a type of learning where the

classifier is left to discover pattern regularity within classes and organise these pattern

into clusters or categories depending on collective properties discovered. There is no

comparison with a target pattern hence it is sometimes called open-loop adaptation

learning. The result produced at the output is as a result of competition between the

nodes of the output layers. At any point in time, the node with the highest value is the

winner. The connection weight between the input layer and the output layer are often

adjusted in favour of the winning node. Some unsupervised learning schemes exist

where, at the output layer, winning nodes and neighbouring nodes’ connectivity are

 30

strengthened. This is achieved by employing a neighbouring parameter.

 The fuzzy classifiers possess knowledge acquisition system which is capable of

deriving knowledge base rules from historical data. The fuzzy classifiers also possess

the ability to modify its knowledge base and change its configuration without an external

teacher – thus an unsupervised learning. Self-organizing fuzzy logic systems represent a

good example of unsupervised learning [77]. RAM-based classifier exhibit unsupervised

learning when the RAM-locations are modified by the learning algorithm with respect to

intrinsic regularities discovered in the input pattern. In most cases, with RAM-based

classifiers, features are converted into connectivity and used as addresses for the RAM-

location.

2.1.2. Matched-based Learning and other Learning Algorithms

 Matched-based learning is based on similarity between the input, and target pattern (or

desired output). Match-based learning may be regarded as a template-matching with

integrated learning and generalisation capability, and thus able to override noise in

pattern. Also once it is trained, a classifier using match-based learning possesses the

capability of detecting an incomplete version of pattern or a modified version, and thus a

desirable class of classifier. Other advantages over error-based learning are:-

• Easy knowledge extraction

• No catastrophic forgetting

• Fast (one-shot) learning.[19]

 Implementation of matched-based learning algorithm is network dependent. It may be

feed-forward or recurrent Network. An example is a Hopefield network. A Hopefield

network is a topology of recurrent network within which a certain associative (content

addressable) memory is formed. The process of storage goes through a learning

algorithm called Hebbian learning rule. In memory, locally stable states are formed by

the outer product of adjacent nodes, hence the memory is called associative memory

(association of adjacent weights (nodes)). Thus the memory forms series of locally stable

states from any input pattern. These stable states become centres of attraction for any

pattern meant for recognition. Hence the associative memory is capable of overwriting a

noisy or an incomplete pattern presented to it, by using these stable states. Hopefield

statement explain that: “Any physical system whose dynamics in phase space is

dominated by a substantial number of locally stable states to which it is attracted can

 31

therefore be regarded as a general content-addressable memory.” [54]. Consider a set q

of pattern pk (k=1,…q) presented to the classifier with n number of neuron, then the

weight is expressed as

 (2.1)

 (2.2)

where w = synaptic weight update

(2.3)

 (2.4)

After weights initialisation and weight adjustment as in equation (2.2) and (2.3), the

activation rule is applied to produce the output oi (which gives +1 or –1) depending on

the value of the threshold θι .Hopefield network found extensive application in

information retrieval, pattern and speech recognition, and optimisation problems, e.g. the

travelling salesman problem [63].

 Another NN that employs match-based learning is Adaptive Resonance Theory Map

(ARTMAP), and its derivative Reward/Punishement Adaptive Resonance Theory

(RePART). ARTMAP consist of two modules, ARTa and ARTb. Input patterns are

addressed by ARTa and the target or desired output is addressed by ARTb. These

patterns are linked by an algorithm called outstar learning [19], in a module called the

map-field. A vigilance parameter is used to adjust the minimum level of similarity

before a pattern is accepted as belonging to a certain class. This is the scope of

advantages which this type of neural network has as compared to other types of

neural systems. The fuzzy ARTMAP extract its rule in the form of “if-then” from the

patterns and match this with its knowledge base. An added advantage of the fuzzy

1

1 if

0 if

q

kj ki
kij

P P i j
w n

i j
=


≠= 

 =

∑

{ }
1

1 ()
q

T
ij k k

k

qw w P P I
n n=

 = = −  
∑

1

j ij i j
i j
i

O sign w o θ
≠
=

 
 = −  
 
∑

1 if

1 if

ij i i
i j

i
ij i i

i j

w o
O

w o

θ

θ
≠

≠

 >


= 
− <



∑

∑

 32

ARTMAP (variance of ARTMAP) is that it is capable of autonomous learning in a non-

stationary surrounding. Fuzzy ARTMAP employs the winner-take-all in its decision. The

RePART NN [19] uses the reward/punishment strategy for its decision. These NNs

learns by creating a new set of neurons, or RAM-locations are created to store

information about new patterns. These new neurons created are called category neurons.

In case of fuzzy ARTMAP, new rules are created and added to the knowledge base. The

ARTMAP NN and its variance have the following disadvantages:

• They are sensitive to noise which may cause category (neuron) proliferation.

• Misclassification of pattern during recall process.

 When results from ARTMAP family of NN have been compared with those of error-

based learning NNs, it was found that the ARTMAP NNs out-performed those of error-

based learning [19] in many cases. ARTMAP NN found application in medical

diagnosis. Other forms of learning Algorithms are:

• Conventional algorithm. [39]

• Deterministic algorithm. [14]

• Lazy conventional algorithm. [32]

• Lazy deterministic algorithm. [32]

• Progressive algorithm. [33]

The Goal seeking neuron (GSN) network is a good candidate for these algorithms.

The question as to when does a neuron starts learning and when does it stop is answered

in the concept of activation function. This is a topic of sub-section 2.1.3.

 Reinforcement learning: - This is a type of learning that includes effects from its

surrounding. Reinforcement learning is hereby explained with respect to RAM-based

classifier as follows. Weights are set to initial random values. In RAM-based classifier,

the RAM-locations are initialised to u or zero (0). The weight connection, or the

connectivity (in case of RAM-based classifier) are adjusted according to the feedback

from the surrounding and the classifier’s output [73]. This is a positive feedback system,

since the output nodes with highest value have their connectivity strengthened while

those of lower values have their connectivity weakened. This form of learning is also

called graded learning because the adjustment of connectivity or the update of weights

is regulated by the feedback from the surrounding. When excited by its surrounding, a

random search method is used by the classifier to reach a correct output. Examples of

reinforcement learning are Adaptive heuristic critic and the Q learning. Reinforcement

 33

learning algorithm differs from supervised learning in that there is no target pattern

present a priori. It also differs from unsupervised learning because it involves feedback

from its surrounding.

2.1.3. Activation Functions

 An Activation function is an important function required by a neuron for turning on

and off its activity. The study of this function is important for the full understanding of

learning procedure of classifiers. An activation function is a mapping applied to a

weighted sum of inputs. These inputs are supposed to come from other nodes or neuron,

and the output of this mapping is delivered to the next neuron. The mapping could also

be regarded as transfer functions. Prior to application of activation function f, to every

incoming signal x, is applied a weight wjk. The weights are then summed, and a

threshold θκ is applied as shown in equation (2.5).

 (2.5)

 (2.6)

The output ok (equation (2.5)) of application of activation function goes to the next node.

Activation functions have the following characteristics:

• Ability to model the density of joint probability P(X|Y) for X input and Y output.

• Ability to approximate an arbitrary continuous function on a compact domain

with arbitrary precision.

• Ability to, in conjunction with other processes, classifies images.

The function used as activation function depends on any of the aforementioned

characteristics, and also on dimension. Some names of activation functions are step

(Heaviside) function, equation (2.6) above, sigmoid function, bi-radial function etc.

These are not multidimensional functions. For multidimensional purposes, activation

functions like arc tangent, hyperbolic tangent or multi-quadratic function could be

employed. Sums of one-dimensional activation functions have been reported to yield

()
1

l

k ij i k
i

O f w x θ
=

 = −  
∑

1 if 0
()

0 otherwise
x

H x
>

= 


 34

good performance [49] e.g. Gaussian bar functions, sigmoid bar function. Products of

activation functions have also been used. The multivariate Gaussian gives hyper-

ellipsoidal output densities. A good activation function should not be trapped in local

minima, caught in plateau or oscillate excessively. Activation functions are used mainly

in NNs that involve weights and weight adjustment.

 In RAM-based NNs, activation functions are not used. But it could be argued that

activation function, the Heaviside function, is used since this result in equation (2.5)

which is compatible with digital systems. The RAM-location and the LUTs will be

modified, read from, or written to according to the result or combinations of result of

H(x). This is referred to as address formation or connectivity formation. Otherwise it is

the value of the H(x) or its combination that is written to LUTs or RAM-locations

directly.

 Activation functions are also employed in the process of recognition. The process of

recognition is introduced in sub-section 2.1.4

2.1.4. Recognition and Classification

Classification refers to how best a given pattern is said to belong to certain class.

Recognition concerns a pattern being known. The recognition procedure that follows

reinforcement learning involves the strengthening of connections between a winning

node and input layer. Reinforcement recognition procedure involves a method of

querying the environment in order to validate its output. A reinforcement learning and

subsequent recognition procedure has proved to be closest to human reasoning

procedures by interacting with its physical environment.

 In match-based learning, the actual output is compared with the desired output for

each pattern. Acceptance depends on similarity between the target output and the actual

output. Hopefield neural network for example employs content-addressable memory to

form locally stable states from any input pattern which is used to overwrite an

incomplete or inaccurate version of that pattern when presented to it for recognition.

This is useful in error-correction tasks. The RePART neural network [19] on the other

hand employs reward/punishment strategy during recognition. The winner node will be

rewarded, that is, have the connectivity between them and the input layer strengthened.

While the “looser” nodes will have the strength of their connectivity reduced (i.e.

punished).

 35

2.1.5. Architecture

 Most weighted NNs are arranged in layers which are input, hidden, and output layers

each layer ends in a series of nodes, and within each node are a summation, threshold,

and activation function. Figure 2.1 shows generalized schematics of a node of neural

system.

The diagram (Figure 2.1) shows an input layer Xi(t) i =1,2,3,… connected to the input

pattern. The layer connected to the output layer is called output layer. All layers in

between are called hidden layers. The layers are interconnected (either unidirectional or

bi-directional) by means of synaptic weights, wi, classifiers with a unidirectional

synaptic weights connection are called feed-forward (FF) or open-loop network while

classifiers with bi-directional synaptic weight connection are called recurrent network

(RN). The output of feed-forward network is independent of previous output while the

outputs of RN are fed back and thus depends on the previous output (or state). Examples

of RN are Hopefield network, and time delayed classifier. The supervised learning is

also called active learning [49]. Figure 2.2 shows schematics of typical supervised

learning. Supervised learning requires the input and desired output pattern being

presented to the classifier a priori. During training, the classifier output is continuously

Figure 2.1: The operation at a node of a neural network. Xi(t) – Neural
input; Wi – Synaptic weights; i – 1,2,3.... y(t) = Nodal output. [3]

 36

compared with the desired output pattern. The measure of discrepancies between the

classifier output and the desired output, the error, is used to adjust the weight

connections between the nodes.

 The most commonly used error measure is the mean square error called the error

function. Good examples of supervised learning algorithm are the back-propagation

algorithm and least mean square (LMS) algorithm [49]. These algorithms use mean

square x2 error, (see equation (2.7) below) to updates the connection weights.

Supervised learning is used often in feed-forward NN topology, such as Multilayer

perceptron (MLP), and Radial basis function (RBF). Back - propagation algorithms find

application in MLP while Least-mean-square method is used in RBF. Though supervised

learning exists in fuzzy system and RAM-based NN, it is not a common practice to use

error function to adjust weights.

 (2.7)

Where y2 = output of Neural Network;

tp = desired (target t) output;

and x2 = mean-squared error.

 In some RAM-based and fuzzy NN, features of input patterns are compared with a

knowledge base in look-up-Tables (LUTs), or some values stored in RAM-neurons. The

Figure 2.2: A schematic of supervised learning rule.[49]

()22

1

m
p p

p
x y t

=

= −∑

 37

content of the RAM and LUTs are then modified with respect to the target pattern e.g.

Goal Seeking Neuron (GSN) [19].

ADVANCES IN ARTIFICIAL NEURAL NETWORK RESEARCH: - research

publications in weighted neural network extend both the architecture and the learning

algorithms of this section and prevous sections. Such that neural network could now be

grouped into the following groups:-

 Support Vector Machines (SVM): These are kernel based, and the learning algorithms

depend often on distribution such as Gaussian distribution. The most notable and

industrially applied example is the Radial Basis Function. Significant research publication

in SVM includes Bernad [8], Lopez [80], and these has, in various ways, increase the

application arreas. RBF is a good example of support vector machine.

 Fuzzy dependent Neural Network: Fuzzy algorithms are often applied independent of a

neural network, but current research results have changed the trend to include fuzzy neural

network. In Canuto [30], fuzzy neural netwok is designed and applied to character

recognition. In Karray [73], fuzzy neural network is applied to PID control scheme.

 Bayesian neural networks: These are neural networks whose learning/classification

algorithms are based on conditional probability. Though the concept of conditional

probability has been around for decades, it is only grace to the current research that great

numbers of neural networks has been developed based on Bayesian rule. Notable examples

are Beyers [9] and Bocsi [13]. The variation in the individual algorithm and

implementation are significant and thus the grouping into a distinct group is necessary.

 Percepteron: Backpropagation and percepteron learning is one of the oldest learning

method in history. But current research has introduces very many variations and hybrids of

Multi-layered percepteron. Some notable publications includes; Sukanesh [127], Lahoz

[78], and Nahid [98].

2.2 Weightless Neural Networks

2.2.1 Introduction

 Previous sections have introduced weighted neural networks. Weighted neural

networks utilises high mathematical functions. Accompanying the utilisation of

mathematical function is high memory demand and high resource utilisation. The

 38

fundamental principle behind n-tuple network is that pattern recognition may be assumed

to be the process of building a set of Boolean logic functions which describe the problem.

A standard weightless classifier may be regarded as a discriminator composed of m RAM-

based neurons. A discriminator is a 1-to-N decoder followed by storage cells. A summing

device following the storage cell of a discriminator completes a weightless neuron.

 At initialization, all storage cells may be set to zero. For each training pattern, a “1” is

stored in the memory location addressed by the pattern. When learning completes, some

memory locations will have been set to “1” by corresponding training patterns, while other

locations may remain at “0” or “u” (where “u” denote unknown). The learning record of

the RAM-memory will be used to solve previous unseen problems when one is given as

pattern. During recognition stage, RAM-memory content addressed by the input pattern

are read and summed by the summing device to obtain what is called the discriminator

response.

 Illustration of a basic weightless neural network follows. When input data is presented to

WNN for classification, sub-sets of the Boolean logic function will evaluate to true for a

specific pattern class whereas other sub-sets will evaluate true for other pattern classes;

thus solving a classification task. A simple example is given below for illustration.

Example Basic Look-Up Table (LUT)
Consider a 3x3 LUT below;

Figure 2.3 is a LUT of tuple-size = 3. Each class of patterns has a set of Boolean logic

function that evaluates to true to indicate the recognition of that pattern class. For “T”, the

Boolean logic function that may express “T” recognition is given by:

 (2.8)

Equation (2.8) is shown schematically in figure 2.3. Thus f(T) may classify “T” and all

Figure 2.3: This (3x3) LUT can recognize the letter “T”

()f T ABC DEF GH I= + +

 39

letters that resemble “T”. Similarly f(K) may classify “K” and all letters written as “K”.

By using a logical 1-to-N decoder followed by a set of binary storage memory for each

term of the Boolean logic equation, each tuple (e.g.; ABC or DEF of equation (2.8))

require one storage unit. The Boolean logic decoder is able to calculate all possible

Boolean function of the N inputs. So that when presented with learning input data, various

decoder will indicate which function they have derived from the input learning data. To

classify the test/validation data, the test data is presented to the NN of figure 2.4. The NN

will access the storage cells and evaluate the Boolean functions that are true for each

pattern class. Evaluated values are summed to output. Thus the basic Boolean neural

network learns and classifies patterns.

 Multiples of discriminators are often employed in parallel to learn/classify patterns,

example of which Shefa [116] called m-RAM weightless neural network for handwritten

digit recognition. This is the same as in figure 2.4 except that N = m and m may be any

number greater than 2. When figure 2.4 is implemented in a microcontroller of a robot for

sensor control and/or monitor, we have the scenario of Siti Nurmaini [123]. Though the

basic principle may appear simple, it forms the building block of WiSARD [5] architecture

with a recent application to change detection by Massimo [92] and deformable objects by

Massimo [93].

2.2.2 Probabilistic Convergent Network (PCN)

Many prediction problems and pattern recognition problems can be solved by performing

Boolean logic on them. In situations whereby prediction or recognition problems can be

interpreted in terms of Boolean logic, a type of random access memory (RAM) based

network called Probabilistic Convergent Network (PCN) becomes suitable. An added

Figure 2.4: A basic weightless neural network.

 40

advantage of PCN over existing RAM-based network is the inclusion of confidence

measure.

 To perform a logic mapping, it is expected that all inputs be reduced to binary pattern.

Due to the complexity of architecture and function of PCN, it is worth introducing some

terminologies which will be used throughout this thesis. They are explained below

 Binary inputs: - The Probabilistic Convergent Neuron (PCN) accepts as input,

binary images only. Any input data is threshold-binarized and appropriately resized

so that PCN may make sense of the data.

 Compound symbol: - Symbols are used to denote the neuron output of PCN. The

architecture of PCN is shown in figure 2.5 below. Neuron outputs are inherently

restricted to a small set of symbols often only “1” and “0”. These are set of symbols often

called base symbols. To increase the set of base symbols for a neuron, other symbols

may be introduced. For example, for numbered classes 0 – 9, one may allow the same

number 0 – 9 as possible symbols. This permits the storage and retrieval of multiple

symbols consistent with input classes. The symbols thus employed are known as

compound symbols. Thus for example, a compound symbol consistent with class “5” and

“6” will be “56”. This means that class “5” and class “6” has been presented to the NN.

The main difference in neuron output of PCN, as compared to other weightless nets, is

the indication of frequency. The frequency at which one class addresses a given location

is indicated in PCN and EPCN. For example, for two classes addressing a location, if

class “1” addresses this location 75 times and class “2” addresses this location 25 times,

the output of the RAM-neuron will be: [75 25]. If class “2” addresses the location 25

times and class “1” addresses the location 75 times, the output will be: [25 75]. Thus

PCN and EPCN give the “probability” of occurrence of each pattern.

 Adjustment: - For N training pattern and x division, a number “a” occurring in a

memory location will be adjusted as in equation (2.9):

 (2.9)

This adjustment is necessary to restrict the probability measure of all classes to the

number of division that has been set a priori. If the number of training pattern per class

varies, classes with large training set would have large probability even when they are

ˆ Da a
N

 =  
 

ˆ()a round a=

 the new value replacing a in that locationa =

 41

not many in the test set or validation set. Adjustment reduces this large probability to the

real value present during recognition. Adjustment is also used to remove rounding errors

and truncation errors.

 Division: - This is a value set as the sum of all the scaled probability of the classes.

The probability of occurrence of the classes is proportional to division. For example, if

there are 3 classes and the division is set to 100, then if the output of PCN is, say [50 25

25], the sum of this should equal 100. This result will be interpreted as: The pattern

presented to the NN belongs to class “1” with probability 0.5, to class “2” with

probability 0.25, and to class “3” with probability 0.25. Notice that the length of vector

output from PCN is always equal to the number of classes under consideration.

 Merging: - The term merging referred to a group of layers, composed together so as

to form one layer. Merging of main-group layers consist of averaging the values in the

memory locations with respect to class to form a single compound symbol.

 Neuron: - The smallest complete functional information-processing unit in the PCN

and EPCN is known as a neuron (see section 3.2 for a detailed discussion).

2.2.3 PCN Network Architecture

The PCN consist of a pre-group, a merge layer for the pre-group, the main-group, and

merge-layer for the main-group. A feedback path from the merge layer of the main-

group to the main group layers is included in the design. Each group is arranged in

layers. Each layer consists of neurons. Each neuron consists of storage locations called

the N-tuple locations.

Figure 2.5: A

 42

 An alternative view is to regard each layer as a look-up table (LUT). The neurons are

arranged in (x * y)-matrices where (x* y) represents input pattern dimension. Every

element in an input pattern is associated with a neuron in each layer. . A feedback path

from the merge layer of the main-group to the main group layers is included in the

design as shown in figure 2.5. The pre-group layers are meant for learning while the

main-group layers are meant for patter recognition. Pattern learnt during training are

merged and stored in pre-group merged-layer such that the main-group layer

connectivity can be formed. Results of the main-group layers are merged such that they

can be sent to output and feed back unmodified.

2.2.4 Learning or Training

Learning starts when a new pattern is presented to the NN. It is assumed the pattern is

thresholded (binary). The procedures are as follows:

• Addresses are formed from input pattern. These addresses (also called

connectivity) are used to access neurons within a layer and location within neuron.

• The locations within a neuron are relative to number of classes.

• The size of a layer is relative to the size of pattern (Further information are found

in chapter 3).

• Depending on which pattern class an address is formed from, a corresponding

location will have its value incremented [83]. Otherwise zero will be stored in

the location.

• A normalisation phase followed. This consist of dividing the value in each neuron

location by the number of training pattern of a corresponding class, this is

multiplied by the number of division. The result is rounded to the nearest whole

number as in equation (2.9) of section 2.2.2.

• These whole numbers will be stored in neuron locations of the pre-group.

2.2.5 Recognition or Classification

A recognition procedure is as follows:

• The pre-group layers will be merged into a single layer; this is called pre- group

merge-layer.

• Values in the neuron location of the merge layer will be adjusted to make the

 43

“sum-of probabilities” [57] equal to the number of division.

• The connectivity and pre-group merge-layer will be employed in the formation of

the main-group layers.

• Adjustment of values in the RAM-location follows.

• Merging of main-group layers gives main-group merge-layer.

• Values in the merge layer will be summed and adjusted to become neural network

output. The output may be feed back iteratively into the main-group layers.

ADVANCES IN CURRENT RESEARCH: After the invention of WIZARD [5], and

AURA [7], there has been extension and variation of application of pyramidal neuron and

Correlation Matrix Memory (CMM). Major researches into weightless neural networks

have been mainly extension of the previous one, and application based. Few exceptions do

exist as in Howells [55]. Most current research efforts has aimed to expand the areas of

applications of weightless neural networks as evidenced in Sirlantzis [122], and Lorrentz

[84], where weightless classifiers are applied to biometric and other databases. A future

quantum weightless neural network is also “available” in W. De Oliveira [131].

2.3 Multi-Classifier Systems

 Multi-classifier systems begin in the early 18th century. A notable invention in the

18th century is the Borda Counts, for combining multiple rankings, named after the

inventor Jean-Charles de Borda. Subsequently, a pandemonium was invented in

about 1958 by Selfridge. A pandemonium is a learning paradigm whereby a head-

demon would select a demon that performs best. Thereafter follows several

publications about multi-classifier systems, in which the most notable among these

are Kanal [72] and Minsky [94]. Early works on multi-classifier centred on

combining multiple models of the same problem.

 In the late seventies emerges distinction between models; those which are heuristic

and/or statistical, and those that are not. Many more and differing approaches

evolved. It has now been discovered that the concept of integrating multiple data

sources and/or multiple intelligent system models occurs naturally e.g. combining of

estimators in econometrics, combining of evidences in rule-based systems, multi-

sensor data fusion, and combining of senses in the human central nervous system. It

 44

has been explained that neural networks are expert in one area and not in other areas.

This means that many neural networks are experts in different areas. Could a single

system be designed which, given different and varied problem domain, is capable of

providing reasonable solution? The design of such a system is significant in that it

saves time and resources. The answer to this question is the design of multi-

classifiers and is the subject of this sub-section. The development of classifier shell

demands human experts in the field of interest. One set of human experts deals with

problem representation; they could be engineers, managers, and programmers. They

define and model the domain of problems to be solved. Another set of engineers will

be involved in design of appropriate expert shell. A “shell” in the sense that the

experts should not contain a specific prior solution to a specific class of problem but

rather capable of providing solution to various problem sets. Ideally, an expert system

should have the capability to learn and continuously update itself [73]. Expert shells

are combined in various form to form Multi-classifier Shell (multi = many). There are

four main architectural category of multi-classifier shell, they are:

• Parallel system.

• Modular (Hierarchical) system.

• Sequential (serial) system.

• Hybrid system.

These architectures will be explained below.

2.3.1 Parallel System

 A parallel system here refers to a case whereby a machine and one or more NNs are

arranged to accept input simultaneously, and their output are combined concurrently. A

parallel system is sometimes called ensemble-based system. An example of ensemble

based system is shown in Figure 2.6 which shows the arrangement of NNs in parallel. It

is to advantage if these NNs are as different as possible. The same input signal may be

used to excite these parallel NNs.

 45

The output may be combined by:

• Summation and averaging. [20]

• Summation and weighted averaging.

• Winner-take-all approach may be employed.

In a variant called the blackboard system, various inputs go into a global database

system called the blackboard. This database is then made visible to all the NNs. Since

the NNs are different, different decision is to be expected at their output layers.

2.3.2 Hierarchical System

This is an approach in which input is divided into many tasks, and experts divided into

modules or clusters. One cluster of expert is assigned to one task. Modular network is

formally defined as follows:

“A neural network is said to be modular if the computation performed by the network

can be decomposed into two or more modules (subsystems) that operates on distinct

inputs without communicating with each other. The outputs of the modules are mediated

by an integrating unit which both (1) decide how the output of the modules should be

combined to form the final output of the system, and (2) decides which modules should

learn which training patterns” [49]. A schematic of hierarchical system is shown in

 2.6

 46

figure 2.7. It is possible for one cluster of experts to learn, supervised, while the others

learn, unsupervised. A simple form of modular network consists of single NN as a

module and a gating network.

Before combination of NNs as modules, experiments are performed to determine their

area of expert. And portion of tasks are allocated to each modules of neural network, by

the gating network, according to their capability. Just as synapse work by getting the

right information at the right time for optimum performance so does the gating network

works by getting the right type and amount of training data to the right module at the

right time. The gating network receives the error between the actual output and the

desired output of the neural network; use this in a feedback system to decide which

module of neural network learns which task. Thus the gating network performs the role

of a mediator. It is also responsible for implementing a combination strategy to the

output of the ensemble.

 In a complex system, the modules are arranged into hierarchy. And the amount of

information to each hierarchy is graded, with the module of the highest hierarchy having

the least information resolution. Generally, the NNs in higher hierarchy are “more

intelligent” than the ones at lower levels. [73]

2.3.3 Serial System

The serial system, also called sequential system, comprises of linking the output of one

 2.7

 47

neural network to the input of the other. One type of neural network is used as input

layer, one or more types of neural network processes the fan-in from the input nodes,

and one type of neural network may be used as the output layer. Serial system is

common in Neuro-fuzzy system in what is called cooperative neuro-fuzzy system. As

shown in figure 2.8

This is a Multi-expert shell whereby the conventional neural network extracts fuzzy sets

(membership function) from training data. Fuzzy neural network accepts fuzzy sets as

input from conventional neural network; compare it with the fuzzy rules in a rule base

(figure 2.8). Other possibility exist whereby the conventional neural network (e.g.

MLP) extract fuzzy rules from training data or where the neural network is used for

parameter tuning before the input is piped to the fuzzy system. Data clustering

techniques is used by neural network to identify and extract fuzzy rules from training

data, which is then transferred to the fuzzy system. The fuzzy system implements the

membership function and updates its knowledge base. One important sequential system

is Neural Network-driven Fuzzy Reasoning (NNDF) designed by Takagi and Hayashi.

[128]

2.3.4 Hybrid System

 All other forms of combination of neural networks (the neural networks must be

independent) that is neither, sequential, parallel nor hierarchical (modular) is

hybrid. Various forms exist and could be grouped as follows:

1. Those that have the conventional topology but uses fuzzy neurones at their

Figure 2.8: Cooperative neuro-fuzzy system. [73]

 48

nodes.

2. The conventional fuzzy system that employs classical neural network for

numerical computations either during derivation of membership function or during

derivation of fuzzy rules. This is different from the sequential system, since the

classical neural network could be located anywhere within the fuzzy system.

3. There exist a group of classical neural network that employs fuzzy methods to

update their weights instead of a learning parameter and sensitivity function (i.e.

differential of log-likelihood function with respect to weights).

4. A group consist of fuzzy systems and classical neural network, working

independently, and synchronised.

5. A group involve one or more mixtures from the above-mentioned neural networks.

One example of Neuro-fuzzy hybrid NN was designed by Canuto [20]. In this, a fuzzy

neural network called RePART, a fuzzy multi-layer perceptron (F-MLP) and radial RAM

was used. The RePART neural network is a normal ARTMAP but with reward/punishment

process. The fuzzy MLP is a normal MLP but with fuzzy nodes at the output nodes. Radial

RAM is a normal neuron but employs a radial region, defined by its Hamming distance

from a reference point in its training and recall phase. The final output is then compared

with a radial region defined by Gaussian distribution.

 Another important example is the Adaptive-Network-based Fuzzy inference System

(ANFIS), proposed by Jang [67]. ANFIS is a Sugeno-type fuzzy system. The commonest

ANFIS system is a first- or zero-order Sugeno system.

CURRENT RESEARCH MILESTONE IN MCS: - Research publications on multi-

classifier are increasing with notable methods of combinations. Breiman [16], [17] utilizes

decision tree as base “classifiers” with boosting, and refers to decision tree multi-classifier

system as the most significant development in classifier design in this decade. Refering to

classifier diversity and biases, Gemam et al. [44], and Mitchell [95] maintained that

different types of classifiers have different types of “inductive biases”. The combination of

base classifiers has witness sequences of development - from averaging [108], to majority

voting by Bodgan [12], to using special techniques and/or function by Gunter [119]. The

most advanced stage is the usage of other classifiers for combination [109]. Using

classifier for classifier fusion is termed intelligent combination. The methods used in this

thesis belong to intelligent combination method.

 49

2.4 Hardware Implementation

Neuron was first implemented by McCullogh and Pitts in 1943 when it was represented

by a threshold-logic unit. There after begin hardware development when, in 1959,

Bledsoe and Browning developed the first weightless neural network. Following it is the

RAM-neuron developed by Aleksander in about 1979. There was a brief silence in

hardware neural system development until the mid-eighties, when it was realised that

the massive parallelism inherent in neural network models could be utilized to profit

only by implementation in hardware. This led to industrial development of various

neural systems in hardware. For example WISARD was developed from RAM-neuron

and in 1986 marketed; AURA was developed by Austin, etc. The early hardware

development also spread to other neural systems such as MLP, RBF, etc. The hardware

platforms utilized also vary from digital, analog electronics, optical, to hybrids of these

platforms. Neural network research became widespread in the mid-eighties when it was

realized that the massive parallelism inherent in neural network models promised great

advantages which is realizable only when implemented in hardware. This has given rise

to variety of hardware implementations ranging from digital and analog electronics,

optical, to hybrid techniques.

 Most ANNs are implemented in software. However a hardware implementation offers

considerable advantages over software implementation. These are:

 Speed: - Pipelining and parallel execution of instructions is faster than sequential

execution. Pipeline instructions are more associated with hardware implementation of

ANN. Concurrent implementation of both pipeline and parallel instructions are

possible in hardware but scarce in software.

 Cost: - In high-volume applications, hardware implementation will provide overall

reduction in system cost, by reducing total component count. Total component count is

reduced in integrated systems.

 Reliability: - The decision (output) from hardware neural network is more reliable

when concerned with large input data that involve large amount of computation.

Building of fault tolerance into a neural network system is easier done in hardware.

The performance of software neural network (e.g.; speed) is dependent on hardware

computer on which it is installed.

 50

 Property protection: - Hardware offers protection against “reverse Engineering”

which could be made use of by competitors. The protection offered against “reverse

Engineering” may or may not be effective. Decryption and decoding is always possible

with software based neural networks.

 As components, hardware neural networks are available in different forms. These

include embedded microcomputers, Neuro-computers, Cell libraries, chips and PC

accelerators. Hardware NN implementations are divided into three main categories.

These are:-

1. Digital implementation.

2. Analogue implementation.

3. Hybrid implementation.

The advantage of software NN is:-

 Flexibility: - Software neural network could be implemented on any general purpose

computer. And is generally advisable to do so during experimentation of a new

technology or/and a new neural network. Low-volume applications software neural

network offers (1) considerable advantage in terms of consumption of resources; (2)

more possibility of parameter tuning and dynamic reconfiguration. For high-volume

application however, software neural network is unsuitable due to decreased precision

and long execution time.

2.4.1 Digital Implementation

Digital implementation of NN are characterised by having all values represented in

binary word length. Exact precision values and operations on values are made easy.

Weights and coefficients stored in RAM do not need to be refreshed and are free from

noise. Since inputs from the real world are analogue in nature, converting this to digital

signal may lead to distortion, and loss, e.g. during quantisation. The followings are

different method of digital implementation of NN:-

A) Random Access Memory (RAM) based NN: - When used to classify patterns

not used during learning, neural networks tend to generalise. Depending on a

specific NN, there are various variations of the learning process. The

Probabilistic Convergent Neuron PCN, outputs a graded response due to

decision reached from the main group. Sample hardware implementations of

 51

weightless NN include WISARD, designed by Alexander and Stonham [3]. A

specialised processor, the C-NNAP, has also been designed to implement

Advanced Distributed Associative Memory (ADAM) in parallel [74]. ADAM

hardware implemented, applies the Generalised Hough transform (GHT) to

inputs, e.g. document images. Other weightless hardware implementation

includes pRAM, GSN, etc.

B) Slice Architecture: - These are building blocks for NN of arbitrary word length and

size e.g. Neuralogic NLX-420, Neural Processor, MicroDevices MD 1220, Philips

LneuroChip.

C) Multiprocessor Chips: - This involves having many simple processors on a single

chip. Multiprocessors have two method of operation; one is SIMD (Single Instruction,

Multiple Data). Here all processors work in parallel, executing the same instruction but

on different input data. The other is systolic arrays, the processors operate sequentially,

and one step of an instruction is performed by a processor before passing it to the next in

the array. Examples of SIMD chip are Inova N64000, HNC 100NAP, Siemens MA-16.

D) Radial Basis Function (RBF):- This involves defining and storing regions of

influence or attractions around training input data using basis functions. RBF will often

define hyper-surface around points of influence. Commercial RBF are IBM ZISC (Zero

Instruction Set Computer) chip and Nestor Ni1000 Chip.

E) Other digital designs: - Other digital designs are those that could not be grouped as

belonging to any of the groups above. Examples are: Micro Circuit Engineering

MT19003 NISP (A multilayer Perceptron), Hitachi wafer Integration Chips (Hopefield

Network).

2.4.2 Analogue Implementation

 Analogue neural networks are those neural networks, in hardware implemented,

which employ other alternative means for storage apart from random access memory.

Information is not explicitly stored in 1’s and 0’s. Information is stored in charged

capacitances most of the time. For optical neural networks, information is stored in light

intensities.

 The commonest problem associated with analogue neural network hardware is system

noise. System noise is more pronounced in analogue neural network as compared to any

other hardware alternatives, and it causes limited accuracy for the network. Secondly, the

components of analogue neural network (electronic or optical) are non-uniform. This

 52

arises mainly from the fabrication process and the operating condition. Most learning

algorithms are implementable in analogue, and does give reasonable results. The

algorithms are, in most cases, discretised, and derivatives are replaced by a suitable

approximate equivalent. Most difficulty encountered in implementation of algorithms, in

analogue, is due to representation of non-linear functions. A good example is the use of

Heavyside function in place of sigmoid function. Another example is the replacement of

the Gaussian function in radial basis function network by a triangular function.

 The implementation of neural networks in analogue has beneficial effects. Beneficial

effects may motivate design of neural networks. Of these benefits, the most important

for hardware analogue implementation of neural networks over all other alternatives

are:-

1. Real-time processing: - The processing of information is real-time. Intermediate

storage is not essential for its functionality per see during information exchange

between the neural network and its surrounding, but is an advantage. Thus real-

time processing of information by this type implementation is inherent.

2. High density of NN: - Many components are multi-functional e.g. filters. Multi-

functional utilisation of component saves resources. If there is little or no

intermediate storage required, then the system could be very compact.

3. High speed: - The possibility of real-time processing and parallel processing

increases its speed considerably.

But the difficulties to be surmounted are:-

1. Problems of reliability and accuracy: - Variation in operating conditions, such as

changes in temperature, thermal noise, etc., changes the tolerance of circuit

components. This in turn makes many components unstable and may change

“weights” stored in capacitors.

2. Problems of consistency of weights: - It is difficult to store charges in a capacitance

without changes. Charges stored in capacitances represent the weights. The

capacitances need to be refreshed periodically to avoid loss of weights.

2.4.3 Neuromorphic design

 Neuromorphic refers to circuitry designed which closely emulates biological neuron.

The function ranges from classification to being used as sensor e.g. silicon retina,

synaptic touchpad. The Pulse Coupled Neural Network (PCNN) is an example of a

neuromorphic neural network. A common biological model of neuromorphic neural

 53

network is a model of the cortical column. This follows from the fact that the brains’

cortical column is mainly responsible for information processing in the cerebral cortex.

The cerebral cortex consists of neurons which vary slightly in anatomy. It is the

interconnection between the neurons that plays a vital role in learning. A neuron model

often used in Engineering is known as the Hodgkin and Huxley model [52]. The

Hodgkin and Huxley model of a neuron is characterised by membrane potential Vmem,

potassium ionic current ik, sodium ionic current iNa, leakage current ileak, and a

modulating current im. These currents are voltage V dependent. The time dependent

equivalence of events at a synapse is described by a concept of spike timing-dependent

plasticity (STDP). This describe the spike train (or the waveform against time) of an

event at a synapse.

 Hardware neuromorphic design of neural networks in analogue implementation is

very promising because this has the capability to mimic the biological neurons and

synapses. E.g. Intel 8017 ETANN [101]. In a proton-antiproton collider at Fermilab

Tevatron, Intell ETANN chip is employed in the classification of energy deposited in a

calorimeter as either from electron or from gamma rays.

2.4.4 Hybrid Design

 Hybrid design aims to combine digital and analogue methods. External

communications (excluding input sources) and weight storage may be done digitally

(apart from source) while signal processing is in analogue domain. Bellcore CLNN-32

Chip performs simulated annealing using analogue circuitry. The simulated annealing

schedules store weights coefficient in the digital domain. Other examples are Neural

Semiconductor Chip set comprising SU3232 synapse unit, the NU32 Neurone unit, and

Ricoh RN-100.

2.4.5 Comparison of Implementation Practises

 In hardware, NNs are implemented in analogue or digital. The analogue

implementation demands for reference voltage. Reference voltages are difficult to

maintain. Analogue implementation has a very good performance and low cost. Once

built, the architecture is fixed, therefore suited only to one type of target task. Whereas

the embedded system is more robust and reconfigurable, this involves the use of

 54

software and hardware. The digital system is divided into ASIC and FPGA. Like the

analogue, the digital ASIC is fast to implement, has fixed architecture and very good

performance. The disadvantage being that it is only suitable for one type of problem.

The reconfigurable FPGA has lots of attractions. In addition to having all the advantages

of analogue counterpart, its architecture and system parameters are reconfigurable at

any time. A reconfigurable FPGA may be slower than a “corresponding” ASIC because

of extra time required for modification of system parameters. Digital implementation of

NN does not support floating-point arithmetic, thus runs the risk of non-convergence,

and wrong output. Software implementation is low cost, possibility of high precision,

compact, less tedious, and the problem of non-convergence, and inaccurate output could

be adequately addressed. NNs could be implemented using any programming language;

among them are Matlab and C.

2.5 Methods of Testing and Validation

 By images we mean any picture, character, or number written, painted or captured (in

camera) by man or machine. All images are processed by some functions to scale them

to manageable size. Afterwards follows the binarisation procedure that renders a binary

image. Once they have been converted to binary images, which are regarded as patterns

(or set). Group of similar patterns are grouped into one class e.g. unconstrained

handwritten character “2” written by different people all fall in the same class. For

neural network that depends on weight adjustment during training, conversion to binary

images may not be required. Generally, patterns are divided into three parts:-

A) Training set: - These are patterns used for training. Training sets are often selected

as representative of a class of object.

B) Test set: - These are pattern which were not used during training and which the NN is

expected to generalise to. Test set is often used, during recognition phase to obtain an

unbiased estimate of the generalisation error. Generally, this set will be chosen from a

population of a class randomly.

C) Validation set: - Validation set may be the same as test set or be different. This set is

often used to determine the suitability of NN for any task. And is therefore used to test

how robust the NN is.

D) Measure: - For patterns without cross-correlation, the percentage of correct

classification could be used as performance measure. This is the case in most of the

 55

projects treated in the thesis. But generally, for an output y, and a target output t, the

sum of squared error is often used as measure of performance. The sum of squared error

is defined as:

 (2.10)

where yn = actual output;

tn = desired output;

and ξ =sum of squared error.

If the target variable is binary, for a single output y, we use Bernoulli random variable to

represent the conditional probability of equation (2.11):

 (2.11)

where P(t|x) = posterior probability;

y = output;

and t = target coding scheme.

Taking the negative logarithm and summing yields the cross-entropy error function

given in equation (2.12):

 (2.12)

Where n = number of pattern;

yn = actual output;

tn = desired output;

E = sum of errors raised to power of n.

 For example, for a target class one t = 1, for class one, and t = 0 for the rest classes.

E) Model Testing: - Model testing aims to investigate how system parameters affect the

performance of NNs. For NNs with weight adjustment, this may refer to the learning

rate, biases and decay terms. For weightless NN, specifically for PCN, this refers to the

number of layer in the pre-group, the number of layer in the main group, the division,

and the connectivity pattern. Here, the graph of percentage recognition versus pre-group,

main-group number of division, and connectivity may be used as performance criteria.

F) Test for Application: - The aim of testing for application is to obtain an unbiased

estimate of the generalisation error. Cross-validation and Bootstrapping are both

methods used to obtain an unbiased estimate of the generalisation error. The process is

()2

1

1
2

N

n n
n

y tξ
=

= −∑

1(|) ()t tP t x y t y −= −

ln() (1) ln(1)n n n n

n
E t y t y = − − + − − − ∑

 56

as follows:-

• Divide the pattern into m subset.

• Train the net m times. Then, after every training period, leave one or more patterns

out.

• Use the omitted pattern to compute the generalisation error.

Since the number of unclassified and misclassified patterns is under consideration,

leave-v-out cross-validation is more suitable, where v is an integer greater than one. A

suitable error function should be capable of processing discontinuous cases. Cross-

validation v, is approximately;

 (2.13)

where n = number of training times;

v = number of patterns to be left out.

Sub-samples for training will be selected randomly without replacement. Few patterns

per class may be employed for learning.

2.6 Summary

The current state of the art in classical neural systems has been introduced in general

terms. This is followed by weighted neural systems. Their implementation and

application in a multi-classifier is introduced. Also a class of neural network, the

fuzzy neural network, is introduced as currently and industrially been used. An

introduction to their functionality and application were provided.

 Afterwards, the other type of neural network called the weightless neural network is

introduced. The state-of-the-art learning algorithm, implementation, and applications

were explained. This is followed by introduction to PCN. The current state of work

on PCN and its current functionality is introduced.

 In the next chapter however, novelty (ies) in the architecture and functionality of

PCN will be identified. The novelties may lead to realization of PCN potentials,

thereby making it more beneficial than other existing or similar networks.

11
log() 1

v n
n

 
= − − 

 57

3. THE ENHANCED PROBABILISTIC CONVERGENT

NETWORK - EPCN

This chapter presents a novel adaptation of a weightless neural network entitled the Enhanced

Probabilistic Convergent Network (EPCN). This work is motivated by the need of PCN to improve

its performance and widen the problem domain on which it may be applied. One of the problem

domains is handwritten characters. For this reason, the input mapping methods of EPCN will be

enhanced and tested on handwritten numerals. The EPCN possesses the ability to associate a

relative probability with each candidate class when a test pattern is presented for classification.

The relative probability measures the certainty that a pattern meant for recognition belongs to a

class with the highest probability measure. Two distinct types of EPCN are presented; one is

termed rand-EPCN and the other fix-EPCN. The rand-EPCN employs random selection of bits

within the input patterns to form connectivity, while fix-EPCN uses consecutive bits within the

input patterns during connectivity formation. These EPCNs are contrasted.

3.1 Introduction

This chapter proposes some major modifications to the customary PCN. These

modifications concern the input mapping method, the introduction of input scaling of

patterns, and image processing possibilities. The customary PCN employs a static

method for formation of connectivities, while the methods of connectivity formation

here is dynamic. Possibility of input scaling has been introduced which enhances the

portability of the whole system. Programs for image conversion to binary image have

been introduced. They are employed on figure 3.1(a) resulting in figure 3.1(b) as an

example of its usefulness. Figure 3.1(b) is the form acceptable to EPCN. Thus input

methods to PCN has been modified and incorporated into EPCN to support other

sources and types of data. Any other forms, e.g. JPEG, MPEG etc is automatically

converted (thresholded) to binary image before being presented to EPCN’s input. A

sample image, e.g. hurricane Rita (Figure 3.1(a)) will be compressed and converted,

using a function, to a binary image as in figure 3.1(b).

 58

The sea body (marked “S” in both figures 3.1(a) and 3.1(b)) is converted to “1”

essentially in figure 3.1(b). Land and green vegetation (Example is marked as “L” in

both figures 3.1(a) and 3.1(b)) is represented by”0”. There are regions of mixed “1”

and “0” in figure 3.1(b) representing mixed vegetation in figure 3.1(a).

 3.1(b) R

 59

The EPCN is a classifier which gives a confidence measure to all classes, based on

supervised learning, when a pattern is presented to it for classification. Two types of

EPCNs are implemented; one is called rand-EPCN and the other termed fix-EPCN. The

major differences between the EPCN designed by the thesis author, and the customary

PCN [55] are:-

• The possibility of adjusting and rescaling any input pattern.

• Formation of connectivity by using consecutive bits within input pattern coupled

with rejection criteria.

• Random selection method of address formation. This method is the customary

method of connectivity formation but with the exception that coordinates are

functionally initialized and dynamic.

• Improved system interfacing: For example, EPCN can learn/recognize pattern of

type shown in figure 3.1(b), while PCN cannot. This is because the input interface of

EPCN is adaptive and can sense which pre-processing steps may be required on the

input pattern.

From henceforth, and because of these modifications (enhancements), the PCNs are known

as EPCN – Enhanced Probabilistic Convergent Networks.

3.2 The Input Pre-processing

The input pattern pre-processing into binary pattern will be explained in general

perspective because pre-processing procedures follow similar sequence for most data

sources. A holistic processing method is hereby presented.

1) Noise filter is applied to minimize the effect of noise.

2) Edge enhancing filter id applied

3) A threshold is determined for binarization

4) Pixels in patter below the threshold will be converted to “0” whereas those equal to or

above the threshold will be converted to “1”.

Figure 3.1(a) is an aerial picture of advancing hurricane. As the composition of water-to-

land aerial image changes, figure 3.1(b), the counterpart to figure 3.1(a) also changes in

unison. The pre-processing procedure is applied to benchmark databases (known as

 60

CEDAR and NIST). Example of handwritten digits from CEDAR is shown in figure 3.2(a)

while samples of its binary pattern are shown in figure 3.2(b). CEDAR and NIST

databases are employed in the experimental section of this chapter.

Figure 3.2(a): An extract of handwritten digits from a
benchmark database known as CEDAR.

Figure 3.2(b): A binarised handwritten digits from a benchmark
database known as CEDAR.

 61

3.3 EPCN – The Enhanced Probabilistic Convergent Network

 Weighted Neural Networks are those Neural Networks whose modification to system

parameters and performance depend on weights and weight adjustment. On the other hand,

Neural Networks whose performance and system parameters are independent of weights

(and their adjustments) are called weightless Neural Networks or RAM-based Neural

Networks [7]. One of the advantages of a weightless Neural Network is its fast learning

algorithm, of which the EPCN is an example. The EPCN consist of neurons which are

arranged into layer. The architecture of EPCN consists of two groups of layers. The group

of layers utilized during the training process is known as pre-group layer. The group of

layer utilized mainly during the recognition process is called the main-group layers. The

architecture of EPCN consists primarily of these four component layers termed the pre-

group, a merge-layer for the pre-group, the main-group, and merge-layer for the main-

group. It incorporates a feedback path from the merge layer of the main group to the

main-group. Each group of the layer is made up of a number of layers with each

constituent layer consisting of component neurons (defined in section 2.2) which

themselves consist of a number of storage locations known as RAM-locations, as shown

in figure 3.3.

Each storage location itself is divided into separate values for each pattern class under

consideration for the neuron. An alternative view is to regard each layer as a look-up

table (LUT). The neurons are arranged in (x * y)-matrices where (x* y) represents the

input image dimensions. Every element in an input image is associated with a neuron in

each layer. The EPCN possesses a learning algorithm which percolates the pre-group layer

and end in a merged layer for the pre-group as depicted in figure 3.4. It also has a

recognition algorithm which percolates both the pre and the main-group layers, ending in a

Figure 3.3: An EPCN neuron.

 62

Figure 3.4: A schematic representation of EPCN.

merged layer for the main-group. During learning and recognition, an integer number

called division is required for adjustment purposes. The term adjustment refers to

multiplying values in a RAM-location by division and dividing by the number of pattern

per class. Two types of EPCN are implemented; one is called rand-EPCN and the other

termed fix-EPCN. A comparison is presented below:

The functionality of the architecture depicted in Figure 3.4 is divided into two procedures

called Learning and Recognition procedure.

Table 3.1: Comparison of fix-EPCN and rand-EPCN.

 63

Both learning and recognition algorithms are now presented.

3.3.1 Learning procedure

1) Only the pre-group layers will be trained for a given pattern class.

2) For each neuron in the pre-group layer, an address is formed from binary threshold input

pattern, governed by the given connectivity pattern for the layer.

3) Depending on the address so formed, the respective RAM-location is incremented for the

given pattern class. Let the input pattern be

Let the set of addresses [m,

n][p, q][r, ..., s] be required; where [r, ..., s] depends on size and dimension of input pattern.

The set of addresses are derived from input pattern Xi feature vectors, or pattern attributes. It

is employed to access a given memory location, M. Depending on the address, A, formed,

(where A = [m, n][p, q][r, ..., s]) a corresponding memory location will be modified as given

by equations (3.1) to (3.3):

 (3.1)

when A is activated.

 (3.2)

when A is not active

The equation above is an iterative sequence of tc = 1, 2, 3 , ..., ∞; where tc is the learning

cycle; t = time, and c = a constant. In practice, the iteration is limited by the constraint given

by:

 (3.3)

where D = the number called division.

4) Subsequent to the completion of training, an adjustment phase occurs to normalize the natural

number in each memory location. For N training patterns and D division, a frequency of

occurrence of a value “a” in a memory location will be adjusted as:

Xi xi1 xi2, xi3, ..., xin,

MA()tc 1+ MA()tc 1+

MA()tc 1+ MA()tc

() 1tc
AM D+ ≤

 64

 (3.4)

 (3.5)

This adjustment is necessary to restrict the probability measure of all classes to the

number of division that has been set a priori. Also if the number of training pattern per

class varies, classes with large training set would have large probability even when

there are not many examples in the test set or validation set. The learning algorithm

utilizes the pre-group layers which are merged to produce the merge layer for the pre-

group. Similarly, the recognition procedure utilizes mainly the main-group layers which

are then merged to produce the main-group merge layer. After the Learning procedures

terminates, EPCN is able to recognise similar objects and patterns. This is done by

employing Recognition procedures. Other views about the training procedure may be

found in [57]. The recognition procedure is now presented.

3.3.2 Recognition procedure

The Recognition procedures for EPCN are as follows:-

1) An Address is formed for each neuron, within the pre-group as for training. The

address formed is from input pattern and corresponds to the connectivity patterns of

various layers.

2) The main-group layers will be merged to form one layer. Locations within the

neuron of this merge-layer contain independently calculated averages from

corresponding locations of the main-group layers.

3) After merging, an adjustment is required to make the “sum of probabilities” [57]

equal to the number of division.

4) The output of the main-group merge-layer is fed back iteratively, a fix number of

time, or until the solution stabilises, whichever happens first.

ˆ Da a
N

 =  
 

ˆ()a round a=

 65

3.3.3 The PCN Software Implementation

 In this sub-section, the PCN functions, PC configuration, and Matlab configuration on

which EPCN was prototyped will be introduced. The software modelling of EPCN

employs Matlab because of its availability, costum functions (e.g. sin, cos, plot, etc.

functions) exist already, and because it is more suitable for engineering prototyping. As

compared to alternative modelling software, matlab require less effort in order to produce

simulations. The Matlab is the medium of software implementation. In Matlab, help

about a PCN functions is obtainable for individual function by typing:

>>help function_name

on the command-line. Here, function_name is the name of an EPCN function under

inquisition. These functions are written in Matlab, with the usual Matlab’s function

naming method i.e.

function ans = function_name(variables)

as the first line in the M-file. After that, important constants are specified, which

followed by the algorithm which the function implement when called. It is often the case

that one function calls another. This maintains interrelationship between PCN functions,

analogous to the synapse between neurons. The Matlab used in this case was installed on

a PC situated in the Digital Research Laboratory.

3.4 Experiments and Analysis

Experimental Data
 For EPCN to be able to learn and recognise objects and images by following the

procedures above, pattern and images are first binarised. A binarised image serves EPCN

as experimental data for training and recognition. These experimental data used here are

handwritten digits “0” to “9”, and letter “T” and “I”, binarised, and come from sources

listed below. The sources are:-

• The Centre of Excellence for Document Analysis and Recognition (CEDAR),

University at Buffalo, State University of New York, Department of Computer

Science. Handwritten numbers from CEDAR were resized and binarised to 16-by-24

in dimension.

 66

• National Institute of Standards and Technology (NIST) in Gaithersburg USA. NIST

provide the handwritten simple form (HFS) of numerals, which were binarised and

resize to 32-by-32.

The pattern used from CEDAR and NIST are handwritten number “0” to “9”. These are

thus named class 0 to class 9. The number of patterns in each class varies from 200 to 1000

depending on class. These numerals are divided into training patterns and test patterns.

Training patterns and test patterns are stored in different directory. Test patterns do not

form part of training patterns and vice versa.

 Statistical analysis reveals that the errors incurred are negligibly small when sample size

[96] equal to or greater than 30 patterns were used from each pattern class. This applies to

both the test and training classes. Thus in this work, sample size between 30 – 50 patterns

per class will be used.

--- --- ---

 The aims of this experiment are to evaluate the networks, and to investigate the effects

of changes in system parameters with respect to performances. The first two databases

mentioned are more relevant to these tests since they are complete, large, and benchmark

databases. These databases are independently collected from the society. They represent

unconstrained handwriting of various individuals. Each hand writing is independently

collected. Thus these databases correspond to real and natural tests for EPCN on

unconstrained handwriting of numerals. Simulations were performed on EPCN using the

experimental data detailed above. The training patterns from experimental data are

supplied to both EPCNs at its input during learning while the test data, also from

experimental data, are supplied to the EPCNs at its input during recognition. This is done

during all the experiments. Three types of simulations were performed on fix-EPCN in

order to determine dependence of percentage (%) recognition on pre-group layers, main-

group layers, and division. For rand-EPCN, variation in connectivity pattern is not

measurable when division is varied. For this reason, two types of simulations were

performed on rand-EPCN; these are variation of % recognition with respect to pre-group

layers, and variation of % recognition with respect to main-group layers.

 Previous works on EPCN detailed in [55], hypothesised that the major causes of

variation in performance of EPCN depends on the group layers, number of division, and

 67

the connectivity pattern of layers concerned. The experiments detailed here aims to verify

these hypotheses.

1. In the first experiment, the number of divisions and the number of pre-group layers

is held constant while the number of main-group layer is increased from

approximately 2 to 9. Percentage (%) recognition is used as performance measure.

The percentage recognition is recorded after every increase in the number of main-

group layer. This is done both for fix-EPCN and rand-EPCN.

2. In the second experiment, the number of divisions, and the number of main-group

layers is held constant while the number of pre-group layer is increased from

approximately 1 to 11. Percentage (%) recognition is used as performance measure.

The percentage recognition is recorded after every increase in the number of pre-

group layer. This is done both for fix-EPCN and rand-EPCN.

3. To investigate the dependence of performance on division, the number of pre- and

main-group layers is made constant while the division is varied from approximately

100 to 1000. Values of % recognition are recorded after every change in division.

This experiment is performed on fix-EPCN only. Results obtained are recorded in

the table 3.2 and 3.3.

Considering Figures 3.5 and 3.6 below, we note that as the number of layers increases,

more class representative features are extracted from input patterns, and the

performance increases until the maximum is reached.

Table 3.2: rand-EPCN; Record of percentage recognition when
system parameters are varied. Numbers of pre- and main-group
layers, and numbers of division constitute system parameters.

 68

Maximum performance occurs at 85.7% in figure 3.5, and 67% in figure 3.6. From point

(85.7,5) in figure 3.5, and point (67,9) in figure 3.6 onward, a decrease in performance

is observed. This is because the number of iteration is not sufficient to account for other

additional features extracted from input patterns.

Table 3.3: Fix-EPCN; Record of percentage recognition when system parameters are varied.
Numbers of pre- and main-group layers, and number of division are system parameters.

Figure 3.5: A graph showing the effect of the main-group layer on
performances. This is a plot of table 3.2 and 3.3 column 1 vs.2.

 69

Figure 3.6: A graph showing the effect of the pre-group layers on the
performances. This is a plot of table 3.2 and 3.3 column 3 vs. 4.

Figure 3.7: A graph showing the effect of the Division on performance.
This is a plot of table 3.3 column 5 vs. 7.

 70

Additional features of EPCN is its ability to leave areas of local maximum as shown at

point (65,5) in figure 3.6. It is not unusual to obtain a local maximum solution for a

problem. As long as the network is able to leave the local maximum and achieve a global

maximum in quest, the aim has been achieved, and local maximum may be ignored.

Saturation of RAM-neurons can also prevent performance from increasing. From figure

3.6, there is no (except at point pre-gp = 3) difference between the performance of fix- and

rand-EPCN. But from figure 3.5, the performance of fix-EPCN (maximum at 79%) is

lower than that of rand-EPCN (maximum at 86%). Since the difference between fix-EPCN

and rand-EPCN is in their method of connectivity formation, it would be concluded that

their methods of connectivity formation has led to this performance difference. The

division value is employed in the adjustment phase to limit the probability measure.

Percentage recognition is related to the probability measure through an averaging

procedure. This means that changes in the value assigned to division is directly related to

changes in performance. As the value of division increases, more bits become available to

enumerate the features of input patterns. This leads to stabilisation of probability measure

for the different classes as the neurones reaches a consensus concerning the different

classes. This leads, in turn, to increase in percentage recognition. And thus the percentage

recognition increases to 69.35% in figure 3.7. As the value of division becomes very large,

same sets of features are enumerated repeatedly and this forces EPCN to reach a repeating

sequence of state. This event is witnessed, in figure 3.7 when the division is 500 and 1000.

3.4.1 Benefits of weightless Neural System-EPCN

Benefits derived from using the implemented neural network are:

• One-shot learning (as explained in chapter 2)

• Easier to make fault tolerant because of its binary nature.

• More amenable to digital implementation

• Minimum of mathematical (floating-point) computation

• Increased speed

Though these benefits are not exclusive to weightless neural networks only, only

weightless neural system possesses all the mentioned characteristics concurrently. These

points might be exemplified by comparing EPCN with state of the art neural networks

such as MLP.

 71

3.5 Comparison of EPCN with other Neural Networks

 A learning cycle is known as (one) epoch in weighted neural system while in weightless

neural system referred to as one-pass or one-shot. Weighted neural network requires more

than one epoch of learning cycle, while the weightless network require a one-pass over the

input data.

 Digital system is known to be resistant to noise because of its binary nature. Since

weightless system does not require weights and activation function, spectral functions (e.g.

Fourier) are known and discrete. Thus noise sources are easily identified and, when

necessary, removed. A great deal of effort is required to maintain an analogue weights or

the charge on an ion for a long time. Thus the weightless neuron is more amenable to

digital implementation.

Table 3.4 shows a comparison of EPCN with other similar weightless neural networks.

It is possible, either automatically or otherwise, to map almost all algebraic computation to

its Boolean logic equivalent. Mapping problems to its Boolean logic equivalent avoids any

computation (most especially floating-point) overheads that might be required in, for

example, a weighted neural system or any other alternative systems. Mapping problems to

a Boolean logic equivalent is not a trivial task.

 An increased speed may be inferred from lower computation demand and a

learning/recognition cycle of one-pass over the input data.

 Inferring from the result obtained, for practical purposes, EPCN may be useful in

preliminary decision making and routine classification purposes. Both EPCNs are

unsuitable in their present form (they require optimisation) for sensitive application, for

 72

example, in security issues and in life-death issues. In these areas, one expects error of less

than 1%.

3.6 Summary

 Novel methods of connectivity formation have been introduced to EPCN. The random

selection of input bits within the input pattern to form connectivity has been shown to

improve percentage recognition. The dependence of performance on values of division and

the number of pre- and main-group layers has been verified. In this experiment, all inputs

were static during learning and recognition. Cases of moving object and/or moving

surrounding were not investigated. This experiment was designed to investigate

performances of EPCN with respect to their system parameters and emphasis was not

placed on state of database. This may be considered as areas of future research and

development.

 The results of this chapter call for improvement in implementation as the performances of

both EPCNs are generally low.

 Two types of EPCN have been implemented. Combination of these two novel classifiers

may form a multiple classifier structure (with or without addition of other NNs) which

may find application in Automated Control and Guidance Systems, Robot visual guidance

systems, etc. In the next chapter however, use will be made of a multi-classifier derived

from these two EPCNs.

 73

4. A WEIGHTLESS ARTIFICIAL NEURAL BASED

MULTI-CLASSIFIER

 Recent years have witnessed intense research in the general area of Multi-Classifier

systems (MCS), but this has rarely incorporated any utilisation of weightless neural

systems (WNS) as the combiner of an MCS ensemble. This chapter explores the

application of weightless networks within the multi-classifier environment by introducing

an intelligent multi-classifier system using a WNS called the Enhanced Probabilistic

Convergent Neural Networks (EPCN). The chapter explores the use of EPCN by

illustrating its major features, such as the specification of disjoint or overlapping input

subset to the MCS, and the parallel nature of the design. Within the proposed system, the

number of base classifiers per MCS could be specified manually or automatically. The

proposed MCS is problem-domain independent and, our investigation is performed on

handwritten characters. The proposed MCS is adaptive; its combiner is capable of

extracting absolute or weighted classification decision (output) from base classifier.

Diversity is increased in the base classifier by injecting randomness into the system

parameters. Two types of EPCN classifiers are employed: fix-EPCN and rand-EPCN.

These EPCNs are independent and orthogonal in behaviour because one uses a fixed

method of forming connectivity while the other uses random method of forming

connectivity.

 In order to verify the performance of the recognition system, tests were performed, off-

line, on benchmark datasets of unconstrained handwritten numerals. Experimental results

suggest that MCS outperforms single EPCN in classification of handwritten characters.

 Artificial Neural Systems in general and Weightless systems in particular, have traditionally

struggled in performance terms when confronted with problem domains possessing a large number

of independent pattern classes. The overloading and saturation experienced by traditional

networks is addressed by training the base classifiers on differing subsets of the required pattern

classes and allowing the combiner classifier to derive a solution based on the whole ensemble. The

system is demonstrated on the exemplar of fingerprint identification and utilises a Weightless

Neural System called the Enhanced Probabilistic Convergent Neural Networks (EPCN).

 74

4.1 Introduction

 Motivated by the performance of each of the EPCN in chapter 3, the implementation of

a multi-classifier is conceived. The aim of the multi-classifier design is to improve

recognition on handwritten characters; most especially an improvement on classes with

low performance (i.e. the “difficult” pattern) rate is desired. Over recent years, a

significant research effort has been devoted to the development of multi-classifier systems

(MCS) [109]. MCS consist of component classifiers, possibly of an artificial neural

configuration, called base classifiers, arranged in a specific fashion so as to carry out a

specific task which would otherwise yield a poorer performance should such a task be

performed by a single neural network or classifier. The specific arrangement of this

classifier s is commonly referred to as a classifier selection. R. Ranawana [109]

summarises various methods used in classifier selection but does not significantly include

weightless classifier. Weighted classifiers are that classifier whose performance and

system parameters depend on weights and weight adjustment. In contrast, classifier s

whose performance and system parameters do not depend on weights (and their

adjustments) is called weightless classifier. It is highly suitable for implementation in

portable embedded systems and its ability to efficiently learn with a reduced number of

training iteration. In a weightless classifier, binary weights are stored and retrieved from

RAM. To date, most significant research in classifier used in MCS has involved weights,

for example [36] uses classifier selection based on weights. This chapter presents an MCS

employing weightless classifiers. The base classifiers employed in this work are derived

from The Enhanced Probabilistic Convergent Network, EPCN. Details of the base

classifiers were published in [85].

 But the multi-classifier designed is useful only if the number of classes is large, ten (10)

classes and more will be employed. A multi-classifier for large-scaled multi-class

classification is motivated by the fact that most state-of-the-art multi-classifiers has been

shown to fail, in performance term, when the number of pattern classes becomes very

large. This scenario forms the motivation of this chapter. The issue of applying a RAM-

based multi-classifier to large-scaled multi-class classification tasks is addressed here. As

the number of pattern classes required to be recognised by an artificial neural systems are

increased, problems associated with the overloading and saturation of the network begin to

manifest themselves. This chapter presents a novel method which not only aims to solve

these problems, but is also able to produce an appreciable recognition performance when a

 75

large classification is required. The solution that this chapter presents comprises of

partitioning the pattern classes into disjoint sub-sets, and employing a multi-classifier

system (MCS). The component classifiers are derived from The Enhanced Probabilistic

Convergent Network, EPCN.

 This chapter is organised as follows. Sub-section 4.1.1 introduces multi-classifier

system. The design of the MCS commences in section 4.2 where an MCS implemented

using EPCN is introduced, and then experimented on in section 4.4. The results obtained

were recorded and analysed in section 4.5 and 4.6. The chapter completes with a

summary and areas of further possible experimentation in section 4.7 and 4.8.

4.1.1 Introduction to RAM-based Multi-classifier

Two types of EPCN were introduced in chapter 3. They were tested on handwritten

numerals. Here, base (component) classifiers are derived from these EPCNs. The base

classifiers derived from EPCN (Chapter 3) will be employed in a multi-classifier

framework. In order to facilitate the employment of EPCN in sector such as security and

health, an improvement on the performance of chapter 3 is required. Whilst maintaining

the benefits of section 3.4.1, it is considered significant to achieve a performance in excess

of 90% on handwritten characters and numerals such as that EPCN are further useful. It is

expected that the design and employment of Multi-classifier on handwritten character will

improve performances as compared to when a single EPCN classifier is employed. The

EPCN is a classifier which allocates a confidence measure to each candidate class, based

on supervised learning, when a pattern is presented to it for classification. An interested

reader could consult [85] for more detail on EPCN.

 A significant component within the design process of an MCS system is the selection of

the base classifiers to employ. The most common selection methods used for base

classifiers are: input data [109], Genetic Algorithm (GA) [2], Objective functions [112],

[119], Random selection [42], Boosting [42], and Bagging [119]. Some designers [42], [55]

make classifier selection to depend on certain diversity measures.

 One of the most successful ensemble creation methods is the random subspace method

[42]. Here input space is partitioned by random selection into subspaces of equal length

and a classifier is assigned to each subspace.

 76

 The most common arrangement of base NN used in an MCS is the parallel method.

Other topologies are the cascading and hierarchical topology [34]. Cristian Dima [26]

proposes the implementation of a hierarchical mixture of experts and the employment of

dynamic reconfiguration to analyse robot dynamics.

 It is essential that for classifier to be included in an MCS, either the performance must

be significantly above average (50%), or the classifier must make other significant and

positive contribution to the ensemble after combination, which may not be expressed in

terms of percentage performance. Lam [79] states that orthogonality; complementarities

and independence of a base classifier determine its inclusion in an MCS. During training

and recognition, each base classifier utilises its normal training and recognition algorithm.

The combination of base classifier output is called classifier fusion. Various techniques for

classifier fusion are broadly divided into: objective functions [120]; Qualitative

combination [11]; intelligent combiners [35]; Fixed combiners or balanced classifiers

[112]. Significantly, EPCN, when used as a combiner, is a novel weightless intelligent

combiner since it possesses its own learning and recognition algorithms.

 A. Krzyzak [135] categorizes combiners of MCS into two, namely, feature-vector-

based method (i.e. using neural network) and syntactic-and-structural (i.e. fuzzy-rule

based) method. [119] categorises them as: Linear, Non-linear, Statistical, and

Computational Intelligent combiners.

 The overall performance of an MCS is often compared to a single base classifier. At

present, it is difficult to quantify how diversity measure affects performance, most

especially for MCS comprising large number of base classifiers. Gabrys and Ruta [12]

maintain that diversity measure has limited correlation with MCS performance. It should

be emphasised that MCS performance depends on careful selection of base classifiers. Min

[77] uses a Rejection criterion and reliability to measure performance. The rejection

criterion and reliability are numerical quantities derived from a fuzzy integral. A

performance improvement has been made on isolated handwritten characters [126], whole

words [121], postal addresses [70], [77], and bank cheques [63]. It is difficult to achieve a

high recognition rate using a set of features and a single classifier. This is because totally

unconstrained handwritten numerals, as is the case in this work, contain an appreciable

level of pattern variation which mainly depends upon individual writing style.

 The design of MCS using EPCN as an intelligent combiner will be the subject of the

next section.

 77

4.2 The Design of an MCS from EPCN

 Multi-classifier utilising weightless classifiers are currently rare. This section presents

an MCS that utilises weightless NN called Enhanced Probabilistic Convergent Network

(EPCN) [85]. MCS may be grouped according to their output. A formal grouping of such

classifiers is: abstract form, rank level, and measurement level [109]. Of these, the

measurement level group is relevant.

• Measurement level: - No attempt is made to arrange the output of a base classifier in

any order, since the order of values in itself has meaning. Each class is assigned a

belief of the classifier about the input. The result is an array of belief values. These

classifiers are also called probabilistic classifiers. Fix-EPCN and rand-EPCN are

novel weightless probabilistic classifiers.

Previous studies have shown the performance of both EPCNs to be well above 50% [85].

Fix-EPCN is orthogonal to rand-EPCN due to its inherent method of forming connectivity.

The rand-EPCN uses random method while fix-EPCN uses a pre-defined or “fixed”

method, a systematic method which is reproducible.

 These EPCNs are designed to be independent and without correlation with regards to

their errors, giving no consideration for any future input dataset. Varying the system

parameter of each EPCN has a profound effect on their decision making. These decisions

(outputs) do not give rise to error correlation, for disjoint input dataset. Thus EPCNs are

good candidates for MCS production.

 In this work, the input space is partitioned into overlapping subsets and a classifier is

assigned to each subspace. This allows for a clear comparison with a standalone single

classifier. Since this MCS uses EPCN, it will henceforth be denoted by MCSPCN for

short. MCSPCN is designed with the possibility for dynamic reconfiguration, and the

parallel scheme is employed. In a changing environment, system parameters could be

made dependent on changes in the environment.

 Diversity is increased in MCSPCN by incorporating diversity within the training

algorithm [106], [109] of all EPCNs. This influences their behaviour during training and

recognition. For example, if F classifier is required, and Ni classes each, this will be

specified as:

>> mcspcn(F,Ni,r,c); i = 1,2,3, ... (4.1)

where,

r = number of rows in pattern.

 78

c = number of column in pattern.

For each F, the size of Ni may vary or overlap.

 This work utilises the Computational intelligent method for classifiers fusion by

employing another EPCN as the combiner.

4.2.1 Combiner Unit

The term Combiner Unit refers to the EPCN combiner [Pc, Mc], and the gating function f

(.) (See fig. 4.1). The gating function consists of a decision maker and a converter. The

Decision maker is required for the following reasons:-

• If the same character is classified or assigned by different NN to differing classes and

these classifications are correct, without the decision maker, these two interpretation

will be converted to different images by the converter. A correct classification of a

pattern by different NN should produce similar pattern for the EPCN-combiner to

train.

• The combiner EPCN does not know if the input space overlaps or not. The decision

maker is also required to monitor overlap and to reflect this it its output by

weighting.

Decision Maker: - The decision maker considers the performance of the component

classifiers with respect to the classes, and passes its decision to the converter. It utilises a

weighting strategy on the output of the base classifiers when inputs overlap. This

weighting strategy affects only those outputs corresponding to the region of input overlaps.

A zero weight switches off an output of a base NN with respect to a given class, while a

weight greater than zero switches it on. The decision maker does not eliminate a base

classifier, but only inhibits certain outputs with respect to certain classes. This inhibition

depends on input space overlap and performance on that class. For example, consider a

character "a" is trained to one NN as class 1, and trained to another NN as class 2. During

recognition, correct classification requires the first NN to classify "a" as class 1 and the

second NN should classify it as class 2. The decision maker is responsible for informing

the converter that the two output are the same i.e. are correct classifications of "a".

 79

Converter: - This converts the Decision maker's integer output into binary, e.g. for

division = 1000, [0, 0, 65, 45, 0, 0] will be converted to:
[0000000000

0000000000

0001000001

0000101101

0000000000

0000000000];

EPCN-combiner configuration: - An example configuration of EPCN combiner is shown

in figure 4.2.

Figure 4.1: The MCS unit is divided into multiple EPCN group and combiner EPCN group.
The multiple EPCN group consist of EPCNs in parallel. Pi = pre-group; Mi = main-group;
‘i = 1,2,3,… ‘f(.) = gating function. Pc = combiner’s pre-group. Mc = combiner’s main-
group.

 80

In the first field, nost, each number represents the number of training patterns per class.

The second field, nclas, represents the total number of classes. The third field is the

number of layers in the pre-group. The 4th field is the number of columns in the image

while the 5th is the number of rows in the image. The last field, ntuple, is the tuple-size.

The combiner's main-group's configuration is the same, except the field “nlay" is replaced

by "mglay", where "mglay" is the number of layers for the main-group. Thus we have a

MCS that looks like fig. 4.1, where [Mi, Pi] is a base classifier; i = 1, 2, 3 … This multi-

classifier will be tested in experiment section.

 Advantages of weightless classifier are their fast learning algorithms, ease of

implementation in digital hardware, and ease of implementation in a portable embedded

system. It could be argued that in a weightless classifier, binary weights are stored and

retrieved from RAM. An important component within the design process of an MCS

system is the selection of the base classifiers to use. The combination of base classifier

output is called classifier fusion. The design of MCS in this section is input independent

and it uses EPCN as an intelligent combiner.

4.3 Multi-Classifier System for Biometric Databases

 Much research is currently based on biometric identification, but most of these research

efforts have utilized other means, not involving weightless neural networks. This is

because of problems of biases and saturation which accompanies such venture when

weightless neural networks are employed [7]. For these reasons, a multi-classifier is

proposed in this chapter in which problems such as biases and saturation is specifically

considered. Fix-EPCN and rand-EPCN are novel weightless probabilistic classifiers.

Figure 4.2: An EPCN configuration.

 81

 From the fact that no error correlation exists between their outputs for disjoint input, and

varying the system parameter of each EPCN has a profound effect on their decision, these

make them diverse. Thus, by varying their configuration, EPCNs are very good candidates

for MCS production.

 Since this work is concerned with large classification domain, the pattern classes are

partitioned into disjoint subset and a classifier is assigned to each subspace. This also

allows for clear comparison with a standalone single classifier. The system parameters of a

component EPCN are shown in a structure of figure 4.4, and an extract of fingerprint from

FVC2004 database is shown in figure 4.3. The system parameters influence their

behaviour of the base classifiers during training and recognition. A desired number of

classifier required and number of class per classifier is usually specified to MCSPCN

(equation (4.1)). For example, if F classifier is required and with Ni classes each, these

values will be utilised for multi-classifier initialisation. For each F, the size of Ni may vary,

overlap, or be disjoint as in this case.

 In this work, the classifiers fusion method used is the Computational intelligent

method. This is a case where another EPCN acts as the combiner.

 82

Figure 4.4: A component (base) neural network’s configuration.

Figure 4.3: A sample Fingerprints from database DBA_1

 83

In figure 4.1, [Pi, Mi] are the component classifiers, i = 1, 2, 3…, f(.) is the gating function,

while [Pc, Mc] is the combiner.

The Input Pre-processing

The pre-processing steps are experimentally determined so as to minimise distortion of

local features. Global features of the fingerprints are pre-processed as this will leave local

features as they are. The proposed pre-processing steps are summarised below.

• Geometric alignment: The smallest bounding box for each fingerprint is found. This may

require rigid (uniform) rotation and/or translation of the fingerprint involved. The

alignment serves to isolate only relevant region of the fingerprint for pre-processing.

• Effects of uneven illumination are removed by morphological element (window).

• Noise is removed by filtering.

• The edges of ridges and valleys are emphasized by edge enhancing filters.

• Pinches and punches are corrected for by interpolation.

• downsampled fingerprints are binarized (see figure 4.5) using a one-value thresholding.

The binarised fingerprints are of the form accepted by EPCN. The resulting fingerprint is

downsampled. Though the downsampling is uniform, no adverse effects were observed on

the local features.

 84

.

4.4 Experimentation

 Chapter 3 demonstrate the difficulty experienced by a single classifier when a high

performance rate is required. For this reason, the same CEDAR database is employed in

this experiment. The aim is to achieve higher performance rate on databases of

unconstrained handwritten numerals, a performance such as may not be possible for a

single classifier. Off-line handwritten characters and numerals recognition has been a topic

of intensive research for many years. The performance of EPCN as combiner should equal

or surpass that of feature vector based classifiers or syntactic/structural based classifiers.

The MCSPCN is problem-domain independent and as such should perform well on

handwritten characters. The source of totally unconstrained numerals used in this work is:-

• The centre of Excellence for Document Analysis and Recognition (CEDAR),

University at Buffalo, State University of New York, Department of Computer

Science. Handwritten numbers from CEDAR were resized and binarised to 16-by-24 in

dimension.

The pattern used from CEDAR is handwritten numerals “0” to “9”. These are thus labelled

class 0 to class 9. The number of patterns in each class varies from 200 to 1000 depending

on class. These numerals are divided into training patterns and test patterns. Training

(a) (b)
Figure 4.5: (a) Processed fingerprint, (b) binarised picture of fingerprint.

 85

patterns and test patterns are treated independently. Test patterns do not form part of

training patterns and vice versa.

 Experiment 1 (five NN; five classes each)

The aim of this experiment is to determine if the combiner can successfully interpret result

and ignore individual erroneous result from the component classifiers. In this experiment,

the input space was partitioned as shown in Table 4.1. In this experiment, the training set

of the classes overlaps. Cases of disjointed training set of classes are discussed in

experiment 3. Where, for example, classifier NTW1 is only trained on classes 0 through 4.

The component base classifiers, NTW# (where # = 1, 2, 3,…), are assigned to be trained

on the subset of classes depicted in each row of Table 4.1. This sub-setting strategy has

been employed in order to artificially lower the performance of each of the base classifiers

to observe if the PCN combiner, [Pc, Mc], is able to allow for the poor performances and

give a good overall result – this is significant.

 During recognition, each network is required to classify patterns belonging to all the ten

classes. All patterns that result were collected in a directory. These were afterwards

separated into training set and test set. The training set is used to train the combiner while

the test set was employed during recognition. The performance metric used is the

percentage (%) of patterns recognised. All results obtained were processed and important

results recorded in Table 4.2.

 Experiment 2 (five NN, ten classes each)

 Obviously in practice, base classifiers would be trained on the entire pattern class set. The

second experiment is therefore aimed at determining if the MCS performs better than any

of the component classifiers alone.

 Experiment 1 is thus repeated with each of the five component classifiers trained on all

10 classes. In practice, this is done by setting Fi =5 and Ni = 10 in MCSPCN (equation 4.1

of section 4.2). During recognition, each network is required to classify patterns belonging

to all the ten classes. The results were later collected and processed by the gating function f

(.). Again all patterns that result were collected in a directory. These are afterwards

separated into training set and test set. Training set is used to train the combiner while the

test set was employed during recognition. The performance metric used is the percentage

(%) of patterns recognised. This follows because all numerals were written independently

 86

by distinct writers, and no correlations were found between them. All results obtained were

processed and important results recorded in Table 4.3.

Experiment (3) on Large-scale Multi-class database

 The aim of this experiment is to explore how EPCNs in a Multi-expert

configuration perform when exposed to large classification problems with few patterns

per class.

 For the experiment, the input space is partitioned into disjoint subset and a

Table 4.2: Comparison of a combiner with base neural networks when F = 5; Ni =
5. Clasf. = classifier; NTW# = Network, where # = a number. % = percentage.

Table 4.I: Partitioning of the input space in experiment 1;
NTW = Base classifier; # = number.

Table 4.3: Comparison of a combiner with base neural networks when F = 5; Ni = 10.
Clasf. = classifier; NTW# = Network, where # = a number. % = percentage.

 87

classifier is assigned to each subspace. This allows for a clear comparison with a

standalone single classifier. The performance of the NN-based classifiers, EPCN as

combiner, should equal or surpass that of feature vector based classifier or

syntactic/structural based classifier. MCSPCN is problem-domain independent

MCS and as such should perform well on fingerprint databases.

 The database used for this experiment is DBA1 from the Third International

Fingerprint Verification Competition 2004, FVC2004. “NOTE: FVC2004 databases

are markedly more difficult than FVC2002 and FVC2000 ones, due to the

perturbations deliberately introduced…” [43]. Most experimentation methods rely

heavily on minutiae and template matching of minutiae. Holignum [53] employs

the graphical method, Jain [65], [66] uses point pattern matching, Wahab [132]

employ structural matching techniques to minutiae, and Tico [129] uses

transformation operation. To improve on these methods, Maio and Maltoni [90]

introduce the detection of false positive. [60], [106], [133] provides methods aimed at

removing false minutiae, and [85] uses NN for minutiae filtering. The advantage of

using an artificial neural network (ANN) instead of minutiae analysis [85], [106], is

that a global operation on the images is less sensitive to local distortion that

normally occur during extraction of local features. Fingerprints in this database, of the

type shown in figure 4.5, are extracted into a directory (see figure 4.5(a)). They are then

filtered, centred, and then binarised (see figure 4.5(b)). Each finger printed in various forms

represents a class. The binarised fingerprints are divided into two sets, the training set

and the test set. Each set consist of 100 classes. This motivates the initialisation of MCS

consisting of 10 classifiers, and 10 classes per classifiers. In practice, F, the number of

NN, is set to 10, and Ni, the number of class/NN is set to 10, these are passed to the

program MCSPCN (in equation 4.1 of section 4.2).

4.5 Results and Analysis on Large-scale Multi-class database

Table 4.4 is obtained with an MCS of ten classifier and ten classes per classifier.

During the experimentation, the input space is partitioned into disjoint subset and a

classifier is assigned to each subspace, and little corrections were made for the following

deformations:

• Shifts

 88

• Rotations

• Intensity changes.

• Occlusion

• Pinch

• Punch.

The conditions under which these fingerprints are collected are as specified in [43]. Edge-

enhancing filter is applied, and this is followed by binarisation of the fingerprints. The

reason for avoiding intensive pre-processing is to prevent artificially adding to local

distortions already present, and leave all decision making processes to the NNs. This

makes the processes close to real-life recognition system, and also decreases processing

time.

Performance Measures: - On databases such as fingerprints, the most commonly used

performance measures are: True Acceptance rate (TAR), true rejection rate (TRR),

Predictive value positive (Pos), and Predictive value negative (Neg). These are quantitative

measures of the trustworthiness of results obtained. However every output of EPCN, in

Table 4.4: This table shows the performance (in % of patterns recognised) of MCS
with respect to large pattern recognition problems. In this case fingerprints.

 89

recognition mode, includes confidence measure. The confidence measure or the

trustworthiness measure is a scaled probability measure, scaled by a value called the

Division. For example, an output of EPCN is as shown in figure 4.6.

The important field in this structure is “desout”. This states that the network is trained on

ten classes. When a pattern is presented to it for recognition, it is (450/1000)% (the

confidence measure) likely to belong to class ten, (118/1000)% likely to belong to class

two, etc. The summation of the numbers (variables in the field “desout”) should equal the

variable in the field division. Thus results from EPCNs, and Multi-classifiers dependent on

EPCN, are inherently with trustworthiness measure. From table 1, the results show

recognition performances ranging from 0% to 100%. In the MCS configuration utilised, no

self-reconfiguration was employed, the component classifiers employed are feed-forward

supervised EPCNs. It may also be noted that most classes has their recognition well above

50%.

 Because of zero cross-correlation and independent update of classes, percentage of

pattern correctly classified may be regarded as optimum performance metric.

4.6 Result and Analysis on experiments 1 and 2

 Table 4.2 illustrates the result of experiment 1 and is obtained when F = 5; Ni = 5 is

specified to MCSPCN (function 4.1 of section 4.2) with the databases specified in section

4.3 is employed. Table 4.3 represents the result of experiment 2 and is obtained when F =

Figure 4.6: An Output of EPCN.

 90

5; Ni = 10 is specified to MCSPCN (function 4.1 of section 4.2) with the databases

specified in section 4.3 were employed. Averages were calculated with respect to training

set.

 The first column of both tables shows the component classifiers, the second column

shows their respective performances, and the third column shows the overall performance

of the MCSPCN. In table 4.2, NTW1 shows an average (50%) recognition rate while

NTW2 shows a high percentage recognition rate (80%). NTW3 shows a poor recognition

rate (36%) while NTW4 shows a high percentage recognition rate (74%). In table 4.3,

NTW1 shows an average (74%) recognition rate while NTW2 shows a high percentage

recognition rate (80%). NTW3 shows a fairly good recognition rate (63%) while NTW4

shows a high percentage recognition rate (79%). From this trend, it could be inferred that

when some base classifier performs fairly well on a database, others perform very well on

the same database. This shows the inherent orthogonal properties of fix-PCN and rand-

PCN.

 Comparing the second column of both tables, the classifiers are seen to perform better

when trained on all ten classes than when trained on sub-section of the classes. This affects

the combiner positively with an average improvement of about 2%.

 In table 4.2, the performance of the combiner (at 93.37%) was well above that of the

component classifiers and shows that the combiner is able to filter out poor component

classifier results. In table 4.3, the performance of the combiner (at 95.14%) was also well

above that of the component classifiers. From this we may deduce that the gating function

f (.) considers only the merits of the base classifiers. The individual entries in the

difference column (in %) show the performance of the combiner over their corresponding

base classifiers.

4.7 Summary on Large-scale Multi-class database

 In this work, we have focused on utilisation of EPCN in an MCS framework on large

class problem domain - an instance of this is fingerprint identification. The multi-classifier

shows performances ranging from 0% to 100%. This is to be expected because little

corrections were made for deformations, same pre-processing steps are applied equally to

all fingerprints, and also because the level of noise and deformations varied and are

distinct from one fingerprint to the other.

 91

 Given the fact that 100 classes are presented for classification, the possibility of high

recognition rate (up to 100%) shows that this configuration provides a solution to

overloading and saturation that result when very large class problem is given to a single

neural network.

 To further this research, utilisation of adaptive pre-processing techniques to make pre-

processing each image dependent on level of noise and deformation in them, is in order.

Recall that no NN selection strategy were employed to remove, modify system parameters,

or replace the less performing NNs, these are also considered to be subjects of next

research possibility. It is not possible, due to various reasons that include resource and

time, to conduct all suggested future research possibilities in this single thesis. For this

reason, a key research point – that of implementation of a novel combination strategy is

conceived. The next chapter explores the possibility of a new combination strategy for a

multi-classifier system.

4.8 Summary

In this chapter, we have focused on a multi-classifier combining strategy using a novel

RAM-based artificial neural network EPCN. The combiner of the multi-classifier has been

shown capable of interpreting results from component classifier and ignoring individual

erroneous results. Significantly, the multi-classifier is shown to have achieved a high

performance rate (93.37% in Table 4.2, and 95.14% in Table 4.3) compared to the

component classifiers. It is to be noted also that this performance compares favourably

well with other multi-classifiers derived from weighted base classifier or neural network,

using other techniques, e.g. [77]. Experimental results suggest that MCS outperformed

single EPCN [85] in classification of handwritten characters.

 The problems associated with the multi-classifier designed in this chapter are:

• The input may be biased.

• The network may be easily saturated.

• Its support for large-scaled multi-class databases poor.

Some of these problems are addressed in chapter 5, most especially the problems of

classifying large-class databases.

 Other areas of further investigation may include other configuration methods, such as

Boosting, Bagging, or using performance criteria to initialise and choose base classifiers.

 92

As this is likely to have the effect of eliminating such network as NTW3 (at 36 % in Table

4.2) from the WNS since its performance is sometimes below 50%.

 Following a very good performance in this chapter, the classification of very large-class

databases is considered in the next chapter.

 93

5. AN ADVANCED COMBINATION STRATEGY FOR

MULTI-CLASSIFIERS

 An advanced combination strategy is hereby introduced which addresses the scale problems

exhibited by traditional artificial neural networks. The encoding scheme introduced here produces

a different and significant approach to solving the problems of memory demand, execution time,

and performances.

 A sub-setting strategy of the required input pattern classes is introduced in this chapter which

provide a more robust solution to the problems of overloading and saturation experienced by

traditional neural networks.

 Current Multi-classifier Systems faces the problem of bias when classes are arranged and

maintained in a specific fixed pattern. A novel statistical arrangement method is hereby presented
which aims to solve the bias problem. This statistical arrangement method also enhances

independence of component classifiers.

 The system is demonstrated on the exemplar of fingerprint identification and utilises a

Weightless Neural System called the Enhanced Probabilistic Convergent Neural Network (EPCN)

in a Multi-Classifier System.

5.1 Introduction

 Most combination methods for multi-classifiers are meant for weighted neural

networks. Attempts to utilise EPCN as a multi-classifiers combiner has till now failed.

However, there are successful attempts made in chapters 4. But the combination method

implemented in chapters 4 could not combine the output of very large classes. There is

clearly lack of RAM-based solution to the problems of combination of RAM-based

component classifier. So that, the objectives of this chapter is to implement a combination

strategy. Implementation of the component classifier combination method is thus

motivated by the need to encode the output of the base classifier, so that an EPCN

combiner is able to combine large-classes.

 Multi-classifier systems have traditionally struggled in performance terms when

confronted with problem domains possessing a large number of independent classes and

containing few patterns per class. Such Multi-classifier systems (MCS), consist of

component classifiers, called base classifier, arranged in a specific fashion so as to carry

 94

out a specific task which would typically yield a poorer performance should such a task be

performed by a single classifier.

 Currently, large number of distinct pattern classes is a classification bottle-neck for

typical MCS because they suffer from large storage requirement, and long execution time.

This is mainly due to the fact that floating point mathematical calculations take longer to

complete as compared to simple Boolean logic. For this reason, only weightless (also

called Random Access Memory (RAM) based) neural networks are used as component

classifier in this chapter. The decision to use only RAM-based neural networks as

components to solve the aforementioned problems is faced with yet another problem,

which is that of combining the output of base neural networks.

 This chapter presents a solution to the above problems via a novel combination method.

The combination method consists of a gating function which implements an encoded

pattern for the combiner. The combiner is a neural network entitled the Enhanced

Probabilistic Convergent Network (EPCN) [81], [85]. The difference between an ordinary

EPCN and the EPCN used for the combination, hereby termed EPCN-Combiner, is its

input and configuration as shown in figure 5.1. An encoding system is required in the

gating function because the combiner neural networks expect a binary threshold pattern as

input, and the encoded pattern is binary. The encoding system is hereby termed engine

encoding. The term gating function and combination method will be used interchangeably.

There are two types of EPCN utilised in this work. Their difference lies chiefly in their

method of connectivity

Figure 5.1: A schematic diagram of combiner-EPCN

 95

formation [85], details of which are found in chapter 3. The base classifiers derived from

the two types of EPCN has been found, by experimentation, to be error independent. Their

advantages, over weighted Neural Networks are that their employment in a parallel scheme

does not incur additional high mathematical computations.

 Overloading and saturation are often associated with decrease in distinguishing features

between classes, and limited means of enumerating these features. The problems of

overloading and saturation experienced by traditional networks [57] are solved for EPCN

based MCS by assigning the base classifiers on differing subsets of the required input

pattern classes.

 When a class is trained to more of the base classifiers than other classes, this class will

be more recognise than other classes. Equal chances are not been given to all classes for

classification or miss-classification; this is called bias. To solve this problem, a novel

randomisation technique is introduced in section 5.2 which produces an arrangement of

input patterns suitable for the removal of Classifier bias. When this randomisation

technique is employed, a base classifier sees a sub-set of the classes with approximately

equal probability. It is expected that when input pattern classes are randomised and evenly

distributed, bias within the network will be removed.

5.2 Multi-classifier Systems

5.2.1 Selection

 The decision to include a Neural Networks (NN) in a MCS is commonly referred to as

classifier selection. Two selection strategies are currently widespread. They are:

• The direct method.

• The “pool of network” method.

The direct method consists of selection of NN which are error-independent of one another.

This selection is often a static selection method. The “pool of network” method is a case

whereby an initial large set of neural networks are available and various methods such as

error diversity measure is employed to select an error independent set from this large set of

neural networks [117].

 The direct strategy is employed in this chapter as the “pool of network” method requires

a very high computing resources and time.

 96

 The selection of base classifiers may broadly be divided into static selection and

dynamic selection. Static selection methods are those methods used to select base

classifiers before learning/recognition and can not change the composition of the ensemble

in an experiment. Dynamic selection method on the other hand can modify the

composition of the ensemble in an experiment. An appropriate feedback mechanism of

error correlation, for example, may change a static method to a dynamic method.

 Common selection methods used to select base classifiers can be grouped as static or

dynamic selection methods depending on the presence or absence of a feedback system.

Given
1

r

i
i

n n
=

= ∑ classes of r distinct types, where ni are of type i and are otherwise not

distinguishable, the number of permutation without repetition, of all n classes is:

 (5.1)

The number Mn is known as a multinormial coefficient. A special case is when r = 2. This is a case

of binormial coefficient and is denoted by where

 (5.2)

 (5.3)

where f = the experimental outcome.

fX = experimental outcome of X;

fY = experimental outcome of Y;

x = an element of X;

y = an element of Y.

The statistical selection method [34] is employed in this work as it possess the potential to

alleviate the problem of bias. An outline of the method is as follows.

1

1

!(,...,)n r r

i
i

nM n n
n

=

=

∏

1(,...,)n r n rM n n C=

()
!

! !n r
nC

r n r
=

−

(,) () () () () () ()X Y X Y X Yf x y f x f y f x f y f x f y= ∪ = + + ∩

(,) () () () () () . ()X Y X Y X Yf x y f x f y f x f y f x f y= ∪ = + +

When events f(x) and f(y) are independent, the last item may be zero

(,) () () 0X Yf x y f x f y= + +

 97

 In this statistical selection method, n is the total number of class used and r is the amount

of class picked without replacement. Since the aim here is to minimise bias, randomisation

is done according to equation (5.2). Two independent randomisations are performed and

the results multiplied according to equation (5.3). Setting n =50 and r = 1 in equation (5.2);

Similarly,

and we have

In f(x,y) (Table 5.1) we have 100 classes in which each class is repeated twice. In Table

5.1, each row represents pattern classes for one base classifier. The component classifiers

are named NTW# (where # = 1, 2, 3, …). The arrangement and the reoccurrence of a class

is random and independent.

 The component classifier, named NTW# (where # = 1,2,3,…), are trained following the

scheme depicted in Table 5.1. An entry in a row is a number that represent a class. As an

Table 5.1: Randomised input classes. NTW# = Network, where # =
1,2,3,…n.

()
! 50! 50!() 50

! ! 1!(50 1)! 49!X
nf x

r n r
== = = =

− −

50!() 50
49!Yf y = =

(,) 50 50 100f x y = + =

 98

illustration, NTW2 refers to the second neural network. All numbers in the row

corresponding to NTW2 refers to the classes on which NTW2 is trained, first class being

45, second class being 26, third class being 13, etc. The numbers, e.g. 45, 26, are instances

of fingerprints. They are files containing real-life finger-prints [91] printed in various

forms. This method of arrangement is known as the statistical arrangement method. The

statistical arrangement is employed in the MCS to alleviate bias and maintain

independence of base classifiers. An optimal arrangement of the conmponent classifiers

has been found, experimentally, to be 10 classifiers and 10 classes per classifier.

 For component base classifiers to make a significant contribution to an MCS, they must

be as diverse and independent as possible. Dependence of performance on diversity and

correlation measures decreases rapidly as the number of Neural Networks increases. Lam

[79] states that orthogonality, complementarities and independence of a base classifier

determine its inclusion in an MCS. Some designers like Mladenic [36], and Zouari [50]

employ certain diversity measures in Neural Networks classifier selection. A criterion for

Neural Networks selection is lack of error correlation among selected Neural Networks

[109]. Dynamic methods such as Bagging, is employed by Gunter [119] while Boosting is

employed by Freund [42]. The term Bagging (Bootstrapping and AGGregatING) refers to

a selection mechanism for ensemble creation implemented by randomly drawing N

training sample from a training set S of size n with replacement, and assigning a classifier

to each group of samples drawn. The probability of being drawn is equally distributed over

the training sample. Boosting is a different selection method from Bagging in that the

probability of selection increases in favour of “difficult” pattern and decreases for “easy”

patterns. The most widely used variant of Boosting is AdaBoost. AdaBoost.M1 [42] is a

variation of AdaBoost for multi-class problems. In AdaBoost.M1 a classifier is assigned to

each subset of training pattern drawn.

 The next step that follows the selection of base classifiers according to the conditions

specified here the arrangement of these classifiers.

5.2.2 Topology

 Topology refers to the arrangement of base classifiers in an ensemble. Common

arrangement methods are serial, parallel, and hierarchical arrangements. The parallel

method is the most common arrangement of base Neural Networks in MCS. The

introduction of dynamic self reconfiguration may enable the MCS to switch between these

 99

topologies, depending on new environment, new tasks or both. During training and

recognition, each base classifier utilises its normal training and recognition algorithm.

 The decision to employ a parallel combination method in this work follows from the fact

that the output of all component neural networks will be combined. All output of the base

NN will be combined because the base neural networks are error uncorrelated and diverse.

Parallel method of combination is known to incur high computation costs [109]. This

problem is solved here due to the decision to employ RAM-based (weightless) neural

networks. RAM-based neural network performs mainly logical mathematical computation

and thus does not involve high computation costs such as would a floating-point

computations for example.

 The parallel method is employed in [109], while the serial method is employed by

Austin [7]. Dima [26] proposes a hierarchical mixture of experts and the employment of

dynamic reconfiguration to analyse robot dynamics.

5.2.3 Combination methods

 The combination of component classifier output is called classifier fusion. Multi-

classifier (MCS) design is usually problem dependent, which may imply data-dependency.

The idea of flowchart figure 5.2 is to represent in a diagram a non-exhaustive combination

strategy of MCS. When an MCS developer chooses an explicit data-dependent

combination method of MCS, large prior experimentation is usually required to determine

the composition of the ensemble. Each of these methods of MCS combination is very

extensive and beyond the scope of this chapter with one exception. The one exception is

the data-independent combination method which consists mainly of trained combiner.

MCS with trained combiner usually require no prior experimentations because the

component classifiers can adapt themselves to match the given problem. The MCS

designed in this chapter with EPCN as a trained combiner is an example.

 100

Figure 5.2: Multi-classifier combination scheme with respect to database.

 101

Every output of each base classifier is a one dimensional vector of positive whole

numbers. The one-dimensional vector output of all base classifiers are arranged into a

multi-dimensional matrix, as shown in equation (5.4), at any time during combination.

(5.4)

Each entry in equation (5.4), n(x)i,j, is derived from the output of EPCN of the type shown

in figure 5.4. The resulting multi-dimensional matrix requires an encoding scheme which

speaks the language of the trained neural network combiner. We require an encoding

scheme such that equation (5.4) will convey knowledge of input space to the trained

combiner when encoded appropriately. This is one of the main themes of this chapter.

 Areas of multi-classifier combination has attracted intense research lately, most [110],

[114], [76] of which maintains that a benchmark combiner is non-existent. The majority

voting is suitable in situations where common consensus is required. But it ignores the fact

that some neural network, though in minority, do produce the correct result [114],

especially in area of their specialisation. Secondly, the existence of diversity is ignored by

majority voting as one of the motivation for ensemble creation, but favours common

consensus. Hansen and Salamon [48] showed that only when the nets make independent

 102

errors does majority voting provide increased accuracy. Tumer and Ghosh [130] maintain

that error-independence leads to better accuracy than a specific combination method.

 Gunter [119] called objective functions the functions used in combination. Qualitative

combination is used by Blue [11]. Duin [35] refers to intelligent combiners as trained

combiner, and maintains that trained combiners outperformed fixed combiners. Roli and

Giacinto [112] calls component classifiers balanced classifiers provided they are

combined by any of the fixed combination method, and have zero or negative correlation.

De Carvallo et al. [31] combined two Boolean neural networks in series. Prabhakar [105]

grouped Multi-classifiers according to their output.

5.2.4 Experimentation

 There are MCS designed for specific purposes, and they make explicit use of features of

their database, for which they are required to classify, for the design. An MCS, derived

from weighted Neural Networks, is specifically designed for fingerprint classification in

Cappelli [107]. There Cappelli et al. identify two types of fingerprint classification: the

exclusive classification and continuous classification. Continuous classification is specific

to fingerprint classification, and refers to a multi-dimensional numerical feature vector

which is obtained from a fingerprint. The vector is used in nearest neighbour (or similar

distance measure) search to map close finger prints into cluster. This method inhibits

“ambiguous” classification of a fingerprint from being exclusively classified as belonging

to a cluster. Exclusive classification (also specific to finger prints) is a partitioning of

fingerprint database into a given number of classes according to their macro-features. A

class can only belong to one partition.

 Most other experimentation methods on fingerprints rely heavily on minutiae and

template matching of minutiae. Hollignum [53] employs the graphical method, Jain

[66] uses point pattern matching, Wahab [132] employs structural matching techniques

to minutiae, and Tico [129] uses transformation operation. To improve on these

methods, Maio and Maltoni [90] introduce the detection of false positive. Hung [60],

Prabhakar [106], Xiao [133] provides methods aimed at removing false minutiae, and Maio

[90], [91], uses Neural Networks for minutiae filtering.

 In this chapter, the MCS, derived from weightless Neural Networks, is adaptive and

assumes no knowledge of the databases employed a priori. It is expected that the base

Neural Networks are capable of detecting features necessary for their classification. Thus

 103

this configuration should work for any large multi-class problem domain. A typical large

multi-class problem domain is a biometric database such as fingerprint database. The

proposed MCS configuration will be applied to biometric databases, specifically

fingerprint databases that comprise of large classes with relatively few patterns per class,

in an experimental set-up.

5.2.5 Performance measure

 When inputs to the component classifier are randomly permuted and approximately

equally distributed, it makes the performance independent of a specific arrangement of

input to the component classifier.

 The performance of a MCS is often compared to that of a single component Neural

Networks that forms part of the MCS. Gabrys and Ruta [12] maintain that diversity

measure has limited correlation with MCS performance. The paper states that MCS

performance depends on careful selection of component classifiers. Generalisation

performance of MCS should equal or exceed that of base classifiers. The most commonly

used performance metrics are sensitivity and specificity. Sensitivity, Sn, is defined as

 (5.5)

where Tp = true positive;

and Fn = false negative.

It measures the ratio of positive patterns being correctly classified as positive to the whole

pattern classes. Specificity, Sp, is defined as

 (5.6)

where Tn = true negative;

and Fp = false positive.

It is a measure of the ratio of negative pattern being correctly recognised as being negative.

Min et al. [77] uses a rejection criterion and reliability to measure performance. The

rejection criterion and reliability are numerical quantities derived from fuzzy integral.

 On databases such as fingerprints, the most commonly used performance measures are:

True Acceptance Rate (TAR), True Rejection Rate (TRR), Predictive value positive (Pos),

p
n

p n

T
S

T F
=

+

n
p

n p

TS
T F

=
+

 104

and Predictive value negative (Neg). While performance measures such as False

Acceptance Rate (FAR), False Rejection Rate (FRR), TERR, [106], [107], [1], and Equal

Error Rate (EER), [96], [83], are commonly associated with biometric authentication of

fingerprints. These are quantitative measures of the trustworthiness of results obtained.

However every output of EPCN (see chapter 3), in recognition mode, includes a

confidence measure. The confidence measure or the trustworthiness measure is a scaled

probability measure, scaled by a value called the division.

5.3 Implementation of the Multi-classifier

 As stated above, a Multi-classifier (MCS) is a system that fuses several base classifiers

into one. In this context, a base classifier is a neural network that is known to be very good

at a certain classification task but may be poor at other tasks. The MCS implemented here

is data-independent in the sense explained in section 5.3. The direct method of base

classifier selection is used and these base classifiers will be arranged in parallel since every

output of all base classifiers will be combined. These decisions suggest the MCS

architecture shown in Figure 5.3.

Figure 5.3. The MCS unit is divided into multiple EPCN group and combiner EPCN
group. The multiple EPCN group consist of EPCNs in parallel. Pi = pre-group; Mi =
main-group;‘i = 1,2,3,… ‘f(.) = gating function. Pc = combiner’s pre-group. Mc =
combiner’s main-group.

 105

The specific component classifiers used, Fix-EPCN and rand-EPCN, are weightless

probabilistic classifiers by reason of the nature of their output. Previous studies have

shown the performance of both EPCNs to be well above 50% [84]. In the proposed

system, each component classifier is trained upon, and thus only able to recognise, a subset

of the available pattern classes. It is thus a challenge for the trained combiner to

successfully combine the matrix of classifier outputs, i.e. equation (5.4), many of which

will necessarily have produced incorrect classifications. The input pattern classes are

randomly permuted, and evenly distributed according to equation (5.1) – (5.3) of section

5.2. A component classifier is assigned to each sub-set of input pattern classes. This

ensures that there is no bias within any component EPCN. The selection of base classifier

does not depend on input pattern classes. Rather a parallel method of arrangement of

component classifier is made a priori, with randomization injected into the system

parameter [77]. This ensures independence and de-correlation of the base classifiers. The

address formation method of both EPCNs is their distinguishing features [85]. Their

learning and recognition algorithm are equivalent as described in sub-section 3.2.1 and

3.2.2 respectively. Coupled with the fact that the system parameters of base classifiers are

distinct and uncorrelated, all base classifiers are expected to produce distinct results during

recognition.

 Figure 5.3 is a schematic representation of the proposed MCS. The [Pi, Mi] represent

the component classifiers, i = 1, 2, 3…, and f(.) represents the gating function, while [Pc,

Mc] is the combiner. The [Pi, Mi] component classifiers are fix-EPCN and rand-EPCN with

varied system parameters, so is [Pc, Mc] the combiner. A gating function is a function used

for weighting, encoding, and synchronizing the output of base classifiers before

combination. The novel component of this MCS is, f(.), the gating function. The gating

function in turn consists of various components. The relevant components of the gating

function are the combiner engine. The combiner engine consists of the interpreter and

converter, and is the subjects of the following sub-sections. The functional operation of the

interpreter and the converter constitute an encoding scheme for the EPCN-combiner. The

output of all component classifiers is combined using an intelligent combiner [Pc, Mc], i.e.

a neural network which in this instance is an EPCN with alternative configuration. Thus

the combination method consists of an interpreter, a converter and an EPCN combiner.

 106

5.3.1 Combiner engine – the coding scheme

The term Combiner engine refers to the EPCN combiner [Pc, Mc], and the gating function

f(.) (see Figure 5.3). The gating function is made up of an interpreter and a converter

which together produce the encoding scheme. To illustrate the function of the combiner

engine, if the same character, e.g. “b”, is trained to different Neural Networks as belonging

to different classes. This means that the first class for classifier 1 is different from the first

class for classifier 2. During the recognition phase, a correct classification by these Neural

Networks requires that “b” be classified to their corresponding (respective classes to which

it is trained) classes. But in classifier fusion stage, and without the interpreter, this same

character will be converted to false and true pattern classes by the converter. For these

reasons an interpreter is essential.

 The intermediate outputs are weighted by the gating function only in special

circumstances of input space overlap. Weighted results are treated as patterns to be

processed and not results. In the very special circumstance when intermediate results are

weighted, they are no longer results but class patterns meant to be binarised and served as

input to the combiner-EPCN. Traditionally, an MCS is usually named after the constituent

neural networks and/or with respect to the arrangement of the network. The thesis follows

this tradition of naming the MCS with respect to the constituting neural networks. Because

all component classifiers are weightless neural networks, it naturally follows that the MCS

which is hierarchical composition of the weightless NNs, is a weightless MCS.

Employment of an external gating function (any type) for input/out pattern pre-processing

does not affect the weightless MCS both in composition and in learning/generalization

behaviour, or in any other way.

 When a Genetic Algorithm (GA) is applied to MLP to modify its parameter (for

example), it does not change the name of MLP to something else, and it may also not

change the main behaviours of MLP. But it only enhances the performances of MLP in the

special circumstances. It is the same analogy here. The gating function is even more

restricted in this architecture because it applies itself only to the (fan-in) input pattern of

combiner EPCN. The gating function is usually not an integral part of the MCS and it can

also be employed with other types of MCS. The weightless MCS implemented here can

also employ an alternative (any other) gating function. The author recommends that an

MCS utilising the combiner engine as a gating function may not change its name simply

because the combiner engine is being used since another gating function may yield

 107

equivalent result. The thesis will adopt to use standard nomenclature in which when all

component NNs are weightless NN, the MCS that is formed is a weightless MCS. In other

situations such as Lorrentz [81] it may be called a hybrid MCS.

5.3.2 Interpreter

The function of the interpreter, as the name implies, is to accept equation (5.4) at its input,

and make sense of it to the converter. The configuration information, the output, and

confusion matrix of the base classifiers are also accessible to the interpreter. Based on

these, a decision per pattern is made by the interpreter as follows. A weighting strategy is

employed on the output of the base classifiers when inputs overlap. This weighting

strategy affects only those outputs corresponding to the region of input overlaps. A zero

weight turns off an output of a base neural networks with respect to a given pattern class,

while a weight greater than zero turns it on. The interpreter is incapable of eliminating a

base classifier; rather it inhibits undesirable outputs with respect to certain classes. This

inhibition depends on input space overlap, configuration, and performance on that class.

As an illustration, if character "b" is trained to one neural networks as class 1, and trained

to another neural networks as class 2. During the recognition phase of the component

classifiers, correct classification by the base classifiers requires the first neural networks to

classify "b" as class 1 and the second neural networks should classify it as class 2. The

interpreter informs the converter that the outputs from the two base classifiers are correct

classifications of "b", and will be weighted by their respective probabilities.

5.3.3 Converter

 The converter encodes the Interpreter's integer output into binary. It makes use of an

integer value, called division, to adjust its output. For example, consider the output of a

component classifier to be [10, 10, 65, 25, 10]. The vector [10, 10, 65, 25, 10] represents a

row vector of equation (5.4), and analogous to variable field “decision output” of Table

5.2. The vector is converted by combiner engine to Figure 5.4(b).

 108

A similar encoding scheme in [73] yields Figure 5.4(a). The general methodology is as

follows. Any decimal number, N, is expressible in the form:

 (5.7)

Equation (5.7) is expandable in a polynomial P(d)in equation (5.8);

 (5.8)

The following algorithm (5.9) converts equation (5.8) to its binary equivalent.

 (5.9)

The least probable classes are indicated with low values, 10, in the vector

[10,10,65,25,10]. The low values are omitted by the combiner engine. In the vector

[10,10,65,25,10], 65 occurs in the 3rd position. It is binarised according to equation (7) to

(9), and occurs in the 3rd row in Figure 5.4(a), while the same number is binarised and

occurs in the 1st row in Figure 5.4(b). The position of 65 in the vector [10, 10, 65, 25, 10]

is 3. This position number 3 is binarised to 00000000011 and occurs as the 3rd row in

Figure 5.4(b) by the combiner engine. The pattern concerned here is most probably (the

highest probability 0.65) classes three and more probably class four (with probability

Figure 5.4: Encoded information by the gating function f(.),
(a) Unit encoding from the combiner unit; (b) Engine
encoding from the combiner engine .

(a) Unit encoding

(b) Engine
encoding

()1 0 10
. ...n nN d d d− =  

1 0
1 0() .10 .1010n n

n nP d d d d−
−= + + +

1 .
n n

n n n

b d
b d d β−

=
= +

2 2 1.n n nb d d β− − −= +

0 0

...
.ib d d β= +

0,1,2,...
 constituent integer.i

i n
d
=

=

 109

0.25). For this reason, 25 is binarised, and it occurs in row 4 in Figure 5.4(a), while in

Figure 5.4(b) it occurs in the second position. Both Figures (i.e. 5.4(a) and 5.4(b)) indicate

that the most probable class to be the 3rd class and following this is the 4th class. Secondly,

a reversed bit of the most probable class, 3, is also passed on, only by combiner engine, to

the converter. Thus, it is included in Figure 5.4(b) in the 4th row. The reversed bit serves

to make the information detectable by the EPCN-combiner. Figure 5.4 is the form of

pattern accepted by EPCN-combiner. The functional activity of the interpreter and the

converter constitute what might be referred to as the coding scheme to the EPCN-

combiner. The engine encoding is deployed in the experiment of section 6.4.

5.3.4 EPCN-combiner configuration

 An example configuration of EPCN combiner is shown in Table 5.2. In the field, ntppc

(i.e. number of training pattern per class), each number represents the number of

training patterns per class. The field, pg-layer (pg stands for pre-group), is the number

of layers in the pre-group.

Other important fields in this structure are division and n-tuple. Division is used by the

converter to adjust its output, and used during learning and recognition for other scaling

purposes. When summing out the output, the division is also used to scale output probabilities.

The field, n-tuple, specifies the tuple-size. The combiner's main-group's number of layer is

specified in field mg-layer (where mg stands for main-group).

5.3.5 Comparison to other similar coding scheme for multi-class

problems

 The combination strategy addressed here is comparable to Bayes combination strategy,

and to majority voting. The combination method introduced is much similar to Bayes

combination strategy than to majority-voting method. The combination strategy in [86]

Table 5.2: An output of EPCN

 110

employs a combiner unit which also bear many similarities to the combination strategy

introduced in this section. For this reason, comparisons will be drawn between combiner

engine, combiner unit, and majority voting as and when possible.

 The combiner engine has the following advantages over combiner unit in [82]:-

The combiner engine encoding produce a reduced pattern size, as compared to combiner

unit encoding, and thus has the following implications:-

• Leads to a reduced storage requirement.

 A reduced size of layers in the pre- and main-group (recall that the size of a layer

equals the size of input pattern). This leads to a reduced amount of data being

processed at a point in time.

 An increase in speed of execution since less data will be processed at any given time.

 A consequence of using the combiner engine instead of combiner unit is that a single

EPCN will now be able to combine large class sets and this combination possibility no

longer depends, to a large extent, on a specific configuration.

 The structural difference between the combiner unit and the combiner engine is the

utilisation of an interpreter in place of decision maker. This leads further to the following

advantages of the combiner engine over the combiner unit:-

• The interpreter considers more information with respect to individual base classifier.

• More efficient synchronisation between base classifiers.

We claim that the performance of the combiner engine will supersede other similar

combiner methods both in speed and in percentage of pattern recognized when employed

in the same experimentation (section 5.4).

5.4 Experimentation on the MCS

 In this section, the MCS designed according to sections 5.3 from weightless Neural

Networks (EPCN), is tested. It is adaptive and assumes no knowledge of the databases

employed a priori. It is expected that the base neural networks are capable of detecting

features necessary for their classification. Thus this configuration should work for any

large multi-class problem domain. A typical large multi-class problem domain is a

biometric database such as fingerprint database. The MCS configuration will be applied to

fingerprint databases, which comprise of large classes with relatively few patterns per

class, in an experimental set-up.

 111

 Specifically, the aims of this experiment are to investigate the effect of the combiner

engine, and the effect of approximately equally distribution of input data (sub-section

5.3.1) on recognition performance of EPCN based MCS when a large class database with

few pattern per class are utilized. The database used for this experiment is DBA1 from

the Third International Fingerprint Verification Competition 2004 (FVC’2004) [43]. It is

available at http://biometrics.cse.msu.edu/fvc04db/index.html. These fingerprints are real

(as opposed to synthetic) fingerprints.

5.4.1 Pre-processing

Intensive pre-processing is avoided to prevent local distortions which such procedures will

add. Instead, global pre-processing steps (see section 4.3) are employed in this work. It is a

test for this network to determine its own capability to recognise and classify the

fingerprints amid the noises, distortions, and deformations already present in the source.

Thus no corrections were made for the following deformations present in the source

fingerprints:

(1) Shifts: Change of position or direction

(2) Rotations: Angular shift of an object with respect to a fixed point.

(3) Intensity changes: Irregular or changes in illumination.

(4) Occlusion: Covering of part or preventing of part of fingerprint from being

processed.

(5) Pinch: This is squeezing or nipping of parts of a fingerprint.

(6) Punch: May be a hole or missing parts of a finger print.

The conditions under which these fingerprints are collected are as specified in [43], [58].

However, the following pre-processing operations are performed. This method of pre-

processing avoids the aforementioned pre-processing problems.

• The fingerprints are filtered to remove noises. The same level of noise-filtering was

applied equally to all patterns, and the level of noise varies from pattern to pattern.

• An edge-enhancing filter is then applied.

• This is followed by the binarisation of the fingerprints.

http://biometrics.cse.msu.edu/fvc04db/index.html

 112

5.4.2 Experiment on the MCS

 The advantage of using an artificial neural network (ANN) instead of minutiae

analysis [87], [106], is that a global operation on the images is less sensitive to local

distortion that normally occur during extraction of local features. Fingerprints in this

database are extracted into a directory, an example of which is shown in Figure 5.5(a). The

fingerprints are then filtered, centred, edge-enhanced, and then binarised;

(See Figure 5.5(b)). Each finger printed in various forms represents a class. The

following points represent the main experimental processes:-

 Prior to the commencement of learning, input classes are randomly permuted as

stated in equations (1) to (3), and evenly distributed as shown in Table 1, to remove

any input bias from the network. Training set is sampled randomly from the whole

fingerprint classes without replacement.

 Fifty (50) classes are employed in this experiment. Ten base classifiers are initialised

in parallel, and each network is trained on ten classes arranged as shown in Table 1.

In Table 1, each row represents pattern classes for one base classifier. The

component classifiers are named NTW# (where # = 1, 2, 3 …). An entry in a row is a

number that represent a class. This arrangement of input patterns ensures that each

class is trained on (at least) two networks.

 During the recognition phase each network is required to classify all test patterns

belonging to all classes that participated in the learning phase.

 The outputs of these base networks are combined as in equation (4), and then

encoded to the trained combiner by the combiner engine.

Figure 5.5: (a) Fingerprint, (b) filtered and binarised picture of (a)

(a)

(b)

 113

 For comparison, the outputs of these base networks are also combined using the

combiner engine in majority voting mode.

 This experiment could not be performed on combiner unit due to memory issues

(when the same memory size is used).

 Performance measure:- Every output of EPCN, in recognition mode, includes a

confidence measure. The confidence measure, or the trustworthiness measure, is a scaled

probability measure, scaled by a value called the division. We ensure that inputs to the

component classifier are randomly permuted and evenly distributed as explained in sub-

section 5.2.1. This ensures that performance is independent of a specific arrangement of

input to the component classifier.

An example of an output of EPCN is as shown in Table 5.2 of section 5.3.4. The important

field in this structure is the decision output of the neural networks. This states that the

network is trained on ten classes. When a pattern is presented to it for recognition, it is

Figure 5.6: Normal combination mode: The confusion matrix from EPCN combiner.
Columns 1 to 50 represent classes. The last column is unclassifiable patterns.

 114

(1188/5000) % (the confidence measure) likely to belong to class one, (154/5000)% likely

to belong to class two, etc. The summation of the numbers in the field decision output

should equal the variable in the field division, in this case 5000.When a pattern is

presented to it for recognition, it is (1188/5000) % (the confidence measure) likely to

belong to class one, (154/5000) % likely to belong to class two, etc. The summation of the

numbers in the field decision output should equal the variable in the field division, in this

case 5000. Thus results from EPCNs, and Multi-experts dependent on EPCN, are

inherently with trustworthiness measure.

5.5 Results

 When the experiments are performed, each component classifier produces a structure of

type shown in Table 5.2 for every given pattern meant for recognition.

Figure 5.7: Majority Voting mode: The confusion matrix from EPCN combiner.
Columns 1 to 50 represent classes. The last column is unclassifiable patterns.

 115

Based on these and other configuration information the combiner engine is able to produce

the confusion matrices of figure 5.6 and 5.7. Figure 5.6 is produced by the combiner unit

in normal operation mode, while figure 5.7 is produced by the combiner engine in majority

voting mode. Figures 5.6 and 5.7 are known as confusion matrices. In figure 5.6 and 5.7,

each row represents recognition instances, while each column represents the classes to

which the patterns are classified. The last column represents ambiguous cases. The values

along the diagonals represent the number of patterns that are correctly classified, while the

off-diagonal elements represent the number of patterns that are wrongly classified.

5.6 Analysis

The percentage recognition is calculated from the combiner’s confusion matrix, figures 5.6

and 5.7, and recorded in table 5.3.

Table 5.3 shows the performance on most pattern classes to be 100%. A row consists of

two numbers; the 1st number is the class while the 2nd number represents the % of pattern

recognised. The 1st average quoted is the average of the corresponding column, while the

second average represents the average of the two. Table 3(a) represents the result of the

combination strategy in majority-voting mode while 3(b) represents the result of the

combination strategy in normal mode. From Table 5.3, when EPCN-combiner is switched

5.3(a)

Table 5.3: Summary of results obtained when the experiments in sub-section 5.4.2 were
performed. Column 1 and 3 represents class numbers, while column 2 and 4 represents the
percentage (%) of patterns recognised in a test set.

5.3(b)

 116

to majority voting mode, the average performance is 82.276%, while EPCN-combiner in

normal combination mode gives an average of 92.119%, a difference of about 10%.

That these aims:

 A reduced pattern size for the EPCN-combiner:- This leads to a reduced storage

requirement;

 A reduced size of layers in the pre- and main-group (recall that the size of a layer

equals the size of input pattern) of the EPCN-combiner:- This leads to a reduced amount of

data being processed at a point in time;

 An increase in speed of execution;

Figure 5.8: Comparison of EPCN combiner and Majority Voting (Majvot)
combination method when applied to base neural networks.

 117

has been achieved could be inferred from the output of the gating function, Figure 5.3.

From Table 5.3, it could be deduced that EPCN as combiner outperformed Majority voting

method where a large class database, with few patterns per class, is concerned.

 Since the combiner unit is faced with difficulties when confronted with experiments of

sub-section 5.4.1, this indicates that combiner engine is applicable in situations where

combiner unit is not. As seen in figure 5.8, from class 35 to 50, the variation from 100%

of percentage recognition decreases. Thus the problem of saturation and overloading has

been solved.

5.7 Comparison of FVC2004 with MCSPCN

 The databases employed in Fingerprint Verification Competition (FVC'2004

competition) are divided into two categories, the “light” category and the “open” category.

The light database is required for algorithms characterized by low computing resources,

limited memory usage, and small sized fingerprints. The open category database is meant

for all other algorithms. All participating algorithms are independently developed by

various academia and industries. The databases are benchmark databases [58] for real-life

fingerprint identification, and verification algorithms. In the competition, all participating

algorithms have the same input-output format, and they are tested in the same

environment. Most participating algorithms employ fingerprint matching techniques. All

results emanating from these algorithms are similarly formatted and quantified to enable

direct comparison between them. Methods used in quantifying results rely on Receivers

Operating Characteristics (ROC) of certain parameters. The choices of units mainly used

are False Match Rate (FMR), and False Non-Match Rate (FNMR). These matchings refers

to matching of minutiae, ridges, or some other features characteristic of fingerprints. The

point at which FMR equals FNMR is known as equal error rate (EER). The rate employed

in FMR, FNMR, and EER refers to percentage of fingerprints matched. The ROC analysis

originates from statistical decision theory, and was originally introduced during World

War II. Thereafter, in the 1960s, ROC analyses become prominent in medical

analysis/diagnosis. Though ROC has gained popularity in other disciplines, it has not been

used in neural system analysis. But since the database hereby processed originates from

Biometry, it enhances direct comparison to employ ROC analysis on the result of EPCN-

combiner, and majority-voting when they have been trained on biometric databases. It is

noteworthy that ROC analysis does not indicate, with confidence, how good the MCS

performs. Similar situation has been noticed Yager [97] among others. Figure 5.9(a) and

 118

5.9(b) shows a summary of ROC from FVC2004 while Figure 5.10 shows the ROC of

EPCN combiner, and figure 5.11 shows the ROC of Majority Voting combination method.

 curves from FVC2004

 curves from FVC2004

 119

Figure 5.10: EPCN-combiner ROC on Fingerprint.

Figure 5.11: Majority Voting ROC on Fingerprint.

 120

One of the main reason for larger variation in EER of FVC2004 and that of EPCN-

combiner is that in FVC2004, almost all the available database are employed and the

participating algorithms vary immensely. The multi-classifier utilized in this chapter does

not employ any matching algorithms. It is a multi-classifier employed in different

environment (from that of FVC2004 environment) whose input-output format is distinct

and much different from that of FVC2004 participating algorithms. Numerical quantitative

comparisons are to be treated with skepticism. The EER of FVC2004 may be compared to

the error rate (i.e. (100 – x) % of performance, where x represent the performances quoted

in table 5) of MCSPCN. In FVC2004, EER vary from 1.97% to 100%, while in MCSPCN,

the error rate vary from 0% to 100%. Detailed results of FVC2004 are contained in [48]

while that of MCSPCN on fingerprints are contained in Table 5.3

5.8 Comparison of the Multi-classifiers employed within the

Thesis

• The multi-classifier of chapter four explores unconstrained handwritten numeral

classification while that of chapter 6 employs different problem domain.

• Secondly, data partitioning methods for learning the multi-classifier of chapter 4 is

different from data partitioning method for learning the multi-classifier of chapter 5.

Within an input to a base classifier of chapter 4, the classes are ordered. This is not

the case when fingerprint database are employed (i.e. in chapter 5).

• One of the main aims of employment of handwritten characters (chapter 4) on the

multi-classifier is to explore its usefulness and examine its weaknesses. The defects

of the multi-classifier are also examined with respect to large-scale multi-class

fingerprint database.

• This lead to the development of combiner engine in chapter 5 to replace combiner

unit.

• We may summarise that the combiner unit of chapter 4 supports large-scaled multi-

class database poorly while the combiner engine of chapter 5 supports large-scaled

multi-class database very well.

• Biases, overloading, and saturation effects are considerably minimized with the

multi-classifier of chapter 5; this is not the case in chapter 4.

 121

5.9 Summary

 An advanced encoding scheme has been introduced for Multi-classifiers employed on

problem domains possessing a large number of distinct classes with limited available

training data. Results presented demonstrate an improved performance for the encoding

scheme over that achievable via the majority voting method on a large-class database. It is

noteworthy that the Multi-classifier arrives at a good level of performance despite the level

of deformations, distortions, and noise present in the source fingerprints.

 RAM-based Multi-classifiers does not template matching as do traditional fingerprint

verification methods. Thus this MCS could be regarded as an intelligent, automatic, and

template-free fingerprint recognition system.

 The input arrangement of chapter 4 is systematic while statistical arrangement method

is utilised in chapter 5. The bias problem was solved here via the implementation of the

statistical arrangement method.

 The overloading and saturation problems associated with large-class databases were

solved by the sub-setting strategy of input, and appropriate selection of number of base

classifier that participated in the Multi-classifier systems.

 A combiner unit was employed in chapter 4 while a combiner engine is utilised in

chapter 5. Results show that the combiner engine accommodates larger input classes.

 Area of further research and development includes the application of this combination

strategy to a wider range of large-class problem domains.

 122

6. AN FPGA-BASED WEIGHTLESS NEURAL

NETWORK HARDWARE

 This chapter explores the significant practical difficulties inherent in mapping large artificial

neural structures onto digital hardware. Specifically, a class of weightless neural architecture, the

Enhanced Probabilistic Convergent Network, is examined due to the inherent simplicity of the

control algorithms associated with the architecture. The advantages for such an approach follow

from the observation that, for many situations for which an intelligent machine requires very fast,

unmanned, and uninterrupted responses, a PC-based system is unsuitable, especially in

electronically harsh and isolated conditions, The target architecture for the design is an FPGA, the

Virtex-II pro which is statically and dynamically reconfigurable, enhancing its suitability for an

adaptive weightless neural networks. This hardware is tested on a benchmark of unconstrained

handwritten numbers from the National Institute of Standards and Technology (NIST), USA.

 This chapter also examines the potential offered by adaptive hardware configurations of a class

of the weightless neural architecture Enhanced Probabilistic Convergent Network targeted on a

Virtex-II pro FPGA which is reconfigurable. The reconfiguration and adaptive capability of the

Enhanced Probabilistic Convergent Network is a highly adaptive architecture offering a very fast,

automated, uninterrupted response in potentially electronically harsh and isolated conditions. The

reconfiguration and adaptive potential of EPCN is explored by the employment of a benchmark of

unconstrained handwritten numerals from the Centre of Excellence for Document Analysis and

Recognition (CEDAR).

6.0 Introduction
 Early years of neural network hardware research involve multiple parallel processing

elements (PE). Amsdahl was one of the main early researchers into neural network

hardware. He showed that a task is worth parallelizing only when it is possible for about

50% of the task. “If about 50% of the task is parallelize, the total speed increase is only

twofold; when more than 90% of the task can be parallelize could a speed increase of

tenfold or greater occur.”: This is now known as Amsdahl’s law. Amsdahl law is a good

guide as to when parallelizing leads to speed increase. Generally, only when about 90% of

the processes constituting the task could be parallelized is parallelizing worth doing.

 For a neural network to be implemented in hardware, adequate consideration must be

given to floating-point, and recurrence decimal. Generally, precision is limited to certain

number of significant figure. Since most neural network could not be implemented wholly

 123

in hardware, different variety of hardware neural network has emerged and are categorised

as:

1) Off-chip learning: - Off-chip learning occurs when learning the neural network is

done on a computer using high precision. Weights/results of the learning process is

downloaded onto a chip where the classification or recognition occurs.

2) Chip-in-the-loop learning: - Chip-in-the-loop learning is a situation whereby the

forward propagation part of the learning algorithm occurs in the chip, but update and

calculation of new weight value occurs on a computer.

3) On-chip learning: - On-chip learning and classification occurs entirely on chip. The

EPCN is implemented on-chip, leading to limited precision of calculations. The

EPCN implementation on-chip is also due to the fact that small amount of

calculations are involved, thus discretization of values have very little effect on its

performance because numerical errors are very small.

 Previous chapters have implemented and applied neural networks, algorithms, and

multi-classifiers for various purposes. In this chapter, the algorithms of EPCN will be

considered in a hardware implementation. There are situations and environments that

require the usage of neural network and do not demand urgency; these conditions are

suitable for software-based EPCN. The conditions of emergencies (speed) and adverse

surroundings motivate the consideration of EPCN algorithms in hardware.

 Large-class databases and large artificial neural structure requires more time as

compared to small ones. So that the hardware implementation of EPCN algorithms is

motivated by the need to save time and resources while maintaining the same level of

performance as compared to the software equivalent.

 In the process of implementing the hardware equivalent of EPCN, use will be made of

the learning and recognition algorithms of chapter 3. Learning and reasoning [25], in a

digital hardware, may lead to adaptation and reconfiguration. Neural networks have shown

to be well suited to learn from examples and adapt to non-linear environments, but many

variants are rather resource intensive and therefore prohibitive in practical embedded

applications [118]. However, one class of neural networks is more suited to

implementation in hardware - the so-called weightless neural networks can be well

matched to RAM (Random Access Memory) because their learning and recognition

algorithms are mainly associated with reading from and writing to memory.

 The aims and objectives of this chapter is to present the architecture, and the

implementation of an adaptive RAM-based neural network, called Enhanced Probabilistic

 124

Convergent Network (EPCN) [36], in a reconfigurable FPGA. Hardware implementations

of EPCN are attractive for the following reasons:

1) Compact size and low power consumption compared to a PC based implementation

(i.e. it becomes deployable in areas where a PC may not).

2) The binary weights of RAM-based neural networks are contained in RAM, and

functions are converted to simple logic gates (AND, NOT, and OR). The logic

combinations required to operate the EPCN are of lesser computational intensity than

calculus operations.

3) Regular structure: Generally, RAM-based Artificial Neural Network (ANN) are

easier to implement on hardware due to their regular structure.

4) The use of reconfigurable IC like FPGA to implement neural network allows fast

prototyping and lends itself to modifications at low cost. This makes it a suitable

testbed prior to large-volume production.

5) A well designed VHDL based hardware will allow a significant increase in

processing thouroughput compared to a software based execution on a general

processor.

 Some authors envisaged that Machine Intelligent Quotient (MIQ) may also be a

measure of its performance. Chalfant [22] introduced a MIQ and proposes the analysis of

system architecture and configuration as the criteria for its measurement. Commuri [25]

maintains that architecture of adaptation and learning at all levels of hierarchy simplifies

the measurement of MIQ. Learning of a neural network by reconfiguration is demonstrated

in [124] using a Virtex-II 6000 FPGA. In [122], Simoes employs ALTERA MAX +

PLUS II in the implementation of Goal Seeking neuron (GSN) on Eraseable Programming

Logic Device (EPLD). The EPLD is used in classification of British mail postal addresses.

Spaanenburg [124] implements two neural networks, one is a feed-forward network to

solve the problem of spatial and temporal computing. The second is implementation of

Cellular Neural Networks (CNN) for image processing. The FPGA used is Virtex-II 6000

and the learning of these networks were made to depend on reconfiguration capability of

this FPGA. Freeman [39], designed a co-processor based on a binary neural unit known as

Correlation Matrix Memory (CMM) which is used for approximate high-speed search and

match operations on large datasets. Botelho [14] implements Goal Seeking Neuron (GSN),

a RAM-based neural network, on Khepera mobile robot for control and navigation. The

RAM-based neural networks in [124],[14], designed on FPGA were deployed in

autonomous systems. Most of these systems are application dedicated systems, often for

 125

one purpose only. However, the principled EPCN system is generic and highly scaleable.

The EPCN when implemented on FPGA could be employed both for prediction and

recognition It would thus become suited to a multitude of applications. In this chapter

however, the hardware is tested on a benchmark of unconstrained handwritten integers

from National Institute of Standards and Technology (NIST), USA.

 The possibility of reconfiguration and adaptability of FPGA-based EPCN will be

introduced. The motives for the exploration of its reconfiguration and adaptability are

significant and beneficial – these will be explained in subsequent paragraph.

 Research into reconfiguration of artificial neural networks (ANN) is an increasingly

significant area of investigation. This arises partly due to the improvement in performance

possibilities offered in that it becomes possible for an ANN, when implemented in digital

hardware, to be capable of adaptation and reconfiguration during learning [25]. Adaptation

may also be in response to nonlinear environment. However, adaptation and

reconfiguration may incur a high computation overhead, more so in practical applications

[115]. This high computation overhead is however minimised in the class of neural

network investigated in this chapter, the weightless neural network. This follows from the

observation that the less the computation requirement, the faster an ANN is able respond to

new input. This reduction in response time becomes very large when the ANN is

implemented in hardware.

 ANNs may also be grouped depending on the principle behind their implementation.

Those whose behaviour closely mimics the intelligence of natural being e.g. the genetic

algorithm, and those designed from mathematical concepts. Weightless neural networks,

also called RAM based neural networks [7], are a subgroup of those designed from

mathematical concept, in this case mathematical logic concept. Bledsoe and Browning in

their pioneering work [10] (around 1959) made the first attempt to base their design of

neural network on mathematical logic concept. More sophisticated networks have naturally

been developed subsequently. These include the implementation of Enhanced probabilistic

Convergent Networks (EPCN). The EPCN is an enhanced form of PCN [55]. The specific

enhancements are as detailed in [85]. EPCN is a feed forward neural networks

incorporating supervised learning with the addition that the mathematical logic is

minimised even further when EPCN is implemented in a hardware.

 A harware implementation of ANN offers significant advantages to a purely software

implementation due to increased speed. For a weightless NN, the mathematical logic is of

a reduced complexity than is the case with alternative NN when implemented in a digital

 126

intergrated circuit (IC) - this allows an increase in speed. These advantages, amongst

others, motivate the work of this chapter.

 The aims and objectives of this chapter are two fold. One is to present the architecture

and implementation of an adaptive RAM-based neural network, the Enhanced Probabilistic

Convergent Network (EPCN) [85], in a reconfigurable FPGA. The second is to explore the

reconfiguration and adaptive properties of the FPGA-based neural network.

 The remainder of this chapter is organized as follows. Section 6.1 presents an overview

of the EPCN, while section 6.2 introduces its hardware configurations. The experiments to

test the configuration possibilities of FPGA based Hardware architecture of EPCN and its

results are presented in section 6.2. The experiments and results obtained are presented in

section 6.3. The experiments and results of re-configurability (or adaptive behaviour) of

EPCN is presented in section 6.4. Analyses of results are presented in section 6.5. The

chapter concludes with areas of further research and development in section 6.6.

6.1 The Enhanced Probabilistic Convergent Network

The architecture of EPCN consists primarily of four component layers as explained is

section 5.2. It includes an optional feedback path (represented by dashed arrows) from

the merge layer of the main group to the main-group. Each layer consists of component

neurons which are themselves made up of storage locations known as RAM-locations as

shown in Figure 5.2 of chapter 5. Details of the learning and recognition algorithms are

contained in chapter 3.

6.1.1 Other similar weightless Neural networks

 Almost all hardware implemented weightless NN are derived from either of these units: -

• WISARD discriminator [5]

• Correlation matrix memory [74]

To date, these units are used in various combinations to design weightless neural networks.

A typical state-of-the-art design is employed by Bin Azar [47] who utilizes a WISARD

discriminator to design a weightless NN for robot navigation. Azar [47] states that

WISARD discriminator does not exhibit generalisation inherently. In his implementation,

memorization and generalisation abilities were achieved by setting 120 neurons manually.

The CMM relies on bitwise OR of input space during learning, and dot-product during

recall phase. This find application in the design of C-NNAP [74].

 127

 Following is a comparison between EPCN designed in this chapter and a typical state-of-

the-art design of FPGA based neural networks.

Having compared various FPGA based neural network, the architecture of EPCN will now

be presented.

6.2 The FPGA-based hardware architecture of EPCN
In this section, the architecture of EPCN is proposed, by the thesis author that forms a

complex hierarchical system. The design is sub-divided into pre-processing input data,

core modules of EPCN, hashing function (unit), reconfiguration, and memory

management.

6.2.1 Pre-processing

 The EPCN’s pre-processing steps include the reading in of the input data, or querying a

terminal of input source. The EPCN expects the input values to be expressed in binary

number. A compression algorithm, the Lempel-Zif algorithm [68] is included in the pre-

processing steps. Most of the common identical data points in the classes will be removed

by Lempel-Zif algorithm in order to permit real-time rescaling of input pattern as and

when required. For example, the input, Figure 6.1(a), is pre-processed resulting in Figure

6.1(b) during input processing.

 128

 (b)

 (a)

6.2.2 The EPCN Hardware

 The EPCN is here described using the hierarchical system of design. The design is

synthesised by Xilinx ISE during which EPCN is analysed and converted into digital

circuit components. Figure 6.2 shows the main block modules constituting the EPCN

architecture. In Figure 6.2, the train-block and the recognise-block are both connected to

the input pre-processing block via the control unit and the hashing function that produces

the addresses. The control unit initiates pre-processing when data are available at the input.

After the completion of pre-processing of the input training data, it initiates the training

processes (section 3.2.1). The train-block signals a finish flag when training completes. On

reception of learn-flag-complete, the control unit checks the recognition input for data.

When data is present, pre-pro cessing is done for the pattern meant for recognition. When

the pre-processing-stop flag is detected by the control unit, the recognition block starts the

recognition processes (section 3.2.2). The output block is monitored by the control unit

through a feedback system. Iteration of the recognition processes stops when values in the

output block are stable, by querying the output block, or after a pre-defined number of

iteration steps.

 The overriding majority of the EPCN block architecture consists of memory. Its

functional behaviour is concentrated on data flow from and to these memory locations.

The memory location in EPCN is described as single-port block RAM driven by a

registered read address and a synchronous write operation.

Figure 6.1: The pre-processing; (a) is pre-processed resulting in (b).

 129

6.2.3 Hashing

 A hashing function is often used to search and retrieve information from memory. Such

a hashing function as employed by Freeman [39] is based on bit-folding, XOR, and

pseudo-random number generator.

 In this chapter however the hashing function implemented is based on XOR and

Maximum-length Shift-register [67] code. A maximum-length shift-register code generates

a systematic code with desired output length;

 (6.1)

Figure 6.2: The block-diagram of EPCN FPGA architecture.

2 1mn = −

 130

Where m is the information bit derived from input pattern. The code words are normally

generated by m-stage digital shift register with feedback. The generation of the code words

depend on parity polynomials h(p) given by equation (6.2);

 (6.2)

The maximum-length shift-register codes (MLSR) are dual of cyclic Hamming codes. Bits

in the pattern become the information bits. The hashing is used for address (connectivity)

formation. Data will be written to or retrieved from the LUT-RAM location whose address

is so formed. Examples to illustrate this are given below.

 Example I: when m = 3; equation (6.1) becomes

n = 2m – 1 = 23 – 1 = 7;

This means that 7 addresses are required. In equation (6.2) the parity polynomial h(p)

becomes;

 (6.3)

In equation (6.3) it is seen that the coefficient of p7 is 1. hi, (i = 0,1,2,…7) is such that hk-

1pk-1 is an integer between 7 and 0. This is a constraint to be satisfied. Most of the values of

hk-1pk-1 will be zero. Looking at Figure 6.3, it is seen that non of the values assigned to

“ttuple” is greater than 7, the corresponding RAM location will be read from or written to

Figure 6.3. Formation of addresses by hashing from input patterns. This
is prior to the learning process.

1 0
1 0() ...k k

kh p p h p h p−
−= + + +

7 6 0
6 0() ...h p p h p h p= + + +

 131

as the case may be. The RAM-location is found in a layer whose address is also generated

by hashing, as values assigned to “tcol” variable, where “tcol” represents address of a

layer. There it is seen that all values between 0 and 3 have been generated. To distinguish

between wanted zeros and unwanted zeros, wherever h(p) has values greater than 3 or less

than 0, this is set to 2n and this make the location inaccessible.

Example II: Suppose ten connectivity are required none of which should be greater than

10?.

Answer: Recall that 24 > 10 > 23. So that when m = 4; equation (6.1) becomes

n = 2m – 1 = 24 – 1 = 15;

and in equation (6.2), the parity polynomial h(p) becomes;

 (6.4)

In equation (6.4) it is seen that the coefficient of p15 is 1. And hi, (i = 0,1,…15) is such that

hk-1pk-1 is an integer between 15 and 0. Since no connectivity should be greater than 10,

h(p) is set to 2n for those values that are not required. An example is shown in Figure 6.4,

here the variable “rclas” shows all addresses derived lies between 0 and 10 inclusive. The

“rclas” represents addresses of a neuron in the recognition phase.

 To distinguish between wanted zeros and unwanted zeros, wherever h(p) has values

greater than 10 or less than 0, this is set to 2n and this make the location inaccessible.

 Other addresses are derived similar to example I and II. Recall that information bits in a

pattern characterise that pattern, and thus the connectivity is reproducible.

15 14 0
14 0() ...h p p h p h p= + + +

 132

6.2.4 Memory management

 As indicated previously, the memory location in EPCN is described as single-port block

RAM driven by a registered read address and a synchronous write operation in Xilinx’s

LUT-RAM. The memory management is monitored by the control unit, see Figure 6.2.

During a read operation from a location, a write operation is disabled with respect to that

location. During a write operation to a location, any read operation from that same location

is disabled.

 As concerning the buses, a read/write enable/disable operation depends on the

addresses formed from the pattern. The FPGA consists of configurable logic blocks

(CLBs). These CLBs are inter-connected by buses. Activating a bus, and which bus is

being activated depends on if its address is formed. Activating a bus is necessary prior to a

read/write operation; otherwise a read/write operation is not possible on that bus. A read

and write addresses, with respect to one bus will not be formed at the same time. It is

either a read address or a write address. It ensures that values are not written to and read

from the same bus at the same time. This is commonly referred to as bus contention.

Figure 6.4: Formation of addresses by hashing from input patterns. This
is prior to the learning process.

 133

6.2.5 Reconfiguration

 The structural architecture of EPCN and the size of its neuron are adaptive, changing

with learning and classification. During learning and classification, an integer number

called the division is required for adjustment purposes, [85]. The term adjustment refers to

multiplying the integer value in a RAM location by the division and dividing by the

number of training patterns per class. The adjustment is necessary for all classes to be

treated equivalently when the number of pattern per class varies between classes. Tuple-

size is the number of bits sampled from input data (at once) that characterize features of

that data. For a tuple-size of n, 2n – 1 bit are sampled.

 In practice the maximum size and structure of EPCN is naturally limited by the

available hardware resources. The number of pre-group layers, the number of main-group

layers, the tuple-size, and the division are often referred to as system parameters. The size

of pre-group layer and the size of main-group layers are modifiable alongside the reconfiguration

process.

 The number division used during various adjustment phases could be chosen within a

value from 1 to 215. This is the binary address range that fits in memory on FPGA. The

possibility of the variability in system parameters is vital to static and dynamic

reconfiguration. Modification to the value assigned to division is done by prefixing

“constant divisn” with a “generic” statement. This is normally done before training and a

recognition session pair.

 The EPCN reconfiguration file is stored in Programmable Read Only Memory

(PROM). Since the golden configuration is stored in revision 0 for FPGA’s self-test, the

EPCN reconfiguration file is stored in revision 1. The source-select switch is used to select

any of the revision at any time required.

 The FPGA is pre-programmed with various possible configuration options. The config-

select, SW8, is a group of three switches, the combination of which gives the selection of

one of eight possible configurations of EPCN. The source-select, SW9, is a group of two

switches, the combination of which gives the selection of source of configuration for

EPCN.

 Using the config-select switches in conjunction with config-source switches it was

found that it supports to a maximum of:

• Tuple-size = 4;

• Pre-group layers = 5;

 134

• Main-group layers = 5;

• Class = 15;

• Number of neuron per layer 20-by-15;

The detection of pattern boundaries is automatically and dynamically done by the control

unit (figure 6.2).

 The functional activities of the pre-processing unit and the hashing function (unit) are

monitored by the control unit to ensure that the size of the pattern used within the EPCN

fall within the maximum neuron size possible. Secondly, it is always possible to adjust

every pattern size appropriately before hashing. This solves the boundary problems. The

solution to the boundary problems increases the range and type of input sources and

reconfiguration flexibility of EPCN, which will be experimented on in section 6.3 and

section 6.4.

6.3 Experimentations

The EPCN was designed and implemented using Xilinx ISE 9.21i. The NIST data base1

has been used for testing the functionality of EPCN and has been found suitable for use.

Testing was done by instantiating the EPCN in a test-bench and associating the NIST

handwritten data set with its input.

 The prototyping board is linked to the computer via a USB programming cable. Auto-

recognition of the programming cable by Xilinx ISE enables the download of the bit file

generated from EPCN, as shown in figure 6.5, and configuration of the board by impact

(component of Xilinx ISE) using PROM file generated from EPCN.

1 National Institute of Standards and Technology (NIST) in Gaithersburg USA. NIST provide the
handwritten simple form (HFS) of numerals, which were binarised and resize to 32-by-32.

Figure 6.5: This shows that EPCN fits Virtex-II pro.

 135

 To display the output of EPCN on board the FPGA, RS232 cable is connected via the

com port and linked to the HyperTerminal at a baud rate of 2400 – 9600. Recognition

results are displayed on the HyperTerminal in a PC. Internal to the Virtex-II pro FPGA is a

2MB SDRAM. External SDRAM at 2GB is also attached. This makes possible an

increased number of LUTS generated and utilized during learning and recognition of

EPCN in FPGA.

 An example of the FPGA resource utilisation of EPCN is shown in Table 6.2. These are

the resource requirements for the following EPCN architecture:

• Tuple-size = 3;

• Pre-group layers = 3;

• Main-group layers = 2;

• Class = 10;

• Number of neuron per layer 20-by-15;

From Table 6.2, it is seen that the resource utilisation is relatively low for the given

example network.

 Using the NIST handwritten integers, the EPCN is trained on 0 to 9, and during

recognition requested to recognise “1”. Data for training are selected from the training set

Table 6.2: An extract of resource utilisation showing the conversion of EPCN to gate-
level components.

 136

while patterns for recognition were selected from recognition set. Both training set and

recognition set form disjoint sets.

Result of type figure 6.6 shown above is obtained when a pattern is shown to the network

for recognition. Figure 6.6 shows the result when one input pattern is shown to the

network for recognition. In this figure, the numbers 1,2,3,…,9, on the left-hand-side

represents the classes while the binary numbers to the right-hand-side represents the

probability (scaled by division) with which the

Figure 6.6: Wrong recognition: A recognition result from EPCN
when trained on “0” to “9”, and shown “1” in recognition phase.

Figure 6.7: Ambiguous state: A recognition result from EPCN when
trained on “0” to “9”, and shown “1” in recognition phase.

 137

pattern belong to that class. By varying the configuration of EPCN and showing it the

same pattern for recognition, different other results are obtainable as shown in Figures 6.7

and 6.8. Three possibilities exist in recognition processes of EPCN. They are correct

classification (Figure 6.8), ambiguous classification (Figure 6.7), and wrong classification

(Figure 6.6). The binary numbers in Figure 6.7 and 6.8 has same meaning as in Figure 6.6.

6.4 Reconfiguration/Adaptive Experimentations

.The experimentation carried out here explores various configurations of EPCN. The

EPCN was designed and implemented using Xilinx ISE. It was then tested in software by

simulations prior to these experiments. The Source of database used in these experiments

is:-

• The centre of Excellence for Document Analysis and Recognition (CEDAR),

University at Buffalo, State University of New York, USA. Department of Computer

Science. Unconstrained handwritten numbers from CEDAR were resized and

binarised to 16-by-24 in dimension.

 The config-select switch consists of three switches while the source-select switch is made

up of two switches. In any session, learning or recognition, a combination of the three

Figure 6.8: Correct recognition: A recognition result from EPCN
when trained on “0” to “9”, and shown “1” in recognition phase.

 138

switches on SW8 yields eight possible configurations which enables variation of

configuration and system parameters of EPCN architecture. The config-source, consist two

switches which are used to select sources of configuration. The various configurations of

EPCN in these experiments reside in PROM (in Revision 1) and are fetched during

reconfiguration automatically.

 Preliminary investigations, that includes the available size of both the internal and

external synchronous dynamic random access memory (SDRAM), has revealed that

hardware resources supports maximum of 5 layers of pre-group and maximum of 5 layers

of main-group. Guided by these hardware resource constraints, the experiment aims to

explore various configuration possibility of EPCN and to determine the possible optimum

configuration of EPCN. To this end, three experiments were performed on FPGA based

EPCN using the database mentioned above. They are:-

• A case where division = 1000; main-group layers = 3; pre-group layer increase from

1 through to 5.

• A case where division = 1000; pre-group layer = 3; main-group layer increase from 1

through to 5.

• In the third experiment, the main-group layers = 3; pre-group layer = 3; division is

increase from 100 through to 700.

Results of these experiments were recorded. They are graphically displayed in Figures 6.9,

6.10 and 6.11.

 These same experiments have been performed on the software version of EPCN [85], by

employing the same CEDAR database.

 139

Figure 6.9: A plot of % recognition against number of pre-group layer; division =
1000; main-group layers = 3; pre-group layer increase from 1 through to 5.

Figure 6.10: A plot of % recognition against number of main-group layer;
division = 1000; pre-group layers = 3; main-group layer increase from 1
through to 5.

 140

6.5 Analysis
 From the design and the example resource utilisation, Table 6.2, it could be inferred that

static and dynamic variation both of precision (word length) and system parameters are

possible. As these are fully supported by available resources, up to a certain maximum (see

the sub-section 6.2.4).

 Figures 6.6, 6.7 and 6.8 are result types obtainable from EPCN. Figure 6.6 is a case of

wrong classification, while Figure 6.7 is an ambiguous state. Figure 6.8 shows correct

recognition. These results are obtained when character “1“’ is shown to EPCN. The

different outputs, due to changes in system parameters, are indicative of the possibility of

changes in decision due to changes in environment.

 A pattern of 15-by-20 in size infers 300 neurons per layer. And there are many of such

layers in any instance. This demonstrates the possibility of implementing an advanced and

large weightless neural network, the EPCN, wholly on FPGA, the pre-processing steps

inclusive.

Figure 6.11: A plot of % recognition against division; the main-
group layers = 3; pre-group layer = 3; division is increase from 100
through to 700.

 141

6.6 Adaptive/Reconfiguration Analysis

 The advantages of the FPGA implementation are that it is able to exploit the

reconfiguration and adaptive capability of the EPCN which is advantageous for many

situations for which an intelligent machine requires very fast, automated, uninterrupted

responses, and in potentially electronically harsh and isolated conditions.

 Figure 6.9 shows that the maximum percentage recognition occurs when the pre-group

layer is 3. Figure 6.10 shows that the maximum percentage recognition occurs when the

main-group layer is 4. Figure 6.11 shows that the maximum percentage recognition occurs

when the division is 300.

 Comparing Figures 6.9, 6.10 and 6.11, it may be observed that the performance is least

dependent on division and that performance is most dependent on main-group layers.

These results are identical to the result obtained from the PC-based EPCN when same

input databases are used hence demonstrating the validity of the FPGA implementation.

Further investigation and experimentation shows that the optimum system parameters are:-

Main-group layers = 4;

Pre-group layers = 3;

Division = 300;

These values are naturally dependent on the database employed and the number of classes.

Also it is noteworthy that the hardware is of the order of 105 faster than an equivalent

software implementation. A comparison between the speed of the FPGA-based EPCN, an

optically enhanced Multilayer perceptron (MLP) [86][87], and a software based EPCN is

shown in Table 6.4. There is clearly a substantial gain in speed by the FPGA-based EPCN

over a software implementation. The EPCN is employed on human eye iris database and

compared with other neural networks in table 6.5. Table 6.5 shows how different databases

may give rise to different results (in Table 6.5). The results in Table 6.5 also depend on

 142

configuration complexity and on source of database employed. The order of magnitude

appears more general and thus more reliable.

 Hardware constraints has been considered, and compared to equivalent software EPCN.

These are tabulated in Table 6.4.

Experimental results further show that on comparing the software performances with the

hardware performances:

1) Figure 3.5 is very similar in behaviour to figure 6.9.

2) Figure 3.6 is very similar in behaviour to figure 6.10.

3) Figure 3.7 is very similar in behaviour to figure 6.11

The FPGA-based EPCN may give the same result for exactly the same system parameters.

Table 6.5: Comparison of hardware EPCN with other neural networks implemented on
other platforms. The database employed is human eye Iris

 143

Table 6.5 compares EPCN with other neural networks when employed in human eye Iris.

From Table 6.5 and Figures 6.9, 6.10 and 6.11, it is deductible that the possibility of 16-bit

word-length has a great effect on the identical result obtainable both from the hardware

and the software EPCN.

6.7 Summary
 The EPCN has been shown to be portably and wholly implement-able on FPGA. Pre-

processing steps have been included in this design. The results demonstrate the possibility

of implementation of a large, advanced, and adaptive weightless EPCN in a re-

configurable FPGA. The FPGA based EPCN has been shown to be adaptive and

reconfigurable. The results obtained here are comparable in performance terms to that of

software-based EPCN. This is significant since hardware implementations of weightless

classifiers are rare.

 A shortcoming of these experiments is that interaction effects of these parameters were

not investigated. This may be considered as an area of further experimentation and

development. Other areas for further research include introduction of machine intelligent

quotient (MIQ) as a means of self-assessment, and dynamic parameter tuning of the

network.

 144

7. CONCLUSION

7.1 Introduction

 The advantages of RAM-based neural networks were enumerated in different places

within the thesis. Introduction to weightless neural network afterwards focuses on EPCN

whereby it was introduced. Modifications were made to configurations and connectivity,

depending on areas of applications.

 Chapter 3 reveals that other connectivity formation methods are possible. As this forms

the basis of two types of PCN herein named fix-PCN and rand-PCN. We were able to

explore various configuration possibilities for this neural network and, using handwritten

characters, obtain a maximum performance of about 85% there. The levels of performance

obtainable in this chapter could be improved upon.

 This prompts investigations into possible multi-classifier systems. In chapter 4, a parallel

multi-classifier was designed. Performances in excess of 85% were achievable. Further

areas of study might be other forms of arrangement such as serial or hybrid arrangement of

component classifiers. It is noteworthy that these depend on objectives of application.

Low performance is not suitable for sensitive applications and also unsuitable in areas such

as identification and security. In these areas, a very high % correct recognition is required.

Secondly, a single PCN may be unable to cope with large-scaled multi-class databases due

to problems among which are bias and saturation effects. A biometric database identifies

itself with identification and security. Using PCN in a MCS in chapter 4, it is now possible

to rapidly (and with high accuracy) classify large-scaled multi-class biometric databases.

Though only fingerprint database was used in this chapter, there is no reason to suggest

that it is not applicable to other large-class databases.

 A novel advanced combination strategies were introduced in chapter 5. These

combination methods were tested on fingerprint classification. After optimisation of the

combination methods, performances of about 92% were obtained. Using PCN in a MCS

with these combination methods, it is now possible to rapidly (and with high accuracy)

classify large-scaled multi-class biometric databases. Its suitability for application to large-

scaled multi-class database depends on the fact that external feature extraction procedures

for input data were not required for correct classification. The MCS is capable of detecting

 145

features of input database, autonomously, for their classification. This is an intrinsic

property of this MCS, and applies to any input databases. Industrial application might be a

good further step.

 Accelerated character recognition and avoidance of collision may be required in

electronically harsh and isolated conditions. Such conditions find itself in space

exploration or in deep sea. Also, there are conditions for which an intelligent machine

requires very fast, unmanned, and uninterrupted responses. These conditions make PC-

based software very unsuitable, and form the content of chapter 6. Unsuitability of

conditions conceived the idea of a hardware implementation. Attempts were then made in

chapter 6 into a hardware design of EPCN. An FPGA based PCN was then applied to

unconstrained handwritten character. This chapter demonstrates the possibility of

implementation of an advanced RAM-based neural network wholly in FPGA. Following

this is a question of its wider applicability, and also question of configuration issues.

 Issues such as the advantages of a hardware implementation, when applied to sensitive

and difficult area, were addressed in chapter 6. In chapter 6, system parameters of PCN

and its various possible configurations were investigated. Results obtained were compared

with other neural network systems. Hardware PCN was found suitable and applicable in

areas mentioned in the previous paragraph. This is with a considerable speed and

performance advantage as compared to many other systems.

7.2 Handwritten characters – Utilisation of a single Neural

Network
 The results of chapter 3 are obtained by the employment of a single weightless neural

network, fix-EPCN and rand-EPCN independently, in turn on unconstrained handwritten

characters. Filling of form by hand is still much in place in offices of industries and

academics. The performance of EPCN in chapter 3 is at 87% maximum.

 Application areas: - The advantage of EPCNs implemented in chapter 3 is that they

could find application in offices where automated recognition of unconstrained

handwritten characters, e.g. in bank cheques, in application forms etc., are required. An

example application is given in section 3.4 which coincide with recognition of handwritten

(hand writing of every day life) numerals. The EPCN in this chapter is unsuitable for

applications that are security or health based.

 Areas of further development: The coding of this EPCN is done in Matlab.

 146

• The coding could be improved upon

• An optimisation algorithm could be introduced

• A multi-classifier could be constructed so as to improve the performances.

7.3 A Discussion on weightless Multi-Classifier Systems
 Chapter 4 implements a multi-classifier system consisting only of weightless

component classifiers. And performance rates of over 93% are obtainable. Though the

multi-classifier does not utilize any of the classical improvement method such as Bagging

or Boosting, the error rate of less than 10% has been obtained consistently.

 Application areas: - The multi-classifier may be applied in low level security sector

such as verification of absence or presence of materials in bulk. The disadvantage is its

inapplicability in high-level security sectors. The multi-classifier is capable of

accommodating more classes, and has a higher (about 20% more) percentage recognition

rate as compared to a single EPCN. This Multi-classifier is suitable in recognition of

hand-filled forms and handwritten characters. In addition to this, its suitability in biometric

verification purposes is suggested.

 Areas of further research: - This may include improving the coding to the combiner.

7.4 Classification of Large-Scale Multi-Class Databases
 Also in chapter 4, the multi-classifier is tested on large-class databases (fingerprint

databases). The component classifiers each were assigned ten classes. This arrangement

does solve the problem of saturation, but does not solve the problem of bias. The

performances of the multi-classifier on each class vary greatly. Such that for the multi-

classifier to be very useful on large-scaled multi-class database, improvement on the

MCS performances is required. Nevertheless, the performances of the multi-classifier on

many classes were substantially above 62.5%. What has been achieved in the projects of

this chapter are:

• The removal of saturation

• The utilisation of the multi-classifier on biometric databases serves as a pointer to

the next-line-of-action, should it be required to utilize normally the multi-classifier

on large-scaled multi-class databases.

 147

Application areas: - It is suitable to medium-level security sectors such as biometric

identification in industries. It is also suitable for character recognition such as found in

(hand-filled) forms.

Areas of further research and development are: -

• The removal (or minimisation) of bias.

• Improvement in performance of the multi-classifier on large-class databases.

• Instead of employing a traditional method of boosting and/or bagging, it was decided

to employ a novel method by replacing the gating function with a more advanced

gating function so as to improve performance.

7.5 On Combination Strategy for Large-Scaled Multi-Class

Database of Multi-Classifier
In chapter 5,

• A statistical arrangement method is introduced to solve the bias problem.

• A sub-setting strategy is introduced to solve the saturation problem

• A novel gating function is introduced to solve the problem of high memory demand,

and increase speed.

These steps achieve a performance of 92% on average, on large-class databases, which in

this case is a fingerprint database.

Potential Application areas: - An error rate of less than 10% implies that it may be used

on medium to very large databases. The result obtained here is very good with respect to

the database on which it is applied. It indicates that it may be used in industries that require

low to medium level security, e.g. for human fingerprint recognition, handwritten

recognition, level of alcohol in blood, etc. Generally, it is applicable in situations where

the risk of false recognition is low.

 The disadvantage is the low percentage recognition (average is 92%) when it comes to

“high-level security” databases such as database of national security, databases related to

health and hazards, etc. The reason is because the risk of false recognition is high (above

1%). It may be used on “high-level security” database only as an advisor since the output

of the multi-classifier is a probability output.

Areas of further research: - Industrial deployment of the developed system.

 148

7.6 Hardware-based EPCN
In chapter 6, the EPCN is ported to FPGA. The portability of EPCN to FPGA is significant

and widens the areas where it may be applied. Though at an early stage of development,

results shows that EPCN could be deployed in hardware for possible pattern recognition

and prediction.

 A significant achievement of the projects contained in chapter 6 is that it has become

possible to implement an advanced and complex RAM-based neural network of this type,

wholly in FPGA, which paves the way for other new areas of application of EPCN. The

FPGA based EPCN is tested for adaptability and for reconfiguration. The results obtained

(section 6.5) is good, and signifies:

• That FPGA based EPCN may be employ in offices of industries and academics

where automated recognition of unconstrained handwritten characters is required.

• Wholly portable to hand-held equipment.

• May be employed in harsh surroundings.

Areas of application: - The hardware-based EPCN is highly adaptive and automatic with

respect to its surrounding and to data. This implies its suitability in electronically isolated

situations; e.g. in space exploration. It is also suitable for portable and/or embedded

applications.

 Areas of further research: An enhancement of the robustness of EPCN to vagaries of

hardware is in order.

7.7 Summary
Chapter 7 has reviewed the achievement of previous chapters, the merits, and the demerits.

Each weightless neural network and each multi-classifier implemented in each chapter is

independently developed, and may be applied or used as such.

 The results of projects detailed in this thesis have the following consequences for

weightless neural systems. It means that (a) more connectivity methods are now possible

for weightless neural networks; (b) a novel gating function is introduced for neural

networks; (c) It is the first attempt at utilizing a weightless neural network as a trained

combiner in a multi-classifier framework with a considerable success; (d) The EPCN is

ported to FPGA. It signified that it may be possible for other advanced weightless neural

networks to be ported also to FPGA.

 149

 Though a definition for intelligence may not be universally acceptable, and attempt has

been made to define ANN as an intelligent system, it has nevertheless lead to

achievements enumerated so far. As research extension to EPCN which will carry over to

any MCS in which it is a component, it is suggested to include the following researches at

project level:

• An attention mechanism;

• A consciousness mechanism.

These two modules are considered essential area of future research possibilities in order

move EPCN toward an intelligent ANN system. Any other research extensions are

possible and may be considered optional.

 150

References

1. Abd Allah MM, Artificial Neural Network Based Fingerprint Authentication with

Cluster Algorithm, Informatica 29, pp. 303 – 307, 2005.

2. Abhinar Saxena, Ashraf Saad, Evolving an artificial neural network classifier for

condition monitoring of rotating mechanical systems, Applied Soft Computing

ASOC – 214, pp.441-454, 25 October 2005.

3. Aleksander and Stohnam TJ, Guide to Pattern Recognition using random- access

memories, Computera and Digital Techniques 2, pp.29-40, 1979.

4. Aleksander I, Morton H, Phenomenal weightless Machine, 17th Symp. On ANN,

pp. 84 – 89, April 2009.

5. Aleksander I, Thomas WV, and Bowden PA, WISARD: a radical step forward in

image recognition, Sensor Review 4(3), pp. 120-124, 1984.

6. Andrzej Bieszczad: Neurosolver: A step toward a neuromorphic general problem

solver, Proceedings of IEEE World Congress on Computational Intelligence

WCCI'94, Vol. III, pp. 1313 – 1318, 1994.

7. Austin (Ed.) J. RAM-based neural networks, World Scientific, 1998.

8. Bernard Michel et al., Support vectors machines regression for estimation of mars surface

physical properties, 17th Symp. On ANN, pp. 195 – 200, April 2009.

9. Beyer J, Heesche W, Hauptmann W, Otte C. Heterogeneous mixture-of-expert for fusion

of locally valid knowledge-based submodels, 17th Symp. On ANN, pp. 485 – 490, 2009.

10. Bledsoe WW, and Browning I. Pattern Recognition and reading by machine. In

proc. Joint Comp. Conference, pp. 232-255, 1959.

 151

11. Blue JL, Candela GT, Grother PJ, Chellappa R, Wilson CL, Evaluation of Pattern

Classifiers for Fingerprint and OCR Applications. Pattern Recognition, pp. 485-501,

27 (1994).

12. Bogdan Gabrys, Dymitr Ruta, Genetic algorithm in classifier fusion, Applied soft

computing 6, pp. 337 – 347, 2006

13. Boscsi B, Csato L. Dirichlet process-based component detection in state-space

models, 17th Symp. On ANN, pp. 491 – 496, 2009.

14. Botelho SSC, Simões EV, Uebel LF, Barone DAC, High Speed Neural Control for

Robot Navigation, IEEE International Conference on systems, man, and

cybernetics, pp.421-429, Beijing, China, October 1996.

15. Bowmaker RG, and Coghill GG, Improved recognition Capabilities for goal

seeking neurone, Electronic letters. 28, pp. 220-221, 1992.

16. Breiman L. Bagging predictors, Tech. Report 421, Dept of Statistics, University of

California, Berkeley, 1994.

17. Breiman L. Combining predictors. In Sharkey, A, Editor, Combining Artificial

Neural Nets, pp. 31-50, Springer-Verlag, 1999.

18. Bruderle D, et al: A software framework for tuning the dynamics of neuromorphic

silicon towards biology: IWANN2007, LNCS 4507, pp. 479 -485, 2007.

19. Canuto A, Fairhurst MC, Howells WGJ, Improving Artmap learning through

variable vigilance., International Journal of Neural Systems, voln.11 No.6, pp.

509-522., World Scientific Publishing Company. 2001.

20. Canuto A, Howells WGJ, and Fairhurst MC, The use of confidence measures to

enhance combination strategies in multi-network neuro-fuzzy system. Connection

Science, vol.12 no ¾, 2000, pp. 315-331.

 152

21. Carpenter G, and Markuzon N, Artmap-IC and medical diagnosis: Instance

Counting and inconsistent cases. Neural Networks. 11, pp. 323-336, 1998.

22. Chalfant EC, Lee S. Measuring the Intelligence of Robotic Systems: An

Engineering Perspective, Proc. Int. Symposium on Intelligent Systems,

Gaithersburg MD, pp. 370 – 375, October 1999.

23. Chikkerur S, Govindaraj V, Pankanti S, Bolle R, Minutiae Verification in

Fingerprint Images Using Steerable Wedge Filters, ICVGIP, Calcutta, India, 2004.

24. Chikkerur S, Wu C, and Govindaraju V. A systematic approach for feature extraction

in fingerprint images. In International Conference on Biometric Authentication,

LNCS 3072, pp. 344 – 350, 2004.

25. Commuri S, Li Y, Hougen D, and Fierro R. Evaluating intelligence in unmanned

ground vehicle teams, Performance Metrics for Intelligent Systems Workshop

(PerMIS’04), NIST, Gaithersburg, MD, 2004.

26. Cristian Dima, Sensor and Classifier for outdoor obstacle detection, The Robotic

Institute Carnegie Mellon University, 8 April 2003.

27. Dario Maio, Maltoni D, and Jain AK, FVC2004: Third Fingerprint Verification

Competition, Int. Conf. On Biometric Authentication, Hong Kong, July 2003

28. Daouzli A, et. al.: Weights convergence and spike correlation in an adaptive neural

network implementation on VLSI, Int. Conf. On Bio-inspired System and Signals,

BIOSIGNAL, pp. 286 - 291, 2008.

29. David MacKay JC, Monte Carlo demonstration: Importance Sampling, Rejection

sampling, Metropolis method, and Slice Sampling, Cavendish Laboratory,

Madingley Road, Cambridge CB3 0HE, United Kingdom. February 2003.

 153

30. De Canuto AM, Combining Neural Networks and Fuzzy Logic for Application in

Character Recognition, PhD Thesis, University of Kent, 2001.

31. De Carvalho ACPLF, Combining two Neural Networks for Image classification In J.

Austin (ed.) RAM-based neural networks. World Scientific, 1998.

32. De Cavalho A, Fairhurst MC, and Bisset DL, A lazzy learning approach to the

training of GSN neural networks. In Proceeding of the ICANN 92, Elsevier, pp.

673-676, Brighton, UK, September 1992.

33. De Cavalho A, Fairhurst MC, and Bisset DL, Progressive learning algorithm for

GSN feed-forward neural architectures. Electronic letters, 30(6), pp. 506-507,

March 1994.

34. Dietterich G, Machine-learning research: Four current directions, The AI magazine

18(4), pp.97 – 136. 1998

35. Duin PW, The combining classifier: to train or not to train? ICPR2002, Quebec City,

pp. 11 – 15, August 2002.

36. Dunja Mladenić, Janez Brank, Marko Grobelnik, Natasa Milic-Frayling, Feature

Selection using Linear Classifier Weights: Interaction with classification Models

SIGIR ’04, Sheffield, South Yorkshire, UK, pp. 234 – 241, July 25 – 29 2004.

37. Fayyazi M, Navabi Z, Using VHDL Neural Network Models for Automatic Test

Generation, 2nd Workshop on Libraries, Component Modeling and Quality

Assurance, Toledo, Spain, April 1997.

38. Filho E, Fairhurst MC, and Bisset DL, Adaptive pattern recognition using goal-

seeking neurones. Pattern recognition letters 12, pp. 131-138 March 1991.

39. Freeman M, Austin J, Designing a binary neural network co-processor, Digital

System Design, 2005. Proceedings. 8th Conference on Euromicro, pp. 223 – 226,

30 Aug. to 3rd Sept. 2005.

 154

40. Freeman M, Weeks M, Austin J. AICP: Aura Intelligence co-processor for Binary

Neural Networks, IP-SOC, Grenoble, France, pp. 283 – 290, 2004.

41. Freeman W, and Aldeman E. The design and use of steerable filters. Transactions on

PAMI, 13(9), pp. 891– 906, 1991.

42. Freund Y, Schapire R, A decision-theoretical generalisation of on-line learning and

application to boosting, Journal of computer and systems sciences 55(1), pp. 119 –

139. 1997.

43. FVC2004, DB1_A.tar.gz. Available at http://biometrics.cse.msu.edu/fvc04db/index.html

44. German et al.: Neural networks and the bias/variance dilemma. Neural Computation 4(1), pp.

1-58, 1992.

45. Ghosh et al.: A neural network based hybrid system for detection, characterization and

classification of short-duration oceanic signals. IEEE Journal of Ocean Engineering, 17(4),

pp. 351-363, 1992.

46. Ghosh et al.: Integration of local and global neural classification for passive sonar signals. In

proc. Of the Intl. Simulation Technology Conference, pp. 539-545, Houston, TX., 1992.

47. Hannan Bin Azhar MA, Dimond KR, Design of an FPGA based adaptive neural

controller for intelligent robot navigation Digital System design, 2002, Proceedings.

Euromicro Synposium 2002.

48. Hansen L.K., Salamon P.,: Neural network ensembles, IEEE Transaction on Pattern

Análisis and Machine intelligence 12, pp. 993 – 1001, 1990.

49. Haykins S. Neural Networks, A Comprehensive Foundation, MacMillan

Publishing, Englewood Cliffs, NJ, 1994.

50. Héla Zouari, Laurent Heutte, Yves Lecourtier, Using diversity measure in building

classifier ensembles for combination method analysis, Advances in soft Computing,

http://biometrics.cse.msu.edu/fvc04db/DB1_A.tar.gz
http://biometrics.cse.msu.edu/fvc04db/index.html

 155

Proc. of the 4th International Conference on Computer Recognition System, CORES,

pp. 337 – 344, 2005.

51. Ho TK, The random subspace method for constructing decision forests, IEEE Trans.

On Pattern Analysis and Machine Intelligence 20(8), pp. 832 – 844, 1998.

52. Hodgkin L, and Huxley AF, A quantitative description of membrane current and its

application to conduction and excitation in nerve, Journal of physiology 117, pp.

500-544, 1952

53. Hollingum J, Automated Fingerprint Analysis Offers Fast Verif. Sensor Rev 3

(1992) 12-15. Institute Carnegie Mellon University, 8 April 2003.

54. Hopefield J, “Neurones with graded response have collective computational

properties like those of two states neurons” in proceedings of the National

academy of Science pp.2088-92 (pp.294 O. Karray), 1984.

55. Howells WGJ, Fairhurst MC, Bisset DL, PCN: The Probabilistic Convergent

Network, Electronics Engineering Laboratories, University of Kent, Canterbury,

Kent, CT2 7NT, U.K. November 1995.

56. Howells WGJ, Kola S, Statheros T, McDonald-Maier K, An Intelligent Fast-

Learning Multi-Classifier System based on Weightless Neural Architectures, in:

Proc. Of the Int. conf. On Recent Advances in Soft Computing (RASC 2006), K.

Sirlantzis (Ed.), pp. 72 – 77, 2006.

57. Howells WGJ, Fairhurst MC, Faud Rahman: An exploration of a new paradigm for

weightless RAM-based neural networks, Electronic, Connection Science, Voln.

12, No.1 pp.65-9, 2000.

58. http://bias.csr.unibo.it/fvc2004/databases.asp

http://bias.csr.unibo.it/fvc2004/databases.asp

 156

59. Huetter, G (1988) “Solution of the travelling salesman problem with an adaptive

ring”, in proceedings of the International conference on Neural Networks” pp.85-

92

60. Hung D. C., Enhancement and feature purification of fingerprint images. Pattern

Recognition, 26(11), pp. 1661–1671, 1993.

61. Hurricane Rita at http://www.chron.com/content/chronicle/special/05/rita/index.html

62. Igor Aleksander, from Wizard to Magnus: A family of weightless virtual neural

machines, World Scientific, Singapore, pp. 18-30, 1998.

63. Impedovo S, Wang P, Bunke H. (Eds.): Automatic Bankcheque Processing, World

Scientific Publ. Co., Singapore, 1997.

64. Internal technical Report, Automated Control and Guidance System – ACOS,

University of Kent, Department of Electronics. Canterbury, Kent, CT2 7NT, U.K.

July 2005.

65. Jain AK, Hong L, Bolle R, Online Fingerprint Verification. IEEE PAMI, p. 302-314,

19 (1997).

66. Jain AK, Prabakhar S, Hong L, Pankanti S, FingerCode: A Filterbank for

Fingerprint Representation and Matching. In Proc. CV&PR Conf., Fort Collins,

1999.

67. Jang JR, “ANFIS: adaptive-network-based fuzzy inference system” IEEE

Transaction on systems, Man, and Cybernetics, vol. 23, no. 3, pp. 665-85, 1992.

68. John Proakis G. Digital Communication, 4th Edition, McGraw Hill Int. Edition,

2001.

69. John Skilling, David MacKay JC, Slice Sampling, Cavendish Laboratory, Madingley

Road, Cambridge CB3 0HE, United Kingdom. February 2003.

 157

70. Kaltenmerier A, Caesar T, Gloger J, Mandler E, Sophisticated topology of Hidden

Markov Models for Cursive Script Recognition, in: Proc. Of 2nd Int. Conf. On

Document Analysis and Recognition, Tsukuba Science City, Japan, pp. 139 – 142,

1993.

71. Kan Wing-kay, and Igor Aleksander; A probabilistic logic neuron network for

associative learning in Neural computing architectures: the design of brain-like

machines, pp. 156 - 171 ; ISBN:0-262-01110-7 , MIT Press Cambridge, MA, USA,

1989

72. Kanal L, Patterns in pattern recognition, IEEE Transactions on Information Theory.

20, pp. 697-722, 1974

73. Karray FO, De Silva C. Soft Computing and Intelligent System design, Addison

Wesley, First Publication, 2004.

74. Kennedy JV, Austin J, Pack R, Cass B, C-NNAP: A dedicated processor for Binary

Neural Networks. In the proceedings of the International Conference on Neural

Networks '95, pp. 161 – 166, 1995.

75. Kim G, Govindaran V, Srihari S, Architecture for Handwritten Text Recognition

Systems, in: S. –W. Lee (eds.), Advances in Handwritten Recognition, World

Scientific Publishing. Co., pp. 163 – 172, 1999

76. Kuncheva LI, Combining pattern classifier: Methods and algorithm, John Wiley and

sons Inc., 2004.

77. Kyoung Min Kim et al., Recognition of handwritten numerals using a combined

classifier with hybrid features, A. fred et al. (Eds.): SSPR&SPR 2004, LNCS 3138,

Springer – Verlag Heidelberg pp. 992 – 1000, 2004.

 158

78. Lahoz D, and san Miguel C, A MLP neural network to predict the wind speed and

direction at Zaragoza, Monografias del Seminario Matematico Garcia de Galdeano

33, pp. 293-300, 2006.

79. Lam L, Classifier combinations: Implementations and theoretical issues in MCS ’00:

proceedings of the first international workshop on multiple classifier systems,

Springer-Verlag, London, UK, pp. 77 – 86, 2002.

80. Lopez J, Dorronsoro J, Rosen’s projection method for SVM training, 17th Symp.

On ANN, pp. 183 – 188, April 2009.

81. Lorrentz Pierre, The FPGA-based multi-classifier, Pattern Analysis and

Applications, Volume 18, Issue 1, pp. 207-223, February 2015.

82. Lorrentz P, Howells WGH, McDonald-Maier KD, Design and analysis of a novel

weightless neural based Multi-classifier, World Congress on Engineering, 2007.

83. Lorrentz P, Howells WGH, McDonald-Maier KD, An advanced combination strategy for

multi-classifiers employed in large multi-class problem domains, Appl. Soft Comput. J.

(March 2011), Volume 11, Issue 2, ISSN 1568 – 4946, 2151–2163,

doi:10.1016/j.asoc.2010.07.014.

84. Lorrentz P, Howells WGH, McDonald-Maier KD, FPGA-based enhanced

probabilistic convergent network for human iris recognition, 17th Symp. On ANN,

pp. 319 – 324, 2009.

85. Lorrentz P, Howells WGH, McDonald-Maier KD, Enhanced Probabilistic

Convergent Network, in: Proceedings of the 6th international conference on recent

advances in Soft Computing (RASC 2006), K. Sirlantzis (Ed.), pp. 267 – 272, 2006.

86. Lumini, Nanni L, An advanced multi-modal method for human authentication

featuring biometric data and tokenised random numbers, NeuroComputing, vol.69,

no.13, pp.1706-1710, August 2006.

 159

87. Maio D, and Maltoni D, Neural network based minutiae filtering in fingerprint

images. In 14th International Conference on Pattern Recognition, pp. 1654–1658,

1998.

88. Maier KD, Beckstein C, Blickhan R, Fey D, and Erhard W, Standard cell-based

implementation of a digital optoelectronic neural-network hardware, Applied Optics,

Vol. 40, No. 8, pp. 1244 – 1252, 10 March 2001.

89. Maier KD, Beckstein C, Blickhan R, Fey D, and Erhard W, A multi-layer-perceptron

neural network hardware based on 3D massively parallel optoelectronic circuits, in

Proc. Of 6th Int. conf. On Parallel Interconnects, Anchorage, Alas. (IEEE Computer

Society Press, Alamitos, Calif., 1999), pp. 73 – 80, 1999.

90. Maio D, and Maltoni D, Direct gray scale minutia detection in fingerprints.

Transactions on PAMI, 19(1), 1997.

91. Maio D, Maltoni D, Jain AK, and Prabhakar S. Handbook of Fingerprint Recognition.

Springer Verlag, 2003.

92. Massimo De Gregorio, Maurizio Giordano; Change Detection with Weightless

Neural Networks. In CVPR Workshop, pp. 403-407, 2014.

93. Massimo De Gregorio, Giordano M, Rossi S, and Staffa M. Tracking deformable

objects with WiSARD networks. In Workshop on Deformable Object Manipulation

– INNOROBO2014, 2014.

94. Minsky M. Logical versus analog or symbolic versus connectionist or neat versus

scruffy. AI Magazine, 12(2), pp. 34-51, 1991.

95. Mitchell T. Machine Learning, Morgan Kaufmann, San Mateo, CA, 1997.

96. Montgomery DC, et al., (2001), Engineering statistics, John Wiley & Sons Inc.,

Second Edition, 2001.

 160

97. Morita M, Sabourin LS, Bortolozzi F, and Suen CY, Centre for Pattern Recognition

and Machine Intelligence, Pontificia Universidade Catolica do Parana, IEEE, 2002.

98. Nahid Ardalani, Ahmadreza Khoogar, and Roohi H, A Comparison of Adaline and

MLP Neural Network-based Predictors in SIR Estimation in Mobile DS/CDMA

Systems, World Academy of Science, Engineering and Technology 9 2005.

99. Nanni L, Lumini A, Human authentication featuring signatures and tokenised

random numbers NeuroComputing, vol.69, no.7-9, pp.858-861, March 2006.

100. Neil Yager, Adnan Amin, Fingerprint verification based on minutiae features; a

review, Pattern Analysis and Application 7, pp. 94-113, 2004.

101. Perry Moerland and Emile Fiesler, Neural Network adaptation to hardware

implementations, IDIAP-RR 97-17 in Handbook of Neural Computation, Institute of

Physics Publishing and Oxford University Publishing, New York, Jan. 97.

102. Pétillot Y, Guibert L, and De Bougrenet de la Tocnaye JL, “Fingerprint recognition using a

partially rotation invariant composite filter in a FLC joint transform correlator”, Optics

Communications 126, pp. 213–219 (1996).

103. Pitts W, and McCulloch WS, “How we know universal: the perception of auditory

and visual forms”, Bulletin Math. Biophys. No. 9, pp. 27-47, 1947.

104. Prabhakar S, Jain A, and Pankanti S, Learning fingerprint minutiae location and type.

Volume 36, pp. 1847–1857, 2003.

105. Prabhakar S, Jain A, Wang J, Pankanti S, and Bolle R, Minutiae verification and

classification for fingerprint matching. In International Conference on Pattern

Recognition, volume 1, pp. 25–29, 2000.

106. Prabhakar S, Pankanti S, and Jain AK, “Biometrics recognition: security and privacy

concerns”, IEEE Security & Privacy Magazine 1, pp. 33–42 (2003).

 161

107. Raffaele Cappelli, Maio D, and Maltoni D, A Multi-Classifier Approach to

Fingerprint Classification, Pattern Analysis and Applications Special Issue on Fusion

of Multiple Classifiers, vol. 5, no. 2, pp. 136 - 144, May 2002.

108. Ranawana R, Palade V, A neural network based multi-classifier system for gene

identification in DNA sequences, Neural Comput. Appl. 14(2), pp. 122 – 131, 2005.

109. Ranawana R, Palade V, Multi-classifier systems – review and a roadmap for

developers, University of Oxford Computing Laboratory, 24 April 2006.

110. Richard Mitchell, University of Reading, U.K., at

http://www.personal.rdg.ac.uk/~shsmchlr/ nnetsmsc/nn09weightless.pdf,

09/07/2004.

111. Rodolfo J, Rajbenbach H, and Huignard JP, “Performance of a photorefractive joint

transform correlator for fingerprint identification”, Optical Engineering 34, pp.1166–

1171, 1995.

112. Roli F, and Giacinto G, Hybrid Method in pattern recognition, chapter design of

multiple classifier systems, Worldwide Scientific Publishing Co., pp. 199 – 226,

2002.

113. Ross A, Jain A, and Reisman J, “A hybrid fingerprint matcher”, Pattern Recognition 36,

pp. 1661–1673 (2003).

114. Serkawt Farhan-Khola, Gareth Howells, Desing of a Genetic Feature Selection

Algorithm for Neuron Input Mapping in N-tuple Classifiers, Department of

Electronics, University of Kent, CT2 7NT, UK. 2006.

115. Shang L, Yi ., Ji L, Binary Image Thinning Using Autowaves Generated by PCNN,

Neural Processing Letters, 25, pp. 49 – 62, 2007.

116. Shefa A, Dawwd, Ali Al-Saegh, RAM-Based Neural Network Parallel

Implementation on a Reconfigurable Platform and Its Application for Handwritten

http://bias.csr.unibo.it/cappelli
http://bias.csr.unibo.it/maio
http://bias.csr.unibo.it/maltoni

 162

Digits Recognition; Al-Rafidain Engineering, Vol. 23, No. 2, pp. 76 -87, April

2015.

117. Shuang Yang, Antony Browne, Expert systems, vol. 2, No 5, November 2004.

118. Simões EV, Uebel LF, Barone DAC, Hardware Implementation of RAM Neural

Networks, Pattern Recognition Letters, no. 17, pp. 421 – 429, 1996.

119. Simon Günter, Horst Bunke, Feature Selection Algorithm for the Generation of

Multiple Classifier Systems and their Application to Handwritten Word Recognition,

Department of Computer Science, University of Bern, Bern, Switzerland, March 4

2004.

120. Simon JC, Off-line cursive Word Recognition, Proc. Of the IEEE 80(7) , pp. 1150 –

1161, 1992

121. Simoncelli EP, and Farid H, Steerable wedge filters for local orientation analysis.

Transactions on Image Processing, 5(9), pp. 1377 – 1382, 1996.

122. Sirlantis K, Howells WGJ, Gherman B, Novel Modular Weightless Neural

Architecture for Biometric-based recognition, 17th Symp. On ANN, pp. 325 – 330,

April 2009.

123. Siti Nurmaini, Ahmad Zarkasi, Simple Pyramid RAM-Based Neural Network

Architecture for Localization of Swarm Robots; J. Inf Process Syst, Vol.11, No.3,

pp.370-388, September 2015

124. Spaanenburg L, Alberts R, Slump CH, Van der Zwaag BJ, Natural learning of

neural networks by reconfiguration, pp. 273-284 (2003), in: Rodriguez-Vazquez,

A., Abbott, D. and Carmona, R. (eds.), SPIE Int. Symp. On Microtechnologies for

the new Millennium, Vol. 5119 (Maspalomas, Gran Canaria, Spain), 2003

125. Stoianov A, Soutar C, and Graham A, “High-speed fingerprint verification using an

optical correlator”, Optical Engineering 38, pp. 99–107 (1999).

 163

126. Suen C, Nadal L, Legault R, Mai T, Lam L, Computer Recognition of unconstrained

Handwritten Numerals, Proc. Of the IEEE, 80(7), pp. 1162 – 1180, 1998.

127. Sukanesh R, Harikumar R, A Comparison of Genetic Algorithm & Neural Network

(MLP) in Patient Specific Classification of Epilepsy Risk Level from EEG Signals,

Engineering Letters, Feb. 2007.

128. Tagaki H, and Hayashi I, “A neural network-driven fuzzy reasoning”, International

journal of Approximate Reasoning, vol. 5, No. 3, pp. 119-212, 1991

129. Tico M, Immonen E, Ramo P, Kuosmanen P, Saarinen J, Fingerprint Recognition

Using Wavelet features. In Proc. ISCAS, pp. 21-24. 2001

130. Tumer K, Ghosh J, Error correlation in ensemble classifiers connection science 8,

pp.385 – 404, 1996

131. W. De Oliveira, Quantum RAM Based Neural Networks, 17th Symp. On ANN, pp.

331 – 336, 2009.

132. Wahab A, Chin SH, Tan EC, Novel Approach to Automated Fingerprint

Recognition. IEE Proc. Vis. Image Signal Processing, 145 (3), pp. 160-166. 1998

133. Xiao, and Raafat H, Combining Statistical and Structural Information for Fingerprint

Image Processing Classification and Identification, pp. 335–354. World Scientific,

NJ, 1991.

134. Xilinx University Program Virtex-II Pro Development System: Hardware Reference

Manual, UG069, March 2005.

135. Xu L, Krzyzak A, Suen CY, Associative Switch for Combining Multiple Classifiers

and their Application in Handwritten Character Recognition, IEEE Trans. On

System, Man, and Cybernetics SMC – 22(3), pp. 418 – 435, 1992.

 164

…………………………

Appendix
An EPCN Circuit

 165

	frontBK
	Acknowledgement
	List of Publications

	chMR
	1. THESIS INTRODUCTION
	1.0 Introduction
	1.3 Organisation of the Research Projects in the Thesis
	1.4 Major Challenges
	1.5 Summary
	3. THE ENHANCED PROBABILISTIC CONVERGENT NETWORK - EPCN
	3.1 Introduction

	3.2 The Input Pre-processing
	3.3 EPCN – The Enhanced Probabilistic Convergent Network
	3.3.1 Learning procedure
	3.3.2 Recognition procedure
	4.2 The Design of an MCS from EPCN
	4.3 Multi-Classifier System for Biometric Databases
	4.4 Experimentation
	Experiment (3) on Large-scale Multi-class database
	4.8 Summary

	5.2 Multi-classifier Systems

	5.3 Implementation of the Multi-classifier
	5.3.1 Combiner engine – the coding scheme
	5.4 Experimentation on the MCS

	5.7 Comparison of FVC2004 with MCSPCN
	 The databases employed in Fingerprint Verification Competition (FVC'2004 competition) are divided into two categories, the “light” category and the “open” category. The light database is required for algorithms characterized by low computing resources, limited memory usage, and small sized fingerprints. The open category database is meant for all other algorithms. All participating algorithms are independently developed by various academia and industries. The databases are benchmark databases [58] for real-life fingerprint identification, and verification algorithms. In the competition, all participating algorithms have the same input-output format, and they are tested in the same environment. Most participating algorithms employ fingerprint matching techniques. All results emanating from these algorithms are similarly formatted and quantified to enable direct comparison between them. Methods used in quantifying results rely on Receivers Operating Characteristics (ROC) of certain parameters. The choices of units mainly used are False Match Rate (FMR), and False Non-Match Rate (FNMR). These matchings refers to matching of minutiae, ridges, or some other features characteristic of fingerprints. The point at which FMR equals FNMR is known as equal error rate (EER). The rate employed in FMR, FNMR, and EER refers to percentage of fingerprints matched. The ROC analysis originates from statistical decision theory, and was originally introduced during World War II. Thereafter, in the 1960s, ROC analyses become prominent in medical analysis/diagnosis. Though ROC has gained popularity in other disciplines, it has not been used in neural system analysis. But since the database hereby processed originates from Biometry, it enhances direct comparison to employ ROC analysis on the result of EPCN-combiner, and majority-voting when they have been trained on biometric databases. It is noteworthy that ROC analysis does not indicate, with confidence, how good the MCS performs. Similar situation has been noticed Yager [97] among others. Figure 5.9(a) and 5.9(b) shows a summary of ROC from FVC2004 while Figure 5.10 shows the ROC of EPCN combiner, and figure 5.11 shows the ROC of Majority Voting combination method.
	5.9 Summary

