
University of Nebraska - Lincoln University of Nebraska - Lincoln

DigitalCommons@University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln

Theses, Dissertations, and Student Research
from Electrical & Computer Engineering

Electrical & Computer Engineering, Department
of

5-2020

Deep Learning and Polar Transformation to Achieve a Novel Deep Learning and Polar Transformation to Achieve a Novel

Adaptive Automatic Modulation Classification Framework Adaptive Automatic Modulation Classification Framework

Pejman Ghasemzadeh
University of Nebraska - Lincoln, pejman.ghasemzadeh@huskers.unl.edu

Follow this and additional works at: https://digitalcommons.unl.edu/elecengtheses

 Part of the Computer Engineering Commons, and the Other Electrical and Computer Engineering

Commons

Ghasemzadeh, Pejman, "Deep Learning and Polar Transformation to Achieve a Novel Adaptive Automatic
Modulation Classification Framework" (2020). Theses, Dissertations, and Student Research from
Electrical & Computer Engineering. 114.
https://digitalcommons.unl.edu/elecengtheses/114

This Article is brought to you for free and open access by the Electrical & Computer Engineering, Department of at
DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Theses, Dissertations, and
Student Research from Electrical & Computer Engineering by an authorized administrator of
DigitalCommons@University of Nebraska - Lincoln.

https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/elecengtheses
https://digitalcommons.unl.edu/elecengtheses
https://digitalcommons.unl.edu/electricalengineering
https://digitalcommons.unl.edu/electricalengineering
https://digitalcommons.unl.edu/elecengtheses?utm_source=digitalcommons.unl.edu%2Felecengtheses%2F114&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.unl.edu%2Felecengtheses%2F114&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/278?utm_source=digitalcommons.unl.edu%2Felecengtheses%2F114&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/278?utm_source=digitalcommons.unl.edu%2Felecengtheses%2F114&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/elecengtheses/114?utm_source=digitalcommons.unl.edu%2Felecengtheses%2F114&utm_medium=PDF&utm_campaign=PDFCoverPages

DEEP LEARNING AND POLAR TRANSFORMATION TO ACHIEVE A NOVEL
ADAPTIVE AUTOMATIC MODULATION CLASSIFICATION FRAMEWORK

by

Pejman Ghasemzadeh

A THESIS

Presented to the Faculty of

The Graduate College at the University of Nebraska

In Partial Fulfillment of Requirements

For the Degree of Master of Science

Major: Telecommunications Engineering

Under the Supervision of Professor Hamid R. Sharif-Kashani

Lincoln, Nebraska

May, 2020

DEEP LEARNING AND POLAR TRANSFORMATION TO ACHIEVE A NOVEL

ADAPTIVE AUTOMATIC MODULATION CLASSIFICATION FRAMEWORK

Pejman Ghasemzadeh, M.S.

University of Nebraska, 2020

Advisor: Hamid R. Sharif-Kashani

Automatic modulation classification (AMC) is an approach that can be leveraged to

identify an observed signal’s most likely employed modulation scheme without any a priori

knowledge of the intercepted signal. Of the three primary approaches proposed in literature,

which are likelihood-based, distribution test-based, and feature-based (FB), the latter is

considered to be the most promising approach for real-world implementations due to its

favorable computational complexity and classification accuracy. FB AMC is comprised

of two stages: feature extraction and labeling. In this thesis, we enhance the FB approach

in both stages. In the feature extraction stage, we propose a new architecture in which

it first removes the bias issue for the estimator of fourth-order cumulants, then extracts

polar-transformed information of the received IQ waveform’s samples, and finally forms a

unique dataset to be used in the labeling stage. The labeling stage utilizes a deep learning

architecture. Furthermore, we propose a new approach to increasing the classification

accuracy in low signal-to-noise ratio conditions by employing a deep belief network platform

in addition to the spiking neural network platform to overcome computational complexity

concerns associated with deep learning architecture. In the process of evaluating the

contributions, we first study each individual FB AMC classifier to derive the respective upper

and lower performance bounds. We then propose an adaptive framework that is built upon

and developed around these findings. This framework aims to efficiently classify the received

signal’s modulation scheme by intelligently switching between these different FB classifiers

to achieve an optimal balance between classification accuracy and computational complexity

for any observed channel conditions derived from the main receiver’s equalizer. This

framework also provides flexibility in deploying FB AMC classifiers in various environments.

We conduct a performance analysis using this framework in which we employ the standard

RadioML dataset to achieve a realistic evaluation. Numerical results indicate a notably

higher classification accuracy by 16.02% on average when the deep belief network is

employed, whereas the spiking neural network requires significantly less computational

complexity by 34.31% to label the modulation scheme compared to the other platforms.

Moreover, the analysis of employing framework exhibits higher efficiency versus employing

an individual FB AMC classifier.

@ Copyright 2020, Pejman Ghasemzadeh

To my mother, Jinus.

Acknowledgments
First and foremost, I would like to wholeheartedly thank my precious mother and dear

father for their unwavering support and belief in my dreams, although no amount of gratitude

can ever be enough for them. I would not have accomplished any of my successes in life

without their constant support, inspiration and encouragement.

I would specially like to thank my advisor, Prof. Hamid Sharif, for his invaluable

and indispensable experience, guidance, support and inspiration during the course of my

research work. I am also grateful to Dr. Hempel for his insights and directions in my

graduate research.

Contents

List of Tables xi

List of Figures xi

List of Algorithms xiii

List of Acronyms xv

List of Symbols xix

1 Introduction 1

1.1 AMC Applications . 2

1.1.1 Civilian AMC Applications . 2

1.1.2 Military AMC Applications . 3

1.2 AMC Approaches . 4

1.2.1 Likelihood-based AMC . 4

1.2.2 Distribution Test-based AMC . 7

1.2.3 Feature-based AMC . 9

1.3 AMC Implementation . 11

1.4 Summary of AMC Approaches . 13

1.5 Thesis Organization . 14

2 Problem Statement 15

2.1 Feature Extraction Stage . 16

viii

2.2 Classification Stage . 21

2.2.1 Classification Accuracy . 21

2.2.2 Computational complexity . 22

3 Literature Review 24

4 Proposed Solution 31

4.1 Solutions Structure . 31

4.1.1 Feature Extraction Stage . 31

4.1.2 Labeling Stage . 32

4.1.2.1 Classification Accuracy 32

4.1.2.2 Computational Complexity 33

4.1.3 The Proposed Novel Framework Structure 35

4.2 New Feature Extraction Stage Architecture 35

4.2.1 High-Order Statistical Feature Extraction Component 36

4.2.1.1 One-Pass Algorithm . 38

4.2.1.2 Two-Pass Algorithm . 38

4.2.2 Polar Coordinate Transformation 42

4.3 Proposed Deep Learning Structure for Labeling Stage 42

4.4 Deep Belief Network as Fully-Connected Network in Deep Learning Structure 46

4.4.1 Adaptive Moment Estimation . 51

4.5 Spiking Neural Network as a Fully-Connected Network in a Deep Learning

Structure . 55

4.5.1 Threshold Unit Networks . 55

4.5.2 Continuous Neural Networks . 57

4.5.3 Spiking Neural Networks . 58

4.5.4 Unsupervised Learning-Hebbian Learning 61

4.6 Proposed Novel Framework Structure . 62

ix

5 Results, Analysis and Discussion 65

5.1 RadioML2018.01A Dataset . 65

5.2 DBN-based FB AMC Classifier Analysis 70

5.2.1 DBN Architecture and Employment 70

5.2.2 AMC Results and Discussion . 72

5.2.2.1 Lower-bound Discussion 73

5.2.2.2 Upper-bound Discussion 74

5.2.2.3 Number of Training Samples Discussion 75

5.2.3 Computational Complexity Analysis 76

5.2.4 Model Conclusion . 77

5.3 SNN-based FB AMC Classifier Analysis 77

5.3.1 Results and Discussion . 80

5.3.1.1 Lower-bound performance 80

5.3.1.2 Upper-bound Performance 81

5.3.2 Computational Complexity Analysis 82

5.3.3 Model Conclusion . 82

5.4 Proposed Novel Framework Analysis . 83

6 Conclusion and Future Work 84

Bibliography 86

A Deep Learning Models Participating in Comparing Results 90

A.1 Deep CNN-based Model . 90

A.2 RNN-based Model . 91

B Spiking Neural Network-Based Platform Utilized in This Research 93

B.1 Initialization and Refactored Conversion Module 93

B.2 Environment and its Initialization . 98

x

B.3 Network . 104

B.4 Pipeline . 163

B.5 Encoding . 177

B.6 Conversion . 185

B.7 Model . 198

B.8 Learning . 210

B.9 Evaluation . 232

B.10 Analysis . 237

xi

List of Tables

4.1 Values to be collected . 63

5.1 Input data dimensions. 66

5.2 3D high-order statistical polar-based dataset dimensions. 70

5.3 Optimized hyperparameters and configurations of DBN. 70

5.4 Computational complexity of the proposed DBN-based model. 76

5.5 SNN hyperparameters’ architecture. 78

5.6 Proposed SNN-based model computational complexity measurement. . . . 82

5.7 Tradeoff-driven model selection for classification at each SNR. 83

A.1 CNN-based model structure dimensions. 90

xii

List of Figures

1.1 Overview of an AMC operation in a communication system. 1

1.2 LB approach operation structure. 5

1.3 DT approach operation structure. 8

1.4 FB AMC overview structure. 11

1.5 Required components in transmitter to necessitate inclusion of AMC in the

receiver. 12

2.1 Spectral-based features tree classification procedure. 17

4.1 Output spikes of neurons in third and fifth for the proposed SNN-based model. 34

4.2 Architecture of the new feature extraction stage. 35

4.3 RNN training process over m portion of cross-validated training set. 43

4.4 LSTM module in each RNN architecture training iteration. 44

4.5 Deep Learning architecture of the labeling stage. 46

4.6 An example RBM structure with 4 visible and 2 hidden units in their

corresponding layers in which the effect of biases on visible and hidden

layers units can be observed. 47

4.7 The proposed novel framework’s principal working. 64

5.1 Process of applying channel effects to the transmitted signal 67

5.2 The destructive effect of the selective fading model over the constellation of

128QAM and 256QAM from RadioML dataset at SNR = 5 dB. 68

xi

5.3 Polar-based constellation of 128QAM and 256QAM from RadioML dataset

at SNR = 5 dB with and without destructive effect of the selective fading

model. 69

5.4 Validation accuracy of DBN-based model in training stage. 71

5.5 Training loss of DBN-based model in training stage. 72

5.6 Proposed DBN-based lower-bound performance compared to RNN and CNN 73

5.7 Proposed DBN-based upper-bound performance compared to RNN and CNN 74

5.8 Number of training sample impact on classification accuracy. 75

5.9 Proposed SNN-based model performance of number of training epochs

versus validation accuracy. 79

5.10 Proposed SNN-based model performance of number of training epochs

versus training loss. 79

5.11 Proposed SNN-based model lower-bound performance compared to

proposed DBN-, RNN- and CNN-based models. 80

5.12 Proposed SNN-based model upper-bound performance compared to

proposed DBN-, RNN- and CNN-based models. 81

A.1 The deep CNN-based classifier’s structure. 91

A.2 The deep RNN-based classifier’s structure. 92

xiii

List of Algorithms

1 Adam algorithm to optimize DBN hyperparameters. 54

xv

List of Acronyms

AMC Automatic modulation classification

IMD Intelligent modem design

DSA Dynamic spectrum access

SC Spectrum congestion

EW Electronic warfare

ES Electronic support

EA Electronic attack

EP Electronic protect

LB Likelihood-based

PDF Probability density function

ML Maximum likelihood

ALRT Average likelihood ratio test

GLRT Generalized likelihood ratio test

SNR Signal-to-noise ratio

HLRT Hybrid likelihood ratio test

xvi

DLRT Discrete likelihood ratio test

MDLF Minimum distance likelihood function

NPLF Non-parametric likelihood function

DT Distribution test-based

GoF Goodness of fit

KS Kolmogorov–Smirnov

CDF Cumulative distribution function

OKS One-sample Kolmogorov–Smirnov

TKS Two-sample Kolmogorov–Smirnov

CVM Cramer–Von Mises

AD Anderson–Darling

FB Feature-based

ML Machine learning

SS Signal spectral-based

PSD Power spectral density

WT Wavelet transform-based

HoS High-order statistics-based

CA Cyclostationary analysis-based

KNN K-Nearest Neighbour

SVM Support vector machine

xvii

DL Dictionary learning

ANN/NN Artificial neural network

DNN Deep neural network

CNN Convolutional neural network

RNN Recurrent neural network

ResNN Residual neural network

CR Cognitive radio

SDR Software defined radio

CSI Channel state information

QoS Quality of service

QoE Quality of experience

PCC Probability of correct classification

M-ASK M-amplitude shift keying

M-PSK M-phase shift keying

M-FSK M-frequency shift keying

M-QAM M-quadrature amplitude modulation

CWT Continuous wavelet transform

AWGN Additive white Gaussian noise

LSTM Long short-term memory

DBN Deep belief network

xviii

RBM Restricted boltzmann machine

SNN Spiking neural network

FCN Fully-connected network

ADAM Adaptive moment estimation algorithm

SGD Stochastic gradient descent

EPSP Excitatory postsynaptic potential

IPSP Inhibitory postsynaptic potential

MLP Multilayer perceptrons

ReLU rectified linear units

ODE Ordinary differential equation

IF Integrate-and-fire

LIF Leaky-integrateand-fire

STDP Spike-timing-dependent-plasticity

GP Genetic programming

xix

List of Symbols

γmax Normalized and centred maximum instantaneous amplitude value of the

intercepted signal’s spectral power density

σiap Non-linear component absolute value’s standard deviation of the instantaneous

phase

σip Non-linear component direct value’s standard deviation of the instantaneous

phase

λ Evaluation of the spectrum symmetry around the carrier frequency

σias Normalized and centered of absolute value of instantaneous amplitude of

signal’s symbols’ standard deviation

σi f Normalized and centered of absolute value of instantaneous frequency’s

standard deviation

σia Normalized and centered instantaneous amplitude’s standard deviation

Ka
42 Normalized and centered instantaneous amplitude’s Kurtosis

K f
42 Normalized and centered instantaneous frequency’s Kurtosis

I Real part of the received symbol

Q Imaginary part of the received symbol

xx

r Radius of the polar transformed symbol

θ Angle of the polar transformed symbol

X Random variable

E{X} Expected value of random variable X

xi ith sample of random variable X

X Mean of random variable X

mi ith partition’s mean of X

L Number of a random variable’s samples

Mi
n nth order of central moment of ith partition of X

∆B A Mean difference of portions A and B of X

li Length of ith partition of X

σ(.) Sigmoid function

T Time steps in LSTM layer

Wα Shared time-distributed NN weight matrix

ζ α Shared time-distributed NN bias matrix

αt tth attention weight

yt tth output of LSTM layers

τ Timing unit

Vi ith neuron/node in visible layer

h j jth neuron/node in hidden layer

xxi

E Energy function

V Vectors of units in visible layers

h Vectors of units in hidden layers

Z(.) Partition function

ai Visible layers’ biases

bi Hidden layers’ biases

V Moving average

g Gradient on current mini-batch

βi New introduced hyperparameter to ADAM algorithm

η Step size

ρi Binary inputs to neurons

λ Predefined learning rate

C Membrane capacitance

R Membrane resistance

I(t) Total input current to the neuron at time t

v(t) Membrane potential

Iext(t) External current

Si Spike train

Si Low-pass filtered versions of spike train

1

CHAPTER 1

Introduction

Automatic modulation classification (AMC) refers to a signal processing mechanism

through which the intercepted signal’s modulation scheme can be classified with minimal

information on the signal’s configurations. This process is exclusively operated at the

receiver side of a communication, as illustrated in Fig 1.1 [1].

Communication
Channel Pre-processingTransmitter

Automatic
Modulation	Classifier

Equalizer

Demodulator

Receiver

Figure 1.1: Overview of an AMC operation in a communication system.

The modulation scheme’s information will then be used in the demodulator for further

processing. The term “automatic” is used to oppose the initial implementations of fixed

modulation classification procedures, where signals are modulated by electronic processors

capable of operating one fixed modulation scheme. AMC essentially gained importance

when link adjustment methods that use adaptive modulation and coding were introduced.

These methods created an adaptive selection of modulation schemes in which a pool of multi-

ple modulation schemes are employed by the system [2]. In this manner, the communication

system further enabled an optimization process through which the transmission reliability

2

and data rate are investigated to lead to the adaptive selection of the modulation scheme

according to communication channel conditions. While the transmitter has the freedom to

choose the most reliable modulation scheme, the receiver must know the modulation scheme

in order to demodulate the received signal so that the transmission can be successful. An

easy way to inform the receiver about changes in the modulation scheme at the transmitter

is to include the modulation scheme’s information in each transmitted signal frame [3].

However, this solution affects the spectrum efficiency due to the extra information that

is included in each signal frame. In the current era of wireless communication, where

the wireless spectrum is extremely limited and valuable, this solution is not considered to

be efficiently sufficient. For this reason, AMC is an attractive solution to the problem of

notifying the receiver of the transmitted signal’s modulation scheme.

Additionally, AMC also has other applications, which are briefly discussed below.

1.1 AMC Applications

AMC applications can be generally categorized into two groups: civilian applications and

military applications.

1.1.1 Civilian AMC Applications

In this category, AMC mainly targets applications for intelligent modem designs (IMDs),

spectrum sensing, safety monitoring in open or working areas, interference cancellation,

dynamic spectrum access (DSA), link-adjustment to data rate and channel capacity, and

signal protection [4]. In general, AMC’s primary contribution to these applications can be

summarized into three aspects. Below, we highlight these three aspects and describe them

in more detail.

• Signal Cancellation:

With the near ubiquitous presence of wireless devices, we face a significant problem

3

of spectrum congestion (SC). At any given moment, a receiver faces the challenge of

observing multiple radio signals, and has to filter out all but the intended transmitter’s

signal. The intended transmitter’s signal may not be of favorable strength or quality,

which results in the receiver cancelling out competing signals. One option to determine

unfavorable signals is to deploy AMC at the receiver to find the signal’s modulation

scheme. After the modulation scheme is determined, the receiver then can filter out

any signals that do not match the modulation schemes of the targeted transmitter [5].

• Spectrum Surveillance:

By deploying AMC at the receiver and then conducting a sweep of all supported

frequencies, the receiver can then easily conduct a survey of mapping modulation

schemes used at each particular frequency. This knowledge provides the primary tool

to either eavesdrop or jam a signal in the area.

• Removing Overhead in the receiver:

In many communication systems, the transmitter changes the modulation scheme

during the connection. This can be caused by any number of reasons, such as

adjusting transmission parameters with channel rates. When the transmitter changes

the modulation scheme, it typically notifies the receiver by sending information to the

receiver. This overhead can be removed by deploying AMC in the receiver.

1.1.2 Military AMC Applications

AMC can assist with three tasks in electronic warfare (EW). These tasks are electronic

support (ES), electronic attack (EA), and electronic protect (EP) [6]. The main duty

in ES is to collect communication information on the battlefield, especially concerning

hostile units. Frequency bands used by hostile units are examples of essential information.

These frequency bands can be determined by utilizing AMC in friendly units to monitor

modulation schemes and their corresponding frequency bands which are being employed

4

on the battlefield. This assists friendly units in differentiating among known (friendly) and

unknown (hostile) modulation schemes and their frequency bands. As a result, friendly units

can obtain two pieces of information from battlefield communications: frequency bands and

modulation schemes used by hostile units. In EA, after capturing hostile communication

information, jamming these hostile transmissions is a relatively easy task that can be

accomplished by transmitting a signal with a higher power in the same frequency band to

override the hostile transmission. In EP, if friendly communications are cut off by the same

EA mechanism done by hostile units, the friendly frequency bands can be changed to those

that are free and safe. The primary means by which these tasks can be accomplished is

to gain information on the hostile communications’ modulation schemes. Moreover, all

the information gathered through this process can be leveraged to eavesdrop on hostile

communications.

We will next briefly introduce proposed AMC approaches in literature.

1.2 AMC Approaches

AMC can fundamentally be organized into three primary widely discussed approaches in

the literature: likelihood-based, distribution test-based, and feature-based. In the follow-

ing subsections, we not only introduce these approaches, but also discuss their working

principles.

1.2.1 Likelihood-based AMC

In the likelihood-based (LB) approach, it is believed that the probability density function

(PDF) of the intercepted signal conditioned over an observed embedded modulated waveform

consists of all required information for the modulation classification process. The LB

classification process is generally accomplished in three following steps at the receiver:

1. Establishing a likelihood evaluation process in addition to an optimizing process for

5

threshold determination.

2. Performing likelihood evaluation between the calculated pool of modulation schemes’

PDF and the observed signal’s PDF for each observed received frame while updating

the threshold through a predefined optimization process.

3. Determining which likelihood evaluation reaches the optimized threshold to make the

final decision.

This operation can be seen in Fig 1.2.

Observed Signal

Likelihood
Evaluation

Threshold
Optimization

process

Decision Process Modulation Type

LB AMC Classifier

Figure 1.2: LB approach operation structure.

It is evident that all three steps are highly expensive computational processes for the

receiver to simultaneously execute along with other processes at receiver such as equalizing.

Furthermore, this procedure is also dependent on the channel’s parameters since likelihood

evaluation is conditioned over them. There is no way to exclude the effects of channel

parameters since likelihood evaluation cannot handle any missing parameter. This also

creates more computational complexity and requires the receiver to have some knowledge

of the channel’s parameters as conditional variables of PDF. Having perfect knowledge of

channel parameters does not occur in real-world scenarios. Therefore, there is a theoretical

classifier that uses a known channel’s parameters, in addition to executing all aforementioned

steps in a precise manner, called Maximum likelihood (ML) classifier. This classifier reaches

the highest classification accuracy in comparison with all other classifiers. LB AMC was

6

then developed to make this approach more practical in real-world scenarios where there is

no available information on channel parameters at the receiver, which resulted in proposing

three other classifiers in this approach [7]. These classifiers attempt to estimate the channel’s

parameters along with executing AMC likelihood evaluation. They also ease the above

three likelihood evaluation steps by calculating an approximation of likelihood evaluation,

and performing a comparison scenario rather than optimizing the decision threshold to

determine the intercepted signal’s modulation scheme. Hence, the channel parameters’

calculation mechanism, in addition to the degree of likelihood evaluation approximation

and the comparison process, determines the classification accuracy and computational

complexity of these three classifiers. The first of these classifiers is called average likelihood

ratio test (ALRT) classifier. This classifier handles the channel’s parameters that are unknown

to it as random variables with certain PDFs that very well fit with the mathematical definition

of the properties of the channel’s parameters. Essentially, the most likely value of the

channel parameters is computed by considering the integration of all possible values in

the likelihood evaluation. The classifier consequently calculates the likelihood evaluation

for each observed signal’s PDF conditioned on channel parameters, while forming and

updating a likelihood ratio test as part of the decision making process. This procedure,

which forms the ALRT classifier, produces the highest computational complexity of all

other non-theoretical classifiers. It attempts to precisely obtain the channel parameters in

addition to the typical procedure of LB AMC, which is to calculate the likelihood evaluation

for each observed waveform, and makes decisions based on an updated ratio. Despite

this disadvantage, the classifier reaches the highest classification accuracy of all other non-

theoretical classifiers. Consequently, ALRT can be called the optimal AMC classifier [8].

In order to ease computational complexity of this classifier, another alternative classifier

was proposed called generalized likelihood ratio test (GLRT) classifier. This classifier

handles a channel’s parameters as unknown deterministics. Hence, in order to estimate

the values of the channel’s parameters, likelihood evaluation can be done over a specific

7

range of values, not over all possible values such as in ALRT. This approximation reduces

the computational complexity of this classifier in addition to its classification accuracy,

especially in lower signal-to-noise ratio (SNR) conditions where it is extremely difficult to

determine the aforementioned range for nested modulation schemes. To solve this problem,

the hybrid likelihood ratio test (HLRT) classifier was proposed, which is fundamentally

built upon the signal carrier phase. Then this classifier acquires the values of the channel’s

parameters by performing discrete likelihood evaluation. In other words, this classifier finds

the most likely values within a few number of candidates. This mechanism of approximation

notably reduces computational complexity while slightly overcoming the lower SNR issue

with GLRT. On the other hand, it makes the average classification accuracy of HLRT to be

lower than both the ALRT and GLRT classifiers. In the sequence of reducing this approach’s

computational complexity, we can point to a few other classifiers such as discrete likelihood

ratio test (DLRT) and look-up table classifier, minimum distance likelihood function (MDLF)

classifier and non-parametric likelihood function (NPLF) classifier. These classifiers reduce

the LB approach’s computational complexity by applying various channel parameters’

estimation methods as well as approximation of likelihood evaluation. These classifiers still

have high enough computational complexity, which hinders their real-world implementation

due to creating delays in further processes at the receiver. It can be concluded that this

approach’s classifiers obtain the highest classification accuracy on average, and have the

highest computational complexity of all other approaches’ classifiers due to the mathematical

perspective of this approach. Therefore, another mathematical perspective is needed to

overcome the computational complexity and cost issues.

1.2.2 Distribution Test-based AMC

The distribution test-based (DT) approach is built upon a mathematical definition called

goodness of fit (GoF), which in this domain represents the difference of two signals’ distribu-

tions [9]. Thus, in order to build a classifier upon this definition, the calculated distribution

8

of the intercepted signal of adequate length, compared with the empirical one of different

modulated signals, should be used in the GoF test. The modulation scheme that has the clos-

est empirical distribution to the calculated one from the intercepted signal will be selected

as the signal’s modulation scheme. This process can be seen in Fig 1.3.

GoF	TestObserved	Signal

Empirical	Calculated
Distribution	of	Different

Modulated	Signals

Distribution	Calculation
Process

Modulation	Type

Memory

DT	AMC	classifier

Figure 1.3: DT approach operation structure.

There are many proposed different distribution tests for GoF, but only a few are appro-

priate for our modulation classification purposes. The first one is the Kolmogorov–Smirnov

(KS) test. In this test, the cumulative distribution function (CDF) is used for distribution

calculations. This test was originally selected for AMC because of its notable lower compu-

tational complexity compared to the LB approach. Comparing these two approaches in this

test creates two classifiers: the One-sample KS (OKS) test classifier and the Two-sample KS

(TKS) test classifier [10]. These two classifiers have different implementable applications.

TKS should be used when the channel is in a harsh condition, which results in the need for

precisely reconstructing the CDF of an actual transmitted signal’s CDF. In other words, TKS

performs higher in lower SNR scenarios, and also has a higher computational complexity

than OKS. Two alternatives to the KS test, which have their own comparison mechanisms

between empirical CDF and a reconstructed CDF, are called the Cramer–Von Mises (CVM)

test and the Anderson–Darling (AD) test. The difference between these two tests lies in

their sensitivity to the changes in the tail of the signal’s distributions. The AD test shows

less sensitivity than CVM to sudden changes in the tail of the distribution. This makes AD

9

less computationally complex than both KS and CVM. Moreover, this also results in lower

performance than both KS and CVM classifiers on average [11]. There are other tests that

have attempted to do various models of approximation to ease the computational complexity

issue to make this approach operational in real-time. In summary, the DT approach performs

less accurately than the LB approach on average, especially in lower SNRs, while having

less computational complexity as well. But this approach’s performance highly depends

on the surroundings where transceivers are deployed, because that determines the SNR

condition. Additionally, the computational complexity of the DT approach can vary based

on the selected test for the mechanism of GoF. Therefore, this approach cannot provide a

global solution for AMC.

1.2.3 Feature-based AMC

The feature-based (FB) approach gained importance when machine learning (ML) algorithms

became popular in classification applications. Machine learning algorithms are important in

real-world applications when there are no patterns of changes in the data structures. This

perspective can well connect with the disorderly changes caused by channel parameters

over transmitted signals [12]. Thus, machine learning algorithms can assist with assessing

and analyzing these negative effects and eventually lead to modulation classification. This

approach involves two stages. In the first stage, an instantaneous signal’s feature is extracted

and then used in the second stage, which is also called labeling stage. The features that are

utilized in the first stage relate mostly to a signal’s characteristics. They can be categorized

as follows:

• Signal spectral-based (SS) features, which also include:

– The normalized and centered maximum instantaneous amplitude values of the

intercepted signal’s power spectral density (PSD) (γmax)

– The non-linear component absolute value’s standard deviation of the instanta-

10

neous phase (σiap)

– The non-linear component direct value’s standard deviation of the instantaneous

phase (σip)

– Evaluation of the spectrum symmetry around the carrier frequency (λ)

– The normalized and centered absolute values of the instantaneous amplitude of

the standard deviations of a signal’s symbols.(σias)

– The normalized and centered absolute values of instantaneous frequency’s stan-

dard deviations (σi f)

– The normalized and centered instantaneous amplitude’s standard deviations (σia)

– The normalized and centered instantaneous amplitude’s Kurtosis (Ka
42)

– The normalized and centered instantaneous frequency’s Kurtosis (K f
42)

• Wavelet transform-based (WT) features

• High-order statistics-based (HoS) features, which include:

– Moment-based features

– Cumulant-based features

• Cyclostationary analysis-based (CA) features

In the second stage, machine learning algorithms execute the labeling procedure [13].

Machine learning algorithms that have been utilized in literature are:

• K-nearest neighbor (KNN)

• Genetic programming (GP)

• Support vector machine (SVM)

• Dictionary learning (DL)

11

• Artificial neural network (ANN/NN), which also includes:

– Deep neural network (DNN)

– Convolutional neural network (CNN)

– Recurrent neural network (RNN)

– Residual neural network (ResNN)

An overview of this approach can be seen in Fig 1.4.

Observed Signal Feature Extraction
Stage

Lableing Stage
(ML algorithm) Modulation Type

FB AMC

Input Output

Figure 1.4: FB AMC overview structure.

As it can easily be observed, a combination of various feature extraction techniques

and labeling procedures can create different AMC classification mechanisms with different

levels of computational complexity and classification accuracy. One important factor in the

computational complexity and cost of ML algorithms is the environment where the AMC

classifier is intended to be deployed. The impact of this parameter and other elements will be

further investigated in detail in Chapter 3 and 4. It can be concluded that this approach can

be targeted for more real-world applications of AMC while its computational complexity

and classification accuracy are related to the environment, feature extraction techniques and

the labeling stage (ML algorithm) that form the FB AMC classifier; which are mostly under

control of the AMC classifier designer.

1.3 AMC Implementation

The implementation of AMC was widely regarded as an impossible task before the introduc-

tion of cognitive radio (CR) and software-defined radio (SDR) technologies. Historically,

12

transceiver designs were very limited in the number of modulation schemes they could

implement for transmission and reception for a variety of reasons, including hardware

component and size limits, computation limitations, energy considerations, band limits, and

more. Even today, with all the developments in modern technologies, it is still not possible

to have a transmitter modulate a signal with all available types of modulation schemes. It

only became feasible with the advent of CR and SDR [14]. CR transmitters are capable of

sensing their environments and changing transmission parameters based on the obtained

results from the environment. One of these parameters could be the employed signal’s

modulation scheme. SDR technology, on the other hand, enables transceivers to avoid being

locked into fixed functionality sets. On the other hand, it makes the transmitter capable of

employing virtually any type of modulation schemes simply through software upgrades.

This entire process can be seen in Fig 1.5.

Signal	Source

Source	Coding
Channel	Coding

.

.

.
Encryption

Software	Defined	Radio
(SDR)

Modulator

Cognitive	Radio
(CR)

Transmission	Unit

Transmitter

Communication
Channel

Reception	Unit

Pre-processing

Equalizer

AMC

Demodulator

Receiver

Figure 1.5: Required components in transmitter to necessitate inclusion of AMC in the receiver.

13

But CR and SDR only help in providing the necessary functionality for AMC. It does not

mandate inclusion of AMC, as AMC inherently suffers from high computational complexity.

This problem stems from the need for multi-dimensional computations to extract features

and estimate a channel’s unknown parameters, such as the signal and carrier frequency

offset, signal and carrier phase offset, channel state information (CSI), and so on. And yet,

the expectation is that AMC needs to operate in real-time with minimal latency. Once the

signal is received and sampled, it is expected to immediately go through demodulating and

decoding processes. Hence, AMC information is also needed virtually immediately in order

to control the demodulation process. Latency stemming from computational complexity

can cause delays in this process. Therefore, the continued presence of the excessive com-

putational complexity prevents AMC from being employed in current transceiver systems

[15]. However, the reduction in computational complexity through the use of low complex

algorithms results in a significant degradation in classification accuracy. As a result, there is

a trade-off between computational complexity and classification accuracy. Depending on

which application AMC is being deployed, this trade-off needs to be resolved either in favor

of lower latency or higher classification accuracy. It should be noted that for most military

applications that consider AMC, real-time low-latency operation is vital. On the other hand,

for civilian applications, a somewhat higher latency may still be acceptable, as long as it

does not negatively impact either quality of service (QoS) or Quality of Experience (QoE).

In order to further investigate AMC implementation, related works will be discussed and

analyzed in this thesis.

1.4 Summary of AMC Approaches

After providing an introduction and background of different AMC approaches and reviewing

various aspects of AMC, we can conclude that the theoretical aspects of AMC have reached

a point that it can classify the intercepted signal’s modulation scheme with the highest

14

potential probability of correct classification (PCC) at a given SNR condition with the LB

AMC approach. Even though the DT approach reduces the computational complexity of the

LB approach, its performance is notably degraded in lower SNR conditions. The proportional

degradation in classification accuracy over reduction of computational complexity is not

considered efficient compared to what the FB approach can offer. On the other hand, in

feature-based AMC, there is still research that needs to be done to improve its classification

accuracy performance as well as decreasing its corresponding computational complexity to

make it an efficient and flexible real-world implementable approach.

1.5 Thesis Organization

The rest of the thesis is organized as follows. Chapter 2 presents the problem statement of

this thesis specially concerning FB AMC appraoch. Chapter 3 provides a literature review of

prominent works in this domain. Chapter 4 presents the proposed solutions to the problem

statement, which their corresponding findings finally form the novel framework. Chapter 5

presents the numerical results, analysis and discussion of the proposed solutions and the

novel framework. And finally, Chapter 6 concludes the thesis.

15

CHAPTER 2

Problem Statement

In this thesis, we deeply focus on addressing the problem of increasing the classifica-

tion accuracy for high-order modulation schemes in harsh channel conditions (low SNR

values). Moreover, the computational complexity of the AMC architecture is also taken

into consideration in order to make the AMC classifier operate simultaneously alongside

other components in the receiver. Reducing computational complexity should be accom-

plished while not sacrificing classification accuracy as much as computational complexity is

decreased. We focus on featuring the AMC classifier with flexibility, where it can freely

switch between various architectures to obtain an efficient balance between computational

complexity and classification accuracy in different environments.

To accomplish the above objectives, we select feature-based automatic modulation

classification as the potential real-world implementable approach with advancements in

computational power of next communication systems, especially the receiver. The proposed

next generation of communication systems that involve machine learning algorithms for

different tasks make this approach even more promising. In addition to these advantages,

the feature-based approach also provides the following properties when designing the AMC

classifier:

1. A combination of various methods in both stages of the FB AMC classifier that

can create myriad methods with different levels of computational complexity and

16

classification accuracy can help the designer easily deal with particular applications,

which require certain computational complexity and classification accuracy.

2. The designer has control over the FB AMC classifier’s computational complexity and

classification accuracy by deigning a complex or non-complex architecture.

3. The FB AMC approach provides flexibility for various applications in different

environments since computational complexity and classification accuracy of this

approach can be designed by application’s requirements and environment’s condition.

As mentioned in the previous chapter, this approach consists of two stages. Each stage

suffers from a number of problems that can eventually affect the performance of the FB

AMC classifier. We investigate each stage’s issues below.

2.1 Feature Extraction Stage

There are several methods that can be utilized to extract the intercepted signal’s features.

All of these methods have their own advantages and disadvantages, although they represent

some information about a signal’s modulation scheme. Our goal is to investigate which one

is capable of providing more correlative in-depth information to finally help address our

problem statement of increasing classification accuracy of high-order modulation schemes

with low SNR values.

• Signal Spectral-based Features: Spectral-based features provide frequency-domain

metrics on the intercepted signal. These metrics can target various aspects of the

frequency domain of the intercepted signal. These aspects can include functions

that use the zeroth and first power of the intercepted signal’s samples, i.e., spectral

power, absolute or direct instantaneous phase, absolute or normalized or centered

instantaneous amplitude, normalized or centered instantaneous carrier frequency. The

functions that use the second order of the intercepted signal’s samples can include

17

features such as the normalized or centered amplitude’s and frequency’s Kurtosis.

These features provide generic information about changes in density of the modulation

parameters such as amplitude and phase density.

– Advantages: These features can be used to generally group the intercepted

signal’s modulation scheme into one of the M-amplitude shift keying (M-ASK),

M-phase shift keying (M-PSK), M-frequency shift keying (M-FSK), or M-

quadrature amplitude modulation (M-QAM) groups without specifying the order

of modulation scheme (M). These features are also resilient against destructive

environmental effects over transmitted signals. When this feature extraction

technique is used, a simple tree classification can be sufficient for executing the

labeling procedure. Hence, if no detailed information of the intercepted signal’s

modulation scheme is of interest, then this technique is considered to possess

efficient computational complexity as well. The simplicity of this method, in

addition to its labeling stage, can be seen in Fig 2.1.

Observed
Modulated
Signal

Spectral-based
Features
Extraction
Stage

> ()��� � ���

| |> ()� � �

| |> ()� � �

VSB

>0� USB

> ()�
�
42

� �
�
42

AM

> ()���� � ����

2-ASK

M-ASK

> ()���� � ����

> ()��� � ��� 2-PSK

> ()���� � ����

> ()��� � ���

> ()�
�
42

� �
�
42

FM

> ()��� � ���

M-FSK 2-FSk

LSB DSB M-QAM M-PSK

Figure 2.1: Spectral-based features tree classification procedure.

– Disadvantages: These features do not provide any in-depth information about

determining the order of the intercepted signal’s modulation scheme. Hence,

they cannot be used to extract features from the intercepted signal when the

environment is characterized with a high SNR value since in such environments,

18

high-order modulation schemes are deployed to transmit and receive more data.

This problem is intensified nowadays when the communication protocols tend to

increase the bandwidth of transmitted and received data.

• Wavelet Transform-based Features: These features form series that represent a

square-integrable (real- or complex-valued) function by a certain orthonormal series

generated by a wavelet. In other words, functions that use the third power of the

intercepted signal’s samples can form such features. In literature, three mother

wavelet functions, namely Morlet, Haar and Shannon, are involved in calculating the

continuous wavelet transform (CWT) to extract the intercepted signal’s features.

– Advantages: Each mother wavelet function is capable of providing a different

level of correlation between received signal’s symbols. This provides more

in-depth information regarding symbols’ patterns that can finally enable the

labeling stage to also classify low-order modulation schemes in addition to the

aforementioned general groups.

– Disadvantages: Deploying the mother wavelet function, which provides more

correlative information about received signal’s symbols, can increase the com-

putational complexity. This is because it requires computationally expensive

procedures to extract the features and longer waveforms to enable feature extrac-

tion stage to form these relations. On the other hand, the classification accuracy

of higher-order modulation schemes does not satisfactorily increase compared

to the increase in computational complexity.

• Cyclostationary Analysis-based Features: These features represent statistical prop-

erties of the received signal that vary cyclically with time. In literature, there are two

ways to treat these features: probabilistic approaches and deterministic approaches. A

deterministic approach views the measurements of the intercepted signal as a single

time series, from which a probability distribution for a sample associated with the

19

time series can be defined as the fraction of time. This entire process occurs over the

samples’ lifetime of the time series. In both approaches, the process or time series is

considered to be cyclostationary if and only if its associated probability distributions

vary periodically with time.

– Advantages: As this method measures the intercepted signal samples over time,

it can provide precise information about amplitude and phase changes happening

in signal over time if the sampling rate adheres to the Nyquist rate. Hence,

enough in-depth information can be obtained from this method to enable the FB

AMC classifier to also classify higher modulation schemes as well as lower-order

ones.

– Disadvantages: This method’s principal working element is time, and it also

needs multiple waveforms to extract enough in-depth features of the intercepted

signal. Hence, this method cannot operate in real time alongside other compo-

nents in the receiver because the extracted features are also used in the labeling

stage for training and classifying. Moreover, literature shows that as environ-

mental conditions become harsh, this method significantly loses its precision in

extracting features.

• Higher-order Statistics-based Features: Higher-order statistics-based features, which

are also known as statistics moments, refer to utilizing functions with a third or higher

power of the intercepted signal’s sample. Whereas, conventional methods utilize

low powers such as constant, linear and quadratic terms in their calculations. These

calculations involve with zeroth, first and second powers, respectively. HoS features

are used in estimation of shape parameters, which indicate the changing behavior of a

sample.

– Advantages: Estimating the properties of shape parameters can not only reveal

the disorderly changes in a signal’s symbols, but also provide enough in-depth

20

information on the correlation between the received signal’s symbols. This can

easily enable the labeling stage to achieve higher classification accuracy on

higher-order modulation schemes. Moreover, these features follow a simple

recursive mathematical procedure that does not impose any expensive computa-

tional complexity on the entire operation of the FB AMC classifier. Additionally,

these features have a special property. That is, if the received signal is degraded

by noise, which follows the additive white Gaussian noise (AWGN) distribu-

tion, calculating these features with any order greater than 2 will automatically

result in cancelling out the effects of the AWGN noise in output. Hence, no

matter how harsh the environment becomes, this method can compensate for

AWGN degradation. This is one the reasons why they are widely used for AMC

purposes.

– Disadvantage) The estimator function of a signal’s moments is proven to be

biased. In other words, the extracted features by a signal’s moment estimator is

not accurate. That’s because the true value of the features being estimated is dif-

ferent than the estimator’s expected value. Further, this provides an inaccurate or

mirage correlation among received symbols. As the order of modulation scheme

increases, this inaccuracy intensifies due to a decrease in spatial distance among

symbols in the signal’s constellation. We also should take into consideration

the environmental effect on the received signal’s constellation. It is clear that as

the environmental conditions become harsh, the received signal’s constellation’s

shape becomes even more disorderly, which makes the AMC task more difficult.

Among feature extraction methods, HoS features exhibit higher effectiveness in providing

more in-depth correlative information about the received signal’s constellation. Hence, HoS

features are considered effective enough for implementation in the feature extraction stage.

Although, HoS features hold many advantages, they provide inaccurate quantitative features

in the labelling stage as the environmental conditions become more harsh, or the order of

21

the modulation scheme increases. To improve the performance of the FB AMC classifier

in lower SNR conditions when high-order modulation schemes are classified, we should

address the bias issue of the HoS method’s estimator function in the feature extraction stage.

We next explore the classification stage problem statement.

2.2 Classification Stage

As mentioned in the introduction, machine learning algorithms execute classification proce-

dures in the labeling stage of FB AMC classifiers. Each machine learning algorithm has

various factors measuring its performance. Two of these factors that are critical in the AMC

domain are classification accuracy and computational complexity. These two factors affect a

FB AMC classifier’s performance based on the provided features of the received signal. We

next investigate the problem statement for each of these factors.

2.2.1 Classification Accuracy

Classification accuracy measures the precision of a machine learning algorithm in the

classification of an intercepted signal’s modulation scheme. In other words, to specifically

explain this factor in the AMC domain, it corresponds to a fraction whose numerator is the

number of waveforms with correctly classified modulation schemes, and its denominator

represents all analyzed waveforms.

The environment in which the FB AMC classifier is deployed is one of the major ele-

ments that can affect the FB AMC classifier’s classification accuracy. As environmental

conditions degrade in terms of scattering elements, e.g., densely developed urban environ-

ments representing a multipath propagation case, it is more difficult for an AMC classifier

to classify the intercepted signal’s modulation scheme with a high degree of accuracy. This

mostly happens to nested modulation schemes with higher orders such as 128-QAM and

256-QAM. Therefore, there should be a mechanism that can resolve this issue in lower SNR

22

values. This finds its application in situations where classification accuracy is of crucial

importance, such as military applications.

2.2.2 Computational complexity

A machine learning algorithm’s computational complexity refers to the required time for

executing training, validation, and classification steps. Among these steps, training requires

the longest time, since it needs to find hidden patterns in data changes. A classification step,

on the other hand, can be done in a short amount of time. There are two methods to measure

computational complexity of a machine learning algorithm.

1. Theoretically, where it involves the process of Big O notation to describe the limiting

behavior of a machine learning algorithm when its running time tends towards a

particular value or infinity in the defined space of an experiment.

2. Experimentally, where the specifications of a platform in which the machine learning

algorithm runs are given, and then the required time to do training, validation, and

classification are normalized based on the platform’s timing unit.

These methods are of importance in the AMC domain because we need to simulate the

theoretical performance of the FB AMC classifier while considering its real-world imple-

mentation. Implementing a real-time FB AMC classifier in receivers has been historically

considered to be an impossible task, since it inherently suffers from high computational

complexity. This problem stems from the need for multi-dimensional computations to

estimate unknown pattern changes in the intercepted signal to finally extract information

of sufficient fidelity regarding the signal’s modulation scheme. However, FB AMC must

operate in real time while imposing minimal latency on other receiver components. Hence,

FB AMC information is needed virtually immediately in order to control the demodulation

process. Latency stemming from computational complexity can cause delays in this process.

23

Therefore, the continued presence of this excessive computational complexity prevents

AMC from being implemented in most current receivers.

In a very concise comparison between the computational complexity of these steps and

the feature extraction stage, we can easily observe that the computational complexity of the

labeling stage is much higher than the feature extraction stage. Hence, we mainly focus on

reducing the labelling stage’s computational complexity to provide for the possibility that

the FB AMC classifier can operate real time. However, when employing low computational

complexity algorithms to achieve a reduction in computational complexity, the achievable

results show a significant degradation in classification accuracy. As a result, there is a

trade-off between computational complexity and classification accuracy. Depending on

which application FB AMC is being utilized for, this trade-off needs to be resolved either

in favor of lower latency or higher classification accuracy. For most military applications

that consider AMC deployment, real-time operation is vital. On the other hand, for civilian

applications, a somewhat higher latency may still be acceptable as long as it does not

negatively impact quality of service and experience.

24

CHAPTER 3

Literature Review

In this chapter, we briefly investigate some of the prominent works in the FB AMC

domain to see how they have attempted to address the aforementioned problems.

Yu and Miao in [16] proposed a deep learning-based method combining two CNNs

with different structures trained on different datasets with their samples composed of in-

phase and quadrature component signals, otherwise known as in-phase and quadrature

samples, to distinguish modulation modes. They also adopted a dropout instead of a

pooling operation. Their entire system design is based on constellation diagrams for

16QAM and 64QAM modulation schemes. Combining two machine learning platforms

with different learning structures creates a powerful FB AMC classifier capable of learning

more hidden patterns of the received signal’s constellation shape when, in particular, the

focus is on classifying M-QAM modulation schemes. This easily increases the classification

accuracy for all environmental conditions. Even though this work has increased classification

accuracy for constellation-based modulation schemes, their FB AMC classifier is not capable

of classifying M-FSK and M-PSK modulation groups as well as M-QAM. Moreover,

combining two NN platforms notably increases computational complexity. This makes their

FB AMC classifier difficult to implement in the real world.

Fan and Peng in [17] proposed a CNN-based deep learning structure where the labeling

stage is trained in two steps. After the first training step is done, the learned characteristics

25

are transferred to the second step of training. Through this two-step training structure,

not only are features from the long symbol-rate observation sequence extracted, but the

environmental condition is also estimated. Their classifier can also dimensionally accom-

modate varying inputs. Two-step training can increase the robustness of the labeling stage

in the presence of carrier phase offset under most environmental conditions. This can

also provide independence for the FB AMC classifier form receiver’s main equalizer in

providing the SNR value. Moreover, their deep learning structure is flexible over the input

data’s dimension, which makes the FB AMC classifier capable of operating on different

waveform lengths. Two-step training significantly increase the computational complexity of

the labeling stage, which makes the FB AMC classifier incapable of operating the AMC task

real-time. Additionally, having a CNN-based platform does not create a robust FB AMC

classifier for the M-FSK and M-PSK groups of modulation schemes.

Chieh-Fang and Ching-chun in [18] proposed a CNN-based deep learning platform in

which a mechanism to estimate channel state information is created. In such a mechanism,

the FB AMC classifier is enabled to compensate for the destructive channel’s effect on

the received signal. CNN-based platform dimensions were increased to a two-dimensional

platform, which is capable of being trained not only over I−Q, but also over r−θ samples.

It is obvious that equalizing the channel’s effect over signal, and reconstructing the estimated

transmitted signal, will significantly increase classification accuracy. Additionally, providing

extra information (r−θ samples) to the labeling stage will lead to a more accurate training

process of the CNN-based platform, which can eventually increase the classification accuracy.

Having the mechanism to estimate channel state information is inherently a computationally

expensive task since it requires multiple iterations to obtain channel parameters. Hence,

adding such mechanism to a deep learning platform will result in a significant increase in

computational complexity of a proposed FB AMC classifier. Moreover, providing another

dataset to the deep learning structure in order to increase classification accuracy will result

in increasing the computational complexity of the training stage.

26

Zhe and Yong in [19] proposed a novel pre-processing stage that eliminates the effect

of a multipath channel coefficient over the intercepted signal. They utilized an estimation

mechanism to achieve channel state information parameters. They furthermore utilized a

logarithmic functional fitting method to classify received modulated signals. Their pro-

posed FB AMC classifier increases the classification accuracy of low-order modulation

schemes under harsh environmental conditions. Utilizing the logarithmic functional fitting

method can decrease the computational complexity of the labeling stage due to its simple

classification mechanism. The authors attempted to compensate for the increase in compu-

tational complexity of their proposed FB AMC classifier due to utilizing the channel state

information estimation method by selecting a simple labeling mechanism. Adding another

stage such as pre-processing to a typical FB AMC classifier’s components will increase

its total computational complexity, which hinders its practical implementation. Moreover,

estimating channel state information when receiving a high-order modulated signal is a very

computationally expensive task, since it requires several iterations of the modulated signal’s

waveforms. Deploying a simple mechanism in the labeling stage can decrease the accuracy

of detecting hidden patterns in data, which can finally result in lower classification accuracy

for high-order modulation schemes.

Shengliang and Hanyu in [20] mainly focused on decreasing the labeling stage’s com-

putational complexity. To accomplish this, they employed two CNN platforms built by

Google called AlexNet and GoogLeNet, which are capable of parallel computation over

various partitioned data. It is obvious that parallel computation, especially in the training

stage, will significantly decrease the required time to execute each step of the labeling stage.

This idea can be leveraged for real-world implementation where faster classification of an

intercepted signal’s modulation scheme is of importance. Partitioning the data, received

samples of an intercepted signal, can result in losing the correlation between partitioned

data considering the fact that each partitioned data will separately be processed by the ML

platforms. This can finally lead to a less accurate training process of the ML algorithm

27

that can negatively impact classification accuracy, especially with high-order modulation

schemes. Additionally, since AlexNet and GoogLeNet are CNN-based, they are not capable

of exhibiting high performance when M-FSK and M-PSK modulation schemes groups

participate in classification.

Sudhan and Rahul in [21] proposed a new architecture of a feature extraction stage

that combines two feature extraction methods, namely elementary cumulants and cyclic

cumulants. This method can easily detect if the intercepted signal’s modulation scheme is

within a real, circular or rectangular class (group of the modulation scheme). Moreover,

they used cyclic cumulants that describe positions of non-zero cyclic frequencies to classify

the order of the modulation scheme. Utilizing two feature extraction methods in the feature

extraction stage can not only provide more in-depth information to the labeling stage,

leading to a more accurate training process, but also can enable the FB AMC classifier

to blindly make a final decision without knowing the channel state information. Utilizing

non-zero cyclic frequency features can be beneficial in increasing the classification accuracy

of M-FSK modulation schemes. Having two feature extraction methods increases the

computational complexity of the FB AMC classifier. Although more in-depth information is

provided to the labeling stage by extracting two different features from the intercepted signal,

their proposed classifier can robustly classify the general group of modulation schemes

in addition to low-order ones. In order for high-order modulation schemes to be robustly

classified, more correlative information that cannot be provided by elementary cumulants

and cyclic cumulants is needed.

Sreeraj and Wannes in [22] attempted to enhance the training process of the labeling stage

by adding a long short-term memory (LSTM) layer to conventional deep learning structures.

In the training process, LSTM layers are characterized by executing several iterations

over the data to lead the LSTM layer to memorize the features of the intercepted signal.

This property will become useful later to balance the links weights of NNs. Memorizing

extracted features of intercepted signal and helping to balance the links weights of NN

28

will result in increasing classification accuracy regardless of the group of an intercepted

signal’s modulation scheme. Utilizing the LSTM layer also provides more robustness to

the classification process in various environments. All these advantages together can make

this FB AMC classifier more suitable for those applications where classification accuracy

is of crucial importance. LSTM layers are considered computationally expensive due to

several iterations performed to memorize features. Therefore, the FB AMC classifier in

which LSTM layers are utilized is not recommended for selection for real-time practical

applications.

Yahia and Octavia in [23] conducted an experiment to classify phase shift-keying

modulated signals based on the graph representation of the Fourier transform of the second

and fourth powers of these signals. This experiment shows the capability of classifying low-

order of phase shift-keying signals with high accuracy. For high-order of phase shift-keying

signals, the experiment is not as successful as for low-order signal classification. Graph

representation of the Fourier transform of the second and fourth powers of the intercepted

signal does not provide in-depth enough information for high-order modulation schemes to

be robustly classified.

Muhammad and Zhechen in [24] proposed a FB AMC classifier where this classifier

combines genetic programming and K-nearest neighbor in labeling stage. In this work,

K-nearest neighbor has been used to evaluate the fitness of GP individuals during the training

step. Additionally, in the testing step, K-nearest neighbor has been used for deducing the

classification performance of the best individual produced by GP. The classification step has

been divided into two phases for improving the classification accuracy. In feature extraction

stage, cumulants have been user as input feature for GP. They tested their classifier’s

performance with four modulation schemes: BPSK, QPSK, 16QAM and 64QAM. Utilizing

two machine learning algorithms in labeling stage can increase the classification accuracy.

This increase in classification accuracy is built upon the fact that K-nearest neighbor oversees

the performance of GP to deduce the classification performance of the best individual

29

produced by GP. This feedback operation helps classifier to more deeply find hidden patterns

in symbol changes. On the other hand, this entire procedure is highly computationally

expensive because the feedback operation in this classifier is built on top of K-nearest

neighbor algorithm, which itself is based on several nested loops. Hence, although the

classification accuracy is increased, computational complexity of this classifier is considered

to be much higher than other ones on this domain.

Lei and Hong in [25] proposed a classifier where it uses a distributed AMC scheme

based on compressive sensing by taking advantage of the sparse property of cyclic feature

mapping. Thus, they introduced a novel method based on compressive sensing principle for

capturing the prominent peaks of the feature mapping. This method is capable to acceptably

perform AMC task at sub-Nyquit rate of sampling. Additionally, they proposed a novel

neural network fusion strategy for better cooperation with compressive sensing principle.

Using a classifier that can operate at sub-Nyquit rate can be extremely helpful for situations

where there is no knowledge of transmitted signal such as in battlefields. Moreover, since a

compressive sensing method is used, the training step of neural network in labeling stage is

considered to be accomplished in shorter time, which implies the decrease in computational

complexity. This work has shown that their classifier strongly performs with low-order

modulation schemes. On the other hand, using a compressive sensing method in addition to

operating at sub-Nyquist sampling rate can decrease the probability of correct classification

for higher-order modulation schemes.

Octavia and Ali in [26] proposed a classifier where it employs higher-order cyclic

cumulants to discriminate linear or low-order digital modulation schemes under various

channel conditions. In order to more deeply investigate the performance of this classifier,

they not only test its performance in single-antenna mode, but they also consider a multiple-

antenna case to assess the effect of spatial diversity. Additionally, they derived analytical

closed-form expressions for the cyclic cumulant polyspectra of linearly digitally modulated

signals affected by fading, carrier frequency and timing offsets, and additive Gaussian noise.

30

Their proposed classifier significantly increase the classification accuracy for low-order

modulation schemes especially in multiple-antenna scenario due to taking the advantage of

spatial diversity to eliminate the fading effect over received signal. On the other hand, their

classifier is also capable to address the problem of increasing the classification accuracy for

high-order modulation schemes in low SNR conditions while its computational complexity is

notably increases. This increase is due to the fact that higher-order cyclic cumulants requires

several waveforms to be able to establish the relationships between received signal’s moment

and cumulants. It also should be noted that the increase in computational complexity is

much more than the increase in average classification accuracy for higher-order modulation

schemes.

After reviewing the literature, we can conclude:

1. No study, to the best of our knowledge, has considered the impact of the estimator’s

bias in the feature extraction stage when a signal’s moment is to be extracted.

2. Literature contributions that aim to increase classification accuracy have thus far not

achieved acceptable performance at lower SNR values for high-order modulation

schemes.

3. Computational complexity of deep learning architecture in the labeling stage has not

been effectively reduced up to a point of operating real-time.

4. Thus, to date, no efficient and adaptive framework has been presented in literature to

provide flexibility in controlling computational complexity and classification accuracy.

The problems statement and our findings from reviewing the scientific literature on the

topic of AMC have led us to conduct research that aims to address these challenges. Our

contributions and the resulting novel framework structure are presented in the next chapter.

31

CHAPTER 4

Proposed Solution

This thesis aims to address the aforementioned prominent problem statements in both

stages of the FB AMC classifier. Providing an overview of contributions in below can

strongly help the reader understand our procedure to address these problems.

4.1 Solutions Structure

The following subsections will provide an overview of proposed solutions to solve the stated

problems of both forming stages of the FB AMC classifier.

4.1.1 Feature Extraction Stage

Feature extraction stage procedures in literature have not been promising in providing

in-depth enough correlative information of received signal to labeling stage, specially for

high-order modulation schemes. Therefore, we propose a new architecture for the feature

extraction stage. This architecture is comprised of two components. The first component

extracts the fourth-order cumulants from the received signal’s I−Q symbols. For this

process, we also address the problem of biased estimators for fourth-order cumulants for two

different cases: when the received signal’s symbols are 1) real values, and 2) complex values.

The second component extracts polar coordinates r−θ from the received I−Q symbols

32

to provide more in-depth information to the labeling stage of a signal’s constellation. This

solution will be explored in detail in this chapter in section 4.2.

4.1.2 Labeling Stage

Contrary to other efforts in the literature that aim to modify conventional machine learning

algorithms or deep learning structures that were proposed for AMC, we instead introduce the

idea of using two entirely different machine learning algorithms in a deep learning structure

for AMC. These algorithms will specifically address the stated problems traditionally

associated with this stage that can be generally categorized as classification accuracy and

computational complexity.

4.1.2.1 Classification Accuracy

We introduce a deep belief network (DBN) platform to be utilized in AMC for the first time,

to the best of our knowledge. There are two motivations to employ DBN in AMC that can

eventually improve the performance of the FB AMC classifier under low SNR conditions.

1. In any ANN platform, there is a problem called vanishing gradient that spreads

throughout the network and imbalances the link weights as the training cycles are

executed. This results in an inaccurate training process, and furthermore increases

the misclassification error. The proposed solution is to use a gradient-based learn-

ing method combined with back-propagation. This solution involves a Restricted

Boltzmann Machine (RBM) which automatically finds hidden patterns in the data

by reconstructing the input. This property enables DBN to not only be trained like

conventional NNs, but to tag the important portion of data with higher probability. A

DBN is created by stacking RBM layers. Hence, vanishing gradients are removed in

DBNs. This leads to a more accurate training process of DBN.

2. A DBN benefits from reconstructing the input in a back-propagation loop. This

33

finally results in a high capability of learning how to probabilistically reconstruct the

input. This allows DBNs to recognize the influential portion of the input with high

probability. Then by focusing the training process onto this portion of the input it can

be more accurately trained.

These two properties allow a DBN to be capable of finding deeper hidden patterns in the

input data while removing the vanishing gradient problem. Hence, this platform exhibits

superior capabilities in classifying high-order modulation schemes in lower SNR conditions.

This solution will be explored in detail in this chapter in section 4.4.

4.1.2.2 Computational Complexity

We also introduce the use of a spiking neural network (SNN) platform for AMC. Spiking

neural networks are a close mathematical approximation of natural neurons’ operations. In

their operations, not only the neuron’s state are applied, but time is also incorporated into

the synaptic property of the neurons. This leads to the main motivation to introduce the use

of this type of neural network platform in AMC: Neurons in SNNs fire only when they have

reached a specific value by accumulating the spikes’ values from neurons in former layer.

This results in two important SNNs’ characteristics.

1. All neurons forming a layer do not participate in classification operation. This is a

direct consequence of SNN’s property where not all neurons fire at each propagation

cycle, but rather fire only when a membrane potential – an intrinsic quality of the

neuron related to its membrane electrical charge – reaches a specific value. This

eliminates notable required computations in each layer. Therefore, in layer-wise

comparison with other platforms introduced in AMC, SNNs are characterized by

lower computational cost.

2. The aforementioned process of neurons not participating in classification and elimi-

nating computations of each layer intensifies as the data moves forward in a network’s

34

layers. In other words, let’s assume that the fifth layer in an SNN requires significantly

less computations than the third layer in the same network due to the notably lower

produced number of spikes in the fifth layer. The computational cost of an SNN

corresponds to the neurons’ involvement in producing spikes. Therefore, not only

is the computational cost decreased layer-wise, but the entire network also requires

notably less computational cost. This can be better understood with the intuition

provided in Fig 4.1 for the proposed SNN-based model that will be explored in detail

in chapter 4.

(a) Output spikes of 7thneuron in third layer.

(b) Output spikes of 12thneuron in fifth layer.

Figure 4.1: Output spikes of neurons in third and fifth for the proposed SNN-based model.

Overall, this platform, by its inherent design, requires less computational cost in all steps

35

of training, validation and classification. As a result, this FB AMC classifier will have a

high likelihood of achieving real-time operation for most AMC applications in classification

step. This solution will be explored in detail in this chapter in section 4.5.

4.1.3 The Proposed Novel Framework Structure

We propose an adaptive framework that efficiently switches between the two aforementioned

labeling platforms based on each platform’s specific characteristics, i.e., computational

complexity and classification accuracy. In other words, this framework attempts to automati-

cally adapt between classification accuracy and computational complexity for any derived

SNR from the main receiver’s equalizer. In this way, this framework can be flexible in

implementation in different environments. We describe the principal functionality of this

novel framework and investigate it in detail in section 4.6.

4.2 New Feature Extraction Stage Architecture

In this section, we present our design of a new architecture for this stage, which takes in

the received signal and extracts from it a stream of feature descriptors that are then used in

the labeling stage. This new architecture is comprised of two components that operate in

parallel. The output of these components will be appended to the original received signal to

create an augmented signal data stream. This architecture can be seen in Fig 4.2.

Figure 4.2: Architecture of the new feature extraction stage.

The resulting 3D high-order statistical polar-based dataset is built upon the idea that

36

the more in-depth correlative information that can be provided to the labeling stage, the

more precisely the training and validating steps of labeling procedure will be executed.

Consequently, the system will be able to achieve a higher classification accuracy. Adding the

polar coordinate transform component does not increase the computational complexity of the

feature extraction stage since 1) it does not require any recursive computation compared to

the high-order statistical feature extraction component, and 2) the polar coordinate transform

component operates in parallel with the high-order statistical feature extraction component.

It should be mentioned that due to the high-order statistical feature extraction’s recursive

nature, its computational complexity is longer than the polar coordinate transform. These

components will be explored in more detail in the next subsections.

4.2.1 High-Order Statistical Feature Extraction Component

High-order statistics refers to applying functions with third-order or higher powers over

sample data. Cumulants are one of these functions used in the literature for AMC. The

definition of cumulants is simply the formal relation between the coefficients in the Taylor

expansion of function Mn with m = 1, and the coefficients in the Taylor expansion of

logMn. They have beneficial properties such as their symmetric and additive operation

over input arguments and their homogeneous behavior over partitions. The most important

property of cumulants is that if the input arguments follow a Gaussian distribution, then their

cumulants of any order higher than two equate to zero. By taking advantage of this property,

the negative effect of noise that is typically observed with Gaussian distributions will be

automatically eliminated from the labeling stage. Moreover, these useful properties enable

cumulants to estimate shape parameters, which indicate the changing behavior of sample

data. This helps significantly in producing enough in-depth correlative information about

the high-order modulation schemes. However, the estimator for any order of cumulants

greater than two has been proven to be biased [27], which produces inaccurate values that

can, in turn, result in the labeling stage producing misclassified results, especially at lower

37

SNRs for high-order modulation schemes such as 128QAM and 256QAM. Therefore, in our

framework, we address the problem of removing the bias of fourth-order cumulants for the

scenarios when the received signal’s symbols are 1) real values for low-order modulation

schemes, and 2) complex values for high-order modulation schemes. For a random variable

of X , Mn is defined as:

Mn , E{(X−E[X])n} (4.1)

For finite and equiprobable samples xi ∈ X , Mn can be written as:

Mn =
1
L

L

∑
i=1

(xi−m), (4.2)

where

m =
1
L

L

∑
i=1

xi (4.3)

If we do not consider the estimator’s bias issue, referring to the difference between the

estimator’s expected value and the true value of the parameter being estimated, then Equation

(4.6) can provide cumulants of nth order. However, the clear advantage to addressing the

bias issue is to provide accurate correlative quantitative features to the labeling stage. The

more accurate these quantitative features are, the more accurately the training, validation

and classification steps of the labeling stage are executed. Hence, we can accomplish it

using two algorithms called one-pass and two-pass for the case where the received symbols

are real-valued.

38

4.2.1.1 One-Pass Algorithm

Through using the binomial theorem and expanding the term of (xi−m)n to explicit powers

of xi and m in binomial theorem, Equation (4.2) can thus be rewritten as:

Mn =
n

∑
k=0

(
n
k

)
(

1
L

L

∑
i=1

xn−k
i)(−m)k (4.4)

This algorithm thus attempts to remove any estimation bias by considering the probability

of whether estimation bias has happened.

4.2.1.2 Two-Pass Algorithm

As an alternative to the one-pass algorithm’s approach, the two-pass algorithm attempts to

solve this issue statistically, by using the following statistical procedure. It first divides the

received signal symbols into two partitions, A and B ; where lA and lB are respectively the

length of partitions A and B . Moreover, mA and mB represent the mean of each partition.

After that, Equation (4.2) can be rewritten as shown in Equation (4.4) for any order equal

or greater than 2. In Equation (4.4), MA
n and MB

n are moments of order n over each A and

B portions. ∆B A also equates with mB −mA , where each term stands for the mean of their

corresponding signal’s portion.

Mn = MA
n +MB

n + lA (
−lB ∆B A

L
)n + lB (

lA ∆B A

L
)n

+
n−2

∑
k=1

(
n
k

)
∆

k
B A [M

A
n−k(
−lB

L
)k +MB

n−k(
lA

L
)k] (4.5)

The Two-Pass algorithm removes the estimator’s bias more accurately compared to the

One-Pass algorithm. On the other hand, this algorithm also requires more computational

resources. After addressing the discrete moment estimator’s bias issue, the cumulants of the

39

received signal can be recursively calculated from the discrete moment of the signal as:

Cn = Mn−
n−1

∑
i=1

(n−1)!
(i−1)!(n− i)!

Ci Mn−i (4.6)

If the received signal has complex-valued symbols, then joint cumulants of the symbols

need to be calculated. This applies to modulated signals with high-order modulation schemes.

We derive the fourth-order cumulants over the intercepted signal (X) in Equation (4.7).

C4(X) =
L2

L3−6L2 +13L−12
[(L+1)X4−4(L+1)X3 X

−3(L−1)X2 X2 +12L(X2 X X)−6LX4
] (4.7)

The derivation process is presented below.

The generic format of an estimator for nth-order cumulants of a random events vector

X = {X1,X2, · · · ,Xn} is defined as:

Cn(X1,X2, · · · ,Xn) =
∂ n

∂k1 · · ·∂kn
KX(k) (4.8)

with the following generating function at k = 0.

KX(k) = ln{E[exp(k ·X)]} (4.9)

This leads to the biased fourth-order multivariate cumulants estimator in terms of products

40

of higher order moments.

C4(X1,X2,X3,X4) = E[X1X2X3X4]−E[X1X2X3]E[X4]−E[X1X2X4]E[X4]−E[X1X3X4]E[X2]

−E[X2X3X4]E[X1]−E[X1X2]E[X3X4]−E[X1X3]E[X2X4]−E[X1X4]E[X2X3]

+2{E[X1X2]E[X3]E[X4]+E[X1X3]E[X2]E[X4]+E[X1X4]E[X2]E[X3]

+E[X2X3]E[X1]E[X4]+E[X2X4]E[X1]E[X3]+E[X3X4]E[X1]E[X2]}

−6E[X1]E[X2]E[X3]E[X4] (4.10)

The procedure for obtaining the derivation of the unbiased fourth-order multivariate cumu-

lants is as follows. We can easily observe that E[X1 X2 X3 X4] = E[X1 X2 X3 X4]. Hence,

different multiplicity structures of {X1,X2,X3,X4} can be calculated based on the expressions

below. Expressions E[X1 X2 X4 X3], E[X1 X3 X4 X2], E[X2 X3 X4 X1] and E[X1 X2 X3 X4] can

also be calculated through equation (4.11).

E[X1 X2 X3 X4] =
1
L2

L

∑
i, j

E[X1iX2iX3 jX4 j] (4.11)

where i, j are realizations of multiplicities. This leads to:

L2E[X1 X2 X3 X4] = {L(L−1)E[X1 X2 X3]E[X4]+LE[X1 X2 X3 X4]} (4.12)

Expressions E[X1 X3 X2 X4], E[X1 X4 X2 X3], E[X2 X3 X1 X4], E[X2 X4 X1 X3] and E[X3 X4 X1 X2]

can also be calculated based on:

E[X1 X2 X3 X4] =
1
L3

L

∑
i, j,k

E[X1iX2iX3 j ,X4k] (4.13)

41

that results in:

L3E[X1 X2 X3 X4] =

L(L−1)(L−2)E[X1 X2]E[X3]E[X4]

+L(L−1){E[X1 X2 X3]E[X4]+E[X1 X2 X4]E[X3]}

+L(L−1)E[X1 X2]E[X3 X4]+LE[X1 X2 X3 X4] (4.14)

Eventually, the expression E[X1 X2 X3 X4] can be calculated as:

E[X1 X2 X3 X4] =
1
L4

L

∑
i, j,k,l

E[X1iX2 j ,X3kX4l] (4.15)

which can be explicitly stated as:

L4E[X1 X2 X3 X4] =

L(L−1)(L−2)(L−3)E[X1]E[X2]E[X3]E[X4]

+L(L−1)(L−2){E[X1X2]E[X3]E[X4]+5 o.p.}

+L(L−1){E[X1X2X3]E[X4]+3 o.p.}

+L(L−1){E[X1X2]E[X3X4]+2 o.p.}+LE[X1X2X3X4] (4.16)

where ‘o.p.’ means other permutations of the variables in e.g. E[X1X2] E[X3] E[X4] that give

rise to (non-identical) terms like E[X1X3] E[X2] E[X4]. Then, the C4(X1,X2,X3,X4) can be

derived for equation (4.10) as:

C4(X1,X2,X3,X4) =
L2

L3−6L2 +13L−12
×

{(L+1)X1 X2 X3 X4− (L+1)(X1 X2 X3 X4 +3 o.p.)−

(L−1)(X1 X2 X3 X4 +2 o.p.)+2L(X1 X2 X3 X4 +5 o.p.)

−6LX1 X2 X3 X4 } (4.17)

42

For the special case if X1 = X2 = X3 = X4, we obtain the equation (4.7).

4.2.2 Polar Coordinate Transformation

Mapping I−Q values of the received signal’s symbols in I−Q plane to polar coordinates

can be easily conducted through establishing the relationship between I-Q and r-θ values

as r =
√

I2 +Q2 and θ = arctan(Q/I) where I and Q indicate the real and imaginary parts

of the received complex symbols, and r and θ represent the radius and angle of the polar

transformed coordinates. As can be seen from the simple mathematical process of polar

coordinate transformation, this component does not increase the computational complexity of

the feature extraction stage since 1) it does not require any recursive computation compared

to the high-order statistical feature extraction component, and 2) the polar coordinate

transform component operates in parallel with high-order statistical feature extraction

component. It should be mentioned that due to the high-order statistical feature extraction’s

recursive nature, its computational complexity is longer than the polar coordinate transform.

On the other hand, this transformation provides more in-depth information on the symbols’

placements within the constellation for the subsequent labeling stage.

4.3 Proposed Deep Learning Structure for Labeling Stage

NNs contain hidden layers consisting of some number of neurons. Each single neuron in

each middle hidden layer is connected to all neurons in the previous and subsequent hidden

layer through links, each with associated weights, which determine the overall value for

a neuron’s output. There are different functions, also known as activation functions, to

calculate the link weights.The selected numbers for hidden layers and neurons, as well as the

activation function computing the links’ weights, influence the accuracy and computational

cost of the FB AMC classifier. If we select more than 2 hidden layers, then the neural network

is called a deep neural network. DNN classifiers generally are capable of faster classification

43

operations and more accurate learning of non-linear patterns than SVM. Although DNN

performs on average higher than SVM, its performance is not appreciably higher than that

of SVM, especially in lower SNR values. Thus, a recurrent neural network was proposed to

be used in AMC to overcome this issue. We will next investigate a specific NN architecture,

RNN-LSTM, coupled with DNN that has been recently proposed in AMC applications. A

recurrent neural network is an architecture that aims to address the issue of ML algorithms’

learning process having to restart from scratch. In practice, this task is done by creating loops

over the ML algorithm’s learning process to be frequently trained over different portions (m

number) of a cross-validated training set, as shown in Fig 4.3.

ML	algorithm

Result

Training
data

Result

ML
algorithm

Training	
data	1

Result

ML
algorithm

Training	
data	2

Result

ML
algorithm

Training	
data	m-1

Result

ML
algorithm

Training	
data	m

m-4

Cross-validated	training	set

Figure 4.3: RNN training process over m portion of cross-validated training set.

This procedure trains the ML algorithm m times which, for an ML algorithm, results in

learning and discerning the relationship in a much more accurate manner between various

parameters’ values in a dataset by not being trained only once as in conventional techniques.

In other words, RNN architecture is capable of connecting and relating previously learned

information to the present learning process. Although it is correct that RNN architecture

builds a stronger learning procedure, it might not be necessary for the ML algorithm to

learn previous information and correlate it with the new one. In order to address this issue

in the RNN architecture, long-short term memory as an architecture derived from RNN

was proposed. LSTM is explicitly designed to avoid the long-term dependency problem.

In all RNN architectures, there exists the form of a chain of repeating modules of a neural

44

network. In standard RNNs, this repeating module will have a very simple structure, such

as a single tanh layer. LSTMs also follow the same chain-like structure, but the repeating

module has a different procedure. This module follows the procedure in the block shown in

Fig 4.4 where it is replaced with ML algorithm blocks in Fig 4.3.

� �

Training	set

�

Result

�
�

�
�

�
�−1

�
�

�
�−1

�
�

Figure 4.4: LSTM module in each RNN architecture training iteration.

In this module, the σ block, also known as sigmoid, is responsible for producing a binary

value indicating what information from a previous training iteration will be neglected and

vice versa. The γ block, on the other hand, creates a vector of new candidate values that will

be added to the previous training iteration’s results if the output of sigmoid block is 1. The

outputs of LSTM module are as follows:

Km = {Km−1 · fm}+{ fm · γ (Ym−1 +Xm)} (4.18)

Ym = fm · γ (Km) (4.19)

where fm = σ (Ym−1 +Xm). The performance of an FB AMC classifier using LSTM layers

is expected to be much higher than a conventional DNN in terms of final classification

45

accuracy (PCC), since it first follows RNN architecture and then selects more correlated

information to be transferred to the next iteration of training. To summarize, utilizing

these layers can benefit the FB AMC classifier by 1) extracting temporal information of the

received signal, 2) distinguishing more accurately among different signal samples, and 3)

requiring less optimization of hyperparameters due to its property of weight sharing across

time steps. Hence, we use two stacked-LSTM layers in our deep learning architecture. The

output of these LSTM layers follows the temporal attention mechanism in order to: 1) save

parts of the derived information, and 2) avoid overfitting. This mechanism also benefits the

deep learning architecture by adaptively deriving the final output of an LSTM layer using

the outputs of all time steps. This mechanism works as follows. The output of the LSTM

layer {yt}T−1
t=0 through processing of a shared time-distributed neural network layer that is

characterized with weight Wα and bias ζ α matrices results in the calculation of attention

weights α = {αt}T−1
t=0 based on a softmax activation function as in (4.20).

αt =
σ(yt ·Wα +ζ α)

T−1

∑
t=0

σ(yt ·Wα +ζ α)

(4.20)

It should be noted that ∑
T−1
t=0 αt = 1 while αt ≥ 0. Then the final output is calculated as:

y =
T−1

∑
t=0

αtyt (4.21)

This output is then provided to a fully-connected network (FCN), which we will introduce

in the following sections. At the end, a softmax activation function is also employed to

provide the final result. The Deep Learning architecture for our labeling stage can be seen

in Fig 4.5.

46

LS
T

M
 layer 1

LS
T

M
 layer 2

S
hort tim

e-distributed
neural netw

ork

F
ully-connected netw

ork
(D

B
N

 or S
N

N
 platform

)

3D high-order
statistical polar-based

dataset
(New dataset)

S
oftm

ax

Type of
modulation

scheme

Two stacked-LSTM

Deep learning architecture of labeling procedure

Figure 4.5: Deep Learning architecture of the labeling stage.

4.4 Deep Belief Network as Fully-Connected Network in

Deep Learning Structure

The main idea behind proposing the use of DBN for AMC applications is to address the

vanishing gradient problem in training the artificial neural network with gradient-based

learning methods and back-propagation that have already been used for AMC. The solution

to this problem is comprised of two parts [28]. The first involves a restricted boltzmann

machine (RBM). This is a method that can automatically find patterns in our data by

reconstructing the input. An RBM is a shallow two-layer network shown in Fig 4.6; the first

layer is known as the visible layer and the second is called the hidden layer.

Each node in the visible layer (Vi) is connected to every node in the hidden layer (h j).

An RBM is considered restricted because no two nodes in the same layer share a connection

[29]. An RBM is the mathematical equivalent of a two-way translator, where its energy

function can be defined as the following based on parameters in Fig 4.6 in one layer of an

RBM network:

E (V,h) =−∑
i

aiVi−∑
j

b jh j−∑
i, j

Vih jwi j (4.22)

where V and h are respectively the vectors of units in the visible and hidden layers. In

the forward pass, an RBM takes the inputs and translates them into a set of numbers that

47

Hidden layer
bias

(bias b)

Visible layer
bias

(bias a)

V1

V2

V3

V4

h1

h2

Visible layer

Hidden layerW11

W12

W21

W22

b1
b2

a1
a2

a3

a4

W31

W32

W41

W42

Figure 4.6: An example RBM structure with 4 visible and 2 hidden units in their corresponding
layers in which the effect of biases on visible and hidden layers units can be observed.

encode the inputs. In the backward pass, it takes this set of numbers and translates them

back to form the re-constructed inputs [29]. A well-trained network will be able to perform

the backwards translation with a high degree of accuracy. In both steps, the weights and

biases have a very important role. In each certain state, an RBM assigns probabilities rather

than discrete values to each link. This makes RBMs probabilistic. Accordingly, the joint

distribution of each certain state is defined as [29]:

p(V,h) =
1
Z

exp(−E(V,h)) (4.23)

48

Where Z is called partition function.

Z = ∑
V,h

exp(−E(V,h)) (4.24)

It should be noted that it is a difficult process to calculate the above joint probability due

to the large number of possible combinations of V and h in the partition function Z. On

the other hand, conditional probabilities of V given h, and h given V are much easier to

calculate.

p(V|h) = ∏
i

p(vi|h) (4.25)

p(h|V) = ∏
j

p(h j|V) (4.26)

Breaking down the above conditional probabilities while considering that each unit can only

exist in a binary state of 0 or 1 will lead us to:

p(vi = 1|h) = σ(ai +∑
j

Wi jh j)) (4.27)

And analogously,

p(h j = 1|V) = σ(b j +∑
i

Wi jVi)) (4.28)

where σ(.) is the sigmoid function with σ(x) = 1
1+exp(−x) as its definition. The entire

procedure above helps the RBM in deciding which input features are the most important

when detecting patterns. Through several forward and backward passes, an RBM is trained

to reconstruct the input data. Three steps are repeated iteratively through the training process

[29]:

49

1. With a forward pass, every input is combined with an individual weight and one overall

bias, and the result is passed to the hidden layer which may or may not activate.

2. Next, in a backward pass, each activation is combined with an individual weight and

an overall bias, and the result is passed to the visible layer for reconstruction.

3. At the visible layer, the reconstruction is compared against the original input to

determine the quality of the result.

Steps 1 through 3 are repeated with varying weights and biases until the input and the

re-construction are as close as possible [29]. In other words, the update matrix for new

weights is: Wnew = Wold +∆W, where ∆W = V0⊗ p(h0|V0)−∑i j Vi⊗ p(h j|Vi). An

interesting aspect of an RBM is that the data does not need to be labelled. This turns out to

be very important for real-world data sets such as over-the-air received signals. An RBM

automatically sorts through the data, and by properly adjusting the weights and biases an

RBM is able to extract the important features and reconstruct the input[7]. An important

note is that an RBM is actually making decisions about which input features are important

and how they should be combined to form patterns[30]. In other words, an RBM is part of

a family of feature extraction neural networks that are all designed to recognize inherent

patterns in data. These networks are also called auto-encoders, because in a way they have

to encode their own structure[8]. For the second part of the solution, we obtain a powerful

new model that finally solves the problem by combining RBMs together and introducing a

carefully chosen training method. A Deep Belief Network (DBN) can be viewed as a stack

of RBMs, where the hidden layer of one RBM is the visible layer of the one above it within

the DBN. Therefore, the joint distribution of DBN of l layers is as follows [30]:

p({h1,h2, . . . ,hl}) = (
l−2

∏
k=0

p(hk|hk+1))p(hl−1,hl) (4.29)

where h = {h1,h2, . . . ,hl} is the vector of all layers in the DBN. A DBN is trained as

follows:

50

• The first RBM is trained to re-construct its input as accurately as possible.

• The hidden layer of the first RBM is treated as the visible layer for the second and the

second RBM is trained using the outputs from the first RBM.

• This process is repeated until every layer in the network is trained.

An important note about DBNs is that each RBM layer learns the entire input. In other

kinds of models, such as convolutional networks, early layers detect simple patterns and

later layers recombine them [30]. A DBN, on the other hand, works globally by fine-tuning

the entire input in succession as the model slowly improves. The reason that a DBN works

so well is that a stack of RBMs will outperform a single unit [29]. After this initial training,

the RBMs create a model that can detect inherent patterns in the data [30]. But we still don’t

know exactly what the patterns are called [29]. To finish training, we need to introduce

labels to the patterns and fine-tune the network with supervised learning [29]. To do this, we

need a very small set of labeled samples so that the features and patterns can be associated

with a name. The weights and biases are altered slightly, resulting in a small change in the

network’s perception of the patterns, and often a small increase in the total accuracy [29].

Fortunately, the set of labelled data can be small relative to the original data set, which as

we’ve discussed is extremely helpful in real-world applications [30]. As mentioned before,

a DBN only needs a small labelled dataset, which is important for real-world applications.

The training process can also be completed in a reasonable amount of time through the use

of GPUs. And best of all, the resulting network will be very accurate compared to a shallow

network.

Learning parameters, also known as hyperparameters, play a very important role in the

accuracy of the training process. Hence, setting optimized hyperparameters can finally result

in an increase in classification accuracy. Optimizing the hyperparameters when DBN is

deployed as FCN in a deep learning structure can be done by two methods.

1. Manually, by several trials to evaluate the training process’s performance. This method

51

is not only inefficient, but it also exhibits lower effectiveness in enhancing the training

process.

2. Optimizing algorithms specifically designed for such a purpose, like gradient-based

optimization.

We select the adaptive moment estimation (Adam) algorithm to optimize the hyperparameters

of the learning process in a deep learning structure when DBN is employed.

4.4.1 Adaptive Moment Estimation

Adaptive moment estimation algorithm can be looked at as a combination of RMSprop and

stochastic gradient descent (SGD) with momentum. It uses the squared gradients to scale

the learning rate like RMSprop and it takes advantage of momentum by using the moving

average of the gradient instead of the gradient itself like SGD with momentum. Adam is

an adaptive learning rate method, which means it computes individual learning rates for

different parameters. Its name is derived from adaptive moment estimation, and the reason

it’s called that is because Adam uses estimations of first and second moments of gradient

to adapt the learning rate for each weight of the neural network. nth moment of a random

variable is defined as the expected value of that variable to the power of n. This relation can

be seen below.

Mn = E[Xn] (4.30)

Note that the gradient of the cost function of a neural network can be considered a random

variable, since it is usually evaluated on some small random batch of data. The first moment

is mean, and the second moment is uncentered variance. In other words, there is no need

to subtract the mean during variance calculation. To estimate the moments, Adam utilizes

52

exponentially moving averages, computed on the gradient evaluated on a current mini-batch:

Mt = β1Mt−1 +(1−β1)gt (4.31)

Vt = β2Vt−1 +(1−β2)g2
t (4.32)

where M and V are moving averages, g is the gradient on the current mini-batch, and βi —

is new introduced hyper-parameters of the algorithm. They have very good default values of

0.9 and 0.999, respectively. Almost no designer ever changes these values. The vectors of

moving averages are initialized with zeros at the first iteration. These values correlate with

the moment, defined as in (4.30). Since M and V are estimates of first and second moments,

the following property should be held for all iterations:

E[Mt] = E[gt] (4.33)

E[Vt] = E[g2
t] (4.34)

Expected values of the estimators should equal the parameter we are trying to estimate.

Fortunately, the parameter in our case is also the expected value. If these properties held

true, that would mean that we have unbiased estimators. Now, we will see that these do not

hold true for our moving averages. Because the process is an initialized averages with zeros,

the estimators are biased towards zero. We can prove that for M. It should be noted that the

proof for V would be analogous to prove that we need the formula for M to the very first

gradient. By feeding some values of M, we can see the direction the pattern follows.

M0 = 0 (4.35)

M1 = β1 M0 +(1−β1) (4.36)

M2 = β1 M1 +(1−1)g2 (4.37)

M3 = β1 M2 +(1−β1)g3 (4.38)

53

As can be seen, the further this process expands the value of M, the less the first values of

the gradients contribute to the overall value, as they get multiplied by smaller and smaller βi.

Capturing this pattern, we can rewrite the formula for our moving average as:

Mt = (1−β1)
t

∑
i=0

β
t−i
1 gi (4.39)

In order to remove the discrepancy of two expected values of M, we can relate it to the true

first moment:

E[Mt] = E[(1−β1)
t

∑
i=0

β
t−i
1 gi] (4.40)

E[Mt] = E[gi](1−β1)
t

∑
i=0

β
t−i
1 +K (4.41)

E[Mt] = E[gi](1−β
t
1)+K (4.42)

In the first row, the new formula is used for the moving average to expand M. Next, by

approximating gi with gt , we can take it out of the sum, since it does not now depend on i.

Because the approximation is taking place, the error K emerges in the formula. In the last

line, we just use the formula for the sum of a finite geometric series. There are two things

we should note from that equation.

1. We have a biased estimator. This is not just true for Adam only; the same holds for

algorithms, using moving averages (SGD with momentum, RMSprop, etc.).

2. It won’t have much effect because the value β to the power of t is quickly going

towards zero.

Now we need to correct the estimator, so that the expected value is the accurate one. This

step is usually referred to as bias correction. The final formulas for our estimator will be as

54

follows:

M̂t =
Mt

1−β t
1

(4.43)

V̂t =
Vt

1−β t
2

(4.44)

(4.45)

The only step left to do in this algorithm is to use those moving averages to scale the learning

rate individually for each parameter. The way it is done in Adam is by performing a weight

update as follows:

Wt =Wt−1−η
M̂t√

V̂t + ε

(4.46)

where W is model weights, and η is the step size.

Algorithm 1 summarizes aforementioned description of Adam algorithm.

Algorithm 1 Adam algorithm to optimize DBN hyperparameters.
Require: η

Require: f (W) (Stochastic objective function)
Require: initializing W0

t ← 0
Mt=0← 0
Vt=0← 0
while Wt not converged do

t ← t +1
gt ← ∆W ft(Wt−1) (Obtaining gradients with respect to objective at timestep t)
Mt ← β1Mt−1 +(1−β1)gt
Vt ← β2Vt−1 +(1−β2)g2

t
M̂t ← Mt

(1−β t
1)

V̂t ← Vt
(1−β t

2)

Wt ←Wt−1−η
M̂t√
V̂t+ε

end while
return Wt

In general, we can list the three main Adam properties below.

55

1. The actual step size taken by the Adam in each iteration is approximately bounded

by the step size hyperparameter. This property adds intuitive understanding to our

previous unintuitive learning rate hyperparameter.

2. The step size of the Adam update rule is invariant to the magnitude of the gradient,

which helps a lot when going through areas with tiny gradients (such as saddle points

or ravines). In these areas, SGD struggles to quickly navigate through them.

3. Adam was designed to combine the advantages of Adagrad, which works well with

sparse gradients, and RMSprop, which works well in online settings. Having both of

these enables us to use Adam for a broader range of tasks. Adam can also be looked

at as the combination of RMSprop and SGD with momentum.

Chapter 4 presents the optimized hyperparameters by Adam when DBN is used as FCN.

4.5 Spiking Neural Network as a Fully-Connected Network

in a Deep Learning Structure

In order to fully understand how SNNs work, we first need to go through two other basic

model networks.

4.5.1 Threshold Unit Networks

The first generation of neural network models is based on McCulloch-Pitts neurons or

logical threshold units. Such neurons from the rst generation are Boolean, that is, they

can output either a zero or a one. This is of course motivated by the observation that

biological neurons either re or not, i.e., a spike is transmitted along the axon if and only

if the membrane potential surpasses a certain threshold value (provided the cell is not in

the absolutely refractory phase shortly after a spike, when no new action potential can

56

be initiated). Binary encoding of neural activity therefore seems very plausible at rst.

So neurons of the first generation receive binary inputs (ρi) from other neurons which,

depending on the corresponding synaptic weights (wi), can cause either a excitatory or

inhibitory postsynaptic potential (EPSP and IPSP respectively). All stimuli are added up,

and if their sum is large enough (corresponding to sufficient depolarization of the membrane

at the axon hillhock), a spike is transmitted to the next neurons, i.e., the output is 1. The

dynamics of such a threshold unit can thus be summarized as:

y =

1 , if h = ∑

i
ρiwi > u

0 , Otherwise
(4.47)

While the threshold u was taken to be zero in the first models, non-zero thresholds (biases)

were introduced in later models for more flexibility. Models of the first generation include,

among others, multilayer perceptrons (MLPs). Due to the binary nature of threshold unit

neurons resembling spiking activity, the appropriate learning algorithm for such networks is

Hebbian learning. In the case of threshold unit networks, this translates to a weight update

rule of the form:

∆wi = λρiy (4.48)

where λ is a predefined learning rate. In other words, when input i’s firing is involved in

a neuron’s firing, the connection is strengthened. Neural networks of the first generation

have been shown to be universal for digital, i.e., logical, computation. The proof is relatively

simple: it can be shown that by choosing appropriate weights, a McCulloch-Pitts neuron

can compute the logical AND, OR and NOT operators; since any Boolean function can

be expressed as a composition of these three logical operators, any such function can be

computed by an MLP with a single hidden layer. However, the restriction to binary outputs

is also a considerable limitation in an analog world. Moreover, the first generation models

57

do not include a notion of time, but instead assume synchronous updates of units.

4.5.2 Continuous Neural Networks

The second generation of neural networks arise as a very natural extension of the previous

generation by allowing real numbers as inputs and outputs, thereby facilitating analog

computation. This is achieved by simply replacing the thresholding after summing up

the weighted stimuli by a continuous activation function g (note that the step function

is discontinuous at the threshold value). The dynamics of a single unit from the second

generation can then (except in very special cases) be summarized as:

y = g(∑
i

wiρi−b) (4.49)

where b is the previously mentioned bias term. The standard choice for g used to be a

sigmoid function, e.g., the logistic or hyperbolic tangent function; however, other simpler

functions such as rectified linear units (ReLUs) have become very popular recently in the

context of deep learning. Almost all modern NNs such as sigmoid feed-forward, radial basis

function, or recurrent neural networks, e.g., the popular and powerful LSTMs. While the

binary outputs of McCulloch-Pitts neurons have a very intuitive interpretation as spikes, it is

not straightforward to motivate the real valued outputs of artificial neurons of the second

generation. Yet, a biological motivation exists also in this case. Instead of coding spikes,

these units encode the firing rates of neurons, i.e., frequencies of spikes averaged over

some time window. This is biologically justified by observations that neurons often react

to stimulus not with a single spike, but instead fire bursts of many spikes within a very

short time, and they can fire at a range of intermediate frequencies between their maximal

and minimal firing rates. Such an information coding scheme is known as (firing-) rate

coding, and it is one of the most prominent coding schemes in neuroscience. However,

its applicability is very likely limited. In contrast, Hebbian learning is no longer directly

58

applicable to the second generation networks since units are computing rates instead of

spikes. One of the key advantages of continuous output activation functions is that such

models are receptive for the large class of gradient-based optimization techniques from

mathematics. The standard learning algorithm for second generation networks is therefore

gradient-descent, usually in combination with the backpropagation algorithm, which allows

us to propagate error signals (in the case of supervised learning) backwards through the

topological ordering of the network. This enables the training of networks with many

layers of artificial neurons, so-called deep networks, and is one of the key ingredients of

modern deep learning approaches. Hence, neural networks from the second generation

introduce an implicit notion of time into the model by computing with firing rates instead

of spikes, which makes them biologically more plausible than their predecessors. This

was achieved by adapting the previous model to incorporate some new findings from

neuroscience. Moreover, networks of the second generation are also universal for digital

computation (applying thresholding to the real valued output), and can in fact compute

certain Boolean functions with fewer units than threshold units from the first generation.

In this sense, second generation networks are computationally more powerful than first

generation networks. Furthermore, in a result known as the universal approximation theorem,

it has been proven that a network from the second generation with a single hidden layer can

approximate any continuous function arbitrarily well.

4.5.3 Spiking Neural Networks

The major difference between SNNs and the other neural networks described above is that

SNNs model time explicitly. This is based on the central paradigm of spiking networks

in that it is the exact timing of individual spikes, rather than their firing rate averaged

over some time window, which carries information in biological brains. SNNs are thus

dynamic systems which are usually formulated as systems of ordinary differential equations

(ODEs). The central object of SNN models is the membrane potential v(t) of a neuron,

59

which represents its internal state at time t. Since the membrane potential determines the

spiking activity, it is necessary to model its time evolution in order to work with exact timing

of spikes. Many different models for spiking neurons exist, and a common framework for

different models is still largely lacking - an issue that will be discussed in more detail later.

These common characteristics are shared by almost all such models:

1. Neurons receive multiple continuous-time inputs from their synapses with other

neurons in form of spikes, which are usually modelled as Dirac delta functions.

2. Such synaptic stimuli can be either excitatory, i.e., increasing the membrane potential

and thereby the probability of firing, or inhibitory, i.e., decreasing the membrane

potential.

3. They produce a single output spike whenever their membrane potential reaches a

certain threshold value.

Probably the first and simplest SNN models are the Integrate-and-fire (IF) model and a

slightly improved version thereof called the Leaky-integrate-and-fire (LIF) model, whose

dynamics are given by:

C
dv
dt

(t) = I(t)− v(t)
R

(4.50)

C
dv
dt

(t) = Iext(t)+∑
j

w jI j(t)−
v(t)
R

(4.51)

where C is the membrane capacitance, R the membrane resistance, and I(t) the total input

current to the neuron at time t, which can be decomposed as external current and a sum over

all currents transmitted from neurons j with synaptic weights w j. The last term (v(t)) was

introduced in the LIF model to account for an exponential decay of the membrane potential

to its resting state in lack of new stimuli not accounted for in the earlier IF model. The

external current, Iext(t), in the LIF ODE is only relevant for the subset of input neurons in

the case of artificial SNNs, and can be ignored for the remaining network dynamics. The

60

resulting equation looks somewhat similar to the inner term of the activation function for

second generation models, also containing a summation over inputs multiplied by their

synaptic weights. The key difference here is that inputs are spikes in time rather than rates.

The exponential decay term might be loosely interpreted as a biased term over time: if no

new spikes arrive timely enough to cause an action potential, the membrane returns to its

resting state.

Whereas it is relatively easy to understand why SNNs are more biologically plausible

than standard ANNs, the issue regarding their computational power is less clear. However,

various theoretical results about the computational power of artificial SNNs have been

published. In these works, it was shown that any function which can be computed by a

network of the first two generations can also be computed by an artificial SNN. In particular,

this includes the universal approximation property for SNNs, stating that any continuous

function F : [0,1]n→ [0,1]k can be approximated arbitrarily closely (with regard to uniform

convergence) by one hidden layer network of spiking neurons with simple piece-wise linear

response- (shape of the EPSPs and IPSPs for non-linear responses) and threshold functions

(regulating firing threshold and absolutely refractory period). Moreover, it was demonstrated

that certain functions can in fact be computed by SNNs with much fewer units than those

required by networks of the first and second generation. For example, the Boolean function

CDn : {0,1}2n→{0,1}

CDn(x1, · · · ,xn,y1, · · · ,yn) =

 1 , if ρi = yi for somei

0 , Otherwise
(4.52)

can be computed by a single spiking neuron with appropriately chosen weights and delays,

whereas a threshold gate network from the first generation computing CDn has at least

n
log(n+1) units, and a continuous neural network from the second generation computing CDn

has at least n1/4 units asymptotically. Note that CDn is not just any arbitrary function, but

has a biological interpretation as pattern matching or coincidence detection from two sources

61

xi and yi, and is therefore likely to be computed by biological brains as well.

In summary, in contrast to other NNs, SNNs include time explicitly in the model. The

output and input of individual neurons in SNNs (except for the case of input units which

receive external currents) are completely determined by the firing times of other neurons j.

However, computing the output firing times requires us to explicitly model the membrane

potential as an ODE. The structure of SNNs is a directed graph, identical to other NNs.

Training SNNs has been historically a difficult task. SNNs have been originally destined

to be unsupervisedly trained.

4.5.4 Unsupervised Learning-Hebbian Learning

Similar to the first generation of neural networks, modelling the firing of neurons explicitly

in SNNs has the advantage that Hebbian learning is applicable. However, Hebbian’s rule

does not explicitly mention the timing of spikes, but instead just refers to neurons firing

together. While this issue does not arise for threshold gates, which are assumed to be

synchronized and therefore always either fire together or do not fire together. For lack of

better understanding, the units’ activities in Hebbian’s rule have traditionally been interpreted

as firing rates and used in this context for continuous neural networks. A study in which

the timing of presynaptic stimulus and postsynaptic action potential was systematically

varied finally found a convincing correlation between the timing of pre- and postsynaptic

spikes and the synaptic changes affected thereby. Generally speaking, presynaptic spikes

occurring shortly before postsynaptic activity resulted in strengthening of the synaptic

connection (potentiation), whereas presynaptic spiked arriving shortly after the postsynaptic

spike weakened the connection (depression). This process has been termed Spike-timing-

dependent-plasticity (STDP) and can be seen as an extension of Hebbian learning by exact

spike timing. Interestingly, a similar but opposite process to STDP has also been observed in

some synapses, i.e., presynaptic spiked following postsynaptic ones resulted in potentiation

and vice versa for depression, and was termed anti-STDP. A rule for applying STDP-like

62

unsupervised learning in SNN models derived from these experimental findings can be

formulated as:

d
dt

w ji(t) = a0 +a1Si(t)+a2S j(t)+a3Si(t)S j(t)+a4Si(t)S j(t) (4.53)

where Si and S j are the spike trains. Si and S j are low pass filtered versions thereof, i.e.

with exponential decay instead of a single pulse, and ai are constants governing the synaptic

changes. Hence, different choices of the hyperparameters (considering w ji as the main

parameters) ai can account for, e.g., STDP or anti-STDP.

The obtained hyperparameters associated with our deep learning structure are presented

in Chapter 4.

4.6 Proposed Novel Framework Structure

Our literature review illustrates the fact that there is no framework available for AMC that

provides flexibility and efficiency in terms of classification accuracy and computational

complexity. Therefore, we address this shortcoming by proposing our adaptive framework

that follows the deep learning architecture proposed in this research. This framework is

built upon the fact that the AMC component in the receiver has to be trained for both ML

platforms (DBN- and SNN-based models) before deployment. After the training processes

are completed, the average classification accuracy for each platform for all modulation

schemes at a particular SNR is recorded together with the number of timing units that

are required for classification. In this manner, the FB AMC classifier, before deployment,

has knowledge over required computational complexity and the likelihood of maximum

classification accuracy of both ML platforms. Table 4.1 illustrates the required information

to be recorded alongside with their notations, which will be further used in forming the

decision ratio.

In this framework, the main equalizer of the receiver leverages the SNR value of

63

Table 4.1: Values to be collected

Values Notation
Average DBN-based model’s classification accuracy

of all modulation schemes at each SNR DBN-ACA-SNR

Average SNN-based model’s classification accuracy
of all modulation schemes at each SNR SNN-ACA-SNR

Timing units required to perform DBN classification DBN-t
Timing units required to perform SNN classification SNN-t

the intercepted signal, and provides it to the AMC component, which then calculates

the following ratio to determine the quantified trade-off of classification accuracy versus

computational complexity. The obtained value represents the preferability of using the

DBN-based model versus the SNN-based model at that SNR.

(DBN−ACA−SNR
SNN−ACA−SNR)

(DBN−t
SNN−t)

≶ 1 (4.54)

If this ratio is less than 1, favorability indicates the use of the SNN-based model to be

employed for classification. If the ratio is above 1, then DBN is the better choice. This is

due to the fact that the SNN-based model is capable of performing the classification with

significantly less required number of timing units while maintaining classification accuracy

comparable to what the DBN-based model offers. Therefore, this ratio creates an efficient

trade-off between classification accuracy and computational complexity between the two

models. This provides the flexibility to the AMC classifier to adapt to changing conditions,

instead of being compelled to follow a fixed design. An overview of this framework’s

principal operation can be seen in Fig 4.7.

64

Feature
Extraction

Stage

Receiver's Main
Equalizer

SNN-based Model

DBN-based Model

Modulation
TypeOR

SNR
AMC

Figure 4.7: The proposed novel framework’s principal working.

65

CHAPTER 5

Results, Analysis and Discussion

In this chapter, we will present the numerical results when each individual FB AMC

classifier, DBN- and SNN-based, is implemented for classification. Afterwards, the novel

framework will be analyzed.

In order to conduct the evaluation of our proposed platforms and our overall framework,

we first obtain the lower and upper performance bounds for each introduced platform by

selecting two of the lowest-order (BPSK and QPSK) and highest-order (128QAM and

256QAM) digital modulation schemes from the RadioML dataset [31]. Further, we compare

their performance with other works from the scientific literature, specifically [32], [33],

which represent two recent efforts that modified the structures of CNN and RNN in order to

achieve higher classification accuracy. Details of this evaluation can be found in Appendix

A.

We first present the RadioML dataset that is used as the signal reference for experiments

of this thesis.

5.1 RadioML2018.01A Dataset

The RadioML dataset is widely used as a reference modulation dataset, and has been

generated and recorded over the air by utilizing GNU Radio. The RadioML2018.01A dataset,

66

specifically, contains two categories of modulated signals with a total of 24 modulation

schemes:

• Normal group: OOK, 4ASK, BPSK, QPSK, 8PSK, 16QAM, AM-SSB-SC, AM-

DSB-SC, FM, GMSK, OQPSK.

• Difficult group: 8ASK, 16PSK, 32PSK, 16APSK, 32APSK, 64APSK, 128APSK,

32QAM, 64QAM, 128QAM, 256QAM, AM-SSB-WC, AM-DSB-WC.

The dataset’s SNR covers a range of -20 dB to +30 dB in increments of 2dB, thus

totalling 26 SNR values. There are 4096 signal waveforms for each modulation scheme at

a particular SNR. Therefore, in this dataset, there are 106,496 signal waveforms for each

modulation scheme for the entire SNR range. Each signal waveform includes 1024 separate

complex IQ samples (2×1024). This creates a dataset of 2,555,904 vectors of modulated

signal waveforms, with each vector having 1024 IQ samples. In our experiment, we split

the dataset into 60% for training and validation, and 40% for testing processes. Table 5.1

investigates the dimensions of the input data for ML algorithms.

Table 5.1: Input data dimensions.

Data Type Dimensions
RadioML Dataset 2×1024×2,555,904
Training Dataset 2×1024×1,277,952

Validation Dataset 2×1024×255,590
Testing Dataset 2×1024×1,022,361

In order to apply different wireless channels, or environmental effects, all modulated

signals were exposed to real-world effects, such as additive white Gaussian noise, multipath

fading, frequency offset and phase offset, in order to represent dynamic channel effects.

The order of applying real-world effects has been selected to begin from most destructive

one while continuing towards less destructive one. It also should be noted that in a given

environment, the transmitted signal is not exposed to all of these real-world affects. In other

67

words, the RadioML dataset is created upon the assumption of having the most destructive

environmental effects applied to signal. This process can be seen in Fig 5.1.

Sample rate offset based on
random walk or

interpolation

Rayleigh or Rician model in
addition convolution

Being exposed to AWGN
noise

Center frequency offset
based on random walk or

mixing

Surface-to-out model Carrier frequency offset model

Selective fading modelAdditive White Gaussian Noise

Figure 5.1: Process of applying channel effects to the transmitted signal

The order of applying aforementioned destructive environmental effects has been de-

signed based on likely real-world scenario where the first effect has the highest likeliness of

being occurred. But, as can be seen in Fig 5.1, AWGN effect is designed to be the last de-

structive effect although this effect is considered as first destructive ones in any environment.

This is because authors in [31] have attempted to create a worst-case scenario. In such a

manner, AWGN effect has to be applied to signal in last step.

From among the effects that the signal is exposed to, the selective fading model has the

most destructive impact on higher-order modulation schemes, primarily due to the phase

shift offset resulting from this model. Fig 5.2 shows the constellation of a received signal

from this dataset for 128QAM and 256QAM at an SNR of 5 dB, both with and without the

selective fading model applied. Therefore, in order to achieve higher classification accuracy,

information on the properties impacted by the selective fading model, such as phase shift

offset, should be extracted during the feature extraction stage, and provided to the labeling

stage. This can be achieved through the use of polar coordinate transforms.

Furthermore, in order to provide intuitive understanding of how polar coordinates

can provide another domain of information for labeling stage, we plot the output of this

68

(a) 128QAM without selective fading model (b) 128QAM with selective fading model

(c) 256QAM without selective fading model (d) 256QAM with selective fading model

Figure 5.2: The destructive effect of the selective fading model over the constellation of 128QAM
and 256QAM from RadioML dataset at SNR = 5 dB.

component in feature extraction stage. Moreover, we also investigate the effect of selective

fading model over polar coordinates. Fig 5.3 shows the polar-based constellation of a

received signal from this dataset for 128QAM and 256QAM at an SNR of 5 dB, both with

and without the selective fading model applied.

69

(a) 128QAM without selective fading model (b) 128QAM with selective fading model

(c) 256QAM without selective fading model (d) 256QAM with selective fading model

Figure 5.3: Polar-based constellation of 128QAM and 256QAM from RadioML dataset at SNR
= 5 dB with and without destructive effect of the selective fading model.

After the RadioML dataset has gone through the new architecture of feature extraction

stage, the operation results in 3D high-order statistical polar-based dataset, for which

Table 5.2 shows the corresponding dimensions.

70

Table 5.2: 3D high-order statistical polar-based dataset dimensions.

Data Type Dimensions
New Dataset 4×1025×2,555,904

Training Dataset 4×1025×1,277,952
Validation Dataset 4×1025×255,590

Testing Dataset 4×1025×1,022,361

5.2 DBN-based FB AMC Classifier Analysis

In order to start analyzing the performance of this classifier, we first need to build its

architecture including setting its hyperparameters.

5.2.1 DBN Architecture and Employment

Designing the architecture of DBN and deployment involves setting its hyperparameters and

defining the environment in which it will be simulated.

The input and output layers of our DBN will, respectively, include 24 and 4 units to

represent the 24 modulation schemes in the RadioML dataset, and 4 modulation schemes in

this research’s evaluation. In order to achieve an optimized DBN model, we have selected

the adaptive moment estimation (Adam) algorithm [34], [35]. This resulted in optimized

hyperparameters and other configurations of DBN presented in Table 5.3.

Table 5.3: Optimized hyperparameters and configurations of DBN.

Hyperparameters Values
Number of hidden layers 6

Number of units in each hidden layer 18
Activation function of the first 5 layers ReLU

Activation function of the last layer Softmax
Batch size 256

Number of maximum training epoch 250
Learning rate 0.0005

Number of times where contrastive divergence is run (k) 12

From an RBM architecture perspective, this implies that there are 3 visible and 3 shallow

layers, each including 18 units. Our training, validating and testing environments are

71

Figure 5.4: Validation accuracy of DBN-based model in training stage.

implemented using the deep learning library Keras running on top of TensorFlow executed

in our university’s supercomputing infrastructure, HCC Crane JupyterHub [36]. Fig 5.4

and Fig 5.5 respectively show the training performance of the presented DBN-based model

in terms of the number of training epochs versus validation accuracy and training loss

in addition to a comparison with deep RNN- and CNN-based models. To have a fair

representation of validation accuracy and training loss, parameters such as batch size and

learning rate are set to be the same for all three models.

The proposed DBN-based model shows higher rising and declining slopes in both

evaluations. This points to the fact that DBN-based models are capable of a more accurate

training process compared to the other two models. Next, we will present the AMC

numerical results and discuss them.

72

Figure 5.5: Training loss of DBN-based model in training stage.

5.2.2 AMC Results and Discussion

We herein present our results from evaluating the AMC classification performance using

our framework, and obtain the lower and upper bounds of the proposed DBN-based model

as well as a comparison with RNN- and CNN-based models. Due to the performance

plateau of classifiers below -10 dB, we selected the range of SNR to be between -10 and

+30 dB for the upper-bound performance analysis. We similarly selected the range of SNR

between -10 and +10dB for the lower-bound performance evaluation. Fig 5.6 and Fig 5.7

in next subsections show the aforementioned performances for lower and upper bounds,

respectively. Final results are achieved by interpolating between each two consecutive

available SNR’s probability of correct classification (PCC). The results show the proposed

DBN-based model performance compared to RNN- and CNN-based models to obtain lower-

and upper-bounds of performance when {BPSK, QPSK} and {128QAM, 256QAM} are

classified, respectively.

73

We will separately discuss the numerical results for the lower- and upper-bounds perfor-

mance.

5.2.2.1 Lower-bound Discussion

As can be observed from Fig ??, where modulations {BPSK and QPSK} are classified, the

proposed DBN-based model outperforms the other two models over the entire range of SNR.

This higher performance is notably observable in lower SNRs.

Figure 5.6: Proposed DBN-based lower-bound performance compared to RNN and CNN

The performance of the proposed DBN-based model is on average 21.8% and 16.2%

higher than the average performance of the other two models when classifying BPSK

and QPSK, respectively. It also should be noted that there is a performance advantage of

CNN for lower SNRs over that of RNN. However, the RNN-based model performs better

than the CNN-based model in SNRs below -3 dB. That is due to CNN operating based

on the constellation shape of the intercepted signal’s modulation scheme. And a signal’s

74

constellation shape becomes less apparent as the SNR value decreases.

5.2.2.2 Upper-bound Discussion

Similarly to the discussion of the lower-bound performance, we can observe in Fig 5.7 that

the DBN-based model shows a higher capability for correct classification over the entire

range of SNR, especially in lower SNR cases. The proposed DBN-based model performs

14.7% and 11.4% on average better than RNN and CNN when 128QAM and 256QAM are

classified, respectively.

Figure 5.7: Proposed DBN-based upper-bound performance compared to RNN and CNN

As can be seen, while classifying 256QAM, the performance of the proposed DBN- and

RNN-based models tends to merge at higher SNRs since the training process of RNN-based

model becomes more accurate as SNR increases. This even can be seen in classifying QPSK

for the lower-bound performance. Since the CNN-based model depends on the constellation

shape to extract the signal’s information, its performance generally is degraded as the order

75

of modulation scheme increases. This degradation in performance is easily noticeable from

comparing lower- and upper-bound performances.

Another aspect of DBN performance is that the set of labelled data can be small relative

to the original dataset, which is extremely helpful in real-world applications where low

latency is of importance [37].

5.2.2.3 Number of Training Samples Discussion

One of the important factors to consider in the AMC domain is how to train the classifier

as quickly as possible, and subsequently test it in real-time. One way to accomplish this

task is to reduce the sample size while not sacrificing the classification accuracy. DBNs

are capable of achieving this goal [38]. Therefore, we herein investigate this property and

compare it to the other two models when classifying 32QAM modulation scheme in two

scenarios where 1) the full size of and 2) half of the 3D high-order polar-based dataset is to

be used for training, validation and testing with the same aforementioned proportionality. As

Figure 5.8: Number of training sample impact on classification accuracy.

76

can be seen from Fig 5.8, when the size of the input sample is reduced to half, the average

performance of the proposed DBN-based model drops much less than that of the other two

models. At lower SNRs, the proposed DBN-based model’s performance trained with half

the size of the dataset is even higher than the CNN-based model when trained with the full

dataset. Additionally, over higher SNRs, the proposed DBN-based model trained on half of

the dataset achieves maximum classification accuracy at approximately the same SNR than

the RNN-based model after utilizing the full dataset training size. The main reason behind

this key benefit is DBN’s capability of probabilistic reconstruction of the input samples,

as explained earlier. Additionally, DBN platforms are more resilient than other platforms

against the overfitting problem [39].

5.2.3 Computational Complexity Analysis

Computational complexity of any AMC classifier is of high importance in order to measure

its capability of operating real-time [40]. Hence, time has been traditionally a metric to

measure an AMC classifier’s computational complexity. Thus, to analyze computational

complexity of the proposed DBN-based model, we take into consideration the time required

to perform the classification on this model, and compare it with the other two models in the

simulation environment mentioned before. But, in order to exclude the effect of computing

power of simulation platform, we define a parameter τ representing the timing unit in this

evaluation. Note that τ is scalable based on the simulation platform’s computing power.

Table 5.4 shows details of this analysis.

Table 5.4: Computational complexity of the proposed DBN-based model.

Proposed DBN-
based model

RNN-based
model

CNN-based
model

Each batch 0.0022τ 0.0021τ 0.0020τ

Each epoch 22.4716τ 21.826τ 20.6637τ

Total classification 5056.11τ 4910.86τ 4649.35τ

As can be observed from results, the computational complexity of the proposed DBN-

77

based model is slightly higher than the RNN-based model, by 2.9%, although the average

classification accuracy of the proposed DBN-based model is notably higher than the other

two models, especially at low SNRs by on average 16.02%. Therefore, we can state in

general that the achievable significant increase in classification accuracy easily offsets the

slight increase in computational complexity.

5.2.4 Model Conclusion

The proposed DBN-based model increases the average classification accuracy for lower-

bound evaluation by 19%, and 13.05% for higher-bound evaluation. This results in a total

average increase of 16.02% over the four modulation schemes chosen for this evaluation.

This significant increase can be seen over all ranges of SNR, but especially so for lower SNR

cases. As a result, the slight increase in computational complexity by 2.9% compared to

RNN-based model is acceptable and often negligible. But the proportionality of this increase

in classification accuracy compared to that of the increase in computational complexity

(5.52) shows the efficiency of this proposed model to be employed for lower SNR cases.

5.3 SNN-based FB AMC Classifier Analysis

Similarly to DBN-based classifier’s analysis, we first build the architecture of SNN-based

model and then proceed to analyze it.

In order to have a fair evaluation of a DBN-based model, we follow the architecture

of the DBN-based model with minimal modifications specifically needed to accommodate

SNN, including its training process.

The input and output layers will respectively include 24 and 4 neurons based on the

same reasoning as in the previous section. The training algorithm for SNN is selected to be

Hebbian learning, which strongly involves the spike-timing-dependent plasticity (STDP)

rule in unsupervised learning [41]. Hence, we need to not only set typical hyperparameters

78

of a neural network, but we are also required to predetermine other parameters regarding

Hebbian learning [42]. We set SNN’s typical hyperparameters as shown for the proposed

DBN-based model, to once again ensure a fair comparison. Table 5.5 indicates these

hyperparameters.

Table 5.5: SNN hyperparameters’ architecture.

Hyperparameters Values
Number of hidden layers 6

Number of units in each hidden layer 18
Activation function of the last layer Softmax

Batch size 256
Number of maximum training epoch 250

Learning rate 0.0005
Discharge 0.1

Long term potentiation (LTP) 1.5
inhLTP 1.5

Long term depression (LTD) 0.1

Here, inhLTP represents the fact that if a pre-synaptic neuron is inhibitory, the weight

always increases if the pair of neurons fire within a certain time-window, irrespective of the

order of firing (inhLTP) [41]–[43]. Building an SNN model as FCN in the proposed deep

learning architecture is shown in Fig 5.9 and Fig 5.10 in terms of training validation and

loss process measurements, respectively.

The training process measurements mainly include the performance of the number of

training epochs versus validation accuracy and training loss. Both Fig 5.9 and Fig 5.10 also

include the other three models’ performances for comparison purposes. As can be seen from

Fig 5.9 and Fig 5.10, SNN’s training performance is notably similar to that of the RNN-

based model, even overlapping in some epochs, but it is always lower than the proposed

DBN-based model and always higher than the CNN-based model. This implies that although

SNN benefits from eliminating neurons having no apparent impact on classification from

computations [44], classification accuracy suffers as a result of that same property [45]. The

simulation environment is the same as explained in the previous section [36], [46].

79

Figure 5.9: Proposed SNN-based model performance of number of training epochs versus
validation accuracy.

Figure 5.10: Proposed SNN-based model performance of number of training epochs versus
training loss.

80

5.3.1 Results and Discussion

Implementing SNN as FCN in the proposed deep learning architecture results in Fig 5.11

and Fig 5.12, in order to obtain the lower- and upper-bounds performance of the proposed

SNN-based model where {BPSK and QPSK} and {128QAM and 256QAM} are respectively

classified.

Similar to the proposed DBN-based model discussion, we separately investigate the

upper and lower performance bounds for the proposed SNN-based model.

5.3.1.1 Lower-bound performance

Observing Fig 5.11 shows that the proposed SNN-based model significantly outperforms

the CNN-based model by an average of 17.1% and 9.8% when classifying 128QAM and

256QAM, respectively.

Figure 5.11: Proposed SNN-based model lower-bound performance compared to proposed DBN-,
RNN- and CNN-based models.

On the other hand, the proposed SNN-based model also exhibits modestly higher

81

performance compared to the RNN-based model at higher SNRs. Overall, it can be stated

that the proposed SNN-based model performs on average 14.3% and 7.8% higher than CNN-

and RNN-based models when classifying 128QAM and 256QAM, respectively.

5.3.1.2 Upper-bound Performance

As can be seen from Fig 5.12, the proposed SNN-based model outperforms the RNN- and

CNN-based models at SNRs lower than -2 dB by 9.2%.

Figure 5.12: Proposed SNN-based model upper-bound performance compared to proposed DBN-,
RNN- and CNN-based models.

This is a consequence of the neurons’ behavior of not firing when they have no construc-

tive effect on the classification [47]. This can be seen in lower SNR cases, where involving

misled neurons can degrade the classification process. On the other hand, the training pro-

cess of the proposed DBN-based model is significantly more accurate and outperforms the

proposed SNN-based model over the entire SNR range. Overall, the proposed SNN-based

model performs on average 5.7% and 2.9% higher than CNN- and RNN-based models over

82

the entire SNR range. However, the CNN-based model has a higher performance at SNRs

above -2 dB due to the higher orderly constellation shape of the received signal.

5.3.2 Computational Complexity Analysis

Similar to the analysis provided in the previous section, we now investigate the computational

complexity of the proposed SNN-based model, based on analyzing the timing unit required

to achieve classification. For this model, Table 5.6 indicates the obtained computational

complexity measurements.

Table 5.6: Proposed SNN-based model computational complexity measurement.

Proposed SNN-based model’s
architecture parameters Elapsed timing units

Each batch 0.00158τ

Each epoch 15.84 τ

Total classification 3565.32 τ

This analysis clearly shows a significant decrease in the required number of timing units

to train, validate and classify for the SNN-based model. The number of timing units required

by the proposed SNN-model is 1084τ lower than that of the CNN-based model, which has

the lowest computational complexity among the proposed DBN- and RNN-based models.

This implies that the proposed SNN-based model is 23.31% faster than CNN-based model.

Additionally, the proposed SNN-based model performs the AMC operation 41.81% and

34.31% faster when compared to the proposed DBN- and RNN-based models.

5.3.3 Model Conclusion

Although the main purpose behind the proposal to use SNN-based models was to reduce

computational complexity, its classification accuracy performance in obtaining both lower

and upper bounds indicates that it is very competitive compared to the average classification

accuracy of the other models investigated during our research. The proposed SNN-based

83

model reduces computational complexity by an average of 33.14% compared to the three

other models, while it outperforms CNN- and RNN-based models by on average 4.3% and

11% in obtaining lower and upper bounds, respectively.

5.4 Proposed Novel Framework Analysis

Applying the presented ratio for framework (4.54) provides us with the answer to which ML

approach to use for different channel conditions, as shown in Table 5.7. SNN is clearly the

Table 5.7: Tradeoff-driven model selection for classification at each SNR.

SNR dB Model SNR dB Model
-20 DBN 6 SNN
-18 DBN 8 SNN
-16 DBN 10 SNN
-14 DBN 12 SNN
-12 DBN 14 SNN
-10 DBN 16 SNN
-8 DBN 18 SNN
-6 DBN 20 SNN
-4 DBN 22 SNN
-2 SNN 24 SNN
0 SNN 26 SNN
2 SNN 28 SNN
4 SNN 30 SNN

preferred choice over a significant portion of the evaluated SNR range. This would indicate

that SNN is also the overall better choice for non-adaptive AMC implementation. However,

having an FB-AMC classifier that can adapt according to Table 5.7 reduces computational

complexity by 39.2% compared to the case where the proposed DBN-based model is utilized

for classification over all SNR ranges. Additionally, such a classifier only sacrifices on

average 5.8% in classification accuracy for SNRs lower than -2 dB.

84

CHAPTER 6

Conclusion and Future Work

In this thesis, in the area of automatic modulation classification, we achieved signifi-

cant performance improvements in both stages of the feature-based AMC approach. We

contributed to the feature extraction stage by designing a new architecture that enables

the retrieval of unbiased fourth-order cumulants, and leverages polar coordinates of the

intercepted signal for improved accuracy. This resulted in a new 3D high-order statisti-

cal polar-based dataset to be used in the labeling stage. Here, through a deep learning

architecture design, we introduced the platforms of deep belief network and spiking neu-

ral network in order to increase classification accuracy, specifically at lower SNR values,

and decrease computational complexity of the classifier, respectively. In our evaluation,

we obtained the lower- and upper-bounds performance of the proposed classifiers while

classifying the lowest- (BPSK, QPSK) and highest-order modulation schemes (128QAM,

256QAM) utilizing the signals from the RadioML dataset. We not only provided numerical

results of the proposed classifiers, but we also compared them with two recent modified

classifiers based on convolutional- and recurrent-based neural networks. The comparison

showed a significant increase in classification accuracy by an average of 16.02% when

a deep belief network was employed. Specifically, for lower SNR values, we obtained

both lower-bound performance improvements of 19% and upper-bound improvements of

13.05%. Additionally, we showed that the spiking neural network’s performance remained

85

competitive compared to recurrent-based neural networks while performing classification

on average 34.31% faster. We showed that the proposed spiking neural network achieved

notable higher classification accuracy compared to the convolutional-based neural network

while also performing AMC 23.31% faster. Finally, we developed an efficient and flexible

framework based on the proposed platforms’ characteristics, computational complexity and

classification accuracy. It can adapt between these ML approaches based on the currently

observed SNR obtained from the receiver’s equalizer component. This framework achieved

a 36.2% higher efficiency in terms of required computational cost while sacrificing only

5.8% in classification accuracy for SNRs lower than -2 dB.

Our future research direction involves both DBN and SNN models. For DBN platform,

it is necessary to decrease the computational complexity of the DBN-based model without

sacrificing notable classification accuracy. This requires modification in inherent design of

DBN-based model to be specifically adapted for AMC applications. In this manner, we will

be able to decrease the computational complexity of DBN-based model while classification

accuracy of such platform does not decrease as much as computational complexity. The

very optimistic scenario occurs when we decrease the DBN-based model’s computational

complexity without sacrificing any of classification accuracy. We can have such a same

direction for SNN-based model.

For SNN platform, the goal should be to increase the classification accuracy without

increasing the computational complexity. To do this task again, we need to apply some

modification in inherent design of SNN platform to specially adjust its operation for AMC

applications. In this direction, the very optimistic path is to increase the classification

accuracy while computational complexity is decreased.

86

Bibliography

[1] P. Ghasemzadeh, S. Banerjee, M. Hempel, and H. Sharif, “Performance evaluation
of feature-based automatic modulation classification”, in 2018 12th International
Conference on Signal Processing and Communication Systems (ICSPCS), IEEE,
2018, pp. 1–5.

[2] P. Ghasemzadeh, S. Banerjee, and M. Hempel, “Accuracy analysis of feature-based
automatic modulation classification with blind modulation detection”, in 2019 Inter-
national Conference on Computing, Networking and Communications (ICNC), IEEE,
2019, pp. 1000–1004.

[3] P. Ghasemzadeh, S. Banerjee, M. Hempel, M. Alahmad, and H. Sharif, “Analysis of
distribution test-based and feature-based approaches toward automatic modulation
classification”, in 2019 IEEE 30th Annual International Symposium on Personal,
Indoor and Mobile Radio Communications (PIMRC), IEEE, 2019, pp. 1–6.

[4] S. Banerjee, M. Hempel, P. Ghasemzadeh, Y. Qian, and H. Sharif, “A novel approach
to social-behavioral d2d trust associations using self-propelled voronoi”, in 2019
IEEE 90th Vehicular Technology Conference (VTC2019-Fall), IEEE, 2019, pp. 1–5.

[5] S. Banerjee, J. Santos, M. Hempel, P. Ghasemzadeh, and H. Sharif, “A novel method
of near-miss event detection with software defined radar in improving railyard safety”,
Safety, vol. 5, no. 3, p. 55, 2019.

[6] S. Banerjee, M. Hempel, N. Albakay, P. Ghasemzadeh, and H. Sharif, “A framework
for high-speed passenger train wireless network radio evaluations”, in 2019 Joint Rail
Conference, American Society of Mechanical Engineers Digital Collection, 2019.

[7] S. Banerjee, M. Hempel, P. Ghasemzadeh, N. Albakay, and H. Sharif, “High speed
train wireless communication: Handover performance analysis for different radio
access technologies”, in 2019 Joint Rail Conference, American Society of Mechanical
Engineers Digital Collection, 2019.

[8] S. Banerjee, M. Hempel, P. Ghasemzadeh, and H. Sharif, “A novel biomimicry-based
analysis of d2d user association retention for achieving maximal throughput”, in
2019 15th International Wireless Communications & Mobile Computing Conference
(IWCMC), IEEE, 2019, pp. 2036–2042.

[9] S. Banerjee, P. Ghasemzadeh, M. Hempel, and H. Sharif, “Topography relaxation
in determining unsafe state intersections for uncertain cps”, IEEE Sensors Letters,
vol. 4, no. 4, pp. 1–4, 2020.

87

[10] P. Ghasemzadeh, S. Banerjee, M. Hempel, A. Harms, and H. Sharif, “Detecting dark
cars using a novel multi-antenna aei tag reader design for increased read distance
and reliability”, in 2020 Joint Rail Conference, American Society of Mechanical
Engineers Digital Collection, 2020.

[11] P. Ghasemzadeh, S. Banerjee, M. Hempel, H. Sharif, and T. Omar, “Evaluation
of machine learning-driven automatic modulation classifiers under various signal
models”, in 2020 Joint Rail Conference, American Society of Mechanical Engineers
Digital Collection, 2020.

[12] P. Ghasemzadeh, S. Banerjee, M. Hempel, and H. Sharif, “A new framework for
automatic modulation classification using deep belief networks”, in 2020 IEEE
International Conference on Communications Workshops (ICC Workshops), IEEE,
2020.

[13] P. Ghasemzadeh, S. Banerjee, M. Hempel, A. Harms, and H. Sharif, “Detecting
dark cars in railroad operations using multi-antenna beamforming for long-distance
discovery and identification of aei tags”, in 2020 16th International Wireless Commu-
nications & Mobile Computing Conference (IWCMC), IEEE, 2020.

[14] P. Ghasemzadeh, S. Banerjee, M. Hempel, and H. Sharif, “A novel deep learning and
polar transformation framework for an adaptive automatic modulation classification”,
IEEE Transactions on Vehicular Technology, 2020.

[15] S. Banerjee, M. Hempel, P. Ghasemzadeh, H. Sharif, and T. Omar, “Wireless commu-
nication for high-speed passenger rail services: A study on the design and evaluation
of a unified architecture”, in 2020 Joint Rail Conference, American Society of Me-
chanical Engineers Digital Collection, 2020.

[16] Y. Wang, M. Liu, J. Yang, and G. Gui, “Data-driven deep learning for automatic mod-
ulation recognition in cognitive radios”, IEEE Transactions on Vehicular Technology,
vol. 68, no. 4, pp. 4074–4077, 2019.

[17] F. Meng, P. Chen, L. Wu, and X. Wang, “Automatic modulation classification: A deep
learning enabled approach”, IEEE Transactions on Vehicular Technology, vol. 67,
no. 11, pp. 10 760–10 772, 2018.

[18] C.-F. Teng, C.-C. Liao, C.-H. Chen, and A.-Y. A. Wu, “Polar feature based deep
architectures for automatic modulation classification considering channel fading”, in
2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP),
IEEE, 2018, pp. 554–558.

[19] Z. Xing and Y. Gao, “A modulation classification algorithm for multipath signals
based on cepstrum”, IEEE Transactions on Instrumentation and Measurement, 2019.

[20] S. Peng, H. Jiang, H. Wang, H. Alwageed, Y. Zhou, M. M. Sebdani, and Y.-D. Yao,
“Modulation classification based on signal constellation diagrams and deep learning”,
IEEE transactions on neural networks and learning systems, vol. 30, no. 3, pp. 718–
727, 2018.

88

[21] S. Majhi, R. Gupta, W. Xiang, and S. Glisic, “Hierarchical hypothesis and feature-
based blind modulation classification for linearly modulated signals”, IEEE Transac-
tions on Vehicular Technology, vol. 66, no. 12, pp. 11 057–11 069, 2017.

[22] S. Rajendran, W. Meert, D. Giustiniano, V. Lenders, and S. Pollin, “Deep learning
models for wireless signal classification with distributed low-cost spectrum sensors”,
IEEE Transactions on Cognitive Communications and Networking, vol. 4, no. 3,
pp. 433–445, 2018.

[23] Y. A. Eldemerdash, O. A. Dobre, O. Üreten, and T. Yensen, “A robust modulation
classification method for psk signals using random graphs”, IEEE Transactions on
Instrumentation and Measurement, vol. 68, no. 2, pp. 642–644, 2018.

[24] M. W. Aslam, Z. Zhu, and A. K. Nandi, “Automatic modulation classification using
combination of genetic programming and knn”, IEEE Transactions on wireless
communications, vol. 11, no. 8, pp. 2742–2750, 2012.

[25] L. Zhou and H. Man, “Distributed automatic modulation classification based on
cyclic feature via compressive sensing”, in MILCOM 2013-2013 IEEE Military
Communications Conference, IEEE, 2013, pp. 40–45.

[26] O. A. Dobre, A. Abdi, Y. Bar-Ness, and W. Su, “Cyclostationarity-based modulation
classification of linear digital modulations in flat fading channels”, Wireless Personal
Communications, vol. 54, no. 4, pp. 699–717, 2010.

[27] S. Huang, Y. Yao, Z. Wei, Z. Feng, and P. Zhang, “Automatic modulation classification
of overlapped sources using multiple cumulants”, IEEE Transactions on Vehicular
Technology, vol. 66, no. 7, pp. 6089–6101, 2016.

[28] L. Fei, G. Xiaoguang, and W. Kaifang, “Training restricted boltzmann machine using
gradient fixing based algorithm”, Chinese Journal of Electronics, vol. 27, no. 4,
pp. 694–703, 2018.

[29] H. Yi, S. Shiyu, D. Xiusheng, and C. Zhigang, “A study on deep neural networks
framework”, in 2016 IEEE Advanced Information Management, Communicates,
Electronic and Automation Control Conference (IMCEC), IEEE, 2016, pp. 1519–
1522.

[30] Y. Hua, J. Guo, and H. Zhao, “Deep belief networks and deep learning”, in Pro-
ceedings of 2015 International Conference on Intelligent Computing and Internet of
Things, IEEE, 2015, pp. 1–4.

[31] T. J. O’Shea, T. Roy, and T. C. Clancy, “Over-the-air deep learning based radio signal
classification”, IEEE Journal of Selected Topics in Signal Processing, vol. 12, no. 1,
pp. 168–179, 2018.

[32] F. Meng, P. Chen, L. Wu, and X. Wang, “Automatic modulation classification: A deep
learning enabled approach”, IEEE Transactions on Vehicular Technology, vol. 67,
no. 11, pp. 10 760–10 772, 2018.

[33] S. Hu, Y. Pei, P. P. Liang, and Y.-C. Liang, “Deep neural network for robust modula-
tion classification under uncertain noise conditions”, IEEE Transactions on Vehicular
Technology, 2019.

89

[34] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization”, arXiv preprint
arXiv:1412.6980, 2014.

[35] A. S. Prabowo, A. Sihabuddin, and S. Azhari, “Adaptive moment estimation on
deep belief network for rupiah currency forecasting”, IJCCS (Indonesian Journal of
Computing and Cybernetics Systems), vol. 13, no. 1, pp. 31–42, 2019.

[36] Holand computing center at university of nebraska-lincoln, https://hcc.unl.
edu/.

[37] S. N. Tran and A. S. d. Garcez, “Deep logic networks: Inserting and extracting
knowledge from deep belief networks”, IEEE transactions on neural networks and
learning systems, vol. 29, no. 2, pp. 246–258, 2016.

[38] M. Ma, X. Xu, J. Wu, and M. Guo, “Design and analyze the structure based on deep
belief network for gesture recognition”, in 2018 Tenth International Conference on
Advanced Computational Intelligence (ICACI), IEEE, 2018, pp. 40–44.

[39] Y. Hua, J. Guo, and H. Zhao, “Deep belief networks and deep learning”, in Pro-
ceedings of 2015 International Conference on Intelligent Computing and Internet of
Things, IEEE, 2015, pp. 1–4.

[40] C.-F. Teng, C.-Y. Chou, C.-H. Chen, and A.-Y. Wu, “Accumulated feature based deep
learning with channel compensation mechanism for efficient automatic modulation
classification under time varying channels”, arXiv preprint arXiv:2001.01395, 2020.

[41] K. Kozdon and P. Bentley, “The evolution of training parameters for spiking neural
networks with hebbian learning”, in Artificial Life Conference Proceedings, MIT
Press, 2018, pp. 276–283.

[42] D. Neil, M. Pfeiffer, and S.-C. Liu, “Learning to be efficient: Algorithms for training
low-latency, low-compute deep spiking neural networks”, in Proceedings of the 31st
annual ACM symposium on applied computing, 2016, pp. 293–298.

[43] M. M. S. Mustari, “Configuring spiking neural network training algorithms”, PhD
thesis, Memorial University of Newfoundland, 2017.

[44] W. Maass, “On the computational complexity of networks of spiking neurons”, in
Advances in neural information processing systems, 1995, pp. 183–190.

[45] M. Pfeiffer and T. Pfeil, “Deep learning with spiking neurons: Opportunities and
challenges”, Frontiers in neuroscience, vol. 12, p. 774, 2018.

[46] H. Hazan, D. J. Saunders, H. Khan, D. Patel, D. T. Sanghavi, H. T. Siegelmann, and
R. Kozma, “Bindsnet: A machine learning-oriented spiking neural networks library
in python”, Frontiers in neuroinformatics, vol. 12, p. 89, 2018.

[47] J. M. Brader, W. Senn, and S. Fusi, “Learning real-world stimuli in a neural network
with spike-driven synaptic dynamics”, Neural computation, vol. 19, no. 11, pp. 2881–
2912, 2007.

[48] Bindsnet 0.2.7 python package to simulate spiking neural network, https://pypi.
org / project / bindsnet/ or https : / / github . com / BINDS - LAB - UMASS /
bindsnet/tree/master/bindsnet.

https://hcc.unl.edu/
https://hcc.unl.edu/
https://pypi.org/project/bindsnet/
https://pypi.org/project/bindsnet/
https://github.com/BINDS-LAB-UMASS/bindsnet/tree/master/bindsnet
https://github.com/BINDS-LAB-UMASS/bindsnet/tree/master/bindsnet

90

APPENDIX A

Deep Learning Models Participating in Comparing Results

We herein investigate two of the most studied ANN platforms, CNN and RNN, in the
AMC domain. We built a comparison mechanism by modeling two of the most recently
proposed deep CNN- and RNN-based models that significantly improve the performance of
the FB-AMC classifier.

A.1 Deep CNN-based Model
The authors of [32] proposed an end-to-end trainable deep CNN-based model that is capable
of automatically learning a signal’s features without going through feature extraction. They
also proposed a two-step training approach that includes pre-training and fine-tuning steps
for the proposed CNN-based model. Their model also divides the input data into unit
sizes for parallel computation. Then, a maximum a posteriori probability (MAP) criterion
classifies the modulation schemes. Eliminating the feature extraction stage and parallel
computation simplified their system design, but they had to remove some decision processes
to keep their system’s computational complexity low. Their system model also requires SNR
to be known for the classifier to work. We implemented their system in order to compare
this model with our proposed classifiers. The general view of their network architecture can
be seen in Fig A.1.

The structure dimensions of this network are described in Table A.1 where ‘n.a.’ repre-
sents not-applied.

Table A.1: CNN-based model structure dimensions.

Layers Kernel
Number Kernel Size Stride Window

Size
Convolutional A 12 3 1 n.a.
Convolutional B 24 3 1 n.a.
Convolutional C 32 3 1 n.a.

AveragePool n.a. n.a. 1 2

The output vectors of the last AveragePool layer are compacted into a vector by the
flattened layer. Then, the dense layer encodes this vector into a 256-dimensional vector that

91

Conv layer A
+

ReLU

Conv layer A
+

ReLU
AveragePool

Conv layer B
+

ReLU
AveragePool

Conv layer B
+

ReLU
AveragePool

Conv layer C
+

ReLU
AveragePool

Flatten

CNN model to extract intercepted signal's information

Input
Signal

Dense + ReLU

Concatenation
Dense

+
ReLU

Dense + ReLU Input
SNR

SoftmaxArg MAX
Type of

Modulation
Scheme

Classification Process

AMC classifier

Figure A.1: The deep CNN-based classifier’s structure.

carries high-level extracted information from the intercepted signal. Pre-training executes
the following steps: 1) generating and sampling training data, 2) randomly setting system
model parameters, and 3) training the model and storing the updated parameters with
minimal validation loss. Fine-tuning steps are: 1) producing training data, 2) randomly
initializing the top layer of system model after its replacement with updated parameters
from pre-training, and finally 3) training the model and storing the updated parameters with
minimal validation loss. More details of this model can be found in [32]. In order to fit this
model with our experiment, we do not execute the first steps of pre-training and fine-tuning.
Moreover, note that the input data dimension in the RadioML dataset is 2×1024 for the
received symbols. On the other hand, their input data dimension is 2×1000.

A.2 RNN-based Model
We also implemented the deep RNN-based system model proposed in [33]. In this model,
a pre-processing stage is first used to re-order the structure of the received samples based
on their phases. Then, a deep RNN-based model is built upon a long short-term memory
(LSTM) network that can properly learn long-term dependencies of the received samples.
Finally, a MAP criterion is used for modulation classification. The deep RNN-based model
can be seen in Fig A.2.

This model consists of three stacked-LSTM layers that are later connected to a four-layer
fully-connected network. In each layer of the fully-connected network, the number of units
is set to 11 because of using of RadioML2016.10a, which contains a total of 11 modulated
signals. Hence, in order to fit this model into our experiment, we needed to increase the

92

Input
Signal Pre-processing LSTM layer

1
LSTM layer

2

LSTM layer
3

Four layers of fully-
connected network

MAP
criterion

Type of
modulation

scheme

Deep RNN-based AMC classifier

Figure A.2: The deep RNN-based classifier’s structure.

number of units in the input layer to 24 and decrease the output layer’s units to 4. All other
steps remained the same as shown in [33], which also contains more details for the interested
reader.

93

APPENDIX B

Spiking Neural Network-Based Platform Utilized in This
Research

We herein provide the code written1by author to create the environment and simulate the
spiking neural network in Python language based on PyTorch simulator, especially adapted
to AMC applications. We group the codes that relate to one another in following sections in
order to operate.

B.1 Initialization and Refactored Conversion Module

1 from pathlib import Path
2

3 from . import (
4 utils ,
5 network ,
6 models ,
7 analysis ,
8 preprocessing ,
9 datasets ,

10 encoding ,
11 pipeline ,
12 learning ,
13 evaluation ,
14 environment ,
15 conversion ,
16)
17

18 ROOT_DIR = Path(__file__).parents [0]. parents [0]

Listing B.1: Initialization

1 import math
2 import torch
3 import numpy as np

1The structure and flow of following SNN code were inspired and followed based on bindsnet 0.2.7
package [48].

94

4

5 from torch import Tensor
6 import torch.nn.functional as F
7 from numpy import ndarray
8 from typing import Tuple , Union
9 from torch.nn.modules.utils import _pair

10

11

12 def im2col_indices(
13 x: Tensor ,
14 kernel_height: int ,
15 kernel_width: int ,
16 padding: Tuple[int , int] = (0, 0),
17 stride: Tuple[int , int] = (1, 1),
18) -> Tensor:
19 # language=rst
20 """
21 im2col is a special case of unfold which is implemented inside

of Pytorch.
22

23 :param x: Input image tensor to be reshaped to column -wise
format.

24 :param kernel_height: Height of the convolutional kernel in
pixels.

25 :param kernel_width: Width of the convolutional kernel in pixels
.

26 :param padding: Amount of zero padding on the input image.
27 :param stride: Amount to stride over image by per convolution.
28 :return: Input tensor reshaped to column -wise format.
29 """
30 return F.unfold(x, (kernel_height , kernel_width), padding=

padding , stride=stride)
31

32

33 def col2im_indices(
34 cols: Tensor ,
35 x_shape: Tuple[int , int , int , int],
36 kernel_height: int ,
37 kernel_width: int ,
38 padding: Tuple[int , int] = (0, 0),
39 stride: Tuple[int , int] = (1, 1),
40) -> Tensor:
41 # language=rst
42 """
43 col2im is a special case of fold which is implemented inside of

Pytorch.
44

45 :param cols: Image tensor in column -wise format.
46 :param x_shape: Shape of original image tensor.
47 :param kernel_height: Height of the convolutional kernel in

pixels.
48 :param kernel_width: Width of the convolutional kernel in pixels

.
49 :param padding: Amount of zero padding on the input image.

95

50 :param stride: Amount to stride over image by per convolution.
51 :return: Image tensor in original image shape.
52 """
53 return F.fold(
54 cols , x_shape , (kernel_height , kernel_width), padding=

padding , stride=stride
55)
56

57

58 def get_square_weights(
59 weights: Tensor , n_sqrt: int , side: Union[int , Tuple[int , int]]
60) -> Tensor:
61 # language=rst
62 """
63 Return a grid of a number of filters ‘‘sqrt ** 2‘‘ with side

lengths ‘‘side ‘‘.
64

65 :param weights: Two -dimensional tensor of weights for two -
dimensional data.

66 :param n_sqrt: Square root of no. of filters.
67 :param side: Side length(s) of filter.
68 :return: Reshaped weights to square matrix of filters.
69 """
70 if isinstance(side , int):
71 side = (side , side)
72

73 square_weights = torch.zeros(side [0] * n_sqrt , side [1] * n_sqrt)
74 for i in range(n_sqrt):
75 for j in range(n_sqrt):
76 n = i * n_sqrt + j
77

78 if not n < weights.size (1):
79 break
80

81 x = i * side [0]
82 y = (j % n_sqrt) * side [1]
83 filter_ = weights[:, n]. contiguous ().view(*side)
84 square_weights[x : x + side[0], y : y + side [1]] =

filter_
85

86 return square_weights
87

88

89 def get_square_assignments(assignments: Tensor , n_sqrt: int) ->
Tensor:

90 # language=rst
91 """
92 Return a grid of assignments.
93

94 :param assignments: Vector of integers corresponding to class
labels.

95 :param n_sqrt: Square root of no. of assignments.
96 :return: Reshaped square matrix of assignments.
97 """

96

98 square_assignments = torch.mul(torch.ones(n_sqrt , n_sqrt), -1.0)
99 for i in range(n_sqrt):

100 for j in range(n_sqrt):
101 n = i * n_sqrt + j
102

103 if not n < assignments.size (0):
104 break
105

106 square_assignments[
107 i : (i + 1), (j % n_sqrt) : ((j % n_sqrt) + 1)
108] = assignments[n]
109

110 return square_assignments
111

112

113 def reshape_locally_connected_weights(
114 w: Tensor ,
115 n_filters: int ,
116 kernel_size: Union[int , Tuple[int , int]],
117 conv_size: Union[int , Tuple[int , int]],
118 locations: Tensor ,
119 input_sqrt: Union[int , Tuple[int , int]],
120) -> Tensor:
121 # language=rst
122 """
123 Get the weights from a locally connected layer and reshape them

to be two -dimensional and square.
124

125 :param w: Weights from a locally connected layer.
126 :param n_filters: No. of neuron filters.
127 :param kernel_size: Side length(s) of convolutional kernel.
128 :param conv_size: Side length(s) of convolution population.
129 :param locations: Binary mask indicating receptive fields of

convolution population neurons.
130 :param input_sqrt: Sides length(s) of input neurons.
131 :return: Locally connected weights reshaped as a collection of

spatially ordered square grids.
132 """
133 kernel_size = _pair(kernel_size)
134 conv_size = _pair(conv_size)
135 input_sqrt = _pair(input_sqrt)
136

137 k1 , k2 = kernel_size
138 c1 , c2 = conv_size
139 i1 , i2 = input_sqrt
140 c1sqrt , c2sqrt = int(math.ceil(math.sqrt(c1))), int(math.ceil(

math.sqrt(c2)))
141 fs = int(math.ceil(math.sqrt(n_filters)))
142

143 w_ = torch.zeros((n_filters * k1 , k2 * c1 * c2))
144

145 for n1 in range(c1):
146 for n2 in range(c2):
147 for feature in range(n_filters):

97

148 n = n1 * c2 + n2
149 filter_ = w[
150 locations[:, n],
151 feature * (c1 * c2) + (n // c2sqrt) * c2sqrt + (

n % c2sqrt),
152].view(k1, k2)
153 w_[feature * k1 : (feature + 1) * k1, n * k2 : (n +

1) * k2] = filter_
154

155 if c1 == 1 and c2 == 1:
156 square = torch.zeros ((i1 * fs , i2 * fs))
157

158 for n in range(n_filters):
159 square[
160 (n // fs) * i1 : ((n // fs) + 1) * i2,
161 (n % fs) * i2 : ((n % fs) + 1) * i2,
162] = w_[n * i1 : (n + 1) * i2]
163

164 return square
165 else:
166 square = torch.zeros ((k1 * fs * c1, k2 * fs * c2))
167

168 for n1 in range(c1):
169 for n2 in range(c2):
170 for f1 in range(fs):
171 for f2 in range(fs):
172 if f1 * fs + f2 < n_filters:
173 square[
174 k1 * (n1 * fs + f1) : k1 * (n1 * fs

+ f1 + 1),
175 k2 * (n2 * fs + f2) : k2 * (n2 * fs

+ f2 + 1),
176] = w_[
177 (f1 * fs + f2) * k1 : (f1 * fs + f2

+ 1) * k1,
178 (n1 * c2 + n2) * k2 : (n1 * c2 + n2

+ 1) * k2,
179]
180

181 return square
182

183

184 def reshape_conv2d_weights(weights: torch.Tensor) -> torch.Tensor:
185 # language=rst
186 """
187 Flattens a connection weight matrix of a Conv2dConnection
188

189 :param weights: Weight matrix of Conv2dConnection object.
190 :param wmin: Minimum allowed weight value.
191 :param wmax: Maximum allowed weight value.
192 """
193 sqrt1 = int(np.ceil(np.sqrt(weights.size (0))))
194 sqrt2 = int(np.ceil(np.sqrt(weights.size (1))))
195 height , width = weights.size (2), weights.size (3)

98

196 reshaped = torch.zeros(
197 sqrt1 * sqrt2 * weights.size (2), sqrt1 * sqrt2 * weights.

size (3)
198)
199

200 for i in range(sqrt1):
201 for j in range(sqrt1):
202 for k in range(sqrt2):
203 for l in range(sqrt2):
204 if i * sqrt1 + j < weights.size (0) and k * sqrt2

+ l < weights.size(
205 1
206):
207 fltr = weights[i * sqrt1 + j, k * sqrt2 + l

].view(height , width)
208 reshaped[
209 i * height
210 + k * height * sqrt1 : (i + 1) * height
211 + k * height * sqrt1 ,
212 (j % sqrt1) * width
213 + (l % sqrt2) * width * sqrt1 : ((j %

sqrt1) + 1) * width
214 + (l % sqrt2) * width * sqrt1 ,
215] = fltr
216

217 return reshaped

Listing B.2: Refactored conversion module

B.2 Environment and its Initialization

1 from .environment import Environment , GymEnvironment

Listing B.3: Initialization

1 from abc import ABC , abstractmethod
2 from typing import Tuple , Dict , Any
3

4 import gym
5 import numpy as np
6 import torch
7

8 from .. datasets.preprocess import subsample , gray_scale ,
binary_image , crop

9 from .. encoding import Encoder , NullEncoder
10

11

12 class Environment(ABC):
13 # language=rst
14 """
15 Abstract environment class.
16 """
17

18 @abstractmethod

99

19 def step(self , a: int) -> Tuple[Any , ...]:
20 # language=rst
21 """
22 Abstract method head for ‘‘step() ‘‘.
23

24 :param a: Integer action to take in environment.
25 """
26 pass
27

28 @abstractmethod
29 def reset(self) -> None:
30 # language=rst
31 """
32 Abstract method header for ‘‘reset () ‘‘.
33 """
34 pass
35

36 @abstractmethod
37 def render(self) -> None:
38 # language=rst
39 """
40 Abstract method header for ‘‘render () ‘‘.
41 """
42 pass
43

44 @abstractmethod
45 def close(self) -> None:
46 # language=rst
47 """
48 Abstract method header for ‘‘close () ‘‘.
49 """
50 pass
51

52 @abstractmethod
53 def preprocess(self) -> None:
54 # language=rst
55 """
56 Abstract method header for ‘‘preprocess () ‘‘.
57 """
58 pass
59

60

61 class GymEnvironment(Environment):
62 # language=rst
63 """
64 A wrapper around the OpenAI ‘‘gym ‘‘ environments.
65 """
66

67 def __init__(self , name: str , encoder: Encoder = NullEncoder (),
** kwargs) -> None:

68 # language=rst
69 """
70 Initializes the environment wrapper. This class makes the
71 assumption that the OpenAI ‘‘gym ‘‘ environment will provide

100

an image
72 of format HxW or CxHxW as an observation (we will add the C
73 dimension to HxW tensors) or a 1D observation in which case

no
74 dimensions will be added.
75

76 :param name: The name of an OpenAI ‘‘gym ‘‘ environment.
77 :param encoder: Function to encode observations into spike

trains.
78

79 Keyword arguments:
80

81 :param float max_prob: Maximum spiking probability.
82 :param bool clip_rewards: Whether or not to use ‘‘np.sign ‘‘

of rewards.
83

84 :param int history: Number of observations to keep track of.
85 :param int delta: Step size to save observations in history.
86 :param bool add_channel_dim: Allows for the adding of the

channel dimension in
87 2D inputs.
88 """
89 self.name = name
90 self.env = gym.make(name)
91 self.action_space = self.env.action_space
92

93 self.encoder = encoder
94

95 # Keyword arguments.
96 self.max_prob = kwargs.get("max_prob", 1.0)
97 self.clip_rewards = kwargs.get("clip_rewards", True)
98

99 self.history_length = kwargs.get("history_length", None)
100 self.delta = kwargs.get("delta", 1)
101 self.add_channel_dim = kwargs.get("add_channel_dim", True)
102

103 if self.history_length is not None and self.delta is not
None:

104 self.history = {
105 i: torch.Tensor ()
106 for i in range(1, self.history_length * self.delta +

1, self.delta)
107 }
108 else:
109 self.history = {}
110

111 self.episode_step_count = 0
112 self.history_index = 1
113

114 self.obs = None
115 self.reward = None
116

117 assert (
118 0.0 < self.max_prob <= 1.0

101

119), "Maximum spiking probability must be in (0, 1]."
120

121 def step(self , a: int) -> Tuple[torch.Tensor , float , bool , Dict[
Any , Any]]:

122 # language=rst
123 """
124 Wrapper around the OpenAI ‘‘gym ‘‘ environment ‘‘step()‘‘

function.
125

126 :param a: Action to take in the environment.
127 :return: Observation , reward , done flag , and information

dictionary.
128 """
129 # Call gym’s environment step function.
130 self.obs , self.reward , self.done , info = self.env.step(a)
131

132 if self.clip_rewards:
133 self.reward = np.sign(self.reward)
134

135 self.preprocess ()
136

137 # Add the raw observation from the gym environment into the
info

138 # for debugging and display.
139 info["gym_obs"] = self.obs
140

141 # Store frame of history and encode the inputs.
142 if len(self.history) > 0:
143 self.update_history ()
144 self.update_index ()
145 # Add the delta observation into the info for debugging

and display.
146 info["delta_obs"] = self.obs
147

148 # The new standard for images is BxTxCxHxW.
149 # The gym environment doesn ’t follow exactly the same

protocol.
150 #
151 # 1D observations will be left as is before the encoder and

will become BxTxL.
152 # 2D observations are assumed to be mono images will become

BxTx1xHxW
153 # 3D observations will become BxTxCxHxW
154 if self.obs.dim() == 2 and self.add_channel_dim:
155 # We want CxHxW , it is currently HxW.
156 self.obs = self.obs.unsqueeze (0)
157

158 # The encoder will add time - now Tx...
159 if self.encoder is not None:
160 self.obs = self.encoder(self.obs)
161

162 # Add the batch - now BxTx ...
163 self.obs = self.obs.unsqueeze (0)
164

102

165 self.episode_step_count += 1
166

167 # Return converted observations and other information.
168 return self.obs , self.reward , self.done , info
169

170 def reset(self) -> torch.Tensor:
171 # language=rst
172 """
173 Wrapper around the OpenAI ‘‘gym ‘‘ environment ‘‘reset()‘‘

function.
174

175 :return: Observation from the environment.
176 """
177 # Call gym’s environment reset function.
178 self.obs = self.env.reset ()
179 self.preprocess ()
180

181 self.history = {i: torch.Tensor () for i in self.history}
182

183 self.episode_step_count = 0
184

185 return self.obs
186

187 def render(self) -> None:
188 # language=rst
189 """
190 Wrapper around the OpenAI ‘‘gym ‘‘ environment ‘‘render ()‘‘

function.
191 """
192 self.env.render ()
193

194 def close(self) -> None:
195 # language=rst
196 """
197 Wrapper around the OpenAI ‘‘gym ‘‘ environment ‘‘close()‘‘

function.
198 """
199 self.env.close()
200

201 def preprocess(self) -> None:
202 # language=rst
203 """
204 Pre -processing step for an observation from a ‘‘gym ‘‘

environment.
205 """
206 if self.name == "SpaceInvaders -v0":
207 self.obs = subsample(gray_scale(self.obs), 84, 110)
208 self.obs = self.obs [26:104 , :]
209 self.obs = binary_image(self.obs)
210 elif self.name == "BreakoutDeterministic -v4":
211 self.obs = subsample(gray_scale(crop(self.obs , 34, 194,

0, 160)), 80, 80)
212 self.obs = binary_image(self.obs)
213 else: # Default pre -processing step.

103

214 pass
215

216 self.obs = torch.from_numpy(self.obs).float ()
217

218 def update_history(self) -> None:
219 # language=rst
220 """
221 Updates the observations inside history by performing

subtraction from most
222 recent observation and the sum of previous observations. If

there are not enough
223 observations to take a difference from , simply store the

observation without any
224 differencing.
225 """
226 # Recording initial observations.
227 if self.episode_step_count < len(self.history) * self.delta:
228 # Store observation based on delta value.
229 if self.episode_step_count % self.delta == 0:
230 self.history[self.history_index] = self.obs
231 else:
232 # Take difference between stored frames and current

frame.
233 temp = torch.clamp(self.obs - sum(self.history.values ())

, 0, 1)
234

235 # Store observation based on delta value.
236 if self.episode_step_count % self.delta == 0:
237 self.history[self.history_index] = self.obs
238

239 assert (
240 len(self.history) == self.history_length
241), "History size is out of bounds"
242 self.obs = temp
243

244 def update_index(self) -> None:
245 # language=rst
246 """
247 Updates the index to keep track of history. For example: ‘‘

history = 4‘‘,
248 ‘‘delta = 3‘‘ will produce ‘‘self.history = {1, 4, 7, 10}‘‘

and
249 ‘‘self.history_index ‘‘ will be updated according to ‘‘self.

delta ‘‘ and will wrap
250 around the history dictionary.
251 """
252 if self.episode_step_count % self.delta == 0:
253 if self.history_index != max(self.history.keys()):
254 self.history_index += self.delta
255 else:
256 # Wrap around the history.
257 self.history_index = (self.history_index % max(self.

104

history.keys())) + 1

Listing B.4: Environment

B.3 Network

1 from .network import Network , load
2 from . import nodes , topology , monitors

Listing B.5: Initialization

1 import tempfile
2 from typing import Dict , Optional , Type , Iterable
3

4 import torch
5

6 from .monitors import AbstractMonitor
7 from .nodes import Nodes
8 from .topology import AbstractConnection
9 from .. learning.reward import AbstractReward

10

11

12 def load(file_name: str , map_location: str = "cpu", learning: bool =
None) -> "Network":

13 # language=rst
14 """
15 Loads serialized network object from disk.
16

17 :param file_name: Path to serialized network object on disk.
18 :param map_location: One of ‘‘"cpu"‘‘ or ‘‘"cuda"‘‘. Defaults to

‘‘"cpu"‘‘.
19 :param learning: Whether to load with learning enabled. Default

loads value from
20 disk.
21 """
22 network = torch.load(open(file_name , "rb"), map_location=

map_location)
23 if learning is not None and "learning" in vars(network):
24 network.learning = learning
25

26 return network
27

28

29 class Network(torch.nn.Module):
30 # language=rst
31 """
32 Central object of the ‘‘bindsnet ‘‘ package. Responsible for the

simulation and
33 interaction of nodes and connections.
34

35 ** Example :**
36

37 .. code -block:: python
38

105

39 import torch
40 import matplotlib.pyplot as plt
41

42 from bindsnet import encoding
43 from bindsnet.network import Network , nodes , topology ,

monitors
44

45 network = Network(dt =1.0) # Instantiates network.
46

47 X = nodes.Input (100) # Input layer.
48 Y = nodes.LIFNodes (100) # Layer of LIF neurons.
49 C = topology.Connection(source=X, target=Y, w=torch.rand(X.n

, Y.n)) # Connection from X to Y.
50

51 # Spike monitor objects.
52 M1 = monitors.Monitor(obj=X, state_vars =[’s ’])
53 M2 = monitors.Monitor(obj=Y, state_vars =[’s ’])
54

55 # Add everything to the network object.
56 network.add_layer(layer=X, name=’X’)
57 network.add_layer(layer=Y, name=’Y’)
58 network.add_connection(connection=C, source=’X’, target=’Y’)
59 network.add_monitor(monitor=M1, name=’X’)
60 network.add_monitor(monitor=M2, name=’Y’)
61

62 # Create Poisson -distributed spike train inputs.
63 data = 15 * torch.rand (100) # Generate random Poisson rates

for 100 input neurons.
64 train = encoding.poisson(datum=data , time =5000) # Encode

input as 5000ms Poisson spike trains.
65

66 # Simulate network on generated spike trains.
67 inputs = {’X’ : train} # Create inputs mapping.
68 network.run(inputs=inputs , time =5000) # Run network

simulation.
69

70 # Plot spikes of input and output layers.
71 spikes = {’X’ : M1.get(’s ’), ’Y’ : M2.get(’s’)}
72

73 fig , axes = plt.subplots(2, 1, figsize =(12, 7))
74 for i, layer in enumerate(spikes):
75 axes[i]. matshow(spikes[layer], cmap=’binary ’)
76 axes[i]. set_title(’%s spikes ’ % layer)
77 axes[i]. set_xlabel(’Time ’); axes[i]. set_ylabel(’Index of

neuron ’)
78 axes[i]. set_xticks (()); axes[i]. set_yticks (())
79 axes[i]. set_aspect(’auto ’)
80

81 plt.tight_layout (); plt.show()
82 """
83

84 def __init__(
85 self ,
86 dt: float = 1.0,

106

87 batch_size: int = 1,
88 learning: bool = True ,
89 reward_fn: Optional[Type[AbstractReward]] = None ,
90) -> None:
91 # language=rst
92 """
93 Initializes network object.
94

95 :param dt: Simulation timestep.
96 :param batch_size: Mini -batch size.
97 :param learning: Whether to allow connection updates. True

by default.
98 :param reward_fn: Optional class allowing for modification

of reward in case of
99 reward -modulated learning.

100 """
101 super().__init__ ()
102

103 self.dt = dt
104 self.batch_size = batch_size
105

106 self.layers = {}
107 self.connections = {}
108 self.monitors = {}
109

110 self.train(learning)
111

112 if reward_fn is not None:
113 self.reward_fn = reward_fn ()
114 else:
115 self.reward_fn = None
116

117 def add_layer(self , layer: Nodes , name: str) -> None:
118 # language=rst
119 """
120 Adds a layer of nodes to the network.
121

122 :param layer: A subclass of the ‘‘Nodes ‘‘ object.
123 :param name: Logical name of layer.
124 """
125 self.layers[name] = layer
126 self.add_module(name , layer)
127

128 layer.train(self.learning)
129 layer.compute_decays(self.dt)
130 layer.set_batch_size(self.batch_size)
131

132 def add_connection(
133 self , connection: AbstractConnection , source: str , target:

str
134) -> None:
135 # language=rst
136 """
137 Adds a connection between layers of nodes to the network.

107

138

139 :param connection: An instance of class ‘‘Connection ‘‘.
140 :param source: Logical name of the connection ’s source layer

.
141 :param target: Logical name of the connection ’s target layer

.
142 """
143 self.connections [(source , target)] = connection
144 self.add_module(source + "_to_" + target , connection)
145

146 connection.dt = self.dt
147 connection.train(self.learning)
148

149 def add_monitor(self , monitor: AbstractMonitor , name: str) ->
None:

150 # language=rst
151 """
152 Adds a monitor on a network object to the network.
153

154 :param monitor: An instance of class ‘‘Monitor ‘‘.
155 :param name: Logical name of monitor object.
156 """
157 self.monitors[name] = monitor
158 monitor.network = self
159 monitor.dt = self.dt
160

161 def save(self , file_name: str) -> None:
162 # language=rst
163 """
164 Serializes the network object to disk.
165

166 :param file_name: Path to store serialized network object on
disk.

167

168 ** Example :**
169

170 .. code -block:: python
171

172 import torch
173 import matplotlib.pyplot as plt
174

175 from pathlib import Path
176 from bindsnet.network import *
177 from bindsnet.network import topology
178

179 # Build simple network.
180 network = Network(dt =1.0)
181

182 X = nodes.Input (100) # Input layer.
183 Y = nodes.LIFNodes (100) # Layer of LIF neurons.
184 C = topology.Connection(source=X, target=Y, w=torch.rand

(X.n, Y.n)) # Connection from X to Y.
185

186 # Add everything to the network object.

108

187 network.add_layer(layer=X, name=’X’)
188 network.add_layer(layer=Y, name=’Y’)
189 network.add_connection(connection=C, source=’X’, target

=’Y’)
190

191 # Save the network to disk.
192 network.save(str(Path.home()) + ’/network.pt ’)
193 """
194 torch.save(self , open(file_name , "wb"))
195

196 def clone(self) -> "Network":
197 # language=rst
198 """
199 Returns a cloned network object.
200

201 :return: A copy of this network.
202 """
203 virtual_file = tempfile.SpooledTemporaryFile ()
204 torch.save(self , virtual_file)
205 virtual_file.seek (0)
206 return torch.load(virtual_file)
207

208 def _get_inputs(self , layers: Iterable = None) -> Dict[str ,
torch.Tensor]:

209 # language=rst
210 """
211 Fetches outputs from network layers to use as input to

downstream layers.
212

213 :param layers: Layers to update inputs for. Defaults to all
network layers.

214 :return: Inputs to all layers for the current iteration.
215 """
216 inputs = {}
217

218 if layers is None:
219 layers = self.layers
220

221 # Loop over network connections.
222 for c in self.connections:
223 if c[1] in layers:
224 # Fetch source and target populations.
225 source = self.connections[c]. source
226 target = self.connections[c]. target
227

228 if not c[1] in inputs:
229 inputs[c[1]] = torch.zeros(
230 self.batch_size , *target.shape , device=

target.s.device
231)
232

233 # Add to input: source ’s spikes multiplied by
connection weights.

234 inputs[c[1]] += self.connections[c]. compute(source.s

109

)
235

236 return inputs
237

238 def run(
239 self , inputs: Dict[str , torch.Tensor], time: int , one_step=

False , ** kwargs
240) -> None:
241 # language=rst
242 """
243 Simulate network for given inputs and time.
244

245 :param inputs: Dictionary of ‘‘Tensor ‘‘s of shape ‘‘[time , *
input_shape]‘‘ or

246 ‘‘[time , batch_size , *input_shape]‘‘.
247 :param time: Simulation time.
248 :param one_step: Whether to run the network in "feed -forward

" mode , where inputs
249 propagate all the way through the network in a single

simulation time step.
250 Layers are updated in the order they are added to the

network.
251

252 Keyword arguments:
253

254 :param Dict[str , torch.Tensor] clamp: Mapping of layer names
to boolean masks if

255 neurons should be clamped to spiking. The ‘‘Tensor ‘‘s
have shape

256 ‘‘[n_neurons]‘‘ or ‘‘[time , n_neurons]‘‘.
257 :param Dict[str , torch.Tensor] unclamp: Mapping of layer

names to boolean masks
258 if neurons should be clamped to not spiking. The ‘‘

Tensor ‘‘s should have
259 shape ‘‘[n_neurons]‘‘ or ‘‘[time , n_neurons]‘‘.
260 :param Dict[str , torch.Tensor] injects_v: Mapping of layer

names to boolean
261 masks if neurons should be added voltage. The ‘‘Tensor ‘‘

s should have shape
262 ‘‘[n_neurons]‘‘ or ‘‘[time , n_neurons]‘‘.
263 :param Union[float , torch.Tensor] reward: Scalar value used

in reward -modulated
264 learning.
265 :param Dict[Tuple[str], torch.Tensor] masks: Mapping of

connection names to
266 boolean masks determining which weights to clamp to zero

.
267

268 ** Example :**
269

270 .. code -block:: python
271

272 import torch
273 import matplotlib.pyplot as plt

110

274

275 from bindsnet.network import Network
276 from bindsnet.network.nodes import Input
277 from bindsnet.network.monitors import Monitor
278

279 # Build simple network.
280 network = Network ()
281 network.add_layer(Input (500) , name=’I’)
282 network.add_monitor(Monitor(network.layers[’I’],

state_vars =[’s ’]), ’I’)
283

284 # Generate spikes by running Bernoulli trials on Uniform
(0, 0.5) samples.

285 spikes = torch.bernoulli (0.5 * torch.rand (500, 500))
286

287 # Run network simulation.
288 network.run(inputs={’I’ : spikes}, time =500)
289

290 # Look at input spiking activity.
291 spikes = network.monitors[’I ’].get(’s’)
292 plt.matshow(spikes , cmap=’binary ’)
293 plt.xticks (()); plt.yticks (());
294 plt.xlabel(’Time ’); plt.ylabel(’Neuron index ’)
295 plt.title(’Input spiking ’)
296 plt.show()
297 """
298 # Parse keyword arguments.
299 clamps = kwargs.get("clamp", {})
300 unclamps = kwargs.get("unclamp", {})
301 masks = kwargs.get("masks", {})
302 injects_v = kwargs.get("injects_v", {})
303

304 # Compute reward.
305 if self.reward_fn is not None:
306 kwargs["reward"] = self.reward_fn.compute (** kwargs)
307

308 # Dynamic setting of batch size.
309 if inputs != {}:
310 for key in inputs:
311 # goal shape is [time , batch , n_0 , ...]
312 if len(inputs[key].size()) == 1:
313 # current shape is [n_0 , ...]
314 # unsqueeze twice to make [1, 1, n_0 , ...]
315 inputs[key] = inputs[key]. unsqueeze (0).unsqueeze

(0)
316 elif len(inputs[key].size()) == 2:
317 # current shape is [time , n_0 , ...]
318 # unsqueeze dim 1 so that we have
319 # [time , 1, n_0 , ...]
320 inputs[key] = inputs[key]. unsqueeze (1)
321

322 for key in inputs:
323 # batch dimension is 1, grab this and use for batch

size

111

324 if inputs[key].size (1) != self.batch_size:
325 self.batch_size = inputs[key].size (1)
326

327 for l in self.layers:
328 self.layers[l]. set_batch_size(self.

batch_size)
329

330 for m in self.monitors:
331 self.monitors[m]. reset_state_variables ()
332

333 break
334

335 # Effective number of timesteps.
336 timesteps = int(time / self.dt)
337

338 # Simulate network activity for ‘time ‘ timesteps.
339 for t in range(timesteps):
340 # Get input to all layers (synchronous mode).
341 current_inputs = {}
342 if not one_step:
343 current_inputs.update(self._get_inputs ())
344

345 for l in self.layers:
346 # Update each layer of nodes.
347 if l in inputs:
348 if l in current_inputs:
349 current_inputs[l] += inputs[l][t]
350 else:
351 current_inputs[l] = inputs[l][t]
352

353 if one_step:
354 # Get input to this layer (one -step mode).
355 current_inputs.update(self._get_inputs(layers =[l

]))
356

357 self.layers[l]. forward(x=current_inputs[l])
358

359 # Clamp neurons to spike.
360 clamp = clamps.get(l, None)
361 if clamp is not None:
362 if clamp.ndimension () == 1:
363 self.layers[l].s[:, clamp] = 1
364 else:
365 self.layers[l].s[:, clamp[t]] = 1
366

367 # Clamp neurons not to spike.
368 unclamp = unclamps.get(l, None)
369 if unclamp is not None:
370 if unclamp.ndimension () == 1:
371 self.layers[l].s[unclamp] = 0
372 else:
373 self.layers[l].s[unclamp[t]] = 0
374

375 # Inject voltage to neurons.

112

376 inject_v = injects_v.get(l, None)
377 if inject_v is not None:
378 if inject_v.ndimension () == 1:
379 self.layers[l].v += inject_v
380 else:
381 self.layers[l].v += inject_v[t]
382

383 # Run synapse updates.
384 for c in self.connections:
385 self.connections[c]. update(
386 mask=masks.get(c, None), learning=self.learning ,

** kwargs
387)
388

389 # Get input to all layers.
390 current_inputs.update(self._get_inputs ())
391

392 # Record state variables of interest.
393 for m in self.monitors:
394 self.monitors[m]. record ()
395

396 # Re -normalize connections.
397 for c in self.connections:
398 self.connections[c]. normalize ()
399

400 def reset_state_variables(self) -> None:
401 # language=rst
402 """
403 Reset state variables of objects in network.
404 """
405 for layer in self.layers:
406 self.layers[layer]. reset_state_variables ()
407

408 for connection in self.connections:
409 self.connections[connection]. reset_state_variables ()
410

411 for monitor in self.monitors:
412 self.monitors[monitor]. reset_state_variables ()
413

414 def train(self , mode: bool = True) -> "torch.nn.Module":
415 # language=rst
416 """
417 Sets the node in training mode.
418

419 :param mode: Turn training on or off.
420

421 :return: ‘‘self ‘‘ as specified in ‘‘torch.nn.Module ‘‘.
422 """
423 self.learning = mode
424 return super().train(mode)

Listing B.6: Network

1 from abc import ABC , abstractmethod

113

2 from functools import reduce
3 from operator import mul
4 from typing import Iterable , Optional , Union
5

6 import torch
7

8

9 class Nodes(torch.nn.Module):
10 # language=rst
11 """
12 Abstract base class for groups of neurons.
13 """
14

15 def __init__(
16 self ,
17 n: Optional[int] = None ,
18 shape: Optional[Iterable[int]] = None ,
19 traces: bool = False ,
20 traces_additive: bool = False ,
21 tc_trace: Union[float , torch.Tensor] = 20.0,
22 trace_scale: Union[float , torch.Tensor] = 1.0,
23 sum_input: bool = False ,
24 learning: bool = True ,
25 **kwargs ,
26) -> None:
27 # language=rst
28 """
29 Abstract base class constructor.
30

31 :param n: The number of neurons in the layer.
32 :param shape: The dimensionality of the layer.
33 :param traces: Whether to record decaying spike traces.
34 :param traces_additive: Whether to record spike traces

additively.
35 :param tc_trace: Time constant of spike trace decay.
36 :param trace_scale: Scaling factor for spike trace.
37 :param sum_input: Whether to sum all inputs.
38 :param learning: Whether to be in learning or testing.
39 """
40 super().__init__ ()
41

42 assert (
43 n is not None or shape is not None
44), "Must provide either no. of neurons or shape of layer"
45

46 if n is None:
47 self.n = reduce(mul , shape) # No. of neurons product of

shape.
48 else:
49 self.n = n # No. of neurons provided.
50

51 if shape is None:
52 self.shape = [self.n] # Shape is equal to the size of

the layer.

114

53 else:
54 self.shape = shape # Shape is passed in as an argument.
55

56 assert self.n == reduce(
57 mul , self.shape
58), "No. of neurons and shape do not match"
59

60 self.traces = traces # Whether to record synaptic traces.
61 self.traces_additive = (
62 traces_additive
63) # Whether to record spike traces additively.
64 self.register_buffer("s", torch.ByteTensor ()) # Spike

occurrences.
65

66 self.sum_input = sum_input # Whether to sum all inputs.
67

68 if self.traces:
69 self.register_buffer("x", torch.Tensor ()) # Firing

traces.
70 self.register_buffer(
71 "tc_trace", torch.tensor(tc_trace)
72) # Time constant of spike trace decay.
73 if self.traces_additive:
74 self.register_buffer(
75 "trace_scale", torch.tensor(trace_scale)
76) # Scaling factor for spike trace.
77 self.register_buffer(
78 "trace_decay", torch.empty_like(self.tc_trace)
79) # Set in compute_decays.
80

81 if self.sum_input:
82 self.register_buffer("summed", torch.FloatTensor ()) #

Summed inputs.
83

84 self.dt = None
85 self.batch_size = None
86 self.trace_decay = None
87 self.learning = learning
88

89 @abstractmethod
90 def forward(self , x: torch.Tensor) -> None:
91 # language=rst
92 """
93 Abstract base class method for a single simulation step.
94

95 :param x: Inputs to the layer.
96 """
97 if self.traces:
98 # Decay and set spike traces.
99 self.x *= self.trace_decay

100

101 if self.traces_additive:
102 self.x += self.trace_scale * self.s.float ()
103 else:

115

104 self.x.masked_fill_(self.s != 0, 1)
105

106 if self.sum_input:
107 # Add current input to running sum.
108 self.summed += x.float ()
109

110 def reset_state_variables(self) -> None:
111 # language=rst
112 """
113 Abstract base class method for resetting state variables.
114 """
115 self.s.zero_()
116

117 if self.traces:
118 self.x.zero_() # Spike traces.
119

120 if self.sum_input:
121 self.summed.zero_() # Summed inputs.
122

123 def compute_decays(self , dt) -> None:
124 # language=rst
125 """
126 Abstract base class method for setting decays.
127 """
128 self.dt = dt
129 if self.traces:
130 self.trace_decay = torch.exp(
131 -self.dt / self.tc_trace
132) # Spike trace decay (per timestep).
133

134 def set_batch_size(self , batch_size) -> None:
135 # language=rst
136 """
137 Sets mini -batch size. Called when layer is added to a

network.
138

139 :param batch_size: Mini -batch size.
140 """
141 self.batch_size = batch_size
142 self.s = torch.zeros(batch_size , *self.shape , device=self.s.

device)
143

144 if self.traces:
145 self.x = torch.zeros(batch_size , *self.shape , device=

self.x.device)
146

147 if self.sum_input:
148 self.summed = torch.zeros(
149 batch_size , *self.shape , device=self.summed.device
150)
151

152 def train(self , mode: bool = True) -> "Nodes":
153 # language=rst
154 """

116

155 Sets the layer in training mode.
156

157 :param bool mode: Turn training on or off
158 :return: self as specified in ‘torch.nn.Module ‘
159 """
160 self.learning = mode
161 return super().train(mode)
162

163

164 class AbstractInput(ABC):
165 # language=rst
166 """
167 Abstract base class for groups of input neurons.
168 """
169

170

171 class Input(Nodes , AbstractInput):
172 # language=rst
173 """
174 Layer of nodes with user -specified spiking behavior.
175 """
176

177 def __init__(
178 self ,
179 n: Optional[int] = None ,
180 shape: Optional[Iterable[int]] = None ,
181 traces: bool = False ,
182 traces_additive: bool = False ,
183 tc_trace: Union[float , torch.Tensor] = 20.0,
184 trace_scale: Union[float , torch.Tensor] = 1.0,
185 sum_input: bool = False ,
186 **kwargs ,
187) -> None:
188 # language=rst
189 """
190 Instantiates a layer of input neurons.
191

192 :param n: The number of neurons in the layer.
193 :param shape: The dimensionality of the layer.
194 :param traces: Whether to record decaying spike traces.
195 :param traces_additive: Whether to record spike traces

additively.
196 :param tc_trace: Time constant of spike trace decay.
197 :param trace_scale: Scaling factor for spike trace.
198 :param sum_input: Whether to sum all inputs.
199 """
200 super().__init__(
201 n=n,
202 shape=shape ,
203 traces=traces ,
204 traces_additive=traces_additive ,
205 tc_trace=tc_trace ,
206 trace_scale=trace_scale ,
207 sum_input=sum_input ,

117

208)
209

210 def forward(self , x: torch.Tensor) -> None:
211 # language=rst
212 """
213 On each simulation step , set the spikes of the population

equal to the inputs.
214

215 :param x: Inputs to the layer.
216 """
217 # Set spike occurrences to input values.
218 self.s = x
219

220 super().forward(x)
221

222 def reset_state_variables(self) -> None:
223 # language=rst
224 """
225 Resets relevant state variables.
226 """
227 super().reset_state_variables ()
228

229

230 class McCullochPitts(Nodes):
231 # language=rst
232 """
233 Layer of ‘McCulloch -Pitts neurons
234 <http :// wwwold.ece.utep.edu/research/webfuzzy/docs/kk-thesis/kk -

thesis -html/node12.html >‘_.
235 """
236

237 def __init__(
238 self ,
239 n: Optional[int] = None ,
240 shape: Optional[Iterable[int]] = None ,
241 traces: bool = False ,
242 traces_additive: bool = False ,
243 tc_trace: Union[float , torch.Tensor] = 20.0,
244 trace_scale: Union[float , torch.Tensor] = 1.0,
245 sum_input: bool = False ,
246 thresh: Union[float , torch.Tensor] = 1.0,
247 **kwargs ,
248) -> None:
249 # language=rst
250 """
251 Instantiates a McCulloch -Pitts layer of neurons.
252

253 :param n: The number of neurons in the layer.
254 :param shape: The dimensionality of the layer.
255 :param traces: Whether to record spike traces.
256 :param traces_additive: Whether to record spike traces

additively.
257 :param tc_trace: Time constant of spike trace decay.
258 :param trace_scale: Scaling factor for spike trace.

118

259 :param sum_input: Whether to sum all inputs.
260 :param thresh: Spike threshold voltage.
261 """
262 super().__init__(
263 n=n,
264 shape=shape ,
265 traces=traces ,
266 traces_additive=traces_additive ,
267 tc_trace=tc_trace ,
268 trace_scale=trace_scale ,
269 sum_input=sum_input ,
270)
271

272 self.register_buffer(
273 "thresh", torch.tensor(thresh , dtype=torch.float)
274) # Spike threshold voltage.
275 self.register_buffer("v", torch.FloatTensor ()) # Neuron

voltages.
276

277 def forward(self , x: torch.Tensor) -> None:
278 # language=rst
279 """
280 Runs a single simulation step.
281

282 :param x: Inputs to the layer.
283 """
284 self.v = x # Voltages are equal to the inputs.
285 self.s = self.v >= self.thresh # Check for spiking neurons.
286

287 super().forward(x)
288

289 def reset_state_variables(self) -> None:
290 # language=rst
291 """
292 Resets relevant state variables.
293 """
294 super().reset_state_variables ()
295

296 def set_batch_size(self , batch_size) -> None:
297 # language=rst
298 """
299 Sets mini -batch size. Called when layer is added to a

network.
300

301 :param batch_size: Mini -batch size.
302 """
303 super().set_batch_size(batch_size=batch_size)
304 self.v = torch.zeros(batch_size , *self.shape , device=self.v.

device)
305

306

307 class IFNodes(Nodes):
308 # language=rst
309 """

119

310 Layer of ‘integrate -and -fire (IF) neurons <http ://
neuronaldynamics.epfl.ch/online/Ch1.S3.html >‘_.

311 """
312

313 def __init__(
314 self ,
315 n: Optional[int] = None ,
316 shape: Optional[Iterable[int]] = None ,
317 traces: bool = False ,
318 traces_additive: bool = False ,
319 tc_trace: Union[float , torch.Tensor] = 20.0,
320 trace_scale: Union[float , torch.Tensor] = 1.0,
321 sum_input: bool = False ,
322 thresh: Union[float , torch.Tensor] = -52.0,
323 reset: Union[float , torch.Tensor] = -65.0,
324 refrac: Union[int , torch.Tensor] = 5,
325 lbound: float = None ,
326 **kwargs ,
327) -> None:
328 # language=rst
329 """
330 Instantiates a layer of IF neurons.
331

332 :param n: The number of neurons in the layer.
333 :param shape: The dimensionality of the layer.
334 :param traces: Whether to record spike traces.
335 :param traces_additive: Whether to record spike traces

additively.
336 :param tc_trace: Time constant of spike trace decay.
337 :param trace_scale: Scaling factor for spike trace.
338 :param sum_input: Whether to sum all inputs.
339 :param thresh: Spike threshold voltage.
340 :param reset: Post -spike reset voltage.
341 :param refrac: Refractory (non -firing) period of the neuron.
342 :param lbound: Lower bound of the voltage.
343 """
344 super().__init__(
345 n=n,
346 shape=shape ,
347 traces=traces ,
348 traces_additive=traces_additive ,
349 tc_trace=tc_trace ,
350 trace_scale=trace_scale ,
351 sum_input=sum_input ,
352)
353

354 self.register_buffer(
355 "reset", torch.tensor(reset , dtype=torch.float)
356) # Post -spike reset voltage.
357 self.register_buffer(
358 "thresh", torch.tensor(thresh , dtype=torch.float)
359) # Spike threshold voltage.
360 self.register_buffer(
361 "refrac", torch.tensor(refrac)

120

362) # Post -spike refractory period.
363 self.register_buffer("v", torch.FloatTensor ()) # Neuron

voltages.
364 self.register_buffer(
365 "refrac_count", torch.FloatTensor ()
366) # Refractory period counters.
367

368 self.lbound = lbound # Lower bound of voltage.
369

370 def forward(self , x: torch.Tensor) -> None:
371 # language=rst
372 """
373 Runs a single simulation step.
374

375 :param x: Inputs to the layer.
376 """
377 # Integrate input voltages.
378 self.v += (self.refrac_count == 0).float () * x
379

380 # Decrement refractory counters.
381 self.refrac_count = (self.refrac_count > 0).float() * (
382 self.refrac_count - self.dt
383)
384

385 # Check for spiking neurons.
386 self.s = self.v >= self.thresh
387

388 # Refractoriness and voltage reset.
389 self.refrac_count.masked_fill_(self.s, self.refrac)
390 self.v.masked_fill_(self.s, self.reset)
391

392 # Voltage clipping to lower bound.
393 if self.lbound is not None:
394 self.v.masked_fill_(self.v < self.lbound , self.lbound)
395

396 super().forward(x)
397

398 def reset_state_variables(self) -> None:
399 # language=rst
400 """
401 Resets relevant state variables.
402 """
403 super().reset_state_variables ()
404 self.v.fill_(self.reset) # Neuron voltages.
405 self.refrac_count.zero_ () # Refractory period counters.
406

407 def set_batch_size(self , batch_size) -> None:
408 # language=rst
409 """
410 Sets mini -batch size. Called when layer is added to a

network.
411

412 :param batch_size: Mini -batch size.
413 """

121

414 super().set_batch_size(batch_size=batch_size)
415 self.v = self.reset * torch.ones(batch_size , *self.shape ,

device=self.v.device)
416 self.refrac_count = torch.zeros_like(self.v, device=self.

refrac_count.device)
417

418

419 class LIFNodes(Nodes):
420 # language=rst
421 """
422 Layer of ‘leaky integrate -and -fire (LIF) neurons
423 <http :// icwww.epfl.ch/~ gerstner/SPNM/node26.html#

SECTION02311000000000000000 >‘_.
424 """
425

426 def __init__(
427 self ,
428 n: Optional[int] = None ,
429 shape: Optional[Iterable[int]] = None ,
430 traces: bool = False ,
431 traces_additive: bool = False ,
432 tc_trace: Union[float , torch.Tensor] = 20.0,
433 trace_scale: Union[float , torch.Tensor] = 1.0,
434 sum_input: bool = False ,
435 thresh: Union[float , torch.Tensor] = -52.0,
436 rest: Union[float , torch.Tensor] = -65.0,
437 reset: Union[float , torch.Tensor] = -65.0,
438 refrac: Union[int , torch.Tensor] = 5,
439 tc_decay: Union[float , torch.Tensor] = 100.0,
440 lbound: float = None ,
441 **kwargs ,
442) -> None:
443 # language=rst
444 """
445 Instantiates a layer of LIF neurons.
446

447 :param n: The number of neurons in the layer.
448 :param shape: The dimensionality of the layer.
449 :param traces: Whether to record spike traces.
450 :param traces_additive: Whether to record spike traces

additively.
451 :param tc_trace: Time constant of spike trace decay.
452 :param trace_scale: Scaling factor for spike trace.
453 :param sum_input: Whether to sum all inputs.
454 :param thresh: Spike threshold voltage.
455 :param rest: Resting membrane voltage.
456 :param reset: Post -spike reset voltage.
457 :param refrac: Refractory (non -firing) period of the neuron.
458 :param tc_decay: Time constant of neuron voltage decay.
459 :param lbound: Lower bound of the voltage.
460 """
461 super().__init__(
462 n=n,
463 shape=shape ,

122

464 traces=traces ,
465 traces_additive=traces_additive ,
466 tc_trace=tc_trace ,
467 trace_scale=trace_scale ,
468 sum_input=sum_input ,
469)
470

471 self.register_buffer(
472 "rest", torch.tensor(rest , dtype=torch.float)
473) # Rest voltage.
474 self.register_buffer(
475 "reset", torch.tensor(reset , dtype=torch.float)
476) # Post -spike reset voltage.
477 self.register_buffer(
478 "thresh", torch.tensor(thresh , dtype=torch.float)
479) # Spike threshold voltage.
480 self.register_buffer(
481 "refrac", torch.tensor(refrac)
482) # Post -spike refractory period.
483 self.register_buffer(
484 "tc_decay", torch.tensor(tc_decay)
485) # Time constant of neuron voltage decay.
486 self.register_buffer(
487 "decay", torch.zeros(*self.shape)
488) # Set in compute_decays.
489 self.register_buffer("v", torch.FloatTensor ()) # Neuron

voltages.
490 self.register_buffer(
491 "refrac_count", torch.FloatTensor ()
492) # Refractory period counters.
493

494 self.lbound = lbound # Lower bound of voltage.
495

496 def forward(self , x: torch.Tensor) -> None:
497 # language=rst
498 """
499 Runs a single simulation step.
500

501 :param x: Inputs to the layer.
502 """
503 # Decay voltages.
504 self.v = self.decay * (self.v - self.rest) + self.rest
505

506 # Integrate inputs.
507 self.v += (self.refrac_count == 0).float () * x
508

509 # Decrement refractory counters.
510 self.refrac_count = (self.refrac_count > 0).float() * (
511 self.refrac_count - self.dt
512)
513

514 # Check for spiking neurons.
515 self.s = self.v >= self.thresh
516

123

517 # Refractoriness and voltage reset.
518 self.refrac_count.masked_fill_(self.s, self.refrac)
519 self.v.masked_fill_(self.s, self.reset)
520

521 # Voltage clipping to lower bound.
522 if self.lbound is not None:
523 self.v.masked_fill_(self.v < self.lbound , self.lbound)
524

525 super().forward(x)
526

527 def reset_state_variables(self) -> None:
528 # language=rst
529 """
530 Resets relevant state variables.
531 """
532 super().reset_state_variables ()
533 self.v.fill_(self.rest) # Neuron voltages.
534 self.refrac_count.zero_ () # Refractory period counters.
535

536 def compute_decays(self , dt) -> None:
537 # language=rst
538 """
539 Sets the relevant decays.
540 """
541 super().compute_decays(dt=dt)
542 self.decay = torch.exp(
543 -self.dt / self.tc_decay
544) # Neuron voltage decay (per timestep).
545

546 def set_batch_size(self , batch_size) -> None:
547 # language=rst
548 """
549 Sets mini -batch size. Called when layer is added to a

network.
550

551 :param batch_size: Mini -batch size.
552 """
553 super().set_batch_size(batch_size=batch_size)
554 self.v = self.rest * torch.ones(batch_size , *self.shape ,

device=self.v.device)
555 self.refrac_count = torch.zeros_like(self.v, device=self.

refrac_count.device)
556

557

558 class CurrentLIFNodes(Nodes):
559 # language=rst
560 """
561 Layer of ‘current -based leaky integrate -and -fire (LIF) neurons
562 <http :// icwww.epfl.ch/~ gerstner/SPNM/node26.html#

SECTION02313000000000000000 >‘_.
563 Total synaptic input current is modeled as a decaying memory of

input spikes multiplied by synaptic strengths.
564 """
565

124

566 def __init__(
567 self ,
568 n: Optional[int] = None ,
569 shape: Optional[Iterable[int]] = None ,
570 traces: bool = False ,
571 traces_additive: bool = False ,
572 tc_trace: Union[float , torch.Tensor] = 20.0,
573 trace_scale: Union[float , torch.Tensor] = 1.0,
574 sum_input: bool = False ,
575 thresh: Union[float , torch.Tensor] = -52.0,
576 rest: Union[float , torch.Tensor] = -65.0,
577 reset: Union[float , torch.Tensor] = -65.0,
578 refrac: Union[int , torch.Tensor] = 5,
579 tc_decay: Union[float , torch.Tensor] = 100.0,
580 tc_i_decay: Union[float , torch.Tensor] = 2.0,
581 lbound: float = None ,
582 **kwargs ,
583) -> None:
584 # language=rst
585 """
586 Instantiates a layer of synaptic input current -based LIF

neurons.
587 :param n: The number of neurons in the layer.
588 :param shape: The dimensionality of the layer.
589 :param traces: Whether to record spike traces.
590 :param traces_additive: Whether to record spike traces

additively.
591 :param tc_trace: Time constant of spike trace decay.
592 :param trace_scale: Scaling factor for spike trace.
593 :param sum_input: Whether to sum all inputs.
594 :param thresh: Spike threshold voltage.
595 :param rest: Resting membrane voltage.
596 :param reset: Post -spike reset voltage.
597 :param refrac: Refractory (non -firing) period of the neuron.
598 :param tc_decay: Time constant of neuron voltage decay.
599 :param tc_i_decay: Time constant of synaptic input current

decay.
600 :param lbound: Lower bound of the voltage.
601 """
602 super().__init__(
603 n=n,
604 shape=shape ,
605 traces=traces ,
606 traces_additive=traces_additive ,
607 tc_trace=tc_trace ,
608 trace_scale=trace_scale ,
609 sum_input=sum_input ,
610)
611

612 self.register_buffer("rest", torch.tensor(rest)) # Rest
voltage.

613 self.register_buffer("reset", torch.tensor(reset)) # Post -
spike reset voltage.

614 self.register_buffer("thresh", torch.tensor(thresh)) #

125

Spike threshold voltage.
615 self.register_buffer(
616 "refrac", torch.tensor(refrac)
617) # Post -spike refractory period.
618 self.register_buffer(
619 "tc_decay", torch.tensor(tc_decay)
620) # Time constant of neuron voltage decay.
621 self.register_buffer(
622 "decay", torch.empty_like(self.tc_decay)
623) # Set in compute_decays.
624 self.register_buffer(
625 "tc_i_decay", torch.tensor(tc_i_decay)
626) # Time constant of synaptic input current decay.
627 self.register_buffer(
628 "i_decay", torch.empty_like(self.tc_i_decay)
629) # Set in compute_decays.
630

631 self.register_buffer("v", torch.FloatTensor ()) # Neuron
voltages.

632 self.register_buffer("i", torch.FloatTensor ()) # Synaptic
input currents.

633 self.register_buffer(
634 "refrac_count", torch.FloatTensor ()
635) # Refractory period counters.
636

637 self.lbound = lbound # Lower bound of voltage.
638

639 def forward(self , x: torch.Tensor) -> None:
640 # language=rst
641 """
642 Runs a single simulation step.
643

644 :param x: Inputs to the layer.
645 """
646 # Decay voltages and current.
647 self.v = self.decay * (self.v - self.rest) + self.rest
648 self.i *= self.i_decay
649

650 # Decrement refractory counters.
651 self.refrac_count = (self.refrac_count > 0).float() * (
652 self.refrac_count - self.dt
653)
654

655 # Integrate inputs.
656 self.i += x
657 self.v += (self.refrac_count == 0).float () * self.i
658

659 # Check for spiking neurons.
660 self.s = self.v >= self.thresh
661

662 # Refractoriness and voltage reset.
663 self.refrac_count.masked_fill_(self.s, self.refrac)
664 self.v.masked_fill_(self.s, self.reset)
665

126

666 # Voltage clipping to lower bound.
667 if self.lbound is not None:
668 self.v.masked_fill_(self.v < self.lbound , self.lbound)
669

670 super().forward(x)
671

672 def reset_state_variables(self) -> None:
673 # language=rst
674 """
675 Resets relevant state variables.
676 """
677 super().reset_state_variables ()
678 self.v.fill_(self.rest) # Neuron voltages.
679 self.i.zero_() # Synaptic input currents.
680 self.refrac_count.zero_ () # Refractory period counters.
681

682 def compute_decays(self , dt) -> None:
683 # language=rst
684 """
685 Sets the relevant decays.
686 """
687 super().compute_decays(dt=dt)
688 self.decay = torch.exp(
689 -self.dt / self.tc_decay
690) # Neuron voltage decay (per timestep).
691 self.i_decay = torch.exp(
692 -self.dt / self.tc_i_decay
693) # Synaptic input current decay (per timestep).
694

695 def set_batch_size(self , batch_size) -> None:
696 # language=rst
697 """
698 Sets mini -batch size. Called when layer is added to a

network.
699

700 :param batch_size: Mini -batch size.
701 """
702 super().set_batch_size(batch_size=batch_size)
703 self.v = self.rest * torch.ones(batch_size , *self.shape ,

device=self.v.device)
704 self.i = torch.zeros_like(self.v, device=self.i.device)
705 self.refrac_count = torch.zeros_like(self.v, device=self.

refrac_count.device)
706

707

708 class AdaptiveLIFNodes(Nodes):
709 # language=rst
710 """
711 Layer of leaky integrate -and -fire (LIF) neurons with adaptive

thresholds. A neuron ’s voltage threshold is increased
712 by some constant each time it spikes; otherwise , it is decaying

back to its default value.
713 """
714

127

715 def __init__(
716 self ,
717 n: Optional[int] = None ,
718 shape: Optional[Iterable[int]] = None ,
719 traces: bool = False ,
720 traces_additive: bool = False ,
721 tc_trace: Union[float , torch.Tensor] = 20.0,
722 trace_scale: Union[float , torch.Tensor] = 1.0,
723 sum_input: bool = False ,
724 rest: Union[float , torch.Tensor] = -65.0,
725 reset: Union[float , torch.Tensor] = -65.0,
726 thresh: Union[float , torch.Tensor] = -52.0,
727 refrac: Union[int , torch.Tensor] = 5,
728 tc_decay: Union[float , torch.Tensor] = 100.0,
729 theta_plus: Union[float , torch.Tensor] = 0.05,
730 tc_theta_decay: Union[float , torch.Tensor] = 1e7 ,
731 lbound: float = None ,
732 **kwargs ,
733) -> None:
734 # language=rst
735 """
736 Instantiates a layer of LIF neurons with adaptive firing

thresholds.
737

738 :param n: The number of neurons in the layer.
739 :param shape: The dimensionality of the layer.
740 :param traces: Whether to record spike traces.
741 :param traces_additive: Whether to record spike traces

additively.
742 :param tc_trace: Time constant of spike trace decay.
743 :param trace_scale: Scaling factor for spike trace.
744 :param sum_input: Whether to sum all inputs.
745 :param rest: Resting membrane voltage.
746 :param reset: Post -spike reset voltage.
747 :param thresh: Spike threshold voltage.
748 :param refrac: Refractory (non -firing) period of the neuron.
749 :param tc_decay: Time constant of neuron voltage decay.
750 :param theta_plus: Voltage increase of threshold after

spiking.
751 :param tc_theta_decay: Time constant of adaptive threshold

decay.
752 :param lbound: Lower bound of the voltage.
753 """
754 super().__init__(
755 n=n,
756 shape=shape ,
757 traces=traces ,
758 traces_additive=traces_additive ,
759 tc_trace=tc_trace ,
760 trace_scale=trace_scale ,
761 sum_input=sum_input ,
762)
763

764 self.register_buffer("rest", torch.tensor(rest)) # Rest

128

voltage.
765 self.register_buffer("reset", torch.tensor(reset)) # Post -

spike reset voltage.
766 self.register_buffer("thresh", torch.tensor(thresh)) #

Spike threshold voltage.
767 self.register_buffer(
768 "refrac", torch.tensor(refrac)
769) # Post -spike refractory period.
770 self.register_buffer(
771 "tc_decay", torch.tensor(tc_decay)
772) # Time constant of neuron voltage decay.
773 self.register_buffer(
774 "decay", torch.empty_like(self.tc_decay)
775) # Set in compute_decays.
776 self.register_buffer(
777 "theta_plus", torch.tensor(theta_plus)
778) # Constant threshold increase on spike.
779 self.register_buffer(
780 "tc_theta_decay", torch.tensor(tc_theta_decay)
781) # Time constant of adaptive threshold decay.
782 self.register_buffer(
783 "theta_decay", torch.empty_like(self.tc_theta_decay)
784) # Set in compute_decays.
785

786 self.register_buffer("v", torch.FloatTensor ()) # Neuron
voltages.

787 self.register_buffer("theta", torch.zeros(*self.shape)) #
Adaptive thresholds.

788 self.register_buffer(
789 "refrac_count", torch.FloatTensor ()
790) # Refractory period counters.
791 self.lbound = lbound # Lower bound of voltage.
792

793 def forward(self , x: torch.Tensor) -> None:
794 # language=rst
795 """
796 Runs a single simulation step.
797

798 :param x: Inputs to the layer.
799 """
800 # Decay voltages and adaptive thresholds.
801 self.v = self.decay * (self.v - self.rest) + self.rest
802 if self.learning:
803 self.theta *= self.theta_decay
804

805 # Integrate inputs.
806 self.v += (self.refrac_count == 0).float () * x
807

808 # Decrement refractory counters.
809 self.refrac_count = (self.refrac_count > 0).float() * (
810 self.refrac_count - self.dt
811)
812

813 # Check for spiking neurons.

129

814 self.s = self.v >= self.thresh + self.theta
815

816 # Refractoriness , voltage reset , and adaptive thresholds.
817 self.refrac_count.masked_fill_(self.s, self.refrac)
818 self.v.masked_fill_(self.s, self.reset)
819 if self.learning:
820 self.theta += self.theta_plus * self.s.float ().sum(0)
821

822 # voltage clipping to lowerbound
823 if self.lbound is not None:
824 self.v.masked_fill_(self.v < self.lbound , self.lbound)
825

826 super().forward(x)
827

828 def reset_state_variables(self) -> None:
829 # language=rst
830 """
831 Resets relevant state variables.
832 """
833 super().reset_state_variables ()
834 self.v.fill_(self.rest) # Neuron voltages.
835 self.refrac_count.zero_ () # Refractory period counters.
836

837 def compute_decays(self , dt) -> None:
838 # language=rst
839 """
840 Sets the relevant decays.
841 """
842 super().compute_decays(dt=dt)
843 self.decay = torch.exp(
844 -self.dt / self.tc_decay
845) # Neuron voltage decay (per timestep).
846 self.theta_decay = torch.exp(
847 -self.dt / self.tc_theta_decay
848) # Adaptive threshold decay (per timestep).
849

850 def set_batch_size(self , batch_size) -> None:
851 # language=rst
852 """
853 Sets mini -batch size. Called when layer is added to a

network.
854

855 :param batch_size: Mini -batch size.
856 """
857 super().set_batch_size(batch_size=batch_size)
858 self.v = self.rest * torch.ones(batch_size , *self.shape ,

device=self.v.device)
859 self.refrac_count = torch.zeros_like(self.v, device=self.

refrac_count.device)
860

861

862 class DiehlAndCookNodes(Nodes):
863 # language=rst
864 """

130

865 Layer of leaky integrate -and -fire (LIF) neurons with adaptive
thresholds (modified for Diehl & Cook 2015

866 replication).
867 """
868

869 def __init__(
870 self ,
871 n: Optional[int] = None ,
872 shape: Optional[Iterable[int]] = None ,
873 traces: bool = False ,
874 traces_additive: bool = False ,
875 tc_trace: Union[float , torch.Tensor] = 20.0,
876 trace_scale: Union[float , torch.Tensor] = 1.0,
877 sum_input: bool = False ,
878 thresh: Union[float , torch.Tensor] = -52.0,
879 rest: Union[float , torch.Tensor] = -65.0,
880 reset: Union[float , torch.Tensor] = -65.0,
881 refrac: Union[int , torch.Tensor] = 5,
882 tc_decay: Union[float , torch.Tensor] = 100.0,
883 theta_plus: Union[float , torch.Tensor] = 0.05,
884 tc_theta_decay: Union[float , torch.Tensor] = 1e7 ,
885 lbound: float = None ,
886 one_spike: bool = True ,
887 **kwargs ,
888) -> None:
889 # language=rst
890 """
891 Instantiates a layer of Diehl & Cook 2015 neurons.
892

893 :param n: The number of neurons in the layer.
894 :param shape: The dimensionality of the layer.
895 :param traces: Whether to record spike traces.
896 :param traces_additive: Whether to record spike traces

additively.
897 :param tc_trace: Time constant of spike trace decay.
898 :param trace_scale: Scaling factor for spike trace.
899 :param sum_input: Whether to sum all inputs.
900 :param thresh: Spike threshold voltage.
901 :param rest: Resting membrane voltage.
902 :param reset: Post -spike reset voltage.
903 :param refrac: Refractory (non -firing) period of the neuron.
904 :param tc_decay: Time constant of neuron voltage decay.
905 :param theta_plus: Voltage increase of threshold after

spiking.
906 :param tc_theta_decay: Time constant of adaptive threshold

decay.
907 :param lbound: Lower bound of the voltage.
908 :param one_spike: Whether to allow only one spike per

timestep.
909 """
910 super().__init__(
911 n=n,
912 shape=shape ,
913 traces=traces ,

131

914 traces_additive=traces_additive ,
915 tc_trace=tc_trace ,
916 trace_scale=trace_scale ,
917 sum_input=sum_input ,
918)
919

920 self.register_buffer("rest", torch.tensor(rest)) # Rest
voltage.

921 self.register_buffer("reset", torch.tensor(reset)) # Post -
spike reset voltage.

922 self.register_buffer("thresh", torch.tensor(thresh)) #
Spike threshold voltage.

923 self.register_buffer(
924 "refrac", torch.tensor(refrac)
925) # Post -spike refractory period.
926 self.register_buffer(
927 "tc_decay", torch.tensor(tc_decay)
928) # Time constant of neuron voltage decay.
929 self.register_buffer(
930 "decay", torch.empty_like(self.tc_decay)
931) # Set in compute_decays.
932 self.register_buffer(
933 "theta_plus", torch.tensor(theta_plus)
934) # Constant threshold increase on spike.
935 self.register_buffer(
936 "tc_theta_decay", torch.tensor(tc_theta_decay)
937) # Time constant of adaptive threshold decay.
938 self.register_buffer(
939 "theta_decay", torch.empty_like(self.tc_theta_decay)
940) # Set in compute_decays.
941 self.register_buffer("v", torch.FloatTensor ()) # Neuron

voltages.
942 self.register_buffer("theta", torch.zeros(*self.shape)) #

Adaptive thresholds.
943 self.register_buffer(
944 "refrac_count", torch.FloatTensor ()
945) # Refractory period counters.
946

947 self.lbound = lbound # Lower bound of voltage.
948 self.one_spike = one_spike # One spike per timestep.
949

950 def forward(self , x: torch.Tensor) -> None:
951 # language=rst
952 """
953 Runs a single simulation step.
954

955 :param x: Inputs to the layer.
956 """
957 # Decay voltages and adaptive thresholds.
958 self.v = self.decay * (self.v - self.rest) + self.rest
959 if self.learning:
960 self.theta *= self.theta_decay
961

962 # Integrate inputs.

132

963 self.v += (self.refrac_count == 0).float () * x
964

965 # Decrement refractory counters.
966 self.refrac_count = (self.refrac_count > 0).float() * (
967 self.refrac_count - self.dt
968)
969

970 # Check for spiking neurons.
971 self.s = self.v >= self.thresh + self.theta
972

973 # Refractoriness , voltage reset , and adaptive thresholds.
974 self.refrac_count.masked_fill_(self.s, self.refrac)
975 self.v.masked_fill_(self.s, self.reset)
976 if self.learning:
977 self.theta += self.theta_plus * self.s.float ().sum(0)
978

979 # Choose only a single neuron to spike.
980 if self.one_spike:
981 if self.s.any():
982 _any = self.s.view(self.batch_size , -1).any(1)
983 ind = torch.multinomial(
984 self.s.float().view(self.batch_size , -1)[_any],

1
985)
986 _any = _any.nonzero ()
987 self.s.zero_()
988 self.s.view(self.batch_size , -1)[_any , ind] = 1
989

990 # Voltage clipping to lower bound.
991 if self.lbound is not None:
992 self.v.masked_fill_(self.v < self.lbound , self.lbound)
993

994 super().forward(x)
995

996 def reset_state_variables(self) -> None:
997 # language=rst
998 """
999 Resets relevant state variables.

1000 """
1001 super().reset_state_variables ()
1002 self.v.fill_(self.rest) # Neuron voltages.
1003 self.refrac_count.zero_ () # Refractory period counters.
1004

1005 def compute_decays(self , dt) -> None:
1006 # language=rst
1007 """
1008 Sets the relevant decays.
1009 """
1010 super().compute_decays(dt=dt)
1011 self.decay = torch.exp(
1012 -self.dt / self.tc_decay
1013) # Neuron voltage decay (per timestep).
1014 self.theta_decay = torch.exp(
1015 -self.dt / self.tc_theta_decay

133

1016) # Adaptive threshold decay (per timestep).
1017

1018 def set_batch_size(self , batch_size) -> None:
1019 # language=rst
1020 """
1021 Sets mini -batch size. Called when layer is added to a

network.
1022

1023 :param batch_size: Mini -batch size.
1024 """
1025 super().set_batch_size(batch_size=batch_size)
1026 self.v = self.rest * torch.ones(batch_size , *self.shape ,

device=self.v.device)
1027 self.refrac_count = torch.zeros_like(self.v, device=self.

refrac_count.device)
1028

1029

1030 class IzhikevichNodes(Nodes):
1031 # language=rst
1032 """
1033 Layer of Izhikevich neurons.
1034 """
1035

1036 def __init__(
1037 self ,
1038 n: Optional[int] = None ,
1039 shape: Optional[Iterable[int]] = None ,
1040 traces: bool = False ,
1041 traces_additive: bool = False ,
1042 tc_trace: Union[float , torch.Tensor] = 20.0,
1043 trace_scale: Union[float , torch.Tensor] = 1.0,
1044 sum_input: bool = False ,
1045 excitatory: float = 1,
1046 thresh: Union[float , torch.Tensor] = 45.0,
1047 rest: Union[float , torch.Tensor] = -65.0,
1048 lbound: float = None ,
1049 **kwargs ,
1050) -> None:
1051 # language=rst
1052 """
1053 Instantiates a layer of Izhikevich neurons.
1054

1055 :param n: The number of neurons in the layer.
1056 :param shape: The dimensionality of the layer.
1057 :param traces: Whether to record spike traces.
1058 :param traces_additive: Whether to record spike traces

additively.
1059 :param tc_trace: Time constant of spike trace decay.
1060 :param trace_scale: Scaling factor for spike trace.
1061 :param sum_input: Whether to sum all inputs.
1062 :param excitatory: Percent of excitatory (vs. inhibitory)

neurons in the layer; in range ‘‘[0, 1]‘‘.
1063 :param thresh: Spike threshold voltage.
1064 :param rest: Resting membrane voltage.

134

1065 :param lbound: Lower bound of the voltage.
1066 """
1067 super().__init__(
1068 n=n,
1069 shape=shape ,
1070 traces=traces ,
1071 traces_additive=traces_additive ,
1072 tc_trace=tc_trace ,
1073 trace_scale=trace_scale ,
1074 sum_input=sum_input ,
1075)
1076

1077 self.register_buffer("rest", torch.tensor(rest)) # Rest
voltage.

1078 self.register_buffer("thresh", torch.tensor(thresh)) #
Spike threshold voltage.

1079 self.lbound = lbound
1080

1081 self.register_buffer("r", None)
1082 self.register_buffer("a", None)
1083 self.register_buffer("b", None)
1084 self.register_buffer("c", None)
1085 self.register_buffer("d", None)
1086 self.register_buffer("S", None)
1087 self.register_buffer("excitatory", None)
1088

1089 if excitatory > 1:
1090 excitatory = 1
1091 elif excitatory < 0:
1092 excitatory = 0
1093

1094 if excitatory == 1:
1095 self.r = torch.rand(n)
1096 self.a = 0.02 * torch.ones(n)
1097 self.b = 0.2 * torch.ones(n)
1098 self.c = -65.0 + 15 * (self.r ** 2)
1099 self.d = 8 - 6 * (self.r ** 2)
1100 self.S = 0.5 * torch.rand(n, n)
1101 self.excitatory = torch.ones(n).byte()
1102

1103 elif excitatory == 0:
1104 self.r = torch.rand(n)
1105 self.a = 0.02 + 0.08 * self.r
1106 self.b = 0.25 - 0.05 * self.r
1107 self.c = -65.0 * torch.ones(n)
1108 self.d = 2 * torch.ones(n)
1109 self.S = -torch.rand(n, n)
1110

1111 self.excitatory = torch.zeros(n).byte()
1112

1113 else:
1114 self.excitatory = torch.zeros(n).byte()
1115

1116 ex = int(n * excitatory)

135

1117 inh = n - ex
1118

1119 # init
1120 self.r = torch.zeros(n)
1121 self.a = torch.zeros(n)
1122 self.b = torch.zeros(n)
1123 self.c = torch.zeros(n)
1124 self.d = torch.zeros(n)
1125 self.S = torch.zeros(n, n)
1126

1127 # excitatory
1128 self.r[:ex] = torch.rand(ex)
1129 self.a[:ex] = 0.02 * torch.ones(ex)
1130 self.b[:ex] = 0.2 * torch.ones(ex)
1131 self.c[:ex] = -65.0 + 15 * self.r[:ex] ** 2
1132 self.d[:ex] = 8 - 6 * self.r[:ex] ** 2
1133 self.S[:, :ex] = 0.5 * torch.rand(n, ex)
1134 self.excitatory [:ex] = 1
1135

1136 # inhibitory
1137 self.r[ex:] = torch.rand(inh)
1138 self.a[ex:] = 0.02 + 0.08 * self.r[ex:]
1139 self.b[ex:] = 0.25 - 0.05 * self.r[ex:]
1140 self.c[ex:] = -65.0 * torch.ones(inh)
1141 self.d[ex:] = 2 * torch.ones(inh)
1142 self.S[:, ex:] = -torch.rand(n, inh)
1143 self.excitatory[ex:] = 0
1144

1145 self.register_buffer("v", self.rest * torch.ones(n)) #
Neuron voltages.

1146 self.register_buffer("u", self.b * self.v) # Neuron
recovery.

1147

1148 def forward(self , x: torch.Tensor) -> None:
1149 # language=rst
1150 """
1151 Runs a single simulation step.
1152

1153 :param x: Inputs to the layer.
1154 """
1155 # Check for spiking neurons.
1156 self.s = self.v >= self.thresh
1157

1158 # Voltage and recovery reset.
1159 self.v = torch.where(self.s, self.c, self.v)
1160 self.u = torch.where(self.s, self.u + self.d, self.u)
1161

1162 # Add inter -columnar input.
1163 if self.s.any():
1164 x += torch.cat(
1165 [self.S[:, self.s[i]].sum(dim =1)[None] for i in

range(self.s.shape [0])],
1166 dim=0,
1167)

136

1168

1169 # Apply v and u updates.
1170 self.v += self.dt * 0.5 * (0.04 * self.v ** 2 + 5 * self.v +

140 - self.u + x)
1171 self.v += self.dt * 0.5 * (0.04 * self.v ** 2 + 5 * self.v +

140 - self.u + x)
1172 self.u += self.dt * self.a * (self.b * self.v - self.u)
1173

1174 # Voltage clipping to lower bound.
1175 if self.lbound is not None:
1176 self.v.masked_fill_(self.v < self.lbound , self.lbound)
1177

1178 super().forward(x)
1179

1180 def reset_state_variables(self) -> None:
1181 # language=rst
1182 """
1183 Resets relevant state variables.
1184 """
1185 super().reset_state_variables ()
1186 self.v.fill_(self.rest) # Neuron voltages.
1187 self.u = self.b * self.v # Neuron recovery.
1188

1189 def set_batch_size(self , batch_size) -> None:
1190 # language=rst
1191 """
1192 Sets mini -batch size. Called when layer is added to a

network.
1193

1194 :param batch_size: Mini -batch size.
1195 """
1196 super().set_batch_size(batch_size=batch_size)
1197 self.v = self.rest * torch.ones(batch_size , *self.shape ,

device=self.v.device)
1198 self.u = self.b * self.v
1199

1200

1201 class SRM0Nodes(Nodes):
1202 # language=rst
1203 """
1204 Layer of simplified spike response model (SRM0) neurons with

stochastic threshold (escape noise). Adapted from
1205 ‘(Vasilaki et al., 2009) <https :// intranet.physio.unibe.ch/

Publikationen/Dokumente/Vasilaki2009PloSComputBio_1.pdf >‘_.
1206 """
1207

1208 def __init__(
1209 self ,
1210 n: Optional[int] = None ,
1211 shape: Optional[Iterable[int]] = None ,
1212 traces: bool = False ,
1213 traces_additive: bool = False ,
1214 tc_trace: Union[float , torch.Tensor] = 20.0,
1215 trace_scale: Union[float , torch.Tensor] = 1.0,

137

1216 sum_input: bool = False ,
1217 thresh: Union[float , torch.Tensor] = -50.0,
1218 rest: Union[float , torch.Tensor] = -70.0,
1219 reset: Union[float , torch.Tensor] = -70.0,
1220 refrac: Union[int , torch.Tensor] = 5,
1221 tc_decay: Union[float , torch.Tensor] = 10.0,
1222 lbound: float = None ,
1223 eps_0: Union[float , torch.Tensor] = 1.0,
1224 rho_0: Union[float , torch.Tensor] = 1.0,
1225 d_thresh: Union[float , torch.Tensor] = 5.0,
1226 **kwargs ,
1227) -> None:
1228 # language=rst
1229 """
1230 Instantiates a layer of SRM0 neurons.
1231

1232 :param n: The number of neurons in the layer.
1233 :param shape: The dimensionality of the layer.
1234 :param traces: Whether to record spike traces.
1235 :param traces_additive: Whether to record spike traces

additively.
1236 :param tc_trace: Time constant of spike trace decay.
1237 :param trace_scale: Scaling factor for spike trace.
1238 :param sum_input: Whether to sum all inputs.
1239 :param thresh: Spike threshold voltage.
1240 :param rest: Resting membrane voltage.
1241 :param reset: Post -spike reset voltage.
1242 :param refrac: Refractory (non -firing) period of the neuron.
1243 :param tc_decay: Time constant of neuron voltage decay.
1244 :param lbound: Lower bound of the voltage.
1245 :param eps_0: Scaling factor for pre -synaptic spike

contributions.
1246 :param rho_0: Stochastic intensity at threshold.
1247 :param d_thresh: Width of the threshold region.
1248 """
1249 super().__init__(
1250 n=n,
1251 shape=shape ,
1252 traces=traces ,
1253 traces_additive=traces_additive ,
1254 tc_trace=tc_trace ,
1255 trace_scale=trace_scale ,
1256 sum_input=sum_input ,
1257)
1258

1259 self.register_buffer("rest", torch.tensor(rest)) # Rest
voltage.

1260 self.register_buffer("reset", torch.tensor(reset)) # Post -
spike reset voltage.

1261 self.register_buffer("thresh", torch.tensor(thresh)) #
Spike threshold voltage.

1262 self.register_buffer(
1263 "refrac", torch.tensor(refrac)
1264) # Post -spike refractory period.

138

1265 self.register_buffer(
1266 "tc_decay", torch.tensor(tc_decay)
1267) # Time constant of neuron voltage decay.
1268 self.register_buffer("decay", torch.tensor(tc_decay)) # Set

in compute_decays.
1269 self.register_buffer(
1270 "eps_0", torch.tensor(eps_0)
1271) # Scaling factor for pre -synaptic spike contributions.
1272 self.register_buffer(
1273 "rho_0", torch.tensor(rho_0)
1274) # Stochastic intensity at threshold.
1275 self.register_buffer(
1276 "d_thresh", torch.tensor(d_thresh)
1277) # Width of the threshold region.
1278 self.register_buffer("v", torch.FloatTensor ()) # Neuron

voltages.
1279 self.register_buffer(
1280 "refrac_count", torch.FloatTensor ()
1281) # Refractory period counters.
1282

1283 self.lbound = lbound # Lower bound of voltage.
1284

1285 def forward(self , x: torch.Tensor) -> None:
1286 # language=rst
1287 """
1288 Runs a single simulation step.
1289

1290 :param x: Inputs to the layer.
1291 """
1292 # Decay voltages.
1293 self.v = self.decay * (self.v - self.rest) + self.rest
1294

1295 # Integrate inputs.
1296 self.v += (self.refrac_count == 0).float () * self.eps_0 * x
1297

1298 # Compute (instantaneous) probabilities of spiking , clamp
between 0 and 1 using exponentials.

1299 # Also known as ’escape noise ’, this simulates nearby
neurons.

1300 self.rho = self.rho_0 * torch.exp((self.v - self.thresh) /
self.d_thresh)

1301 self.s_prob = 1.0 - torch.exp(-self.rho * self.dt)
1302

1303 # Decrement refractory counters.
1304 self.refrac_count = (self.refrac_count > 0).float() * (
1305 self.refrac_count - self.dt
1306)
1307

1308 # Check for spiking neurons (spike when probability > some
random number).

1309 self.s = torch.rand_like(self.s_prob) < self.s_prob
1310

1311 # Refractoriness and voltage reset.
1312 self.refrac_count.masked_fill_(self.s, self.refrac)

139

1313 self.v.masked_fill_(self.s, self.reset)
1314

1315 # Voltage clipping to lower bound.
1316 if self.lbound is not None:
1317 self.v.masked_fill_(self.v < self.lbound , self.lbound)
1318

1319 super().forward(x)
1320

1321 def reset_state_variables(self) -> None:
1322 # language=rst
1323 """
1324 Resets relevant state variables.
1325 """
1326 super().reset_state_variables ()
1327 self.v.fill_(self.rest) # Neuron voltages.
1328 self.refrac_count.zero_ () # Refractory period counters.
1329

1330 def compute_decays(self , dt) -> None:
1331 # language=rst
1332 """
1333 Sets the relevant decays.
1334 """
1335 super().compute_decays(dt=dt)
1336 self.decay = torch.exp(
1337 -self.dt / self.tc_decay
1338) # Neuron voltage decay (per timestep).
1339

1340 def set_batch_size(self , batch_size) -> None:
1341 # language=rst
1342 """
1343 Sets mini -batch size. Called when layer is added to a

network.
1344

1345 :param batch_size: Mini -batch size.
1346 """
1347 super().set_batch_size(batch_size=batch_size)
1348 self.v = self.rest * torch.ones(batch_size , *self.shape ,

device=self.v.device)
1349 self.refrac_count = torch.zeros_like(self.v, device=self.

refrac_count.device)

Listing B.7: Nodes

1 from abc import ABC , abstractmethod
2 from typing import Union , Tuple , Optional , Sequence
3

4 import numpy as np
5 import torch
6 from torch.nn import Module , Parameter
7 import torch.nn.functional as F
8 from torch.nn.modules.utils import _pair
9

10 from .nodes import Nodes
11

140

12

13 class AbstractConnection(ABC , Module):
14 # language=rst
15 """
16 Abstract base method for connections between ‘‘Nodes ‘‘.
17 """
18

19 def __init__(
20 self ,
21 source: Nodes ,
22 target: Nodes ,
23 nu: Optional[Union[float , Sequence[float]]] = None ,
24 reduction: Optional[callable] = None ,
25 weight_decay: float = 0.0,
26 ** kwargs
27) -> None:
28 # language=rst
29 """
30 Constructor for abstract base class for connection objects.
31

32 :param source: A layer of nodes from which the connection
originates.

33 :param target: A layer of nodes to which the connection
connects.

34 :param nu: Learning rate for both pre - and post -synaptic
events.

35 :param reduction: Method for reducing parameter updates
along the minibatch

36 dimension.
37 :param weight_decay: Constant multiple to decay weights by

on each iteration.
38

39 Keyword arguments:
40

41 :param LearningRule update_rule: Modifies connection
parameters according to

42 some rule.
43 :param float wmin: The minimum value on the connection

weights.
44 :param float wmax: The maximum value on the connection

weights.
45 :param float norm: Total weight per target neuron

normalization.
46 """
47 super().__init__ ()
48

49 assert isinstance(source , Nodes), "Source is not a Nodes
object"

50 assert isinstance(target , Nodes), "Target is not a Nodes
object"

51

52 self.source = source
53 self.target = target
54

141

55 self.nu = nu
56 self.weight_decay = weight_decay
57 self.reduction = reduction
58

59 from .. learning import NoOp
60

61 self.update_rule = kwargs.get("update_rule", NoOp)
62 self.wmin = kwargs.get("wmin", -np.inf)
63 self.wmax = kwargs.get("wmax", np.inf)
64 self.norm = kwargs.get("norm", None)
65 self.decay = kwargs.get("decay", None)
66

67 if self.update_rule is None:
68 self.update_rule = NoOp
69

70 self.update_rule = self.update_rule(
71 connection=self ,
72 nu=nu,
73 reduction=reduction ,
74 weight_decay=weight_decay ,
75 ** kwargs
76)
77

78 @abstractmethod
79 def compute(self , s: torch.Tensor) -> None:
80 # language=rst
81 """
82 Compute pre -activations of downstream neurons given spikes

of upstream neurons.
83

84 :param s: Incoming spikes.
85 """
86 pass
87

88 @abstractmethod
89 def update(self , ** kwargs) -> None:
90 # language=rst
91 """
92 Compute connection ’s update rule.
93

94 Keyword arguments:
95

96 :param bool learning: Whether to allow connection updates.
97 :param ByteTensor mask: Boolean mask determining which

weights to clamp to zero.
98 """
99 learning = kwargs.get("learning", True)

100

101 if learning:
102 self.update_rule.update (** kwargs)
103

104 mask = kwargs.get("mask", None)
105 if mask is not None:
106 self.w.masked_fill_(mask , 0)

142

107

108 @abstractmethod
109 def reset_state_variables(self) -> None:
110 # language=rst
111 """
112 Contains resetting logic for the connection.
113 """
114 pass
115

116

117 class Connection(AbstractConnection):
118 # language=rst
119 """
120 Specifies synapses between one or two populations of neurons.
121 """
122

123 def __init__(
124 self ,
125 source: Nodes ,
126 target: Nodes ,
127 nu: Optional[Union[float , Sequence[float]]] = None ,
128 reduction: Optional[callable] = None ,
129 weight_decay: float = 0.0,
130 ** kwargs
131) -> None:
132 # language=rst
133 """
134 Instantiates a :code:‘Connection ‘ object.
135

136 :param source: A layer of nodes from which the connection
originates.

137 :param target: A layer of nodes to which the connection
connects.

138 :param nu: Learning rate for both pre - and post -synaptic
events.

139 :param reduction: Method for reducing parameter updates
along the minibatch

140 dimension.
141 :param weight_decay: Constant multiple to decay weights by

on each iteration.
142

143 Keyword arguments:
144

145 :param LearningRule update_rule: Modifies connection
parameters according to

146 some rule.
147 :param torch.Tensor w: Strengths of synapses.
148 :param torch.Tensor b: Target population bias.
149 :param float wmin: Minimum allowed value on the connection

weights.
150 :param float wmax: Maximum allowed value on the connection

weights.
151 :param float norm: Total weight per target neuron

normalization constant.

143

152 """
153 super().__init__(source , target , nu, reduction , weight_decay

, ** kwargs)
154

155 w = kwargs.get("w", None)
156 if w is None:
157 if self.wmin == -np.inf or self.wmax == np.inf:
158 w = torch.clamp(torch.rand(source.n, target.n), self

.wmin , self.wmax)
159 else:
160 w = self.wmin + torch.rand(source.n, target.n) * (

self.wmax - self.wmin)
161 else:
162 if self.wmin != -np.inf or self.wmax != np.inf:
163 w = torch.clamp(w, self.wmin , self.wmax)
164

165 self.w = Parameter(w, requires_grad=False)
166 self.b = Parameter(kwargs.get("b", torch.zeros(target.n)),

requires_grad=False)
167

168 def compute(self , s: torch.Tensor) -> torch.Tensor:
169 # language=rst
170 """
171 Compute pre -activations given spikes using connection

weights.
172

173 :param s: Incoming spikes.
174 :return: Incoming spikes multiplied by synaptic weights (

with or without
175 decaying spike activation).
176 """
177 # Compute multiplication of spike activations by weights and

add bias.
178 post = s.float().view(s.size (0), -1) @ self.w + self.b
179 return post.view(s.size (0), *self.target.shape)
180

181 def update(self , ** kwargs) -> None:
182 # language=rst
183 """
184 Compute connection ’s update rule.
185 """
186 super().update (** kwargs)
187

188 def normalize(self) -> None:
189 # language=rst
190 """
191 Normalize weights so each target neuron has sum of

connection weights equal to
192 ‘‘self.norm ‘‘.
193 """
194 if self.norm is not None:
195 w_abs_sum = self.w.abs().sum (0).unsqueeze (0)
196 w_abs_sum[w_abs_sum == 0] = 1.0
197 self.w *= self.norm / w_abs_sum

144

198

199 def reset_state_variables(self) -> None:
200 # language=rst
201 """
202 Contains resetting logic for the connection.
203 """
204 super().reset_state_variables ()
205

206

207 class Conv2dConnection(AbstractConnection):
208 # language=rst
209 """
210 Specifies convolutional synapses between one or two populations

of neurons.
211 """
212

213 def __init__(
214 self ,
215 source: Nodes ,
216 target: Nodes ,
217 kernel_size: Union[int , Tuple[int , int]],
218 stride: Union[int , Tuple[int , int]] = 1,
219 padding: Union[int , Tuple[int , int]] = 0,
220 dilation: Union[int , Tuple[int , int]] = 1,
221 nu: Optional[Union[float , Sequence[float]]] = None ,
222 reduction: Optional[callable] = None ,
223 weight_decay: float = 0.0,
224 ** kwargs
225) -> None:
226 # language=rst
227 """
228 Instantiates a ‘‘Conv2dConnection ‘‘ object.
229

230 :param source: A layer of nodes from which the connection
originates.

231 :param target: A layer of nodes to which the connection
connects.

232 :param kernel_size: Horizontal and vertical size of
convolutional kernels.

233 :param stride: Horizontal and vertical stride for
convolution.

234 :param padding: Horizontal and vertical padding for
convolution.

235 :param dilation: Horizontal and vertical dilation for
convolution.

236 :param nu: Learning rate for both pre - and post -synaptic
events.

237 :param reduction: Method for reducing parameter updates
along the minibatch

238 dimension.
239 :param weight_decay: Constant multiple to decay weights by

on each iteration.
240

241 Keyword arguments:

145

242

243 :param LearningRule update_rule: Modifies connection
parameters according to

244 some rule.
245 :param torch.Tensor w: Strengths of synapses.
246 :param torch.Tensor b: Target population bias.
247 :param float wmin: Minimum allowed value on the connection

weights.
248 :param float wmax: Maximum allowed value on the connection

weights.
249 :param float norm: Total weight per target neuron

normalization constant.
250 """
251 super().__init__(source , target , nu, reduction , weight_decay

, ** kwargs)
252

253 self.kernel_size = _pair(kernel_size)
254 self.stride = _pair(stride)
255 self.padding = _pair(padding)
256 self.dilation = _pair(dilation)
257

258 self.in_channels , input_height , input_width = (
259 source.shape[0],
260 source.shape[1],
261 source.shape[2],
262)
263 self.out_channels , output_height , output_width = (
264 target.shape[0],
265 target.shape[1],
266 target.shape[2],
267)
268

269 width = (
270 input_height - self.kernel_size [0] + 2 * self.padding [0]
271) / self.stride [0] + 1
272 height = (
273 input_width - self.kernel_size [1] + 2 * self.padding [1]
274) / self.stride [1] + 1
275 shape = (self.in_channels , self.out_channels , int(width),

int(height))
276

277 error = (
278 "Target dimensionality must be (out_channels , ?,"
279 "(input_height - filter_height + 2 * padding_height) /

stride_height + 1,"
280 "(input_width - filter_width + 2 * padding_width) /

stride_width + 1"
281)
282

283 assert (
284 target.shape [0] == shape [1]
285 and target.shape [1] == shape [2]
286 and target.shape [2] == shape [3]
287), error

146

288

289 w = kwargs.get("w", None)
290 if w is None:
291 if self.wmin == -np.inf or self.wmax == np.inf:
292 w = torch.clamp(
293 torch.rand(self.out_channels , self.in_channels ,

*self.kernel_size),
294 self.wmin ,
295 self.wmax ,
296)
297 else:
298 w = (self.wmax - self.wmin) * torch.rand(
299 self.out_channels , self.in_channels , *self.

kernel_size
300)
301 w += self.wmin
302 else:
303 if self.wmin != -np.inf or self.wmax != np.inf:
304 w = torch.clamp(w, self.wmin , self.wmax)
305

306 self.w = Parameter(w, requires_grad=False)
307 self.b = Parameter(
308 kwargs.get("b", torch.zeros(self.out_channels)),

requires_grad=False
309)
310

311 def compute(self , s: torch.Tensor) -> torch.Tensor:
312 # language=rst
313 """
314 Compute convolutional pre -activations given spikes using

layer weights.
315

316 :param s: Incoming spikes.
317 :return: Incoming spikes multiplied by synaptic weights (

with or without
318 decaying spike activation).
319 """
320 return F.conv2d(
321 s.float(),
322 self.w,
323 self.b,
324 stride=self.stride ,
325 padding=self.padding ,
326 dilation=self.dilation ,
327)
328

329 def update(self , ** kwargs) -> None:
330 # language=rst
331 """
332 Compute connection ’s update rule.
333 """
334 super().update (** kwargs)
335

336 def normalize(self) -> None:

147

337 # language=rst
338 """
339 Normalize weights along the first axis according to total

weight per target
340 neuron.
341 """
342 if self.norm is not None:
343 # get a view and modify in place
344 w = self.w.view(
345 self.w.size (0) * self.w.size (1), self.w.size (2) *

self.w.size (3)
346)
347

348 for fltr in range(w.size (0)):
349 w[fltr] *= self.norm / w[fltr].sum(0)
350

351 def reset_state_variables(self) -> None:
352 # language=rst
353 """
354 Contains resetting logic for the connection.
355 """
356 super().reset_state_variables ()
357

358

359 class MaxPool2dConnection(AbstractConnection):
360 # language=rst
361 """
362 Specifies max -pooling synapses between one or two populations of

neurons by keeping
363 online estimates of maximally firing neurons.
364 """
365

366 def __init__(
367 self ,
368 source: Nodes ,
369 target: Nodes ,
370 kernel_size: Union[int , Tuple[int , int]],
371 stride: Union[int , Tuple[int , int]] = 1,
372 padding: Union[int , Tuple[int , int]] = 0,
373 dilation: Union[int , Tuple[int , int]] = 1,
374 ** kwargs
375) -> None:
376 # language=rst
377 """
378 Instantiates a ‘‘MaxPool2dConnection ‘‘ object.
379

380 :param source: A layer of nodes from which the connection
originates.

381 :param target: A layer of nodes to which the connection
connects.

382 :param kernel_size: Horizontal and vertical size of
convolutional kernels.

383 :param stride: Horizontal and vertical stride for
convolution.

148

384 :param padding: Horizontal and vertical padding for
convolution.

385 :param dilation: Horizontal and vertical dilation for
convolution.

386

387 Keyword arguments:
388

389 :param decay: Decay rate of online estimates of average
firing activity.

390 """
391 super().__init__(source , target , None , None , 0.0, ** kwargs)
392

393 self.kernel_size = _pair(kernel_size)
394 self.stride = _pair(stride)
395 self.padding = _pair(padding)
396 self.dilation = _pair(dilation)
397

398 self.register_buffer("firing_rates", torch.ones(source.shape
))

399

400 def compute(self , s: torch.Tensor) -> torch.Tensor:
401 # language=rst
402 """
403 Compute max -pool pre -activations given spikes using online

firing rate
404 estimates.
405

406 :param s: Incoming spikes.
407 :return: Incoming spikes multiplied by synaptic weights (

with or without
408 decaying spike activation).
409 """
410 self.firing_rates -= self.decay * self.firing_rates
411 self.firing_rates += s.float()
412

413 _, indices = F.max_pool2d(
414 self.firing_rates ,
415 kernel_size=self.kernel_size ,
416 stride=self.stride ,
417 padding=self.padding ,
418 dilation=self.dilation ,
419 return_indices=True ,
420)
421

422 return s.take(indices).float ()
423

424 def update(self , ** kwargs) -> None:
425 # language=rst
426 """
427 Compute connection ’s update rule.
428 """
429 super().update (** kwargs)
430

431 def normalize(self) -> None:

149

432 # language=rst
433 """
434 No weights -> no normalization.
435 """
436 pass
437

438 def reset_state_variables(self) -> None:
439 # language=rst
440 """
441 Contains resetting logic for the connection.
442 """
443 super().reset_state_variables ()
444

445 self.firing_rates = torch.zeros(self.source.shape)
446

447 class LocalConnection(AbstractConnection):
448 # language=rst
449 """
450 Specifies a locally connected connection between one or two

populations of neurons.
451 """
452

453 def __init__(
454 self ,
455 source: Nodes ,
456 target: Nodes ,
457 kernel_size: Union[int , Tuple[int , int]],
458 stride: Union[int , Tuple[int , int]],
459 n_filters: int ,
460 nu: Optional[Union[float , Sequence[float]]] = None ,
461 reduction: Optional[callable] = None ,
462 weight_decay: float = 0.0,
463 ** kwargs
464) -> None:
465 # language=rst
466 """
467 Instantiates a ‘‘LocalConnection ‘‘ object. Source population

should be
468 two -dimensional.
469

470 Neurons in the post -synaptic population are ordered by
receptive field; that is ,

471 if there are ‘‘n_conv ‘‘ neurons in each post -synaptic patch ,
then the first

472 ‘‘n_conv ‘‘ neurons in the post -synaptic population
correspond to the first

473 receptive field , the second ‘‘n_conv ‘‘ to the second
receptive field , and so on.

474

475 :param source: A layer of nodes from which the connection
originates.

476 :param target: A layer of nodes to which the connection
connects.

477 :param kernel_size: Horizontal and vertical size of

150

convolutional kernels.
478 :param stride: Horizontal and vertical stride for

convolution.
479 :param n_filters: Number of locally connected filters per

pre -synaptic region.
480 :param nu: Learning rate for both pre - and post -synaptic

events.
481 :param reduction: Method for reducing parameter updates

along the minibatch
482 dimension.
483 :param weight_decay: Constant multiple to decay weights by

on each iteration.
484

485 Keyword arguments:
486

487 :param LearningRule update_rule: Modifies connection
parameters according to

488 some rule.
489 :param torch.Tensor w: Strengths of synapses.
490 :param torch.Tensor b: Target population bias.
491 :param float wmin: Minimum allowed value on the connection

weights.
492 :param float wmax: Maximum allowed value on the connection

weights.
493 :param float norm: Total weight per target neuron

normalization constant.
494 :param Tuple[int , int] input_shape: Shape of input

population if it’s not
495 ‘‘[sqrt , sqrt]‘‘.
496 """
497 super().__init__(source , target , nu, reduction , weight_decay

, ** kwargs)
498

499 kernel_size = _pair(kernel_size)
500 stride = _pair(stride)
501

502 self.kernel_size = kernel_size
503 self.stride = stride
504 self.n_filters = n_filters
505

506 shape = kwargs.get("input_shape", None)
507 if shape is None:
508 sqrt = int(np.sqrt(source.n))
509 shape = _pair(sqrt)
510

511 if kernel_size == shape:
512 conv_size = [1, 1]
513 else:
514 conv_size = (
515 int((shape [0] - kernel_size [0]) / stride [0]) + 1,
516 int((shape [1] - kernel_size [1]) / stride [1]) + 1,
517)
518

519 self.conv_size = conv_size

151

520

521 conv_prod = int(np.prod(conv_size))
522 kernel_prod = int(np.prod(kernel_size))
523

524 assert (
525 target.n == n_filters * conv_prod
526), "Target layer size must be n_filters * (kernel_size ** 2)

."
527

528 locations = torch.zeros(
529 kernel_size [0], kernel_size [1], conv_size [0], conv_size

[1]
530).long()
531 for c1 in range(conv_size [0]):
532 for c2 in range(conv_size [1]):
533 for k1 in range(kernel_size [0]):
534 for k2 in range(kernel_size [1]):
535 location = (
536 c1 * stride [0] * shape [1]
537 + c2 * stride [1]
538 + k1 * shape [0]
539 + k2
540)
541 locations[k1, k2, c1 , c2] = location
542

543 self.register_buffer("locations", locations.view(kernel_prod
, conv_prod))

544 w = kwargs.get("w", None)
545

546 if w is None:
547 w = torch.zeros(source.n, target.n)
548 for f in range(n_filters):
549 for c in range(conv_prod):
550 for k in range(kernel_prod):
551 if self.wmin == -np.inf or self.wmax == np.

inf:
552 w[self.locations[k, c], f * conv_prod +

c] = np.clip(
553 np.random.rand(), self.wmin , self.

wmax
554)
555 else:
556 w[
557 self.locations[k, c], f * conv_prod

+ c
558] = self.wmin + np.random.rand() * (self

.wmax - self.wmin)
559 else:
560 if self.wmin != -np.inf or self.wmax != np.inf:
561 w = torch.clamp(w, self.wmin , self.wmax)
562

563 self.w = Parameter(w, requires_grad=False)
564

565 self.register_buffer("mask", self.w == 0)

152

566

567 self.b = Parameter(kwargs.get("b", torch.zeros(target.n)),
requires_grad=False)

568

569 if self.norm is not None:
570 self.norm *= kernel_prod
571

572 def compute(self , s: torch.Tensor) -> torch.Tensor:
573 # language=rst
574 """
575 Compute pre -activations given spikes using layer weights.
576

577 :param s: Incoming spikes.
578 :return: Incoming spikes multiplied by synaptic weights (

with or without
579 decaying spike activation).
580 """
581 # Compute multiplication of pre -activations by connection

weights.
582 if self.w.shape [0] == self.source.n and self.w.shape [1] ==

self.target.n:
583 return s.float().view(s.size (0), -1) @ self.w + self.b
584 else:
585 a_post = (
586 s.float().view(s.size (0), -1)
587 @ self.w.view(self.source.n, self.target.n)
588 + self.b
589)
590 return a_post.view(*self.target.shape)
591

592 def update(self , ** kwargs) -> None:
593 # language=rst
594 """
595 Compute connection ’s update rule.
596

597 Keyword arguments:
598

599 :param ByteTensor mask: Boolean mask determining which
weights to clamp to zero.

600 """
601 if kwargs["mask"] is None:
602 kwargs["mask"] = self.mask
603

604 super().update (** kwargs)
605

606 def normalize(self) -> None:
607 # language=rst
608 """
609 Normalize weights so each target neuron has sum of

connection weights equal to
610 ‘‘self.norm ‘‘.
611 """
612 if self.norm is not None:
613 w = self.w.view(self.source.n, self.target.n)

153

614 w *= self.norm / self.w.sum (0).view(1, -1)
615

616 def reset_state_variables(self) -> None:
617 # language=rst
618 """
619 Contains resetting logic for the connection.
620 """
621 super().reset_state_variables ()
622

623

624 class MeanFieldConnection(AbstractConnection):
625 # language=rst
626 """
627 A connection between one or two populations of neurons which

computes a summary of
628 the pre -synaptic population to use as weighted input to the post

-synaptic
629 population.
630 """
631

632 def __init__(
633 self ,
634 source: Nodes ,
635 target: Nodes ,
636 nu: Optional[Union[float , Sequence[float]]] = None ,
637 weight_decay: float = 0.0,
638 ** kwargs
639) -> None:
640 # language=rst
641 """
642 Instantiates a :code:‘MeanFieldConnection ‘ object.
643 :param source: A layer of nodes from which the connection

originates.
644 :param target: A layer of nodes to which the connection

connects.
645 :param nu: Learning rate for both pre - and post -synaptic

events.
646 :param weight_decay: Constant multiple to decay weights by

on each iteration.
647 Keyword arguments:
648 :param LearningRule update_rule: Modifies connection

parameters according to
649 some rule.
650 :param torch.Tensor w: Strengths of synapses.
651 :param float wmin: Minimum allowed value on the connection

weights.
652 :param float wmax: Maximum allowed value on the connection

weights.
653 :param float norm: Total weight per target neuron

normalization constant.
654 """
655 super().__init__(source , target , nu, weight_decay , ** kwargs)
656

657 w = kwargs.get("w", None)

154

658 if w is None:
659 if self.wmin == -np.inf or self.wmax == np.inf:
660 w = torch.clamp ((torch.randn (1) [0] + 1) / 10, self.

wmin , self.wmax)
661 else:
662 w = self.wmin + ((torch.randn (1)[0] + 1) / 10) * (

self.wmax - self.wmin)
663 else:
664 if self.wmin != -np.inf or self.wmax != np.inf:
665 w = torch.clamp(w, self.wmin , self.wmax)
666

667 self.w = Parameter(w, requires_grad=False)
668

669 def compute(self , s: torch.Tensor) -> torch.Tensor:
670 # language=rst
671 """
672 Compute pre -activations given spikes using layer weights.
673 :param s: Incoming spikes.
674 :return: Incoming spikes multiplied by synaptic weights (

with or without
675 decaying spike activation).
676 """
677 # Compute multiplication of mean -field pre -activation by

connection weights.
678 return s.float().mean() * self.w
679

680 def update(self , ** kwargs) -> None:
681 # language=rst
682 """
683 Compute connection ’s update rule.
684 """
685 super().update (** kwargs)
686

687 def normalize(self) -> None:
688 # language=rst
689 """
690 Normalize weights so each target neuron has sum of

connection weights equal to
691 ‘‘self.norm ‘‘.
692 """
693 if self.norm is not None:
694 self.w = self.w.view(1, self.target.n)
695 self.w *= self.norm / self.w.sum()
696 self.w = self.w.view(1, *self.target.shape)
697

698 def reset_state_variables(self) -> None:
699 # language=rst
700 """
701 Contains resetting logic for the connection.
702 """
703 super().reset_state_variables ()
704

705

706 class SparseConnection(AbstractConnection):

155

707 # language=rst
708 """
709 Specifies sparse synapses between one or two populations of

neurons.
710 """
711

712 def __init__(
713 self ,
714 source: Nodes ,
715 target: Nodes ,
716 nu: Optional[Union[float , Sequence[float]]] = None ,
717 reduction: Optional[callable] = None ,
718 weight_decay: float = None ,
719 ** kwargs
720) -> None:
721 # language=rst
722 """
723 Instantiates a :code:‘Connection ‘ object with sparse weights

.
724

725 :param source: A layer of nodes from which the connection
originates.

726 :param target: A layer of nodes to which the connection
connects.

727 :param nu: Learning rate for both pre - and post -synaptic
events.

728 :param reduction: Method for reducing parameter updates
along the minibatch

729 dimension.
730 :param weight_decay: Constant multiple to decay weights by

on each iteration.
731

732 Keyword arguments:
733

734 :param torch.Tensor w: Strengths of synapses.
735 :param float sparsity: Fraction of sparse connections to use

.
736 :param LearningRule update_rule: Modifies connection

parameters according to
737 some rule.
738 :param float wmin: Minimum allowed value on the connection

weights.
739 :param float wmax: Maximum allowed value on the connection

weights.
740 :param float norm: Total weight per target neuron

normalization constant.
741 """
742 super().__init__(source , target , nu, reduction , weight_decay

, ** kwargs)
743

744 w = kwargs.get("w", None)
745 self.sparsity = kwargs.get("sparsity", None)
746

747 assert (

156

748 w is not None
749 and self.sparsity is None
750 or w is None
751 and self.sparsity is not None
752), ’Only one of "weights" or "sparsity" must be specified ’
753

754 if w is None and self.sparsity is not None:
755 i = torch.bernoulli(
756 1 - self.sparsity * torch.ones(* source.shape , *

target.shape)
757)
758 if self.wmin == -np.inf or self.wmax == np.inf:
759 v = torch.clamp(
760 torch.rand(* source.shape , *target.shape)[i.byte

()],
761 self.wmin ,
762 self.wmax ,
763)
764 else:
765 v = self.wmin + torch.rand(* source.shape , *target.

shape)[i.byte()] * (
766 self.wmax - self.wmin
767)
768 w = torch.sparse.FloatTensor(i.nonzero ().t(), v)
769 elif w is not None and self.sparsity is None:
770 assert w.is_sparse , "Weight matrix is not sparse (see

torch.sparse module)"
771 if self.wmin != -np.inf or self.wmax != np.inf:
772 w = torch.clamp(w, self.wmin , self.wmax)
773

774 self.w = Parameter(w, requires_grad=False)
775

776 def compute(self , s: torch.Tensor) -> torch.Tensor:
777 # language=rst
778 """
779 Compute convolutional pre -activations given spikes using

layer weights.
780

781 :param s: Incoming spikes.
782 :return: Incoming spikes multiplied by synaptic weights (

with or without
783 decaying spike activation).
784 """
785 return torch.mm(self.w, s.unsqueeze (-1).float ()).squeeze (-1)
786

787 def update(self , ** kwargs) -> None:
788 # language=rst
789 """
790 Compute connection ’s update rule.
791 """
792 pass
793

794 def normalize(self) -> None:
795 # language=rst

157

796 """
797 Normalize weights along the first axis according to total

weight per target
798 neuron.
799 """
800 pass
801

802 def reset_state_variables(self) -> None:
803 # language=rst
804 """
805 Contains resetting logic for the connection.
806 """
807 super().reset_state_variables ()

Listing B.8: Topology

1 import os
2 import torch
3 import numpy as np
4

5 from abc import ABC
6 from typing import Union , Optional , Iterable , Dict
7

8 from .nodes import Nodes
9 from .topology import AbstractConnection

10

11

12 class AbstractMonitor(ABC):
13 # language=rst
14 """
15 Abstract base class for state variable monitors.
16 """
17

18

19 class Monitor(AbstractMonitor):
20 # language=rst
21 """
22 Records state variables of interest.
23 """
24

25 def __init__(
26 self ,
27 obj: Union[Nodes , AbstractConnection],
28 state_vars: Iterable[str],
29 time: Optional[int] = None ,
30 batch_size: int = 1,
31):
32 # language=rst
33 """
34 Constructs a ‘‘Monitor ‘‘ object.
35

36 :param obj: An object to record state variables from during
network simulation.

37 :param state_vars: Iterable of strings indicating names of

158

state variables to
38 record.
39 :param time: If not ‘‘None ‘‘, pre -allocate memory for state

variable recording.
40 """
41 super().__init__ ()
42

43 self.obj = obj
44 self.state_vars = state_vars
45 self.time = time
46 self.batch_size = batch_size
47

48 # Deal with time later , the same underlying list is used
49 self.recording = {v: [] for v in self.state_vars}
50

51 def get(self , var: str) -> torch.Tensor:
52 # language=rst
53 """
54 Return recording to user.
55

56 :param var: State variable recording to return.
57 :return: Tensor of shape ‘‘[time , n_1 , ..., n_k]‘‘, where

‘‘[n_1 , ..., n_k]‘‘ is
58 the shape of the recorded state variable.
59 """
60 return torch.cat(self.recording[var], 0)
61

62 def record(self) -> None:
63 # language=rst
64 """
65 Appends the current value of the recorded state variables to

the recording.
66 """
67 for v in self.state_vars:
68 data = getattr(self.obj , v).unsqueeze (0)
69 self.recording[v]. append(data.detach ().clone())
70

71 # remove the oldest element (first in the list)
72 if self.time is not None:
73 for v in self.state_vars:
74 if len(self.recording[v]) > self.time:
75 self.recording[v].pop (0)
76

77 def reset_state_variables(self) -> None:
78 # language=rst
79 """
80 Resets recordings to empty ‘‘torch.Tensor ‘‘s.
81 """
82 self.recording = {v: [] for v in self.state_vars}
83

84

85 class NetworkMonitor(AbstractMonitor):
86 # language=rst
87 """

159

88 Record state variables of all layers and connections.
89 """
90

91 def __init__(
92 self ,
93 network: "Network",
94 layers: Optional[Iterable[str]] = None ,
95 connections: Optional[Iterable[str]] = None ,
96 state_vars: Optional[Iterable[str]] = None ,
97 time: Optional[int] = None ,
98):
99 # language=rst

100 """
101 Constructs a ‘‘NetworkMonitor ‘‘ object.
102

103 :param network: Network to record state variables from.
104 :param layers: Layers to record state variables from.
105 :param connections: Connections to record state variables

from.
106 :param state_vars: List of strings indicating names of state

variables to
107 record.
108 :param time: If not ‘‘None ‘‘, pre -allocate memory for state

variable recording.
109 """
110 super().__init__ ()
111

112 self.network = network
113 self.layers = layers if layers is not None else list(self.

network.layers.keys())
114 self.connections = (
115 connections
116 if connections is not None
117 else list(self.network.connections.keys())
118)
119 self.state_vars = state_vars if state_vars is not None else

("v", "s", "w")
120 self.time = time
121

122 if self.time is not None:
123 self.i = 0
124

125 # Initialize empty recording.
126 self.recording = {k: {} for k in self.layers + self.

connections}
127

128 # If no simulation time is specified , specify 0-dimensional
recordings.

129 if self.time is None:
130 for v in self.state_vars:
131 for l in self.layers:
132 if hasattr(self.network.layers[l], v):
133 self.recording[l][v] = torch.Tensor ()
134

160

135 for c in self.connections:
136 if hasattr(self.network.connections[c], v):
137 self.recording[c][v] = torch.Tensor ()
138

139 # If simulation time is specified , pre -allocate recordings
in memory for speed.

140 else:
141 for v in self.state_vars:
142 for l in self.layers:
143 if hasattr(self.network.layers[l], v):
144 self.recording[l][v] = torch.zeros(
145 self.time , *getattr(self.network.layers[

l], v).size()
146)
147

148 for c in self.connections:
149 if hasattr(self.network.connections[c], v):
150 self.recording[c][v] = torch.zeros(
151 self.time , *getattr(self.network.

connections[c], v).size()
152)
153

154 def get(self) -> Dict[str , Dict[str , Union[Nodes ,
AbstractConnection]]]:

155 # language=rst
156 """
157 Return entire recording to user.
158

159 :return: Dictionary of dictionary of all layers ’ and
connections ’ recorded

160 state variables.
161 """
162 return self.recording
163

164 def record(self) -> None:
165 # language=rst
166 """
167 Appends the current value of the recorded state variables to

the recording.
168 """
169 if self.time is None:
170 for v in self.state_vars:
171 for l in self.layers:
172 if hasattr(self.network.layers[l], v):
173 data = getattr(self.network.layers[l], v).

unsqueeze (0).float ()
174 self.recording[l][v] = torch.cat(
175 (self.recording[l][v], data), 0
176)
177

178 for c in self.connections:
179 if hasattr(self.network.connections[c], v):
180 data = getattr(self.network.connections[c],

v).unsqueeze (0)

161

181 self.recording[c][v] = torch.cat(
182 (self.recording[c][v], data), 0
183)
184

185 else:
186 for v in self.state_vars:
187 for l in self.layers:
188 if hasattr(self.network.layers[l], v):
189 data = getattr(self.network.layers[l], v).

float().unsqueeze (0)
190 self.recording[l][v] = torch.cat(
191 (self.recording[l][v][1:]. type(data.type

()), data), 0
192)
193

194 for c in self.connections:
195 if hasattr(self.network.connections[c], v):
196 data = getattr(self.network.connections[c],

v).unsqueeze (0)
197 self.recording[c][v] = torch.cat(
198 (self.recording[c][v][1:]. type(data.type

()), data), 0
199)
200

201 self.i += 1
202

203 def save(self , path: str , fmt: str = "npz") -> None:
204 # language=rst
205 """
206 Write the recording dictionary out to file.
207

208 :param path: The directory to which to write the monitor ’s
recording.

209 :param fmt: Type of file to write to disk. One of ‘‘"pickle
"‘‘ or ‘‘"npz"‘‘.

210 """
211 if not os.path.exists(os.path.dirname(path)):
212 os.makedirs(os.path.dirname(path))
213

214 if fmt == "npz":
215 # Build a list of arrays to write to disk.
216 arrays = {}
217 for o in self.recording:
218 if type(o) == tuple:
219 arrays.update(
220 {
221 "_".join(["-".join(o), v]): self.

recording[o][v]
222 for v in self.recording[o]
223 }
224)
225 elif type(o) == str:
226 arrays.update(
227 {

162

228 "_".join([o, v]): self.recording[o][v]
229 for v in self.recording[o]
230 }
231)
232

233 np.savez_compressed(path , ** arrays)
234

235 elif fmt == "pickle":
236 with open(path , "wb") as f:
237 torch.save(self.recording , f)
238

239 def reset_state_variables(self) -> None:
240 # language=rst
241 """
242 Resets recordings to empty ‘‘torch.Tensors ‘‘.
243 """
244 # Reset to empty recordings
245 self.recording = {k: {} for k in self.layers + self.

connections}
246

247 if self.time is not None:
248 self.i = 0
249

250 # If no simulation time is specified , specify 0-dimensional
recordings.

251 if self.time is None:
252 for v in self.state_vars:
253 for l in self.layers:
254 if hasattr(self.network.layers[l], v):
255 self.recording[l][v] = torch.Tensor ()
256

257 for c in self.connections:
258 if hasattr(self.network.connections[c], v):
259 self.recording[c][v] = torch.Tensor ()
260

261 # If simulation time is specified , pre -allocate recordings
in memory for speed.

262 else:
263 for v in self.state_vars:
264 for l in self.layers:
265 if hasattr(self.network.layers[l], v):
266 self.recording[l][v] = torch.zeros(
267 self.time , *getattr(self.network.layers[

l], v).size()
268)
269

270 for c in self.connections:
271 if hasattr(self.network.connections[c], v):
272 self.recording[c][v] = torch.zeros(
273 self.time , *getattr(self.network.layers[

c], v).size()
274)

Listing B.9: Monitors

163

B.4 Pipeline

1 from .environment_pipeline import EnvironmentPipeline
2 from .base_pipeline import BasePipeline
3 from .dataloader_pipeline import DataLoaderPipeline ,

TorchVisionDatasetPipeline
4 from . import action

Listing B.10: Initialization

1 import itertools
2 from typing import Callable , Optional , Tuple , Dict
3

4 import torch
5

6 from .base_pipeline import BasePipeline
7 from .. analysis.pipeline_analysis import MatplotlibAnalyzer
8 from .. environment import Environment
9 from .. network import Network

10 from .. network.nodes import AbstractInput
11 from .. network.monitors import Monitor
12

13

14 class EnvironmentPipeline(BasePipeline):
15 # language=rst
16 """
17 Abstracts the interaction between ‘‘Network ‘‘, ‘‘Environment ‘‘,

and environment
18 feedback action.
19 """
20

21 def __init__(
22 self ,
23 network: Network ,
24 environment: Environment ,
25 action_function: Optional[Callable] = None ,
26 **kwargs ,
27):
28 # language=rst
29 """
30 Initializes the pipeline.
31

32 :param network: Arbitrary network object.
33 :param environment: Arbitrary environment.
34 :param action_function: Function to convert network outputs

into environment
35 inputs.
36

37 Keyword arguments:
38

39 :param int num_episodes: Number of episodes to train for.
Defaults to 100.

40 :param str output: String name of the layer from which to
take output.

164

41 :param int render_interval: Interval to render the
environment.

42 :param int reward_delay: How many iterations to delay
delivery of reward.

43 :param int time: Time for which to run the network. Defaults
to the network ’s

44 timestep.
45 """
46 super().__init__(network , ** kwargs)
47

48 self.episode = 0
49

50 self.env = environment
51 self.action_function = action_function
52

53 self.accumulated_reward = 0.0
54 self.reward_list = []
55

56 # Setting kwargs.
57 self.num_episodes = kwargs.get("num_episodes", 100)
58 self.output = kwargs.get("output", None)
59 self.render_interval = kwargs.get("render_interval", None)
60 self.reward_delay = kwargs.get("reward_delay", None)
61 self.time = kwargs.get("time", int(network.dt))
62

63 if self.reward_delay is not None:
64 assert self.reward_delay > 0
65 self.rewards = torch.zeros(self.reward_delay)
66

67 # Set up for multiple layers of input layers.
68 self.inputs = [
69 name
70 for name , layer in network.layers.items()
71 if isinstance(layer , AbstractInput)
72]
73

74 self.action = None
75

76 self.voltage_record = None
77 self.threshold_value = None
78 self.reward_plot = None
79

80 self.first = True
81 self.analyzer = MatplotlibAnalyzer (** self.plot_config)
82

83 if self.output is not None:
84 self.network.add_monitor(
85 Monitor(self.network.layers[self.output], ["s"]),

self.output
86)
87

88 self.spike_record = {
89 self.output: torch.zeros ((self.time , self.env.

action_space.n))

165

90 }
91

92 def init_fn(self) -> None:
93 pass
94

95 def train(self , ** kwargs) -> None:
96 # language=rst
97 """
98 Trains for the specified number of episodes. Each episode

can be of arbitrary
99 length.

100 """
101 while self.episode < self.num_episodes:
102 self.reset_state_variables ()
103

104 for _ in itertools.count ():
105 obs , reward , done , info = self.env_step ()
106

107 self.step((obs , reward , done , info), ** kwargs)
108

109 if done:
110 break
111

112 print(
113 f"Episode: {self.episode} - "
114 f"accumulated reward: {self.accumulated_reward :.2f}"
115)
116 self.episode += 1
117

118 def env_step(self) -> Tuple[torch.Tensor , float , bool , Dict]:
119 # language=rst
120 """
121 Single step of the environment which includes rendering ,

getting and performing
122 the action , and accumulating/delaying rewards.
123

124 :return: An OpenAI ‘‘gym ‘‘ compatible tuple with modified
reward and info.

125 """
126 # Render game.
127 if (
128 self.render_interval is not None
129 and self.step_count % self.render_interval == 0
130):
131 self.env.render ()
132

133 # Choose action based on output neuron spiking.
134 if self.action_function is not None:
135 self.action = self.action_function(self , output=self.

output)
136

137 # Run a step of the environment.
138 obs , reward , done , info = self.env.step(self.action)
139

166

140 # Set reward in case of delay.
141 if self.reward_delay is not None:
142 self.rewards = torch.tensor ([reward , *self.rewards [1:]])

.float()
143 reward = self.rewards [-1]
144

145 # Accumulate reward.
146 self.accumulated_reward += reward
147

148 info["accumulated_reward"] = self.accumulated_reward
149

150 return obs , reward , done , info
151

152 def step_(
153 self , gym_batch: Tuple[torch.Tensor , float , bool , Dict], **

kwargs
154) -> None:
155 # language=rst
156 """
157 Run a single iteration of the network and update it and the

reward list when
158 done.
159

160 :param gym_batch: An OpenAI ‘‘gym ‘‘ compatible tuple.
161 """
162 obs , reward , done , info = gym_batch
163

164 # Place the observations into the inputs.
165 obs_shape = [1] * len(obs.shape [1:])
166 inputs = {k: obs.repeat(self.time , *obs_shape) for k in self

.inputs}
167

168 # Run the network on the spike train -encoded inputs.
169 self.network.run(inputs=inputs , time=self.time , reward=

reward , ** kwargs)
170

171 if self.output is not None:
172 self.spike_record[self.output] = (
173 self.network.monitors[self.output].get("s").float ()
174)
175

176 if done:
177 if self.network.reward_fn is not None:
178 self.network.reward_fn.update(
179 accumulated_reward=self.accumulated_reward ,
180 steps=self.step_count ,
181 **kwargs ,
182)
183 self.reward_list.append(self.accumulated_reward)
184

185 def reset_state_variables(self) -> None:
186 # language=rst
187 """
188 Reset the pipeline.

167

189 """
190 self.env.reset()
191 self.network.reset_state_variables ()
192 self.accumulated_reward = 0.0
193 self.step_count = 0
194

195 def plots(self , gym_batch: Tuple[torch.Tensor , float , bool , Dict
], *args) -> None:

196 # language=rst
197 """
198 Plot the encoded input , layer spikes , and layer voltages.
199

200 :param gym_batch: An OpenAI ‘‘gym ‘‘ compatible tuple.
201 """
202 obs , reward , done , info = gym_batch
203

204 for key , item in self.plot_config.items():
205 if key == "obs_step" and item is not None:
206 if self.step_count % item == 0:
207 self.analyzer.plot_obs(obs[0, ...]. sum (0))
208 elif key == "data_step" and item is not None:
209 if self.step_count % item == 0:
210 self.analyzer.plot_spikes(self.get_spike_data ())
211 self.analyzer.plot_voltages (*self.

get_voltage_data ())
212 elif key == "reward_eps" and item is not None:
213 if self.episode % item == 0 and done:
214 self.analyzer.plot_reward(self.reward_list)
215

216 self.analyzer.finalize_step ()

Listing B.11: Environmental pipeline

1 import time
2 from typing import Tuple , Dict , Any
3

4 import torch
5 from torch._six import container_abcs , string_classes
6

7 from .. network import Network
8 from .. network.monitors import Monitor
9

10

11 def recursive_to(item , device):
12 # language=rst
13 """
14 Recursively transfers everything contained in item to the target
15 device.
16

17 :param item: An individual tensor or container of tensors.
18 :param device: ‘‘torch.device ‘‘ pointing to ‘‘"cuda"‘‘ or ‘‘"cpu

"‘‘.
19

20 :return: A version of the item that has been sent to a device.

168

21 """
22

23 if isinstance(item , torch.Tensor):
24 return item.to(device)
25 elif isinstance(item , (string_classes , int , float , bool)):
26 return item
27 elif isinstance(item , container_abcs.Mapping):
28 return {key: recursive_to(item[key], device) for key in item

}
29 elif isinstance(item , tuple) and hasattr(item , "_fields"):
30 return type(item)(*(recursive_to(i, device) for i in item))
31 elif isinstance(item , container_abcs.Sequence):
32 return [recursive_to(i, device) for i in item]
33 else:
34 raise NotImplementedError(f"Target type {type(item)} not

supported.")
35

36

37 class BasePipeline:
38 # language=rst
39 """
40 A generic pipeline that handles high level functionality.
41 """
42

43 def __init__(self , network: Network , ** kwargs) -> None:
44 # language=rst
45 """
46 Initializes the pipeline.
47

48 :param network: Arbitrary network object , will be managed by
the

49 ‘‘BasePipeline ‘‘ class.
50

51 Keyword arguments:
52

53 :param int save_interval: How often to save the network to
disk.

54 :param str save_dir: Directory to save network object to.
55 :param Dict[str , Any] plot_config: Dict containing the plot

configuration.
56 Includes length , type (‘‘"color"‘‘ or ‘‘"line"‘‘), and

interval per plot
57 type.
58 :param int print_interval: Interval to print text output.
59 :param bool allow_gpu: Allows automatic transfer to the GPU.
60 """
61 self.network = network
62

63 # Network saving handles caching of intermediate results.
64 self.save_dir = kwargs.get("save_dir", "network.pt")
65 self.save_interval = kwargs.get("save_interval", None)
66

67 # Handles plotting of all layer spikes and voltages.
68 # This constructs monitors at every level.

169

69 self.plot_config = kwargs.get(
70 "plot_config", {"data_step": None , "data_length": 10}
71)
72

73 if self.plot_config["data_step"] is not None:
74 for l in self.network.layers:
75 self.network.add_monitor(
76 Monitor(
77 self.network.layers[l], "s", self.

plot_config["data_length"]
78),
79 name=f"{l}_spikes",
80)
81 if hasattr(self.network.layers[l], "v"):
82 self.network.add_monitor(
83 Monitor(
84 self.network.layers[l], "v", self.

plot_config["data_length"]
85),
86 name=f"{l}_voltages",
87)
88

89 self.print_interval = kwargs.get("print_interval", None)
90 self.test_interval = kwargs.get("test_interval", None)
91 self.step_count = 0
92 self.init_fn ()
93 self.clock = time.time()
94 self.allow_gpu = kwargs.get("allow_gpu", True)
95

96 if torch.cuda.is_available () and self.allow_gpu:
97 self.device = torch.device("cuda")
98 else:
99 self.device = torch.device("cpu")

100

101 self.network.to(self.device)
102

103 def reset_state_variables(self) -> None:
104 # language=rst
105 """
106 Reset the pipeline.
107 """
108 self.network.reset_state_variables ()
109 self.step_count = 0
110

111 def step(self , batch: Any , ** kwargs) -> Any:
112 # language=rst
113 """
114 Single step of any pipeline at a high level.
115

116 :param batch: A batch of inputs to be handed to the ‘‘step_
()‘‘ function.

117 Standard in subclasses of ‘‘BasePipeline ‘‘.
118 :return: The output from the subclass ’s ‘‘step_ ()‘‘ method ,

which could be

170

119 anything. Passed to plotting to accommodate this.
120 """
121 self.step_count += 1
122

123 batch = recursive_to(batch , self.device)
124 step_out = self.step_(batch , ** kwargs)
125

126 if (
127 self.print_interval is not None
128 and self.step_count % self.print_interval == 0
129):
130 print(
131 f"Iteration: {self.step_count} (Time: {time.time() -

self.clock :.4f})"
132)
133 self.clock = time.time()
134

135 self.plots(batch , step_out)
136

137 if self.save_interval is not None and self.step_count % self
.save_interval == 0:

138 self.network.save(self.save_dir)
139

140 if self.test_interval is not None and self.step_count % self
.test_interval == 0:

141 self.test()
142

143 return step_out
144

145 def get_spike_data(self) -> Dict[str , torch.Tensor]:
146 # language=rst
147 """
148 Get the spike data from all layers in the pipeline ’s network

.
149

150 :return: A dictionary containing all spike monitors from the
network.

151 """
152 return {
153 l: self.network.monitors[f"{l}_spikes"].get("s")
154 for l in self.network.layers
155 }
156

157 def get_voltage_data(
158 self
159) -> Tuple[Dict[str , torch.Tensor], Dict[str , torch.Tensor]]:
160 # language=rst
161 """
162 Get the voltage data and threshold value from all applicable

layers in the
163 pipeline ’s network.
164

165 :return: Two dictionaries containing the voltage data and
threshold values from

171

166 the network.
167 """
168 voltage_record = {}
169 threshold_value = {}
170 for l in self.network.layers:
171 if hasattr(self.network.layers[l], "v"):
172 voltage_record[l] = self.network.monitors[f"{l}

_voltages"].get("v")
173 if hasattr(self.network.layers[l], "thresh"):
174 threshold_value[l] = self.network.layers[l]. thresh
175

176 return voltage_record , threshold_value
177

178 def step_(self , batch: Any , ** kwargs) -> Any:
179 # language=rst
180 """
181 Perform a pass of the network given the input batch.
182

183 :param batch: The current batch. This could be anything as
long as the subclass

184 agrees upon the format in some way.
185 :return: Any output that is need for recording purposes.
186 """
187 raise NotImplementedError("You need to provide a step_

method.")
188

189 def train(self) -> None:
190 # language=rst
191 """
192 A fully self -contained training loop.
193 """
194 raise NotImplementedError("You need to provide a train

method.")
195

196 def test(self) -> None:
197 # language=rst
198 """
199 A fully self contained test function.
200 """
201 raise NotImplementedError("You need to provide a test method

.")
202

203 def init_fn(self) -> None:
204 # language=rst
205 """
206 Placeholder function for subclass -specific actions that need

to
207 happen during the construction of the ‘‘BasePipeline ‘‘.
208 """
209 raise NotImplementedError("You need to provide an init_fn

method.")
210

211 def plots(self , batch: Any , step_out: Any) -> None:
212 # language=rst

172

213 """
214 Create any plots and logs for a step given the input batch

and step output.
215

216 :param batch: The current batch. This could be anything as
long as the subclass

217 agrees upon the format in some way.
218 :param step_out: The output from the ‘‘step_ ()‘‘ method.
219 """
220 raise NotImplementedError("You need to provide a plots

method.")

Listing B.12: Base pipeline

1 from typing import Optional , Dict
2

3 import torch
4 from torch.utils.data import Dataset
5 from tqdm import tqdm
6

7 from .. network import Network
8 from .base_pipeline import BasePipeline
9 from .. analysis.pipeline_analysis import PipelineAnalyzer

10 from .. datasets import DataLoader
11

12

13 class DataLoaderPipeline(BasePipeline):
14 # language=rst
15 """
16 A generic ‘‘DataLoader ‘‘ pipeline that leverages the ‘‘torch.

utils.data ‘‘ setup.
17 This still needs to be subclassed for specific implementations

for functions given
18 the dataset that will be used. An example can be seen in
19 ‘‘TorchVisionDatasetPipeline ‘‘.
20 """
21

22 def __init__(
23 self ,
24 network: Network ,
25 train_ds: Dataset ,
26 test_ds: Optional[Dataset] = None ,
27 ** kwargs
28) -> None:
29 # language=rst
30 """
31 Initializes the pipeline.
32

33 :param network: Arbitrary ‘‘network ‘‘ object.
34 :param train_ds: Arbitrary ‘‘torch.utils.data.Dataset ‘‘

object.
35 :param test_ds: Arbitrary ‘‘torch.utils.data.Dataset ‘‘

object.
36 """

173

37 super().__init__(network , ** kwargs)
38

39 self.train_ds = train_ds
40 self.test_ds = test_ds
41

42 self.num_epochs = kwargs.get("num_epochs", 10)
43 self.batch_size = kwargs.get("batch_size", 1)
44 self.num_workers = kwargs.get("num_workers", 0)
45 self.pin_memory = kwargs.get("pin_memory", True)
46 self.shuffle = kwargs.get("shuffle", True)
47

48 def train(self) -> None:
49 # language=rst
50 """
51 Training loop that runs for the set number of epochs and

creates a new
52 ‘‘DataLoader ‘‘ at each epoch.
53 """
54 for epoch in range(self.num_epochs):
55 train_dataloader = DataLoader(
56 self.train_ds ,
57 batch_size=self.batch_size ,
58 num_workers=self.num_workers ,
59 pin_memory=self.pin_memory ,
60 shuffle=self.shuffle ,
61)
62

63 for step , batch in enumerate(
64 tqdm(
65 train_dataloader ,
66 desc="Epoch %d/%d" % (epoch + 1, self.num_epochs

),
67 total=len(self.train_ds) // self.batch_size ,
68)
69):
70 self.step(batch)
71

72 def test(self) -> None:
73 raise NotImplementedError("You need to provide a test

function.")
74

75

76 class TorchVisionDatasetPipeline(DataLoaderPipeline):
77 # language=rst
78 """
79 An example implementation of ‘‘DataLoaderPipeline ‘‘ that runs

all of the datasets
80 inside of ‘‘bindsnet.datasets ‘‘ that inherit from an instance of

a
81 ‘‘torchvision.datasets ‘‘. These are documented in ‘‘bindsnet/

datasets/README.md ‘‘.
82 This specific class just runs an unsupervised network.
83 """
84

174

85 def __init__(
86 self ,
87 network: Network ,
88 train_ds: Dataset ,
89 pipeline_analyzer: Optional[PipelineAnalyzer] = None ,
90 ** kwargs
91) -> None:
92 # language=rst
93 """
94 Initializes the pipeline.
95

96 :param network: Arbitrary ‘‘network ‘‘ object.
97 :param train_ds: A ‘‘torchvision.datasets ‘‘ wrapper dataset

from
98 ‘‘bindsnet.datasets ‘‘.
99

100 Keyword arguments:
101

102 :param str input_layer: Layer of the network that receives
input.

103 """
104 super().__init__(network , train_ds , None , ** kwargs)
105

106 self.input_layer = kwargs.get("input_layer", "X")
107 self.pipeline_analyzer = pipeline_analyzer
108

109 def step_(self , batch: Dict[str , torch.Tensor], ** kwargs) ->
None:

110 # language=rst
111 """
112 Perform a pass of the network given the input batch.

Unsupervised training
113 (implying everything is stored inside of the ‘‘network ‘‘

object , therefore
114 returns ‘‘None ‘‘.
115

116 :param batch: A dictionary of the current batch. Includes
image , label and

117 encoded versions.
118 """
119 self.network.reset_state_variables ()
120 inputs = {self.input_layer: batch["encoded_image"]}
121 self.network.run(inputs , time=batch["encoded_image"].shape

[0])
122

123 def init_fn(self) -> None:
124 pass
125

126 def plots(self , batch: Dict[str , torch.Tensor], *args) -> None:
127 # language=rst
128 """
129 Create any plots and logs for a step given the input batch.
130

131 :param batch: A dictionary of the current batch. Includes

175

image , label and
132 encoded versions.
133 """
134 if self.pipeline_analyzer is not None:
135 self.pipeline_analyzer.plot_obs(
136 batch["encoded_image"][0, ...]. sum (0), step=self.

step_count
137)
138

139 self.pipeline_analyzer.plot_spikes(
140 self.get_spike_data (), step=self.step_count
141)
142

143 vr , tv = self.get_voltage_data ()
144 self.pipeline_analyzer.plot_voltages(vr , tv, step=self.

step_count)
145

146 self.pipeline_analyzer.finalize_step ()
147

148 def test_step(self):
149 pass

Listing B.13: Data-loader pipeline

1 import torch
2 import numpy as np
3

4 from . import EnvironmentPipeline
5

6

7 def select_multinomial(pipeline: EnvironmentPipeline , ** kwargs) ->
int:

8 # language=rst
9 """

10 Selects an action probabilistically based on spiking activity
from a network layer.

11

12 :param pipeline: EnvironmentPipeline with environment that has
an integer action

13 space.
14 :return: Action sampled from multinomial over activity of

similarly -sized output
15 layer.
16

17 Keyword arguments:
18

19 :param str output: Name of output layer whose activity to base
action selection on.

20 """
21 try:
22 output = kwargs["output"]
23 except KeyError:
24 raise KeyError(’select_multinomial () requires an "output"

layer argument.’)

176

25

26 output = pipeline.network.layers[output]
27 action_space = pipeline.env.action_space
28

29 assert (
30 output.n % action_space.n == 0
31), f"Output layer size of {output.n} is not divisible by action

space size of {action_space.n}."
32

33 pop_size = int(output.n / action_space.n)
34 spikes = output.s
35 _sum = spikes.sum().float ()
36

37 # Choose action based on population ’s spiking.
38 if _sum == 0:
39 action = np.random.choice(pipeline.env.action_space.n)
40 else:
41 pop_spikes = torch.tensor(
42 [
43 spikes [(i * pop_size) : (i * pop_size) + pop_size].

sum()
44 for i in range(action_space.n)
45]
46)
47 action = torch.multinomial ((pop_spikes.float () / _sum).view

(-1), 1)[0]. item()
48

49 return action
50

51

52 def select_softmax(pipeline: EnvironmentPipeline , ** kwargs) -> int:
53 # language=rst
54 """
55 Selects an action using softmax function based on spiking from a

network layer.
56

57 :param pipeline: EnvironmentPipeline with environment that has
an integer action

58 space and :code:‘spike_record ‘ set.
59 :return: Action sampled from softmax over activity of similarly -

sized output layer.
60

61 Keyword arguments:
62

63 :param str output: Name of output layer whose activity to base
action selection on.

64 """
65 try:
66 output = kwargs["output"]
67 except KeyError:
68 raise KeyError(’select_softmax () requires an "output" layer

argument.’)
69

70 assert (

177

71 pipeline.network.layers[output].n == pipeline.env.
action_space.n

72), "Output layer size is not equal to the size of the action
space."

73

74 assert hasattr(
75 pipeline , "spike_record"
76), "EnvironmentPipeline is missing the attribute: spike_record."
77

78 spikes = torch.sum(pipeline.spike_record[output], dim=0)
79 probabilities = torch.softmax(spikes , dim=0)
80 return torch.multinomial(probabilities , num_samples =1).item()
81

82

83 def select_random(pipeline: EnvironmentPipeline , ** kwargs) -> int:
84 # language=rst
85 """
86 Selects an action randomly from the action space.
87

88 :param pipeline: EnvironmentPipeline with environment that has
an integer action

89 space.
90 :return: Action randomly sampled over size of pipeline ’s action

space.
91 """
92 # Choose action randomly from the action space.
93 return np.random.choice(pipeline.env.action_space.n)

Listing B.14: Action

B.5 Encoding

1 from .encodings import single , repeat , bernoulli , poisson ,
rank_order

2 from .loaders import bernoulli_loader , poisson_loader ,
rank_order_loader

3 from .encoders import (
4 Encoder ,
5 NullEncoder ,
6 SingleEncoder ,
7 RepeatEncoder ,
8 BernoulliEncoder ,
9 PoissonEncoder ,

10 RankOrderEncoder ,
11)

Listing B.15: Initialization

1 from typing import Optional , Union , Iterable , Iterator
2

3 import torch
4

5 from .encodings import bernoulli , poisson , rank_order
6

178

7

8 def bernoulli_loader(
9 data: Union[torch.Tensor , Iterable[torch.Tensor]],

10 time: Optional[int] = None ,
11 dt: float = 1.0,
12 ** kwargs
13) -> Iterator[torch.Tensor]:
14 # language=rst
15 """
16 Lazily invokes ‘‘bindsnet.encoding.bernoulli ‘‘ to iteratively

encode a sequence of
17 data.
18

19 :param data: Tensor of shape ‘‘[n_samples , n_1 , ..., n_k]‘‘.
20 :param time: Length of Bernoulli spike train per input variable.
21 :param dt: Simulation time step.
22 :return: Tensors of shape ‘‘[time , n_1 , ..., n_k]‘‘ of Bernoulli

-distributed spikes.
23

24 Keyword arguments:
25

26 :param float max_prob: Maximum probability of spike per
Bernoulli trial.

27 """
28 # Setting kwargs.
29 max_prob = kwargs.get("dt", 1.0)
30

31 for i in range(len(data)):
32 # Encode datum as Bernoulli spike trains.
33 yield bernoulli(datum=data[i], time=time , dt=dt , max_prob=

max_prob)
34

35

36 def poisson_loader(
37 data: Union[torch.Tensor , Iterable[torch.Tensor]],
38 time: int ,
39 dt: float = 1.0,
40 ** kwargs
41) -> Iterator[torch.Tensor]:
42 # language=rst
43 """
44 Lazily invokes ‘‘bindsnet.encoding.poisson ‘‘ to iteratively

encode a sequence of
45 data.
46

47 :param data: Tensor of shape ‘‘[n_samples , n_1 , ..., n_k]‘‘.
48 :param time: Length of Poisson spike train per input variable.
49 :param dt: Simulation time step.
50 :return: Tensors of shape ‘‘[time , n_1 , ..., n_k]‘‘ of Poisson -

distributed spikes.
51 """
52 for i in range(len(data)):
53 # Encode datum as Poisson spike trains.
54 yield poisson(datum=data[i], time=time , dt=dt)

179

55

56

57 def rank_order_loader(
58 data: Union[torch.Tensor , Iterable[torch.Tensor]],
59 time: int ,
60 dt: float = 1.0,
61 ** kwargs
62) -> Iterator[torch.Tensor]:
63 # language=rst
64 """
65 Lazily invokes ‘‘bindsnet.encoding.rank_order ‘‘ to iteratively

encode a sequence of
66 data.
67

68 :param data: Tensor of shape ‘‘[n_samples , n_1 , ..., n_k]‘‘.
69 :param time: Length of rank order -encoded spike train per input

variable.
70 :param dt: Simulation time step.
71 :return: Tensors of shape ‘‘[time , n_1 , ..., n_k]‘‘ of rank

order -encoded spikes.
72 """
73 for i in range(len(data)):
74 # Encode datum as rank order -encoded spike trains.
75 yield rank_order(datum=data[i], time=time , dt=dt)

Listing B.16: Loaders

1 from . import encodings
2

3

4 class Encoder:
5 # language=rst
6 """
7 Base class for spike encodings transforms.
8

9 Calls ‘‘self.enc ‘‘ from the subclass and passes whatever
arguments were provided.

10 ‘‘self.enc ‘‘ must be callable with ‘‘torch.Tensor ‘‘, ‘‘*args ‘‘,
‘‘**kwargs ‘‘

11 """
12

13 def __init__(self , *args , ** kwargs) -> None:
14 self.enc_args = args
15 self.enc_kwargs = kwargs
16

17 def __call__(self , img):
18 return self.enc(img , *self.enc_args , **self.enc_kwargs)
19

20

21 class NullEncoder(Encoder):
22 # language=rst
23 """
24 Pass through of the datum that was input.
25

180

26 .. note::
27 This is not a real spike encoder. Be careful with the usage

of this class.
28 """
29

30 def __init__(self):
31 super().__init__ ()
32

33 def __call__(self , img):
34 return img
35

36

37 class SingleEncoder(Encoder):
38 def __init__(self , time: int , dt: float = 1.0, sparsity: float =

0.5, ** kwargs):
39 # language=rst
40 """
41 Creates a callable SingleEncoder which encodes as defined in
42 ‘‘bindsnet.encoding.single ‘‘
43

44 :param time: Length of single spike train per input variable
.

45 :param dt: Simulation time step.
46 :param sparsity: Sparsity of the input representation. 0 for

no spikes and 1 for
47 all spikes.
48 """
49 super().__init__(time , dt=dt , sparsity=sparsity , ** kwargs)
50

51 self.enc = encodings.single
52

53

54 class RepeatEncoder(Encoder):
55 def __init__(self , time: int , dt: float = 1.0, ** kwargs):
56 # language=rst
57 """
58 Creates a callable ‘‘RepeatEncoder ‘‘ which encodes as

defined in
59 ‘‘bindsnet.encoding.repeat ‘‘
60

61 :param time: Length of repeat spike train per input variable
.

62 :param dt: Simulation time step.
63 """
64 super().__init__(time , dt=dt , ** kwargs)
65

66 self.enc = encodings.repeat
67

68

69 class BernoulliEncoder(Encoder):
70 def __init__(self , time: int , dt: float = 1.0, ** kwargs):
71 # language=rst
72 """
73 Creates a callable ‘‘BernoulliEncoder ‘‘ which encodes as

181

defined in
74 :code:‘bindsnet.encoding.bernoulli ‘
75

76 :param time: Length of Bernoulli spike train per input
variable.

77 :param dt: Simulation time step.
78

79 Keyword arguments:
80

81 :param float max_prob: Maximum probability of spike per time
step.

82 """
83 super().__init__(time , dt=dt , ** kwargs)
84

85 self.enc = encodings.bernoulli
86

87

88 class PoissonEncoder(Encoder):
89 def __init__(self , time: int , dt: float = 1.0, ** kwargs):
90 # language=rst
91 """
92 Creates a callable PoissonEncoder which encodes as defined

in
93 ‘‘bindsnet.encoding.poisson ‘
94

95 :param time: Length of Poisson spike train per input
variable.

96 :param dt: Simulation time step.
97 """
98 super().__init__(time , dt=dt , ** kwargs)
99

100 self.enc = encodings.poisson
101

102

103 class RankOrderEncoder(Encoder):
104 def __init__(self , time: int , dt: float = 1.0, ** kwargs):
105 # language=rst
106 """
107 Creates a callable RankOrderEncoder which encodes as defined

in
108 :code:‘bindsnet.encoding.rank_order ‘
109

110 :param time: Length of RankOrder spike train per input
variable.

111 :param dt: Simulation time step.
112 """
113 super().__init__(time , dt=dt , ** kwargs)
114

115 self.enc = encodings.rank_order

Listing B.17: Encoders

1 from typing import Optional
2

182

3 import torch
4 import numpy as np
5

6

7 def single(
8 datum: torch.Tensor , time: int , dt: float = 1.0, sparsity: float

= 0.5, ** kwargs
9) -> torch.Tensor:

10 # language=rst
11 """
12 Generates timing based single -spike encoding. Spike occurs

earlier if the
13 intensity of the input feature is higher. Features whose value

is lower than
14 threshold is remain silent.
15

16 :param datum: Tensor of shape ‘‘[n_1 , ..., n_k]‘‘.
17 :param time: Length of the input and output.
18 :param dt: Simulation time step.
19 :param sparsity: Sparsity of the input representation. 0 for no

spikes and 1 for all
20 spikes.
21 :return: Tensor of shape ‘‘[time , n_1 , ..., n_k]‘‘.
22 """
23 time = int(time / dt)
24 shape = list(datum.shape)
25 datum = np.copy(datum)
26 quantile = np.quantile(datum , 1 - sparsity)
27 s = np.zeros ([time , *shape])
28 s[0] = np.where(datum > quantile , np.ones(shape), np.zeros(shape

))
29 return torch.Tensor(s).byte()
30

31

32 def repeat(datum: torch.Tensor , time: int , dt: float = 1.0, ** kwargs
) -> torch.Tensor:

33 # language=rst
34 """
35 :param datum: Repeats a tensor along a new dimension in the 0th

position for
36 ‘‘int(time / dt)‘‘ timesteps.
37 :param time: Tensor of shape ‘‘[n_1 , ..., n_k]‘‘.
38 :param dt: Simulation time step.
39 :return: Tensor of shape ‘‘[time , n_1 , ..., n_k]‘‘ of repeated

data along the 0-th
40 dimension.
41 """
42 time = int(time / dt)
43 return datum.repeat ([time , *([1] * len(datum.shape))])
44

45

46 def bernoulli(
47 datum: torch.Tensor , time: Optional[int] = None , dt: float =

1.0, ** kwargs

183

48) -> torch.Tensor:
49 # language=rst
50 """
51 Generates Bernoulli -distributed spike trains based on input

intensity. Inputs must
52 be non -negative. Spikes correspond to successful Bernoulli

trials , with success
53 probability equal to (normalized in [0, 1]) input value.
54

55 :param datum: Tensor of shape ‘‘[n_1 , ..., n_k]‘‘.
56 :param time: Length of Bernoulli spike train per input variable.
57 :param dt: Simulation time step.
58 :return: Tensor of shape ‘‘[time , n_1 , ..., n_k]‘‘ of Bernoulli -

distributed spikes.
59

60 Keyword arguments:
61

62 :param float max_prob: Maximum probability of spike per
Bernoulli trial.

63 """
64 # Setting kwargs.
65 max_prob = kwargs.get("max_prob", 1.0)
66

67 assert 0 <= max_prob <= 1, "Maximum firing probability must be
in range [0, 1]"

68 assert (datum >= 0).all(), "Inputs must be non -negative"
69

70 shape , size = datum.shape , datum.numel ()
71 datum = datum.flatten ()
72

73 if time is not None:
74 time = int(time / dt)
75

76 # Normalize inputs and rescale (spike probability proportional
to input intensity).

77 if datum.max() > 1.0:
78 datum /= datum.max()
79

80 # Make spike data from Bernoulli sampling.
81 if time is None:
82 spikes = torch.bernoulli(max_prob * datum)
83 spikes = spikes.view(*shape)
84 else:
85 spikes = torch.bernoulli(max_prob * datum.repeat ([time , 1]))
86 spikes = spikes.view(time , *shape)
87

88 return spikes.byte()
89

90

91 def poisson(datum: torch.Tensor , time: int , dt: float = 1.0, **
kwargs) -> torch.Tensor:

92 # language=rst
93 """
94 Generates Poisson -distributed spike trains based on input

184

intensity. Inputs must be
95 non -negative , and give the firing rate in Hz. Inter -spike

intervals (ISIs) for
96 non -negative data incremented by one to avoid zero intervals

while maintaining ISI
97 distributions.
98

99 :param datum: Tensor of shape ‘‘[n_1 , ..., n_k]‘‘.
100 :param time: Length of Poisson spike train per input variable.
101 :param dt: Simulation time step.
102 :return: Tensor of shape ‘‘[time , n_1 , ..., n_k]‘‘ of Poisson -

distributed spikes.
103 """
104 assert (datum >= 0).all(), "Inputs must be non -negative"
105

106 # Get shape and size of data.
107 shape , size = datum.shape , datum.numel ()
108 datum = datum.flatten ()
109 time = int(time / dt)
110

111 # Compute firing rates in seconds as function of data intensity ,
112 # accounting for simulation time step.
113 rate = torch.zeros(size)
114 rate[datum != 0] = 1 / datum[datum != 0] * (1000 / dt)
115

116 # Create Poisson distribution and sample inter -spike intervals
117 # (incrementing by 1 to avoid zero intervals).
118 dist = torch.distributions.Poisson(rate=rate)
119 intervals = dist.sample(sample_shape=torch.Size([time + 1]))
120 intervals[:, datum != 0] += (intervals[:, datum != 0] == 0).

float()
121

122 # Calculate spike times by cumulatively summing over time
dimension.

123 times = torch.cumsum(intervals , dim=0).long()
124 times[times >= time + 1] = 0
125

126 # Create tensor of spikes.
127 spikes = torch.zeros(time + 1, size).byte()
128 spikes[times , torch.arange(size)] = 1
129 spikes = spikes [1:]
130

131 return spikes.view(time , *shape)
132

133

134 def rank_order(
135 datum: torch.Tensor , time: int , dt: float = 1.0, ** kwargs
136) -> torch.Tensor:
137 # language=rst
138 """
139 Encodes data via a rank order coding -like representation. One

spike per neuron ,
140 temporally ordered by decreasing intensity. Inputs must be non -

negative.

185

141

142 :param datum: Tensor of shape ‘‘[n_samples , n_1 , ..., n_k]‘‘.
143 :param time: Length of rank order -encoded spike train per input

variable.
144 :param dt: Simulation time step.
145 :return: Tensor of shape ‘‘[time , n_1 , ..., n_k]‘‘ of rank order

-encoded spikes.
146 """
147 assert (datum >= 0).all(), "Inputs must be non -negative"
148

149 shape , size = datum.shape , datum.numel ()
150 datum = datum.flatten ()
151 time = int(time / dt)
152

153 # Create spike times in order of decreasing intensity.
154 datum /= datum.max()
155 times = torch.zeros(size)
156 times[datum != 0] = 1 / datum[datum != 0]
157 times *= time / times.max() # Extended through simulation time.
158 times = torch.ceil(times).long()
159

160 # Create spike times tensor.
161 spikes = torch.zeros(time , size).byte()
162 for i in range(size):
163 if 0 < times[i] < time:
164 spikes[times[i] - 1, i] = 1
165

166 return spikes.reshape(time , *shape)

Listing B.18: Encodings

B.6 Conversion

1 from .conversion import (
2 Permute ,
3 FeatureExtractor ,
4 SubtractiveResetIFNodes ,
5 PassThroughNodes ,
6 PermuteConnection ,
7 ConstantPad2dConnection ,
8 data_based_normalization ,
9 ann_to_snn ,

10)

Listing B.19: Initialization

1 import torch
2 import numpy as np
3 import torch.nn as nn
4 import torch.nn.functional as F
5

6 from torch.nn.modules.utils import _pair
7

8 from copy import deepcopy

186

9 from typing import Union , Sequence , Optional , Tuple , Dict , Iterable
10

11 import bindsnet.network.nodes as nodes
12 import bindsnet.network.topology as topology
13

14 from bindsnet.network import Network
15

16

17 class Permute(nn.Module):
18 # language=rst
19 """
20 PyTorch module for the explicit permutation of a tensor ’s

dimensions in a parent
21 module ’s ‘‘forward ‘‘ pass (as opposed to ‘‘torch.permute ‘‘).
22 """
23

24 def __init__(self , dims):
25 # language=rst
26 """
27 Constructor for ‘‘Permute ‘‘ module.
28

29 :param dims: Ordering of dimensions for permutation.
30 """
31 super(Permute , self).__init__ ()
32

33 self.dims = dims
34

35 def forward(self , x):
36 # language=rst
37 """
38 Forward pass of permutation module.
39

40 :param x: Input tensor to permute.
41 :return: Permuted input tensor.
42 """
43 return x.permute (*self.dims).contiguous ()
44

45

46 class FeatureExtractor(nn.Module):
47 # language=rst
48 """
49 Special -purpose PyTorch module for the extraction of child

module ’s activations.
50 """
51

52 def __init__(self , submodule):
53 # language=rst
54 """
55 Constructor for ‘‘FeatureExtractor ‘‘ module.
56

57 :param submodule: The module who’s children modules are to
be extracted.

58 """
59 super(FeatureExtractor , self).__init__ ()

187

60

61 self.submodule = submodule
62

63 def forward(self , x: torch.Tensor) -> Dict[nn.Module , torch.
Tensor]:

64 # language=rst
65 """
66 Forward pass of the feature extractor.
67

68 :param x: Input data for the ‘‘submodule ’’.
69 :return: A dictionary mapping
70 """
71 activations = {"input": x}
72 for name , module in self.submodule._modules.items ():
73 if isinstance(module , nn.Linear):
74 x = x.view(-1, module.in_features)
75

76 x = module(x)
77 activations[name] = x
78

79 return activations
80

81

82 class SubtractiveResetIFNodes(nodes.Nodes):
83 # language=rst
84 """
85 Layer of ‘integrate -and -fire (IF) neurons
86 <http :// neuronaldynamics.epfl.ch/online/Ch1.S3.html >‘ using

reset by subtraction.
87 """
88

89 def __init__(
90 self ,
91 n: Optional[int] = None ,
92 shape: Optional[Iterable[int]] = None ,
93 traces: bool = False ,
94 traces_additive: bool = False ,
95 tc_trace: Union[float , torch.Tensor] = 20.0,
96 trace_scale: Union[float , torch.Tensor] = 1.0,
97 sum_input: bool = False ,
98 thresh: Union[float , torch.Tensor] = -52.0,
99 reset: Union[float , torch.Tensor] = -65.0,

100 refrac: Union[int , torch.Tensor] = 5,
101 lbound: float = None ,
102 **kwargs ,
103) -> None:
104 # language=rst
105 """
106 Instantiates a layer of IF neurons with the subtractive

reset mechanism from
107 ‘this paper
108 <https ://www.frontiersin.org/articles /10.3389/ fnins

.2017.00682/ full >‘_.
109

188

110 :param n: The number of neurons in the layer.
111 :param shape: The dimensionality of the layer.
112 :param traces: Whether to record spike traces.
113 :param traces_additive: Whether to record spike traces

additively.
114 :param tc_trace: Time constant of spike trace decay.
115 :param trace_scale: Scaling factor for spike trace.
116 :param sum_input: Whether to sum all inputs.
117 :param thresh: Spike threshold voltage.
118 :param reset: Post -spike reset voltage.
119 :param refrac: Refractory (non -firing) period of the neuron.
120 :param lbound: Lower bound of the voltage.
121 """
122 super().__init__(
123 n=n,
124 shape=shape ,
125 traces=traces ,
126 traces_additive=traces_additive ,
127 tc_trace=tc_trace ,
128 trace_scale=trace_scale ,
129 sum_input=sum_input ,
130)
131

132 self.register_buffer(
133 "reset", torch.tensor(reset , dtype=torch.float)
134) # Post -spike reset voltage.
135 self.register_buffer(
136 "thresh", torch.tensor(thresh , dtype=torch.float)
137) # Spike threshold voltage.
138 self.register_buffer(
139 "refrac", torch.tensor(refrac)
140) # Post -spike refractory period.
141 self.register_buffer("v", torch.FloatTensor ()) # Neuron

voltages.
142 self.register_buffer(
143 "refrac_count", torch.FloatTensor ()
144) # Refractory period counters.
145

146 self.lbound = lbound # Lower bound of voltage.
147

148 def forward(self , x: torch.Tensor) -> None:
149 # language=rst
150 """
151 Runs a single simulation step.
152

153 :param x: Inputs to the layer.
154 """
155 # Integrate input voltages.
156 self.v += (self.refrac_count == 0).float () * x
157

158 # Decrement refractory counters.
159 self.refrac_count = (self.refrac_count > 0).float() * (
160 self.refrac_count - self.dt
161)

189

162

163 # Check for spiking neurons.
164 self.s = self.v >= self.thresh
165

166 # Refractoriness and voltage reset.
167 self.refrac_count.masked_fill_(self.s, self.refrac)
168 self.v[self.s] = self.v[self.s] - self.thresh
169

170 # Voltage clipping to lower bound.
171 if self.lbound is not None:
172 self.v.masked_fill_(self.v < self.lbound , self.lbound)
173

174 super().forward(x)
175

176 def reset_state_variables(self) -> None:
177 # language=rst
178 """
179 Resets relevant state variables.
180 """
181 super().reset_state_variables ()
182 self.v.fill_(self.reset) # Neuron voltages.
183 self.refrac_count.zero_ () # Refractory period counters.
184

185 def set_batch_size(self , batch_size) -> None:
186 # language=rst
187 """
188 Sets mini -batch size. Called when layer is added to a

network.
189

190 :param batch_size: Mini -batch size.
191 """
192 super().set_batch_size(batch_size=batch_size)
193 self.v = self.reset * torch.ones(batch_size , *self.shape ,

device=self.v.device)
194 self.refrac_count = torch.zeros_like(self.v, device=self.

refrac_count.device)
195

196

197 class PassThroughNodes(nodes.Nodes):
198 # language=rst
199 """
200 Layer of ‘integrate -and -fire (IF) neurons
201 <http :// neuronaldynamics.epfl.ch/online/Ch1.S3.html >‘_ with

using reset by
202 subtraction.
203 """
204

205 def __init__(
206 self ,
207 n: Optional[int] = None ,
208 shape: Optional[Sequence[int]] = None ,
209 traces: bool = False ,
210 traces_additive: bool = False ,
211 tc_trace: Union[float , torch.Tensor] = 20.0,

190

212 trace_scale: Union[float , torch.Tensor] = 1.0,
213 sum_input: bool = False ,
214) -> None:
215 # language=rst
216 """
217 Instantiates a layer of IF neurons.
218

219 :param n: The number of neurons in the layer.
220 :param shape: The dimensionality of the layer.
221 :param traces: Whether to record spike traces.
222 :param trace_tc: Time constant of spike trace decay.
223 :param sum_input: Whether to sum all inputs.
224 """
225 super().__init__(
226 n=n,
227 shape=shape ,
228 traces=traces ,
229 traces_additive=traces_additive ,
230 tc_trace=tc_trace ,
231 trace_scale=trace_scale ,
232 sum_input=sum_input ,
233)
234 self.register_buffer("v", torch.zeros(self.shape))
235

236 def forward(self , x: torch.Tensor) -> None:
237 # language=rst
238 """
239 Runs a single simulation step.
240

241 :param inputs: Inputs to the layer.
242 :param dt: Simulation time step.
243 """
244 self.s = x
245

246 def reset_state_variables(self) -> None:
247 # language=rst
248 """
249 Resets relevant state variables.
250 """
251 self.s.zero_()
252

253

254 class PermuteConnection(topology.AbstractConnection):
255 # language=rst
256 """
257 Special -purpose connection for emulating the custom ‘‘Permute ‘‘

module in spiking
258 neural networks.
259 """
260

261 def __init__(
262 self ,
263 source: nodes.Nodes ,
264 target: nodes.Nodes ,

191

265 dims: Sequence ,
266 nu: Optional[Union[float , Sequence[float]]] = None ,
267 weight_decay: float = 0.0,
268 **kwargs ,
269) -> None:
270 # language=rst
271 """
272 Constructor for ‘‘PermuteConnection ‘‘.
273

274 :param source: A layer of nodes from which the connection
originates.

275 :param target: A layer of nodes to which the connection
connects.

276 :param dims: Order of dimensions to permute.
277 :param nu: Learning rate for both pre - and post -synaptic

events.
278 :param weight_decay: Constant multiple to decay weights by

on each iteration.
279

280 Keyword arguments:
281

282 :param function update_rule: Modifies connection parameters
according to some

283 rule.
284 :param float wmin: The minimum value on the connection

weights.
285 :param float wmax: The maximum value on the connection

weights.
286 :param float norm: Total weight per target neuron

normalization.
287 """
288 super().__init__(source , target , nu, weight_decay , ** kwargs)
289

290 self.dims = dims
291

292 def compute(self , s: torch.Tensor) -> torch.Tensor:
293 # language=rst
294 """
295 Permute input.
296

297 :param s: Input.
298 :return: Permuted input.
299 """
300 return s.permute(self.dims).float()
301

302

303 class ConstantPad2dConnection(topology.AbstractConnection):
304 # language=rst
305 """
306 Special -purpose connection for emulating the ‘‘ConstantPad2d ‘‘

PyTorch module in
307 spiking neural networks.
308 """
309

192

310 def __init__(
311 self ,
312 source: nodes.Nodes ,
313 target: nodes.Nodes ,
314 padding: Tuple ,
315 nu: Optional[Union[float , Sequence[float]]] = None ,
316 weight_decay: float = 0.0,
317 **kwargs ,
318) -> None:
319 # language=rst
320 """
321 Constructor for ‘‘ConstantPad2dConnection ‘‘.
322

323 :param source: A layer of nodes from which the connection
originates.

324 :param target: A layer of nodes to which the connection
connects.

325 :param padding: Padding of input tensors; passed to ‘‘torch.
nn.functional.pad ‘‘.

326 :param nu: Learning rate for both pre - and post -synaptic
events.

327 :param weight_decay: Constant multiple to decay weights by
on each iteration.

328

329 Keyword arguments:
330

331 :param function update_rule: Modifies connection parameters
according to some

332 rule.
333 :param float wmin: The minimum value on the connection

weights.
334 :param float wmax: The maximum value on the connection

weights.
335 :param float norm: Total weight per target neuron

normalization.
336 """
337

338 super().__init__(source , target , nu, weight_decay , ** kwargs)
339

340 self.padding = padding
341

342 def compute(self , s: torch.Tensor):
343 # language=rst
344 """
345 Pad input.
346

347 :param s: Input.
348 :return: Padding input.
349 """
350 return F.pad(s, self.padding).float()
351

352

353 def data_based_normalization(
354 ann: Union[nn.Module , str], data: torch.Tensor , percentile:

193

float = 99.9
355):
356 # language=rst
357 """
358 Use a dataset to rescale ANN weights and biases such that that

the max ReLU
359 activation is less than 1.
360

361 :param ann: Artificial neural network implemented in PyTorch.
Accepts either

362 ‘‘torch.nn.Module ‘‘ or path to network saved using ‘‘torch.
save() ‘‘.

363 :param data: Data to use to perform data -based weight
normalization of shape

364 ‘‘[n_examples , ...]‘‘.
365 :param percentile: Percentile (in ‘‘[0, 100]‘‘) of activations

to scale by in
366 data -based normalization scheme.
367 :return: Artificial neural network with rescaled weights and

biases according to
368 activations on the dataset.
369 """
370 if isinstance(ann , str):
371 ann = torch.load(ann)
372

373 assert isinstance(ann , nn.Module)
374

375 def set_requires_grad(module , value):
376 for param in module.parameters ():
377 param.requires_grad = value
378

379 set_requires_grad(ann , value=False)
380 extractor = FeatureExtractor(ann)
381 all_activations = extractor.forward(data)
382

383 prev_module = None
384 prev_factor = 1
385 for name , module in ann._modules.items():
386 if isinstance(module , nn.Sequential):
387

388 extractor2 = FeatureExtractor(module)
389 all_activations2 = extractor2.forward(data)
390 for name2 , module2 in module.named_children ():
391 activations = all_activations2[name2]
392

393 if isinstance(module2 , nn.ReLU):
394 if prev_module is not None:
395 scale_factor = np.percentile(activations.cpu

(), percentile)
396

397 prev_module.weight *= prev_factor /
scale_factor

398 prev_module.bias /= scale_factor
399

194

400 prev_factor = scale_factor
401

402 elif isinstance(module2 , nn.Linear) or isinstance(
module2 , nn.Conv2d):

403 prev_module = module2
404

405 else:
406 activations = all_activations[name]
407 if isinstance(module , nn.ReLU):
408 if prev_module is not None:
409 scale_factor = np.percentile(activations.cpu(),

percentile)
410

411 prev_module.weight *= prev_factor / scale_factor
412 prev_module.bias /= scale_factor
413

414 prev_factor = scale_factor
415

416 elif isinstance(module , nn.Linear) or isinstance(module ,
nn.Conv2d):

417 prev_module = module
418

419 return ann
420

421

422 def _ann_to_snn_helper(prev , current , node_type , last=False , **
kwargs):

423 # language=rst
424 """
425 Helper function for main ‘‘ann_to_snn ‘‘ method.
426

427 :param prev: Previous PyTorch module in artificial neural
network.

428 :param current: Current PyTorch module in artificial neural
network.

429 :param node_type: Type of ‘‘bindsnet.network.nodes ‘‘ to use.
430 :param last: Whether this connection and layer is the last to be

converted.
431 :return: Spiking neural network layer and connection

corresponding to ‘‘prev ‘‘ and
432 ‘‘current ‘‘ PyTorch modules.
433 """
434 if isinstance(current , nn.Linear):
435 layer = node_type(
436 n=current.out_features ,
437 reset=0,
438 thresh=1,
439 refrac=0,
440 sum_input=last ,
441 **kwargs ,
442)
443 bias = current.bias if current.bias is not None else torch.

zeros(layer.n)
444 connection = topology.Connection(

195

445 source=prev , target=layer , w=current.weight.t(), b=bias
446)
447

448 elif isinstance(current , nn.Conv2d):
449 input_height , input_width = prev.shape[2], prev.shape [3]
450 out_channels , output_height , output_width = (
451 current.out_channels ,
452 prev.shape [2],
453 prev.shape [3],
454)
455

456 width = (
457 input_height - current.kernel_size [0] + 2 * current.

padding [0]
458) / current.stride [0] + 1
459 height = (
460 input_width - current.kernel_size [1] + 2 * current.

padding [1]
461) / current.stride [1] + 1
462 shape = (1, out_channels , int(width), int(height))
463

464 layer = node_type(
465 shape=shape , reset=0, thresh=1, refrac=0, sum_input=last

, ** kwargs
466)
467 bias = current.bias if current.bias is not None else torch.

zeros(layer.shape [1])
468 connection = topology.Conv2dConnection(
469 source=prev ,
470 target=layer ,
471 kernel_size=current.kernel_size ,
472 stride=current.stride ,
473 padding=current.padding ,
474 dilation=current.dilation ,
475 w=current.weight ,
476 b=bias ,
477)
478

479 elif isinstance(current , nn.MaxPool2d):
480 input_height , input_width = prev.shape[2], prev.shape [3]
481 current.kernel_size = _pair(current.kernel_size)
482 current.padding = _pair(current.padding)
483 current.stride = _pair(current.stride)
484

485 width = (
486 input_height - current.kernel_size [0] + 2 * current.

padding [0]
487) / current.stride [0] + 1
488 height = (
489 input_width - current.kernel_size [1] + 2 * current.

padding [1]
490) / current.stride [1] + 1
491 shape = (1, prev.shape[1], int(width), int(height))
492

196

493 layer = PassThroughNodes(shape=shape)
494 connection = topology.MaxPool2dConnection(
495 source=prev ,
496 target=layer ,
497 kernel_size=current.kernel_size ,
498 stride=current.stride ,
499 padding=current.padding ,
500 dilation=current.dilation ,
501 decay=1,
502)
503

504 elif isinstance(current , Permute):
505 layer = PassThroughNodes(
506 shape=[
507 prev.shape[current.dims [0]],
508 prev.shape[current.dims [1]],
509 prev.shape[current.dims [2]],
510 prev.shape[current.dims [3]],
511]
512)
513

514 connection = PermuteConnection(source=prev , target=layer ,
dims=current.dims)

515

516 elif isinstance(current , nn.ConstantPad2d):
517 layer = PassThroughNodes(
518 shape=[
519 prev.shape [0],
520 prev.shape [1],
521 current.padding [0] + current.padding [1] + prev.shape

[2],
522 current.padding [2] + current.padding [3] + prev.shape

[3],
523]
524)
525

526 connection = ConstantPad2dConnection(
527 source=prev , target=layer , padding=current.padding
528)
529

530 else:
531 return None , None
532

533 return layer , connection
534

535

536 def ann_to_snn(
537 ann: Union[nn.Module , str],
538 input_shape: Sequence[int],
539 data: Optional[torch.Tensor] = None ,
540 percentile: float = 99.9,
541 node_type: Optional[nodes.Nodes] = SubtractiveResetIFNodes ,
542 **kwargs ,
543) -> Network:

197

544 # language=rst
545 """
546 Converts an artificial neural network (ANN) written as a ‘‘torch

.nn.Module ‘‘ into a
547 near -equivalent spiking neural network.
548

549 :param ann: Artificial neural network implemented in PyTorch.
Accepts either

550 ‘‘torch.nn.Module ‘‘ or path to network saved using ‘‘torch.
save() ‘‘.

551 :param input_shape: Shape of input data.
552 :param data: Data to use to perform data -based weight

normalization of shape
553 ‘‘[n_examples , ...]‘‘.
554 :param percentile: Percentile (in ‘‘[0, 100]‘‘) of activations

to scale by in
555 data -based normalization scheme.
556 :param node_type: Class of ‘‘Nodes ‘‘ to use in replacing ‘‘torch

.nn.Linear ‘‘ layers
557 in original ANN.
558 :return: Spiking neural network implemented in PyTorch.
559 """
560 if isinstance(ann , str):
561 ann = torch.load(ann)
562 else:
563 ann = deepcopy(ann)
564

565 assert isinstance(ann , nn.Module)
566

567 if data is None:
568 import warnings
569

570 warnings.warn("Data is None. Weights will not be scaled.",
RuntimeWarning)

571 else:
572 ann = data_based_normalization(
573 ann=ann , data=data.detach (), percentile=percentile
574)
575

576 snn = Network ()
577

578 input_layer = nodes.Input(shape=input_shape)
579 snn.add_layer(input_layer , name="Input")
580

581 children = []
582 for c in ann.children ():
583 if isinstance(c, nn.Sequential):
584 for c2 in list(c.children ()):
585 children.append(c2)
586 else:
587 children.append(c)
588

589 i = 0
590 prev = input_layer

198

591 while i < len(children) - 1:
592 current , nxt = children[i : i + 2]
593 layer , connection = _ann_to_snn_helper(prev , current ,

node_type , ** kwargs)
594

595 i += 1
596

597 if layer is None or connection is None:
598 continue
599

600 snn.add_layer(layer , name=str(i))
601 snn.add_connection(connection , source=str(i - 1), target=str

(i))
602

603 prev = layer
604

605 current = children [-1]
606 layer , connection = _ann_to_snn_helper(
607 prev , current , node_type , last=True , ** kwargs
608)
609

610 i += 1
611

612 if layer is not None or connection is not None:
613 snn.add_layer(layer , name=str(i))
614 snn.add_connection(connection , source=str(i - 1), target=str

(i))
615

616 return snn

Listing B.20: Conversion

B.7 Model

1 from .models import (
2 TwoLayerNetwork ,
3 DiehlAndCook2015 ,
4 DiehlAndCook2015v2 ,
5 IncreasingInhibitionNetwork ,
6 LocallyConnectedNetwork ,
7)

Listing B.21: Initialization

1 from typing import Optional , Union , Tuple , List , Sequence , Iterable
2

3 import numpy as np
4 import torch
5 from scipy.spatial.distance import euclidean
6 from torch.nn.modules.utils import _pair
7 import torch.nn as nn
8 from torchvision import models
9

10 from .. learning import PostPre

199

11 from .. network import Network
12 from .. network.nodes import Input , LIFNodes , DiehlAndCookNodes
13 from .. network.topology import Connection , LocalConnection
14

15

16 class TwoLayerNetwork(Network):
17 # language=rst
18 """
19 Implements an ‘‘Input ‘‘ instance connected to a ‘‘LIFNodes ‘‘

instance with a
20 fully -connected ‘‘Connection ‘‘.
21 """
22

23 def __init__(
24 self ,
25 n_inpt: int ,
26 n_neurons: int = 100,
27 dt: float = 1.0,
28 wmin: float = 0.0,
29 wmax: float = 1.0,
30 nu: Optional[Union[float , Sequence[float]]] = (1e-4, 1e-2),
31 reduction: Optional[callable] = None ,
32 norm: float = 78.4,
33) -> None:
34 # language=rst
35 """
36 Constructor for class ‘‘TwoLayerNetwork ‘‘.
37

38 :param n_inpt: Number of input neurons. Matches the 1D size
of the input data.

39 :param n_neurons: Number of neurons in the ‘‘LIFNodes ‘‘
population.

40 :param dt: Simulation time step.
41 :param nu: Single or pair of learning rates for pre - and

post -synaptic events ,
42 respectively.
43 :param reduction: Method for reducing parameter updates

along the minibatch
44 dimension.
45 :param wmin: Minimum allowed weight on ‘‘Input ‘‘ to ‘‘

LIFNodes ‘‘ synapses.
46 :param wmax: Maximum allowed weight on ‘‘Input ‘‘ to ‘‘

LIFNodes ‘‘ synapses.
47 :param norm: ‘‘Input ‘‘ to ‘‘LIFNodes ‘‘ layer connection

weights normalization
48 constant.
49 """
50 super().__init__(dt=dt)
51

52 self.n_inpt = n_inpt
53 self.n_neurons = n_neurons
54 self.dt = dt
55

56 self.add_layer(Input(n=self.n_inpt , traces=True , tc_trace

200

=20.0) , name="X")
57 self.add_layer(
58 LIFNodes(
59 n=self.n_neurons ,
60 traces=True ,
61 rest=-65.0,
62 reset =-65.0,
63 thresh =-52.0,
64 refrac=5,
65 tc_decay =100.0 ,
66 tc_trace =20.0,
67),
68 name="Y",
69)
70

71 w = 0.3 * torch.rand(self.n_inpt , self.n_neurons)
72 self.add_connection(
73 Connection(
74 source=self.layers["X"],
75 target=self.layers["Y"],
76 w=w,
77 update_rule=PostPre ,
78 nu=nu,
79 reduction=reduction ,
80 wmin=wmin ,
81 wmax=wmax ,
82 norm=norm ,
83),
84 source="X",
85 target="Y",
86)
87

88

89 class DiehlAndCook2015(Network):
90 # language=rst
91 """
92 Implements the spiking neural network architecture from ‘(Diehl

& Cook 2015)
93 <https ://www.frontiersin.org/articles /10.3389/ fncom .2015.00099/

full >‘_.
94 """
95

96 def __init__(
97 self ,
98 n_inpt: int ,
99 n_neurons: int = 100,

100 exc: float = 22.5,
101 inh: float = 17.5,
102 dt: float = 1.0,
103 nu: Optional[Union[float , Sequence[float]]] = (1e-4, 1e-2),
104 reduction: Optional[callable] = None ,
105 wmin: float = 0.0,
106 wmax: float = 1.0,
107 norm: float = 78.4,

201

108 theta_plus: float = 0.05,
109 tc_theta_decay: float = 1e7,
110 inpt_shape: Optional[Iterable[int]] = None ,
111) -> None:
112 # language=rst
113 """
114 Constructor for class ‘‘DiehlAndCook2015 ‘‘.
115

116 :param n_inpt: Number of input neurons. Matches the 1D size
of the input data.

117 :param n_neurons: Number of excitatory , inhibitory neurons.
118 :param exc: Strength of synapse weights from excitatory to

inhibitory layer.
119 :param inh: Strength of synapse weights from inhibitory to

excitatory layer.
120 :param dt: Simulation time step.
121 :param nu: Single or pair of learning rates for pre - and

post -synaptic events ,
122 respectively.
123 :param reduction: Method for reducing parameter updates

along the minibatch
124 dimension.
125 :param wmin: Minimum allowed weight on input to excitatory

synapses.
126 :param wmax: Maximum allowed weight on input to excitatory

synapses.
127 :param norm: Input to excitatory layer connection weights

normalization
128 constant.
129 :param theta_plus: On -spike increment of ‘‘DiehlAndCookNodes

‘‘ membrane
130 threshold potential.
131 :param tc_theta_decay: Time constant of ‘‘DiehlAndCookNodes

‘‘ threshold
132 potential decay.
133 :param inpt_shape: The dimensionality of the input layer.
134 """
135 super().__init__(dt=dt)
136

137 self.n_inpt = n_inpt
138 self.inpt_shape = inpt_shape
139 self.n_neurons = n_neurons
140 self.exc = exc
141 self.inh = inh
142 self.dt = dt
143

144 # Layers
145 input_layer = Input(
146 n=self.n_inpt , shape=self.inpt_shape , traces=True ,

tc_trace =20.0
147)
148 exc_layer = DiehlAndCookNodes(
149 n=self.n_neurons ,
150 traces=True ,

202

151 rest=-65.0,
152 reset =-60.0,
153 thresh =-52.0,
154 refrac=5,
155 tc_decay =100.0 ,
156 tc_trace =20.0,
157 theta_plus=theta_plus ,
158 tc_theta_decay=tc_theta_decay ,
159)
160 inh_layer = LIFNodes(
161 n=self.n_neurons ,
162 traces=False ,
163 rest=-60.0,
164 reset =-45.0,
165 thresh =-40.0,
166 tc_decay =10.0,
167 refrac=2,
168 tc_trace =20.0,
169)
170

171 # Connections
172 w = 0.3 * torch.rand(self.n_inpt , self.n_neurons)
173 input_exc_conn = Connection(
174 source=input_layer ,
175 target=exc_layer ,
176 w=w,
177 update_rule=PostPre ,
178 nu=nu,
179 reduction=reduction ,
180 wmin=wmin ,
181 wmax=wmax ,
182 norm=norm ,
183)
184 w = self.exc * torch.diag(torch.ones(self.n_neurons))
185 exc_inh_conn = Connection(
186 source=exc_layer , target=inh_layer , w=w, wmin=0, wmax=

self.exc
187)
188 w = -self.inh * (
189 torch.ones(self.n_neurons , self.n_neurons)
190 - torch.diag(torch.ones(self.n_neurons))
191)
192 inh_exc_conn = Connection(
193 source=inh_layer , target=exc_layer , w=w, wmin=-self.inh ,

wmax=0
194)
195

196 # Add to network
197 self.add_layer(input_layer , name="X")
198 self.add_layer(exc_layer , name="Ae")
199 self.add_layer(inh_layer , name="Ai")
200 self.add_connection(input_exc_conn , source="X", target="Ae")
201 self.add_connection(exc_inh_conn , source="Ae", target="Ai")
202 self.add_connection(inh_exc_conn , source="Ai", target="Ae")

203

203

204

205 class DiehlAndCook2015v2(Network):
206 # language=rst
207 """
208 Slightly modifies the spiking neural network architecture from

‘(Diehl & Cook 2015)
209 <https ://www.frontiersin.org/articles /10.3389/ fncom .2015.00099/

full >‘_ by removing
210 the inhibitory layer and replacing it with a recurrent

inhibitory connection in the
211 output layer (what used to be the excitatory layer).
212 """
213

214 def __init__(
215 self ,
216 n_inpt: int ,
217 n_neurons: int = 100,
218 inh: float = 17.5,
219 dt: float = 1.0,
220 nu: Optional[Union[float , Sequence[float]]] = (1e-4, 1e-2),
221 reduction: Optional[callable] = None ,
222 wmin: Optional[float] = 0.0,
223 wmax: Optional[float] = 1.0,
224 norm: float = 78.4,
225 theta_plus: float = 0.05,
226 tc_theta_decay: float = 1e7,
227 inpt_shape: Optional[Iterable[int]] = None ,
228) -> None:
229 # language=rst
230 """
231 Constructor for class ‘‘DiehlAndCook2015v2 ‘‘.
232

233 :param n_inpt: Number of input neurons. Matches the 1D size
of the input data.

234 :param n_neurons: Number of excitatory , inhibitory neurons.
235 :param inh: Strength of synapse weights from inhibitory to

excitatory layer.
236 :param dt: Simulation time step.
237 :param nu: Single or pair of learning rates for pre - and

post -synaptic events ,
238 respectively.
239 :param reduction: Method for reducing parameter updates

along the minibatch
240 dimension.
241 :param wmin: Minimum allowed weight on input to excitatory

synapses.
242 :param wmax: Maximum allowed weight on input to excitatory

synapses.
243 :param norm: Input to excitatory layer connection weights

normalization
244 constant.
245 :param theta_plus: On -spike increment of ‘‘DiehlAndCookNodes

‘‘ membrane

204

246 threshold potential.
247 :param tc_theta_decay: Time constant of ‘‘DiehlAndCookNodes

‘‘ threshold
248 potential decay.
249 :param inpt_shape: The dimensionality of the input layer.
250 """
251 super().__init__(dt=dt)
252

253 self.n_inpt = n_inpt
254 self.inpt_shape = inpt_shape
255 self.n_neurons = n_neurons
256 self.inh = inh
257 self.dt = dt
258

259 input_layer = Input(
260 n=self.n_inpt , shape=self.inpt_shape , traces=True ,

tc_trace =20.0
261)
262 self.add_layer(input_layer , name="X")
263

264 output_layer = DiehlAndCookNodes(
265 n=self.n_neurons ,
266 traces=True ,
267 rest=-65.0,
268 reset =-60.0,
269 thresh =-52.0,
270 refrac=5,
271 tc_decay =100.0 ,
272 tc_trace =20.0,
273 theta_plus=theta_plus ,
274 tc_theta_decay=tc_theta_decay ,
275)
276 self.add_layer(output_layer , name="Y")
277

278 w = 0.3 * torch.rand(self.n_inpt , self.n_neurons)
279 input_connection = Connection(
280 source=self.layers["X"],
281 target=self.layers["Y"],
282 w=w,
283 update_rule=PostPre ,
284 nu=nu,
285 reduction=reduction ,
286 wmin=wmin ,
287 wmax=wmax ,
288 norm=norm ,
289)
290 self.add_connection(input_connection , source="X", target="Y"

)
291

292 w = -self.inh * (
293 torch.ones(self.n_neurons , self.n_neurons)
294 - torch.diag(torch.ones(self.n_neurons))
295)
296 recurrent_connection = Connection(

205

297 source=self.layers["Y"],
298 target=self.layers["Y"],
299 w=w,
300 wmin=-self.inh ,
301 wmax=0,
302)
303 self.add_connection(recurrent_connection , source="Y", target

="Y")
304

305

306 class IncreasingInhibitionNetwork(Network):
307 # language=rst
308 """
309 Implements the inhibitory layer structure of the spiking neural

network architecture
310 from ‘(Hazan et al. 2018) <https :// arxiv.org/abs /1807.09374 > ‘_
311 """
312

313 def __init__(
314 self ,
315 n_input: int ,
316 n_neurons: int = 100,
317 start_inhib: float = 1.0,
318 max_inhib: float = 100.0,
319 dt: float = 1.0,
320 nu: Optional[Union[float , Sequence[float]]] = (1e-4, 1e-2),
321 reduction: Optional[callable] = None ,
322 wmin: float = 0.0,
323 wmax: float = 1.0,
324 norm: float = 78.4,
325 theta_plus: float = 0.05,
326 tc_theta_decay: float = 1e7,
327) -> None:
328 # language=rst
329 """
330 Constructor for class ‘‘IncreasingInhibitionNetwork ‘‘.
331

332 :param n_inpt: Number of input neurons. Matches the 1D size
of the input data.

333 :param n_neurons: Number of excitatory , inhibitory neurons.
334 :param inh: Strength of synapse weights from inhibitory to

excitatory layer.
335 :param dt: Simulation time step.
336 :param nu: Single or pair of learning rates for pre - and

post -synaptic events ,
337 respectively.
338 :param reduction: Method for reducing parameter updates

along the minibatch
339 dimension.
340 :param wmin: Minimum allowed weight on input to excitatory

synapses.
341 :param wmax: Maximum allowed weight on input to excitatory

synapses.
342 :param norm: Input to excitatory layer connection weights

206

normalization
343 constant.
344 :param theta_plus: On -spike increment of ‘‘DiehlAndCookNodes

‘‘ membrane
345 threshold potential.
346 :param tc_theta_decay: Time constant of ‘‘DiehlAndCookNodes

‘‘ threshold
347 potential decay.
348 """
349 super().__init__(dt=dt)
350

351 self.n_input = n_input
352 self.n_neurons = n_neurons
353 self.n_sqrt = int(np.sqrt(n_neurons))
354 self.start_inhib = start_inhib
355 self.max_inhib = max_inhib
356 self.dt = dt
357

358 input_layer = Input(n=self.n_input , traces=True , tc_trace
=20.0)

359 self.add_layer(input_layer , name="X")
360

361 output_layer = DiehlAndCookNodes(
362 n=self.n_neurons ,
363 traces=True ,
364 rest=-65.0,
365 reset =-60.0,
366 thresh =-52.0,
367 refrac=5,
368 tc_decay =100.0 ,
369 tc_trace =20.0,
370 theta_plus=theta_plus ,
371 tc_theta_decay=tc_theta_decay ,
372)
373 self.add_layer(output_layer , name="Y")
374

375 w = 0.3 * torch.rand(self.n_input , self.n_neurons)
376 input_output_conn = Connection(
377 source=self.layers["X"],
378 target=self.layers["Y"],
379 w=w,
380 update_rule=PostPre ,
381 nu=nu,
382 reduction=reduction ,
383 wmin=wmin ,
384 wmax=wmax ,
385 norm=norm ,
386)
387 self.add_connection(input_output_conn , source="X", target="Y

")
388

389 w = torch.zeros(self.n_neurons , self.n_neurons)
390 for i in range(self.n_neurons):
391 for j in range(self.n_neurons):

207

392 if i != j:
393 x1 , y1 = i // self.n_sqrt , i % self.n_sqrt
394 x2 , y2 = j // self.n_sqrt , j % self.n_sqrt
395

396 inhib = self.start_inhib * np.sqrt(euclidean ([x1
, y1], [x2, y2]))

397 w[i, j] = -min(self.max_inhib , inhib)
398

399 recurrent_output_conn = Connection(
400 source=self.layers["Y"],
401 target=self.layers["Y"],
402 w=w,
403 wmin=-self.max_inhib ,
404 wmax=0,
405)
406 self.add_connection(recurrent_output_conn , source="Y",

target="Y")
407

408

409 class LocallyConnectedNetwork(Network):
410 # language=rst
411 """
412 Defines a two -layer network in which the input layer is "locally

connected" to the
413 output layer , and the output layer is recurrently inhibited

connected such that
414 neurons with the same input receptive field inhibit each other.
415 """
416

417 def __init__(
418 self ,
419 n_inpt: int ,
420 input_shape: List[int],
421 kernel_size: Union[int , Tuple[int , int]],
422 stride: Union[int , Tuple[int , int]],
423 n_filters: int ,
424 inh: float = 25.0,
425 dt: float = 1.0,
426 nu: Optional[Union[float , Sequence[float]]] = (1e-4, 1e-2),
427 reduction: Optional[callable] = None ,
428 theta_plus: float = 0.05,
429 tc_theta_decay: float = 1e7,
430 wmin: float = 0.0,
431 wmax: float = 1.0,
432 norm: Optional[float] = 0.2,
433) -> None:
434 # language=rst
435 """
436 Constructor for class ‘‘LocallyConnectedNetwork ‘‘. Uses ‘‘

DiehlAndCookNodes ‘‘ to
437 avoid multiple spikes per timestep in the output layer

population.
438

439 :param n_inpt: Number of input neurons. Matches the 1D size

208

of the input data.
440 :param input_shape: Two -dimensional shape of input

population.
441 :param kernel_size: Size of input windows. Integer or two -

tuple of integers.
442 :param stride: Length of horizontal , vertical stride across

input space. Integer
443 or two -tuple of integers.
444 :param n_filters: Number of locally connected filters per

input region. Integer
445 or two -tuple of integers.
446 :param inh: Strength of synapse weights from output layer

back onto itself.
447 :param dt: Simulation time step.
448 :param nu: Single or pair of learning rates for pre - and

post -synaptic events ,
449 respectively.
450 :param reduction: Method for reducing parameter updates

along the minibatch
451 dimension.
452 :param wmin: Minimum allowed weight on ‘‘Input ‘‘ to ‘‘

DiehlAndCookNodes ‘‘
453 synapses.
454 :param wmax: Maximum allowed weight on ‘‘Input ‘‘ to ‘‘

DiehlAndCookNodes ‘‘
455 synapses.
456 :param theta_plus: On -spike increment of ‘‘DiehlAndCookNodes

‘‘ membrane
457 threshold potential.
458 :param tc_theta_decay: Time constant of ‘‘DiehlAndCookNodes

‘‘ threshold
459 potential decay.
460 :param norm: ‘‘Input ‘‘ to ‘‘DiehlAndCookNodes ‘‘ layer

connection weights
461 normalization constant.
462 """
463 super().__init__(dt=dt)
464

465 kernel_size = _pair(kernel_size)
466 stride = _pair(stride)
467

468 self.n_inpt = n_inpt
469 self.input_shape = input_shape
470 self.kernel_size = kernel_size
471 self.stride = stride
472 self.n_filters = n_filters
473 self.inh = inh
474 self.dt = dt
475 self.theta_plus = theta_plus
476 self.tc_theta_decay = tc_theta_decay
477 self.wmin = wmin
478 self.wmax = wmax
479 self.norm = norm
480

209

481 if kernel_size == input_shape:
482 conv_size = [1, 1]
483 else:
484 conv_size = (
485 int((input_shape [0] - kernel_size [0]) / stride [0]) +

1,
486 int((input_shape [1] - kernel_size [1]) / stride [1]) +

1,
487)
488

489 input_layer = Input(n=self.n_inpt , traces=True , tc_trace
=20.0)

490

491 output_layer = DiehlAndCookNodes(
492 n=self.n_filters * conv_size [0] * conv_size [1],
493 traces=True ,
494 rest=-65.0,
495 reset =-60.0,
496 thresh =-52.0,
497 refrac=5,
498 tc_decay =100.0 ,
499 tc_trace =20.0,
500 theta_plus=theta_plus ,
501 tc_theta_decay=tc_theta_decay ,
502)
503 input_output_conn = LocalConnection(
504 input_layer ,
505 output_layer ,
506 kernel_size=kernel_size ,
507 stride=stride ,
508 n_filters=n_filters ,
509 nu=nu,
510 reduction=reduction ,
511 update_rule=PostPre ,
512 wmin=wmin ,
513 wmax=wmax ,
514 norm=norm ,
515 input_shape=input_shape ,
516)
517

518 w = torch.zeros(n_filters , *conv_size , n_filters , *conv_size
)

519 for fltr1 in range(n_filters):
520 for fltr2 in range(n_filters):
521 if fltr1 != fltr2:
522 for i in range(conv_size [0]):
523 for j in range(conv_size [1]):
524 w[fltr1 , i, j, fltr2 , i, j] = -inh
525

526 w = w.view(
527 n_filters * conv_size [0] * conv_size [1],
528 n_filters * conv_size [0] * conv_size [1],
529)
530 recurrent_conn = Connection(output_layer , output_layer , w=w)

210

531

532 self.add_layer(input_layer , name="X")
533 self.add_layer(output_layer , name="Y")
534 self.add_connection(input_output_conn , source="X", target="Y

")
535 self.add_connection(recurrent_conn , source="Y", target="Y")

Listing B.22: Models

B.8 Learning

1 from .learning import (
2 LearningRule ,
3 NoOp ,
4 PostPre ,
5 WeightDependentPostPre ,
6 Hebbian ,
7 MSTDP ,
8 MSTDPET ,
9 Rmax ,

10)

Listing B.23: Initialization

1 from abc import ABC
2 from typing import Union , Optional , Sequence
3

4 import torch
5 import numpy as np
6

7 from .. network.nodes import SRM0Nodes
8 from .. network.topology import (
9 AbstractConnection ,

10 Connection ,
11 Conv2dConnection ,
12 LocalConnection ,
13)
14 from ..utils import im2col_indices
15

16

17 class LearningRule(ABC):
18 # language=rst
19 """
20 Abstract base class for learning rules.
21 """
22

23 def __init__(
24 self ,
25 connection: AbstractConnection ,
26 nu: Optional[Union[float , Sequence[float]]] = None ,
27 reduction: Optional[callable] = None ,
28 weight_decay: float = 0.0,
29 ** kwargs
30) -> None:

211

31 # language=rst
32 """
33 Abstract constructor for the ‘‘LearningRule ‘‘ object.
34

35 :param connection: An ‘‘AbstractConnection ‘‘ object.
36 :param nu: Single or pair of learning rates for pre - and

post -synaptic events.
37 :param reduction: Method for reducing parameter updates

along the batch
38 dimension.
39 :param weight_decay: Constant multiple to decay weights by

on each iteration.
40 """
41 # Connection parameters.
42 self.connection = connection
43 self.source = connection.source
44 self.target = connection.target
45

46 self.wmin = connection.wmin
47 self.wmax = connection.wmax
48

49 # Learning rate(s).
50 if nu is None:
51 nu = [0.0, 0.0]
52 elif isinstance(nu , float) or isinstance(nu, int):
53 nu = [nu, nu]
54

55 self.nu = nu
56

57 # Parameter update reduction across minibatch dimension.
58 if reduction is None:
59 reduction = torch.mean
60

61 self.reduction = reduction
62

63 # Weight decay.
64 self.weight_decay = weight_decay
65

66 def update(self) -> None:
67 # language=rst
68 """
69 Abstract method for a learning rule update.
70 """
71 # Implement weight decay.
72 if self.weight_decay:
73 self.connection.w -= self.weight_decay * self.connection

.w
74

75 # Bound weights.
76 if (
77 self.connection.wmin != -np.inf or self.connection.wmax

!= np.inf
78) and not isinstance(self , NoOp):
79 self.connection.w.clamp_(self.connection.wmin , self.

212

connection.wmax)
80

81

82 class NoOp(LearningRule):
83 # language=rst
84 """
85 Learning rule with no effect.
86 """
87

88 def __init__(
89 self ,
90 connection: AbstractConnection ,
91 nu: Optional[Union[float , Sequence[float]]] = None ,
92 reduction: Optional[callable] = None ,
93 weight_decay: float = 0.0,
94 ** kwargs
95) -> None:
96 # language=rst
97 """
98 Abstract constructor for the ‘‘LearningRule ‘‘ object.
99

100 :param connection: An ‘‘AbstractConnection ‘‘ object.
101 :param nu: Single or pair of learning rates for pre - and

post -synaptic events.
102 :param reduction: Method for reducing parameter updates

along the batch
103 dimension.
104 :param weight_decay: Constant multiple to decay weights by

on each iteration.
105 """
106 super().__init__(
107 connection=connection ,
108 nu=nu,
109 reduction=reduction ,
110 weight_decay=weight_decay ,
111 ** kwargs
112)
113

114 def update(self , ** kwargs) -> None:
115 # language=rst
116 """
117 Abstract method for a learning rule update.
118 """
119 super().update ()
120

121

122 class PostPre(LearningRule):
123 # language=rst
124 """
125 Simple STDP rule involving both pre - and post -synaptic spiking

activity. By default ,
126 pre -synaptic update is negative and the post -synaptic update is

positive.
127 """

213

128

129 def __init__(
130 self ,
131 connection: AbstractConnection ,
132 nu: Optional[Union[float , Sequence[float]]] = None ,
133 reduction: Optional[callable] = None ,
134 weight_decay: float = 0.0,
135 ** kwargs
136) -> None:
137 # language=rst
138 """
139 Constructor for ‘‘PostPre ‘‘ learning rule.
140

141 :param connection: An ‘‘AbstractConnection ‘‘ object whose
weights the

142 ‘‘PostPre ‘‘ learning rule will modify.
143 :param nu: Single or pair of learning rates for pre - and

post -synaptic events.
144 :param reduction: Method for reducing parameter updates

along the batch
145 dimension.
146 :param weight_decay: Constant multiple to decay weights by

on each iteration.
147 """
148 super().__init__(
149 connection=connection ,
150 nu=nu,
151 reduction=reduction ,
152 weight_decay=weight_decay ,
153 ** kwargs
154)
155

156 assert (
157 self.source.traces and self.target.traces
158), "Both pre - and post -synaptic nodes must record spike

traces."
159

160 if isinstance(connection , (Connection , LocalConnection)):
161 self.update = self._connection_update
162 elif isinstance(connection , Conv2dConnection):
163 self.update = self._conv2d_connection_update
164 else:
165 raise NotImplementedError(
166 "This learning rule is not supported for this

Connection type."
167)
168

169 def _connection_update(self , ** kwargs) -> None:
170 # language=rst
171 """
172 Post -pre learning rule for ‘‘Connection ‘‘ subclass of ‘‘

AbstractConnection ‘‘
173 class.
174 """

214

175 batch_size = self.source.batch_size
176

177 source_s = self.source.s.view(batch_size , -1).unsqueeze (2).
float()

178 source_x = self.source.x.view(batch_size , -1).unsqueeze (2)
179 target_s = self.target.s.view(batch_size , -1).unsqueeze (1).

float()
180 target_x = self.target.x.view(batch_size , -1).unsqueeze (1)
181

182 # Pre -synaptic update.
183 if self.nu[0]:
184 update = self.reduction(torch.bmm(source_s , target_x),

dim =0)
185 self.connection.w -= self.nu[0] * update
186

187 # Post -synaptic update.
188 if self.nu[1]:
189 update = self.reduction(torch.bmm(source_x , target_s),

dim =0)
190 self.connection.w += self.nu[1] * update
191

192 super().update ()
193

194 def _conv2d_connection_update(self , ** kwargs) -> None:
195 # language=rst
196 """
197 Post -pre learning rule for ‘‘Conv2dConnection ‘‘ subclass of
198 ‘‘AbstractConnection ‘‘ class.
199 """
200 # Get convolutional layer parameters.
201 out_channels , _, kernel_height , kernel_width = self.

connection.w.size()
202 padding , stride = self.connection.padding , self.connection.

stride
203 batch_size = self.source.batch_size
204

205 # Reshaping spike traces and spike occurrences.
206 source_x = im2col_indices(
207 self.source.x, kernel_height , kernel_width , padding=

padding , stride=stride
208)
209 target_x = self.target.x.view(batch_size , out_channels , -1)
210 source_s = im2col_indices(
211 self.source.s.float(),
212 kernel_height ,
213 kernel_width ,
214 padding=padding ,
215 stride=stride ,
216)
217 target_s = self.target.s.view(batch_size , out_channels , -1).

float()
218

219 # Pre -synaptic update.
220 if self.nu[0]:

215

221 pre = self.reduction(
222 torch.bmm(target_x , source_s.permute ((0, 2, 1))),

dim=0
223)
224 self.connection.w -= self.nu[0] * pre.view(self.

connection.w.size())
225

226 # Post -synaptic update.
227 if self.nu[1]:
228 post = self.reduction(
229 torch.bmm(target_s , source_x.permute ((0, 2, 1))),

dim=0
230)
231 self.connection.w += self.nu[1] * post.view(self.

connection.w.size())
232

233 super().update ()
234

235

236 class WeightDependentPostPre(LearningRule):
237 # language=rst
238 """
239 STDP rule involving both pre - and post -synaptic spiking activity

. The post -synaptic
240 update is positive and the pre - synaptic update is negative , and

both are dependent
241 on the magnitude of the synaptic weights.
242 """
243

244 def __init__(
245 self ,
246 connection: AbstractConnection ,
247 nu: Optional[Union[float , Sequence[float]]] = None ,
248 reduction: Optional[callable] = None ,
249 weight_decay: float = 0.0,
250 ** kwargs
251) -> None:
252 # language=rst
253 """
254 Constructor for ‘‘WeightDependentPostPre ‘‘ learning rule.
255

256 :param connection: An ‘‘AbstractConnection ‘‘ object whose
weights the

257 ‘‘WeightDependentPostPre ‘‘ learning rule will modify.
258 :param nu: Single or pair of learning rates for pre - and

post -synaptic events.
259 :param reduction: Method for reducing parameter updates

along the batch
260 dimension.
261 :param weight_decay: Constant multiple to decay weights by

on each iteration.
262 """
263 super().__init__(
264 connection=connection ,

216

265 nu=nu,
266 reduction=reduction ,
267 weight_decay=weight_decay ,
268 ** kwargs
269)
270

271 assert self.source.traces , "Pre -synaptic nodes must record
spike traces."

272 assert (
273 connection.wmin != -np.inf and connection.wmax != np.inf
274), "Connection must define finite wmin and wmax."
275

276 self.wmin = connection.wmin
277 self.wmax = connection.wmax
278

279 if isinstance(connection , (Connection , LocalConnection)):
280 self.update = self._connection_update
281 elif isinstance(connection , Conv2dConnection):
282 self.update = self._conv2d_connection_update
283 else:
284 raise NotImplementedError(
285 "This learning rule is not supported for this

Connection type."
286)
287

288 def _connection_update(self , ** kwargs) -> None:
289 # language=rst
290 """
291 Post -pre learning rule for ‘‘Connection ‘‘ subclass of ‘‘

AbstractConnection ‘‘
292 class.
293 """
294 batch_size = self.source.batch_size
295

296 source_s = self.source.s.view(batch_size , -1).unsqueeze (2).
float()

297 source_x = self.source.x.view(batch_size , -1).unsqueeze (2)
298 target_s = self.target.s.view(batch_size , -1).unsqueeze (1).

float()
299 target_x = self.target.x.view(batch_size , -1).unsqueeze (1)
300

301 update = 0
302

303 # Pre -synaptic update.
304 if self.nu[0]:
305 outer_product = self.reduction(torch.bmm(source_s ,

target_x), dim =0)
306 update -= self.nu[0] * outer_product * (self.connection.

w - self.wmin)
307

308 # Post -synaptic update.
309 if self.nu[1]:
310 outer_product = self.reduction(torch.bmm(source_x ,

target_s), dim =0)

217

311 update += self.nu[1] * outer_product * (self.wmax - self
.connection.w)

312

313 self.connection.w += update
314

315 super().update ()
316

317 def _conv2d_connection_update(self , ** kwargs) -> None:
318 # language=rst
319 """
320 Post -pre learning rule for ‘‘Conv2dConnection ‘‘ subclass of
321 ‘‘AbstractConnection ‘‘ class.
322 """
323 # Get convolutional layer parameters.
324 (
325 out_channels ,
326 in_channels ,
327 kernel_height ,
328 kernel_width ,
329) = self.connection.w.size()
330 padding , stride = self.connection.padding , self.connection.

stride
331 batch_size = self.source.batch_size
332

333 # Reshaping spike traces and spike occurrences.
334 source_x = im2col_indices(
335 self.source.x, kernel_height , kernel_width , padding=

padding , stride=stride
336)
337 target_x = self.target.x.view(batch_size , out_channels , -1)
338 source_s = im2col_indices(
339 self.source.s.float(),
340 kernel_height ,
341 kernel_width ,
342 padding=padding ,
343 stride=stride ,
344)
345 target_s = self.target.s.view(batch_size , out_channels , -1).

float()
346

347 update = 0
348

349 # Pre -synaptic update.
350 if self.nu[0]:
351 pre = self.reduction(
352 torch.bmm(target_x , source_s.permute ((0, 2, 1))),

dim=0
353)
354 update -= (
355 self.nu[0]
356 * pre.view(self.connection.w.size())
357 * (self.connection.w - self.wmin)
358)
359

218

360 # Post -synaptic update.
361 if self.nu[1]:
362 post = self.reduction(
363 torch.bmm(target_s , source_x.permute ((0, 2, 1))),

dim=0
364)
365 update += (
366 self.nu[1]
367 * post.view(self.connection.w.size())
368 * (self.wmax - self.connection.wmin)
369)
370

371 self.connection.w += update
372

373 super().update ()
374

375

376 class Hebbian(LearningRule):
377 # language=rst
378 """
379 Simple Hebbian learning rule. Pre - and post -synaptic updates are

both positive.
380 """
381

382 def __init__(
383 self ,
384 connection: AbstractConnection ,
385 nu: Optional[Union[float , Sequence[float]]] = None ,
386 reduction: Optional[callable] = None ,
387 weight_decay: float = 0.0,
388 ** kwargs
389) -> None:
390 # language=rst
391 """
392 Constructor for ‘‘Hebbian ‘‘ learning rule.
393

394 :param connection: An ‘‘AbstractConnection ‘‘ object whose
weights the

395 ‘‘Hebbian ‘‘ learning rule will modify.
396 :param nu: Single or pair of learning rates for pre - and

post -synaptic events.
397 :param reduction: Method for reducing parameter updates

along the batch
398 dimension.
399 :param weight_decay: Constant multiple to decay weights by

on each iteration.
400 """
401 super().__init__(
402 connection=connection ,
403 nu=nu,
404 reduction=reduction ,
405 weight_decay=weight_decay ,
406 ** kwargs
407)

219

408

409 assert (
410 self.source.traces and self.target.traces
411), "Both pre - and post -synaptic nodes must record spike

traces."
412

413 if isinstance(connection , (Connection , LocalConnection)):
414 self.update = self._connection_update
415 elif isinstance(connection , Conv2dConnection):
416 self.update = self._conv2d_connection_update
417 else:
418 raise NotImplementedError(
419 "This learning rule is not supported for this

Connection type."
420)
421

422 def _connection_update(self , ** kwargs) -> None:
423 # language=rst
424 """
425 Hebbian learning rule for ‘‘Connection ‘‘ subclass of ‘‘

AbstractConnection ‘‘
426 class.
427 """
428 batch_size = self.source.batch_size
429

430 source_s = self.source.s.view(batch_size , -1).unsqueeze (2).
float()

431 source_x = self.source.x.view(batch_size , -1).unsqueeze (2)
432 target_s = self.target.s.view(batch_size , -1).unsqueeze (1).

float()
433 target_x = self.target.x.view(batch_size , -1).unsqueeze (1)
434

435 # Pre -synaptic update.
436 update = self.reduction(torch.bmm(source_s , target_x), dim

=0)
437 self.connection.w += self.nu[0] * update
438

439 # Post -synaptic update.
440 update = self.reduction(torch.bmm(source_x , target_s), dim

=0)
441 self.connection.w += self.nu[1] * update
442

443 super().update ()
444

445 def _conv2d_connection_update(self , ** kwargs) -> None:
446 # language=rst
447 """
448 Hebbian learning rule for ‘‘Conv2dConnection ‘‘ subclass of
449 ‘‘AbstractConnection ‘‘ class.
450 """
451 out_channels , _, kernel_height , kernel_width = self.

connection.w.size()
452 padding , stride = self.connection.padding , self.connection.

stride

220

453 batch_size = self.source.batch_size
454

455 # Reshaping spike traces and spike occurrences.
456 source_x = im2col_indices(
457 self.source.x, kernel_height , kernel_width , padding=

padding , stride=stride
458)
459 target_x = self.target.x.view(batch_size , out_channels , -1)
460 source_s = im2col_indices(
461 self.source.s.float(),
462 kernel_height ,
463 kernel_width ,
464 padding=padding ,
465 stride=stride ,
466)
467 target_s = self.target.s.view(batch_size , out_channels , -1).

float()
468

469 # Pre -synaptic update.
470 pre = self.reduction(torch.bmm(target_x , source_s.permute

((0, 2, 1))), dim =0)
471 self.connection.w += self.nu[0] * pre.view(self.connection.w

.size())
472

473 # Post -synaptic update.
474 post = self.reduction(torch.bmm(target_s , source_x.permute

((0, 2, 1))), dim =0)
475 self.connection.w += self.nu[1] * post.view(self.connection.

w.size())
476

477 super().update ()
478

479

480 class MSTDP(LearningRule):
481 # language=rst
482 """
483 Reward -modulated STDP. Adapted from ‘(Florian 2007)
484 <https :// florian.io/papers /2007 _Florian_Modulated_STDP.pdf >‘_.
485 """
486

487 def __init__(
488 self ,
489 connection: AbstractConnection ,
490 nu: Optional[Union[float , Sequence[float]]] = None ,
491 reduction: Optional[callable] = None ,
492 weight_decay: float = 0.0,
493 ** kwargs
494) -> None:
495 # language=rst
496 """
497 Constructor for ‘‘MSTDP ‘‘ learning rule.
498

499 :param connection: An ‘‘AbstractConnection ‘‘ object whose
weights the ‘‘MSTDP ‘‘

221

500 learning rule will modify.
501 :param nu: Single or pair of learning rates for pre - and

post -synaptic events ,
502 respectively.
503 :param reduction: Method for reducing parameter updates

along the minibatch
504 dimension.
505 :param weight_decay: Constant multiple to decay weights by

on each iteration.
506

507 Keyword arguments:
508

509 :param tc_plus: Time constant for pre -synaptic firing trace.
510 :param tc_minus: Time constant for post -synaptic firing

trace.
511 """
512 super().__init__(
513 connection=connection ,
514 nu=nu,
515 reduction=reduction ,
516 weight_decay=weight_decay ,
517 ** kwargs
518)
519

520 if isinstance(connection , (Connection , LocalConnection)):
521 self.update = self._connection_update
522 elif isinstance(connection , Conv2dConnection):
523 self.update = self._conv2d_connection_update
524 else:
525 raise NotImplementedError(
526 "This learning rule is not supported for this

Connection type."
527)
528

529 self.tc_plus = torch.tensor(kwargs.get("tc_plus", 20.0))
530 self.tc_minus = torch.tensor(kwargs.get("tc_minus", 20.0))
531

532 def _connection_update(self , ** kwargs) -> None:
533 # language=rst
534 """
535 MSTDP learning rule for ‘‘Connection ‘‘ subclass of ‘‘

AbstractConnection ‘‘ class.
536

537 Keyword arguments:
538

539 :param Union[float , torch.Tensor] reward: Reward signal from
reinforcement

540 learning task.
541 :param float a_plus: Learning rate (post -synaptic).
542 :param float a_minus: Learning rate (pre -synaptic).
543 """
544 batch_size = self.source.batch_size
545

546 # Initialize eligibility , P^+, and P^-.

222

547 if not hasattr(self , "p_plus"):
548 self.p_plus = torch.zeros(batch_size , *self.source.shape

)
549 if not hasattr(self , "p_minus"):
550 self.p_minus = torch.zeros(batch_size , *self.target.

shape)
551 if not hasattr(self , "eligibility"):
552 self.eligibility = torch.zeros(batch_size , *self.

connection.w.shape)
553

554 # Reshape pre - and post -synaptic spikes.
555 source_s = self.source.s.view(batch_size , -1).float()
556 target_s = self.target.s.view(batch_size , -1).float()
557

558 # Parse keyword arguments.
559 reward = kwargs["reward"]
560 a_plus = torch.tensor(kwargs.get("a_plus", 1.0))
561 a_minus = torch.tensor(kwargs.get("a_minus", -1.0))
562

563 # Compute weight update based on the eligibility value of
the past timestep.

564 update = reward * self.eligibility
565 self.connection.w += self.nu[0] * self.reduction(update , dim

=0)
566

567 # Update P^+ and P^- values.
568 self.p_plus *= torch.exp(-self.connection.dt / self.tc_plus)
569 self.p_plus += a_plus * source_s
570 self.p_minus *= torch.exp(-self.connection.dt / self.

tc_minus)
571 self.p_minus += a_minus * target_s
572

573 # Calculate point eligibility value.
574 self.eligibility = torch.bmm(
575 self.p_plus.unsqueeze (2), target_s.unsqueeze (1)
576) + torch.bmm(source_s.unsqueeze (2), self.p_minus.unsqueeze

(1))
577

578 super().update ()
579

580 def _conv2d_connection_update(self , ** kwargs) -> None:
581 # language=rst
582 """
583 MSTDP learning rule for ‘‘Conv2dConnection ‘‘ subclass of ‘‘

AbstractConnection ‘‘
584 class.
585

586 Keyword arguments:
587

588 :param Union[float , torch.Tensor] reward: Reward signal from
reinforcement

589 learning task.
590 :param float a_plus: Learning rate (post -synaptic).
591 :param float a_minus: Learning rate (pre -synaptic).

223

592 """
593 batch_size = self.source.batch_size
594

595 # Initialize eligibility.
596 if not hasattr(self , "eligibility"):
597 self.eligibility = torch.zeros(batch_size , *self.

connection.w.shape)
598

599 # Parse keyword arguments.
600 reward = kwargs["reward"]
601 a_plus = torch.tensor(kwargs.get("a_plus", 1.0))
602 a_minus = torch.tensor(kwargs.get("a_minus", -1.0))
603

604 batch_size = self.source.batch_size
605

606 # Compute weight update based on the eligibility value of
the past timestep.

607 update = reward * self.eligibility
608 self.connection.w += self.nu[0] * torch.sum(update , dim =0)
609

610 out_channels , _, kernel_height , kernel_width = self.
connection.w.size()

611 padding , stride = self.connection.padding , self.connection.
stride

612

613 # Initialize P^+ and P^-.
614 if not hasattr(self , "p_plus"):
615 self.p_plus = torch.zeros(batch_size , *self.source.shape

)
616 self.p_plus = im2col_indices(
617 self.p_plus , kernel_height , kernel_width , padding=

padding , stride=stride
618)
619 if not hasattr(self , "p_minus"):
620 self.p_minus = torch.zeros(batch_size , *self.target.

shape)
621 self.p_minus = self.p_minus.view(batch_size ,

out_channels , -1).float ()
622

623 # Reshaping spike occurrences.
624 source_s = im2col_indices(
625 self.source.s.float(),
626 kernel_height ,
627 kernel_width ,
628 padding=padding ,
629 stride=stride ,
630)
631 target_s = self.target.s.view(batch_size , out_channels , -1).

float()
632

633 # Update P^+ and P^- values.
634 self.p_plus *= torch.exp(-self.connection.dt / self.tc_plus)
635 self.p_plus += a_plus * source_s
636 self.p_minus *= torch.exp(-self.connection.dt / self.

224

tc_minus)
637 self.p_minus += a_minus * target_s
638

639 # Calculate point eligibility value.
640 self.eligibility = torch.bmm(
641 target_s , self.p_plus.permute ((0, 2, 1))
642) + torch.bmm(self.p_minus , source_s.permute ((0, 2, 1)))
643 self.eligibility = self.eligibility.view(self.connection.w.

size())
644

645 super().update ()
646

647

648 class MSTDPET(LearningRule):
649 # language=rst
650 """
651 Reward -modulated STDP with eligibility trace. Adapted from
652 ‘(Florian 2007) <https :// florian.io/papers /2007

_Florian_Modulated_STDP.pdf >‘_.
653 """
654

655 def __init__(
656 self ,
657 connection: AbstractConnection ,
658 nu: Optional[Union[float , Sequence[float]]] = None ,
659 reduction: Optional[callable] = None ,
660 weight_decay: float = 0.0,
661 ** kwargs
662) -> None:
663 # language=rst
664 """
665 Constructor for ‘‘MSTDPET ‘‘ learning rule.
666

667 :param connection: An ‘‘AbstractConnection ‘‘ object whose
weights the

668 ‘‘MSTDPET ‘‘ learning rule will modify.
669 :param nu: Single or pair of learning rates for pre - and

post -synaptic events ,
670 respectively.
671 :param reduction: Method for reducing parameter updates

along the minibatch
672 dimension.
673 :param weight_decay: Constant multiple to decay weights by

on each iteration.
674

675 Keyword arguments:
676

677 :param float tc_plus: Time constant for pre -synaptic firing
trace.

678 :param float tc_minus: Time constant for post -synaptic
firing trace.

679 :param float tc_e_trace: Time constant for the eligibility
trace.

680 """

225

681 super().__init__(
682 connection=connection ,
683 nu=nu,
684 reduction=reduction ,
685 weight_decay=weight_decay ,
686 ** kwargs
687)
688

689 if isinstance(connection , (Connection , LocalConnection)):
690 self.update = self._connection_update
691 elif isinstance(connection , Conv2dConnection):
692 self.update = self._conv2d_connection_update
693 else:
694 raise NotImplementedError(
695 "This learning rule is not supported for this

Connection type."
696)
697

698 self.tc_plus = torch.tensor(kwargs.get("tc_plus", 20.0))
699 self.tc_minus = torch.tensor(kwargs.get("tc_minus", 20.0))
700 self.tc_e_trace = torch.tensor(kwargs.get("tc_e_trace",

25.0))
701

702 def _connection_update(self , ** kwargs) -> None:
703 # language=rst
704 """
705 MSTDPET learning rule for ‘‘Connection ‘‘ subclass of ‘‘

AbstractConnection ‘‘
706 class.
707

708 Keyword arguments:
709

710 :param Union[float , torch.Tensor] reward: Reward signal from
reinforcement

711 learning task.
712 :param float a_plus: Learning rate (post -synaptic).
713 :param float a_minus: Learning rate (pre -synaptic).
714 """
715 # Initialize eligibility , eligibility trace , P^+, and P^-.
716 if not hasattr(self , "p_plus"):
717 self.p_plus = torch.zeros(self.source.n)
718 if not hasattr(self , "p_minus"):
719 self.p_minus = torch.zeros(self.target.n)
720 if not hasattr(self , "eligibility"):
721 self.eligibility = torch.zeros(*self.connection.w.shape)
722 if not hasattr(self , "eligibility_trace"):
723 self.eligibility_trace = torch.zeros(*self.connection.w.

shape)
724

725 # Reshape pre - and post -synaptic spikes.
726 source_s = self.source.s.view(-1).float ()
727 target_s = self.target.s.view(-1).float ()
728

729 # Parse keyword arguments.

226

730 reward = kwargs["reward"]
731 a_plus = torch.tensor(kwargs.get("a_plus", 1.0))
732 a_minus = torch.tensor(kwargs.get("a_minus", -1.0))
733

734 # Calculate value of eligibility trace based on the value
735 # of the point eligibility value of the past timestep.
736 self.eligibility_trace *= torch.exp(-self.connection.dt /

self.tc_e_trace)
737 self.eligibility_trace += self.eligibility / self.tc_e_trace
738

739 # Compute weight update.
740 self.connection.w += (
741 self.nu[0] * self.connection.dt * reward * self.

eligibility_trace
742)
743

744 # Update P^+ and P^- values.
745 self.p_plus *= torch.exp(-self.connection.dt / self.tc_plus)
746 self.p_plus += a_plus * source_s
747 self.p_minus *= torch.exp(-self.connection.dt / self.

tc_minus)
748 self.p_minus += a_minus * target_s
749

750 # Calculate point eligibility value.
751 self.eligibility = torch.ger(self.p_plus , target_s) + torch.

ger(
752 source_s , self.p_minus
753)
754

755 super().update ()
756

757 def _conv2d_connection_update(self , ** kwargs) -> None:
758 # language=rst
759 """
760 MSTDPET learning rule for ‘‘Conv2dConnection ‘‘ subclass of
761 ‘‘AbstractConnection ‘‘ class.
762

763 Keyword arguments:
764

765 :param Union[float , torch.Tensor] reward: Reward signal from
reinforcement

766 learning task.
767 :param float a_plus: Learning rate (post -synaptic).
768 :param float a_minus: Learning rate (pre -synaptic).
769 """
770 batch_size = self.source.batch_size
771

772 # Initialize eligibility and eligibility trace.
773 if not hasattr(self , "eligibility"):
774 self.eligibility = torch.zeros(batch_size , *self.

connection.w.shape)
775 if not hasattr(self , "eligibility_trace"):
776 self.eligibility_trace = torch.zeros(batch_size , *self.

connection.w.shape)

227

777

778 # Parse keyword arguments.
779 reward = kwargs["reward"]
780 a_plus = torch.tensor(kwargs.get("a_plus", 1.0))
781 a_minus = torch.tensor(kwargs.get("a_minus", -1.0))
782

783 # Calculate value of eligibility trace based on the value
784 # of the point eligibility value of the past timestep.
785 self.eligibility_trace *= torch.exp(-self.connection.dt /

self.tc_e_trace)
786

787 # Compute weight update.
788 update = reward * self.eligibility_trace
789 self.connection.w += self.nu[0] * self.connection.dt * torch

.sum(update , dim=0)
790

791 out_channels , _, kernel_height , kernel_width = self.
connection.w.size()

792 padding , stride = self.connection.padding , self.connection.
stride

793

794 # Initialize P^+ and P^-.
795 if not hasattr(self , "p_plus"):
796 self.p_plus = torch.zeros(batch_size , *self.source.shape

)
797 self.p_plus = im2col_indices(
798 self.p_plus , kernel_height , kernel_width , padding=

padding , stride=stride
799)
800 if not hasattr(self , "p_minus"):
801 self.p_minus = torch.zeros(batch_size , *self.target.

shape)
802 self.p_minus = self.p_minus.view(batch_size ,

out_channels , -1).float ()
803

804 # Reshaping spike occurrences.
805 source_s = im2col_indices(
806 self.source.s.float(),
807 kernel_height ,
808 kernel_width ,
809 padding=padding ,
810 stride=stride ,
811)
812 target_s = (
813 self.target.s.permute(1, 2, 3, 0).view(batch_size ,

out_channels , -1).float ()
814)
815

816 # Update P^+ and P^- values.
817 self.p_plus *= torch.exp(-self.connection.dt / self.tc_plus)
818 self.p_plus += a_plus * source_s
819 self.p_minus *= torch.exp(-self.connection.dt / self.

tc_minus)
820 self.p_minus += a_minus * target_s

228

821

822 # Calculate point eligibility value.
823 self.eligibility = torch.bmm(
824 target_s , self.p_plus.permute ((0, 2, 1))
825) + torch.bmm(self.p_minus , source_s.permute ((0, 2, 1)))
826 self.eligibility = self.eligibility.view(self.connection.w.

size())
827

828 super().update ()
829

830

831 class Rmax(LearningRule):
832 # language=rst
833 """
834 Reward -modulated learning rule derived from reward maximization

principles. Adapted
835 from ‘(Vasilaki et al., 2009)
836 <https :// intranet.physio.unibe.ch/Publikationen/Dokumente/

Vasilaki2009PloSComputBio_1.pdf >‘_.
837 """
838

839 def __init__(
840 self ,
841 connection: AbstractConnection ,
842 nu: Optional[Union[float , Sequence[float]]] = None ,
843 reduction: Optional[callable] = None ,
844 weight_decay: float = 0.0,
845 ** kwargs
846) -> None:
847 # language=rst
848 """
849 Constructor for ‘‘R-max ‘‘ learning rule.
850

851 :param connection: An ‘‘AbstractConnection ‘‘ object whose
weights the ‘‘R-max ‘‘

852 learning rule will modify.
853 :param nu: Single or pair of learning rates for pre - and

post -synaptic events ,
854 respectively.
855 :param reduction: Method for reducing parameter updates

along the minibatch
856 dimension.
857 :param weight_decay: Constant multiple to decay weights by

on each iteration.
858

859 Keyword arguments:
860

861 :param float tc_c: Time constant for balancing naive Hebbian
and policy gradient

862 learning.
863 :param float tc_e_trace: Time constant for the eligibility

trace.
864 """
865 super().__init__(

229

866 connection=connection ,
867 nu=nu,
868 reduction=reduction ,
869 weight_decay=weight_decay ,
870 ** kwargs
871)
872

873 # Trace is needed for computing epsilon.
874 assert (
875 self.source.traces and self.source.traces_additive
876), "Pre -synaptic nodes must use additive spike traces."
877

878 # Derivation of R-max depends on stochastic SRM neurons!
879 assert isinstance(
880 self.target , SRM0Nodes
881), "R-max needs stochastically firing neurons , use SRM0Nodes

."
882

883 if isinstance(connection , (Connection , LocalConnection)):
884 self.update = self._connection_update
885 else:
886 raise NotImplementedError(
887 "This learning rule is not supported for this

Connection type."
888)
889

890 self.tc_c = torch.tensor(
891 kwargs.get("tc_c", 5.0)
892) # 0 for pure naive Hebbian , inf for pure policy gradient.
893 self.tc_e_trace = torch.tensor(kwargs.get("tc_e_trace",

25.0))
894

895 def _connection_update(self , ** kwargs) -> None:
896 # language=rst
897 """
898 R-max learning rule for ‘‘Connection ‘‘ subclass of ‘‘

AbstractConnection ‘‘ class.
899

900 Keyword arguments:
901

902 :param Union[float , torch.Tensor] reward: Reward signal from
reinforcement

903 learning task.
904 """
905 # Initialize eligibility trace.
906 if not hasattr(self , "eligibility_trace"):
907 self.eligibility_trace = torch.zeros(*self.connection.w.

shape)
908

909 # Reshape variables.
910 target_s = self.target.s.view(-1).float ()
911 target_s_prob = self.target.s_prob.view(-1)
912 source_x = self.source.x.view(-1)
913

230

914 # Parse keyword arguments.
915 reward = kwargs["reward"]
916

917 # New eligibility trace.
918 self.eligibility_trace *= 1 - self.connection.dt / self.

tc_e_trace
919 self.eligibility_trace += (
920 target_s
921 - (target_s_prob / (1.0 + self.tc_c / self.connection.dt

* target_s_prob))
922) * source_x[:, None]
923

924 # Compute weight update.
925 self.connection.w += self.nu[0] * reward * self.

eligibility_trace
926

927 super().update ()

Listing B.24: Learning

1 from abc import ABC , abstractmethod
2

3 import torch
4

5

6 class AbstractReward(ABC):
7 # language=rst
8 """
9 Abstract base class for reward computation.

10 """
11

12 @abstractmethod
13 def compute(self , ** kwargs) -> None:
14 # language=rst
15 """
16 Computes/modifies reward.
17 """
18 pass
19

20 @abstractmethod
21 def update(self , ** kwargs) -> None:
22 # language=rst
23 """
24 Updates internal variables needed to modify reward. Usually

called once per
25 episode.
26 """
27 pass
28

29

30 class MovingAvgRPE(AbstractReward):
31 # language=rst
32 """
33 Computes reward prediction error (RPE) based on an exponential

231

moving average (EMA)
34 of past rewards.
35 """
36

37 def __init__(self , ** kwargs) -> None:
38 # language=rst
39 """
40 Constructor for EMA reward prediction error.
41 """
42 self.reward_predict = torch.tensor (0.0) # Predicted reward

(per step).
43 self.reward_predict_episode = torch.tensor (0.0) # Predicted

reward per episode.
44 self.rewards_predict_episode = (
45 []
46) # List of predicted rewards per episode (used for

plotting).
47

48 def compute(self , ** kwargs) -> torch.Tensor:
49 # language=rst
50 """
51 Computes the reward prediction error using EMA.
52

53 Keyword arguments:
54

55 :param Union[float , torch.Tensor] reward: Current reward.
56 :return: Reward prediction error.
57 """
58 # Get keyword arguments.
59 reward = kwargs["reward"]
60

61 return reward - self.reward_predict
62

63 def update(self , ** kwargs) -> None:
64 # language=rst
65 """
66 Updates the EMAs. Called once per episode.
67

68 Keyword arguments:
69

70 :param Union[float , torch.Tensor] accumulated_reward: Reward
accumulated over

71 one episode.
72 :param int steps: Steps in that episode.
73 :param float ema_window: Width of the averaging window.
74 """
75 # Get keyword arguments.
76 accumulated_reward = kwargs["accumulated_reward"]
77 steps = torch.tensor(kwargs["steps"]).float()
78 ema_window = torch.tensor(kwargs.get("ema_window", 10.0))
79

80 # Compute average reward per step.
81 reward = accumulated_reward / steps
82

232

83 # Update EMAs.
84 self.reward_predict = (
85 1 - 1 / ema_window
86) * self.reward_predict + 1 / ema_window * reward
87 self.reward_predict_episode = (
88 1 - 1 / ema_window
89) * self.reward_predict_episode + 1 / ema_window *

accumulated_reward
90 self.rewards_predict_episode.append(self.

reward_predict_episode.item())

Listing B.25: Reward

B.9 Evaluation

1 from .evaluation import (
2 assign_labels ,
3 logreg_fit ,
4 logreg_predict ,
5 all_activity ,
6 proportion_weighting ,
7 ngram ,
8 update_ngram_scores ,
9)

Listing B.26: Initialization

1 from itertools import product
2 from typing import Optional , Tuple , Dict
3

4 import torch
5 from sklearn.linear_model import LogisticRegression
6

7

8 def assign_labels(
9 spikes: torch.Tensor ,

10 labels: torch.Tensor ,
11 n_labels: int ,
12 rates: Optional[torch.Tensor] = None ,
13 alpha: float = 1.0,
14) -> Tuple[torch.Tensor , torch.Tensor , torch.Tensor]:
15 # language=rst
16 """
17 Assign labels to the neurons based on highest average spiking

activity.
18

19 :param spikes: Binary tensor of shape ‘‘(n_samples , time ,
n_neurons)‘‘ of a single

20 layer’s spiking activity.
21 :param labels: Vector of shape ‘‘(n_samples ,)‘‘ with data labels

corresponding to
22 spiking activity.
23 :param n_labels: The number of target labels in the data.

233

24 :param rates: If passed , these represent spike rates from a
previous

25 ‘‘assign_labels ()‘‘ call.
26 :param alpha: Rate of decay of label assignments.
27 :return: Tuple of class assignments , per -class spike proportions

, and per -class
28 firing rates.
29 """
30 n_neurons = spikes.size (2)
31

32 if rates is None:
33 rates = torch.zeros(n_neurons , n_labels)
34

35 # Sum over time dimension (spike ordering doesn ’t matter).
36 spikes = spikes.sum (1)
37

38 for i in range(n_labels):
39 # Count the number of samples with this label.
40 n_labeled = torch.sum(labels == i).float()
41

42 if n_labeled > 0:
43 # Get indices of samples with this label.
44 indices = torch.nonzero(labels == i).view(-1)
45

46 # Compute average firing rates for this label.
47 rates[:, i] = alpha * rates[:, i] + (
48 torch.sum(spikes[indices], 0) / n_labeled
49)
50

51 # Compute proportions of spike activity per class.
52 proportions = rates / rates.sum(1, keepdim=True)
53 proportions[proportions != proportions] = 0 # Set NaNs to 0
54

55 # Neuron assignments are the labels they fire most for.
56 assignments = torch.max(proportions , 1)[1]
57

58 return assignments , proportions , rates
59

60

61 def logreg_fit(
62 spikes: torch.Tensor , labels: torch.Tensor , logreg:

LogisticRegression
63) -> LogisticRegression:
64 # language=rst
65 """
66 (Re)fit logistic regression model to spike data summed over time

.
67

68 :param spikes: Summed (over time) spikes of shape ‘‘(n_examples ,
time , n_neurons)‘‘.

69 :param labels: Vector of shape ‘‘(n_samples ,)‘‘ with data labels
corresponding to

70 spiking activity.
71 :param logreg: Logistic regression model from previous fits.

234

72 :return: (Re)fitted logistic regression model.
73 """
74 # (Re)fit logistic regression model.
75 logreg.fit(spikes , labels)
76 return logreg
77

78

79 def logreg_predict(spikes: torch.Tensor , logreg: LogisticRegression)
-> torch.Tensor:

80 # language=rst
81 """
82 Predicts classes according to spike data summed over time.
83

84 :param spikes: Summed (over time) spikes of shape ‘‘(n_examples ,
time , n_neurons)‘‘.

85 :param logreg: Logistic regression model from previous fits.
86 :return: Predictions per example.
87 """
88 # Make class label predictions.
89 if not hasattr(logreg , "coef_") or logreg.coef_ is None:
90 return -1 * torch.ones(spikes.size (0)).long()
91

92 predictions = logreg.predict(spikes)
93 return torch.Tensor(predictions).long()
94

95

96 def all_activity(
97 spikes: torch.Tensor , assignments: torch.Tensor , n_labels: int
98) -> torch.Tensor:
99 # language=rst

100 """
101 Classify data with the label with highest average spiking

activity over all neurons.
102

103 :param spikes: Binary tensor of shape ‘‘(n_samples , time ,
n_neurons)‘‘ of a layer’s

104 spiking activity.
105 :param assignments: A vector of shape ‘‘(n_neurons ,)‘‘ of neuron

label assignments.
106 :param n_labels: The number of target labels in the data.
107 :return: Predictions tensor of shape ‘‘(n_samples ,)‘‘ resulting

from the "all
108 activity" classification scheme.
109 """
110 n_samples = spikes.size (0)
111

112 # Sum over time dimension (spike ordering doesn ’t matter).
113 spikes = spikes.sum (1)
114

115 rates = torch.zeros(n_samples , n_labels)
116 for i in range(n_labels):
117 # Count the number of neurons with this label assignment.
118 n_assigns = torch.sum(assignments == i).float()
119

235

120 if n_assigns > 0:
121 # Get indices of samples with this label.
122 indices = torch.nonzero(assignments == i).view(-1)
123

124 # Compute layer -wise firing rate for this label.
125 rates[:, i] = torch.sum(spikes[:, indices], 1) /

n_assigns
126

127 # Predictions are arg -max of layer -wise firing rates.
128 return torch.sort(rates , dim=1, descending=True)[1][: , 0]
129

130

131 def proportion_weighting(
132 spikes: torch.Tensor ,
133 assignments: torch.Tensor ,
134 proportions: torch.Tensor ,
135 n_labels: int ,
136) -> torch.Tensor:
137 # language=rst
138 """
139 Classify data with the label with highest average spiking

activity over all neurons ,
140 weighted by class -wise proportion.
141

142 :param spikes: Binary tensor of shape ‘‘(n_samples , time ,
n_neurons)‘‘ of a single

143 layer’s spiking activity.
144 :param assignments: A vector of shape ‘‘(n_neurons ,)‘‘ of neuron

label assignments.
145 :param proportions: A matrix of shape ‘‘(n_neurons , n_labels)‘‘

giving the per -class
146 proportions of neuron spiking activity.
147 :param n_labels: The number of target labels in the data.
148 :return: Predictions tensor of shape ‘‘(n_samples ,)‘‘ resulting

from the "proportion
149 weighting" classification scheme.
150 """
151 n_samples = spikes.size (0)
152

153 # Sum over time dimension (spike ordering doesn ’t matter).
154 spikes = spikes.sum (1)
155

156 rates = torch.zeros(n_samples , n_labels)
157 for i in range(n_labels):
158 # Count the number of neurons with this label assignment.
159 n_assigns = torch.sum(assignments == i).float()
160

161 if n_assigns > 0:
162 # Get indices of samples with this label.
163 indices = torch.nonzero(assignments == i).view(-1)
164

165 # Compute layer -wise firing rate for this label.
166 rates[:, i] += (
167 torch.sum((proportions [:, i] * spikes)[:, indices],

236

1) / n_assigns
168)
169

170 # Predictions are arg -max of layer -wise firing rates.
171 predictions = torch.sort(rates , dim=1, descending=True)[1][: , 0]
172

173 return predictions
174

175

176 def ngram(
177 spikes: torch.Tensor ,
178 ngram_scores: Dict[Tuple[int , ...], torch.Tensor],
179 n_labels: int ,
180 n: int ,
181) -> torch.Tensor:
182 # language=rst
183 """
184 Predicts between ‘‘n_labels ‘‘ using ‘‘ngram_scores ‘‘.
185

186 :param spikes: Spikes of shape ‘‘(n_examples , time , n_neurons)
‘‘.

187 :param ngram_scores: Previously recorded scores to update.
188 :param n_labels: The number of target labels in the data.
189 :param n: The max size of n-gram to use.
190 :return: Predictions per example.
191 """
192 predictions = []
193 for activity in spikes:
194 score = torch.zeros(n_labels)
195

196 # Aggregate all of the firing neurons ’ indices
197 fire_order = []
198 for t in range(activity.size()[0]):
199 ordering = torch.nonzero(activity[t].view(-1))
200 if ordering.numel() > 0:
201 fire_order += ordering[:, 0]. tolist ()
202

203 # Consider all n-gram sequences.
204 for j in range(len(fire_order) - n):
205 if tuple(fire_order[j : j + n]) in ngram_scores:
206 score += ngram_scores[tuple(fire_order[j : j + n])]
207

208 predictions.append(torch.argmax(score))
209

210 return torch.tensor(predictions).long()
211

212

213 def update_ngram_scores(
214 spikes: torch.Tensor ,
215 labels: torch.Tensor ,
216 n_labels: int ,
217 n: int ,
218 ngram_scores: Dict[Tuple[int , ...], torch.Tensor],
219) -> Dict[Tuple[int , ...], torch.Tensor]:

237

220 # language=rst
221 """
222 Updates ngram scores by adding the count of each spike sequence

of length n from the
223 past ‘‘n_examples ‘‘.
224

225 :param spikes: Spikes of shape ‘‘(n_examples , time , n_neurons)
‘‘.

226 :param labels: The ground truth labels of shape ‘‘(n_examples)
‘‘.

227 :param n_labels: The number of target labels in the data.
228 :param n: The max size of n-gram to use.
229 :param ngram_scores: Previously recorded scores to update.
230 :return: Dictionary mapping n-grams to vectors of per -class

spike counts.
231 """
232 for i, activity in enumerate(spikes):
233 # Obtain firing order for spiking activity.
234 fire_order = []
235

236 # Aggregate all of the firing neurons ’ indices.
237 for t in range(spikes.size (1)):
238 # Gets the indices of the neurons which fired on this

timestep.
239 ordering = torch.nonzero(activity[t]).view(-1)
240 if ordering.numel() > 0: # If there was more than one

spike ...
241 # Add the indices of spiked neurons to the fire

ordering.
242 ordering = ordering.tolist ()
243 fire_order.append(ordering)
244

245 # Check every sequence of length n.
246 for order in zip(*(fire_order[k:] for k in range(n))):
247 for sequence in product (*order):
248 if sequence not in ngram_scores:
249 ngram_scores[sequence] = torch.zeros(n_labels)
250

251 ngram_scores[sequence][int(labels[i])] += 1
252

253 return ngram_scores

Listing B.27: Evaluation

B.10 Analysis

1 from . import plotting , visualization , pipeline_analysis

Listing B.28: Initialization

1 from abc import ABC , abstractmethod
2 from typing import Dict , Optional
3

4 import matplotlib.pyplot as plt

238

5 import numpy as np
6 import pandas as pd
7 import torch
8 from tensorboardX import SummaryWriter
9 from torchvision.utils import make_grid

10

11 from .plotting import plot_spikes , plot_voltages ,
plot_conv2d_weights

12 from ..utils import reshape_conv2d_weights
13

14

15 class PipelineAnalyzer(ABC):
16 # language=rst
17 """
18 Responsible for pipeline analysis. Subclasses maintain state
19 information related to plotting or logging.
20 """
21

22 @abstractmethod
23 def finalize_step(self) -> None:
24 # language=rst
25 """
26 Flush the output from the current step.
27 """
28 pass
29

30 @abstractmethod
31 def plot_obs(self , obs: torch.Tensor , tag: str = "obs", step:

int = None) -> None:
32 # language=rst
33 """
34 Pulls the observation from PyTorch and sets up for

Matplotlib
35 plotting.
36

37 :param obs: A 2D array of floats depicting an input image.
38 :param tag: A unique tag to associate the data with.
39 :param step: The step of the pipeline.
40 """
41 pass
42

43 @abstractmethod
44 def plot_reward(
45 self ,
46 reward_list: list ,
47 reward_window: int = None ,
48 tag: str = "reward",
49 step: int = None ,
50) -> None:
51 # language=rst
52 """
53 Plot the accumulated reward for each episode.
54

55 :param reward_list: The list of recent rewards to be plotted

239

.
56 :param reward_window: The length of the window to compute a

moving average over.
57 :param tag: A unique tag to associate the data with.
58 :param step: The step of the pipeline.
59 """
60 pass
61

62 @abstractmethod
63 def plot_spikes(
64 self ,
65 spike_record: Dict[str , torch.Tensor],
66 tag: str = "spike",
67 step: int = None ,
68) -> None:
69 # language=rst
70 """
71 Plots all spike records inside of ‘‘spike_record ‘‘. Keeps

unique
72 plots for all unique tags that are given.
73

74 :param spike_record: Dictionary of spikes to be rasterized.
75 :param tag: A unique tag to associate the data with.
76 :param step: The step of the pipeline.
77 """
78 pass
79

80 @abstractmethod
81 def plot_voltages(
82 self ,
83 voltage_record: Dict[str , torch.Tensor],
84 thresholds: Optional[Dict[str , torch.Tensor]] = None ,
85 tag: str = "voltage",
86 step: int = None ,
87) -> None:
88 # language=rst
89 """
90 Plots all voltage records and given thresholds. Keeps unique
91 plots for all unique tags that are given.
92

93 :param voltage_record: Dictionary of voltages for neurons
inside of networks

94 organized by the layer they
correspond to.

95 :param thresholds: Optional dictionary of threshold values
for neurons.

96 :param tag: A unique tag to associate the data with.
97 :param step: The step of the pipeline.
98 """
99 pass

100

101 @abstractmethod
102 def plot_conv2d_weights(
103 self , weights: torch.Tensor , tag: str = "conv2d", step: int

240

= None
104) -> None:
105 # language=rst
106 """
107 Plot a connection weight matrix of a ‘‘Conv2dConnection ‘‘.
108

109 :param weights: Weight matrix of ‘‘Conv2dConnection ‘‘ object
.

110 :param tag: A unique tag to associate the data with.
111 :param step: The step of the pipeline.
112 """
113 pass
114

115

116 class MatplotlibAnalyzer(PipelineAnalyzer):
117 # language=rst
118 """
119 Renders output using Matplotlib.
120

121 Matplotlib requires objects to be kept around over the full
lifetime

122 of the plots; this is done through ‘‘self.plots ‘‘. An
interactive session

123 is needed so that we can continue processing and just update the
124 plots.
125 """
126

127 def __init__(self , ** kwargs) -> None:
128 # language=rst
129 """
130 Initializes the analyzer.
131

132 Keyword arguments:
133

134 :param str volts_type: Type of plotting for voltages (‘‘"
color"‘‘ or ‘‘"line"‘‘).

135 """
136 self.volts_type = kwargs.get("volts_type", "color")
137 plt.ion()
138 self.plots = {}
139

140 def plot_obs(self , obs: torch.Tensor , tag: str = "obs", step:
int = None) -> None:

141 # language=rst
142 """
143 Pulls the observation off of torch and sets up for

Matplotlib
144 plotting.
145

146 :param obs: A 2D array of floats depicting an input image.
147 :param tag: A unique tag to associate the data with.
148 :param step: The step of the pipeline.
149 """
150 obs = obs.detach ().cpu().numpy ()

241

151 obs = np.transpose(obs , (1, 2, 0)).squeeze ()
152

153 if tag in self.plots:
154 obs_ax , obs_im = self.plots[tag]
155 else:
156 obs_ax , obs_im = None , None
157

158 if obs_im is None and obs_ax is None:
159 fig , obs_ax = plt.subplots ()
160 obs_ax.set_title("Observation")
161 obs_ax.set_xticks (())
162 obs_ax.set_yticks (())
163 obs_im = obs_ax.imshow(obs , cmap="gray")
164

165 self.plots[tag] = obs_ax , obs_im
166 else:
167 obs_im.set_data(obs)
168

169 def plot_reward(
170 self ,
171 reward_list: list ,
172 reward_window: int = None ,
173 tag: str = "reward",
174 step: int = None ,
175) -> None:
176 # language=rst
177 """
178 Plot the accumulated reward for each episode.
179

180 :param reward_list: The list of recent rewards to be plotted
.

181 :param reward_window: The length of the window to compute a
moving average over.

182 :param tag: A unique tag to associate the data with.
183 :param step: The step of the pipeline.
184 """
185 if tag in self.plots:
186 reward_im , reward_ax , reward_plot = self.plots[tag]
187 else:
188 reward_im , reward_ax , reward_plot = None , None , None
189

190 # Compute moving average.
191 if reward_window is not None:
192 # Ensure window size > 0 and < size of reward list.
193 window = max(min(len(reward_list), reward_window), 0)
194

195 # Fastest implementation of moving average.
196 reward_list_ = (
197 pd.Series(reward_list)
198 .rolling(window=window , min_periods =1)
199 .mean()
200 .values
201)
202 else:

242

203 reward_list_ = reward_list [:]
204

205 if reward_im is None and reward_ax is None:
206 reward_im , reward_ax = plt.subplots ()
207 reward_ax.set_title("Accumulated reward")
208 reward_ax.set_xlabel("Episode")
209 reward_ax.set_ylabel("Reward")
210 (reward_plot ,) = reward_ax.plot(reward_list_)
211

212 self.plots[tag] = reward_im , reward_ax , reward_plot
213 else:
214 reward_plot.set_data(range(len(reward_list_)),

reward_list_)
215 reward_ax.relim ()
216 reward_ax.autoscale_view ()
217

218 def plot_spikes(
219 self ,
220 spike_record: Dict[str , torch.Tensor],
221 tag: str = "spike",
222 step: int = None ,
223) -> None:
224 # language=rst
225 """
226 Plots all spike records inside of ‘‘spike_record ‘‘. Keeps

unique
227 plots for all unique tags that are given.
228

229 :param spike_record: Dictionary of spikes to be rasterized.
230 :param tag: A unique tag to associate the data with.
231 :param step: The step of the pipeline.
232 """
233 if tag not in self.plots:
234 self.plots[tag] = plot_spikes(spike_record)
235 else:
236 s_im , s_ax = self.plots[tag]
237 self.plots[tag] = plot_spikes(spike_record , ims=s_im ,

axes=s_ax)
238

239 def plot_voltages(
240 self ,
241 voltage_record: Dict[str , torch.Tensor],
242 thresholds: Optional[Dict[str , torch.Tensor]] = None ,
243 tag: str = "voltage",
244 step: int = None ,
245) -> None:
246 # language=rst
247 """
248 Plots all voltage records and given thresholds. Keeps unique
249 plots for all unique tags that are given.
250

251 :param voltage_record: Dictionary of voltages for neurons
inside of networks

252 organized by the layer they

243

correspond to.
253 :param thresholds: Optional dictionary of threshold values

for neurons.
254 :param tag: A unique tag to associate the data with.
255 :param step: The step of the pipeline.
256 """
257 if tag not in self.plots:
258 self.plots[tag] = plot_voltages(
259 voltage_record , plot_type=self.volts_type ,

thresholds=thresholds
260)
261 else:
262 v_im , v_ax = self.plots[tag]
263 self.plots[tag] = plot_voltages(
264 voltage_record ,
265 ims=v_im ,
266 axes=v_ax ,
267 plot_type=self.volts_type ,
268 thresholds=thresholds ,
269)
270

271 def plot_conv2d_weights(
272 self , weights: torch.Tensor , tag: str = "conv2d", step: int

= None
273) -> None:
274 # language=rst
275 """
276 Plot a connection weight matrix of a ‘‘Conv2dConnection ‘‘.
277

278 :param weights: Weight matrix of ‘‘Conv2dConnection ‘‘ object
.

279 :param tag: A unique tag to associate the data with.
280 :param step: The step of the pipeline.
281 """
282 wmin = weights.min().item()
283 wmax = weights.max().item()
284

285 if tag not in self.plots:
286 self.plots[tag] = plot_conv2d_weights(weights , wmin ,

wmax)
287 else:
288 im = self.plots[tag]
289 plot_conv2d_weights(weights , wmin , wmax , im=im)
290

291 def finalize_step(self) -> None:
292 # language=rst
293 """
294 Flush the output from the current step
295 """
296 plt.draw()
297 plt.pause (1e-8)
298 plt.show()
299

300

244

301 class TensorboardAnalyzer(PipelineAnalyzer):
302 def __init__(self , summary_directory: str = "./logs"):
303 # language=rst
304 """
305 Initializes the analyzer.
306

307 :param summary_directory: Directory to save log files.
308 """
309 self.writer = SummaryWriter(summary_directory)
310

311 def finalize_step(self) -> None:
312 # language=rst
313 """
314 No -op for ‘‘TensorboardAnalyzer ‘‘.
315 """
316 pass
317

318 def plot_obs(self , obs: torch.Tensor , tag: str = "obs", step:
int = None) -> None:

319 # language=rst
320 """
321 Pulls the observation off of torch and sets up for

Matplotlib
322 plotting.
323

324 :param obs: A 2D array of floats depicting an input image.
325 :param tag: A unique tag to associate the data with.
326 :param step: The step of the pipeline.
327 """
328 obs_grid = make_grid(obs.float(), nrow=4, normalize=True)
329 self.writer.add_image(tag , obs_grid , step)
330

331 def plot_reward(
332 self ,
333 reward_list: list ,
334 reward_window: int = None ,
335 tag: str = "reward",
336 step: int = None ,
337) -> None:
338 # language=rst
339 """
340 Plot the accumulated reward for each episode.
341

342 :param reward_list: The list of recent rewards to be plotted
.

343 :param reward_window: The length of the window to compute a
moving average over.

344 :param tag: A unique tag to associate the data with.
345 :param step: The step of the pipeline.
346 """
347 self.writer.add_scalar(tag , reward_list [-1], step)
348

349 def plot_spikes(
350 self ,

245

351 spike_record: Dict[str , torch.Tensor],
352 tag: str = "spike",
353 step: int = None ,
354) -> None:
355 # language=rst
356 """
357 Plots all spike records inside of ‘‘spike_record ‘‘. Keeps

unique
358 plots for all unique tags that are given.
359

360 :param spike_record: Dictionary of spikes to be rasterized.
361 :param tag: A unique tag to associate the data with.
362 :param step: The step of the pipeline.
363 """
364 for k, spikes in spike_record.items():
365 # shuffle spikes into 1x1x#NueronsxT
366 spikes = spikes.view(1, 1, -1, spikes.shape [-1]).float()
367 spike_grid_img = make_grid(spikes , nrow=1, pad_value

=0.5)
368

369 self.writer.add_image(tag + "_" + str(k), spike_grid_img
, step)

370

371 def plot_voltages(
372 self ,
373 voltage_record: Dict[str , torch.Tensor],
374 thresholds: Optional[Dict[str , torch.Tensor]] = None ,
375 tag: str = "voltage",
376 step: int = None ,
377) -> None:
378 # language=rst
379 """
380 Plots all voltage records and given thresholds. Keeps unique
381 plots for all unique tags that are given.
382

383 :param voltage_record: Dictionary of voltages for neurons
inside of networks

384 organized by the layer they
correspond to.

385 :param thresholds: Optional dictionary of threshold values
for neurons.

386 :param tag: A unique tag to associate the data with.
387 :param step: The step of the pipeline.
388 """
389 for k, v in voltage_record.items():
390 # Shuffle voltages into 1x1x#neuronsxT
391 v = v.view(1, 1, -1, v.shape [-1])
392 voltage_grid_img = make_grid(v, nrow=1, pad_value =0)
393

394 self.writer.add_image(tag + "_" + str(k),
voltage_grid_img , step)

395

396 def plot_conv2d_weights(
397 self , weights: torch.Tensor , tag: str = "conv2d", step: int

246

= None
398) -> None:
399 # language=rst
400 """
401 Plot a connection weight matrix of a ‘‘Conv2dConnection ‘‘.
402

403 :param weights: Weight matrix of ‘‘Conv2dConnection ‘‘ object
.

404 :param tag: A unique tag to associate the data with.
405 :param step: The step of the pipeline.
406 """
407 reshaped = reshape_conv2d_weights(weights).unsqueeze (0)
408

409 reshaped -= reshaped.min()
410 reshaped /= reshaped.max()
411

412 self.writer.add_image(tag , reshaped , step)

Listing B.29: Pipeline analysis

1 import torch
2 import numpy as np
3 import matplotlib.pyplot as plt
4

5 from matplotlib.axes import Axes
6 from matplotlib.image import AxesImage
7 from torch.nn.modules.utils import _pair
8 from matplotlib.collections import PathCollection
9 from mpl_toolkits.axes_grid1 import make_axes_locatable

10 from typing import Tuple , List , Optional , Sized , Dict , Union
11

12 from ..utils import reshape_locally_connected_weights ,
reshape_conv2d_weights

13

14 plt.ion()
15

16

17 def plot_input(
18 image: torch.Tensor ,
19 inpt: torch.Tensor ,
20 label: Optional[int] = None ,
21 axes: List[Axes] = None ,
22 ims: List[AxesImage] = None ,
23 figsize: Tuple[int , int] = (8, 4),
24) -> Tuple[List[Axes], List[AxesImage]]:
25 # language=rst
26 """
27 Plots a two -dimensional image and its corresponding spike -train

representation.
28

29 :param image: A 2D array of floats depicting an input image.
30 :param inpt: A 2D array of floats depicting an image’s spike -

train encoding.
31 :param label: Class label of the input data.

247

32 :param axes: Used for re -drawing the input plots.
33 :param ims: Used for re -drawing the input plots.
34 :param figsize: Horizontal , vertical figure size in inches.
35 :return: Tuple of ‘‘(axes , ims)‘‘ used for re-drawing the input

plots.
36 """
37 local_image = image.detach ().clone().cpu().numpy()
38 local_inpy = inpt.detach ().clone ().cpu().numpy()
39

40 if axes is None:
41 fig , axes = plt.subplots(1, 2, figsize=figsize)
42 ims = (
43 axes [0]. imshow(local_image , cmap="binary"),
44 axes [1]. imshow(local_inpy , cmap="binary"),
45)
46

47 if label is None:
48 axes [0]. set_title("Current image")
49 else:
50 axes [0]. set_title("Current image (label = %d)" % label)
51

52 axes [1]. set_title("Reconstruction")
53

54 for ax in axes:
55 ax.set_xticks (())
56 ax.set_yticks (())
57

58 fig.tight_layout ()
59 else:
60 if label is not None:
61 axes [0]. set_title("Current image (label = %d)" % label)
62

63 ims [0]. set_data(local_image)
64 ims [1]. set_data(local_inpy)
65

66 return axes , ims
67

68

69 def plot_spikes(
70 spikes: Dict[str , torch.Tensor],
71 time: Optional[Tuple[int , int]] = None ,
72 n_neurons: Optional[Dict[str , Tuple[int , int]]] = None ,
73 ims: Optional[List[PathCollection]] = None ,
74 axes: Optional[Union[Axes , List[Axes]]] = None ,
75 figsize: Tuple[float , float] = (8.0, 4.5),
76) -> Tuple[List[AxesImage], List[Axes]]:
77 # language=rst
78 """
79 Plot spikes for any group(s) of neurons.
80

81 :param spikes: Mapping from layer names to spiking data. Spike
data has shape

82 ‘‘[time , n_1 , ..., n_k]‘‘, where ‘‘[n_1 , ..., n_k]‘‘ is the
shape of the

248

83 recorded layer.
84 :param time: Plot spiking activity of neurons in the given time

range. Default is
85 entire simulation time.
86 :param n_neurons: Plot spiking activity of neurons in the given

range of neurons.
87 Default is all neurons.
88 :param ims: Used for re -drawing the plots.
89 :param axes: Used for re -drawing the plots.
90 :param figsize: Horizontal , vertical figure size in inches.
91 :return: ‘‘ims , axes ‘‘: Used for re -drawing the plots.
92 """
93 n_subplots = len(spikes.keys())
94 if n_neurons is None:
95 n_neurons = {}
96

97 spikes = {k: v.view(v.size (0), -1) for (k, v) in spikes.items()}
98 if time is None:
99 # Set it for entire duration

100 for key in spikes.keys():
101 time = (0, spikes[key].shape [0])
102 break
103

104 # Use all neurons if no argument provided.
105 for key , val in spikes.items ():
106 if key not in n_neurons.keys():
107 n_neurons[key] = (0, val.shape [1])
108

109 if ims is None:
110 fig , axes = plt.subplots(n_subplots , 1, figsize=figsize)
111 if n_subplots == 1:
112 axes = [axes]
113

114 ims = []
115 for i, datum in enumerate(spikes.items()):
116 spikes = (
117 datum [1][
118 time [0] : time[1], n_neurons[datum [0]][0] :

n_neurons[datum [0]][1]
119]
120 .detach ()
121 .clone()
122 .cpu()
123 .numpy()
124)
125 ims.append(
126 axes[i]. scatter(
127 x=np.array(spikes.nonzero ()).T[:, 0],
128 y=np.array(spikes.nonzero ()).T[:, 1],
129 s=1,
130)
131)
132 args = (
133 datum[0],

249

134 n_neurons[datum [0]][0] ,
135 n_neurons[datum [0]][1] ,
136 time[0],
137 time[1],
138)
139 axes[i]. set_title(
140 "%s spikes for neurons (%d - %d) from t = %d to %d "

% args
141)
142 for ax in axes:
143 ax.set_aspect("auto")
144

145 plt.setp(
146 axes , xticks =[], yticks =[], xlabel="Simulation time",

ylabel="Neuron index"
147)
148 plt.tight_layout ()
149 else:
150 for i, datum in enumerate(spikes.items()):
151 spikes = (
152 datum [1][
153 time [0] : time[1], n_neurons[datum [0]][0] :

n_neurons[datum [0]][1]
154]
155 .detach ()
156 .clone()
157 .cpu()
158 .numpy()
159)
160 ims[i]. set_offsets(np.array(spikes.nonzero ()).T)
161 args = (
162 datum[0],
163 n_neurons[datum [0]][0] ,
164 n_neurons[datum [0]][1] ,
165 time[0],
166 time[1],
167)
168 axes[i]. set_title(
169 "%s spikes for neurons (%d - %d) from t = %d to %d "

% args
170)
171

172 plt.draw()
173

174 return ims , axes
175

176

177 def plot_weights(
178 weights: torch.Tensor ,
179 wmin: Optional[float] = 0,
180 wmax: Optional[float] = 1,
181 im: Optional[AxesImage] = None ,
182 figsize: Tuple[int , int] = (5, 5),
183 cmap: str = "hot_r",

250

184) -> AxesImage:
185 # language=rst
186 """
187 Plot a connection weight matrix.
188

189 :param weights: Weight matrix of ‘‘Connection ‘‘ object.
190 :param wmin: Minimum allowed weight value.
191 :param wmax: Maximum allowed weight value.
192 :param im: Used for re -drawing the weights plot.
193 :param figsize: Horizontal , vertical figure size in inches.
194 :param cmap: Matplotlib colormap.
195 :return: ‘‘AxesImage ‘‘ for re-drawing the weights plot.
196 """
197 local_weights = weights.detach ().clone ().cpu().numpy()
198 if not im:
199 fig , ax = plt.subplots(figsize=figsize)
200

201 im = ax.imshow(local_weights , cmap=cmap , vmin=wmin , vmax=
wmax)

202 div = make_axes_locatable(ax)
203 cax = div.append_axes("right", size="5%", pad =0.05)
204

205 ax.set_xticks (())
206 ax.set_yticks (())
207 ax.set_aspect("auto")
208

209 plt.colorbar(im, cax=cax)
210 fig.tight_layout ()
211 else:
212 im.set_data(local_weights)
213

214 return im
215

216

217 def plot_conv2d_weights(
218 weights: torch.Tensor ,
219 wmin: float = 0.0,
220 wmax: float = 1.0,
221 im: Optional[AxesImage] = None ,
222 figsize: Tuple[int , int] = (5, 5),
223 cmap: str = "hot_r",
224) -> AxesImage:
225 # language=rst
226 """
227 Plot a connection weight matrix of a Conv2dConnection.
228

229 :param weights: Weight matrix of Conv2dConnection object.
230 :param wmin: Minimum allowed weight value.
231 :param wmax: Maximum allowed weight value.
232 :param im: Used for re -drawing the weights plot.
233 :param figsize: Horizontal , vertical figure size in inches.
234 :param cmap: Matplotlib colormap.
235 :return: Used for re -drawing the weights plot.
236 """

251

237

238 sqrt1 = int(np.ceil(np.sqrt(weights.size (0))))
239 sqrt2 = int(np.ceil(np.sqrt(weights.size (1))))
240 height , width = weights.size (2), weights.size (3)
241 reshaped = reshape_conv2d_weights(weights)
242

243 if not im:
244 fig , ax = plt.subplots(figsize=figsize)
245 im = ax.imshow(reshaped , cmap=cmap , vmin=wmin , vmax=wmax)
246 div = make_axes_locatable(ax)
247 cax = div.append_axes("right", size="5%", pad =0.05)
248

249 for i in range(height , sqrt1 * sqrt2 * height , height):
250 ax.axhline(i - 0.5, color="g", linestyle="--")
251 if i % sqrt1 == 0:
252 ax.axhline(i - 0.5, color="g", linestyle="-")
253

254 for i in range(width , sqrt1 * sqrt2 * width , width):
255 ax.axvline(i - 0.5, color="g", linestyle="--")
256 if i % sqrt1 == 0:
257 ax.axvline(i - 0.5, color="g", linestyle="-")
258

259 ax.set_xticks (())
260 ax.set_yticks (())
261 ax.set_aspect("auto")
262

263 plt.colorbar(im, cax=cax)
264 fig.tight_layout ()
265 else:
266 im.set_data(reshaped)
267

268 return im
269

270

271 def plot_locally_connected_weights(
272 weights: torch.Tensor ,
273 n_filters: int ,
274 kernel_size: Union[int , Tuple[int , int]],
275 conv_size: Union[int , Tuple[int , int]],
276 locations: torch.Tensor ,
277 input_sqrt: Union[int , Tuple[int , int]],
278 wmin: float = 0.0,
279 wmax: float = 1.0,
280 im: Optional[AxesImage] = None ,
281 lines: bool = True ,
282 figsize: Tuple[int , int] = (5, 5),
283 cmap: str = "hot_r",
284) -> AxesImage:
285 # language=rst
286 """
287 Plot a connection weight matrix of a :code:‘Connection ‘ with ‘

locally connected
288 structure <http :// yann.lecun.com/exdb/publis/pdf/gregor -nips -11.

pdf >_.

252

289

290 :param weights: Weight matrix of Conv2dConnection object.
291 :param n_filters: No. of convolution kernels in use.
292 :param kernel_size: Side length(s) of 2D convolution kernels.
293 :param conv_size: Side length(s) of 2D convolution population.
294 :param locations: Indices of input receptive fields for

convolution population
295 neurons.
296 :param input_sqrt: Side length(s) of 2D input data.
297 :param wmin: Minimum allowed weight value.
298 :param wmax: Maximum allowed weight value.
299 :param im: Used for re -drawing the weights plot.
300 :param lines: Whether or not to draw horizontal and vertical

lines separating input
301 regions.
302 :param figsize: Horizontal , vertical figure size in inches.
303 :param cmap: Matplotlib colormap.
304 :return: Used for re -drawing the weights plot.
305 """
306 kernel_size = _pair(kernel_size)
307 conv_size = _pair(conv_size)
308 input_sqrt = _pair(input_sqrt)
309

310 reshaped = reshape_locally_connected_weights(
311 weights , n_filters , kernel_size , conv_size , locations ,

input_sqrt
312)
313 n_sqrt = int(np.ceil(np.sqrt(n_filters)))
314

315 if not im:
316 fig , ax = plt.subplots(figsize=figsize)
317

318 im = ax.imshow(reshaped.cpu(), cmap=cmap , vmin=wmin , vmax=
wmax)

319 div = make_axes_locatable(ax)
320 cax = div.append_axes("right", size="5%", pad =0.05)
321

322 if lines:
323 for i in range(
324 n_sqrt * kernel_size [0],
325 n_sqrt * conv_size [0] * kernel_size [0],
326 n_sqrt * kernel_size [0],
327):
328 ax.axhline(i - 0.5, color="g", linestyle="--")
329

330 for i in range(
331 n_sqrt * kernel_size [1],
332 n_sqrt * conv_size [1] * kernel_size [1],
333 n_sqrt * kernel_size [1],
334):
335 ax.axvline(i - 0.5, color="g", linestyle="--")
336

337 ax.set_xticks (())
338 ax.set_yticks (())

253

339 ax.set_aspect("auto")
340

341 plt.colorbar(im, cax=cax)
342 fig.tight_layout ()
343 else:
344 im.set_data(reshaped)
345

346 return im
347

348

349 def plot_assignments(
350 assignments: torch.Tensor ,
351 im: Optional[AxesImage] = None ,
352 figsize: Tuple[int , int] = (5, 5),
353 classes: Optional[Sized] = None ,
354) -> AxesImage:
355 # language=rst
356 """
357 Plot the two -dimensional neuron assignments.
358

359 :param assignments: Vector of neuron label assignments.
360 :param im: Used for re -drawing the assignments plot.
361 :param figsize: Horizontal , vertical figure size in inches.
362 :param classes: Iterable of labels for colorbar ticks

corresponding to data labels.
363 :return: Used for re -drawing the assigments plot.
364 """
365 locals_assignments = assignments.detach ().clone().cpu().numpy ()
366 if not im:
367 fig , ax = plt.subplots(figsize=figsize)
368 ax.set_title("Categorical assignments")
369

370 if classes is None:
371 color = plt.get_cmap("RdBu", 11)
372 im = ax.matshow(locals_assignments , cmap=color , vmin

=-1.5, vmax =9.5)
373 else:
374 color = plt.get_cmap("RdBu", len(classes) + 1)
375 im = ax.matshow(
376 locals_assignments , cmap=color , vmin=-1.5, vmax=len(

classes) - 0.5
377)
378

379 div = make_axes_locatable(ax)
380 cax = div.append_axes("right", size="5%", pad =0.05)
381

382 if classes is None:
383 cbar = plt.colorbar(im, cax=cax , ticks=list(range(-1,

11)))
384 cbar.ax.set_yticklabels (["none"] + list(range (10)))
385 else:
386 cbar = plt.colorbar(im, cax=cax , ticks=np.arange(-1, len

(classes)))
387 cbar.ax.set_yticklabels (["none"] + list(classes))

254

388

389 ax.set_xticks (())
390 ax.set_yticks (())
391 fig.tight_layout ()
392 else:
393 im.set_data(locals_assignments)
394

395 return im
396

397

398 def plot_performance(
399 performances: Dict[str , List[float]],
400 ax: Optional[Axes] = None ,
401 figsize: Tuple[int , int] = (7, 4),
402) -> Axes:
403 # language=rst
404 """
405 Plot training accuracy curves.
406

407 :param performances: Lists of training accuracy estimates per
voting scheme.

408 :param ax: Used for re -drawing the performance plot.
409 :param figsize: Horizontal , vertical figure size in inches.
410 :return: Used for re -drawing the performance plot.
411 """
412 if not ax:
413 _, ax = plt.subplots(figsize=figsize)
414 else:
415 ax.clear ()
416

417 for scheme in performances:
418 ax.plot(
419 range(len(performances[scheme])),
420 [p for p in performances[scheme]],
421 label=scheme ,
422)
423

424 ax.set_ylim ([0, 100])
425 ax.set_title("Estimated classification accuracy")
426 ax.set_xlabel("No. of examples")
427 ax.set_ylabel("Accuracy")
428 ax.set_xticks (())
429 ax.set_yticks(range(0, 110, 10))
430 ax.legend ()
431

432 return ax
433

434

435 def plot_voltages(
436 voltages: Dict[str , torch.Tensor],
437 ims: Optional[List[AxesImage]] = None ,
438 axes: Optional[List[Axes]] = None ,
439 time: Tuple[int , int] = None ,
440 n_neurons: Optional[Dict[str , Tuple[int , int]]] = None ,

255

441 cmap: Optional[str] = "jet",
442 plot_type: str = "color",
443 thresholds: Dict[str , torch.Tensor] = None ,
444 figsize: Tuple[float , float] = (8.0, 4.5),
445) -> Tuple[List[AxesImage], List[Axes]]:
446 # language=rst
447 """
448 Plot voltages for any group(s) of neurons.
449

450 :param voltages: Contains voltage data by neuron layers.
451 :param ims: Used for re -drawing the plots.
452 :param axes: Used for re -drawing the plots.
453 :param time: Plot voltages of neurons in given time range.

Default is entire
454 simulation time.
455 :param n_neurons: Plot voltages of neurons in given range of

neurons. Default is all
456 neurons.
457 :param cmap: Matplotlib colormap to use.
458 :param figsize: Horizontal , vertical figure size in inches.
459 :param plot_type: The way how to draw graph. ’color’ for

pcolormesh , ’line’ for
460 curved lines.
461 :param thresholds: Thresholds of the neurons in each layer.
462 :return: ‘‘ims , axes ‘‘: Used for re -drawing the plots.
463 """
464 n_subplots = len(voltages.keys())
465

466 for key in voltages.keys():
467 voltages[key] = voltages[key].view(-1, voltages[key].size

(-1))
468

469 if time is None:
470 for key in voltages.keys():
471 time = (0, voltages[key].size(-1))
472 break
473

474 if n_neurons is None:
475 n_neurons = {}
476

477 for key , val in voltages.items ():
478 if key not in n_neurons.keys():
479 n_neurons[key] = (0, val.size (0))
480

481 if not ims:
482 fig , axes = plt.subplots(n_subplots , 1, figsize=figsize)
483 ims = []
484 if n_subplots == 1: # Plotting only one image
485 for v in voltages.items ():
486 if plot_type == "line":
487 ims.append(
488 axes.plot(
489 v[1]
490 .detach ()

256

491 .clone()
492 .cpu()
493 .numpy()[
494 n_neurons[v[0]][0] : n_neurons[v

[0]][1] ,
495 time [0] : time[1],
496]
497)
498)
499

500 if thresholds is not None and thresholds[v[0]].
size() == torch.Size(

501 []
502):
503 ims.append(
504 axes.axhline(
505 y=thresholds[v[0]]. item(), c="r",

linestyle="--"
506)
507)
508 else:
509 ims.append(
510 axes.pcolormesh(
511 v[1]
512 .cpu()
513 .numpy()[
514 n_neurons[v[0]][0] : n_neurons[v

[0]][1] ,
515 time [0] : time[1],
516]
517 .T,
518 cmap=cmap ,
519)
520)
521

522 args = (v[0], n_neurons[v[0]][0] , n_neurons[v
[0]][1] , time[0], time [1])

523 plt.title("%s voltages for neurons (%d - %d) from t
= %d to %d " % args)

524 plt.xlabel("Time (ms)")
525

526 if plot_type == "line":
527 plt.ylabel("Voltage")
528 else:
529 plt.ylabel("Neuron index")
530

531 axes.set_aspect("auto")
532

533 else: # Plot each layer at a time
534 for i, v in enumerate(voltages.items()):
535 if plot_type == "line":
536 ims.append(
537 axes[i].plot(
538 v[1]

257

539 .cpu()
540 .numpy()[
541 n_neurons[v[0]][0] : n_neurons[v

[0]][1] ,
542 time [0] : time[1],
543]
544)
545)
546 if thresholds is not None and thresholds[v[0]].

size() == torch.Size(
547 []
548):
549 ims.append(
550 axes[i]. axhline(
551 y=thresholds[v[0]]. item(), c="r",

linestyle="--"
552)
553)
554 else:
555 ims.append(
556 axes[i]. matshow(
557 v[1]
558 .cpu()
559 .numpy()[
560 n_neurons[v[0]][0] : n_neurons[v

[0]][1] ,
561 time [0] : time[1],
562]
563 .T,
564 cmap=cmap ,
565)
566)
567 args = (v[0], n_neurons[v[0]][0] , n_neurons[v

[0]][1] , time[0], time [1])
568 axes[i]. set_title(
569 "%s voltages for neurons (%d - %d) from t = %d

to %d " % args
570)
571

572 for ax in axes:
573 ax.set_aspect("auto")
574

575 if plot_type == "color":
576 plt.setp(axes , xlabel="Simulation time", ylabel="Neuron

index")
577 elif plot_type == "line":
578 plt.setp(axes , xlabel="Simulation time", ylabel="Voltage

")
579

580 plt.tight_layout ()
581

582 else:
583 # Plotting figure given
584 if n_subplots == 1: # Plotting only one image

258

585 for v in voltages.items ():
586 axes.clear ()
587 if plot_type == "line":
588 axes.plot(
589 v[1]
590 .cpu()
591 .numpy()[
592 n_neurons[v[0]][0] : n_neurons[v[0]][1] ,

time [0] : time [1]
593]
594)
595 if thresholds is not None and thresholds[v[0]].

size() == torch.Size(
596 []
597):
598 axes.axhline(y=thresholds[v[0]]. item(), c="r

", linestyle="--")
599 else:
600 axes.matshow(
601 v[1]
602 .cpu()
603 .numpy()[
604 n_neurons[v[0]][0] : n_neurons[v[0]][1] ,

time [0] : time [1]
605]
606 .T,
607 cmap=cmap ,
608)
609 args = (v[0], n_neurons[v[0]][0] , n_neurons[v

[0]][1] , time[0], time [1])
610 axes.set_title(
611 "%s voltages for neurons (%d - %d) from t = %d

to %d " % args
612)
613 axes.set_aspect("auto")
614

615 else:
616 # Plot each layer at a time
617 for i, v in enumerate(voltages.items()):
618 axes[i].clear()
619 if plot_type == "line":
620 axes[i].plot(
621 v[1]
622 .cpu()
623 .numpy()[
624 n_neurons[v[0]][0] : n_neurons[v[0]][1] ,

time [0] : time [1]
625]
626)
627 if thresholds is not None and thresholds[v[0]].

size() == torch.Size(
628 []
629):
630 axes[i]. axhline(

259

631 y=thresholds[v[0]]. item(), c="r",
linestyle="--"

632)
633 else:
634 axes[i]. matshow(
635 v[1]
636 .cpu()
637 .numpy()[
638 n_neurons[v[0]][0] : n_neurons[v[0]][1] ,

time [0] : time [1]
639]
640 .T,
641 cmap=cmap ,
642)
643 args = (v[0], n_neurons[v[0]][0] , n_neurons[v

[0]][1] , time[0], time [1])
644 axes[i]. set_title(
645 "%s voltages for neurons (%d - %d) from t = %d

to %d " % args
646)
647

648 for ax in axes:
649 ax.set_aspect("auto")
650

651 if plot_type == "color":
652 plt.setp(axes , xlabel="Simulation time", ylabel="Neuron

index")
653 elif plot_type == "line":
654 plt.setp(axes , xlabel="Simulation time", ylabel="Voltage

")
655

656 plt.tight_layout ()
657

658 return ims , axes

Listing B.30: Plotting

1 import torch
2 import numpy as np
3 import matplotlib.pyplot as plt
4 import matplotlib.animation as animation
5

6 from typing import List , Tuple , Optional
7

8

9 def plot_weights_movie(ws: np.ndarray , sample_every: int = 1) ->
None:

10 # language=rst
11 """
12 Create and plot movie of weights.
13

14 :param ws: Array of shape ‘‘[n_examples , source , target , time
]‘‘.

15 :param sample_every: Sub -sample using this parameter.

260

16 """
17 weights = []
18

19 # Obtain samples from the weights for every example.
20 for i in range(ws.shape [0]):
21 sub_sampled_weight = ws[i, :, :, range(0, ws[i].shape [2],

sample_every)]
22 weights.append(sub_sampled_weight)
23 else:
24 weights = np.concatenate(weights , axis =0)
25

26 # Initialize plot.
27 fig = plt.figure ()
28 im = plt.imshow(weights[0, :, :], cmap="hot_r", animated=True ,

vmin=0, vmax =1)
29 plt.axis("off")
30 plt.colorbar(im)
31

32 # Update function for the animation.
33 def update(j):
34 im.set_data(weights[j, :, :])
35 return [im]
36

37 # Initialize animation.
38 global ani
39 ani = 0
40 ani = animation.FuncAnimation(
41 fig , update , frames=weights.shape[-1], interval =1000 , blit=

True
42)
43 plt.show()
44

45

46 def plot_spike_trains_for_example(
47 spikes: torch.Tensor ,
48 n_ex: Optional[int] = None ,
49 top_k: Optional[int] = None ,
50 indices: Optional[List[int]] = None ,
51) -> None:
52 # language=rst
53 """
54 Plot spike trains for top -k neurons or for specific indices.
55

56 :param spikes: Spikes for one simulation run of shape
57 ‘‘(n_examples , n_neurons , time)‘‘.
58 :param n_ex: Allows user to pick which example to plot spikes

for.
59 :param top_k: Plot k neurons that spiked the most for n_ex

example.
60 :param indices: Plot specific neurons ’ spiking activity instead

of top_k.
61 """
62 assert n_ex is not None and 0 <= n_ex < spikes.shape [0]
63

261

64 plt.figure ()
65

66 if top_k is None and indices is None: # Plot all neurons ’
spiking activity

67 spike_per_neuron = [np.argwhere(i == 1).flatten () for i in
spikes[n_ex , :, :]]

68 plt.title("Spiking activity for all %d neurons" % spikes.
shape [1])

69

70 elif top_k is None: # Plot based on indices parameter
71 assert indices is not None
72 spike_per_neuron = [
73 np.argwhere(i == 1).flatten () for i in spikes[n_ex ,

indices , :]
74]
75

76 elif indices is None: # Plot based on top_k parameter
77 assert top_k is not None
78 # Obtain the top k neurons that fired the most
79 top_k_loc = np.argsort(np.sum(spikes[n_ex , :, :], axis =1),

axis =0)[::-1]
80 spike_per_neuron = [
81 np.argwhere(i == 1).flatten () for i in spikes[n_ex ,

top_k_loc [0: top_k], :]
82]
83 plt.title("Spiking activity for top %d neurons" % top_k)
84

85 else:
86 raise ValueError(’One of "top_k" or "indices" or both must

be None’)
87

88 plt.eventplot(spike_per_neuron , linelengths =[0.5] * len(
spike_per_neuron))

89 plt.xlabel("Simulation Time")
90 plt.ylabel("Neuron index")
91 plt.show()
92

93

94 def plot_voltage(
95 voltage: torch.Tensor ,
96 n_ex: int = 0,
97 n_neuron: int = 0,
98 time: Optional[Tuple[int , int]] = None ,
99 threshold: float = None ,

100) -> None:
101 # language=rst
102 """
103 Plot voltage for a single neuron on a specific example.
104

105 :param voltage: Tensor or array of shape ‘‘[n_examples ,
n_neurons , time]‘‘.

106 :param n_ex: Allows user to pick which example to plot voltage
for.

107 :param n_neuron: Neuron index for which to plot voltages for.

262

108 :param time: Plot spiking activity of neurons between the given
range of time.

109 :param threshold: Neuron spiking threshold.
110 """
111 assert n_ex >= 0 and n_neuron >= 0
112 assert n_ex < voltage.shape [0] and n_neuron < voltage.shape [1]
113

114 if time is None:
115 time = (0, voltage.shape [-1])
116 else:
117 assert time [0] < time [1]
118 assert time [1] <= voltage.shape[-1]
119

120 timer = np.arange(time[0], time [1])
121 time_ticks = np.arange(time[0], time [1] + 1, 10)
122

123 plt.figure ()
124 plt.plot(voltage[n_ex , n_neuron , timer])
125 plt.xlabel("Simulation Time")
126 plt.ylabel("Voltage")
127 plt.title("Membrane voltage of neuron %d for example %d" % (

n_neuron , n_ex + 1))
128 locs , labels = plt.xticks ()
129 locs = range(int(locs [1]), int(locs [-1]), 10)
130 plt.xticks(locs , time_ticks)
131

132 # Draw threshold line only if given
133 if threshold is not None:
134 plt.axhline(threshold , linestyle="--", color="black", zorder

=0)
135

136 plt.show()

Listing B.31: Visualization

	Deep Learning and Polar Transformation to Achieve a Novel Adaptive Automatic Modulation Classification Framework
	

	List of Tables
	List of Figures
	List of Algorithms
	List of Acronyms
	List of Symbols
	Introduction
	AMC Applications
	Civilian AMC Applications
	Military AMC Applications

	AMC Approaches
	Likelihood-based AMC
	Distribution Test-based AMC
	Feature-based AMC

	AMC Implementation
	Summary of AMC Approaches
	Thesis Organization

	Problem Statement
	Feature Extraction Stage
	Classification Stage
	Classification Accuracy
	Computational complexity

	Literature Review
	Proposed Solution
	Solutions Structure
	Feature Extraction Stage
	Labeling Stage
	Classification Accuracy
	Computational Complexity

	The Proposed Novel Framework Structure

	New Feature Extraction Stage Architecture
	High-Order Statistical Feature Extraction Component
	One-Pass Algorithm
	Two-Pass Algorithm

	Polar Coordinate Transformation

	Proposed Deep Learning Structure for Labeling Stage
	Deep Belief Network as Fully-Connected Network in Deep Learning Structure
	Adaptive Moment Estimation

	Spiking Neural Network as a Fully-Connected Network in a Deep Learning Structure
	Threshold Unit Networks
	Continuous Neural Networks
	Spiking Neural Networks
	Unsupervised Learning-Hebbian Learning

	Proposed Novel Framework Structure

	Results, Analysis and Discussion
	RadioML2018.01A Dataset
	DBN-based FB AMC Classifier Analysis
	DBN Architecture and Employment
	AMC Results and Discussion
	Lower-bound Discussion
	Upper-bound Discussion
	Number of Training Samples Discussion

	Computational Complexity Analysis
	Model Conclusion

	SNN-based FB AMC Classifier Analysis
	Results and Discussion
	Lower-bound performance
	Upper-bound Performance

	Computational Complexity Analysis
	Model Conclusion

	Proposed Novel Framework Analysis

	Conclusion and Future Work
	Bibliography
	Deep Learning Models Participating in Comparing Results
	Deep CNN-based Model
	RNN-based Model

	Spiking Neural Network-Based Platform Utilized in This Research
	Initialization and Refactored Conversion Module
	Environment and its Initialization
	Network
	Pipeline
	Encoding
	Conversion
	Model
	Learning
	Evaluation
	Analysis

