47 research outputs found

    Novel substrate integrated waveguide filters and circuits

    Get PDF
    The main work in this thesis is to explore novel microwave filters with more compact size and improved performance by taking advantage of new substrate integrated waveguide (SIW) structures, such as the ridge substrate integrated waveguide, half mode substrate integrated waveguide (HMSIW) and SIW with complementary split ring resonators (CSRRs). This thesis therefore presents the following topics: 1. Development of a design strategy to convert from a conventional ridge waveguide configuration with solid walls to the SIW counterpart, and the design of a bandpass filter based on the ridge SIW with the proposed design method. 2. Development of a ridged HMSIW to reduce the physical size of the HMSIW by loading the HMSIW with a ridge, and application of the ridged HMSIW to the design of compact bandpass filters. 3. Development of a broadside-coupled complementary split ring resonator and a capacitively-loaded complementary single split ring resonator to reduce the size of SIW with conventional CSRRs, and application of the proposed modified structures in the design of SIW and HMSIW filters with improved compactness and performance. 4. Investigation of the application of the complementary electric-LC (CELC) resonator in SIW filters with improved stopband performance, and development of a cascaded CELC resonator to further enhance the out-of-band performance

    Microwave sensors based on resonant elements

    Get PDF
    This paper highlights interest in the implementation of microwave sensors based on resonant elements, the subject of a special issue in the journal. A classification of these sensors on the basis of the operating principle is presented, and the advantages and limitations of the different sensor types are pointed out. Finally, the paper summarizes the different contributions to the special issue

    Synthesis of Planar Microwave Circuits based on Metamaterial Concepts through Aggressive Space Mapping

    Full text link
    RF and microwave applications represent one of the fastest-growing segments of the high performance electronics market, where ongoing innovation is critical. Manufacturers compete intensively to meet market needs with reduced cost, size, weight and many other performance criteria demands. Under this scenario, transmission lines based on metamaterial concepts can be considered a very interesting alternative to the conventional transmission lines. They are more compact (compatible with planar manufacturing processes) and present higher degrees of design flexibility. Furthermore, metamaterial transmission lines can also provide many other unique properties not achievable with ordinary transmission lines, such as dispersion or impedance engineering. Nevertheless, the impact in the industry is still not relevant, mostly due to the complexity of the related synthesis and design procedures. These procedures are mainly based on the engineer’s experience, with the help of costly full-wave electromagnetic (EM) simulators and parameter extraction methods. The aim of this thesis is to contribute to simplify and speed up the synthesis and design procedures of artificial transmission lines. In particular, the lines obtained by periodically loading a conventional transmission line with electrically small resonators, such as split ring resonators (SSRs) or its complementary particle (CSRR). The design procedure is automated by using Space Mapping techniques. In contrast to other alternative methods, real synthesis is found from the circuit schematic (that provides a given target response) and without need of human intervention. Some efforts to make the method practical and useful have been carried out. Given a certain target response, it is determined whether it can be physically implemented with a chosen technology, and hence proceeding next to find the synthesis, or not. For this purpose, a two-step Aggressive Space Mapping approach is successfully proposed. In contrast to other methods, the real synthesis is found from certain target circuit values (corresponding to the equivalent circuit model that characterizes the structure to be synthesized). Different efforts have been carried out in order to implement a useful and practical method. Some of them were focused to determine if, given certain circuit parameters (which determine the target response) and certain given technology specifications (permittivity and height of the substrate, technology limits), that response is physically realizable (convergence region). This technique was successfully formulated and it is known as “Two-Step Aggressive Space Mapping Approach”. In this work, the latest improvements made till date, from the synthesis of basic unit cells until different applications and kinds of metamaterial-based circuits, are presented. The results are promising and prove the validity of the method, as well as its potential application to other basic cells and more complex designs. The general knowledge gained from these cases of study can be considered a good base for a coming implementation in commercial software tools, which can help to improve its competitiveness in markets, and also contribute to a more general use of this technology.Rodríguez Pérez, AM. (2014). Synthesis of Planar Microwave Circuits based on Metamaterial Concepts through Aggressive Space Mapping [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/48465TESI

    Metamaterials for Wireless Communications, Radiofrequency Identification, and Sensors

    Get PDF

    Non-Invasive Blood Glucose Monitoring Using Electromagnetic Sensors

    Get PDF
    Monitoring glycemia levels in people with diabetes has developed rapidly over the last decade. A broad range of easy-to-use systems of reliable accuracies are now deployed in the market following the introduction of the invasive self-monitoring blood glucose meters (i.e., Glucometers) that utilize the capillary blood samples from the fingertips of diabetic patients. Besides, semi-invasive continuous monitors (CGM) are currently being used to quantify the glucose analyte in interstitial fluids (ISF) using an implantable needle-like electrochemical sensors. However, the limitations and discomforts associated with these finger-pricking and implantable point-of-care devices have established a new demand for complete non-invasive pain-free and low-cost blood glucose monitors to allow for more frequent and convenient glucose checks and thereby contribute more generously to diabetes care and prevention. Towards that goal, researchers have been developing alternative techniques that are more convenient, affordable, pain-free, and can be used for continuous non-invasive blood glucose monitoring. In this research, a variety of electromagnetic sensing techniques were developed for reliably monitoring the blood glucose levels of clinical relevance to diabetes using the non-ionizing electromagnetic radiations of no hazards when penetrating the body. The sensing structures and devices introduced in this study were designed to operate in specific frequency spectrums that promise a reliable and sensitive glucose detection from centimeter- to millimeter-wave bands. Particularly, three different technologies were proposed and investigated at the Centre for Intelligent Antenna and Radio Systems (CIARS): Complementary Split-Ring Resonators (CSRRs), Whispering Gallery Modes (WGMs) sensors, and Frequency-Modulated Continuous-Wave (FMCW) millimeter-Wave Radars. Multiple sensing devices were developed using those proposed technologies in the micro/millimeter-wave spectrums of interest. A comprehensive study was conducted for the functionality, sensitivity, and repeatability analysis of each sensing device. Particularly, the sensors were thoroughly designed, optimized, fabricated, and practically tested in the laboratory with the desired glucose sensitivity performance. Different topologies and configurations of the proposed sensors were studied and compared in sensitivity using experimental and numerical analysis tools. Besides, machine learning and signal processing tools were intelligently applied to analyze the frequency responses of the sensors and reliably identify different glucose levels. The developed glucose sensors were coupled with frequency-compatible radar boards to realize small mobile glucose sensing systems of reduced cost. The proposed sensors, beside their impressive detection capability of the diabetes-spectrum glucose concentrations, are endowed with favourable advantages of simple fabrication, low-power consumption, miniaturized compact sizing, non-ionizing radiation, and minimum health risk or impact for human beings. Such attractive features promote the proposed sensors as possible candidates for development as mobile, portable/wearable gadgets for affordable non-invasive blood glucose monitoring for diabetes. The introduced sensing structures could also be employed for other vital sensing applications such as liquid type/quantity identification, oil adulteration detection, milk quality control, and virus/bacteria detection. Another focus of this thesis is to investigate the electromagnetic behavior of the glucose in blood mimicking tissues across the microwave spectrum from 200 MHz to 67 GHz using a commercial characterization system (DAK-TL) developed by SPEAG. This is beneficial to locate the promising frequency spectrums that are most responsive to slight variations in glucose concentrations, and to identify the amount of change in the dielectric properties due to different concentrations of interest. Besides, the effect of the blood typing and medication was also investigated by measuring the dielectric properties of synthetic “artificial” as well as authentic “human” blood samples of different ABO-Rh types and with different medications. Measured results have posed for other factors that may impact the developed microwave sensors accuracy and sensitivity including the patient’s blood type, pre-existing medical conditions, or other illnesses

    Application of RF-MEMS-Based Split Ring Resonators (SRRs) to the Implementation of Reconfigurable Stopband Filters : a Review

    Get PDF
    In this review paper, several strategies for the implementation of reconfigurable split ring resonators (SRRs) based on RF-MEMS switches are presented. Essentially three types of RF-MEMS combined with split rings are considered: (i) bridge-type RF-MEMS on top of complementary split ring resonators CSRRs; (ii) cantilever-type RF-MEMS on top of SRRs; and (iii) cantilever-type RF-MEMS integrated with SRRs (or RF-MEMS SRRs). Advantages and limitations of these different configurations from the point of view of their potential applications for reconfigurable stopband filter design are discussed, and several prototype devices are presented

    Design of novel printed microwave band-reject filters using split-ring resonator and complementary split-ring resonator

    Get PDF
    Ankara : The Department of Electrical and Electronics Engineering and the Institute of Engineering and Science of Bilkent University, 2008.Thesis (Master's) -- Bilkent University, 2008.Includes bibliographical references leaves 95-101.Filters are one of the fundamental microwave components used to prevent the transmission or emission of signals with unwanted frequency components. In general, they can be considered as an interconnection of resonator structures brought together to accomplish a desired frequency response. Up to GHz frequencies, these resonator structures are usually constructed using lumped elements such as discrete capacitors and inductors. At microwave frequencies, discrete components lose their normal charcteristics and resonators can be realized using distributed structures like quarter- or half-wavelength transmission line stubs. However, filters built using this approach are generally big, especially when high frequency selectivity is desired. Recently, sub-wavelength structures, namely split-ring resonator (SRR) and complementary split-ring resonator (CSRR), have attracted the attention of many researchers. Interesting properties of the periodic arrangements of these structures have led to the realization of left-handed materials. Furthermore, high-Q characteristics of these structures enabled the design of highly frequencyselective devices in compact dimensions. In this thesis, these two resonator structures are investigated in detail. A deep exploration of their resonance mechanisms and transmission properties is provided along with a brief survey of related literature. However, the main focus of the thesis is the design of band-reject filters based on these resonator structures. Experimental results based on measuring the scattering paramaters of fabricated prototypes are supported with computer simulations. Band-reject filters based on SRR and CSRR are compared and discussed. It is observed that both filter types have some advantages and disadvantages which make them suitable for different applications. Finally, an electronically switchable split-ring resonator structure based on PIN diodes is presented. It is demonstrated that by employing microwave PIN diodes across the slits of an SRR, the magnetic response of a SRR particle can be eliminated. This leads to the design of filters whose rejection bands can be removed electronicallyÖznazlı, VolkanM.S

    Wideband and UWB antennas for wireless applications. A comprehensive review

    Get PDF
    A comprehensive review concerning the geometry, the manufacturing technologies, the materials, and the numerical techniques, adopted for the analysis and design of wideband and ultrawideband (UWB) antennas for wireless applications, is presented. Planar, printed, dielectric, and wearable antennas, achievable on laminate (rigid and flexible), and textile dielectric substrates are taken into account. The performances of small, low-profile, and dielectric resonator antennas are illustrated paying particular attention to the application areas concerning portable devices (mobile phones, tablets, glasses, laptops, wearable computers, etc.) and radio base stations. This information provides a guidance to the selection of the different antenna geometries in terms of bandwidth, gain, field polarization, time-domain response, dimensions, and materials useful for their realization and integration in modern communication systems
    corecore