445 research outputs found

    Using a Combination of PID Control and Kalman Filter to Design of IoT-based Telepresence Self-balancing Robots during COVID-19 Pandemic

    Get PDF
    COVID-19 is a very dangerous respiratory disease that can spread quickly through the air. Doctors, nurses, and medical personnel need protective clothing and are very careful in treating COVID-19 patients to avoid getting infected with the COVID-19 virus. Hence, a medical telepresence robot, which resembles a humanoid robot, is necessary to treat COVID-19 patients. The proposed self-balancing COVID-19 medical telepresence robot is a medical robot that handles COVID-19 patients, which resembles a stand-alone humanoid soccer robot with two wheels that can maneuver freely in hospital hallways. The proposed robot design has some control problems; it requires steady body positioning and is subjected to disturbance. A control method that functions to find the stability value such that the system response can reach the set-point is required to control the robot's stability and repel disturbances; this is known as disturbance rejection control. This study aimed to control the robot using a combination of Proportional-Integral-Derivative (PID) control and a Kalman filter. Mathematical equations were required to obtain a model of the robot's characteristics. The state-space model was derived from the self-balancing robot's mathematical equation. Since a PID control technique was used to keep the robot balanced, this state-space model was converted into a transfer function model. The second Ziegler-Nichols's rule oscillation method was used to tune the PID parameters. The values of the amplifier constants obtained were Kp=31.002, Ki=5.167, and Kd=125.992128. The robot was designed to be able to maintain its balance for more than one hour by using constant tuning, even when an external disturbance is applied to it. Doi: 10.28991/esj-2021-SP1-016 Full Text: PD

    Fuzzy-Immune-Regulated Adaptive Degree-of-Stability LQR for a Self-Balancing Robotic Mechanism: Design and HIL Realization

    Get PDF
    This letter formulates a fuzzy-immune adaptive system for the online adjustment of the Degree-of-Stability (DoS) of Linear-Quadratic-Regulator (LQR) procedure to strengthen the disturbance attenuation capacity of a self-balancing mechatronic system. The fuzzy-immune adaptive system uses pre-configured control input-based rules to alter the DoS parameter of LQR for dynamically relocating the closed-loop system's eigenvalues in the complex plane's left half. The corresponding changes in the eigenvalues are conveyed to the Riccati equation, which eventually yields the self-adjusting LQR gains. This arrangement allows for the flexible manipulation of the applied control effort and the response speed as the error conditions change. The efficacies of the self-tuning LQR scheme are verified by performing custom-designed hardware-in-the-loop experiments on the Quanser rotary inverted pendulum system. As compared to the DoS-LQR, the proposed controller improves the pendulum's transient recovery time, overshoots, input demands, and offsets by 32.3%, 50.5%, 33.9%, and 33.3%, respectively, under disturbances. These experimental outcomes verify that the proposed self-tuning LQR law considerably improves the system's disturbance attenuation capability

    Development of Robust Control Laws for Disturbance Rejection in Rotorcraft UAVs

    Get PDF
    Inherent stability inside the flight envelope must be guaranteed in order to safely introduce private and commercial UAV systems into the national airspace. The rejection of unknown external wind disturbances offers a challenging task due to the limited available information about the unpredictable and turbulent characteristics of the wind. This thesis focuses on the design, development and implementation of robust control algorithms for disturbance rejection in rotorcraft UAVs. The main focus is the rejection of external disturbances caused by wind influences. Four control algorithms are developed in an effort to mitigate wind effects: baseline nonlinear dynamic inversion (NLDI), a wind rejection extension for the NLDI, NLDI with adaptive artificial neural networks (ANN) augmentation, and NLDI with L1 adaptive control augmentation. A simulation environment is applied to evaluate the performance of these control algorithms under external wind conditions using a Monte Carlo analysis. Outdoor flight test results are presented for the implementation of the baseline NLDI, NLDI augmented with adaptive ANN and NLDI augmented with L1 adaptive control algorithms in a DJI F330 Flamewheel quadrotor UAV system. A set of metrics is applied to compare and evaluate the overall performance of the developed control algorithms under external wind disturbances. The obtained results show that the extended NLDI exhibits undesired characteristics while the augmentation of the baseline NLDI control law with adaptive ANN and L1 output-feedback adaptive control improve the robustness of the translational and rotational dynamics of a rotorcraft UAV in the presence of wind disturbances

    RBF Neural Network Control for Linear Motor-Direct Drive Actuator Based on an Extended State Observer

    Get PDF
    Hydraulic power and other kinds of disturbance in a linear motor-direct drive actuator (LM-DDA) have a great impact on the performance of the system. A mathematical model of the LM-DDA system is established and a double-loop control system is presented. An extended state observer (ESO) with switched gain was utilized to estimate the influence of the hydraulic power and other load disturbances. Meanwhile, Radial Basis Function (RBF) neural network was utilized to optimize the parameters in this intelligent controller. The results of the dynamic tests demonstrate the performance with rapid response and improved accuracy could be attained by the proposed control scheme

    Design Intelligent Model base Online Tuning Methodology for Nonlinear System

    Full text link

    EVALUATION ON TRACKING PERFORMANCE OF NPID TRIPLE HYPERBOLIC AND NPID DOUBLE HYPERBOLIC CONTROLLER BASED ON FAST FOURIER TRANSFORM (FFT) FOR MACHINE TOOLS

    Get PDF
    Accuracy and precision are the area of interest in machine tools application. It is evaluated via the measurement of tracking performance of the controllers. This study presents a Fast Fourier Transform (FFT) technique that used to evaluate the tracking performance of two controllers, namely NPID Triple Hyperbolic controller and NPID Double Hyperbolic controller for XY Table Ball-screw driven system. The cutting force characteristics are observed by using a FFT technique. Peak amplitude of FFT error on harmonic frequency was observed as a cutting force occurrence on the control system. Two cutting force disturbances that are generated from spindle speed of 1500 rpm and 2500 rpm at frequency of 0.2 Hz of speed of motor were used as a configuration set up to compare the tracking performance between the two controllers. The average error reduction of FFT error at cutting force of 1500 rpm between NPID Double Hyperbolic and NPID Triple Hyperbolic was 25.12%. This average error reduction result showed that the NPID Double Hyperbolic controller produced better tracking performance compared to the other controller. For future work, it is recommended to explore the superiority features offered in artificial intelligence tool box for better judgment in tuning control parameters

    Adaptive optimal control of under-actuated robotic systems using a self-regulating nonlinear weight-adjustment scheme: Formulation and experimental verification

    Get PDF
    This paper formulates an innovative model-free self-organizing weight adaptation that strengthens the robustness of a Linear Quadratic Regulator (LQR) for inverted pendulum-like mechatronic systems against perturbations and parametric uncertainties. The proposed control procedure is devised by using an online adaptation law to dynamically adjust the state weighting factors of LQR's quadratic performance index via pre-calibrated state-error-dependent hyperbolic secant functions (HSFs). The updated state-weighting factors re-compute the optimal control problem to modify the state-compensator gains online. The novelty of the proposed article lies in adaptively adjusting the variation rates of the said HSFs via an auxiliary model-free online self-regulation law that uses dissipative and anti-dissipative terms to flexibly re-calibrate the nonlinear function's waveforms as the state errors vary. This augmentation increases the controller's design flexibility and enhances the system's disturbance rejection capacity while economizing control energy expenditure under every operating condition. The proposed self-organizing LQR is analyzed via customized hardware-in-loop (HIL) experiments conducted on the Quanser's single-link rotational inverted pendulum. As compared to the fixed-gain LQR, the proposed SR-EM-STC delivers an improvement of 52.2%, 16.4%, 55.2%, and 42.7% in the pendulum's position regulation behavior, control energy expenditure, transient recovery duration, and peak overshoot, respectively. The experimental outcomes validate the superior robustness of the proposed scheme against exogenous disturbances

    Evolutionary learning and global search for multi-optimal PID tuning rules

    Get PDF
    With the advances in microprocessor technology, control systems are widely seen not only in industry but now also in household appliances and consumer electronics. Among all control schemes developed so far, Proportional plus Integral plus Derivative (PID) control is the most widely adopted in practice. Today, more than 90% of industrial controllers have a built-in PID function. Their wide applications have stimulated and sustained the research and development of PID tuning techniques, patents, software packages and hardware modules. Due to parameter interaction and format variation, tuning a PID controller is not as straightforward as one would have anticipated. Therefore, designing speedy tuning rules should greatly reduce the burden on new installation and ‘time-to-market’ and should also enhance the competitive advantages of the PID system under offer. A multi-objective evolutionary algorithm (MOEA) would be an ideal candidate to conduct the learning and search for multi-objective PID tuning rules. A simple to implement MOEA, termed s-MOEA, is devised and compared with MOEAs developed elsewhere. Extensive study and analysis are performed on metrics for evaluating MOEA performance, so as to help with this comparison and development. As a result, a novel visualisation technique, termed “Distance and Distribution” (DD)” chart, is developed to overcome some of the limitations of existing metrics and visualisation techniques. The DD chart allows a user to view the comparison of multiple sets of high order non-dominated solutions in a two-dimensional space. The capability of DD chart is shown in the comparison process and it is shown to be a useful tool for gathering more in-depth information of an MOEA which is not possible in existing empirical studies. Truly multi-objective global PID tuning rules are then evolved as a result of interfacing the s-MOEA with closed-loop simulations under practical constraints. It takes into account multiple, and often conflicting, objectives such as steady-state accuracy and transient responsiveness against stability and overshoots, as well as tracking performance against load disturbance rejection. These evolved rules are compared against other tuning rules both offline on a set of well-recognised PID benchmark test systems and online on three laboratory systems of different dynamics and transport delays. The results show that the rules significantly outperform all existing tuning rules, with multi-criterion optimality. This is made possible as the evolved rules can cover a delay to time constant ratio from zero to infinity based on first-order plus delay plant models. For second-order plus delay plant models, they can also cover all possible dynamics found in practice

    Experimental Validation of a Multi Model PI Controller for a Non Linear Hybrid System in LabVIEW

    Get PDF
    In this paper a real time Single Spherical Tank Liquid Level System (SSTLLS) has been chosen for investigation. This paper describes the design and development of a Multi Model PI Controller (MMPIC) using classical controller tuning techniques for a single spherical nonlinear tank system. System identification of these different regions of nonlinear process are done using black box modeling, which is identified to be nonlinear and approximated to be a First Order Plus Dead Time (FOPDT) model. A proportional and integral controller is designed using LabVIEW and Chen-Hrones-Reswick (CHR), Zhuang-Atherton (ZA), and Skogestad’s Internal Model Controller (SIMC) tuning methods are implemented in real time. The paper provides the details about the data acquisition unit, shows the implementation of the controller, and comparision of the results of PI tuning methods used for an MMPI Controller
    corecore