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Abstract

This paper formulates an innovative model-free self-organizing weight adaptation that

strengthens the robustness of a Linear Quadratic Regulator (LQR) for inverted pendulum-

like mechatronic systems against perturbations and parametric uncertainties. The proposed

control procedure is devised by using an online adaptation law to dynamically adjust the

state weighting factors of LQR’s quadratic performance index via pre-calibrated state-error-

dependent hyperbolic secant functions (HSFs). The updated state-weighting factors re-

compute the optimal control problem to modify the state-compensator gains online. The

novelty of the proposed article lies in adaptively adjusting the variation rates of the said

HSFs via an auxiliary model-free online self-regulation law that uses dissipative and anti-dis-

sipative terms to flexibly re-calibrate the nonlinear function’s waveforms as the state errors

vary. This augmentation increases the controller’s design flexibility and enhances the sys-

tem’s disturbance rejection capacity while economizing control energy expenditure under

every operating condition. The proposed self-organizing LQR is analyzed via customized

hardware-in-loop (HIL) experiments conducted on the Quanser’s single-link rotational

inverted pendulum. As compared to the fixed-gain LQR, the proposed SR-EM-STC delivers

an improvement of 52.2%, 16.4%, 55.2%, and 42.7% in the pendulum’s position regulation

behavior, control energy expenditure, transient recovery duration, and peak overshoot,

respectively. The experimental outcomes validate the superior robustness of the proposed

scheme against exogenous disturbances.

1. Introduction

Under-actuated robotic systems are characterized as multivariable systems whose control

inputs are less than the number of state variables or the system’s degrees of freedom (DOF)
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[1]. This control input limitation renders nonlinearity, complex dynamic coupling effects, dif-

ficulty in achieving multiple control objectives, and high susceptibility to exogenous distur-

bances [2]. The under-actuation property is observed in several mechanisms, such as inverted

pendulums, self-stabilizing robots, aircraft and drones, satellites, robotic arm manipulators,

and marine vessels [3]. The development of robust-optimal regulatory controllers for the

under-actuated systems that can address the aforementioned challenges presents a complex

control problem, as highlighted in [4].

1.1. Literature review

For the under-actuated systems, a lot of study and research has been done to develop versatile

and reliable control methods. The proportional integral differential controllers offer simplicity

and reliability, but they depend on well-postulated gains to attain the desired system specifica-

tions [5]. The fractional controllers increase the controller’s design flexibility by offering more

tuning freedom [6]. However, tuning a multitude of controller parameters is an ill-posed prob-

lem. The conventional type-2 fuzzy control schemes offer flexibility in structure to compensate

for bounded exogenous disturbances [7]. However, gathering elaborate rules to derive agile

control decisions is a laborious process. The model-free neural control procedures offer

robustness against bounded exogenous disturbances [8]. However, acquiring and processing

large amounts of training data to formulate an accurate inverse control law is computationally

expensive and time-consuming. The sliding-mode controllers are well known for their strong

robustness against disturbances, which comes at the cost of a highly disputed control profile

and, hence, may suffer from large chatter in the response [9]. The linear quadratic regulator

(LQR) is an optimal control strategy that minimizes the quadratic cost function (QCF) of the

system’s state variations and control input [10]. Despite its attributes, the LQR yields a fragile

effort against modeling uncertainties, identification errors, and nonlinear disturbances [11].

Robust nonlinear H1 controllers have also been widely used for the control of underactuated

systems [12]. However, the boundary requirements and complex geometry of the system’s

model impose limitations on computing its exact solution.

The inherent shortcomings of the generic LQR for an under-actuated mechatronic sys-

tem can be alleviated by using online self-adaptive control mechanisms [13]. The adaptive

control paradigm offers robust control effort by dynamically adjusting the critical controller

parameters to eliminate the reference-tracking error and deviations in state trajectories of

under-actuated systems that are caused by parametric uncertainties, bounded exogenous

disturbances, and environmental indeterminacies [14, 15]. The model-reference adaptive

systems are quite renowned for their agile control behavior [16]. However, deriving an

accurate reference model to track and yield adaptive control decisions is a cumbersome pro-

cess [17]. The nonlinear quadratic regulator (NQR) for under-actuated mechatronic sys-

tems can be systematically synthesized by utilizing state-dependent Riccati equation

(SDRE) [18]. However, identifying accurate state-driven coefficients of the state-space

matrices belonging to a higher-order nonlinear multivariable system (with complex geome-

try) is indeed a very difficult task.

Another self-adaptive LQR procedure that has recently gained a lot of attention works on

the principle of self-tuning the weighting factors of its inner QCF [19]. The weighting matrices

of LQR’s performance index put direct emphasis on the state variations and, thus, play a key

role in dictating the optimal control profile for a given application [20]. The controller’s distur-

bance compensation capacity can be significantly enhanced if the weighting factors are adap-

tively configured online as a nonlinear scaling function of the system’s state error variables

that are formulated as per pre-postulated meta-rules [21].
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1.2. Proposed methodology

This article mainly contributes to synthesizing an adaptive LQR for under-actuated mechatro-

nic systems that uses a novel self-organizing online self-tuning mechanism for the state weights

in the QCF. The proposed control scheme is developed by retrofitting the nominal LQR with

an online adaptation scheme that uses nonlinear scaling functions of state error variables to

modify the state weights. To further increase the controller’s flexibility, the aforementioned

weight adjustment scheme is retrofitted with a supplementary self-regulation mechanism that

adaptively re-calibrates the variance of the nonlinear scaling functions. The standard single-

link rotational pendulum (SRP) platform is used to experimentally analyze the efficacy of the

prescribed control procedure in the physical environment. The three key contributions of this

research are listed below:

1. Formulating customized hyperbolic secant functions (HSFs) that depend on the magni-

tudes of the classical state error and error-derivative variables to self-adjust each state

weighting factor in the LQR’s internal QCF. The adjusted weights update the solution of

optimal control problem to yield time-varying LQR gains.

2. Augmenting the aforementioned HSF-based adaptation law with a superior self-regulation

mechanism that dynamically reconfigures the variation rates of each weight-adjusting HSF.

3. Hardware-in-loop (HIL) realization and validation of the proposed control procedure by

carrying out reliable experiments on the Quanser QNET rotary pendulum board [22].

The overall schematic of the proposed control procedure is shown in Fig 1.

1.3. Innovative features

The suggested control strategy offers several innovative features and advantages. The preset

values of variation rates do not allow the adaptation functions to fully realize and handle the

detrimental impacts of exogenous disturbances. Moreover, ill-calibrated variation rates nor-

mally lead to imprecise configuration of the scaling functions, which degrades the adaptability

of the controller. The autonomous self-regulation of the functional variation rates, as proposed

in this article, removes any residual inaccuracies rendered by the fixed tuning. The proposed

Fig 1. Schematic representation of the proposed control procedure.

https://doi.org/10.1371/journal.pone.0295153.g001
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self-regulation scheme uses dissipative and anti-dissipative blocks that capture the state error

dynamics, which enhances the control scheme’s adaptability to efficiently react and apply

appropriate control stiffness. This aids in yielding rapid transitions and strong damping

against oscillations. This capability enables the adaptive system to execute accurate and effi-

cient self-tuning of the variation rates. The self-regulation scheme is highly scalable as it does

not rely on a priori information regarding the system’s mathematical model. The recursive

computational burden imparted by the self-regulation scheme can be easily handled by the

processing power of modern digital computers. As per the author’s knowledge at the time of

writing this article, the aforementioned self-organizing adaptive LQR procedure has never

been discussed in the available scientific literature. Hence, this article pivots around the hard-

ware realization and verification of this innovative proposition.

The realization of the proposed control scheme relies upon the well-identified state-space

model of the system as well as the accurate offline computation of the adaptation law parame-

ters. This is indeed a cumbersome process. However, as validated later in the article (see

Results and Analysis section), the benefits offered by the proposed scheme outweigh the afore-

said computational requirement(s).

The remainder of the article is structured as follows: The system’s mathematical model and

the design of fixed-gain LQR are discussed in the SRP system description section. The adaptive

LQR procedure and the associated self-organizing weight-adaptation scheme are contrived in

the Proposed control methodology section. The results of HIL experiments are analyzed and

discussed in the Results and Analysis section. A formal conclusion is presented in the Conclu-

sion section.

2. SRP system description

The SRP platform is widely favored for experimental verification and benchmarking of advanced

control systems owing to its open-loop instability, under-actuated configuration, and nonlinear

characteristics. Hence, in this article, the efficacy of the proposed adaptive LQR procedure is

investigated via the SRP system. Fig 2 shows the hardware schematic for the standard SRP system.

The SRP system comprises a DC servo motor that rotates an arm hinged to its shaft. The

rotation of the arm α is measured via the DC motor’s shaft encoder. The arm supports the pen-

dulum rod assembly. The rotation of the arm energizes the rod to swing freely about the pivot

point until it’s completely inverted. Once the rod has sufficient energy, it swings up and bal-

ances itself vertically. To track the rod’s angular displacement θ, a rotary encoder is mounted

at its pivot. The SRP system is described in terms of α and θ, which are the arm’s and rod’s

angular displacements, respectively.

2.1. Dynamic model of SRP system

The Euler-Lagrange method is used to derive the SRP system’s dynamic model [23]. The

Lagrangian (L) is formulated as shown in (1).

L ¼ EK � EP ð1Þ

where; EP ¼ mplpgðcosyÞ;

and; EK ¼ 1

2
Ieð _aÞ

2
þ 1

2
mpðr _a � lp _yðcosyÞÞ2 þ 1

2
mpð� lp _yðsinyÞÞ2 þ 1

2
Ipð _yÞ

2

The variables EP and EK represent the system’s total potential energy and total kinetic

energy, respectively. The Lagrangian is formulated in (2), [24].

L ¼
1

2
Ie þmpr

2

� �
_a2 þ

1

2
mplp

2
þ Ip

� �
_y2 � mplpr cosyð Þ _a _y � mplpg cosyð Þ ð2Þ
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The system’s model parameters are described and identified in Table 1 [25]. The system’s

equations of motion are derived via the expressions given in (3), [23].

d

dt
dL
d _a

� �

�
dL
da
¼ t � bv _a;

d

dt
dL
d _y

� �

�
dL
dy
¼ 0 ð3Þ

where, τ is the control torque of the DC motor and bv is the motor’s viscous damping.

Table 1. Model parameters of Quanser SRP.

Parameter Description Value Unit

Ie Motor shaft’s moment 1.23×10−4 kgm2

Ip Pendulum rod’s moment 1.10×10−4 kgm2

mp Pendulum rod’s mass 0.027 kg

r Rotating arm’s length 0.083 m

lp Pendulum center of mass 0.153 m

Lp Pendulum rod’s length 0.191 m

marm Rotating arm’s mass 0.028 kg

g Gravitational acceleration 9.810 m/s2

Rm Motor’s resistance 3.30 O

Lm Motor’s inductance 47.0 mH

Kt Motor torque constant 0.028 Nm/A

Km Back e.m.f. constant 0.028 V/(rad/s)

τm Maximum torque 0.14 Nm

https://doi.org/10.1371/journal.pone.0295153.t001

Fig 2. Schematic representation of a standard SRP system.

https://doi.org/10.1371/journal.pone.0295153.g002
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It is ignored in the model due to its insignificant impact. The motor torque is expressed in

(4).

t ¼
KtðVm � Km _aÞ

Rm
ð4Þ

The motor’s control torque depends upon the input voltage Vm. The solution of (3) yields

the nonlinear Eqs given in (5) and (6) [25].

€a ¼
� rm2

pl
2
pgðcosyÞy � Ipmpr2cosysinyð _aÞ2 � ðIp þmpl2pÞt
ðmpr2ðsin2yÞ � Ie � mpr2ÞIp � mpl2pIe

ð5Þ

€y ¼
� mplpððmpr2gðsin2yÞ � Ieg � mpr2gÞyþ rIesinyð _aÞ

2
� r t cosyÞ

ðmpr2ðsin2yÞ � Ie � mpr2ÞIp � mpl2pIe
ð6Þ

The system linearization is done about the vertical position; where,

a ¼ p rad:; y ¼ 0; _a ¼ 0; _y ¼ 0. Furthermore, sin θ�θ and cos θ�1 are used to approximate

the small-angle contributions. These approximations yield (7) and (8).

€a tð Þ ¼
1

G
rm2

pl
2

pgy tð Þ �
ðIp þmpl2pÞKtKm

Rm
_a tð Þ þ

ðIp þmpl2pÞKt

Rm
Vm

� �

ð7Þ

€y tð Þ ¼
1

G
mplpgðIe þmpr

2Þy tð Þ �
rmplpKtKm

Rm
_a tð Þ þ

rmplpKt

Rm
Vm

� �

ð8Þ

such that; G ¼ IeIp þmpr2Ip þmpl2pIe
The Eqs (7) and (8) are represented in state space form as expressed in (9).

_xðtÞ ¼ AxðtÞ þ BuðtÞ; yðtÞ ¼ CxðtÞ þ DuðtÞ ð9Þ

where, A is the system matrix, B is the input matrix, C is the output matrix, D is the feed-for-

ward matrix, u(t) is the control input signal, x(t) is the state vector, and y(t) is the output vec-

tor. The system’s input vector and state vector are presented in (10).

uðtÞ ¼ Vm; xðtÞ ¼ ½ aðtÞ yðtÞ _aðtÞ _yðtÞ �T ð10Þ

The SRP’s state-space model is provided in (11) [23].

A ¼

0 0 1 0

0 0 0 1

0 a1 a2 0

0 a3 a4 0

2

6
6
6
6
6
4

3

7
7
7
7
7
5

; B ¼

0

0

b1

b2

2

6
6
6
6
6
4

3

7
7
7
7
7
5

; C ¼

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

2

6
6
6
6
6
4

3

7
7
7
7
7
5

; D ¼

0

0

0

0

2

6
6
6
6
6
4

3

7
7
7
7
7
5

ð11Þ

where; a1 ¼
rM2

p l
2
pg

JpJe þ Jel2pMp þ JpMpr2
; a2 ¼

� KtKmðJp þMpl2pÞ
ðJpJe þ Jel2pMp þ JpMpr2ÞRm

;
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a3 ¼
MplpgðJe þMpr2Þ

JpJe þ Jel2pMp þ JpMpr2
; a4 ¼

� rMplpKtKm

ðJpJe þ Jel2pMp þ JpMpr2ÞRm
;

b1 ¼
KtðJp þMpl2pÞ

ðJpJe þ Jel2pMp þ JpMpr2ÞRm
; b2 ¼

rMplpKt

ðJpJe þ Jel2pMp þ JpMpr2ÞRm

2.2. Baseline linear control scheme

The ubiquitous LQR is a state compensator that employs the full state feedback of a linear sys-

tem by delivering optimal regulatory control input [19]. It achieves the said optimality by min-

imizing the QCF provided in (12) [11].

Jlq ¼
1

2

Z 1

0

ðxðtÞTQxðtÞ þ uðtÞTRuðtÞÞdt ð12Þ

where, R2R is a positive definite control input weighting matrix and Q2R4×4 is a positive

semi-definite state weighting matrix. The Hamilton-Jacobi-Bellman (HJB) equations are then

used to evaluate the state compensator gains. The R and Q matrices associated with the stan-

dard SRP system are denoted in (13).

R ¼ r; Q ¼ diagð qa qy q _a q _y Þ ð13Þ

where, ρ>0 and qx�0 are the predetermined constituent factors of the R and Q matrices

respectively. The offline optimization of these matrices is discussed in the Parameter tuning

procedure section. The tuned R and Q matrices are utilized to solve the Algebraic-Riccati-

Equation (ARE), shown in (14), and evaluate the P matrix.

ATP þ PA � PBR� 1BTP þ Q ¼ 0 ð14Þ

where, P2R4×4 is a positive definite matrix. The state-compensator gain vector (K) for the SRP

system is calculated as shown in (15).

K ¼ R� 1BTP ð15Þ

where, K ¼ ½ ka ky k _a k _y �. The fixed-gain LQR law is presented in (16).

uðtÞ ¼ � KxðtÞ ð16Þ

The LQR’s Lyapunov stability is verified via the following function.

VðtÞ ¼ xðtÞTPxðtÞ > 0; for xðtÞ 6¼ 0 ð17Þ

The derivative of V(t) is derived in (18).

_V ðtÞ ¼ 2xðtÞTP _xðtÞ ð18Þ

¼ 2xðtÞTPðA � BKÞxðtÞ

¼ 2xðtÞTPðA � BR� 1BTPÞxðtÞ

¼ xðtÞTðPAþ ATPÞxðtÞ � 2xðtÞTðPBR� 1BTPÞxðtÞ
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By making necessary substitutions from (18), _V ðtÞ simplified as expressed in (19).

_V ðtÞ ¼ � xðtÞTQxðtÞ � xðtÞTðPBR� 1BTPÞxðtÞ < 0 ð19Þ

The function _V ðtÞ is negative-definite if R = RT>0 and Q = QT�0. These conditions are

adequate to maintain the LQR’s asymptotic stability. The LQR law is robustified by supple-

menting it with integral-of-error control terms as shown in (20).

uiðtÞ ¼ K iεðtÞ ¼ ½Kia Kiy �
εaðt�

εyðtÞ

" #

ð20Þ

where, Ki is the integral gain vector, and εα(t) and εθ(t) are the integral-of-error variables

given in (21)

εaðtÞ ¼
Z t

0

eaðtÞdt; εyðtÞ ¼
Z t

0

eyðtÞdt ð21Þ

such that; eaðtÞ ¼ að0Þ � aðtÞ; eyðtÞ ¼ p � yðtÞwhere, eα(t) and eθ(t) are the state-

regulation errors linked with the pendulum’s arm and the rod, respectively. This modification

improves the SRP’s balancing control behavior and increases damping against fluctuations

[20]. The linear control scheme is restructured as shown in (22).

uðtÞ ¼ � KxðtÞ þ K iεðtÞ ð22Þ

2.3. Parameter tuning procedure

The selection of the coefficients of the R and Q matrices is indeed a difficult task. For a specific

set of R and Q matrices, the LQR gains do not necessarily offer accurate reference-tracking

behavior and economical control activity simultaneously and, thus, a trade-off is generally

made [21]. The control input weight (ρ) and the Q matrix are tuned by minimizing the objec-

tive function, expressed in (23), which minimizes the state errors and the input signal with

equal weights [20].

Jc ¼
Z 1

0

ðjeaðtÞj
2
þ jeyðtÞj

2
þ jVmðtÞj

2
Þdt ð23Þ

The objective function applies equal weight (unity) to each minimization criterion. The

coefficients of Q matrix are selected from the range [0, 100], and the control weighting coeffi-

cient is selected from the range [0, 2]. The flow chart of the parameter tuning procedure is

illustrated in Fig 3. The initial values of these parameters can be selected randomly from the

afore-mentioned search space, and the algorithm then handles the exploration in the direction

of the steepest gradient descent. Hence, keeping in view the lower bounds on the state and con-

trol weighting parameters, the tuning process is begun with Q ¼ diagð 1 1 1 1 Þ and R =

1 in this work. The tuning is conducted via a series of experimental trials under nominal con-

ditions. The experimental procedure is discussed in the Hardware-in-the-loop experiments

section. In every trial, the parameters are updated appropriately, the SRP’s rod is manually

erected and balanced for 10.0 seconds to compute the resulting cost Jc,k for that trial, where k is

the trial number. The tuning algorithm explores the range space in the direction of the plung-

ing gradient of Jc. If the cost of the current trial (Jc,k) turns out to be less than the cost of the

previous trial (Jc,k−1), the local minimum-cost variable Jc,min is updated. The tuning process is

concluded if either the algorithm has completed the maximum number of trials allowed or Jc,
min has achieved the predefined threshold value. In this research, the predefined threshold for

Jc,min is set at 1.0×104, and the maximum number of trials (kmax) allowed is 30. These settings
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are deduced as per the expert’s experience. The matrices thus obtained are

R ¼ 1:02; Q ¼ diagð 32:8 52:2 6:1 2:5 Þ. The conveyance of the optimized R and Q
matrices to the ARE yields the gain vector, K ¼ ½ � 6:21 130:56 � 4:22 17:83 �. The

aforementioned procedure is also used to tune the integral gains in the range [–5, 0]. The inte-

gral gain vector thus obtained is K i ¼ ½ � 2:06 � 7:47� 10� 6 �.

3. Proposed control methodology

As discussed earlier, the weighting coefficients are chosen such that ρ>0 and qx�0. The SRP

system’s DOFs are greater than the rank of the R matrix, which verifies its under-actuation

configuration. Hence, it is quite challenging to address all state error variables using a single

control input. On the contrary, the state weighting coefficients (qx) maintain a one-to-one cor-

relation with the corresponding state variables. Hence, in this research, the value of ρ is preset

at 1.02 (as prescribed in the Parameter tuning procedure section), while the values of qx are

self-adjusted online via an adaptation scheme that effectively manipulates the control input

trajectory to achieve the desired control objectives.

The proposed weight-adjustment scheme is devised via nonlinear scaling functions that

capture the magnitudes of the state errors and their corresponding derivatives. The waveform

and shape of the said functions are calibrated offline via the tuning procedure discussed in the

Parameter tuning procedure section. The expression of the time-varying error-dependent

weighting matrices is given in (24).

R ¼ 1:02; QðtÞ ¼ diagð qaðea; tÞ qyðey; tÞ q _að _ea; tÞ q _yð _ey; tÞÞ ð24Þ

The prescribed R matrix and the updated Q(t) matrix are used to re-compute the Riccati

equation’s updated solution P(t), as shown in (25), after every sampling interval.

ATPðtÞ þ PðtÞA � PðtÞBR� 1BTPðtÞ þ QðtÞ ¼ 0 ð25Þ

The matrix P(t) thus delivers the self-adjusting gain vector K(t), as shown in (26).

KðtÞ ¼ R� 1BTPðtÞ ð26Þ

The self-adaptive LQR scheme is redefined in (27).

uðtÞ ¼ � KðtÞxðtÞ þ K iεðtÞ ð27Þ

Fig 3. Flow chart of the parameter tuning procedure.

https://doi.org/10.1371/journal.pone.0295153.g003
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In the research, the vector K(t) is altered via the proposed technique while the vector Ki is

affixed to the prescribed values. As discussed earlier, the ARE’s solution ensures the adaptive

LQR’s asymptotic stability if QðtÞ ¼ QðtÞT � 0 and R = RT>0. The online weight adjustment

functions are customized to make sure that the values of qx are always positive and semi-defi-

nite. The formulation of the tow weight adjustment mechanisms is presented as follows.

3.1. Basic weight adjustment scheme

The state weights of QCF are self-tuned online using well-configured scaling functions of the

magnitudes of state error and error derivative variables. The following qualitative rules dictate

the self-adaptation procedure for the weighting factors [26].

1. The weights qα and qθ are amplified as the magnitudes of state errors increase, and vice

versa.

2. The weights q _a and q _y are reduced as the magnitudes of error derivatives increase, and vice

versa.

The aforementioned rationale renders flexible self-adaptability in the control scheme neces-

sary to achieve the desired control objectives [27, 28]. It enhances the response speed, strength-

ens the damping against exogenous disturbances, quickly attenuates the overshoots or

undershoots, and reduces the peak actuating torques. In this work, the weights are dynamically

adjusted via pre-configured HSFs that comply with the aforementioned rationale. The HSFs

are smooth, even-symmetric, and bounded between 0 and 1. They do not require a priori

knowledge regarding the system’s model and can be easily formulated based on the expert’s

experience. The generalized weight-adjusting function used in this research is expressed in

(28).

qxðex; tÞ ¼ ax � bxsechðg
∗
xjexðtÞÞ

φxÞ ð28Þ

where, ax and bx are used to decide the lower and upper limits of the weighting factor, respec-

tively, sech(.) denotes the HSF, g∗x is the weight adjusting function’s variation rate, ex(t) is the

generalized state error variable, and φx is the fractional exponent of the error variable. The val-

ues of ax and bx are selected such that the weighting factors are always greater than zero to

maintain the system’s closed-loop stability. These functions ensure the smooth commutation

of state weights across all operating conditions. The weight-adjusting functions, designed to

address each state-weighting factor, is expressed in (29) to (32).

qaðea; tÞ ¼ aa þ basechðg
∗
a
:jeaðtÞj

φaÞ ð29Þ

qyðey; tÞ ¼ ay þ bysechðg
∗
y
:jeyðtÞj

φyÞ ð30Þ

q _að _ea; tÞ ¼ a _a � b _asechðg
∗
_a
:j _eaðtÞj

φ _a Þ ð31Þ

q _yð _ey; tÞ ¼ a _y � b _ysechðg
∗
_y
:j _eyðtÞj

φ _y Þ ð32Þ

The hyper-parameters of each function are empirically calibrated offline via the procedure

discussed earlier to attain a fast response speed with minimum regulation errors. The variation

rate and the fractional exponent of each state error variable are selected from the range [0, 10].

A larger bandwidth results in abrupt variations in state weights that eventually lead to discon-

tinuous control signal generation and inject chattering into the response. A smaller bandwidth

of variation range renders the functions unable to quickly address rapidly changing error
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conditions. The upper and lower bounds are selected from the range [0, 500] to allocate ade-

quate control resources as the error conditions change. This bandwidth was chosen as per the

findings reported in [27]. The initial value of each parameter is set to unity for the tuning pro-

cedure. The resulting selected values of the parameters are given as; aα = 1.85, aθ = 2.41, a _a =

11.05, a _y = 10.05, bα = 408.15, bθ = 291.62, b _a = 10.58, b _y = 9.92, g∗
a

= 2.10, g∗
y

= 5.76, g∗_a = 1.05,

g∗_y = 2.94, φα = 1.52, φθ = 1.45, φ
_a

= 1.67, and φ _y
= 1.62. Although this scheme introduces a

multitude of hyper-parameters, which makes the tuning procedure, the performance-related

benefits offered by the scheme surpass this drawback. The adaptive LQR augmented with the

adaptation scheme presented in (29) to (32) is denoted as the Error Magnitude-driven Self

Tuning Controller (or EM-STC) in this article. Fig 4 depicts the block diagram of the basic

EM-STC.

3.2. Proposed self-organizing weight-adjustment scheme

Selecting fixed variation rates to optimize the shape and form of the aforesaid nonlinear

weight-adjusting functions is an ill-posed problem. The fixed variation rates limit the control-

ler’s disturbance rejection ability and incapacitate it to handle parametric variations and envi-

ronmental indeterminacies. This inefficacy can be alleviated by autonomously self-regulating

the variation rate of each weight-adjusting function via a superior self-regulator. This modifi-

cation dynamically adjusts the rate of inflation or depreciation of the state weights, which

improves the sensitivity and responsiveness of the adaptation scheme to handle rapid state

error variations. Consequently, the adaptation scheme can flexibly drive the softness (or stiff-

ness) of the applied control force, which efficiently compensates for the exogenous distur-

bances in minimal time with minimal oscillations and minimal control energy expenditure.

Moreover, it also removes any shortcomings in the heuristic calibration of the weight-adjust-

ing functions.

In this research, the variation rates are adapted online by using the online self-regulation

law, prescribed by Fisher et al. in [29], due to its robust and accurate tracking ability. This

online adaptation mechanism employs pre-calibrated dissipative and anti-dissipative functions

Fig 4. Block diagram of the baseline EM–STC scheme.

https://doi.org/10.1371/journal.pone.0295153.g004
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that dynamically manipulate the variation rates based on the state error and error-derivative

variations after every sampling interval. The time-varying self-regulating variance (SRV) func-

tions are formulated in (33) to (36) [20, 30].

_gaðtÞ ¼ � sagaðtÞ þ bae
2

a
ðtÞ ð33Þ

_gyðtÞ ¼ � sygyðtÞ þ bye
2

y
ðtÞ ð34Þ

_g _a ðtÞ ¼ � s _ag _aðtÞ þ b _aeaðtÞ _eaðtÞ ð35Þ

_g _y ðtÞ ¼ � s _yg _yðtÞ þ b _yeyðtÞ _eyðtÞ ð36Þ

where gx(t) represents the online self-regulation law that dynamically adjusts the variation

rates by incrementing (or decrementing) their values, as shown in (37).

gtotx ðtÞ ¼ g
∗
x þ gxðtÞ ð37Þ

where gtotx ðtÞ is the final (adjusted) value of the variation rate and g∗x is the nominal value of the

variation rate (prescribed in the Basic weight adjustment scheme section). These aforemen-

tioned SRV functions alter the system’s responsiveness and tightness of control effort as the

system deviates from or settles at the desired set point [30]. The parameters βx and σx in (33) to

(36) are the predefined positive adaptation rates and damping rates linked with each SRV

function, respectively. These rates are optimized via the procedure discussed earlier. The selec-

tion range for σx is restricted to [0, 1] to allow for a gradual dissipative operation, while the

selection range for βx is restricted to [0, 10] to ensure a responsive anti-dissipative operation.

The initial value of the decay rates is set to 0.01 and that of the adaptation rates is set to unity

for the tuning procedure. The consequent selected values of these rates are given as; σα = 0.036,

σθ = 0.045, s _a = 0.018, s _y = 0.024, βα = 0.65, βθ = 0.88, b _a = 5.82, and b _y = 7.05. The online

adaptation begins with the initial values of gx(t), and after every sampling interval, the corre-

sponding changes in their value are used to alter the variation rates as a function of the state

errors. Each SRV function comprises a dissipative and an anti-dissipative term, as shown

below [20].

Dissipative term :

� sagaðtÞ

� sygyðtÞ

� s _ag _aðtÞ

� s _yg _yðtÞ

Anti� dissipative term :

bae2
a
ðtÞ

bye2
y
ðtÞ

b _aeaðtÞ _eaðtÞ

b _yeyðtÞ _eyðtÞ

8
>>>>>>><

>>>>>>>:

8
>>>>>>><

>>>>>>>:

The anti-dissipative terms enlarge the corresponding variance as the state error increases,

and vice versa. This helps to apply a tighter control to dampen the overshoots in minimum

time. The dissipative term slows the rate-of-change of the corresponding variance exponen-

tially under low error conditions when the system is in the equilibrium state or when the anti-

dissipative term becomes less dominant. This helps to attenuate steady-state perturbations,

minimize the control energy consumption, and prevent wind-up. The four SRV functions are
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unified and represented as a first-order differential Eq in (38).

_GðtÞ ¼ � FGðtÞ þHvðtÞ ð38Þ

such that; GðtÞ ¼

gaðtÞ

gyðtÞ

g _a

ðtÞg _yðtÞ

2

6
6
4

3

7
7
5; F ¼

sa 0 0 0

0 sy 0 0

0 0 s _a

0000s _y

2

6
6
4

3

7
7
5;

H ¼

ba 0 0 0

0 by 0 0

0 0 b _a

0000b _y

2

6
6
4

3

7
7
5; vðtÞ ¼

e2
a
ðtÞ

e2
y
ðtÞ

eaðtÞ _eaðtÞ

eyðtÞ _eyðtÞ

2

6
6
6
6
6
4

3

7
7
7
7
7
5

where G(t) is a vector containing the gains of the time-varying variation rates, v(t) is the vector

of error-dependent terms, and the matrices F and H are positive-definite matrices containing

the damping rates σx and the adaptation rates βx, respectively. After every sample period, the

differential Eq in (38) is numerically integrated to acquire the G(t) and, hence, the updated val-

ues of the variation rates. The adaptation scheme is computationally realized by solving the dif-

ferential Eq in (38) as shown in (39).

GðtÞ ¼ expð� FtÞGð0Þ þ
Z t

0

ðexpð� Fðt � pÞÞHvðpÞÞdp ð39Þ

where exp(.) represents the exponential function. The initial vector Gð0Þ ¼ ½ 0 0 0 0 �
T
.

The updated values of gx(t) are subsequently used to modify the variation rates as given in (40)

to (43).

gtot
a
ðtÞ ¼ g∗

a
þ gaðtÞ ð40Þ

gtot
y
ðtÞ ¼ g∗

y
þ gyðtÞ ð41Þ

gtot_a
ðtÞ ¼ g∗_a þ g _aðtÞ ð42Þ

gtot_y
ðtÞ ¼ g∗_y þ g _yðtÞ ð43Þ

Finally, the changes in the updated values of gtotx ðtÞ are bounded within ±P% of the nominal

variation rate via a saturation function. This restriction prevents large overshoots, disrupted

control activity, chattering in the response, and wind-ups. The saturation function is formu-

lated in (44).

gsatx ðtÞ ¼

ð1þ 0:01PÞg∗x; gtotx ðtÞ � ð1þ 0:01PÞg∗x
gtotx ðtÞ; ð1 � 0:01PÞg∗x < gtotx ðtÞ < ð1þ 0:01PÞg∗x
ð1 � 0:01PÞg∗x; gtotx ðtÞ � ð1 � 0:01PÞg∗x

ð44Þ

8
><

>:

where gsatx ðtÞ represents the saturated value of the adjustable variation rate. To improve the

position-regulation accuracy and economize the control effort, the value of P is empirically set

at 80.0 via trial-and-error. The updated formulae of the weight-adjusting functions are
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expressed in (45) to (48).

qaðea; tÞ ¼ aa þ basechðg
sat
a
ðtÞ:jeaðtÞj

φaÞ ð45Þ

qyðey; tÞ ¼ ay þ bysechðg
sat
y
ðtÞ:jeyðtÞj

φyÞ ð46Þ

q _að _ea; tÞ ¼ a _a � b _asechðg
sat
_a
ðtÞ:j _eaðtÞj

φ _a Þ ð47Þ

q _yð _ey; tÞ ¼ a _y � b _ysechðg
sat
_y
ðtÞ:j _eyðtÞj

φ _y Þ ð48Þ

The modified weight adjusting functions utilize the same prescribed values of ax, bx, and φx
that were selected in the Basic weight adjustment scheme section, and only the variation rates

gsatx ðtÞ are being dynamically adjusted. The procedure for computing the time-varying state

compensator gains is the same as prescribed in (26). The updated variation rates are fed to the

weight-adjusting functions that alter the state-weighting factors to dynamically re-adjust the

Riccati equation’s solution and yield the self-adjusting LQR gain vector K(t). The adaptive

LQR scheme augmented with the SRV functions is denoted as self-regulating EM-STC (or

SR-EM-STC) in the remaining article. Fig 5 illustrates the proposed SR-EM-STC block

diagram.

Fig 5. Block diagram of the proposed SR–EM–STC procedure.

https://doi.org/10.1371/journal.pone.0295153.g005
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4. Results and analysis

This section comprehensively discusses the experimentation procedure for the HIL realization

of the devised control strategies using the Quanser SRP setup.

4.1. Hardware platform

The robustness of the suggested controller variants is examined by performing HIL experi-

ments on the QNET SRP platform, as depicted in Fig 6.

The real-time measurements of the angular positions of SRP’s arm and rod are acquired

(from the respective encoders) at a sampling frequency of 1.0 kHz by using the NI DAQ

Board. The acquired data is filtered and transmitted to the control software application over a

serial communication link of 9600 bps. The personalized control application is tailored by

using the "Block Diagram" tool of the LabVIEW software. A 64-bit, 2.1 GHz Intel Core i7

embedded personal computer with 16.0 GB of RAM is used to run the control software. The

hardware specifications of the personal computer used in this research are sufficient to deal

with the recursive computations linked to the SRV functions. The weight-adjusting functions

and SRV functions are realized by programming C-language code in LabVIEW’s built-in

Math Script tool. Other necessary blocks are selected from the function palette. This applica-

tion’s front-end functions as a Graphical User Interface (GUI) to display and record real-time

changes in states and control input. The software acquires the real-time state error variations

to execute the control algorithm that recomputes the LQR gains to generate the updated con-

trol signal. The successive modifications in the LQR gains are scheduled after every sampling

interval by using the real-time clock of the embedded processor. The SRP setup’s standard

Fig 6. Quanser SRP setup used for experiments.

https://doi.org/10.1371/journal.pone.0295153.g006
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motor driver receives and modulates the updated control signals to actuate the servo motor.

The durable design of the standard motor driver enables it to safely handle the system’s discon-

tinuous control requirements.

The following physical limitations are taken into consideration while performing experi-

ments on the Quanser SRP platform:

• Rod’s angular displacement limit: |eθ(t)|< 0.07 rad.

• Arm’s angular displacement limit: |eα(t)| < 2.97 rad.

• Control input limit: |Vm(t)|< 20.0 V.

These restrictions are determined empirically. Due to the mechanics of the pendulum, the

rod collapses if eθ exceeds the range specified above. Similarly, the data cable of the rod’s rotary

encoder blocks the arm’s ability to rotate if eα exceeds the range specified above, causing the

rod to collapse. To prevent the motor’s winding from overheating or needless wear and tear,

the control input is maintained within ±20.0 V. Every experimental trial starts with the manual

erection and stabilization of the pendulum rod. Every trial is begun with roughly the same ini-

tial conditions to ensure a fair comparative assessment of the experimental results.

4.2. Hardware-in-loop experiments

To validate the control performance and resilience, each control scheme is tasked with accu-

rately regulating the pendulum rod’s vertical position and the arm’s reference position while

effectively rejecting the effects of parametric variations or bounded perturbations. These con-

trollers’ performance is analyzed via the following five customized HIL experiments. The pur-

pose of choosing these specific experimental cases is also highlighted.

a. Position regulation: This pilot test scenario is used to assess the rod’s capacity to regulate its

vertical position and the arm’s ability to maintain station under normal conditions. In this

test, the hardware is not subjected to any external disturbance. Fig 7 displays the consequent

behavior of θ(t), α(t), Vm(t), and K(t).

b. Impulse disturbance compensation: By injecting a simulated impulsive signal into the con-

trol input, each controller’s capacity to reject external disturbances is analyzed. The conse-

quent abrupt (and large) changes contributed by the impulse disturbance can potentially

destabilize the system. This test case examines the physical system’s ability to quickly

recover from the impact of such perturbations brought on by externally applying an

impulse of a Newtonian force to the system’s body. These exogenous disturbances are gen-

erally caused by environmental uncertainties, such as transients and fluctuations in power

supplies, sudden failure of hardware components, or external forces applied by seismic

activity, etc. Every time the arm reaches its local maximum position, a simulated pulse with

an absolute peak of 5.0 V and a temporal length of 100.0 ms is applied to disturb the

response. The corresponding variations in θ(t), α(t), Vm(t), and K(t) are illustrated in Fig 8.

c. Step disturbance compensation: This test case examines the impact of a step perturbation

(in the system’s input) on the pendulum’s ability to regulate its respective position. The

aforementioned scenario emulates the application of a sudden yet constant external torque

(or force) on the system, such as wind gusts and turbulence on aircraft or tidal force on a

marine vessel, etc. The proposed testing aids in the assessment of transient response proper-

ties that are critical to system performance. The response is disturbed by injecting a step sig-

nal of -5.0 V into the control input signal at t = 10 sec. The corresponding variations in θ(t),
α(t), Vm(t), and K(t) are illustrated in Fig 9.
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Fig 7. Position regulation response of the SRP under normal conditions.

https://doi.org/10.1371/journal.pone.0295153.g007
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Fig 8. Impulse disturbance rejection behavior of the SRP.

https://doi.org/10.1371/journal.pone.0295153.g008
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Fig 9. Step disturbance rejection behavior of the SRP.

https://doi.org/10.1371/journal.pone.0295153.g009
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d. Sinusoidal disturbance attenuation: This test case characterizes the immunity of the pro-

posed control schemes against the additive noise and lumped disturbances that are nor-

mally contributed by the sensor noise, air resistance, mechanical vibrations, chattering

caused by the circuit’s parasitic impedances, cogging, motor-gear backlash, friction, etc.

Such disturbances are unavoidable and, thus, are widely encountered by the systems in

real-world scenarios. The lumped disturbance testing aids in evaluating the robustness of

the control system against exogenous noise and its capacity to filter out undesired state var-

iations. A high-frequency, low-amplitude sinusoidal signal of this form d(t) = 1.5 sin(20πt)

is introduced into the control input to perform the test. The corresponding variations in θ
(t), α(t), Vm(t), and K(t) are shown in Fig 10.

e. Model error rejection: This test scenario mimics the occurrence of parametric variations

and model identification errors in real-world engineering systems. The proposed testing

scenario helps determine how well the control system can handle the discrepancies between

the simulated model and the real system. This situation arises when the mathematical

model used for control does not match the actual system dynamics due to real-time changes

in the system’s body, such as the reduction in an aircraft’s mass during the flight due to con-

stant fuel consumption. By connecting a mass of 0.1 kg beneath the pendulum rod, as

shown in Fig 5, the adaptability of the designed controllers to modeling errors is evaluated.

This mechanical alteration creates a difference between the real and reference state-space

models of the system, which inevitably perturbs the system’s response. The corresponding

perturbations in the time-domain profile of θ(t), α(t), Vm(t), and K(t) are presented in

Fig 11.

The experimental results validate the superior position-regulation and station-keeping

behavior, robust disturbance-rejection capability, fast transient recovery response, and the

lowest control energy consumption of the proposed SR-EM-STC. The comparative assessment

of the experimental results is presented as follows.

4.3. Analytical discussions

The experimental outcomes of the aforementioned experiments are assessed in terms of the

seven Critical Performance Indicators (CPIs) listed in Table 2.

The quantitative analysis of each controller’s performance, as per the aforementioned

CPI’s, under the influence of the testing scenarios A to E is summarized in Table 3. A concise

qualitative examination of the experimental outcomes is discussed below.

In Experiment A, the fixed-gain LQR underperforms in every aspect by demonstrating the

highest eθ_RMS and eα_RMS while expending relatively more control energy than the other two

controller variants. The EM-STC demonstrates significant improvement in attenuating posi-

tion-regulation errors while cutting down on control costs. The proposed SR-EM-STC exhibits

significantly better reference-tracking and station-keeping performance while further improv-

ing the control input economy.

In Experiment B, the LQR manifests the poorest disturbance-rejection capability, which

results in slow transient recovery speed, the largest overshoots in the rod’s response, and also

imposes large control input demands on the DC servo motor. The EM-STC improves the con-

troller’s disturbance compensation ability by effectively attenuating the overshoots with a

faster response speed. However, the improved robustness of EM-STC comes at the expense of

significant servo control demands and extremely disrupted control activity. The proposed

SR-EM-STC enables the system to exhibit relatively faster transits to the reference position
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Fig 10. Sinusoidal disturbance attenuation behavior of the SRP.

https://doi.org/10.1371/journal.pone.0295153.g010
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Fig 11. Model error compensation behavior of the SRP.

https://doi.org/10.1371/journal.pone.0295153.g011
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and tighter damping control to reject the overshoots (or undershoots). It also suppresses the

peak control input demands of the motor, which economizes control behaviour significantly.

In Experiment C, the LQR yields insufficient control resources to compensate for the step

disturbance, which leads to a large αoff and large fluctuations in the arm’s and rod’s angular

positions. The EM-STC shows a considerable improvement in effectively compensating for

the step disturbance by minimizing the offset and magnitude of peak-to-peak state-error fluc-

tuations (in the angular positions of the rod and the arm) at the expense of highly disrupted

control energy expenditure. The proposed SR-EM-STC demonstrates relatively stronger dis-

turbance rejection behavior by contributing relatively faster transient recovery, stronger atten-

uation against the ensuing fluctuations, and smoother control activity with relatively smaller

peak actuating-torque requirements.

In Experiment D, the LQR exhibits the highest susceptibility to the sinusoidal disturbance,

resulting in large state fluctuations and the poorest control input economy. The EM-STC

Table 2. Critical performance indicators.

Symbol Units Description

ex_RMS deg. Root-mean-squared value of eα(t) and eθ(t).
MSVm V2 Mean-squared value of Vm(t). It indicates average control energy.

|Mp,θ| deg. The absolute peak value of the overshoot in θ(t) after disturbance.

ts,θ (s) s. Time duration of the rod’s recovery following an impulsive disturbance.

αoff deg. Arm position offset following step disturbance.

αp-p deg. Peak-to-peak oscillation amplitude in the arm following the step disturbance.

Vp V The absolute peak value of overshoot in control voltage following disturbance.

https://doi.org/10.1371/journal.pone.0295153.t002

Table 3. Quantitative comparison of experimental outcomes.

Experiments CPI Control Schemes

Symbol Units LQR EM-STC SR-EM-STC

A eθ_RMS deg. 0.48 0.27 0.23

eα_RMS deg. 14.64 6.95 6.62

MSVm V2 8.17 7.96 6.83

B eθ_RMS deg. 0.76 0.49 0.41

|Mp,θ| deg. 2.53 2.00 1.45

ts,θ s. 0.67 0.42 0.30

eα_RMS deg. 13.85 7.04 6.74

MSVm V2 12.14 12.53 11.58

Vp V -13.11 -14.91 -12.78

C eθ_RMS deg. 0.98 0.85 0.70

eα_RMS deg. 32.51 16.38 10.67

αoff deg. -39.00 -17.75 -9.49

αp-p deg. 28.5 13.04 12.48

MSVm V2 25.86 31.81 25.13

Vp V -10.65 -14.01 -13.87

D eθ_RMS deg. 0.42 0.24 0.22

eα_RMS deg. 10.03 5.88 3.68

MSVm V2 13.17 9.06 7.74

E eθ_RMS deg. 1.07 0.77 0.64

eα_RMS deg. 17.25 8.24 7.85

MSVm V2 11.93 11.74 10.76

https://doi.org/10.1371/journal.pone.0295153.t003
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demonstrates considerably better immunity against sinusoidal disturbances. However, the

SR-EM-STC surpasses the aforesaid control schemes by effectively attenuating the state fluctu-

ations and suppressing the chattering content in the rod’s position while maintaining a smooth

and inexpensive overall control activity.

In Experiment E, the LQR manifests a subpar performance by taking mediocre actions

against the modeling error, which results in large perturbations in the pendulum’s rod and the

arm. The EM-STC significantly improves position-regulation behavior while slightly improv-

ing control energy consumption as well. Finally, the proposed SR-EM-STC shows the best

model error compensation behavior by yielding strong damping against perturbations with

relatively improved control efficiency.

In contrast to the fixed-gain LQR, the SR-EM-STC contributes an improvement of 52.2%,

54.8%, 16.4%, 55.2%, and 42.7% in the pendulum’s position regulation, arm’s position regula-

tion, control energy expenditure, transient recovery duration, and peak overshoot magnitude,

respectively. As compared to the EM-STC, the SR-EM-STC contributes a reduction of 14.8%,

4.7%, 14.4%, 28.6%, and 27.5% in the pendulum’s position regulation, arm’s position regula-

tion, control energy expenditure, transient recovery duration, and peak overshoot magnitude,

respectively. This quantitative comparison validates the enhanced time optimality of the self-

regulating adaptive LQR, even under the influence of parametric uncertainties. In each experi-

mental test case, the proposed self-regulating adaptive LQR exhibits considerable improve-

ment in robustness as compared to adaptive LQR with fixed variation rates.

The aforementioned enhancements in the adaptive controller’s performance are indeed

attributed to the self-regulating variation rates of the weight-adjusting function, which

improve the DOFs of the adaptation scheme. The enhanced adaptability constructively influ-

ences the adaptation scheme’s self-reasoning capability and enables it to flexibly restructure

the control scheme online to yield time-optimal and energy-efficient control decisions. The

said flexibility is evident from the LQR gain variations that are depicted in the graphical illus-

trations of the experimental results (see Figs 7–11). In each test case, the gains contributed by

the SR-EM-STC scheme demonstrate small but abrupt variations as compared to their

EM-STC counterparts, which generally exhibit smoother variations. These rapid changes in

the gains justify the superiority of the proposed self-regulating adaptation scheme in terms of

responsiveness to parametric variations, which allows the control procedure to quickly realize

and then accurately modify the critical weights to address the prevailing disturbance condition

effectively.

The proposed control scheme is highly scalable and can be appropriately modified and

extended to the distributed control of multiple robotic systems or networked Lagrangian sys-

tems [31, 32]. However, the scheme requires the multi-agent system’s mathematical model as

well as the hyper-parameters associated with the adaptation law to be available a priori.

5. Conclusion

In this article, the efficacy of an adaptive LQR employing self-regulating nonlinear scaling

techniques has been successfully validated for under-actuated electro-mechanical systems. The

nonlinear hyperbolic scaling function with self-regulating variation rates substantially

enhances the controller’s adaptability and, thus, its robustness and response speed against

bounded external perturbations. The proposed self-regulation algorithm uses error dynamics

in conjunction with its superior self-regulation capacity to dynamically adjust the variation

rates of the weight-adjusting nonlinear functions. The self-regulating variances adaptively

modify the structure of the aforementioned functions to remove any inaccuracies in their heu-

ristic calibration. The proposed scheme exploits the full potential and harnesses the maximum
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flexibility of the state-error-driven HSFs. The experimental results verify that the dynamic

adjustment of variances in the weight-adjusting functions enhances the controller’s effective-

ness in compensating for the nonlinear complexities and parametric variations encountered

by real-world systems. The proposed scheme increases the transient response speed, amplifies

the control stiffness against the reference-tracking fluctuations, and minimizes the peak mag-

nitudes in the actuator’s control profile while maintaining the stability of the controller under

every operating condition. In the future, this scheme can be examined by extending it to other

under-actuated mechatronic systems for further validation of its design scalability. Other

online self-organizing algorithms can also be investigated for the adjustment of shape varia-

tions in real time.
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