88 research outputs found

    Design, control and error analysis of a fast tool positioning system for ultra-precision machining of freeform surfaces

    Get PDF
    This thesis was previously held under moratorium from 03/12/19 to 03/12/21Freeform surfaces are widely found in advanced imaging and illumination systems, orthopaedic implants, high-power beam shaping applications, and other high-end scientific instruments. They give the designers greater ability to cope with the performance limitations commonly encountered in simple-shape designs. However, the stringent requirements for surface roughness and form accuracy of freeform components pose significant challenges for current machining techniques—especially in the optical and display market where large surfaces with tens of thousands of micro features are to be machined. Such highly wavy surfaces require the machine tool cutter to move rapidly while keeping following errors small. Manufacturing efficiency has been a bottleneck in these applications. The rapidly changing cutting forces and inertial forces also contribute a great deal to the machining errors. The difficulty in maintaining good surface quality under conditions of high operational frequency suggests the need for an error analysis approach that can predict the dynamic errors. The machining requirements also impose great challenges on machine tool design and the control process. There has been a knowledge gap on how the mechanical structural design affects the achievable positioning stability. The goal of this study was to develop a tool positioning system capable of delivering fast motion with the required positioning accuracy and stiffness for ultra-precision freeform manufacturing. This goal is achieved through deterministic structural design, detailed error analysis, and novel control algorithms. Firstly, a novel stiff-support design was proposed to eliminate the structural and bearing compliances in the structural loop. To implement the concept, a fast positioning device was developed based on a new-type flat voice coil motor. Flexure bearing, magnet track, and motor coil parameters were designed and calculated in detail. A high-performance digital controller and a power amplifier were also built to meet the servo rate requirement of the closed-loop system. A thorough understanding was established of how signals propagated within the control system, which is fundamentally important in determining the loop performance of high-speed control. A systematic error analysis approach based on a detailed model of the system was proposed and verified for the first time that could reveal how disturbances contribute to the tool positioning errors. Each source of disturbance was treated as a stochastic process, and these disturbances were synthesised in the frequency domain. The differences between following error and real positioning error were discussed and clarified. The predicted spectrum of following errors agreed with the measured spectrum across the frequency range. It is found that the following errors read from the control software underestimated the real positioning errors at low frequencies and overestimated them at high frequencies. The error analysis approach thus successfully revealed the real tool positioning errors that are mingled with sensor noise. Approaches to suppress disturbances were discussed from the perspectives of both system design and control. A deterministic controller design approach was developed to preclude the uncertainty associated with controller tuning, resulting in a control law that can minimize positioning errors. The influences of mechanical parameters such as mass, damping, and stiffness were investigated within the closed-loop framework. Under a given disturbance condition, the optimal bearing stiffness and optimal damping coefficients were found. Experimental positioning tests showed that a larger moving mass helped to combat all disturbances but sensor noise. Because of power limits, the inertia of the fast tool positioning system could not be high. A control algorithm with an additional acceleration-feedback loop was then studied to enhance the dynamic stiffness of the cutting system without any need for large inertia. An analytical model of the dynamic stiffness of the system with acceleration feedback was established. The dynamic stiffness was tested by frequency response tests as well as by intermittent diamond-turning experiments. The following errors and the form errors of the machined surfaces were compared with the estimates provided by the model. It is found that the dynamic stiffness within the acceleration sensor bandwidth was proportionally improved. The additional acceleration sensor brought a new error source into the loop, and its contribution of errors increased with a larger acceleration gain. At a certain point, the error caused by the increased acceleration gain surpassed other disturbances and started to dominate, representing the practical upper limit of the acceleration gain. Finally, the developed positioning system was used to cut some typical freeform surfaces. A surface roughness of 1.2 nm (Ra) was achieved on a NiP alloy substrate in flat cutting experiments. Freeform surfaces—including beam integrator surface, sinusoidal surface, and arbitrary freeform surface—were successfully machined with optical-grade quality. Ideas for future improvements were proposed in the end of this thesis.Freeform surfaces are widely found in advanced imaging and illumination systems, orthopaedic implants, high-power beam shaping applications, and other high-end scientific instruments. They give the designers greater ability to cope with the performance limitations commonly encountered in simple-shape designs. However, the stringent requirements for surface roughness and form accuracy of freeform components pose significant challenges for current machining techniques—especially in the optical and display market where large surfaces with tens of thousands of micro features are to be machined. Such highly wavy surfaces require the machine tool cutter to move rapidly while keeping following errors small. Manufacturing efficiency has been a bottleneck in these applications. The rapidly changing cutting forces and inertial forces also contribute a great deal to the machining errors. The difficulty in maintaining good surface quality under conditions of high operational frequency suggests the need for an error analysis approach that can predict the dynamic errors. The machining requirements also impose great challenges on machine tool design and the control process. There has been a knowledge gap on how the mechanical structural design affects the achievable positioning stability. The goal of this study was to develop a tool positioning system capable of delivering fast motion with the required positioning accuracy and stiffness for ultra-precision freeform manufacturing. This goal is achieved through deterministic structural design, detailed error analysis, and novel control algorithms. Firstly, a novel stiff-support design was proposed to eliminate the structural and bearing compliances in the structural loop. To implement the concept, a fast positioning device was developed based on a new-type flat voice coil motor. Flexure bearing, magnet track, and motor coil parameters were designed and calculated in detail. A high-performance digital controller and a power amplifier were also built to meet the servo rate requirement of the closed-loop system. A thorough understanding was established of how signals propagated within the control system, which is fundamentally important in determining the loop performance of high-speed control. A systematic error analysis approach based on a detailed model of the system was proposed and verified for the first time that could reveal how disturbances contribute to the tool positioning errors. Each source of disturbance was treated as a stochastic process, and these disturbances were synthesised in the frequency domain. The differences between following error and real positioning error were discussed and clarified. The predicted spectrum of following errors agreed with the measured spectrum across the frequency range. It is found that the following errors read from the control software underestimated the real positioning errors at low frequencies and overestimated them at high frequencies. The error analysis approach thus successfully revealed the real tool positioning errors that are mingled with sensor noise. Approaches to suppress disturbances were discussed from the perspectives of both system design and control. A deterministic controller design approach was developed to preclude the uncertainty associated with controller tuning, resulting in a control law that can minimize positioning errors. The influences of mechanical parameters such as mass, damping, and stiffness were investigated within the closed-loop framework. Under a given disturbance condition, the optimal bearing stiffness and optimal damping coefficients were found. Experimental positioning tests showed that a larger moving mass helped to combat all disturbances but sensor noise. Because of power limits, the inertia of the fast tool positioning system could not be high. A control algorithm with an additional acceleration-feedback loop was then studied to enhance the dynamic stiffness of the cutting system without any need for large inertia. An analytical model of the dynamic stiffness of the system with acceleration feedback was established. The dynamic stiffness was tested by frequency response tests as well as by intermittent diamond-turning experiments. The following errors and the form errors of the machined surfaces were compared with the estimates provided by the model. It is found that the dynamic stiffness within the acceleration sensor bandwidth was proportionally improved. The additional acceleration sensor brought a new error source into the loop, and its contribution of errors increased with a larger acceleration gain. At a certain point, the error caused by the increased acceleration gain surpassed other disturbances and started to dominate, representing the practical upper limit of the acceleration gain. Finally, the developed positioning system was used to cut some typical freeform surfaces. A surface roughness of 1.2 nm (Ra) was achieved on a NiP alloy substrate in flat cutting experiments. Freeform surfaces—including beam integrator surface, sinusoidal surface, and arbitrary freeform surface—were successfully machined with optical-grade quality. Ideas for future improvements were proposed in the end of this thesis

    Improved performance of hard disk drive servomechanism using digital multirate control

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Development of the UMAC-based control system with application to 5-axis ultraprecision micromilling machines

    Get PDF
    Increasing demands from end users in the fields of optics, defence, automotive, medical, aerospace, etc. for high precision 3D miniaturized components and microstructures from a range of materials have driven the development in micro and nano machining and changed the manufacturing realm. Conventional manufacturing processes such as chemical etching and LIGA are found unfavourable or limited due to production time required and have led mechanical micro machining to grow further. Mechanical micro machining is an ideal method to produce high accuracy micro components and micro milling is the most flexible enabling process and is thus able to generate a wider variety of complex micro components and microstructures. Ultraprecision micromilling machine tools are required so as to meet the accuracy, surface finish and geometrical complexity of components and parts. Typical manufacturing requirements are high dimensional accuracy being better than 1 micron, flatness and roundness better than 50 nm and surface finish ranging between 10 and 50 nm. Manufacture of high precision components and parts require very intricate material removal procedure. There are five key components that include machine tools, cutting tools, material properties, operation variables and environmental conditions, which constitute in manufacturing high quality components and parts. End users assess the performance of a machine tool based on the dimensional accuracy and surface quality of machined parts including the machining time. In this thesis, the emphasis is on the design and development of a control system for a 5-axis bench-type ultraprecision micromilling machine- Ultra-Mill. On the one hand, the developed control system is able to offer high motion and positioning accuracy, dynamic stiffness and thermal stability for motion control, which are essential for achieving the machining accuracy and surface finish desired. On the other hand, the control system is able to undertake in-process inspection and condition monitoring of the machine tool and process. The control of multi-axis precision machines with high-speed and high-accuracy motions and positioning are desirable to manufacture components with high accuracy and complex features to increase productivity and maintain machine stability, etc. The development of the control system has focused on fast, accurate and robust positioning requirements at the machine system design stage. Apart from the mechanical design, the performance of the entire precision systems is greatly dependent on diverse electrical and electronics subsystems, controllers, drive instruments, feedback devices, inspection and monitoring system and software. There are some variables that dynamically alter the system behaviour and sensitivity to disturbance that are not ignorable in the micro and nano machining realm. In this research, a structured framework has been developed and integrated to aid the design and development of the control system. The framework includes critically reviewing the state of the art of ultraprecision machining tools, understanding the control system technologies involved, highlighting the advantages and disadvantages of various control system methods for ultraprecision machines, understanding what is required by end-users and formulating what actually makes a machine tool be an ultraprecision machine particularly from the control system perspective. In the design and development stage, the possession of mechatronic know-how is essential as the design and development of the Ultra-Mill is a multidisciplinary field. Simulation and modelling tool such as Matlab/Simulink is used to model the most suitable control system design. The developed control system was validated through machining trials to observe the achievable accuracy, experiments and testing of subsystems individually (slide system, tooling system, monitoring system, etc.). This thesis has successfully demonstrated the design and development of the control system for a 5-axis ultraprecision machine tool- Ultra-Mill, with high performance characteristics, fast, accurate, precise, etc. for motion and positioning, high dynamic stiffness, robustness and thermal stability, whereby was provided and maintained by the control system.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Supervisory control of machine tool feed drives.

    Get PDF
    While motion control of machine tool feed drives is the targeted application. The goal of this study is to explore the relative performance potentials of supervisory control systems against the classical servo control systems; Reconfiguration aspects at the control level are the scope of this study. One of the most essential nonlinear problems faced during modeling and control stages of the CNC machining systems is called backlash. Reversal of motion for each moving axis can lead to that area of disengagement where backlash occurs due to inherently unavoidable clearance between linkages of the machine tool feed drive system. Due to backlash, efficiency of machine tools will be undesirably turned down causing higher vibrations, lower contouring accuracy, and may draw the whole system into instability region. A Switching control scheme is designed to manage the control process where two different controllers with two different control functionalities, acting differently in two vital zones---one of them where the backlash lies, and the other when moving past the backlash---seem to be an important need. (Abstract shortened by UMI.)Dept. of Industrial and Manufacturing Systems Engineering. Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis2004 .S53. Source: Masters Abstracts International, Volume: 43-03, page: 0961. Adviser: Waguih ElMaraghy. Thesis (M.A.Sc.)--University of Windsor (Canada), 2004

    Design/cost tradeoff studies. Appendix A. Supporting analyses and tradeoffs, book 2. Earth Observatory Satellite system definition study (EOS)

    Get PDF
    Attitude reference systems for use with the Earth Observatory Satellite (EOS) are described. The systems considered are fixed and gimbaled star trackers, star mappers, and digital sun sensors. Covariance analyses were performed to determine performance for the most promising candidate in low altitude and synchronous orbits. The performance of attitude estimators that employ gyroscopes which are periodically updated by a star sensor is established by a single axis covariance analysis. The other systems considered are: (1) the propulsion system design, (2) electric power and electrical integration, (3) thermal control, (4) ground data processing, and (5) the test plan and cost reduction aspects of observatory integration and test

    METHODS TO CHARACTERISE THE PERFORMANCE OF HEAD DISK INTERFACE USING A MULTIFUNCTIONAL SPINSTAND

    Get PDF
    Master'sMASTER OF ENGINEERIN

    Soft Robotics: Design for Simplicity, Performance, and Robustness of Robots for Interaction with Humans.

    Get PDF
    This thesis deals with the design possibilities concerning the next generation of advanced Robots. Aim of the work is to study, analyse and realise artificial systems that are essentially simple, performing and robust and can live and coexist with humans. The main design guideline followed in doing so is the Soft Robotics Approach, that implies the design of systems with intrinsic mechanical compliance in their architecture. The first part of the thesis addresses design of new soft robotics actuators, or robotic muscles. At the beginning are provided information about what a robotic muscle is and what is needed to realise it. A possible classification of these systems is analysed and some criteria useful for their comparison are explained. After, a set of functional specifications and parameters is identified and defined, to characterise a specific subset of this kind of actuators, called Variable Stiffness Actuators. The selected parameters converge in a data-sheet that easily defines performance and abilities of the robotic system. A complete strategy for the design and realisation of this kind of system is provided, which takes into account their me- chanical morphology and architecture. As consequence of this, some new actuators are developed, validated and employed in the execution of complex experimental tasks. In particular the actuator VSA-Cube and its add-on, a Variable Damper, are developed as the main com- ponents of a robotics low-cost platform, called VSA-CubeBot, that v can be used as an exploratory platform for multi degrees of freedom experiments. Experimental validations and mathematical models of the system employed in multi degrees of freedom tasks (bimanual as- sembly and drawing on an uneven surface), are reported. The second part of the thesis is about the design of multi fingered hands for robots. In this part of the work the Pisa-IIT SoftHand is introduced. It is a novel robot hand prototype designed with the purpose of being as easily usable, robust and simple as an industrial gripper, while exhibiting a level of grasping versatility and an aspect comparable to that of the human hand. In the thesis the main theo- retical tool used to enable such simplification, i.e. the neuroscience– based notion of soft synergies, are briefly reviewed. The approach proposed rests on ideas coming from underactuated hand design. A synthesis method to realize a desired set of soft synergies through the principled design of adaptive underactuated mechanisms, which is called the method of adaptive synergies, is discussed. This ap- proach leads to the design of hands accommodating in principle an arbitrary number of soft synergies, as demonstrated in grasping and manipulation simulations and experiments with a prototype. As a particular instance of application of the method of adaptive syner- gies, the Pisa–IIT SoftHand is then described in detail. The design and implementation of the prototype hand are shown and its effec- tiveness demonstrated through grasping experiments. Finally, control of the Pisa/IIT Hand is considered. Few different control strategies are adopted, including an experimental setup with the use of surface Electromyographic signals

    Underwater Vehicles

    Get PDF
    For the latest twenty to thirty years, a significant number of AUVs has been created for the solving of wide spectrum of scientific and applied tasks of ocean development and research. For the short time period the AUVs have shown the efficiency at performance of complex search and inspection works and opened a number of new important applications. Initially the information about AUVs had mainly review-advertising character but now more attention is paid to practical achievements, problems and systems technologies. AUVs are losing their prototype status and have become a fully operational, reliable and effective tool and modern multi-purpose AUVs represent the new class of underwater robotic objects with inherent tasks and practical applications, particular features of technology, systems structure and functional properties

    Benelux meeting on systems and control, 23rd, March 17-19, 2004, Helvoirt, The Netherlands

    Get PDF
    Book of abstract
    corecore