48 research outputs found

    On a Joint Physical Layer and Medium Access Control Sublayer Design for Efficient Wireless Sensor Networks and Applications

    Get PDF
    Wireless sensor networks (WSNs) are distributed networks comprising small sensing devices equipped with a processor, memory, power source, and often with the capability for short range wireless communication. These networks are used in various applications, and have created interest in WSN research and commercial uses, including industrial, scientific, household, military, medical and environmental domains. These initiatives have also been stimulated by the finalisation of the IEEE 802.15.4 standard, which defines the medium access control (MAC) and physical layer (PHY) for low-rate wireless personal area networks (LR-WPAN). Future applications may require large WSNs consisting of huge numbers of inexpensive wireless sensor nodes with limited resources (energy, bandwidth), operating in harsh environmental conditions. WSNs must perform reliably despite novel resource constraints including limited bandwidth, channel errors, and nodes that have limited operating energy. Improving resource utilisation and quality-of-service (QoS), in terms of reliable connectivity and energy efficiency, are major challenges in WSNs. Hence, the development of new WSN applications with severe resource constraints will require innovative solutions to overcome the above issues as well as improving the robustness of network components, and developing sustainable and cost effective implementation models. The main purpose of this research is to investigate methods for improving the performance of WSNs to maintain reliable network connectivity, scalability and energy efficiency. The study focuses on the IEEE 802.15.4 MAC/PHY layers and the carrier sense multiple access with collision avoidance (CSMA/CA) based networks. First, transmission power control (TPC) is investigated in multi and single-hop WSNs using typical hardware platform parameters via simulation and numerical analysis. A novel approach to testing TPC at the physical layer is developed, and results show that contrary to what has been reported from previous studies, in multi-hop networks TPC does not save energy. Next, the network initialization/self-configuration phase is addressed through investigation of the 802.15.4 MAC beacon interval setting and the number of associating nodes, in terms of association delay with the coordinator. The results raise doubt whether that the association energy consumption will outweigh the benefit of duty cycle power management for larger beacon intervals as the number of associating nodes increases. The third main contribution of this thesis is a new cross layer (PHY-MAC) design to improve network energy efficiency, reliability and scalability by minimising packet collisions due to hidden nodes. This is undertaken in response to findings in this thesis on the IEEE 802.15.4 MAC performance in the presence of hidden nodes. Specifically, simulation results show that it is the random backoff exponent that is of paramount importance for resolving collisions and not the number of times the channel is sensed before transmitting. However, the random backoff is ineffective in the presence of hidden nodes. The proposed design uses a new algorithm to increase the sensing coverage area, and therefore greatly reduces the chance of packet collisions due to hidden nodes. Moreover, the design uses a new dynamic transmission power control (TPC) to further reduce energy consumption and interference. The above proposed changes can smoothly coexist with the legacy 802.15.4 CSMA/CA. Finally, an improved two dimensional discrete time Markov chain model is proposed to capture the performance of the slotted 802.15.4 CSMA/CA. This model rectifies minor issues apparent in previous studies. The relationship derived for the successful transmission probability, throughput and average energy consumption, will provide better performance predictions. It will also offer greater insight into the strengths and weaknesses of the MAC operation, and possible enhancement opportunities. Overall, the work presented in this thesis provides several significant insights into WSN performance improvements with both existing protocols and newly designed protocols. Finally, some of the numerous challenges for future research are described

    Routing algorithms for wireless sensor : networks based on the duty cycle of its components

    Get PDF
    [eng] Wireless sensor network is one of the most important topics in the current data transferring. In fact regarding to data gathering and transformation, cost effective is the top topic and optimum point, which every vendors and sector are focusing on it. In the field of petrochemical regarding sensitive processes could not stay out of this scope and start to monitor the gas pipes and processes over the wireless fashion. Therefore some items should have been taking into considerations such as: instant monitoring, nonstop characteristic, long term investing and energy consuming. According to those aforesaid items, we have planned to do an investigation and find the feasibly of how we can to create and distribute a network to have accuracy to measurement , sending data reliability, having long term network life cycle and having minimum energy consuming. Therefore the only technology could help us was IEEE 802.15.4 with mixed of microcontrollers and transceivers, able to manipulate to reach out our objects in maximizing lifetime and minimizing latency in wsn, as an unique routing algorithm in Mobile ad Hoc Network. WSN in fact is a relatively new section of networking technology and nowadays is more popular. The reason of these advantages instead of others is low-power microcontroller and inexpensive sensor usage for any communications and also simple sensor designing. Regarding to network layers, Physical layer for WSN based on IEEE802.15.4 is fundamental of frames and packets transactions. So two main devices which are involving in this project: transceivers such as CC2520 and CC3200 ZigBee/IEEE 802.15.4 RF, managed by microcontrollers. Common controller for those transceivers such as MSP430F1611 16-bit MSP430 family for Texas instrument in the nodes and coordinators ideas were selected. One step more close to the idea, was other layer so called Link layer or in other hand MAC layer. Another advantage of WSN is ability to manipulate MAC layer, because modifications in lower layer always has low Energy consuming than other layers. Therefore according to these circumstances, MAC protocols are able to energy efficiency, also reduce and achieve to zero based of unused time in WSN. So any WSN, energy wasting could be control in MAC sub layer and even though MAC protocols. Other layer in WSN is declared as a Network layer, the logical way which those packets could be find the best way and shortest path in minimum time as possible and reachability to the main point based on node and coordinator. Nodes are programmed in upper layer and have been matched with MAC layer, now it's time to join and stick the frames in a packet and involving to each other. Meanwhile we decided to create a middle layer through MAC and Network layer to play as a bridge, mainly called VRT (Variable Response Time) and FRT (Fixed Response Time) to control the energy consumption in the process of routing in network layer. This algorithm is cooperating with MAC layer in sleep and wake up modes, in fact with VRT, nodes just received their needs and captured the vital packet in wake up mode, sends back the answer, now the task is finished and both sided transaction is done. After that, it's not need to have more listening and capturing packets from the remote nodes as a coordinator therefore, left the transmission process to save more energy for further wireless communication stream in sleep mode. Also FRT is another algorithm in MAC layer, to decrease the energy consumption. This algorithm is switch based energy control, as a same concept in VRT in sleeping and wakeup mode. Finally we have design this algorithm in Simulator and real world. The results correlate quite well results showing as a good agreement between two worlds, also we have obtained better results in battery consumption over network life cycle to other business algorithms.[spa] En este trabajo nos focalizaremos en la minimización del consumo a partir de la minimización del número de transmisiones. Buscamos por tanto aquel algoritmo que nos permita aumentar la probabilidad de aciertos. Esta idea, diseñará el algoritmo de enrutamiento que mejor se ajusta a la red MANET. Una vez simulada la red se diseñará un "testbed" en donde una parte de la red se implementará de forma real, mediante la introducción de sensores inalámbricos y la otra parte se hará de forma simulada, a través de una interfaz que interconecta el mundo real con la simulación de Spyder. Se pretende ver que ambos mundos progresan de forma similar. Con respecto a la capa de OSI en WSN, sería prioritaria la capa física o capa de hardware, por este motivo nuestra proyecto también se centra en el tipo determinado de hardware que debe aplicarse para obtener resultados satisfactorios. Entonces tratamos las características de los dos hardwares, el transceiver y el microcontroller. También se trata en este apartado su concepto lógico de acuerdo con la ficha técnica oficial IEEE802.15.4. La segunda prioridad de la capa OSI se centra en el Medium Access Control (MAC) de la capa. En esta capa nuestro objetivo se logrará mediante la manipulación de las addresses MAC. Los protocolos MAC deben estar orientados a la reducción del consumo de energía y también a la reducción del tiempo no utilizado en WSN, para ello aplicamos algunas políticas para controlar los comportamientos del tráfico en esta capa para cambiar el consumo de energía, la vida útil de la red y evitar el gasto innecesario de recursos, en realidad concentramos a nuestro algoritmo VRT y FRT. Respecto de la idea principal, de controlar los sensores para aumentar la vida útil de la red y disminuir el consumo de energía. En realidad se explica cómo controlar la capa MAC y forzar el hardware para lograr el objetivo principal de este proyecto. De hecho podemos decir que mejoramos el reenvío de paquetes entre los sensores intermedios, buscando el promedio de distancia HOP más corta desde el origen al destino, así como la disminución del consumo de energía en cada sensor

    Water Leak Detection System

    Get PDF
    The water supply shortage has increased in recent years due to overpopulation, climate change and obsolete water facilities, where deteriorated pipes cause most of the water leaks. The problem is not the size of the leak, but the time it takes to detect it. This paper presents the implementation of a system installed in the hydraulic facilities of a residence, to detect water leaks. The system consists of a water sensor installed by a water reservoir of interest, a microprocessor to interpret the data and evaluate whether it is a water leak or not, an SMS alert message, and an electrical actuator to shut off the main water supply to avoid leakage

    Design for energy-efficient and reliable fog-assisted healthcare IoT systems

    Get PDF
    Cardiovascular disease and diabetes are two of the most dangerous diseases as they are the leading causes of death in all ages. Unfortunately, they cannot be completely cured with the current knowledge and existing technologies. However, they can be effectively managed by applying methods of continuous health monitoring. Nonetheless, it is difficult to achieve a high quality of healthcare with the current health monitoring systems which often have several limitations such as non-mobility support, energy inefficiency, and an insufficiency of advanced services. Therefore, this thesis presents a Fog computing approach focusing on four main tracks, and proposes it as a solution to the existing limitations. In the first track, the main goal is to introduce Fog computing and Fog services into remote health monitoring systems in order to enhance the quality of healthcare. In the second track, a Fog approach providing mobility support in a real-time health monitoring IoT system is proposed. The handover mechanism run by Fog-assisted smart gateways helps to maintain the connection between sensor nodes and the gateways with a minimized latency. Results show that the handover latency of the proposed Fog approach is 10%-50% less than other state-of-the-art mobility support approaches. In the third track, the designs of four energy-efficient health monitoring IoT systems are discussed and developed. Each energy-efficient system and its sensor nodes are designed to serve a specific purpose such as glucose monitoring, ECG monitoring, or fall detection; with the exception of the fourth system which is an advanced and combined system for simultaneously monitoring many diseases such as diabetes and cardiovascular disease. Results show that these sensor nodes can continuously work, depending on the application, up to 70-155 hours when using a 1000 mAh lithium battery. The fourth track mentioned above, provides a Fog-assisted remote health monitoring IoT system for diabetic patients with cardiovascular disease. Via several proposed algorithms such as QT interval extraction, activity status categorization, and fall detection algorithms, the system can process data and detect abnormalities in real-time. Results show that the proposed system using Fog services is a promising approach for improving the treatment of diabetic patients with cardiovascular disease

    Radio Communications

    Get PDF
    In the last decades the restless evolution of information and communication technologies (ICT) brought to a deep transformation of our habits. The growth of the Internet and the advances in hardware and software implementations modified our way to communicate and to share information. In this book, an overview of the major issues faced today by researchers in the field of radio communications is given through 35 high quality chapters written by specialists working in universities and research centers all over the world. Various aspects will be deeply discussed: channel modeling, beamforming, multiple antennas, cooperative networks, opportunistic scheduling, advanced admission control, handover management, systems performance assessment, routing issues in mobility conditions, localization, web security. Advanced techniques for the radio resource management will be discussed both in single and multiple radio technologies; either in infrastructure, mesh or ad hoc networks

    The Smart Stone Network: Design and Protocols

    Get PDF
    The Smart Stone Protocol (SSP) has been developed to achieve rapid synchronization in a wireless sensor network, establish Time Division Multiple Access (TDMA)communication slots, and perform distributed sensing with global shared awareness. The SSP achieves a synchronization precision of 50μs among receivers. The sender is synchronized to the receivers using a novel scheme to identify the closest comparable times on the sender and receiver. The protocol is tightly related to events that occur in the mote hardware, and is designed to operate on resource constrained wireless sensor motes. Robust TDMA communication slots are set up based on the achieved synchronization, and an innovative algorithm is employed to maintain synchronization without sending any additional synchronization bytes. To test and validate the protocol, Smart Stones have been custom designed using commercial off-the-shelf (COTS) components, and the SSP has been successfully demonstrated on the Smart Stone Network performing an acoustic sensing application

    Autonomous Sensing Nodes for IoT Applications

    Get PDF
    The present doctoral thesis fits into the energy harvesting framework, presenting the development of low-power nodes compliant with the energy autonomy requirement, and sharing common technologies and architectures, but based on different energy sources and sensing mechanisms. The adopted approach is aimed at evaluating multiple aspects of the system in its entirety (i.e., the energy harvesting mechanism, the choice of the harvester, the study of the sensing process, the selection of the electronic devices for processing, acquisition and measurement, the electronic design, the microcontroller unit (MCU) programming techniques), accounting for very challenging constraints as the low amounts of harvested power (i.e., [μW, mW] range), the careful management of the available energy, the coexistence of sensing and radio transmitting features with ultra-low power requirements. Commercial sensors are mainly used to meet the cost-effectiveness and the large-scale reproducibility requirements, however also customized sensors for a specific application (soil moisture measurement), together with appropriate characterization and reading circuits, are also presented. Two different strategies have been pursued which led to the development of two types of sensor nodes, which are referred to as 'sensor tags' and 'self-sufficient sensor nodes'. The first term refers to completely passive sensor nodes without an on-board battery as storage element and which operate only in the presence of the energy source, provisioning energy from it. In this thesis, an RFID (Radio Frequency Identification) sensor tag for soil moisture monitoring powered by the impinging electromagnetic field is presented. The second term identifies sensor nodes equipped with a battery rechargeable through energy scavenging and working as a secondary reserve in case of absence of the primary energy source. In this thesis, quasi-real-time multi-purpose monitoring LoRaWAN nodes harvesting energy from thermoelectricity, diffused solar light, indoor white light, and artificial colored light are presented

    Energy Efficiency

    Get PDF
    This book is one of the most comprehensive and up-to-date books written on Energy Efficiency. The readers will learn about different technologies for energy efficiency policies and programs to reduce the amount of energy. The book provides some studies and specific sets of policies and programs that are implemented in order to maximize the potential for energy efficiency improvement. It contains unique insights from scientists with academic and industrial expertise in the field of energy efficiency collected in this multi-disciplinary forum
    corecore