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SSP achieves a synchronization precision of 50µs among receivers. The sender is 

synchronized to the receivers using a novel scheme to identify the closest comparable 
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and an innovative algorithm is employed to maintain synchronization without sending 

any additional synchronization bytes. To test and validate the protocol, Smart Stones 

have been custom designed using commercial off-the-shelf (COTS) components, and the 

SSP has been successfully demonstrated on the Smart Stone Network performing an 

acoustic sensing application. 
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CHAPTER 1 

 

 

1. Sensor Networks 

The concept of distributed entities sharing information among each other to study and 

learn from the environment is an integral part of the world. For example, ants, one of the 

most industrious species, use their antennae to sense chemical information from their 

environment and from each other. The antennae not only contain information regarding 

the surroundings, but also convey information pertaining to which ant colony the ant 

belongs to. Humans have similar networks set up among themselves. The five senses may 

be considered to be the sensors on each person, and speech and actions may be perceived 

as the means to share these findings. We also possess the lucrative capability of listening 

to transmissions (speech) that are of interest to us, and tuning out when we hear 

something that is not meant for us or simply boring. These analogies though rather 

digressive at a first glance have the potential to present solutions to the challenges faced 

while building small electronics that independently monitor the environment as part of  a 

distributed network.  

This chapter contains a comprehensive discussion on Wireless Sensor Networks 

(WSNs). These networks have been projected to be the solution in several applications 

which require a large area to be continuously monitored. This is achieved by distributing 

large numbers of low cost wireless sensor nodes in the area to be monitored. These nodes 
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continuously sense the environment, communicate events to each other, and route their 

information to a remote base station. The most significant challenge in accomplishing 

this goal is the power constraint on these small, low cost nodes. This renders protocols to 

achieve efficient low power communication among these wireless sensor nodes an open 

research topic. The communication protocols gain even more importance from the fact 

that the greatest amount of power is consumed by the transmission and reception tasks 

performed by these nodes. Hence, protocols that schedule and distribute these tasks 

among the network nodes while minimizing power consumption are necessary to justify 

the use of wireless sensor networks to realize the application. The limitations of WSNs to 

be considered while developing communication and information sharing protocols are 

stressed in this chapter, and an objective analysis of existing clock synchronization and 

medium access protocols is performed. The analysis served as both motivation and 

guidance for the development of the Smart Stone Protocol (SSP). 

The SSP is an innovative Time Division Multiple Access (TDMA) based 

communication protocol. The SSP also achieves rapid synchronization among sender and 

receivers, establishes TDMA communication slots, and also incorporates sensing and 

data sharing tasks. Finally, the Smart Stone Network, a network of inch sized wireless 

sensor nodes, has been developed, and the SSP has been successfully demonstrated on 

the network implementing an acoustic sensing application. The Smart Stones serve as a 

platform for testing and validating the algorithms developed. However, more importantly, 

the hardware features and restrictions of these motes played a vital role in the 

development of the protocol.  
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1.1 Wireless Sensor Networks (WSNs) 

Real-world phenomena surround us all. Monitoring these phenomena that present 

themselves as signals, provides us with an awareness of our surroundings, a means to 

automate tasks that cannot be efficiently performed by people, and most importantly, can 

generate warnings when people are faced with natural or devised threats. The last few 

years have resulted in tremendous advances in micro-electromechanical (MEMS) 

technology [1] leading to the development of low power, and low cost tiny sensors. These 

novel sensors coupled with low power transceivers and microcontrollers have realized the 

concept of the Wireless Sensor Node. Wireless Sensor Networks (WSNs) are large scaled 

networks of these wireless sensor nodes aimed at performing a specific application. In 

general, most WSNs comprise several low cost, tiny motes, equipped with one or more 

sensors to monitor the environment, a microcontroller to gather and process the 

information, and a transceiver to communicate these readings to other nodes in the 

network. Transceivers in wireless sensor nodes are usually only capable of receiving or 

transmitting at a time. The mechanism of gaining access to the medium to transmit 

information is decided by the Medium Access Control (MAC) Protocol used, and 

messages are passed from sources to destinations (sinks) along paths determined by the 

Routing Protocol. Finally, the messages after data fusion and aggregation at nodes are 

forwarded to a remote base station by the sinks, where the monitoring results can be 

viewed. WSNs are already projected to be the solution in several military [2], 

environmental [3], medical [4], and home monitoring [5] applications. WSNs, which 

might be only a couple of years from being integral parts of our lives, pose several 

challenges [6] to be overcome for efficient use. Most of these networks are envisioned to 
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be used in areas where power lines cannot be provided. Irrespective of the application, 

the algorithms developed to govern the functioning of these networks must take into 

account the inherent limitations of energy, bandwidth, size, and cost present in WSNs.  

1.2 Limitations in Wireless Sensor Networks 

Though faced with the daunting task of collecting and processing intense amounts 

of data, while communicating this data to the entire network, Wireless Sensor Nodes 

must achieve this by optimally using the limited resources they are equipped with. The 

most significant of these limitations are energy, bandwidth, and hardware. These 

limitations render traditional networking protocols used in wired systems, and wireless 

systems that are line-powered, impractical for direct application in WSNs. This 

necessitates the development of algorithms specific to WSNs acknowledging their 

restrictions and specific applications. In particular, all these limitations are correlated to 

each other, and proposed algorithms must consider the entire set of inherent limitations. 

This section summarizes the challenges faced by these networks.  

1.2.1 Low Power  

The most pressing challenge of all is realizing the application in spite of the 

limited energy possessed by the network. Majority of the applications require the nodes 

to be distributed in areas where it is impossible to wire these nodes to a power source. In 

addition, they are intended to operate without human intervention, introducing the need 

of a battery source of power which should not rely on being replaced when the battery 

life terminates. Applications [2-5], however, require the node to function for years on the 

allotted battery source. This imposes the need for ultra low power operation. The energy 

in the network may be viewed as whole, or for each node separately. Each node has some 
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initial energy reserve and may perform tasks of sensing, signal processing, 

communication of its own data, and routing of other nodes’ data through the network. 

Draining the power of nodes in a certain area will degrade the routing efficiency of the 

network, increase the energy consumption of the remaining nodes, and result in a 

cascading decay of the network. Also, as nodes “die”, certain areas are unmonitored. 

Assigning high power tasks to a few special nodes is beneficial if nodes with higher 

power resources exist, and can be strategically placed in the network, which is usually not 

the case in WSNs. To employ these techniques, schemes of rotating the roles of “special 

nodes” must be proposed to ensure a uniform loss of power through the network. The 

network lifetime does not depend on a few nodes having power reserves, but on the entire 

network performing its intended function over the application region during its lifetime.  

The power limitation discussed above also restricts the bandwidth. Experiments 

[7] have shown that the greatest sources of power consumption are wireless transmission 

and reception. This poses strict limitations on transmission length, the length of the report 

sent by each node, and the transmission bandwidth. In addition, it introduces the need for 

multi-hop algorithms [8], since in several applications a single transmission to all nodes 

in the network can often be more power consuming than several small transmissions, 

cascading the information to each sink in the network.  

1.2.2 Low Bandwidth  and Small Transmission Length 

Given that the amount of power required to transmit data is much larger than that 

required to process data, a direct constraint is imposed on the bandwidth that can be 

utilized for each transmission. Presently, wireless communication in WSNs is restricted 

to a data rate in the order of 10–100 Kbits/second [9]. Pottie and Kaiser [7] have argued 
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that the energy required to transmit 1Kb over 100 meters, 3 joules, can be used by a 100 

MIPS/W general purpose processor to execute 3 million instructions. This highly cited 

result, though specific to the authors’ assumptions [7], is a strong indication of the 

dominating factor in power considerations. Bandwidth limitation directly affects message 

exchanges among sensors. In order to efficiently achieve data sharing and 

synchronization of nodes, practical algorithms proposed must achieve the same using 

small packets and by avoiding several synchronization messages.  

The power and bandwidth limitations require each node’s transmission report to 

be designed intelligently since each additional byte requires a large amount of energy to 

be conveyed to every destination node. In addition, designers must remember that in a 

multi-hop scenario each node might be transmitting the reports of several nodes, hence 

multiplying the power required to achieve this. In all cases except direct communication 

with a base station, the communication power is a combination of transmit and receive 

powers for each hop. In cases where synchronization is required, the number of bytes 

required to synchronize clocks must be minimized and preferably attached to the sensor 

report rather than require each node to transmit separate synchronization messages.  

1.2.3 Limited hardware (low cost and small size) 

Some WSNs are projected to comprise several thousands of tiny nodes which are 

distributed to cover and monitor the area of concern. Their low cost facilitates the 

existence of large-scale networks, and renders a node expendable if it fails. The small 

size and low cost however, limit the amount of electronics that can be accommodated on 

these tiny boards within the node budget, and be run by the limited energy. The 

computations must hence be performed with fewest instructions possible, and with 
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limited memory. The limitations also allow transceivers with short transmission range 

(usually less than 50 meters) necessitating the use of multi-hop transmission for global 

awareness. Also, network protocols such as Frequency Division Multiple Access 

(FDMA) where each node transmits on a separate channel, requiring transceivers which 

can receive a very large number of frequencies, seem rather impractical.  

1.2.4 Limited network connectivity and dynamic connectivity 

Wireless mediums are subject to interference from external sources which may 

corrupt messages from the transmitting node. The limited range makes global sharing of 

information at low power a huge challenge and often requires multi-hop routing. An 

increasingly popular application of WSNs is mobile distributed computing, where nodes 

are continuously moving. In such networks, nodes dynamically change the nodes to 

which they can reliably transmit to, requiring the network nodes to dynamically 

determine routing paths. This limitation introduces the need for a highly adaptive MAC 

protocol, robust to new nodes entering and leaving the transmission range of each mobile 

node. In addition, given the high probability of message corruption, the protocol should 

ensure that network nodes do not interfere with each other, since that would add to the 

number of re-transmissions required for external interference.  

1.2.5 Large-scale network and remote monitoring 

Almost all WSN applications draw their strength from the size of the network by 

scattering these nodes to cover a large application area, and densely populating certain 

zones. For these nodes to communicate with each other, the nodes must dynamically 

determine source to sink routing to share information. Simple peer-to-peer broadcast 

solutions though important, usually form only the method of communication within 
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clusters. More complex protocols are required to extend the local communication to a 

network-wide communication method. Also, all the sensor information, and results of 

processing are usually viewed at some remote monitoring center, leaving the nodes 

unattended for periods up to years. This requires the network to find the lowest power 

solution to broadcast this information to the remote monitoring center. The tradeoff is to 

determine how many nodes should participate in the high power transmissions to cover 

the required distance since these nodes will drain their batteries faster.  

1.3 Medium Access Control (MAC) and Routing in WSNs 

As in all shared-medium networks, Medium Access Control (MAC) is an 

important technique that ensures the successful operation of the network. The 

fundamental task of the protocol is to assign transmission times to the competing nodes 

and prevent collision and interference. Commonly used MAC protocols are Time 

Division Multiple Access (TDMA), Code-Division Multiple Access (CDMA), and 

contention-based protocols such as Carrier Sense Multiple Access (CSMA). The MAC 

protocol resides in the Data Link Layer, which itself is not only responsible for fair 

distribution of resources, but also for providing frame detection and error control. Most 

of the currently pursued MAC protocols fall under the above categories, or hybrids of 

these protocols. A detailed discussion of MAC protocols is available in the survey by 

Akyildiz et al. [11]. Some prominent protocols that reveal and solve critical issues in 

MAC design are discussed in this section. Techniques to extend the MAC protocols using 

a global routing scheme are also covered while discussing the MAC protocols. 
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1.3.1 Self-Organizing MAC for Sensor Networks (SMACS) 

The SMACS protocol [12] proposed by Sohrabi et al. is a seminal paper in the 

area of MAC protocols and message routing in WSNs. Their publication is more 

conceptual in nature rather than a detailed solution to existing problems, and is discussed 

in detail in this section since it addresses a majority of scenarios arising in WSNs.  

Recognizing the need to minimize power in large WSNs the authors dismiss the use of 

CSMA and propose a TDMA solution to control the communication. Using TDMA, there 

are two types of slot allocation schemes, node activation, and link activation. In node 

activation, each node is assigned a specific slot during which it can transmit to all its 

neighbors, whereas link activation implies the allocation of time slots based on directed 

links between two nodes. As shown in figure 1.1b, each node executes a 

transmission/reception schedule periodically every Tframe, which is the length of its 

superframe, and is a MAC parameter. At startup the nodes wake up at random times, and 

listen to the medium for a random period of time. If within this period the node receives a 

TYPE1 message, a connection invitation, it responds with a TYPE2 message to accept the 

invitation. If the listening time elapses without hearing an invitation, it sends its own 

TYPE1 invitation message. This message may be received by one or more nodes which 

respond with TYPE2 messages. If collisions do not occur, the inviter receives the TYPE2 

messages from all nodes in range, and must choose only one invitee to connect to. This is 

done on a first arrival basis, but may take other parameters such as Received Signal 

Strength Indication (RSSI) into account.  A TYPE3 message is sent by the inviter to 

inform the nodes of the chosen invitee. The invitees who are not chosen turn off their 

transceivers for some time and restart their search procedure. The chosen invitee 
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responds with a TYPE4 message, and a pair of short test messages exchanged between 

the two finalizes a permanent link. This transfer of messages is illustrated in figure 1.1c. 

A concern of the proposed algorithm is finding free slots in the existing superframe, and 

choosing a frequency channel to transmit on, since neighboring, concurrently scheduled 

links will interfere with each other. The method assumes a large number of channels, and 

the frequency channel and slot schedule of the link is determined within the message 

transfers: 

TYPE1: Invitation message by inviter 

TYPE2: Response to an invitation; contains information of invitee’s attachment state 

TYPE3: Response to TYPE2 with ID of chosen invitee. If both inviter and invitee are 

attached to other nodes, inviter’s schedule is sent too. If the inviter is attached and the 

invitee is not, a randomly selected proposed channel and chosen slots are communicated 

to the invitee. 

TYPE4: Response to TYPE3 message. If inviter is unattached, the invitee chooses and 

communicates both the chosen frequency and the slots. If both are attached, the invitee 

uses information of both nodes to choose the slots and the channel.  

These messages ensure the reservation of two consecutive, overlapping time slots in each 

node’s superframe, one for transmitting, the other for receiving on a particular frequency 

channel. Further connections are made using the same scheme only if overlapping slots 

are found in the pair’s superframes.  

 Sohrabi et al. also acknowledge the presence of a low density of mobile nodes 

within the stationary WSN. The mobile nodes must establish connectivity with the 

stationary nodes, and may form part of the source-sink routing path. The connectivity is 
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established using a novel Eavesdrop and Register (EAR) algorithm, and the responsibility 

of connecting and disconnecting is assigned to the mobile nodes to reduce the work load 

on the stationary nodes. Assuming that the stationary nodes transmit infrequent invitation 

messages to discover new nodes, the mobile node eavesdrops on these messages, 

calculates Signal-to-Noise ratios (SNRs), maintains these in a registry, and based on 

thresholds decides to connect to or disconnect from a particular stationary node. If the 

threshold is met, the mobile node sends a Mobile Invite (MI) message in response to the 

stationary node’s Broadcast Invite (BI). If the stationary node has communication slots 

available it accepts the invite with a Mobile Response (MR), and the two communicate 

until the SNR falls below a threshold, upon which, the mobile node disconnects from the 

stationary node by sending a Mobile Disconnect (MD) message. Failure of stationary 

nodes to respond to MI’s causes the mobile node to degrade them from a PENDING to a 

NOT-CONNECT status for future reference.  

 To extend their algorithm to accommodate the entire network, Sohrabi et al. 

propose an adaptive local routing scheme for cooperative signal processing, employing a 

single winner election (SWE) algorithm and a spanning tree (ST) algorithm. Phase I 

involves nodes sensing a signal, collecting data, and preprocessing this data to determine 

whether to participate in the cooperative processing. In phase II the intention to 

participate is communicated to neighboring nodes. Phase III elects the Central Node (CN) 

which performs further data processing after receiving information from several nodes 

via a minimum spanning tree also formed during the same phase.  Nodes after evaluating 

an election criterion invoke a voluntary delay, and then declare themselves as CN 

candidates with a first batch of Elect messages. The receiving nodes compare these CN 
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candidates with themselves and respond with a second batch of Elect messages which 

carry the result of the comparison. These messages spawn further message exchanges, 

with better candidates being registered, and inferior ones discarded, until the election 

results have diffused through the entire network. The quality of a candidate’s election 

criterion can be used by it to determine its initial delay, allowing better candidates a head 

start to prevent message overheads for losing candidates. The result is a minimum hop 

spanning tree rooted at the elected CN.  

 The authors do an excellent job of highlighting critical requirements in WSNs and 

possible approaches to solve them. The conceptual nature of the paper however 

necessitates several details such as thresholds, frame lengths, superframe structure, 

election criteria, and desired number of CNs to be worked out before possible 

implementation. In addition, details for accommodating the routing protocol within the 

proposed superframe structure are not provided. The link activation scheme involves 

large overhead since the nodes cannot take advantage of available bandwidth or broadcast 

in the medium, and must retransmit the same information to each neighbor, draining 

energy, and significantly increasing the size of their superframes. In addition, the 

assumption of having a very large number of frequency channels may not always be 

realistic in WSNs. The concepts proposed by the authors, however, provide an excellent 

understanding of WSNs, and a starting point for development of more detailed MAC and 

routing protocols.  
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Figure 1.1 [12] a) Link discovery between nodes A-D and B-C. b) Superframes in A, B, 

C and D with random wake times and slots reserved for transmit and receive. c) Node 

discovery using 4 message TYPES. 
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1.3.2 Sensor MAC (S-MAC) 

Sensor-MAC (S-MAC) [13] is a CSMA based MAC protocol directed towards 

multi-hop routing, and attempts to reduce energy consumption from collisions, idle-

listening, overhearing, and control overhead. The concept is driven by the fact that in 

many sensor networks, nodes have long periods of idle time if no sensing event takes 

place, and idle listening may consume 50-100% of the energy required for receiving. The 

authors point out that Stemm and Katz measure idle : receive : send ratios of 1:1.05:1.4 

[10], and Digitan Wireless Local Area Network (WLAN) module specification shows  

idle : receive : send ratios of 1:2:2.5 [34].  

Taking advantage of this phenomenon, the S-MAC puts nodes into periodic sleep 

states. A frame, hence, comprises a cycle of listen during which nodes wait for other 

nodes to communicate with them, and then the sleep cycle. To reduce control overhead, 

S-MAC attempts to make neighboring nodes listen and sleep at the same time if this 

agrees with the multi-hop schedule. Before sleeping, a node waits for certain amount of 

time to hear the schedules of other nodes. If none are received, the node randomly 

chooses a sleep time, deems itself a synchronizer, and broadcasts its schedule in a SYNC 

message, indicating it will sleep in t seconds. If the node receives a schedule from a 

neighbor before choosing its sleep time, it is a follower, and adopts the received schedule, 

invokes a random delay of td seconds, and broadcasts this schedule, indicating its sleep 

time to be in t-td seconds. A node that receives a differing schedule after broadcasting its 

own, adopts both, waking up at its own, and its neighbor’s listen times. This information 

is re-broadcasted before sleeping. This scheme requires synchronization which is 

achieved by adjusting timers after SYNC receptions. The synchronization requirement, 
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though, is much less stringent than in TDMA protocols. The listening interval is divided 

into two periods, one to receive SYNC packets, the other to receive a Request to Send 

(RTS).  

The RTS and Clear to Send (CTS) mechanism coupled with virtual and physical 

carrier sense is used by the S-MAC to allocate the medium. As the names suggests, RTS 

is an indication that a node wants to transmit to another node. The first node to send an 

RTS to the receiver wins the medium, and receives a CTS if the receiver is not scheduled 

to receive from another node. This alleviates the hidden terminal problem where two 

transmitting nodes with the same destination node, but out of each other’s range, will 

tend to transmit together since they do not sense each other’s RTS. They will however, 

hear the receiving node’s CTS, and the losing node will wait before trying to retransmit. 

To perform virtual carrier sense, each node checks the duration field in messages 

destined to other nodes, sets a timer for the duration, and refrains from transmitting till 

the timer decrements to 0. Physical carrier sense is performed at the physical layer by 

continuously listening to the medium. Unicast data transmissions are achieved using the 

sequence of RTS/CTS/DATA/ACK where an ACK is a data message acknowledgment 

sent by the receiver.  

Overhearing avoidance is the second technique used by the S-MAC to prevent the 

waste of energy in listening to long data packets intended for other nodes. To avoid 

overhearing, nodes go to sleep after hearing RTS or CTS packets between other nodes, 

and must perform this when their neighbor is either the receiver or the sender. This is 

necessary since the node might interfere with subsequent RTS, CTS, DATA or ACK 

packets, necessitating the other nodes to retransmit their information. Finally, the authors 
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acknowledge the disadvantages of retransmitting long messages in case of collisions, and 

propose sending them as several shorter packets with the trade-off of increased control 

overhead. The messages are however sent with only one RTS/CTS pair in the beginning, 

and have the capability of extending their previously reserved time if fragment 

retransmission is required. This reduces the fairness of access in the medium and is an 

important feature of the protocol.  

Ye et al. do an excellent job of addressing power issues in CSMA networks. Their 

sleep mechanism saves network wide power at the cost of message latency. Using the S-

MAC a propagating message might have to wait at each hop for the intended receiver to 

wake up, introducing possibly large delays in a path already hindered by carrier sensing, 

backing off, transmission/retransmission, and processing delays. Finally, though the 

authors address the hidden terminal problem, in dense topologies, the possibilities of 

collisions still remain high in this scenario, especially when nodes wake up after a CTS or 

an intermediate ACK has been sent. This problem is the inherent disadvantage of all 

contention based schemes. 

 

1.3.3 Low-Energy Adaptive Clustering Hierarchy (LEACH) Routing Protocol 

LEACH [15] is one of the most popular hierarchical routing algorithms in sensor 

networks, and uses a combination of MAC protocols to resolve medium access and 

routing requirements. It merits thorough discussion because of the principles used to 

extend the protocol to the entire network and the crucial simulation results presented as 

motivation for the algorithm. Heinzelman et al. propose LEACH, a cluster based routing 

protocol, which randomly reassigns cluster heads to uniformly distribute the energy load 
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among network nodes. To validate the need for their new algorithm, the authors have 

performed analyses and simulations comparing two protocols, direct communication and 

minimum transmission energy (MTE) routing. Their results indicate that direct 

communication, where nodes directly transmit to a base station, instead of each other, 

may be an acceptable or even optimal solution if the base station is very close to the 

network nodes. When the base station is far away, as is the envisioned scenario in most 

WSN applications, the large amount of transmit power required on each node will drain 

the energy reserves of each node, and result in a shortened lifetime of the network.  In 

addition, their simulations revealed that nodes furthest away from the base station were 

the first to “die”. The MTE routes messages from the source to the base station via 

multiple hops via network nodes, replacing the single transmission with several small 

transmissions and receptions. MTE simulations indicated that the nodes closest to the 

base station experience the heaviest traffic as the messages converge towards the base 

station and die out quickly, leaving the area unmonitored, and increasing the energy 

consumption in the remaining nodes. Figure 1.2a is a graph of the number of sensors 

alive against the elapsed time in the network for these two communication schemes. 

Finally, a clustering scheme was considered which uses local base stations to collect data 

from the cluster nodes and transmit it to the global base station. This would work if the 

local base stations had significantly superior power reserves, but sensor networks are not 

usually equipped with strategically located supernodes.  

The LEACH algorithm, proposed to address all the above studied issues, is a 

clustering scheme beginning with a cluster set-up phase, followed by a steady state phase 

for data transfers to cluster heads, and the remote base station. The set-up phase begins 
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with an “advertisement phase” in which each node declares itself a cluster head, say CH,  

for the particular round based on a function of desired cluster heads in the network, and 

the number of times the node has been a cluster head in previous rounds. The nodes 

generate a random number between 0 and 1. The node declares itself a cluster head for 

the current round r if this number is less than a threshold T(n): 

( )
11 * mod

PT n
P r

P

=
 −  
 

 if n G∈      (1.1) 

where G is the set of nodes that have not been cluster heads in the last 1/P rounds, and P 

is the desired percentage of cluster heads in the network. If n G∉ , T(n) equals 0. Thus, a 

node can be a cluster head only once in each series of 1/P rounds starting with round 0. 

All nodes are eligible to be cluster heads after the series of 1/P rounds is over, ensuring 

that the cluster head duties are uniformly rotated among the sensor nodes. Each node that 

declares itself a cluster head, next, transmits an advertisement in a CSMA “cluster-head-

advertisement” phase. Non cluster heads keep their transceivers on in this phase receiving 

all in-range advertisements, and choose the cluster head with the highest RSSI value to 

minimize energy required to transmit to the cluster head. In a second CSMA phase, the 

non cluster heads transmit information regarding which CH they are joining. Upon 

reception of all nodes joining the cluster, the CH computes a TDMA schedule based on 

the number of nodes joining the cluster and broadcasts this schedule to the cluster nodes. 

Once the cluster is set up, cluster nodes transmit their data to the CH at their scheduled 

times, while the other cluster nodes turn themselves off. The cluster head compresses the 

entire cluster’s information into a single signal and uses a high-energy transmission to 

communicate this to the base station. These phases are performed for each round. The 
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authors resolve the problem of neighboring clusters interfering with each other using 

different CDMA codes for each cluster. In addition, the entire protocol can be extended 

to form hierarchical clusters where cluster head nodes communicate with “super cluster 

head nodes” and so on.  

 

Figure 1.2 [15] a) Number of nodes alive Vs Time elapsed for direct communication and 

MTE. B) Energy Dissipation Vs Network diameter for Direct, MTE and LEACH 

 

 Simulations of LEACH by the authors resulted in approximately 5% cluster heads 

being the lowest energy solution for the simulated case, reducing communication energy 

up to 8x compared with direct communication and MTE. Also, the first node died over 8 

times later, and the last node 3 times later than the same occurrences in the other 

methods. Increasing the number of cluster heads beyond the best solution reduced energy 

efficiency, since more than required cluster heads were performing high power 

transmissions. Reducing the percentage below the best solution resulted in energy loss 

due to higher power communication within the cluster. The LEACH protocol is effective 

in uniformly saving energy in the network while achieving global routing. Node sleeping 
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is incorporated into the algorithm further minimizing energy consumption. The 

assumption that every node in the network can perform a high powered transmission to 

the base station is a limitation of the algorithm as this is not the case in several WSNs. 

Also, percentage of cluster heads required may change over time due to node failures, 

and addition of new nodes. Cluster head declaration based solely on probability and 

fairness may result in nodes close to each other being cluster heads in a round and reduce 

the effectiveness of the algorithm in these rounds. Finally, using CDMA codes to prevent 

inter-cluster interference increases the bandwidth requirements of the network. The 

protocol, however, is an excellent scheme to extend TDMA based cluster 

communications to the entire network, and modifications of the LEACH tailored to a 

specific application will result in considerably low power networking.  

 

1.3.4 Power Aware Clustered TDMA (PACT) 

The PACT protocol [14] proposed by Pei et al. addresses some of the limitations 

of the LEACH protocol, by rotating the roles of cluster heads and gateway nodes using 

energy criteria. PACT reduces energy consumption in a TDMA network, using passive 

clustering and turning nodes off during inactive traffic periods. Taking advantage of the 

fact that all nodes turn on their transceiver during the control phase of every TDMA 

frame, the clustering status information is piggybacked on the control messages during 

this phase. Each node decides its own state: cluster head, gateway node, or ordinary node 

based on the information received from its neighbors. This state is communicated to the 

neighbors in the control phase to define the clusters. Pei et al. define a fourth state named 

the Low Energy State (LES). Gateway nodes and cluster heads whose energy falls below 
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a certain threshold, change their state to LES to indicate that they do not participate in the 

passive clustering until their batteries are recharged, if possible. They, however, continue 

their sensor operations.  Within the control packet, each node includes the IDs of up to n 

cluster heads, and keeps a track of the cluster heads reported by its neighbors. The node 

which receives transmissions from the highest number of cluster heads will be the 

gateway node. Deciding and communicating this information within the control phase, 

limits the number of gateway nodes between neighboring clusters, and allows other 

potential gateway nodes to save energy for future use. The gateway node relays data 

messages between clusters.  

Unlike the SMACS protocol [12], the PACT protocol uses a node activation 

TDMA scheme where each node is assigned a slot to broadcast its information. As shown 

in figure 1.3, each frame comprises control mini slots and data slots. A node broadcasts in 

its data slot allocation, and specifies the destination addresses for these data slots during 

its designated control mini slot. The slot allocation is performed giving cluster heads and 

gateway nodes selection priority, implying that ordinary nodes will yield their slots to 

accommodate the higher priority nodes. During this phase each node also determines the 

slots during which it is a destination, receives at these times, transmits during its own 

slot, and sleeps for the rest of the frame. If the control phase slot information received 

indicates a broadcast, all nodes stay awake when the slot occurs.  

PACT simulations revealed that the protocol can improve the lifetime of the 

network more than 5 times compared to the IEEE 802.11 standard [27]. In addition, the 

network lifetime can be more than doubled with 1.5 times increase in node density. The 

protocol proposes an effective method of extending TDMA schedules to the entire 
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network, and the clustered structure lends itself well to incorporating higher level routing 

protocols to minimize global energy. However, as pointed out in [13], TDMA requires 

much tighter synchronization than CSMA to realize the data slots which are already of a 

very short length. The biggest concern regarding the PACT protocol is the presence of 

even smaller synchronized control mini slots. These mini slots will require extremely 

precise synchronization to be achieved before the control mini slots can operate without 

collisions. Collisions in these mini slots will defeat the purpose of the entire protocol, 

because all scheduling information is contained in the control packets transmitted in these 

slots. In addition, the sleep cycle is strictly dependent on correct reception of these 

packets, meriting implementation on physical sensor network platforms to determine if 

the PACT protocol is feasible with hardware limitations such as transmit-to-receive 

switching times.  

 

Figure 1.3 [14] PACT TDMA structure 
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1.4 Clock Synchronization in WSNs 

The discussion in Section 1.3 on MAC and Routing protocols brings us to the 

important issue of clock synchronization in WSNs. One of the shortcomings of most 

publications proposing MAC protocols is the absence of clock synchronization details. 

Even in TDMA schemes, where clock synchronization is crucial, the required level of 

precision is simply assumed, and often not even addressed. Some form of clock 

synchronization or awareness of the local time on the transmitting node is critical 

irrespective of which MAC is chosen to govern the sensor network. All the proposed 

applications of wireless sensor networks involve monitoring sensor readings and 

communicating events to the other network nodes, or sinks. The deductions made during 

data fusion are sensitive to the time at which an event occurred at each node. This makes 

the need for clock synchronization extremely crucial to the network. In addition, CSMA 

though very promising, and maybe easier to implement than TDMA, does not eliminate 

the possibilities of collision at receiving nodes. In a highly power constrained scenario 

TDMA must be implemented to reduce these possibilities while incorporating the 

advantages presented by the CSMA algorithm. TDMA, however, is impossible without 

tight clock synchronization. Though CSMA requires clock synchronization or awareness 

to intelligently interpret the incoming data, its requirements on clock synchronization are 

much less stringent than the TDMA algorithm whose transmission and reception slots are 

derived from the synchronization. Lack of the same would result in two nodes 

transmitting at the same time, defeating the purpose of the protocol.  
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The computer clock is an electronic device that counts oscillations in an 

accurately-machined quartz crystal, at a particular frequency. These are essentially timers 

which count each oscillation of the crystal and increment/decrement a register value until 

the value overflows and a timer interrupt is generated. Calculations performed using 

these timers provide the computer with a notion of time, and are used to provide 

timestamps on events, and set up TDMA slots when used.  

To develop synchronization schemes, there are two significant issues regarding 

the clocks that must be understood and taken into consideration. The first is the phase 

offset. The nodes in a WSN are turned on at different times. When two nodes attempt to 

communicate with each other their local clocks may have different values and this 

difference is referred to as the phase offset. The second problem is termed clock skew. 

Clock skew arises from the difference in the oscillator’s expected and actual frequencies, 

and the maximum is usually reported by the manufacturer. Besides inaccuracy, clock 

skew is also attributed to the frequency instability of crystals, which causes the clock to 

speed up or slow down over time. Short-term instability is often caused by environmental 

factors such as temperature, and long-term instability is caused by more inherent 

problems such as oscillator aging [18]. Present day oscillators are accurate to one part in 

104 to 106. A frequency deviation of simply 0.001% will cause a clock error of a second a 

day which necessitates the need for repeated clock synchronization. Before delving into 

existing clock synchronization techniques, we discuss criteria to judge the performance of 

proposed clock synchronization algorithms. 
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1.4.1 Evaluation Criterion for Clock Synchronization Protocols 

Clock synchronization protocols differ immensely in their energy requirement, 

precision, transmission requirement, means of incorporation into the MAC protocol, and 

their ability to be generalized for large scaled networks. The choice of a synchronization 

method would thus be highly dependent on hardware availability, the application at hand, 

and the MAC protocol chosen to govern the network. None of the existing methods [16-

22] clearly outweigh the others in every metric evaluated and hence, present the user with 

tradeoffs to consider specific to the intended application. The following are essential 

metrics to evaluate before adopting or developing a clock synchronization scheme. 

 

1.4.1.1 Synchronization Precision 

The synchronization precision required from the protocol varies on the 

application, MAC protocol, and desired reporting time (frame length in TDMA). This 

metric reflects the maximum deviation in the notion of time after synchronization has 

been performed, and places bounds on the slot size, and slot length that can be achieved 

without interference, and on the tightness of data fusion algorithms used at the sinks. 

During event comparison at a sink, the precision of the time-stamps will determine the 

efficacy with which the sink can resolve the order of events. For example, applications 

which require the calculation of velocity and direction of motion of an object might 

require extremely high synchronization accuracy.  Precisions varying from 1.85µs [16] to 

3ms [17] have been reported by popular clock synchronization publications. These 

precisions are achieving under varying topologies and resources in WSNs, and should not 

be compared directly, unless reported for extremely similar conditions. 
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1.4.1.2 Piggybacking 

Piggybacking is a term used to describe the process of combining synchronization 

messages with data messages sent amongst nodes. Most synchronization schemes involve 

synchronization phases which reduce bandwidth, add control overhead, and increase the 

data storage requirements at destination nodes. The presence of piggybacking in the 

algorithm alleviates the communication demands on the network. Though 

synchronization is a necessity, piggybacking renders a scheme more valuable, since the 

primary function of the network is to sense and communicate data. 

1.4.1.3 Synchronization Message Length  

Since each byte transmitted by the network consumes significant amounts of 

energy, synchronization packets that require complex messages are detrimental to the 

low-power requirements of the network, given that synchronization must continuously 

take place. This introduces the need for intelligent synchronization packets, which not 

only save power, but also reduce the convergence time.  

1.4.1.4 Convergence Time 

Convergence time is the total time required to synchronize the network. Protocols 

requiring a large number of message exchanges per synchronization result in longer 

convergence times. Reducing this convergence time is directly related to decreasing 

bandwidth required and power consumption at each node. In addition, long convergence 

times may hinder the sensor nodes’ sensing capabilities, or the capability to report the 

sensing event in the response time desired. Convergence time and message length are of 

less criticality in protocols that propose infrequent synchronization [17, 21].  
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1.4.1.5 Complexity 

Power and hardware constraints at each node coupled with the continuous 

environment monitoring tasks make highly complex synchronization schemes 

undesirable for several applications. A survey of literature reveals synchronization 

schemes tailored to multi-hop routing [19, 21, 22], to be of higher complexity. The 

complexity, hence, should be contingent to the size of the network, and the precision of 

synchronization required, while being well within the computational ability of the motes. 

Complexity that limits the sensing ability of nodes in crucial applications could defeat the 

purpose of using wireless sensor networks to approach the problem. 

1.4.1.6 Network size and Scalability 

Schemes to extend local synchronization techniques to the entire network are 

essential in WSNs. In addition, empirical evaluations of devised synchronization 

protocols on actual sensor networks are essential to prove their feasibility, performance, 

and scalability. Several algorithms in literature have not been applied to self-designed or 

existing sensor platforms. Simulations, though indicative of the scalability of the 

protocol, may not reveal hardware dependent challenges faced while implementing the 

scheme. Although several authors have not measured scalability in their publications, it is 

one of the top priorities in any clock synchronization protocol. The desire to incorporate 

tens-of-thousands of low cost nodes in a network to realize the specific application makes 

it imperative to find techniques to scale the concept to much larger networks. For 

example, innovative small-scale (hundreds) peer-to-peer topologies must outline or 

subsequently devise strategies to extend their synchronization to distant network nodes 

through techniques such as clustering, or multi-hop cascading. Several innovative MAC 
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protocols result from scalability solutions offered by separate authors to existing small-

scale synchronization schemes [23]. 

 

1.4.1.7 Compatibility with Sleep Mode 

Besides collision avoidance, the best solution to the low-power needs of the 

network seems to be sleep modes for the nodes: periods where the devise may recede into 

a low power mode by turning off its radio, to prevent idle listening [10]. To achieve this, 

clock synchronization must be acquired before the sleep time and be tight enough for the 

node to remain synchronized when it “wakes up”. For less accurate synchronization 

schemes, mechanisms to immediately get resynchronized on waking up must be 

developed. Synchronization techniques which are accurate but extremely short-lived 

would eliminate the possibility of sleep cycles hence removing an excellent power saving 

solution.  

 

 Besides the above mentioned criteria, there are other criteria to be considered 

which may be tied to the existing metrics. Overall energy efficiency reflects the 

protocol’s success in balancing the tradeoffs of each separate quantifying metric. Overall 

accuracy is important in networks which require a timestamp with respect to an external 

standard of time. A rather infrequently studied issue is that of fault tolerance [20, 22], 

which represents the protocol’s handling of erroneous messages owing to the limited 

connectivity and interference in the network. Addressing message loss is an important 

issue as significant overheads are involved in retransmitting, and nodes might lose 

synchronization in the face of such loss.   
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1.4.2 Clock Synchronization Protocols 

Traditional clock synchronization methods [25] used in wired networks fail to 

satisfy the stringent requirements of WSNs. Robust techniques with lower message 

exchange are required to adhere to requirements stated in section 1.4.1. This section 

discusses and analyzes existing clock synchronization schemes for wireless sensor 

networks, and draws attention to important issues overlooked in popular clock 

synchronization surveys [25]. 

1.4.2.1 Continuous Clock Synchronization  

The continuous clock synchronization method was presented in a sequence of two 

publications by Mock et al. [35, 18]. The authors stressed the need to comply with the 

IEEE 802.11 standard, commonly accepted for wireless local area networks (WLANs). 

The standard outlines a master/slave configuration, using special nodes referred to as 

access points, to alternate CSMA based MAC periods, and a contention free 

synchronization period. In the synchronization period the access point, at a time t2, 

transmits a “beacon frame” which includes a time-stamp of the master’s local clock, t1, 

which is received by the slaves at t3, who adjust their clocks at t4. In their work [35], 

Mock et al. attempt to increase the precision of the IEEE 802.11 clock synchronization 

protocol by revisiting a concept presented in the early nineties [41, 42] demonstrating the 

broadcast property of a wireless communication medium. This property implies that 

when two receivers receive the same message, the reception is tight, and they receive it at 

approximately the same time. Exploiting this observation, they propose a method where 

the master prepares a message at t1, and transmits it at t2. Each slave, and the master, 

receive this beacon at t3, and take a local stamp of the event at ts. The concept of the 
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master monitoring the reception of its own broadcast allows the master to send a second 

message containing its time-stamp, ts, to the slaves. Upon reception, the slaves compute 

the difference of their own time-stamp to that received from the master, and adjust their 

clocks at a time, t6. The above explanation, and the time graphs in figure 1.4, demonstrate 

the reduction of the time-critical path of t1 to t4 in the IEEE standard, to t3 to ts, in Mock et 

al’s method. To alleviate the waste of bandwidth in sending two messages, the method 

regards the second time-stamp message as a new indication message, hence incorporating 

the concept of piggybacking master time-stamps for the previous message onto the new 

indication message.  

 

Figure 1.4 [35] a) Time critical path (t1 to t4) in the IEEE 802.11 clock synchronization. 

b) Reduced time critical path (t3 to ts) in Mock et al.’s scheme. 

 

The author’s also acknowledge that the need to receive two consecutive messages 

reduces the fault-tolerance of the method, a major concern in WSNs. To improve the 



 31

fault-tolerance, the ith indication message contains the time-stamps for the last n 

synchronization messages, tolerating up to n-1 consecutive message losses. To illustrate 

this concept they assume 

smi: the ith synchronization message 

tmi: the master time-stamp for the ith message 

cmi: the slave time-stamp for the ith message 

and, smi contains the values of tmi-n, tmi-n+1, …., tmi-1. If the last message received by a 

slave was smj, where i - j < n + 1, the slave looks up the value for tmj in the message, and 

adjusts its clock based on the value cmj – tmj.  

 Besides considering the fault-tolerance of their proposed method, Mock et al. 

brought attention to the issue of time discontinuity while correcting clocks [18]. They 

argue that instantaneous clock adjustment leads to faulty local interval measurement, and 

propose a method of clock correction over a synchronization interval.  The mechanism is 

best understood studying their time adjustment graph shown in figure 1.5. They introduce 

the notion of a virtual clock, which is a function of the slave’s physical clock, and 

attempts to mimic the master’s clock. The physical clock is based on the slave’s oscillator 

and cannot be adjusted. For reasons of simplicity, this transform is assumed to be linear. 

The figure contains the following symbols 

 MC: the master’s calculated clock 

 SC: the slave’s virtual clock 

  SCi-1: the uncorrected virtual clock 

  SC*
i: the virtual clock during correction 

  SC’
i: the virtual clock after correction 
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Figure 1.5 [18] Time adjustment graph for continuous clock correction 

 

The difference in value of the corresponding points on MC and SCi-1 represents the phase 

offset, and the different slopes represent the clock skew causing the two clocks to 

increment at different rates. The goal is to correct SCi-1, using SC*
i, to SC’i, a line with 

the same slope as MC, and starting at a point which lies on both MC and SC*
i. Since it 

takes two points to completely describe a straight line, MC is calculated from points P’ 

(tj, tmj) and P (tj+k, tmj+k), which represent the jth and j+kth 
 time-stamps from the master, 

respectively, in terms of the slave’s physical clock on the x-axis, and virtual clock on the 

y-axis. Q’ (ti-1, Ti-1) and Q (t*
i, T*

i) denote the start and end points of the correction 

interval, where i-1 is the last received synchronization point, and t*
i = ti-1 + bcorrect, where  

bcorrect > 0  is a prior known protocol parameter. From the figure, we can see that Ti-1 = 

SCi-1 (ti-1), and T*
i = MC (t*

i), since Q’ lies on SCi-1 and Q lies on MC. After finding the 

transform for correction, SC*
i, using Q’ and Q, we notice that the corrected transform 
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SC’i-1 is the same line as MC, and its equation is derived from the same two points, P and 

P’ used to determine MC. 

 Mock et al have implemented their proposed protocol using WLAN Network 

Interface Cards (NIC). They report a synchronization precision of 150µs compared to the 

1000µs precision of their implementation of the IEEE standard. Being one of the first 

comprehensive clock synchronization proposals, their precision of 150µs may be a 

conservative estimate, given that implementation on wireless motes with transmission 

and reception based on interrupts, would result in tighter synchronization. A literature 

survey did not reveal Mock et al’s method being incorporated on existing WSN 

platforms. Though not explicitly outlined in their publications, their technique of 

requiring the master to receive its own transmission requires the capability of transmitting 

and receiving at the same time. Most wireless sensor motes comprise streamlined 

transceivers, which can only either transmit or receive at a time. Their technique, though 

very effective, would necessitate separate receivers and transmitters on each mote, which 

may not be practical without significant advances in radio frequency technology with 

respect to power and size. Their continuous clock synchronization scheme though more 

complex than instantaneous correction, brings to attention the issues of time-

discontinuity, and offers developers a method of achieving interval correction 

irrespective of the synchronization method chosen. The need for the same may be 

removed by devising scheduling and rescheduling techniques for events which lie in the 

correction interval. 
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1.4.2.2 Reference Broadcast Synchronization (RBS) 

The RBS method [16] is closely related to Mock et al’s scheme [35, 17] since it 

takes advantage of the broadcast property of the wireless medium. It merits discussion 

owing to its fundamental property of achieving synchronization amongst a set of 

receivers, rather than between sender and receiver, its extension of the protocol across 

broadcast domains, and successful implementation of RBS by three research groups. 

Their publication discusses the non-determinism in synchronization characterized by 

Kopetz and Schwabl [36]. Also referred to as message latency, this non-determinism 

comprises, the send time; time spent by the sender to prepare the synchronization 

message, the access time; time taken by the sender to access the transmit channel, 

propagation time; time taken for the message to reach the receivers once it leaves the 

sender, and the receive time; time taken by the receiver’s network interface to receive the 

message from the channel.  As in Mock et al’s scheme the first two components are 

removed by using the broadcast property of the medium. The authors further argue that 

the effective propagation time is 0 since electromagnetic waves travel through air a speed 

close to c, or 3 X 108 m/s, and through copper wire at 2/3rd c. Though propagation delay 

dominates the delay in Wide Area Networks (WANs), in WSNs, where nodes are of the 

order of 10 meters or 30 feet apart from each other, this delay is at most tens of 

nanoseconds, which is inconsequential to the µ-second-scale error budget. Recognizing 

the receive time to be the only remaining source of error, the authors report a series of 

experiments, using the Berkeley motes [8], to characterize this error. The maximum 

phase error recorded was 53.4µs which the authors correlate to the 52µs bit time of the 

motes. The bit time is the time required to receive one bit of information from the 
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channel, and is 52µs at 19,200 baud. Another important result was the Gaussian nature of 

the phase offset distribution shown in figure 1.6, which motivated them to send multiple 

broadcast packets, and aided in realistic receiver modeling in numeric analyses.  

 

Figure 1.6 [16] Histogram for inter-receiver phase offsets for 1478 packets 

 

Elson et al., next, focused on the two significant sources of desynchronization of 

clocks, phase offset, and clock skew. To remove the phase offset they propose the 

following algorithm: 

1. A sender broadcasts m synchronization packets 

2. The n receivers record the time of arrival according to their local clocks 

3. The receivers exchange these recorded arrival times and each receiver i 

computes its phase offset to any other receiver j as the average of their phase 

offsets for each reference packet 
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To estimate the clock skew, the synchronization scheme is modified to perform a least-

squares linear regression through the phase offsets between two nodes instead of 

averaging them, as depicted in figure 1.7a. This scheme provides a fast method for 

finding a best fit line through the phase error observations, with the slope of the line 

representing the clock skew, and the intercept revealing the initial phase offset. Short-

term frequency stability is an assumption in the method since fitting a line to the data 

implicitly assumes that the frequency is stable. An important point to note is that the RBS 

method does not involve clock correction. Instead, a table of phase offsets and clock 

skews of the other receivers is calculated and maintained at each node. Elson et al. have 

also proposed post-facto synchronization [37] which is a scheme of allowing the nodes to 

normally stay in low power mode with unsynchronized clocks until an event of interest 

occurs. This event triggers the synchronization protocol.  

 

Figure 1.7 [16] a) Least squares linear regression through phase offsets between two 

receivers b) Network topology with A, B as sync senders, and 1-7 receivers. 

 

 The final contribution made by Elson et al. was extending the RBS protocol to 

operate outside single broadcast domains in a multi-hop environment. To illustrate their 
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technique they refer to the scenario depicted in figure 1.7b, where A and B both send 

synchronization pulses, and receiver R4 is the only node that hears both these broadcasts. 

Assuming that two events E1 and E7 occur at receivers R1 and R7, respectively, to 

compare the times of occurrence the following steps are followed: 

1. Receivers R1 and R7 observe events E1(R1) and E7(R7) which are recorded in 

terms of their own local clocks 

2. Using A’s broadcast R4 calculates the best fit line needed to convert clock 

values from R1 to R4.  R4 performs this conversion after exchanging reception 

times of A’s messages with R1, obtaining E1(R4) from E1(R1) 

3. Similarly, B’s broadcasts are used to convert E1(R4) to E1(R7) 

4. The time difference in the occurrence of the events is E1(R7) – E7(R7) 

The authors suggest weighted shortest-path algorithms such as Dijkstra’s algorithm to 

find the best conversion path, with the weight of each edge being the quality of 

conversion represented by the calculated residual synchronization error.  

 Elson et al. implemented their algorithm on the Berkeley Motes, achieving a 

precision of 11µs at 19,200 baud. On commodity hardware, Compaq IPAQ’s using an 

11Mbit/sec 802.11 network, the precision was improved to 6.29 ± 6.45µs. Using kernel 

timestamps on the same platform they report a precision of  1.85 ± 1.28µs. They also 

report that the multi-hop precision error generally seems to follow an estimate of σ √n for 

n hops and an average per-hop error of σ. Besides a localization service implemented on 

the Berkeley motes using RBS, Merill et al. report Sensoria Corporation’s use of RBS in 

their distributed autonomous position location system [38], and Wang et al. report using 

the RBS daemon in IPAQs for a distributed beam-forming application [39]. The RBS 
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protocol achieves an excellent precision, offering developers a scheme of achieving the 

same when required. It is achieved, though, at the cost of multiple broadcasts, and 

message exchanges between receivers, consuming power, and should be used only if a 

precision of the order of tens of µseconds is necessary. The biggest drawback of the 

method is the sender remaining desynchronized from the rest of the nodes, preventing 

these pulse sending nodes from contributing to sensing and communication functions in 

the network. For WSN implementations, the 11µs precision should be used for 

comparison with other implemented synchronization protocols. Also, the absence of 

clock correction seems to render the protocol more powerful for event time-stamping 

rather than setting up TDMA slots, and can be used in TDMA networks for increased 

time-stamp precision.  

 

1.4.2.3 Time-diffusion Synchronization  Protocol (TDP) 

The time-diffusion synchronization protocol (TDP) [19] proposed by W. Su and I. 

Akyildiz is an important synchronization scheme to study since it introduces a novel 

mechanism of achieving a network-wide equilibrium time by diffusing timing 

information through a tree-like structure formed by the wireless sensor motes.  Their 

extremely detailed protocol achieves synchronization during TDP active phases which 

are followed by TDP inactive phases during which sensor and network operations are 

performed. The authors help visualize this using figure 1.8. Each active phase involves 

the election/reelection of master/diffused leader node procedure (ERP), during which 

nodes self-determine whether to become a master and initiate the time diffusion process, 

or qualify as diffused leaders to propagate the master’s timing information through the 
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tree. The elected masters initiate the peer evaluation procedure (PEP) to accumulate and 

compute critical timing information of its neighbors. This is followed by the time 

diffusion procedure (TP) where the master nodes diffuse the timing information every δ 

seconds (round interval) for a duration of τ seconds (round length). Neighboring nodes 

receive this information, use the ERP to determine if they qualify as diffused leaders, and 

use the time adjustment algorithm (TAA) to adjust their clocks after waiting for δ 

seconds.  

 

Figure 1.8 [19] TDP active/inactive schedule 

 

The PEP is aimed at allowing the nodes in a neighborhood to evaluate the quality 

of their clocks using a variance method. The PEP is realized using the following steps: 

1. The elected master nodes broadcast η time-stamped SCAN messages. 

2. The nodes which receive a master’s messages, calculate a variance σ2(ι) of 

their local clock from that of the master using the following equation: 



 40

( ) ( ) ( )
2 22

2 12
1

1 2
2 2

N

g g g
g

x x x
N

σ ι
ι

−

+ +
=

= − +
− ∑                              (1.3) 

where ι is the time difference between two time deviation measurements, 

N is the total number of time deviation measurements i.e. the number of 

SCAN messages received by the node, and x is the calculated time 

deviation. 

3. These calculated variances σ2(ι) are communicated to the master in the REPLY 

message. 

4. The master node calculates an outlier ratio yzγ , which is a measure of the 

deviation of the local clock of the sensor node z, from the clock of the master 

node y, with respect to the other neighborhood nodes using the following 

equation: 
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where, ( )2
avgσ ι is the average neighborhood variance, M the total number of 

REPLY messages received by the master, and ( )2
yzσ ι is the variance between 

nodes y and z calculated using the equation 1.3.  

5. The master then sends back the outlier ratios yzγ , and the average deviation 

( )avgσ ι in RESULT messages.   

The PEP provides the neighborhood nodes with information to evaluate the 

quality of their clocks with respect to the master and their neighbors by the ERP which 

will be discussed in a later paragraph. The TP, which diffuses timing information from 
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the master nodes to the network nodes, merits reference to Su et al.’s publication [19] for 

thorough understanding, and is summarized in this paragraph. After receiving the 

messages, the nodes use the TAA to adjust their clock. The timing information handshake 

comprises the following fields: 

1. Master node local ID (M-LID): ID of the master node initiating the diffusion 

2. Source LID: ID of the node currently broadcasting the information 

3. Value n: the number of levels or hops the message is to be diffused 

4. Time tM,i : The diffused time of the master, M, to be synchronized to in round 

i, calculated by the master using  

1
, , 2

L

m
m

M i M i

j
t t

L
δ=

∆
= + +

∑
      (1.5) 

whereδ is the amount of time the neighboring nodes wait to adjust their 

clocks, L is the total number of acknowledgment (ACK) messages received by 

the master in response to the timing information, 1, 0m mj t t∆ = − , where 1,mt  is 

the time at which the ACK from the mth node is received by the master, 0t , the 

broadcast time of the initiated timing message, and mj∆ , the roundtrip time for 

the mth node. 

5. Value ,M kβ : , , 1M k M kβ β α−= + , where α is the standard deviation of the 

roundtrip times mj∆ , and ,M kβ  the accumulated standard deviation is a 

function of the number of hops k from the master, and is used to estimate the 

quality of the diffused time in the TAA.  
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The master diffuses a new timing message everyδ seconds, for a duration of τ seconds to 

accommodate clock variations, and mobile nodes. The diffused leaders perform the same 

TP to propagate the timing information. At each sensor node, the TAA uses the ,M kβ  

diffused values from different masters to generate a weight, wM, for each master. wM is 

large if the master M is fewer hops away. A new time is calculated as a weighted sum of 

the diffused times. The clock is adjusted only if the computed correction is greater than 

the received neighborhood deviation ( )avgσ ι . 

 A thorough understanding of the PEP and TP help in analyzing the 

Election/Reelection of Master/Diffused Leader Node Procedure (ERP) which governs 

whether nodes self-determine themselves to be master nodes or diffused leaders. The 

ERP is realized using the False Ticker Isolation Algorithm (FIA) and the Local 

Distribution Algorithm (LDA). Using the FIA, a node checks if its received outlier ratio 

yzγ , is greater than a thresholdφ . If greater, the node regards itself an outlier, and 

disqualifies itself from being a diffused leader in the current τ period, and a master at the 

beginning of the next τ period. The LDA ensures that the TDP is power efficient. The 

masters are reelected every τ seconds, and diffused leaders, every δ seconds. Each node 

randomly selects a value λ between 0 and 1, and shifts this number by ( )1 ζ− where ζ is 

the ratio of the current energy level over the maximum allowed energy level, implying 

( )1λ λ ζ= − − . If λ  is greater than a threshold φ and the node is not a false ticker, the 

node qualifies as either a master or diffused leader when the nodes are being reelected. 

The formulation of the threshold φ discussed in detail in [19].  
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 The TDP, though not implemented on a sensor platform, appears to be an 

extremely thorough mechanism of achieving a network-wide equilibrium time within a 

certain tolerance, especially for mutlihop and mobile WSNs. The authors provide 

simulation results to validate the efficacy of their protocol. The scheme, however, before 

adoption, requires designers to study trade-offs of power, complexity, and time for the 

intended application. The need to define and study multiple thresholds, and timing 

parameters, while ensuring enough time to perform sensor operations, seems to be a 

rather challenging task.  Also, if the PEP and TP are achieved using CSMA, collisions 

can make this synchronization scheme highly power consuming. 

 

1.4.2.4 Time Synchronization in Ad-hoc Networks 

This synchronization protocol was devised by Romer [17] to facilitate time 

synchronization in ad-hoc communication networks. Ad-hoc communication networks 

are characterized by mobile computing devices which communicate with each other 

when they enter each other’s communication range. This is achieved via a bi-directional 

communication link and node synchronization can be achieved at these times. These links 

are usually very short range and they last a short time, given the mobility of the devices. 

Romer argues that two nodes which do not enter each other’s communication range can 

communicate via store and forward techniques. In this scheme, an intermediate node 

receives the sender’s message, stores it for a while, and transmits it to the intended 

receiver when they enter each other’s communication range. Romer’s method is primarily 

based on recognizing two main differences between synchronization conditions in 

traditional networks and ad-hoc networks. While traditional networks depend on accurate 
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delay estimation [16, 35], this is not feasible in ad-hoc networks, as an arbitrarily large 

time may be required for the message to reach the receiver. Secondly, periodic message 

exchanges [19] are not possible to maintain synchronization since it is impossible to 

achieve synchronization between every pair of nodes in the network.  

 The driving concept behind the algorithm is determining lower and upper bounds 

for the actual time elapsed between creation of a timestamp at the source node, and the 

reception of this timestamp at the destination node. The bounds are necessary because in 

ad-hoc networks the time transformations cannot be achieved with high precision. The 

receiver, then, translates these bounds in terms of its local clock, and subtracts the 

resulting values from the time of arrival of the message, thus obtaining the upper and 

lower bounds of the received timestamps in terms of its own clock. Assuming that 

computer clocks have a maximum clock drift ofρ , Romer obtains an inequality relating 

time differences t∆ to clock differences C∆ using the maximum clock driftρ : 

    1 1C
t

ρ ρ∆
− ≤ ≤ +

∆
     (1.6) 

For an ideal hardware clock, 1dC
dt

= . Present day hardware can achieveρ values of 

approximately 10-6.  The inequality can modified to 
1 1

C Ct
ρ ρ

∆ ∆
≤ ∆ ≤

+ −
, implying that the 

computer clock difference of C∆ is bounded by the interval ( ) ( )1 , 1t tρ ρ− ∆ + ∆   , and 

conversely, the time difference t∆ is bounded by the interval ,
1 1

C C
ρ ρ

 ∆ ∆
 + − 

. These 

derivations lead to equations for converting a clock time difference of iC∆ from the local 

time of node i, with iρ , to the local time of another node j, with jρ . First iC∆ is estimated 
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by the real-time interval on node i ,
1 1i i

C C
ρ ρ

 ∆ ∆
 + − 

. Subsequently, it is converted to the 

computer time interval 
( ) ( )1 1

,
1 1

j j

i i

C Cρ ρ
ρ ρ

 ∆ − ∆ +
 

+ −  
 with respect to the local time on node 

j. 

 

Figure 1.9 Message delay estimation using Romer’s method [17] 

 

 Romer’s algorithm focuses on estimating the delay d of sending messages 

between two nodes. This is accomplished by one node sending a message, to which the 

other responds with an ACK. The time difference between sending the message and 

receiving the ACK is the round-trip time (rtt). Once the sender receives the ACK, it is 

aware of the rtt, but must use a second message to communicate this value to the 

receiver. This second message can also be used by the receiver to compute a second rtt. 

The synchronization, therefore, is achieved with a 100% message overhead, since it 

necessitates two messages. Figure 1.9 is a modified version of a diagram used by Romer 

to explain his algorithm [17], with a couple of additional time labels to illustrate the 
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concept, and explain some nuances omitted in [17].  The figure shows two consecutive 

messages exchanged between two nodes. To estimate the delay d for message M2, we 

recognize 5 2'd t t= − . Recognizing the non-determinism in calculating '
2t , Romer states 

the lower bound of d to be 0, and calculates the upper bound using the above estimation 

resulting in the inequality: 

  ( ) ( )3 2 6 5
10
1

s

r

d t t t t ρ
ρ

−
≤ ≤ − − −

+
     (1.7) 

where ( )3 2t t−  is the round-trip time of M2, ( )6 5t t−  is the idle or storage time of M2 

within the receiver in terms of the receiver’s clock, and sρ and rρ are the maximum clock 

drifts for the sender and receiver, respectively. Also, Romer refers to the upper bound of 

d as the rtt, though he intends it to be (rtt – idle time). Though this includes the time 

3 6't t− , it serves as a true upper bound for the delay. A second estimation of the delay in 

terms of the receiver’s clock makes use of two consecutive message transfers: 
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Figure 1.10 Message flow graph for ad-hoc network [17] 
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After defining the upper and lower bounds of the delay, Romer outlines a scheme to 

generate event time-stamps, and defines rules for time-stamp comparison and translation. 

An event E, occurring at an exact clock time ( )iC E , is recorded by a time-stamp ( )iS E , 

represented by the interval ( ) ( ), ,,i l i rC E C E   . This interval, with a lower and upper 

bound for the event, indicates that time of occurrence of E is only an estimation because 

of the inaccuracy of the local clock. 

 For comparison of these time-stamps, the scenario in figure 1.10 represents device 

1 sensing an event, recording the time of the event and communicating this information 

to the devices 2, 3, ……, N along the path shown. Each node i records ri, the time at 

which the message containing the time-stamp is received si, the time at which the time-

stamp is sent from node i, and the maximum clock drift iρ , which is a device parameter. 

Each connecting edge is represented by rtti, the round-trip time for sending the message 

from node i, in terms of the clock of the receiving node, and idlei, the idle time elapsed in 

node i after sending the last message in terms of the sender’s clock. ri, si, and idlei are 

contained in the time-stamp message sent over the edge. Since the first node does not 

receive any messages, it is assumed that the event is recorded at time r1. We then proceed 

to derive the upper and lower bounds presented by Romer for the event at each node. 

Adding the notations UB for the Upper Bound, LB for the Lower Bound, storei for the 

storage time at node i, and delayi for the delay from node i, we derive: 

Node 1:  1 1[ , ]r r  

Node 2:  [r2 – UB(store1) – UB(delay1), r2 – LB(store1) – LB(delay1)]      (1.9) 

 where ( ) 2
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As indicated by Romer, this method is tailored to achieve synchronization in 

sparse ad-hoc networks. A time-stamp lasting up to 5 hops, and an age of up to 500 

seconds, is reported to have an accuracy of no less than 3ms. This 3ms precision should 

not be directly compared with achieved precisions of broadcast mechanisms in dense 

sensor networks, as it is achieved in a sparse ad-hoc network, even after several hops and 

a large elapsed time. Romer’s method provides an excellent synchronization scheme in 

conditions where the RBS [16] and TDP [19] might not be applicable. The second 

method of delay estimation in terms of the receiver’s clock has the disadvantage of 

potentially large rtt and idle time, introducing errors due to drift. In addition, timing 

information has to be maintained for older messages since the equation spans two 

message exchanges. This may be undesirable if the nodes are in contact with several 

other nodes in the network. Finally, we notice in the derivation of N-hops, 

communicating ri, si, rtti and idlei for each intermediate node can cause the message to 

become increasingly large, in which case the protocol starts utilizing higher bandwidth, 

and the delays are calculated for messages of significantly different length.  
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1.4.2.5 Other Synchronization Protocols   

Other synchronization protocols include the Probabilistic clock synchronization 

service [21] which provides probabilistic accuracy bounds on the accuracy of the RBS 

clock synchronization scheme. The Asynchronous Diffusion Protocol [22] proposed by 

Li and Rus defines a rate-based diffusion protocol that is achieved by flooding 

neighboring nodes with clock values to reach a consensus to adjust all clocks to. These 

and several other synchronization schemes are discussed in clock synchronization 

surveys [24-26].  

The above discussion reveals that the choice of a synchronization protocol is 

highly dependent on the application, hardware resources, and network topology. The 

continuous clock synchronization protocol [35] is more suited to WLANs equipped with 

NICs which can transmit and receive simultaneously. The absence of this feature in 

sensor motes renders the scheme unsuitable to WSNs. However, the method of interval 

correction [18] can be incorporated if time discontinuity cannot be resolved. The RBS 

[16] protocol seems most suitable to contention based applications with high precision 

requirements for event time-stamping. Simulations predict that the TDP [19] can achieve 

excellent network synchronization in large networks which can afford the computational 

complexity of the protocol.  Romer’s method [17] is specific to sparse ad-hoc networks. 

For example, technological advancements have led to the development of cell-phone 

sized wireless devices [40] equipped with Inertial Navigation Units (INUs), to track first 

responders within buildings where GPS is unavailable. These devices use high power 

transmissions to communicate their calculated position with a base station, but may also 

be equipped with short-range bluetooth modules. While outdoors, they obtain absolute 
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timing information from the GPS modules. Indoors, when two responders are within 

bluetooth communication range, they can exchange time-stamped location information to 

ensure their computed locations are within approximately 10 meters of each other, as a 

correction mechanism. This time-stamped information can be communicated using 

Romer’s algorithm to other personnel in the building to aid in a search and rescue 

scenario.  

1.5 Motivation and Outline 

The Smart Dust Project is aimed at developing low-cost, low power wireless 

sensor nodes of the size of dust particles, to form large scale networks. These dust sized 

nodes are intended to independently form a network among themselves to solve a 

particular sensing task. A study of existing medium access control (MAC) protocols 

suggests that schemes solely based on CSMA, are usually easier to implement [13], but 

less power efficient than TDMA schemes. TDMA, though highly power efficient, 

presents challenges of developing schemes to physically implement the slots on sensor 

nodes, and deriving these slots after achieving tight synchronization in the network. Most 

proposed TDMA schemes [11, 14] assume clock synchronization and do not address the 

issue. In addition, they seem to neglect hardware issues which may arise while 

implementing these algorithms on existing sensor platforms. Furthermore, though some 

of the clock synchronization schemes discussed in section 1.4.2 achieve excellent 

synchronization [16, 19], they do not particularly fit into a TDMA framework. Motivated 

by these gaps at various levels in the design requirements of a complete protocol, the 

Smart Stone Protocol (SSP) has been developed. The protocol achieves rapid 

synchronization to form TDMA slots, synchronizes receivers within 50µs of each other, 
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and achieves and maintains synchronization within a cluster without sending any 

synchronization bytes. The sender is not left unsynchronized and a novel scheme is used 

to identify the closest comparable times on the sender and receiver, eliminating/reducing 

the non-deterministic send/access delays. The protocol is tightly related to events that 

occur in the mote hardware, but is designed to operate on extremely constrained wireless 

sensor motes. To test and validate the protocol, Smart Stones have been custom designed 

using commercial off-the-shelf (COTS) components, and the SSP has been successfully 

demonstrated on the Smart Stone Network. Finally, the SSP has been extended to 

perform sensing operations and data communication within the network. An acoustic 

vibration sensing application has been tested on the Smart Stone Network, sensing the 

environment with MEMs microphones, performing local signal processing, 

communicating information within TDMA slots, and displaying results of data 

comparisons.  

 

1.6 Chapter Organization 

Chapter 2 is a discussion of the Smart Stones (wireless sensor motes of the order 

of inches) developed to test the SSP. The chapter details the choice and functionality of 

components, circuit design, Printed Circuit Board (PCB) layout considerations and 

techniques, manufacture and population of the PCBs, and the hardware blocks that 

govern the performance of all proposed algorithms.  

Chapter 3 is a step-wise discussion of the evolution of the innovative TDMA 

algorithm used on the Smart Stones to achieve network synchronization, setup TDMA 

slots, and accommodate data transmission and fusion. The SSP is then measured against 
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the limitations and metrics discussed in this chapter, and compared and contrasted with 

the discussed clock synchronization schemes and MAC protocols. 

Chapter 4 concludes with proposed future work to develop the work in this thesis 

into a robust network protocol including clock synchronization, medium access control, 

and network-wide routing. In addition, features of existing clock synchronization, MAC, 

and routing protocols that may be incorporated into the SSP framework are highlighted. 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 53

CHAPTER 2 

 

2.  Wireless Sensor Nodes for Smart Dust  

 

 While Smart Dust is aimed at realizing wireless sensor nodes of the size of dust 

particles [28], this accomplishment is years away from materializing [29]. Smart Stones, 

wireless sensor nodes of size of the order of inches, are currently being developed to 

serve as test platforms for networking algorithms, and to serve in applications where their 

current size is satisfactory. Sensor nodes such as the MICA2 [8], and the TUTWSN node 

prototype [23] are built from commercial off-the-shelf (COTS) components.  These 

platforms are crucial to test synchronization and communication schemes being 

developed. Well-designed smart stones can already be employed in habitat monitoring 

applications where dust size is not crucial. In addition to serving as a test network, a 

smart stone network necessitates the choice of particular hardware components whose 

features are used to customize the algorithm to the hardware, and also presents obstacles 

that cannot be easily perceived in theoretical simulations. Both the MICA2 and 

TUTWSN nodes, though remarkably compact, take advantage of rather specific 

microcontroller and transceiver technology, limiting the range of algorithms that can be 

tested on them. The networking algorithms designed as part of this thesis are intended to 

serve under stringent power restrictions. Algorithms were devised using the fewest 

possible instructions to facilitate easy design of Application Specific Integrated Circuits 

(ASICs) to replace the microcontroller. The use of ASICs is imperative in low-power 

applications to minimize hardware size, and perform the necessary functions in the 
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fewest instruction cycles.  Pottie and Kaiser [7] have pointed out that ASICs, which can 

clock at much lower speeds and use less numerical precision, consume several orders of 

magnitude less energy than digital signal processors (DSPs). Consequently, 

implementation and testing of these algorithms designed with ASICs in mind, required 

the development of streamlined wireless sensor nodes. 

 

2.1  Smart Stone Hardware 

 

 Smart Stones were designed to implement Time Division Multiple Access 

(TDMA) communication between nodes with emphasis on software techniques to 

minimize power. Power considerations in hardware were given less importance 

acknowledging the parts chosen for the Smart Stones were not the final components 

desired in the Smart Nodes. To further develop the Smart Stone Network into a sensor 

network, provisions were made to accommodate sensor inputs into each node. The block 

diagram for the nodes is shown in figure 2.1. The Smart Stones comprise 

 

• PIC 16F88 microcontroller from Microchip with a reset switch 

• LINX TR-916-SC-P transceiver from LINX Technologies 

• 20 MHz crystal 

• 5V Voltage Regulator 

• Reduced Height 916 MHz antenna 

• Battery Input 

• 5 display LED’s 
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• 3 pin sensor input 

 

Figure 2.1 Block Diagram for a Smart Stone Node 

 

2.1.1  Microcontroller (MCU) 

 

The microcontroller used in the Smart Stones is the PIC16F88 [30] 

microcontroller from Microchip Technologies. The microcontroller is the heart of the 

signal processing, data aggregation, and data communication on the Smart Stones. All 

algorithms used are subject to limitations in hardware and the chosen microcontroller was 

required to support all processing and data input requirements. In particular, the 

transceiver required Universal Asynchronous Receive and Transmit (UART) ports to 

communicate with the MCU. Generic sensors output analog data which needed to be 

interfaced with the digital MCU. The PIC 16F88 has 7 analog channels with a built-in 

analog-to-digital (A/D) converter to furnish digital voltage levels to the MCU. The 

presence of this converter removed the need for a separate A/D converter chip, saving 
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both complexity and board space. Other requirements included hardware timers on the 

MCU which are the basis of our proposed clock synchronization algorithm, and sufficient 

digital output pins to control LED’s for display and testing, and controlling the 

transceiver. The 18-pin PIC 16F88 satisfied all these requirements providing UART 

channels, 7 10bit A/D conversion channels, built-in timers, and several digital output 

pins.  

 

2.1.2  Transceiver and Antenna 

 

 The LINX TR-916-SC-P [31] transceiver is a module developed by LINX 

Technologies. Its communication frequency is 916 MHz and provides ease of switching 

between transmit and receive modes by toggling two input pins, TX enable and RX 

enable, both of which are connected to the microcontroller. This transceiver provides 

high transmission range which assists our development of peer to peer clock 

synchronization algorithms. The antenna incorporated into the Smart Stones is a reduced 

height, 916 MHz antenna to miniaturize the nodes while providing long range. 

 

2.1.3 External Clock and Timers  

  

 The PIC 16F88 has an internal oscillator block which is capable of generating 

several clock signals. The main output is an 8 MHz clock source that can be directly used 

to drive the system clock. Post-scalars can be used to generate six different clock speeds 

between 31.25 KHz and 4 MHz. For our application, these clock sources are not 
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sufficient since we need the microcontroller to run on a faster clock, producing faster 

timers, and more control over TDMA slot allocation. A 20 MHz external crystal is used 

to drive the microcontroller at a frequency of 5 MHz since the clock source drives the 

system at one-fourth the supplied frequency. 

 The device is also equipped with two 8-bit timers (TIMER0 and TIMER2) with 

pre-scalars to slow the timer down. For the 8-bit timers there is a single register counting 

up, setting off an interrupt when there is an overflow. There is also an additional 16 bit 

timer which comprises two registers, one for the high byte, and one for the low byte.  

 

2.1.4 Sensor Input 

 

 To test the Smart Stone nodes as a part of a sensor network, provisions were made 

to attach a sensor to the microcontroller’s analog port. The nodes were designed for a 

preliminary application requiring acoustic MEMs microphones. Embedding the 

microphones in the board design would make the design more compact and remove 

possibilities of connection errors. However, initial tests using the microphone suggested 

that the microphone sensor would need to be delocalized from the board and be in contact 

with the ground to sense vibrations. Wire extensions make this delocalization possible. In 

addition, fixing the sensors would restrict the use of the motes to purely acoustic 

applications. Instead, the Smart Stones have a 3-pin connector providing power, ground, 

and an analog/digital port for the sensor reading. The desired sensor is then connected to 

the appropriate pins for the specific application.   
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 Figure 2.2 Schematic of Smart Stone PCB  
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2.2  Smart Stone Circuit Design 

 The block diagram in figure 2.1 depicts the control flow in the nodes. Each node 

is controlled by the MCU which is responsible for monitoring the sensor readings, 

processing these signals, and communicating them via the transceiver. Communication 

with the transceiver is achieved using the UART ports. Smart Stone nodes were designed 

to realize this functionality and first tested on a breadboard setup. Upon successful 

testing, the node was created on a Printed Circuit Board (PCB) design developed using 

Cadsoft Eagle [33] software. The schematic of the design is shown in figure 2.2. As 

shown in the figure, each Smart Stone is provided a battery input, ideally 4 AA alkaline 

batteries, providing around 6V to the board. This battery input is then passed through a 

5V voltage regulator to supply exactly 5V to the microcontroller. The maximum Vdd 

voltage rating for the MCU is 5.5V and 5V is required to run a 20 MHz clock 

necessitating the use of a voltage regulator to protect the integrated circuits on the board. 

MCU ports are dedicated to control the transceiver. Two digital pins are connected to the 

transceiver’s Receive enable (RXEN), and Transmit enable (TXEN) ports to switch 

between these two modes on the UART. Correspondingly, the UART receive and 

transmit data lines are connected on both the MCU and the transceiver. The transceiver is 

set to transmit at its highest power using its PDN port, but the level adjusting pin 

(LVLADJ) is connected to an MCU port to provide control over the power level of 

transmission. Also the RSSI indicating pin is made available to an analog port to take 

advantage of RSSI values for networking. This feature can aid in incorporating routing 

algorithms such as the LEACH [15]. The remaining digital ports on the microcontroller 
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are attached to LED’s which are connected to ground through resistors, and serve as 

display and testing methods. The crystal is attached to the MCU’s two oscillator pins to 

provide the external clock, and the sensor connector’s sensor input line is connected to an 

analog channel on the MCU.  

 

2.3  Smart Stone Board Layout 

 To minimize the cost of prototype manufacturing, the Smart Stone PCB was 

restricted to a 2-layer design which was manufactured using the barebones option 

available through Advanced Circuits [32]. Through-hole components were chosen to 

enable easy soldering to rapidly complete the development process.  

 Several considerations were taken into account while developing this 2-layer 

board. The bottom layer is dedicated to creating a ground plane. A ground plane provides 

ground and distributes power better than traces. It is particularly important in this circuit 

due to the presence of Radio Frequency (RF) electronics on the board. The ground plane 

prevents radio waves from antennas unintentionally formed by tracks. In addition, the 

presence of a ground plane eliminates ground loops which can be inadvertently formed 

when several ground connections on different components are connected in series, rather 

than to one single centralized ground point. These series connections promote miniature 

loops (circuits) between each individual piece of equipment, allowing RF current to 

circulate at differing intensities, which are another source of radiated RF noise. As the 

ground circuits "float" above zero potential they never actually draw down to true 

ground. A dangerous shock hazard to the operator can result, but is easy to avoid through 

good design practices. To avoid this phenomenon,  
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Figure 2.3 Board Layout for the Smart Stone PCB 
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each component ground should be directly connected to the ground plane using vias with 

the shortest possible traces. The ground plane is stretched in the Smart Stones over the 

entire board area. As shown in the board layout in figure 2.3, the transceiver is placed in 

an isolated corner with minimum traces underneath the RF module to prevent coupling. 

In particular, the TR-916-SC-P is situated away from high frequency crystal. The antenna 

is also placed away from all the other components. All traces supplying power are made 

thicker (twice the regular traces) to reduce impedance of these traces while carrying 

larger currents. The same is implemented for the RF signal to the antenna. An sma 

connector was chosen to attach to the antenna. Separate vias are not required to connect 

the component grounds to the ground planes since all parts are through-hole parts and 

grounds get directly tied to the plane. In case of surface mount parts vias would be 

necessary.  

 

2.4 Smart Stone Mote Manufacturing 

 After designing the board it was subjected to an electric rule check (ERC) where 

the board is tested against the schematic for consistency. Further, a design rule check 

(DRC) was performed to ensure the design met manufacturing requirements. The DRC 

checks for sufficient trace widths, component and trace spacing, and other features that 

are required to properly manufacture the board. Insufficient spacing can cause shorts 

while soldering. Upon successfully passing the ERC and DRC, a CAM processor was 

utilized to convert the layout into Gerber files. Four files were generated with extensions 

.cmp, .sol, .drl, .drd. These files contain information regarding the positions and layers 

for each component, and the desired drill sizes and hole locations on the board. The .cmp  
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and .sol files detail the parts on the top and bottom layer respectively, whereas the .drl 

and .drd files detail the size and positions of holes and vias on the board. These files were 

zipped and uploaded to the Advanced Circuits website [32] for a final check using their 

Free DFM feature to check the design against their specific manufacturing requirements. 

The final board was designed to be 3 inches X 2.35 inches.   

 After board manufacturing, the final considerations involved features to ensure 

the microcontroller could be reprogrammed and that both the microcontrollers and 

transceivers can be used in other applications when needed. To incorporate this, an 18 pin 

socket was soldered to the board which the MCU fits into and can be easily removed for 

reprogramming. Similarly, pin rows were soldered to fit the transceiver to facilitate 

removal when required. Figure 2.3 is a photograph of the Smart Stone equipped with a 

delocalized acoustic sensor. Figure 2.4 shows a 5-node Smart Stone network performing 

the synchronization algorithm which will be discussed in Chapter 3. 
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Figure 2.4 Photograph of a Smart Stone with an Acoustic Sensor 
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Figure 2.5 a) 5-node Smart Stone Network 

 

Figure 2.5 b) 5-node Smart Stone Network performing synchronization algorithm 
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CHAPTER 3 

 

3. Networking and Sensing Algorithms for Smart Dust: The 

Smart Stone Protocol (SSP) 

 

 A thorough survey of the existing clock synchronization algorithms and MAC 

protocols presented in Chapter 1 revealed the efforts and progress of the research 

community in approaching the difficult problem of establishing low-power 

communication in sensor networks. The studied pros and cons of each proposed method 

also suggested the need for algorithms that consider as many of the limitations of WSN’s 

as possible while achieving robust networking. In addition, conclusions were drawn that 

proposed algorithms should be more hardware oriented for successful operation on sensor 

motes, and tested on sensor platforms to validate their practicality. The literature survey 

presented very few protocols that had actually been tested on existing wireless sensor 

nodes. Besides developing smarter clock synchronization algorithms, the necessity to 

construct mechanisms to setup robust communication in spite of the synchronization 

limitations was considered to be a principal focus of the effort. In this chapter an 

innovative, low-power TDMA based synchronization algorithm and communication 

scheme is proposed. The Smart Stone Protocol (SSP) has been tested on the Smart Stones 

described in Chapter 2, and demonstrates rapid synchronization, and robust direct 

communication. The experiments and steps involved in developing the algorithm are 

discussed in detail in this chapter followed by a thorough analysis of the SSP.  
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3.1 Time Division Multiple Access Algorithms 

 As described in Chapter 1, sensor nodes which perform distributed computing, 

must communicate with each other over a wireless connection. Sensor networks have 

unique limitations compared to other wireless networks. Envisioned to run on battery 

power for months or years, power management becomes the most important issue in 

wireless communication for these networks. In particular, transceiver operation [7] 

usually is the bottleneck with regards to power. Both transmissions and receptions 

consume more power than any of the processing performed by the nodes [7]. 

Communication algorithms can be designed for sensor networks in general, however, 

considering specific requirements and limitations of a particular sensor network will 

result in the most power efficient protocol. These requirements and limitations include 

the density of nodes in an area, their topology, the number of nodes that need to share 

information, the presence of special, more powerful nodes, and other similar 

considerations. This introduces the need for medium access control (MAC) protocols 

which govern the scheme in which the network nodes gain access to the medium of 

communication. As discussed earlier, most sensor nodes are not equipped with 

transceivers transmitting at different frequencies, resulting in a single frequency band to 

be shared by all the nodes. Two nodes transmitting at the same time may interfere with 

each other at all points where their interference range is common, resulting in corrupt 

data. In these cases, the nodes must transmit again wasting both their own energy and the 

energy of the receiving nodes. This notion suggests the need for Time Division Multiple 

Access protocols which assign specific slots to each node to transmit to prevent 

collisions, since avoiding collisions is the most power saving method in WSNs.  
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3.1.1  Clock Synchronization based on Timers 

 In order to set up transmission slots and to make sure that each node transmits at 

the correct time, the entire network, or the section of it on which TDMA is established 

must have a common notion of “time.” This necessitates the requirement of a common 

clock. The presence of N nodes in a TDMA setup implies the need for possibly N slots 

for the nodes to report in. These N slots form a single frame. A frame may require 

additional slots for discovery of new nodes typically governed by a master node or a base 

station, usually incorporated into the control phase of the TDMA frame. The size of the 

slots is dependant on the amount of data to be transmitted by each node, and also by the 

time taken to switch the transceiver between transmit and receive modes. This scheme 

requires each node to be aware of the time a frame starts with high precision, and a 

method to resynchronize their clocks to prevent clock drift over time. 

 

3.1.1.1     2-node Clock Synchronization (Wired Setup) 

 Almost every commercially made microcontroller is equipped with hardware 

timers. Hardware timers comprise registers whose value is incremented or decremented 

in hardware upon completion of a certain period governed by the system clock and the 

timer configuration. An initial concept was to attain clock synchronization amongst two 

nodes to test the idea of using timers. To eliminate the intricacies of radio transmissions, 

a wired setup was created on a breadboard to simulate transmission and reception 

between two nodes. The UART transmit port of the microcontroller on each node was 

connected via a wire to the UART receive port of the other, facilitating data transfer 

between the nodes. This simulation proves to be very realistic given that in a wireless 
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implementation these UART ports are connected to the transceiver transmit and receive 

pins.  

TIMER0, an 8-bit timer in the PIC 16F88 was chosen to realize the 

synchronization. The TIMER0 module increments every instruction cycle, in the absence 

of a pre-scalar. The TMR0 interrupt is generated when the value in the TMR0 register 

overflows from FFh to 00h. The transmitting node, node A, was programmed in assembly 

language to run TIMER0 and transmit this timer value once to the receiving node, node B, 

which was programmed to receive the timer value and assign this value to its own timer. 

Hardware was set up to enable both nodes to send their timer value to the computer at the 

press of a common button. On conducting the experiment and pushing the button, the 

values displayed were different and were not constant for several repetitions of the 

experiment. The reason for the disparity was that the time taken to send the value over 

the UART to the second node was of the same order as the timer increment count. In 

addition, the send and access times, discussed in Chapter 1, are often non-deterministic. 

 

3.1.1.2   2-node Clock Synchronization using third node (Wired Setup) 

A second experiment was conducted sending the same information from node A 

to two nodes B and C, and examining the timers of B and C. Incorporating the third node 

in the breadboard setup however posed certain issues. Each PIC16F88 provides a single 

UART with one transmit port and one receive port. Two transmit lines cannot be directly 

connected to a UART receive port since this results in corrupted data. The transmit line 

on the UART is held logic high when the UART is receiving data. To allow the correct 

data to enter the receive port, the transmit lines from the other nodes are passed through 
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an AND gate as shown in figure 3.1 and the argument for this approach is shown in the 

truth table in table 3.1. Upon pushing the button, the timer values for both B and C were 

exactly the same over repeated executions of the experiment. The findings though 

encouraging, introduced the need for a master node which would be used for 

synchronizing the slaves but after synchronization would not be synchronized with the 

network itself, rendering the technique impractical for setting up TDMA slots.  Analyzing 

the experiments conducted, however, suggested that this concept could prove effective if 

the time taken to transmit the information was insignificant compared to the timer 

intervals. 

 

  

 

 

 

Figure 3.1 Block Diagram for 3-node wired network 
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Tx line (B) = P Tx line (C) = Q Rx Line (A) = P AND Q

0 1 0 

1 1 1 

 

Table 3.1 Truth Table for Node A receiving from Node B while Node C transmit line is 

held high 

 

3.1.1.3     Clock Synchronization based on derived Timers 

To realize synchronization using timer intervals larger than that allowed by the 

hardware timers, the notion of derived timers was introduced. A software timer, 

localTime was created using a register and programmed to increment every time the 

TMR0 interrupt occurred. This slowed down our timer to 1/256th of the previous 

increment interval. The experiment to transmit and display the timer value was repeated 

for Nodes A and B, but this time transmitting localTime. The values displayed were 

exactly the same each time the experiment was conducted and the results were identical 

when the third node, node C was introduced. The resulting derived timer hence provided 

the nodes with a new sense of a clock which could be used to co-ordinate transmissions 

and receptions in the network.  

The next step was to set up a network using this scheme of clock synchronization. 

Three nodes were programmed to run TIMER0, and increment localTime on the TMRO 

interrupt. Nodes A, B and C were assigned unique identification numbers, nodeIDs: 1, 2 
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and 3 respectively. The nodes kept track of their transmission turns using a register 

transmitID which was initialized to 1 in each node. In the algorithm, every time 

localTime overflows from FFh to 00h, the node checks if its nodeID and transmitID are 

the same. If identical, the microcontroller transmits a packet comprising 3 bytes. The 

first byte is a frame sync byte and is used to identify the network. Reception of this byte 

indicates a packet being transmitted within the network, and marks the beginning of a 

predetermined set of bytes to be decoded by the receiving node. In the Smart Stone 

Network CBh is used as the frame sync. The second byte is the node identification 

number followed by the third byte which is the current localTime. The receiving nodes, 

whose nodeIDs do not equal transmitID, await the frame sync byte. Upon reception, they 

receive the nodeID of the transmitting node followed by the localTime of the 

transmitting node, and reset their localTime to 00h. After transmitting or receiving, 

transmitID is increased by 1 if the old transmitID is 1 or 2, and reset to 1 if the old 

transmitID is 3. This algorithm sets up the slot schedule shown in table 3.2.  

 

 Slot1 

transmitID = 1

Slot2 

transmitID = 2

Slot3 

transmitID = 3 

NodeA Tx Rx Rx 

NodeB Rx Tx Rx 

NodeC Rx Rx Tx 

 

Table 3.2 Slot Schedule for 3-node network 
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 This algorithm, outlined in figure 3.2, though effective in synchronizing the 

network, and power efficient in requiring only 3 bytes of transmission, has significant 

limitations. In particular, depending on transmitID to equal nodeID, necessitates node A 

to be the first to transmit. In cases where node A may be missing or out of range 

additional algorithms need to be implemented to ensure that one of the other nodes starts 

the transmit cycle. Robustness is a critical feature for the functioning and practicality of 

any network. A robust network should be able to synchronize itself irrespective of the 

absence of expected nodes, should be capable of allowing new nodes to join the network, 

and allow nodes to re-enter the network if they had fallen out of range. To increase the 

robustness of the network, the nodes were programmed to increment the transmitID when 

localTime overflowed, to ensure that a missing node did not stall the network. In 

addition, a node which was a part of the network, after not receiving transmissions for N 

slots, where N is the network size, was programmed to consider itself out of range of the 

other nodes and revert to receive mode. This was implemented because nodes 

desynchronize over time, and after coming back in range, the re-entering node might 

cause interference. Reverting to receive mode allows the re-entering node to receive the 

first transmission when it comes back in range, and use the nodeID of the transmitting 

node to reset transmitID for the next slot.  

 

3.1.2 Wireless Communication in the Smart Stone Network 

After developing algorithms using the wired connection between the nodes, 

wireless links were to be set up to replace the wires. As in the wired UART 

implementation, the wireless channels can only receive or transmit at a time. On the 
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breadboard setup, LINX transceivers were placed, and the transmit and receive lines of 

the transceiver were wired to the respective UART channels of the microcontroller. 

Added considerations were, allowing enough startup time for the transceiver, and 

switching time between receive and transmit mode within the slots. The timer 

synchronization precision needed to be checked again, since the delays of access time, 

propagation time, and receive time increase when using the transceivers. In addition, the 

transmitted packet had to be modified to set up the wireless link.   

Using the same algorithm as used in 3.1.1.3, on startup, the microcontroller waits 

for the transceiver to be ready for valid transmission or reception. For the TR-916-SC-P 

this could be a maximum of 8ms. For a transmission slot, the microcontroller sets TXEN 

high, and RXEN low, where TXEN is the transmit enable pin, and RXEN, the receive 

enable pin. Both cannot be high at the same time. The converse is performed for a receive 

slot. The packet was modified to comprise to following: 

[RF sync byte] [UART sync byte] [Frame Sync Byte] [NodeID][LocalTime] 

The RF sync byte is a code 55h (01010101) which enables the receiving transceiver to 

lock onto the incoming transmission. The UART sync byte FFh, ensures that the start bit 

of the frame sync byte will be accurately detected. The UART interprets the start bit of a 

byte as a 1-0 transition which makes it difficult to detect the start bit if 55h (01010101) is 

received. The UART sync byte FFh (11111111) creates a high marking period of one 

byte so that the start bit of the following frame sync byte is accurately detected. The 

frame sync byte, as discussed earlier, is then used by the microcontroller to intelligently 

identify the start of the packet, and interpret the following bytes in a pre-determined 

order. After transmitting, the nodes switch to receive mode which takes up to 6ms, and 
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the node whose nodeID equals transmitID switches from receive to transmit mode which 

takes up to 5ms.  

 After thorough breadboard testing, the algorithm, implemented in assembly 

language, was rewritten for the Smart Stone nodes taking onboard connections into 

consideration, and downloaded into 3 Smart Stones. The Smart Stones demonstrated the 

same performance as the breadboard setup, achieving synchronization and maintaining 

this over time to function as a network. While extending the algorithm to more than 3 

nodes, important limitations of the algorithm were revealed. Even though the algorithm is 

well-scalable, the smallest slot size achievable was approximately 200ms with a pre-

scalar of 1:16 on TIMER0. The technique of synchronizing the nodes by equating timers 

is inaccurate once the pre-scalar is further reduced. Therefore, to accommodate 8 nodes, 

the entire frame length would be 1.6s with 200ms slots, and for 128 nodes, each node 

would report every 20s which maybe considered impractical for some sensor networks. 

However, each node uses less than 1/10th of 200ms to transmit its information, resulting 

in a significant waste of time, and receiving energy in the network. These issues coupled 

with the desire for more robustness, gave rise to the final algorithm used in the Smart 

Stone Network described in section 3.2. 

 

3.2 Innovative TDMA-based algorithm used in the Smart 

Stone Network 

The final algorithm implemented in the Smart Stone motes was designed to 

acquire rapid synchronization amongst all nodes, demonstrate robustness, satisfy 

essential requirements of sensor networks, and also eliminate some of the known 
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shortcomings of the previous method being used. TDMA, though a highly lucrative 

method of communication given the low occurrence of collision interference once 

synchronization is achieved, involves the transmission of extra synchronization bytes to 

make the network aware of the global clock. These added bytes increase the power 

required to transmit the entire packet serving as a drawback of the TDMA approach. The 

algorithm proposed meets the following stringent requirements 

 

1. Attains rapid synchronization amongst nodes 

2. Synchronization remains over long periods of time 

3. No master node required, nodes can be turned on in any sequence 

4. Nodes can exit and re-enter the network without interfering or stalling the 

network 

5. No extra synchronization bytes are sent to acquire the synchronization, hence 

extremely power efficient 

6. Large number of nodes can be incorporated while reporting within a practical 

frame length 

 

 

The algorithm while taking all above requirements into consideration, also 

involves additional steps to demonstrate the synchronization to an observer, all of which 

can be removed in a final problem oriented version. The communication algorithm of the 

Smart Stone protocol (SSP) is shown in the flowchart in figure 3.3. 
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3.2.1 Initialization of Algorithm 

 

The first step is an initialization procedure. Each node is assigned an 

identification number called nodeID. This assignment is the only difference in the code 

downloaded into each node. The rest of the code is identical on all nodes. This proves to 

be an important feature for distributing and commercializing the code, and for 

downloading the code onto the microcontrollers. Next, registers, memory locations, and 

ports are set up to realize the algorithm. The baud rate for the UART is initialized in a 

special register SPBRG to transmit and receive at 19.2Kbps. The initialization is 

dependent on the system clock which is 20Mhz in our motes. TIMER0 is programmed to 

run with a pre-scalar of 1:256 which implies that the timer register value increments 

every 256 instruction cycles, or 50µs.  A delay function is invoked to enable the 

transceiver to start up after which the TXEN pin is pulled low, and the RXEN pin is pulled 

high to set all nodes in receive mode. With the device ready to perform transmissions and 

receptions, the global interrupt is turned on to allow the TMRO0 interrupt to flag a timer 

overflow. Finally, a green led is turned on to show the observer that the device is 

powered on. A red light is also turned on when the node is waiting in receive mode.  
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3.2.2 Main Receive Loop 

Upon initialization, the program enters a receive loop titled _syncwait. In the 

loop, the microcontroller waits for a received byte. Once a byte is received, a check is 

performed to see if the byte equals CBh, the frame sync byte. Any other byte might be 

transmissions alien to the Smart Stone network, or radio or UART synchronization bytes, 

which should be ignored until the frame sync is received. If the byte is not equal to the 

frame sync, the program returns to the _syncwait loop. If equal, the microcontroller waits 

fort the next byte which is the nodeID. Reception of this byte requires elaboration as the 

synchronization algorithm is intelligently based around this byte. The packet being 

transmitted by the transmitting node has been shortened to be 

[RF sync byte] [UART sync byte] [Frame Sync Byte] [NodeID] 

The localTime from the previous algorithm is not separately transmitted, even though it 

may be non-zero, since the timing information is contained in the nodeID. 

Acknowledging the drawbacks of the large slot size in the previous algorithm, and the 

need to eliminate additional clock synchronization bytes in TDMA packets, a scheme has 

been developed to distribute nodeID’s within the 256 counts of localTime. Instead of 

transmitting when the localTime reaches 00h, nodes transmit when localTime equals their 

nodeID. The nodeID transmitted, is the localTime at the transmitting node, and all 

receiving nodes must synchronize themselves to this value of nodeID. This not only 

reduces a byte of transmission but also allows us to test the limits of decreasing the slot 

size by assigning nodeID’s separated by smaller intervals. The limits of this interval are 

discussed in section 3.2.4. The receiving node, thus, receives the byte after the frame 

sync byte as the nodeID of the transmitting node, which is also the localTime at the 
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transmitting node, and sets its own localTime equal this received time. TIMER0 is reset at 

this time too. To aid the observer, a green LED is turned on every time the frame sync is 

received and turned off after synchronizing, which results in a flicker of the green LED 

when a valid network reception has been made. After receiving and decoding the packet, 

the node returns to the _syncwait receive loop.  

 

3.2.3 Interrupt Triggered Transmissions 

The only interrupt used in the algorithm is the TMR0 interrupt which indicates the 

TIMER0 value overflowing from FFh to 00h. The Interrupt Service Routine (ISR) is 

programmed to disregard all other interrupts, if triggered, and return to the main program. 

If the TMR0 interrupt occurs, the localTime is incremented, and then tested against 

nodeID. If equal, it is the node’s turn to transmit, otherwise the receive loop is executed. 

In case of a transmit turn, the node switches from receive to transmit mode by pulling 

RXEN low and TXEN high. A yellow LED is turned on to indicate transmit mode. The 

node transmits the packet, one byte at a time, starting with the RF sync byte 55h, 

followed by UART sync byte FFh, the frame sync byte CBh, and its own nodeID. The 

microcontroller then ensures that the transmit buffer is empty and the transmission is 

complete, and loads nodeID to localTime, to make the time at which the timers are 

reassigned values, as similar as possible on the transmitting and receiving nodes. TIMER0 

is reset again, and the microcontroller then switches back to receive mode and waits in 

the receive loop. This last step is a crucial part of the algorithm and differentiates the 

algorithm from other clock synchronization schemes that result in the transmitting node 

remaining desynchronized from the receiving nodes [16, 18]. 
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3.2.4 Assignment of nodeIDs for synchronization 

Each node enters the network in receive mode, ready to transmit when localTime 

reaches nodeID. This ensures that each node is synchronized to the rest of the network 

immediately after receiving the first transmission. The time at which the transmit buffer 

gets empty on the transmitting node, and the time the receiving node receives the 

nodeID, are the closest comparable times on these separate devices, which justifies our 

decision to reload nodeID into localTime on the transmitting node, and load the received 

nodeID into localTime on the receiving nodes. The slight difference that may occur is 

insignificant and is not an error that builds up or causes the clocks to drift apart. Our 

algorithm makes the entire network resynchronize itself on every reception with no 

additional data transmission or power consumption. The error, therefore, never 

accumulates but is rather constant over time. In addition, our experiments have revealed 

that given the identical hardware and software on the nodes, the transmitting node may 

have a marginal difference in its clock from the receiving nodes, whereas the receiving 

nodes share the same clock value and are truly synchronized. Besides accurate clock 

synchronization, the algorithm also removes the need of a master node to schedule the 

slots in the network, allowing the network to synchronize without dependence on any 

particular node. Master nodes may still be used for clustering applications, but are not 

responsible for cluster synchronization. 

In the previous algorithm, the smallest slot size possible was 200ms. We 

concluded that this was impractical for larger networks. Using the final algorithm, the 

default frame length has been set to 3.35s. All nodes report within this time. NodeIDs can 

be assigned depending on the number of nodes in the network. For example, an 8 node 
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network may be assigned nodeID’s: 10h, 30h, 50h, 70h, 90h, B0h, D0h, F0h, and each 

node transmits when its localTime reaches the nodeID value. Equally spacing the 

nodeIDs ensures that the slots are balanced within the frame length. Experiments were 

conducted to test the maximum number nodes that could be accommodated within the 

3.3s frame without interference. To achieve the goal, three nodes were programmed 

starting with nodeIDs 4 counts apart (C0h, C4h, C8h). The node with nodeID C8h, after 

transmitting, also sent a list of all the nodeIDs it had received transmissions from, to the 

computer. The experiments showed perfect receptions for this case, and also when the 

nodeIDs were 2 counts apart (C0h, C2h, C4h). However, using consecutive nodeIDs 

(C0h, C1h, C2h) caused interference and the packets were often not received by each 

node. This demonstrated that the tasks to be performed for each transmission/reception 

slot took longer than 13ms. Hence, the smallest slot achievable using the default settings 

is 26ms. The conclusion made was that using the default setup, the Smart Stone network 

could accommodate 128 nodes spaced 2 nodeID’s apart from each other. The 5ms time, 

required to switch from receive to transmit mode, takes a significant percentage (40%) of 

the slot, and by switching to transmit mode just before the transmit slot we might be able 

to accommodate more nodes. If fewer nodes were used and 3.3s was deemed to be too 

long a frame length, the 3.3s can be reduced to a 200ms frame length. This, however, 

reduces the number of nodes that can be accommodated in a single frame. In addition, if 

much larger networks are to be constructed, possible ways of using the same concepts 

would be clustering, with each cluster using our synchronization scheme, or resorting to 

2-byte timers such as TIMER1, which could allow thousands of nodes to be part of the 

network.    
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Figure 3.2 Flowchart for Algorithm discussed in Section 3.1 
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Figure 3.3 Flowchart for the Smart Stone Protocol (SSP) discussed in Section 3.2 
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3.3 Smart Stone Sensor Network  

The primary goal of the Smart Dust project is to distribute tiny nodes equipped 

with sensors to perform a specific task by sharing information with the other nodes in the 

network. Achieving synchronization is just the first step in this process, enabling the 

nodes to share vital information reliably using the least amount of power. Our TDMA 

based algorithms ensure that nodes are synchronized and that each node can transmit 

information without interfering with each other, reducing the need to re-transmit their 

packets.  Our wired setup was used as a platform to develop algorithms for sensor 

information processing and sharing.  

 

3.3.1 Wired Network with Potentiometers as Sensors 

The breadboard 3-node wired network was modified attaching potentiometers to 

each node to provide the sensor input. The problem was defined to synchronize the nodes 

using our technique described in section 3.2, read voltages on each node from the 

potentiometers in real-time, transmit the sensor readings in the packet, and have each 

node light up an LED if its own voltage was the highest. Almost all sensors for 

monitoring temperature, acoustic vibration, etc, output an analog voltage representing the 

intensity of the measured signal. Our problem statement encompasses the challenges 

faced in using most sensors, and also the task of locating the node with the most critical 

reading. 

The PIC 16F88 is powered with 7 onchip A/D converter channels which are 

capable of inputting analog data. An A/D conversion results in a 10-bit digital 

representation of the input signal with respect to the A/D reference voltages. This 10-bit 
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result after conversion is contained in two single byte registers. The potentiometers were 

connected to one such port with the supply voltage of 5V and ground as the reference 

voltages for the conversion. Reading the sensor input was incorporated into the transmit 

slot, and comparisons of the sensor readings of the three nodes was incorporated into the 

receive slot. The initialization phase of the program was modified to include the A/D 

module setup, choosing Channel 0 to input the sensor reading, and perform the 

conversion at the maximum rate of Fosc/32, where Fosc is the oscillator frequency. The 

10-bit result was programmed to be right-justified with the six most significant bits of the 

high byte containing zeros. The module was turned on after the initialization to perform 

conversions. In the timer interrupt driven transmit slot, when localTime equaled nodeID, 

the microcontroller started off an A/D conversion by setting the A/D GO/DONE bit high, 

and polled for the completion of the conversion. Once complete, the two result bytes 

were loaded into A2Dhighbyte, and A2Dlowbyte respectively. The transmitted packet for 

the wired setup was modified to be: 

[Frame Sync Byte] [NodeID][A2Dhighbyte][A2Dlowbyte] 

The transmission, therefore, included the sensor information gathered just before 

transmitting. On the receive loop, the frame sync was again used to determine the start of 

a valid packet, nodeID to resynchronize the nodes, and the incoming high and low bytes 

of the sensor reading were stored in particular registers based on the nodeID of the 

transmitting node. After receiving the entire packet, the microcontroller compared the 

voltages received from the other two nodes with its own reading, to determine the node 

with the highest sensor voltage. Thus, all nodes were aware of the node with the highest 

reading at all times. The node also turned on an LED if it deemed its own reading to be 



 86

the highest. The setup was tested with a frame length of 3.3s to be able to observe the 

changes, and the nodes successfully lit up their LED on being supplied the highest 

network voltage. The network continued performing correctly while the potentiometer 

values were changed in real-time.  

 

3.3.2 Smart Stone Sensor Network with MEMS-Microphones 

The Line in the Sand problem, one of the proposed Smart Dust applications, 

necessitates the use of microphones to sense acoustic vibrations to detect intrusion across 

the line. Acoustic MEMS-microphones were acquired to be tested for use in the network. 

The signal was studied, and revealed a dc offset of approximately 1V.  First, a PIC16F88 

was used to control the microphone on a small breadboard. A/D conversions were 

continuously performed, and the resulting 10-bit value was left-justified this time, to store 

the 8 MSBs of the reading in the high byte. The two LSBs of conversion were left in the 

low byte and ignored for ease. Every resulting value was tested against a threshold, and if 

found to be greater, an LED was turned on. The threshold was tuned until it represented a 

value above which a footstep could be interpreted from the sensor reading.  

This procedure for analyzing the MEM’s microphones was inserted into the Smart 

Stone Sensor Network in conjunction with the synchronization algorithm described in 

section 3.2. In accordance with a line crossing algorithm being developed, the sensor 

nodes were to communicate to each other whether they sensed a sound above a 

predetermined footstep threshold. The transmit slot was edited to start off an A/D 

conversion on the microphone, test the most significant 8-bits (A/D high byte) against the 
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threshold, set a footstep detection flag high to note the footstep occurrence, and send this 

information in the transmission packet which had the following format:  

[RF sync byte] [UART sync byte] [Frame Sync Byte] [NodeID][Threshold Flag] 

where Threshold Flag is 1 if a sound as loud as a footstep is detected, and 0 if not 

detected. During the receive slot, the receiving nodes recorded whether the Threshold 

Flag was high for the transmitting node and saved this information for the frame. LEDs 

were assigned on each node for the other nodes and for itself, and lit up every frame if the 

corresponding node had detected the footstep. After downloading the code, the nodes 

were placed on the ground approximately a meter apart, and a test subject walked in 

between two of them at varying locations. All 3 nodes showed consistent lighting of 

LED’s demonstrating the network functioning and sharing information successfully. 

However, when the person walked by very fast, instances were noted where certain nodes 

should have detected the footsteps, but failed to do so. This was attributed to a sensor 

reading being read only once in a frame. Walking across the line formed by the motes 

fast could result in certain motes not recording the incident due to insufficient sampling. 

The experiment brought attention to the fact that the A/D module should continuously 

read the microphone readings in parallel with the transmission and reception slots.   

 The A/D conversion module in the 16F88 is independent of the UART, and 

hence, can function in parallel to the rest of the functions performed in the 

microcontroller. In the final Smart Stone Protocol (SSP), the same initialization is 

performed as in section 3.3.1. The A/D conversion, instead of running sequentially in the 

transmit slot, is programmed to execute in parallel with the rest of the tasks. The module 

is set up to trigger an interrupt each time a new conversion had been made. The A/D 
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interrupt is enabled in the start of the program, and conversion started off before entering 

the _syncwait receive loop. The A/D conversion clock is derived off the system clock. 

Tad, the time taken to convert a single bit has to be chosen between 1.6µs and 6.4µs. A 

10-bit conversion takes up to 9 Tad plus a 2 Tad waiting period after every conversion. 

With a conversion clock of Fosc/32, a sensor reading is made approximately every 70µs. 

Upon completion of the conversion the A/D interrupt causes the program to enter the 

Interrupt Service Routine (ISR). The ISR checks to see if the interrupt is a timer interrupt 

or an A/D interrupt. For the A/D interrupt, threshold checks are performed each time and 

if any of the sensor readings is above the footstep threshold, the Threshold Flag is set 

high. The reception and transmission slots continue exactly as the previous algorithm. 

The Threshold Flag is set to zero after transmitting to ensure that the flag is separately 

tested for each frame. The tests conducted using the programmed Smart Stone Network 

showed detection of footsteps by the nodes close to the point of crossing even on fast 

movement, and consistency in the shared awareness of the network. Decreasing the time 

between acoustic samples to approximately 70µs, ensured that the network never missed 

vibrations irrespective of the duration of the disturbance.  

   

3.4 Analysis of Smart Stone Protocol (SSP) 

The clock synchronization and medium access protocols were designed with due 

attention to the limitations in wireless sensor networks and the resulting clock 

synchronization metrics.  The Smart Stone Protocol (SSP) was also developed 

recognizing the shortcomings of existing schemes. In this section, the SSP is analyzed 
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with respect to the requirements of WSNs, and contrasted and compared with the 

literature review in Chapter 1.  

 

3.4.1 Analysis of the Smart Stone Protocol with WSN limitations 

The Smart Stone synchronization and communication protocols were designed 

while considering each of the WSN limitations discussed in Chapter 1. These limitations 

are revisited in this section in the context of our implemented algorithm. 

3.4.1.1    Low Power 

The primary limitation of WSN’s is the low power budget on each node. The 

smart stone network synchronization protocol is designed to operate under the most 

stringent power limitations. The Smart Stones acquire synchronization without any 

additional synchronization phase. Data transmissions are necessary for sharing events 

with the other network nodes, and synchronization is achieved using the same messages 

used for transmitting data. The resulting synchronization is tight with respect to the 

sender and all the receivers, allowing the nodes to be put in “sleep” mode if they do not 

need to hear each TDMA slot transmission.  

 

3.4.1.2 Low Bandwidth 

A constant transmission rate of 19.2Kbps is currently used in the network. The 

synchronization scheme is devised to work around the difficulties in synchronizing the 

sender to the receiver, removing the need to transmit at higher rates. In addition, the 

intelligently devised Smart Stone protocol packet reduces the transmission burden on the 

network. 
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3.4.1.3 Small Transmission Length 

Small transmission length is a simple but powerful concept in Wireless Sensor 

Network transmissions. The power saved in eliminating the need for one extra byte has 

proven to be significant in a single transmission [7]. However, the power saved is much 

more evident considering that each node may transmit once a second, or 86,400 times a 

day. For networks which are constructed to run for years, saving 1 byte of transmission in 

a 100 node network may save up to 8,640,000 bytes of transmission a day which amounts 

to a significant power advantage to the network. The Smart Stone Protocol low power 

features are highly dependent on the structure of the transmission packet. By transmitting 

at times where nodeID equals localTime we reduce a byte of transmission, and achieve 

slot synchronization without using a single extra synchronization byte. Given this feature, 

and the absence of any separate synchronization phase, the Smart Stone network 

synchronizes itself without using any additional power.  

 

3.4.1.4 Limited Network Connectivity 

The Smart Stones utilize constant synchronization to ensure tight TDMA slots. 

Every time a valid reception is made, all listening nodes are synchronized to each other 

and the sending node. This ensures that the nodes remain synchronized even of they miss 

transmissions from certain nodes due to limited connectivity. If a node falls out of the 

network for some time it attains synchronization on the first broadcast received making 

the network robust.  
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3.4.1.5 Large Scale Network 

The Smart Stone Protocol in its current form is best suited for achieving 

synchronization and sensor data transmission within peer-to-peer networks, or clusters in 

larger networks. The scheme has been tested for immediate use for up to 128 nodes. 

Schemes to extend the concepts to larger networks will be discussed in chapter 4 for 

future work. These additions to the protocol will cover incorporation of more than 128 

nodes into peer-to-peer clusters and synchronization and message passing between 

unconnected nodes in the network. 

 

3.4.2 Analysis of the  Stone Protocol with existing Synchronization protocols 

 

Several issues have been highlighted and addressed in literature while proposing 

the existing protocols discussed in Chapter 1. The proposed schemes also introduce 

numerous other issues after weighing their respective advantages and limitations. The 

literature survey in Chapter 1 was critical to the development of the Smart Stone 

Protocol. This section is dedicated to an in depth comparison of our scheme with these 

protocols with respect to the metrics discussed for clock synchronization analysis. The 

results and comparisons are also summarized in table 3.3. 

 

3.4.2.1 Synchronization Precision 

Synchronization precision is a requirement of the network which varies with the 

MAC protocol used and the application. Our implemented scheme uses TDMA 

communication slots and requires synchronization tight enough to maintain these slots 
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without interference. Our clock synchronization scheme, based on derived timers, takes 

advantage of the broadcast property of the medium similar to the RBS protocol [16] and 

the Continuous Clock Synchronization Protocol [18]. This property takes advantage of 

the transmission reaching the receiver nodes at approximately the same time. From the 

experiments reported in 3.1.1.2 and 3.1.2, we conclude that the receiving nodes are 

synchronized with a precision of 50µs, a single tick of TIMER0. This number compares 

extremely well to the method of Mock et al. [18] which is most similar to ours and 

reports a synchronization precision of 150µs. The RBS protocol [18] takes the broadcast 

property a step further by requiring receivers to exchange messages which contain 

information regarding the time they received a message from a given sender. Using these 

received times the nodes maintain offsets for each node in the network and report a 

precision of approximately 11µs. Though the precision is excellent, their method requires 

multiple messages sent from the sender to estimate the time of arrival at the receivers, 

and subsequent transmissions between the receivers to achieve this precision. Our 

protocol is tailored to achieve slot allocation by acknowledging the achieved 50µs 

precision, and does not require the level of precision offered by the RBS protocol. In 

particular, the power lost in the additional transmissions required to achieve the precision 

is not justified in the Smart Stone Protocol. In addition, the RBS protocol [16] does not 

correct the clock, but maintain tables of offsets for each node in the network. This is not 

suitable to a TDMA approach where transmission times are triggered by the clock value, 

thus meriting clock correction.  
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Figure 3.4 Novel Synchronization point for sender-to-receiver synchronization 

 

Another major limitation of the RBS protocol is the sending node remaining 

desynchronized from the receivers. This is not acceptable in a TDMA network since the 

sending node might fail to enter receive mode if it is desynchronized from the rest of the 

network. Figure 3.4 shows real times on the sender and receiver, where the sender takes a 

time-stamp at t1, starts sending the prepared message over the UART at t2, the message is 

sent out via the radio at t3, received at the receiver channel at t4, and the correction is 

made at t5. The source of the error lies in the inability to accurately determine the time 

taken for the sending node to prepare the report Tprep (t2 – t1) or the send time, and the 

time taken to transmit the report Ttx (t4 – t2). The propagation time t4 – t3 is of the order of 

nanoseconds since electromagnetic waves propagate through air approximately at the 

speed of light. The receive error Trec (t5 – t4), which is the time taken for the receiver to 

receive the message from its own channel, is also present in receiver to receiver 

synchronization. Traditionally, the entire time t5 – t1 is considered to be the sender to 

receiver delay error and may be larger than 1000µs. While attempting to reduce this 

error, we have identified a novel hardware time on the sender that maybe recorded, and 

Time on sender  t1 t2 t3 

t4 t5 Time on receiver 

tbuff 
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used to achieve high sender to receiver synchronization precision. The time at which the 

transmit buffer on the sending node empties, say Tbuff, is the time at which the 

microcontroller has sent the last byte over the UART to the radio. The UART operates 

using a shift register which shifts bits out one after the other to the radio. When the 

shifting mechanism is complete a pin TRMT goes high to indicate the transmit buffer is 

empty. The TR-916-SC-P radio does not have a buffer, and continuously transmits the 

bits it receives from the UART. After receiving the last byte of the message, the receiver 

corrects its own localTime to that received from the sender at time t5 and TIMER0 is 

reset. The times Tbuff  and t5 are the closest identifiable times on the sender and receiver 

which are almost equal. This results from the fact that the time taken to prepare the report 

Tprep and the time taken to send the report over the UART are not a part of the resulting 

difference, Tbuff  - t5. In our implementation, since the radio does not have a buffer, Tbuff 

lies between t3 and t4, and results in high synchronization precision. Using this analysis, 

the nodeID is reloaded into localTime when the transmit buffer empties on the 

transmitting node, by polling the bit TRMT in the UART transmit status and control 

register TXSTA. The clock correction adjusts the clocks to within 13ms of each other, and 

resetting TIMER0 at these close times provides the synchronization at the µs level. This 

results in the sender and receiver being synchronized within 100µs. The rest of the 

algorithm ensures that transmissions are made after a delay larger than the maximum 

skew in the network to allow each node to be in the desired transceiver mode. This is 

achieved by padding the transceiver switching delay. In some radios which perform error 

correction, the message may be stored in a buffer before being transmitted. In such a case 

tbuff would lie in between t2 and t3, but would still significantly reduce the delay error. In 
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addition, these complex transceivers might be equipped with a time ttx_buff, the time at 

which the transmit buffer on the radio empties, which would greatly improve the 

accuracy of the resulting synchronization.  

The synchronization precisions, especially the 50µs receiver to receiver precision, 

are highly dependant on the baud rate used to transmit the message. At 19200 bps, the bit 

time, the time taken to receive one bit of information is 1/19.2k, or 52µs. The resulting 

50µs precision arises from the different times within this 52µs window that the different 

receivers physically receive the first bit of the message. Once the first bit is received, the 

other bits are received at fixed time intervals pre-decided on each microcontroller in the 

UART configuration. In the absence of a synchronous mechanism, these fixed times 

allow the asynchronous operation of the UART. Consequently, much higher precision 

can be achieved using higher baud rates and this is exhibited by the results presented in 

[16]. Finally, as pointed out in Chapter 1, Mock et al [18] might have underestimated 

their precision due to the lack of testing on physical platforms. However, their method 

requires the master to receive its own transmission, which is not possible in sensor nodes 

with transceivers which can only receive or transmit at a time. 

 

3.4.2.2 Piggybacking 

Piggybacking, as discussed in 1.4.1.2, is a term used to refer to the adding of 

synchronization acknowledgement messages to data messages sent to nodes. We extend 

the definition of piggybacking to include the adding of synchronization messages to data 

transmissions. Romer’s protocol [17] and Ganeriwal et al’s scheme [20] incorporate 

piggybacking, saving the network power while achieving synchronization. Protocols with 
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better precision than the Smart Stone Protocol, utilize series of synchronization messages 

transmitted without piggybacking, draining the network’s power in an attempt to achieve 

tighter synchronization. Given that the network’s main purpose is message sharing, 

additional synchronization messages are essentially overheads to achieve the goal. The 

Smart Stone Protocol incorporates the benefits of piggybacking in the most efficient 

scheme possible and this proves to be one of its most lucrative features. In fact, the 

absence of any additional synchronization bytes in our protocol renders the scheme 

superior to all existing schemes in the area of synchronization overhead.  

 

3.4.2.3    Synchronization Message Length 

The diffusion based synchronization protocols [19, 22], rely on large number of 

synchronization messages comprising timestamps, deviations, and number of hops, 

propagating through the network. In contrast, the Smart Stone protocol as discussed 

above, achieves synchronization while piggybacking and without sending a single 

synchronization byte. The need for additional synchronization bytes may arise while 

extending the algorithm to support inter-cluster communication and applications which 

require additional information regarding event timestamps. These will be incorporated 

into the data transmission packet satisfying the piggybacking criterion. It must be noted 

that the more complex synchronization protocols [19, 22] extend the synchronization to 

the entire network, and their complexity should serve as a good benchmark while 

extending the SSP to be a network-wide synchronization protocol.  
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3.4.2.4     Convergence Time 

Convergence time, the time required by the network nodes to attain 

synchronization is an important metric to evaluate clock synchronization algorithms. The 

convergence time is not just a factor at network start up. It is a recurring issue, since it is 

brought into play every time a new node enters the network, or nodes fall out of the 

network and re-enter after some time. It gains even more importance in dynamic 

networks where nodes change positions over time. A single desynchronized node can 

cause interference and disrupt the smooth functioning of the network, especially in 

TDMA based MAC protocols. The convergence time for protocols aimed at multi-hop 

networks [19, 22] are comparatively higher since they attempt to synchronize the entire 

network. The SSP ensures that a node is synchronized the instant it makes its first 

reception. In a case where all nodes are present at start up, the convergence time could be 

as low as 13ms. For a case where there are 128 nodes in the cluster, a new node, or re-

entering node would be synchronized within 26ms of entering the network range.  

 

3.4.2.5    Complexity 

The limited power resources on each node impose a constraint on the complexity 

of algorithms that can be implemented on wireless sensor nodes. Complex 

synchronization algorithms coupled with transmission burdens diminish the mote’s 

ability to perform signal processing tasks. The diffusion based synchronization protocols 

[19, 22], involve high level of complexity, but offer network wide synchronization. Mock 

et al’s protocol [18] is the most similar to our approach. However, this continuous clock 

synchronization method employs the complex method of applying the clock correction 
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continuously over a period of time. This is performed to ensure that the node does not 

miss time triggered deadlines. Their concern, though worthy of addressing, may not merit 

the increased complexity. Our protocol does not presently rely on time triggered 

deadlines. In case of these deadlines, we propose checking the correction interval for 

event deadlines, and rescheduling these events to a time in the future of the corrected 

clock.  

 

3.4.2.6    Network size and Scalability 

The Smart Stone Protocol has been tested on the physical Smart Stone network to 

work for up to 128 nodes. Though schemes have been reported to work on larger number 

of nodes [20, 22], these results are based on simulations and not on sensor platform 

implementations. Realization on physical nodes often poses issues unforeseen in 

simulations. The Smart Stone Protocol is envisioned to be a means of communication 

within peer-to-peer networks, or within clusters in networks with short transmission 

range. Methods to extend this protocol across the larger networks are currently under 

investigation. The lack of scalability solutions is the current drawback of the proposed 

method. However, the scheme should be easily scalable using routing algorithms such as 

the LEACH [15] and will be briefly discussed in the future work section in Chapter 4. 

 

3.4.2.7    Compatibility with Sleep Mode 

Besides preventing message collisions and retransmissions, the most significant 

proposed solution to the low power requirement of the network is allowing nodes to 

periodically sleep [13]. This prevents nodes from indulging in idle listening which can 
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consume unnecessary power. The Smart Stone Protocol’s tight synchronization allows 

the nodes to sleep when global awareness is not required. One of the algorithms under 

development for the Line in the Sand application requires the nodes to be awake only 

during its own transmission slot, and the slot before, to receive the transmission of the 

neighboring node. This implements a cascading routing of information to the base station. 

While extending the SSP into a network-wide communication protocol we intend to 

incorporate a LEACH-like clustering mechanism [15]. The cluster head will be 

responsible for setting up TDMA schedules for the nodes that join its cluster, and will 

convey the IDs of the joining cluster nodes to the entire cluster. Subsequently, the cluster 

nodes will calculate their transmit times using equations such as 4.1 and 4.3. Each cluster 

node transmits its information during the calculated transmission slot and sleeps at all 

other times. This power saving mechanism allows the cluster head to be responsible for 

routing data to the base station or sinks, while the cluster nodes save their power. At the 

end of the round, new cluster heads are determined so that the high power tasks are 

evenly shared among the network nodes, while saving power by sleeping and minimizing 

collisions. Furthermore, in long term applications, events may not occur for days, during 

which the nodes do not transmit and remain in a low power mode. The sensing of 

disturbances may wake a certain node up, and cause it to transmit. This event 

resynchronizes the entire network and resumes synchronized operation at the first valid 

reception. In case of collisions on restart, the first transmission without interference will 

resynchronize the network. 
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PROTOCOL 

 

Precision 

Piggy-

backing 

 

Complexity 

Convergence 

Time 

 

Network Size 

SSP (Thesis) 50µs YES low low 128+ SSN 

RBS [16] 1.86µs NO high N/A 2-20  

Romer [17] 3ms* YES low N/A Unknown 

Mock et al.[18] 150µs NO high low Unknown 

TDP [19] 100µs NO high high 200 (Sim) 

Ganeriwal et al.[20] 16.9µs NO low Unknown 150-300(Sim) 

ADP [22] Unknown NO high high 200-400(Sim) 

 

Table 3.3 Performance Evaluation of Clock Synchronization Algorithms. *In a sparse ad-

hoc network 

 

3.4.3 Smart Stone Protocol (SSP) Summary 

As highlighted in table 3.3, the SSP achieves a receiver-to-receiver 

synchronization precision of 50µs, and also synchronizes the sender to the receivers with 

a worst case skew of 100µs. This serves as an improvement on the protocols [16, 18] 

which use the broadcast property but leave the sender desynchronized from the network. 

The protocol is extremely low power, achieving synchronization within a single message, 

piggybacked on data transmissions without transmitting a single extra byte. The 

convergence time is the time taken to receive the first valid transmission. The protocol 

has been tested on the Smart Stone Network, adding nodes at random, removing nodes, 

and adding them back again without a single interruption in network functioning. 

Experiments were conducted to prove that the protocol in its current implementation can 
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support clusters with up to 128 nodes. Finally, the Smart Stone network was equipped 

with MEMs microphones to serve as a sensor network. The network successfully shared 

information regarding acoustic vibrations sensed by the network nodes. Proposed 

extensions to the algorithm and advanced considerations are discussed in Chapter 4. 
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CHAPTER 4 

 

4.  Future Work 

 Contributions to the Smart Dust goal of developing low-power, low cost dust-

sized wireless sensor nodes, to perform distributed processing to realize a particular 

sensor application, are being made by several research groups.  One of the most 

fascinating aspects of the project is the possibility of contribution from almost every 

concentration in Electrical Engineering, and other engineering and scientific disciplines. 

Areas of active research dedicated to Smart Dust include  

• Battery and  power source development (example: Solar cells) 

• Sensor Technology (example: MEMs)  

• Fabrication Technology (example: 3D Integration) 

• Circuit Design (example: Low power transceivers and ASICs) 

• Mote Design (example: COTS wireless sensor motes) 

• Synchronization Protocols  

• MAC Protocols 

• Routing Protocols 

• Distribution Strategy 

Each of the above mentioned points, however, is highly dependent on the specific 

application the WSN is designed to serve. A list of several prototyped applications is 

available in [43].  
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 The Smart Stone Protocol (SSP) presented in Chapter 3 promises to be an 

excellent synchronization and medium access protocol for peer-to-peer networks, or for 

intra-cluster communication. Its robust, low power features have been designed with 

extension to the entire network in mind. Future work to develop the SSP into a network-

wide synchronization and MAC protocol is proposed in this chapter.  

 

4.1  Fine-tuning the Smart Stone Synchronization Protocol  

The SSP synchronization precision between receivers has been proven to be within 

50µs. RBS [16] experiments observed a maximum deviation of 53.4µs supporting our 

observation. However, Elson et al’s observations were based on Berkeley Motes [8] 

running TinyOS as the operating system. TinyOS is a much more involved operating 

system than the assembly level program implementing the SSP on the Smart Stones. 

Faster timers running on the Smart Stones may be able to reveal more impressive 

experimental lower and upper bounds on the synchronization precision.  As discussed in 

Chapter 1, algorithms synchronizing sender and receiver utilize the round trip time to 

estimate the message passing delay. In Chapter 3, we introduce an identifiable time Tbuff 

on the sender that is closer to the time of arrival at the receiver. This time is the result of 

our software routines being closely related to hardware events, and the timing control 

obtained by programming the MCU in assembly language, as opposed to higher level 

languages such as C. Tbuff removes the non-deterministic send time, and reduces the error 

in estimating access time, since this time occurs after the report is prepared, and sent over 

the UART. Further characterization of this time might supply the research community 
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with a more accurate time to use for round trip estimation in methods like Romer’s [17]. 

The second message sent in [17] can contain Tbuff, instead of Tprep.  

 

4.2  Increasing Smart Stone Cluster Size 

The SSP in its current implementation based on TIMER0, an 8 bit timer, has been 

proven to support at least 128 nodes in a peer-to-peer network, or cluster. Though 128 

nodes seems to be sufficient for a single cluster, the need to accommodate more nodes 

might arise. To accommodate 256 nodes, the slot size must be reduced from 26ms to 

13ms. Experiments conducted demonstrated that the localTime count was the same 

before and after transmitting the report. This indicates that the 5ms switching time within 

the slot causes the entire slot processing time to be over 13ms. Programming the nodes to 

switch to transmit mode at the end of the previous slot, instead of the start of the 

transmitting slot may solve the problem. Keeping time over longer periods merits larger 

counters (64 bits suggested by Mock et al [35]). This would provide the SSP with larger 

frame sizes to accommodate larger number of nodes.  

 

4.3  Incorporating external features into the SSP 

Since the SSP achieves high precision synchronization at the smallest transmission 

overhead, it lends itself well to the incorporation of desired features present in other 

protocols. Though a precision of 50µs is sufficient for our TDMA slots, and acoustic 

vibration sensing tasks, applications which require a higher level of precision can utilize 

the RBS [18] technique of receivers sharing receive times to improve the synchronization 

precision. The sharing of receive times with respect to a particular node, during TDMA 
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slots can be used to realize this. Our clock correction method involves some time 

discontinuity. Given the tightness of the synchronization, these discontinuities are small. 

Mock et al [18] suggest continuous clock synchronization to avoid this. This introduces 

complexity into the processing. Though not discussed in [35], backwards corrections 

achieved by slowing down the clock allow the MCU time to meet time triggered 

processing deadlines. A forward correction, however, involves speeding up the clock, and 

might not allow enough time for the MCU to complete the task within the time allotted. 

Though a scheduling mechanism can be developed to reschedule the events that lie in the 

correction interval, the continuous clock synchronization scheme can be used within the 

SSP, if desired.  

 

4.4    Extending the SSP to a Network-wide Protocol 

The most significant part of our future work will be directed towards extending the 

SSP into a network-wide synchronization and medium access protocol. This will be 

achieved by developing a routing protocol that lends itself to the SSP framework. The 

cluster nature of the current SSP implementation suggests a LEACH-like [15] routing 

protocol to be ideal to achieve the goal. As discussed in 1.3.3, the LEACH uses TDMA 

for intra-cluster communication, where the elected cluster head (CH) after an 

“advertisement phase” sends back the schedule for the nodes in its cluster. For the SSP, 

the schedule would be the values of localTime for each node to transmit at. To reduce the 

message size, the CH can simply send the IDs of the cluster nodes back (node k, node p, 

…. node x)  and the nodes can compute their transmission slots by using the order of the 
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nodes, and the total number of nodes. The transmission slots could be determined using 

the fixed slot size 26ms, using which the transmit times would be: 

_ *( 1)iTxtime slot length i= −            (4.1) 

_ _ *frame length slot length N=           (4.2) 

 where i is the index at which the node appears in the CH’s report, and N is the total 

number of nodes. While this scheme is power efficient and reduces latency, a scheme of 

maintaining equal frame lengths throughout network clusters would be easier to 

distinguish rounds of the LEACH algorithm. For this case 

( )_ * 1i
frame lengthTxtime i

N
= −          (4.3)  

where frame_length is a constant, 3.3s in the current SSP implementation. If the base 

station is capable of communicating the real-time to any node in the network, schemes 

can be devised to synchronize CHs to each other when they broadcast information to the 

base station. Events can be reported after adjusting the cluster time values to the CH’s 

local time.  

 

4.5   Simulations and Implementation 

Though the work in this thesis has gained strength by focusing on implementation of 

synchronization and MAC protocols on physical wireless sensor motes, extending the 

SSP to the entire network will require several simulations. Network Simulations can be 

used to gauge algorithm feasibility, simulate thousand of nodes, and determine the best 

values for parameters used in routing and MAC protocols. The PACT protocol [14] was 

simulated on GlomoSim [44], and LEACH [15] on network simulator ns[45]. TinyOS can 
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be simulated using TOSSIM [46] which compiles directly from TinyOS code. Also, 

though the SSP has demonstrated excellent results on the Smart Stones, which have 

intentionally been built with limited hardware resources, testing the SSP on Berkeley 

Motes would greatly strengthen its appeal to the research community. The Berkeley 

Motes currently provide an excellent platform for researchers to compare their protocols.  

 

4.6 Advanced Considerations 

While tailoring existing concepts in communication protocols to serve WSNs proves 

an invaluable method to develop networking algorithms, “out of the box” approaches 

might hold the key to realizing the Smart Dust goal. The challenging problem of 

achieving low power message routing in WSNs might have solutions in everyday life. 

Mobile nodes traversing the network can serve as “postman nodes”, collecting messages 

from sources with intended destinations, and passing them to these destinations, if and 

when they are within transmission range. The use of mobile agents has also been stated 

by Tong et al. in [47]. A special case of the “postman node” is obtained by extended the 

concept to the third dimension. Technological advances in the field of Micro Air Vehicles 

(MAVs), small Unmanned Aerial Vehicles (UAVs) powered with transceivers, might 

serve the purpose of providing a two-hop routing path between nodes in very large scaled 

networks. The prospect of using UAVs for routing has also been explored by Gu et al. in 

[48]. 
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4.7   Conclusions 

I would like to thank everyone who makes it this far in this thesis for taking time to 

peruse this work. I hope this thesis piques the interest of newcomers, and motivates them 

to join the field of Wireless Sensor Network research. For those already part of the team, 

I sincerely hope this thesis has helped answer some of your questions, and in particular 

hope to see the Smart Stone Protocol developed into a robust network-wide 

synchronization and communication protocol, worthy of application on Smart Dusts! 
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