100 research outputs found

    BIBO stabilisation of continuous time takagi sugeno systems under persistent perturbations and input saturation

    Full text link
    [EN] This paper presents a novel approach to the design of fuzzy state feedback controllers for continuous-time non-linear systems with input saturation under persistent perturbations. It is assumed that all the states of the Takagi¿Sugeno (TS) fuzzy model representing a non-linear system are measurable. Such controllers achieve bounded input bounded output (BIBO) stabilisation in closed loop based on the computation of inescapable ellipsoids. These ellipsoids are computed with linear matrix inequalities (LMIs) that guarantee stabilisation with input saturation and persistent perturbations. In particular, two kinds of inescapable ellipsoids are computed when solving a multiobjective optimization problem: the maximum volume inescapable ellipsoids contained inside the validity domain of the TS fuzzy model and the smallest inescapable ellipsoids which guarantee a minimum *-norm (upper bound of the 1-norm) of the perturbed system. For every initial point contained in the maximum volume ellipsoid, the closed loop will enter the minimum *-norm ellipsoid after a finite time, and it will remain inside afterwards. Consequently, the designed controllers have a large domain of validity and ensure a small value for the 1-norm of closed loop.The authors wish to thank the Editor-in-Chief and the anonymous reviewers for their valuable comments and suggestions. This work has been funded by Ministerio de Economia y Competitividad (Spain) through the research project DPI2015-71443-R and by Generalitat Valenciana (Valencia, Spain) through the research project GV/2017/029.Salcedo-Romero-De-Ávila, J.; Martínez Iranzo, MA.; Garcia-Nieto, S.; Hilario Caballero, A. (2018). BIBO stabilisation of continuous time takagi sugeno systems under persistent perturbations and input saturation. International Journal of Applied Mathematics and Computer Science (Online). 28(3):457-472. https://doi.org/10.2478/amcs-2018-0035S45747228

    T-S Fuzzy Bibo Stabilisation of Non-Linear Systems Under Persistent Perturbations Using Fuzzy Lyapunov Functions and Non-PDC Control Laws

    Full text link
    [EN] This paper develops an innovative approach for designing non-parallel distributed fuzzy controllers for continuous-time non-linear systems under persistent perturbations. Non-linear systems are represented using Takagi-Sugeno fuzzy models. These non-PDC controllers guarantee bounded input bounded output stabilisation in closed-loop throughout the computation of generalised inescapable ellipsoids. These controllers are computed with linear matrix inequalities using fuzzy Lyapunov functions and integral delayed Lyapunov functions. LMI conditions developed in this paper provide non-PDC controllers with a minimum *-norm (upper bound of the 1-norm) for the T-S fuzzy system under persistent perturbations. The results presented in this paper can be classified into two categories: local methods based on fuzzy Lyapunov functions with guaranteed bounds on the first derivatives of membership functions and global methods based on integral-delayed Lyapunov functions which are independent of the first derivatives of membership functions. The benefits of the proposed results are shown through some illustrative examples.This work has been funded by Ministerio de Economia y Competitividad, Spain (research project RTI2018-096904-B-I00) and Conselleria de Educacion, Cultura y Deporte-Generalitat Valenciana, Spain (research project AICO/2019/055).Salcedo-Romero-De-Ávila, J.; Martínez Iranzo, MA.; Garcia-Nieto, S.; Hilario Caballero, A. (2020). T-S Fuzzy Bibo Stabilisation of Non-Linear Systems Under Persistent Perturbations Using Fuzzy Lyapunov Functions and Non-PDC Control Laws. International Journal of Applied Mathematics and Computer Science (Online). 30(3):529-550. https://doi.org/10.34768/amcs-2020-0039S52955030

    Contributions to fuzzy polynomial techniques for stability analysis and control

    Full text link
    The present thesis employs fuzzy-polynomial control techniques in order to improve the stability analysis and control of nonlinear systems. Initially, it reviews the more extended techniques in the field of Takagi-Sugeno fuzzy systems, such as the more relevant results about polynomial and fuzzy polynomial systems. The basic framework uses fuzzy polynomial models by Taylor series and sum-of-squares techniques (semidefinite programming) in order to obtain stability guarantees. The contributions of the thesis are: ¿ Improved domain of attraction estimation of nonlinear systems for both continuous-time and discrete-time cases. An iterative methodology based on invariant-set results is presented for obtaining polynomial boundaries of such domain of attraction. ¿ Extension of the above problem to the case with bounded persistent disturbances acting. Different characterizations of inescapable sets with polynomial boundaries are determined. ¿ State estimation: extension of the previous results in literature to the case of fuzzy observers with polynomial gains, guaranteeing stability of the estimation error and inescapability in a subset of the zone where the model is valid. ¿ Proposal of a polynomial Lyapunov function with discrete delay in order to improve some polynomial control designs from literature. Preliminary extension to the fuzzy polynomial case. Last chapters present a preliminary experimental work in order to check and validate the theoretical results on real platforms in the future.Pitarch Pérez, JL. (2013). Contributions to fuzzy polynomial techniques for stability analysis and control [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/34773TESI

    Fuzzy Controllers

    Get PDF
    Trying to meet the requirements in the field, present book treats different fuzzy control architectures both in terms of the theoretical design and in terms of comparative validation studies in various applications, numerically simulated or experimentally developed. Through the subject matter and through the inter and multidisciplinary content, this book is addressed mainly to the researchers, doctoral students and students interested in developing new applications of intelligent control, but also to the people who want to become familiar with the control concepts based on fuzzy techniques. Bibliographic resources used to perform the work includes books and articles of present interest in the field, published in prestigious journals and publishing houses, and websites dedicated to various applications of fuzzy control. Its structure and the presented studies include the book in the category of those who make a direct connection between theoretical developments and practical applications, thereby constituting a real support for the specialists in artificial intelligence, modelling and control fields

    Contributions of flywheel systems in wind power plants

    Get PDF
    The stepwise replacement of conventional power plants by renewable-based ones such as wind power plants could a ect the system behaviour and planning. First, the network stability may be compromised as it becomes less resilient against sudden changes in the loads or generator trips. This is because wind turbines are not synchronized with network frequency but they are usually connected to the grid through fast controllable electronic power converters. And second, due to the stochastic nature of wind, the electrical power generated by wind power plants is neither constant non controllable. This aff ects the network planning as the expected generation level depends on non reliable wind forecasts. Also it aff ects the power quality as the fast fluctuations of wind power can cause harmonics and flicker emissions. For these reasons, network operators gradually set up more stringent requirements for the grid integration of wind power. These regulations require wind power plants to behave in several aspects as conventional synchronized generating units. Among other requirements, it is set the provision of some ancillary services to the grid as frequency and voltage control, the capability of withstanding short-circuits and faults, and to respect some threshold level with regard to the quality of the power generated. Accordingly, energy storage systems may play an important role in wind power applications by enhancing the controllability of the output of wind power plants and providing ancillary services to the power system and thus, enabling an increased penetration of wind power in the system. This thesis focuses on the potential uses of flywheel energy storage systems in wind power. The thesis introduces the basis of several energy storage systems as well as identi es their applications in wind power based on an extensive literature review. It follows with the presentation of the design and setting up of a scale-lab flywheel-based energy storage system. From this work, research concentrates on the application of flywheel devices for power smoothing of wind power plants. The developed concepts are proved by simulations but also experimentally using the above mentioned scale-lab test bench. In particular, research focuses on the de nition of an optimization criteria for the operation of flywheel devices while smoothing the wind power, and the design and experimental validation of the proposed control algorithms of the storage device. The last chapters of the thesis research on the role of wind power plants in system frequency control support. In this sense, an extensive literature review on the network operator's requirements for the participation of wind power plants in system frequency control related-tasks is off ered. Also, this review covers the proposed control methods in the literature for enabling wind turbines to participate in system frequency control. The results of this work open the door to the design of control systems of wind turbines and wind power plants for primary frequency control. The contribution of flywheel devices is also considered. Results highlight the tremendous potential of energy storage systems in general for facilitating the grid integration of wind power plants. Regarding the uses of flywheel devices, it is worth noting that some of their characteristics as the high-ramp power rates can be exploited for reducing the variability of the power generated by wind turbines, and thus for improving the quality of the power injected to the grid by wind power plants. Also, they can support wind power plants to ful l the requirements for their participation in system frequency control support related tasks.El progressiu despla cament de plantes de generaci o convencionals per part de plantes de generaci o de tipus renovable, com els parcs e olics, pot afectar el comportament i la plani caci o del sistema el ectric. Primer, l'estabilitat pot ser compromesa ja que el sistema el ectric resulta m es vulnerable davant canvis abruptes provocats per les c arregues del sistema o desconnexions no programades de generadors. Aix o es degut a que les turbines e oliques no estan sincronitzades amb la freqü encia el ectrica del sistema ja que la seva connexi o es a trav es de convertidors electr onics de pot encia. Segon, degut a la gran variabilitat del vent, la pot encia el ectrica generada per les turbines e oliques no es constant ni controlable. En aquest sentit, la qualitat de la pot encia del parc e olic es pot veure compromesa, ja que es poden detectar nivells apreciables d'harm onics i emissions de "flicker" degudes a les r apides variacions de la pot encia generada pel parc e olic. Per aquests motius, els operadors dels sistemes el ectrics fan gradualment m es restrictius els requeriments de connexi o dels parcs e olics al sistema el ectric. Aquestes regulacions requereixen als parcs e olics que es comportin en molts aspectes com plantes de generaci o convencional. Entre d'altres requeriments, els parcs e olics han de proveir serveis auxiliars per a la operaci o del sistema el ectric com tamb e el suport en el control dels nivells de tensi o i freqü encia de la xarxa; oferir suport durant curtcircuits; i mantenir uns nivells m nims en la qualitat de la pot encia generada. Els sistemes d'emmagatzematge d'energia poden millorar la controlabilitat de la pot encia generada pels parcs e olics i ajudar a aquests a proveir serveis auxiliars al sistema el ectric, afavorint aix la seva integraci o a la xarxa. Aquesta tesi tracta l'aplicaci o en parcs e olics dels sistemes d'emmagatzematge d'energia basats en volants d'in ercia. La tesi introdueix les bases de diversos sistemes d'emmagatzematge i identi ca les seves potencials aplicacions en parcs e olics en base a una extensa revisi o bibliogr a ca. El treball continua amb la posta a punt d'un equipament de laboratori, que con gura un sistema d'emmagatzematge d'energia basat en un volant d'in ercia. Següents cap tols de la tesi estudien l'aplicaci o dels volants d'in ercia per a esmorteir el per l fluctuant de la pot encia generada pels parcs e olics. Els treballs es focalitzen en la de nici o dels criteris per a la operaci o optima dels volants d'in ercia per la seva aplicaci o d'esmorteir el per l fluctuant de potencia e olica, i tamb e en el disseny i validaci o experimental dels algoritmes de control desenvolupats per governar el sistema d'emmagatzematge. Els cap tols finals de la tesi tracten sobre el suport al control de freqü encia per part dels parcs e olics. S'ofereix una extensa revisi o bibliografica respecte els requeriments indicats pels operadors del sistema el ectric en aquest sentit. A m es, aquesta revisi o cobreix els m etodes de control dels parcs e olics i turbines e oliques per la seva participaci o en el suport al control de freqü encia. Les conclusions extretes serveixen per proposar sistemes de control de parcs e olics i de turbines e oliques per proveir el servei de control de freqüencia. Aquest treball, tamb e contempla la inclusi o de volants d'in ercia en els parcs e olics. Dels resultats de la tesi se'n dedueix l'important potencial dels sistemes d'emmagatzematge d'energia per a afavorir la integraci o a la xarxa dels parcs e olics. La controlabilitat de la pot encia dels volants d'in ercia, afavoreix el seu us per reduir la variabilitat de la pot encia generada pels parcs e olics, millorant aix la qualitat de pot encia del mateix. A m es, els volants d'in ercia poder ajudar als parcs e olics a complir amb els requeriments per a la seva integraci o a xarxa, com la participaci o en el control de freqüencia del sistema el ectric

    Advances and Trends in Mathematical Modelling, Control and Identification of Vibrating Systems

    Get PDF
    This book introduces novel results on mathematical modelling, parameter identification, and automatic control for a wide range of applications of mechanical, electric, and mechatronic systems, where undesirable oscillations or vibrations are manifested. The six chapters of the book written by experts from international scientific community cover a wide range of interesting research topics related to: algebraic identification of rotordynamic parameters in rotor-bearing system using finite element models; model predictive control for active automotive suspension systems by means of hydraulic actuators; model-free data-driven-based control for a Voltage Source Converter-based Static Synchronous Compensator to improve the dynamic power grid performance under transient scenarios; an exact elasto-dynamics theory for bending vibrations for a class of flexible structures; motion profile tracking control and vibrating disturbance suppression for quadrotor aerial vehicles using artificial neural networks and particle swarm optimization; and multiple adaptive controllers based on B-Spline artificial neural networks for regulation and attenuation of low frequency oscillations for large-scale power systems. The book is addressed for both academic and industrial researchers and practitioners, as well as for postgraduate and undergraduate engineering students and other experts in a wide variety of disciplines seeking to know more about the advances and trends in mathematical modelling, control and identification of engineering systems in which undesirable oscillations or vibrations could be presented during their operation

    Efficiency and Sustainability of the Distributed Renewable Hybrid Power Systems Based on the Energy Internet, Blockchain Technology and Smart Contracts-Volume II

    Get PDF
    The climate changes that are becoming visible today are a challenge for the global research community. In this context, renewable energy sources, fuel cell systems, and other energy generating sources must be optimally combined and connected to the grid system using advanced energy transaction methods. As this reprint presents the latest solutions in the implementation of fuel cell and renewable energy in mobile and stationary applications, such as hybrid and microgrid power systems based on the Energy Internet, Blockchain technology, and smart contracts, we hope that they will be of interest to readers working in the related fields mentioned above
    corecore