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
 

Abstract— This paper investigates a novel approach to design a 

nonlinear optimal model predictive controller for the speed control 

of constrained nonlinear electric vehicles (EVs). The proposed 

approach employs a linear parameter varying (LPV) model 

including bias terms and a model predictive scheme. The controller 

design conditions are derived in terms of linear matrix inequalities 

(LMIs), which can be solved through convex optimization 

techniques. Due to considering bias terms in the system dynamic, 

the proposed approach can be regarded as the general case of the 

existing results. Furthermore, practical limitations on the 

amplitude of the input signal are considered and formulated in 

terms of LMIs. An electric vehicle dynamic with bias term is 

presented and hardware-in-the-loop (HiL) real-time and 

experiments are carried out to illustrate the effectiveness and 

merits of the proposed approach over the existing results. 

 
Index Terms— Nonlinear light-weighted electric vehicle, 

nonlinear model predictive control, linear parameter varying 

(LPV), linear matrix inequality (LMI), practical constraint. 

I. INTRODUCTION 

N recent years, because of global fuel supply, pollution 

issues and global warming, zero-polluting electric vehicles 

are a rapidly growing technology for energy management and 

environmental protection. The Light-Weighted Electric 

Vehicle (LWEV) has emerged as a promising alternative to 

improve fuel economy while meeting the tightened emission 

standards [1]–[4]. The LWEV is used in several applications 

including short-range transportations [5] A lot of work has 

been reported in the literature for reducing the energy and cost 

and increasing driving ranges in order to improve the 

performance of the energy management system [6]–[9]. Direct 

Current (DC) power is supplied by a battery and can provide 

larger startup torque. Consequently, a DC motor-based LWEV 

is known as a suitable choice and several DC motor-based 
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EVs have been produced in the industry [10]. Furthermore, the 

DC motors have an effective operation as a braking device due 

to their fast torque response characteristics [11].  

Several control approaches are presented for set-point 

stabilization and reference tracking of the speed control of 

nonlinear electric vehicle systems. In [12], a linear quadratic 

controller was presented for hybrid electric vehicles by 

controlling the throttle position. However, employing a linear 

controller for nonlinear systems reduces the performance of 

the closed-loop system. In [6], a probabilistic fuzzy neural 

network was proposed for a six-phase permanent magnet 

synchronous motor for LWEV. In [13], a fuzzy model-based 

controller was designed to control the speed of a permanent 

magnet synchronous motor and also experimentally tested. In 

[14], a fuzzy model-free controller was proposed for the wheel 

slip of electric vehicle's antilock braking systems. In [15], a 

new method based on stochastic drive cycles was developed 

for control optimization of an electric vehicle system. A robust 

adaptive sliding mode controller for uncertain hybrid electric 

vehicle systems was studied in [16]. Recently, a backstepping 

scheme was proposed for speed control of the electric vehicle 

systems [11]. Since the nonlinear dynamics of electric vehicles 

are not in the form of a strict feedback structure, a nonlinear 

mapping was first introduced. Then the backstepping 

controller was considered for reference trajectory issue of the 

electric vehicle speed. In [17], a feedback linearization method 

was proposed for the LWEV system. In this approach, the 

linear closed-loop system was stabilized by an LQR control 

scheme. In [18], an interior permanent magnet synchronous 

machine (IPMSM) based EV is controlled via an adaptive 

neural network method. It is assumed that the parameters of 

the IPMSM are unknown and an adaptive scheme is presented 

to assure the closed-loop stability and reference tracking 

through the Lyapunov stability theory. In [19], a terminal 

sliding mode control method is developed for the speed 

control of a hydrostatic heavy EV. The ramp angle is 

estimated by a disturbance observer and used in the controller 

design. However, in the above control methodologies, the 

practical limitations including the limited amplitude of the 

control input were not considered in the controller design 

procedure. Therefore, the performance of the mentioned 

controllers is decreased in the presence of practical 

constraints.    

Besides the above-mentioned approaches in controlling the 
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speed of EV systems, model predictive control technique 

(MPC) is an appropriate method, which effectively handles the 

constraints and addresses different challenging control 

problems such as disturbance rejection [20]–[23]. Based on 

the (Takagi-Sugeno) T-S or LPV models, nonlinear MPC 

(NMPC) is employed to DC microgrids [24], [25], active 

suspension systems [26], and chemical reactors [27], [28]. 

Recently in [29], [30], we proposed a nonlinear model 

predictive control for continuous-time T-S fuzzy systems 

based on a non-quadratic Lyapunov function and a non-

parallel distributed compensation scheme and is applied to an 

EV system. However, considering the Lyapunov-based 

stability constraints can increase the computational burden of 

solving the online optimization problem and requires an 

analogous measurement of the system states. Furthermore, in 

most of the LPV-based MPC techniques in the literature, bias 

terms in the state space representation are not considered [26]–

[33].   

This paper develops a novel control strategy for the speed 

control of the constrained electric vehicle systems. A 

nonlinear model predictive control scheme under constraints is 

studied and formulated in terms of Linear Matrix Inequalities 

(LMIs). The proposed approach is based on an LPV model 

with bias terms. Firstly, the LPV model is used to exactly 

represent the nonlinear electric vehicle dynamics. Then, a 

model predictive scheme is proposed. The conditions 

associated with the model predictive controller design and the 

desired constraints are reformulated in terms of LMIs and 

solved by the numerical convex optimization approaches. 

Furthermore, controller design conditions are presented to 

force the system states to converge to their desired references 

on a finite horizon. Since the EVs comprise non-smooth 

functions originated by the friction forces; an exact polytopic 

LPV modeling of such systems is not possible. Therefore, the 

existing LPV-based MPC techniques lead to undesired closed-

loop performance. The main advantage of our approach is that 

we consider a wider class of nonlinear state space LPV system 

and extend the existing results to this class of systems. This 

class of system can be used to exactly model non-smooth 

functions and, thereby, the proposed MPC method can be 

directly applied to the EV systems. To illustrate the 

advantages of the proposed approach over the recently 

published papers in the presence of practical constraints, the 

nonlinear model predictive, backstepping and feedback 

linearization controllers are applied to a nonlinear electric 

vehicle and the obtained experimental results are compared. 

This paper is structured as follows: In Section 2, the 

nonlinear dynamics of the LWEV and its LPV model are 

proposed. In Section 3, the LMI formulations of the nonlinear 

predictive control problem are discussed. Experimental results 

are illustrated in Section 4. In the last section, the concluding 

remarks are given.  

II. LIGHT-WEIGHTED ELECTRIC VEHICLE SYSTEM AND ITS 

LPV MODEL 

In this section, first, the description of the electric vehicle 

will be given in detail. Then, the equivalent LPV 

representation of the EV will be proposed. 

A. The Electric Vehicle Model 

Fig. 1 presents the schematic of an EV, which contains the 

balance among the rolling resistance 𝐹𝑟𝑟, aerodynamic drag 

𝐹𝑎𝑑, hill climbing 𝐹ℎ𝑐, and acceleration 𝐹𝑎𝑐 forces, exposed on 

a moving vehicle.  

 
Fig. 1. The general scheme of light-weighted EV. 

 

Take these factors into consideration, the total effective 

forces of vehicle dynamics, which control the kinetics of the 

wheels and vehicle can be considered as [29]: 
 

 

 

𝐹 = 𝜇𝑟𝑟𝑚𝑔𝑐𝑜𝑠𝜑 +
1
2⁄ 𝜌𝐴𝐶𝑑𝑣

2 +𝑚𝑔𝑠𝑖𝑛𝜑 +𝑚𝑑𝑣 𝑑𝑡⁄  (1) 

 
 

where 𝜇𝑟𝑟 is the rolling resistance coefficient, 𝑚 is the mass of 

the electric vehicle, 𝑔 is the gravity acceleration, 𝜌 is the air 

density, 𝐴 is the frontal area of the vehicle, 𝐶𝑑 is the drag 

coefficient, 𝑣 is the driving velocity of the vehicle, and 𝜑 is 

the hill climbing angle. This resultant force 𝐹 will create a 

counterproductive torque to the driving motor, which is 

illustrated by following formula [30], 

𝑇𝐿 = 𝐹 (
𝑟𝑒
𝐺
) (2) 

where 𝑟𝑒  is the tyre radius of the electric vehicle, 𝐺 the gearing 

ratio and the driving motor produced 𝑇𝐿  the torque.  

B. Dynamics of the Electric Vehicle 

An EV system comprises the vehicle and motor dynamics. 

The DC motor is with serial connected armature and field 

windings and it is linked to the electric vehicle through the 

transmission part which includes the gearing system. 

Consequently, the actual speed of the electric vehicle is 

controlled by tuning the speed of the DC motor. The overall 

dynamic model of the EV system can be written as follows 

[11], [29]: 

{
 
 
 

 
 
 𝑑𝜔

𝑑𝑡
= (

1

𝐽 + 𝑚 (
𝑟𝑒
𝐺
)
2) {𝐿𝑎𝑓𝑖

2 − 𝐵𝜔 − (
𝑟𝑒
𝐺
) ×             

(𝜇𝑟𝑟𝑚𝑔𝑐𝑜𝑠𝜑 + 
1
2⁄ 𝜌𝐴𝐶𝑑 (

𝑟𝑒
𝐺
)
2

𝜔2 +𝑚𝑔𝑠𝑖𝑛𝜑)}

𝑑𝑖

𝑑𝑡
= (

1

𝐿𝑎 + 𝐿𝑓𝑖𝑒𝑙𝑑
) {𝑢 − (𝑅𝑎 + 𝑅𝑓)𝑖 − 𝐿𝑎𝑓𝑖𝜔}       

 (3) 

𝜑 
𝑚𝑔 

𝐹ℎ𝑐 

𝐹𝑎𝑐 
𝐹𝑎𝑑 

𝐹𝑟𝑟 

Acceleration Force Aerodynamic Drag Force 

Rolling Resistance Force Hill Climbing Force 
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where 𝜔 is the motor angular speed and 𝑖 is the armature 

current. Furthermore, 𝐿𝑎, 𝑅𝑎, 𝐿𝑓𝑖𝑒𝑙𝑑  and 𝑅𝑓 are the armature 

inductance, armature resistance, field winding inductance and 

field winding resistance, respectively. Also, 𝐵 is the viscous 

coefficient, 𝐽 is the inertia of the DC motor, 𝑢 is the control 

input voltage, and 𝐿𝑎𝑓 is the mutual inductance between the 

armature winding and the field winding [11].  

C. LPV Representation of the Electric Vehicle 

By exerting some simplifications on (3) and considering a 

small hill climbing angle to approximate 𝑐𝑜𝑠𝜑 ≅ 1, one has 

{
𝑥̇1 =

𝐾1
𝑚 + 𝐾2

{𝐾3𝑥2
2 − 𝐾4𝑥1 − 𝐾5𝑥1

2 − 𝐾6𝑚 −𝐾7sin𝜑 }

𝑥̇2 = −𝐾8𝑥2 − 𝐾9𝑥1𝑥2 + 𝐾10𝑢                                              
𝑦 = 𝑥1                                                                                         

 (4) 

where 𝑥 = [𝑥1   𝑥2}
𝑇 = [𝜔    𝑖]𝑇 is the state vector, 𝑦 is the 

output. Also, 𝐾1 = (
𝐺

𝑟𝑒
)
2

, 𝐾2 = (
𝐺

𝑟𝑒
)
2

𝐽, 𝐾3 = 𝐿𝑎𝑓, 𝐾4 = 𝐵, 

𝐾5 = 0.5𝜌𝐴𝐶𝑑 (
𝑟𝑒

𝐺
)
3

, 𝐾6 = (
𝑟𝑒

𝐺
) 𝜇𝑟𝑟𝑔, 𝐾7 = (

𝑟𝑒

𝐺
)𝑚𝑔, 𝐾8 =

(𝑅𝑎+𝑅𝑓)

(𝐿𝑎+𝐿𝑓)
, 𝐾9 =

𝐿𝑎𝑓

(𝐿𝑎+𝐿𝑓)
, and 𝐾10 =

1

(𝐿𝑎+𝐿𝑓)
. The nonlinear 

dynamic equations (4) consist of three nonlinear terms (i.e. 𝑥2
2, 

𝑥1
2 and 𝑥1𝑥2). Since the states are bounded, they vary in the 

interval 𝑥𝑖 ∈ [−𝑥𝑖min   𝑥𝑖max] for 𝑖 = 1,2. By defining the time 

varying parameters as 

𝜃1 = (
𝑥1𝑚𝑎𝑥 − 𝑥1

𝑥1𝑚𝑎𝑥 − 𝑥1𝑚𝑖𝑛
) (

𝑥2𝑚𝑎𝑥 − 𝑥2
𝑥2𝑚𝑎𝑥 − 𝑥2𝑚𝑖𝑛

) ; 

𝜃2 = (
𝑥1𝑚𝑎𝑥 − 𝑥1

𝑥1𝑚𝑎𝑥 − 𝑥1𝑚𝑖𝑛
) (

𝑥2 − 𝑥2𝑚𝑖𝑛
𝑥2𝑚𝑎𝑥 − 𝑥2𝑚𝑖𝑛

) ; 

𝜃3 = (
𝑥1 − 𝑥1𝑚𝑖𝑛

𝑥1𝑚𝑎𝑥 − 𝑥1𝑚𝑖𝑛
) (

𝑥2𝑚𝑎𝑥 − 𝑥2
𝑥2𝑚𝑎𝑥 − 𝑥2𝑚𝑖𝑛

) ; 

𝜃4 = (
𝑥1 − 𝑥1𝑚𝑖𝑛

𝑥1𝑚𝑎𝑥 − 𝑥1𝑚𝑖𝑛
) (

𝑥2 − 𝑥2𝑚𝑖𝑛
𝑥2𝑚𝑎𝑥 − 𝑥2𝑚𝑖𝑛

) ; 

(5) 

the following LPV model of (4) is obtained: 

{
 
 

 
 𝑥̇ =∑𝜃𝑖{𝐴𝑖𝑥 + 𝐵𝑖𝑢 + 𝐸𝑖 + 𝐷𝑖𝑣}

4

𝑖=1

𝑦 =∑𝜃𝑖𝐶𝑖𝑥                                       

4

𝑖=1

 (6) 

where 𝑥 = [𝑥1  𝑥2]
𝑇 , 𝑣 = 𝑠𝑖𝑛𝜑, and 

𝐴1 = [
−
𝐾1𝐾4 + 𝐾1𝐾5𝑧1𝑚𝑖𝑛

𝑚 +𝐾2

𝐾1𝐾3𝑧2𝑚𝑖𝑛
𝑚+ 𝐾2

−𝐾9𝑧2𝑚𝑖𝑛 −𝐾8

] ; 

    𝐴2 = [
−
𝐾1𝐾4 + 𝐾1𝐾5𝑧1𝑚𝑖𝑛

𝑚 +𝐾2

𝐾1𝐾3𝑧2𝑚𝑎𝑥
𝑚 + 𝐾2

−𝐾9𝑧2𝑚𝑎𝑥 −𝐾8

] ; 

𝐴3 = [
−
𝐾1𝐾4 + 𝐾1𝐾5𝑧1𝑚𝑎𝑥

𝑚+ 𝐾2

𝐾1𝐾3𝑧2𝑚𝑖𝑛
𝑚 + 𝐾2

−𝐾9𝑧2𝑚𝑖𝑛 −𝐾8

] ; 

    𝐴4 = [
−
𝐾1𝐾4 + 𝐾1𝐾5𝑧1𝑚𝑎𝑥

𝑚 +𝐾2

𝐾1𝐾3𝑧2𝑚𝑎𝑥
𝑚 + 𝐾2

−𝐾9𝑧2𝑚𝑎𝑥 −𝐾8

] ; 

𝐵1 = 𝐵2 = 𝐵3 = 𝐵4 = [
0
𝐾10

] ; 

𝐶1 = 𝐶2 = 𝐶3 = 𝐶4 = [1 0]; 

𝐸1 = 𝐸2 = 𝐸3 = 𝐸4 = [

−𝐾1𝐾6𝑚

𝑚 + 𝐾2
0

] ; 

𝐷1 = 𝐷2 = 𝐷3 = 𝐷4 = [

−𝐾1𝐾7
𝑚 + 𝐾2
0

]. 

As it can be seen in (6), the nonlinear dynamics of the EV 

are modeled by a polytopic LPV model with 4 sub-systems, 

which are dynamically weighted by time varying parameters 

𝜃𝑖 for 𝑖 = 1,… ,4. The time varying parameters are continuous 

and functions of the system states. Furthermore, the LPV 

representation is obtained for the region ℛ ∈ {𝑥| 𝑥𝑖 ∈
[−𝑥𝑖min   𝑥𝑖max]  for 𝑖 = 1,2 }. The lower and upper bounds 

can be selected based on the physical constraints of the EV. 

The DC motor of a practical EV can be supplied with a limited 

amplitude of the current and the overall EV has a limited 

velocity. Considering such constraints, the LPV system will be 

obtained. The sub-systems of (6) are linear and thereby, one 

can conclude that the polytopic LPV systems provide a 

nonlinear state-space representation, which is somehow affine 

with respect to the states. 

III. THE LPV-BASED MODEL PREDICTIVE CONTROL 

SCHEME 

MPC is a popular method, which utilizes a model to predict 

the future behavior of a system over a specific prediction 

horizon [34]–[36]. At each time step, an online optimization 

problem is solved to obtain the control signal. The online 

calculation can be carried out by a quadratic optimization or 

the LMI numerical techniques, which are powerful tools for 

solving the control problems that do not have analytical 

solutions [37]–[39]. The main theoretical results of the MPC 

related to the stability come from a state space formulation, 

which can easily be extended to nonlinear processes [40]. 

Nonlinear MPC techniques can be formulated in terms of 

LMIs by considering the T-S or LPV modeling [27], [41]. In 

this section, a nonlinear model predictive controller based on 

the LPV model will be studied. Consider the following 

discrete-time LPV system with bias term: 

{
  
 

  
 𝑥(𝑡 + 1) =∑𝜃𝑖𝐴𝑖𝑥(𝑡)

𝑟

𝑖=1

+∑𝜃𝑖𝐵𝑖𝑢(𝑡)

𝑟

𝑖=1

+∑𝜃𝑖𝐸𝑖

𝑟

𝑖=1

= 𝐴𝜃𝑥(𝑡) + 𝐵𝜃𝑢(𝑡) + 𝐸𝜃             

        

𝑦(𝑡) = ∑𝜃𝑖𝐶𝑖𝑥(𝑡)

𝑟

𝑖=1

= 𝐶𝜃𝑥(𝑡)                                              

 (7) 

where 𝐸𝜃  is the bias term and the following cost function [40]: 

𝐽(𝑁𝑝, 𝑁𝑢) = ∑𝛿(𝑗)[𝑦̂(𝑡 + 𝑗|𝑡) − 𝑤(𝑡 + 𝑗)]2

𝑁𝑝

𝑗=1

+∑𝜆(𝑗)[𝑢(𝑡 + 𝑗 − 1)]2

𝑁𝑢

𝑗=1

 

(8) 

where 𝑁𝑝 and 𝑁𝑢 are the prediction and control horizons, 

respectively, and 𝑦̂(𝑡 + 𝑗|𝑡) is the optimal 𝑗-step ahead 

prediction of the output and 𝑤(𝑡 + 𝑗) is the function of future 

reference. The coefficients 𝛿(𝑗) and 𝜆(𝑗) determine the 

weights of the tracking error and the energy effort terms in the 

cost function (8), respectively. Generally, there is a tradeoff 



2168-6777 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JESTPE.2018.2884346, IEEE Journal
of Emerging and Selected Topics in Power Electronics

IEEE Journal of Emerging and Selected Topics in Power Electronics 4 

between the tracking error and the energy of the control input. 

If high values of 𝛿(𝑗) for 𝑗 = 1,… , 𝑁𝑝 are selected, 

minimizing the tracking error will be primitive. Thereby, the 

controller is designed so that it better minimizes the tracking 

error. On the other hand, if the coefficient 𝜆(𝑗) is chosen large, 

then the impact of the term control input energy in the 

optimization is enlarged. Therefore, the controller is designed 

so that it better minimizes the tracking error. 

In order to obtain the control inputs 𝑢(𝑡 + 𝑗 − 1), it is 

necessary to minimize the cost function 𝐽 given in (8). To do 

this, the values of the predicted outputs 𝑦̂(𝑡 + 𝑗|𝑡) are 

calculated as a function of the past values of the system 

characteristics and future control signals by using the LPV 

model (7) substituted in the cost function. The predictions are 

calculated as 

𝑌 =

[
 
 
 
 
𝐶𝜃𝐴𝜃
𝐶𝜃𝐴𝜃

2

⋮

𝐶𝜃𝐴𝜃
𝑁𝑝
]
 
 
 
 

𝑥(𝑡) +

[
 
 
 
 
 

𝐶𝜃𝐸𝜃
𝐶𝜃(𝐼 + 𝐴𝜃)𝐸𝜃

⋮

∑ 𝐶𝜃𝐴𝜃
𝑖 𝐸𝜃

𝑁𝑝−1

𝑖=0 ]
 
 
 
 
 

+

[
 
 
 

𝐶𝜃𝐵𝜃 … 0

𝐶𝜃(𝐴𝜃)𝐵𝜃 … 0
⋮ ⋱ ⋮

𝐶𝜃𝐴𝜃
𝑁𝑝−1𝐵𝜃 … 𝐶𝜃𝐵𝜃]

 
 
 

𝑈 

(9) 

where 𝑌 = [𝑦̂(𝑡 + 1|𝑡)  𝑦̂(𝑡 + 2|𝑡) …  𝑦̂(𝑡 + 𝑁𝑝|𝑡)]
𝑇
 and 

𝑈 = [𝑢(𝑡) 𝑢(𝑡 + 1)…   𝑢(𝑡 + 𝑁𝑢 − 1)]
𝑇 . Equation (9) can be 

expressed in a vector form as 

𝑌 = Ψ + Θ𝑈 (10) 

where 

Ψ =

[
 
 
 
 
𝐶𝜃𝐴𝜃
𝐶𝜃𝐴𝜃

2

⋮

𝐶𝜃𝐴𝜃
𝑁𝑝
]
 
 
 
 

𝑥(𝑡) +

[
 
 
 
 
 

𝐶𝜃𝐸𝜃
𝐶𝜃(𝐼 + 𝐴𝜃)𝐸𝜃

⋮

∑ 𝐶𝜃𝐴𝜃
𝑖 𝐸𝜃

𝑁𝑝−1

𝑖=0 ]
 
 
 
 
 

; 

Θ =  

[
 
 
 

𝐶𝜃𝐵𝜃 … 0

𝐶𝜃(𝐴𝜃)𝐵𝜃 … 0
⋮ ⋱ ⋮

𝐶𝜃𝐴𝜃
𝑁𝑝−1𝐵𝜃 … 𝐶𝜃𝐵𝜃]

 
 
 

. 

Rewriting the cost function (8) in a vector representation, 

yields 

𝐽(𝑁𝑝, 𝑁𝑢) = (𝑌 −𝑊)
𝑇Δ(𝑌 −𝑊) + 𝑈𝑇Λ𝑈 (11) 

where 𝑊 = [𝑤(𝑡 + 1)   𝑤(𝑡 + 2) …   𝑤(𝑡 + 𝑁𝑝)]
𝑇
, Δ =

diag{𝛿(1), 𝛿(2), … 𝛿(𝑁𝑝)} and 

Λ = diag{𝜆(1), 𝜆(2), … , 𝜆(𝑁𝑝)} with diag{. } stands for a 

diagonal matrix. By substituting (10) into (11), one has 

𝐽(𝑁𝑝, 𝑁𝑢) = 𝑈
𝑇𝐻𝑈 + 𝐾𝑈 + 𝑈𝑇𝐾𝑇 + 𝐺 (12) 

where 

𝐻 = Θ𝑇ΔΘ + Λ > 0;    K = (Ψ −𝑊)𝑇ΔΘ; 
G = (Ψ −W)𝑇Δ(Ψ −𝑊). 

The optimization problem is now to minimize 𝐽 with respect 

to 𝑈, subject to constraints. To address this issue, an upper 

bound 𝐽∗ is introduced and minimized through the convex 

optimization approaches. 

𝐽(𝑁𝑝, 𝑁𝑢) = 𝑈
𝑇𝐻𝑈 + 𝐾𝑈 + 𝑈𝑇𝐾𝑇 + 𝐺 < 𝐽∗ (13) 

Applying the Schur complement [42] on (13) results in: 

[
𝐽∗ − 𝐺 − 𝐾𝑇𝑈 + 𝑈𝑇𝐾𝑇 𝑈𝑇

𝑈 𝐻−1
] > 0 (14) 

In the following, the constraints on the saturated control 

input will be derived in terms of LMIs. Consider the following 

constraint on the amplitude of the control signal: 

𝜉min(𝑡 + 𝑗 − 1) < 𝑢(𝑡 + 𝑗 − 1) < 𝜉max(𝑡 + 𝑗 − 1) 
for    𝑗 = 1,… , 𝑁𝑢 + 1. 

(15) 

The constraint (15) can be formulated as follows: 

Ξmin < 𝐼𝑈 < Ξmax (16) 

or equivalently 

[
𝐼
−𝐼
]𝑈 < [

Ξ𝑚𝑎𝑥
−Ξmin

] (17) 

where Ξmax = [ξmax(t), … , ξmax(t + Nu)]
T, Ξmin =

[ξmin(t), … , ξmin(t + Nu)]
T and 𝐼 is the identity matrix with 

appropriate dimensions. 

Remark 1 (advantages of the proposed approach): By 

comparing the proposed MPC-based method with other 

nonlinear control methods, one can conclude that: 

1. The proposed approach is more robust against the system 

uncertainty which is evident from the simulation results. 

The reason is that the future behavior of the plant is also 

considered in the controller design; and at each step, an 

online optimization is performed to design the optimal value 

of the control input.  

2. The proposed approach can effectively handle input 

constraints such as actuator saturation. However, the other 

conventional methods lead to conservative results. Because, 

the proposed approach deploys the online numerical 

techniques and at each instant, the constraints are well-

considered in the controller design. 

These merits are some of the main advantages of the model 

predictive controller over the conventional controllers 

including the backstepping [11], sliding mode [16], and 

feedback linearization [17] methods. Additionally, in recent 

years some predictive controllers are presented for the EV 

case study [29], [30]. In [29] and [30], an infinite prediction 

horizon scheme is considered and at each step, the gains of a 

nonlinear state feedback controller are computed. These 

approaches have three main drawbacks:  

I) Considering an infinite prediction horizon increases the 

computational burden of the online calculations.  

II) The structure of the presented controllers (i.e. state 

feedback) is complex and it needs an analogous 

measurement of the EV’s states.  

III) The approaches [29] and [30] are applicable to those 

systems with smooth nonlinear terms and infinite norm-2 

disturbance inputs. However, the mechanical part of an EV 

comprises frictions, which are smooth and modeled by 

signum functions. Also, a hill climbing angle, which is 

mainly considered as disturbance is better described by an 

infinite norm-∞ specification. Therefore, one needs to 

approximate the non-smooth functions by the smooth ones 

to deploy [29], [30]. Furthermore, both approaches [29], 

[30] consider the hill climbing angles as zero (same as [11] 

and [17]) to design their controllers.  

However, the proposed approach handles these difficulties 

by considering a finite prediction horizon and a simpler 

structure of the controller. The proposed controller is not a 
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state feedback one and each step, the optimal value of the 

control input is directly designed. Moreover, by considering a 

nonlinear bias term in the system dynamic (i.e. ∑ 𝜃𝑖𝐸𝑖
𝑟
𝑖=1  in 

(7)), a novel predictive controller is proposed, which is 

explicitly applicable for non-smooth functions and amplitude 

bounded disturbances; and thereby the proposed approach is 

more suitable than the existing state-of-the-art MPCs for the 

EV case studies.  

IV. EXPERIMENTAL RESULTS 

In this section, the proposed controller is applied to the 

nonlinear electric vehicle. To evaluate the efficiency of the 

proposed nonlinear model predictive controller, the obtained 

results are compared with the backstepping controller [11], 

feedback linearization [17], and TS-MPC [43] which are the 

latest researches in the present problem.  

Four cases are considered. In the first case, the hill climbing 

angle is set to zero and the tracking performances of the 

mentioned control laws are investigated. In the second case, 

for a constant speed reference, the hill climbing angle changes 

and the robustness of the controllers against the external 

disturbance are studied. In the third case, the system 

uncertainty is considered and the closed-loop performance in 

the presence of the uncertainty is studied. In these three cases, 

the hardware-in-the-loop (HIL) simulation approach is utilized 

to evaluate the results. The HiL setup is illustrated in Fig. 2 

and it is consisting of: I) OPAL-RT as a real-time simulator 

(RTS), II) a PC as the command station (programming host) in 

which the Matlab/Simulink based code executed on the 

OPAL-RT is generated, and III) a router used as a connector 

of all the setup devices in the same sub-network. The OPAL-

RT is also connected to the DK60 board through Ethernet port 

[29]. Finally, in the last case, the experimental test on a 

practical DC motor is carried out. The parameters of the EV 

system utilized in this study are shown in Table I. 

 

 
Fig. 2. The real-time setup for testing the proposed method. 

TABLE I. EV system parameters 

Symbol  Value Symbol  Value 

𝑅𝑎 + 𝑅𝑓 0.2 [𝛺] 𝑢 0~60 [𝑉]  

𝐿𝑎 + 𝐿𝑓 6.008 [𝑚𝐻] 𝐼 0~5 [𝐴] 

𝑟 0.25 [𝑚] 𝜔 0~50 [𝐾𝑚/ℎ𝑟] 
𝐽 0.05 [𝐾𝑔.𝑚2] 𝑚 800 [𝐾𝑔] 
𝐿𝑎𝑓 1.776 [𝑚𝐻] 𝐴 1.8 [𝑚2] 

𝜇𝑟𝑟 0.015 𝐺 11 

𝐵 0.0002 [𝑚2/𝑠] 𝐶𝑑 0.3 

𝜌 1.225 [𝐾𝑔/𝑚3]   

Case 1: In this case, the hill climbing angle is assumed to 

be zero and the electric vehicle moves on a horizontal path. 

The ranges of the EV states, for which the LPV model (6) is 

obtained, are 0 ≤ 𝜔 ≤ 50 [𝐾𝑚/ℎ𝑟] and 0 ≤ 𝐼 ≤ 5 [𝐴]. The 

nonlinear model predictive controller is constructed based on 

the discretized LPV model of (6) with the period 𝑇𝑠 = 1 𝑠𝑒𝑐 

and the prediction and control horizons 𝑁𝑝 = 𝑁𝑢 = 3. Also, 

the weighting functions are selected as 𝛿(𝑗) = 1 and 𝜆(𝑗) =
0.01. Furthermore, the lower and upper bounds of the 

saturated input constraint are set as 𝑢min = 0 and 𝑢max = 60.  

The tuning parameter of the backstepping control law given 

in [11] is selected such that the obtained control signal effort 

does not experience a saturation situation. Therefore, this 

tuning parameter is chosen as 𝑘̅2 = 0.1.  

It should be noted that the nonlinear model and its LPV 

representation is assumed to be controllable. If 𝑥1 is not 

controllable, then Θ given in (10) will be zero, and the control 

input calculated from the NMPC optimization problem will be 

zero. The same assumption of controllability for the other 

nonlinear control schemes must be held too.  

The LWEV system (6) is controllable, if 𝑥2 ≠ 0. Therefore, 

for simulation, the initial condition is chosen as 𝑥(0) =
[0,1]𝑇. Fig. 3 shows the state evolutions and control effort of 

the closed-loop electric vehicle system for the proposed 

NMPC controller and the recently presented nonlinear 

controllers in hand.  
 

 
(a). 

 
(b). 

 
(c). 

Fig. 3. Case 1 (feedback linearization by “green”, proposed approach by 

“red”, backstepping by “blue” and reference by “black”): (a). the motor 

angular speed, (b). the armature current, (c). the input voltage. 
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As can be seen in Fig. 3, the proposed NMPC has a better 

transient performance than the feedback linearization [17] and 

the backstepping [11] approaches for speed control of the 

LWEV system. The closed-loop LWEV system output 

converges to the desired reference, without any oscillation 

behavior.  

 

Case 2: In this case, the effect of the hill climbing angle 𝜑 

is investigated on the closed-loop system. Therefore, the 

reference and the angle are set as 𝜔𝑑 = 18 𝑘𝑚/ℎ𝑟 and 

𝜑 = {

0            for     0 < 𝑡 < 80        
3            for     80 < 𝑡 < 180   
0            for     180 < 𝑡 < 280
10         for     280 < 𝑡 < 500

 (18) 

The simulation is performed by selecting the initial value of 

the electric vehicle 𝑥(0) = [18, 1.24]𝑇. The initial conditions 

are chosen such that the electric vehicle roughly is in its steady 

state phase. Fig. 4 shows the state evolutions and control effort 

of the closed-loop electric vehicle system for different 

approaches. Fig. 4 illustrates that the proposed NMPC can 

effectively alleviate the effect of the hill climbing angle 

variation on the speed of the LWEV and maintains the LWEV 

speed at its desired reference. From Fig. 4 one can conclude 

that the changes and oscillations in the closed-loop LWEV 

output derived based on the NMPC are much less than those 

of the backstepping approach [11]. In addition, the feedback 

linearization technique [17] fails to stabilize the EV’s speed, 

because such a method is not robust against system 

uncertainties and parameter variations. 

 

Case 3: In order to show the robustness of the proposed 

controller against the changes in system parameters, some 

variations are made in some of the system parameters given in 

Table I. The changes in the percentage of the system 

parameters are shown in Table II.  

 

TABLE II. Uncertainty analysis using the parameters of 

Electric Vehicle 
Parameters Variation Range 

∆𝑅 = 𝑅𝑎 + 𝑅𝑓 (𝛺) +10% 

∆𝐿 = 𝐿𝑎 + 𝐿𝑓 (mH) -5% 

𝑟𝑒 (m) +10% 

𝐽 (Kg 𝑚2) -25% 

𝑚 (Kg) +25% 

𝐶𝑑 -10% 

𝜇𝑟𝑟 +20% 

𝜌 (Kg/m) +15% 

 

 
(a). 

 

 
(b). 

 
(c). 

Fig. 4. Case 2 (proposed approach by “red”, backstepping by “blue” and 

reference by “green”): (a). the motor angular speed, (b). the armature current, 
(c). the input voltage. 

 

For the simulations, all initial values and controller 

parameters are set as in Case 1. The proposed controller is still 

designed based on the nominal parameters of the system given 

in Table I. Therefore, the system parameter variations do not 

affect the design procedure of the proposed control law and 

only may degrade the closed-loop tracking performance since 

the actual EV model differs from the nominal one used in the 

controller. In addition, the TS-MPC approach [29] is 

considered. Fig. 5 illustrates the closed-loop system state 

evolution and control input signal. As it is evident from Fig. 5, 

the feedback linearization approach cannot exactly track the 

desired reference in the presence of the uncertainty; and the 

EV speed has a bias compared to the reference. Consequently, 

a different level of the input current (about 2 𝐴) is injected 

when the feedback linearization method is employed. Also, 

the backstepping approach experiences a high chattering 

phenomenon. Furthermore, by promptly changing the set 

point, the TS-MPC controller leads to transient overshoot 

oscillations. This is due to the fact that the approximating the 

non-smooth functions in deriving the Takagi-Sugeno (TS) 

model [43]. The best performance belongs to the proposed 

MPC controller.  

 

Case 4 (Experimental Implementation Using 

TMS320F28335 Digital Signal Processor (DSP)): In this 

case, the experimental examination of the proposed LPV-

based MPC is conducted. By using a high-performance 

TMS320F28335 DSP, the experimental results of the speed 

control of a nonlinear DC motor are carried out. The interested 

readers can refer to [30] for further implementation details. In 

addition, the New European Driving Cycle (NEDC) is 

considered to examine the performance of the proposed 

controller.  

 



2168-6777 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JESTPE.2018.2884346, IEEE Journal
of Emerging and Selected Topics in Power Electronics

IEEE Journal of Emerging and Selected Topics in Power Electronics 7 

 
(a). 

 
(b). 

Fig. 5. Case 3 (feedback linearization by “green”, proposed approach by 

“red”, backstepping by “blue”, TS-MPC by “yellow”, and reference by 

“black”): (a). the motor angular speed, (b). the armature current. 

 

Fig. 6 shows the experimental NEDC speed test, the control 

input, and the motor angular speed error. As demonstrated in 

Fig. 6, the EV system with the proposed controller can track 

the desired reference with an error of the order 10−1. Besides, 

Fig. 6(b) depicts that the control signal of the suggested novel 

approach is limited (48 Volt). This is very important because 

the batteries in the EVs are limited.  

In addition, the normalized integral of the square error 

(NISE) (i.e. ∫ (
𝑒(𝜏)

𝜔(𝜏)
)
2

𝑑𝜏
𝑡

0
), the normalized integral of absolute 

error (NIAE) (i.e. ∫ |
𝑒(𝜏)

𝜔(𝜏)
| 𝑑𝜏

𝑡

0
), and the power of the control 

input signal (i.e. 
1

𝑡
∫ (𝑢(𝜏))

2
𝑑𝜏

𝑡

0
) for the interval 𝑡 ∈

[0,1200] seconds are provided in Table III. To sum up, it is 

shown that the real-time simulation results based OPAL-RT 

technology and experimental results based TMS320F28335 

DSP are very similar to each other for the evaluations of the 

proposed control approach. 

 

TABLE III. Closed-loop performance of the experimental test 

Performance Value 

NISE 0.0132 

NIAE 0.512 

Control input power 247.154 

 

 

 
(a). 

 
(b). 

 

 
(c). 

 

 
(d). 

Fig. 6. Case 4 (Experimental results of the proposed controller for NEDC 
reference speed command) (a). the NEDC reference, (b). the error of the EV 

speed from the desired reference. (c). the DC motor current (d). the control 

input signal.  
 

V. CONCLUSION 

In this paper, a nonlinear model predictive control (NMPC) 

method was proposed for the speed control of constrained 

nonlinear light-weighted electric vehicles (LWEVs). The basis 

of the NMPC was a linear parameter varying (LPV) model, 

which facilitates formulating the controller design conditions 

in terms of linear matrix inequalities and generalized 

Eigenvalue problem (GEVP).  Therefore, at each time step of 

the NMPC controller, the input signal can be obtained through 

the convex optimization techniques. Also, practical limitations 

on the amplitude of the input signal were considered and 

formulated in terms of LMIs. Experimental results have 

illustrated that the proposed approach has a fast convergence 

of the closed-loop LWEV system output without any 

oscillations. In addition, the NMPC was robust to the hill 

climbing angle. Therefore, the variation in the hill climbing 

angle has a small destructive effect on the speed of the 

LWEV. For the future work, considering the optimal section 

of the coefficients of the cost function is an important research 

area. Also, considering the motor power and torque constraints 

The Speed Track Test of NEDC 
120 Sec 20 Km/Hr 

0 

120 Sec 0.1 Km/Hr 

0 

Error signal 

120 Sec 1.5 A 

Current 

0 

120 Sec 25 V 

0 

Control signal 
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and other types of motors such as permanent magnet DC can 

be of great importance.  
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