123 research outputs found

    PLC for the smart grid: state-of-the-art and challenges

    Get PDF
    This paper aims to review systems and applications for power line communications (PLC) in the context of the smart grid. We discuss the main applications and summarise state-of-the-art PLC systems and standards. We report efforts and challenges in channel and noise modelling, as well as in state-of-the-art transmission technology approaches

    Efficient Fast-Convolution-Based Waveform Processing for 5G Physical Layer

    Get PDF
    This paper investigates the application of fast-convolution (FC) filtering schemes for flexible and effective waveform generation and processing in the fifth generation (5G) systems. FC-based filtering is presented as a generic multimode waveform processing engine while, following the progress of 5G new radio standardization in the Third-Generation Partnership Project, the main focus is on efficient generation and processing of subband-filtered cyclic prefix orthogonal frequency-division multiplexing (CP-OFDM) signals. First, a matrix model for analyzing FC filter processing responses is presented and used for designing optimized multiplexing of filtered groups of CP-OFDM physical resource blocks (PRBs) in a spectrally well-localized manner, i.e., with narrow guardbands. Subband filtering is able to suppress interference leakage between adjacent subbands, thus supporting independent waveform parametrization and different numerologies for different groups of PRBs, as well as asynchronous multiuser operation in uplink. These are central ingredients in the 5G waveform developments, particularly at sub-6-GHz bands. The FC filter optimization criterion is passband error vector magnitude minimization subject to a given subband band-limitation constraint. Optimized designs with different guardband widths, PRB group sizes, and essential design parameters are compared in terms of interference levels and implementation complexity. Finally, extensive coded 5G radio link simulation results are presented to compare the proposed approach with other subband-filtered CP-OFDM schemes and time-domain windowing methods, considering cases with different numerologies or asynchronous transmissions in adjacent subbands. Also the feasibility of using independent transmitter and receiver processing for CP-OFDM spectrum control is demonstrated

    Power pre-emphasis for suppression of FWM in coherent optical OFDM transmission

    Get PDF
    Four-wave-mixing (FWM) due to the fiber nonlinearity is a major limiting factor in coherent optical OFDM transmission. We propose to apply power pre-emphasis, i.e. to allocate the transmitted power nonuniformly among subcarriers in order to suppress the FWM impairment. The proposed technique was numerically investigated for both single channel 15.6 Gbs CO-OFDM transmissions and 7-channel WDM transmissions, showing that up to 1 dB improvement in the system's Qfactor can be achieved without considering sophisticated power loading algorithms developed for wireless communications

    Pilot Pouring in Superimposed Training for Channel Estimation in CB-FMT

    Get PDF
    Cyclic block filtered multi-tone (CB-FMT) is a waveform that can be efficiently synthesized through a filter-bank in the frequency domain. Although the main principles have been already established, channel estimation has not been addressed yet. This is because of assuming that the existing techniques based on pilot symbol assisted modulation (PSAM), implemented in OFDM-like schemes, can be reused. However, PSAM leads to an undesirable loss of data-rate. In this paper, an alternative method inspired by the superimposed training (ST) concept, namely pilot pouring ST (PPST), is proposed. In PPST, pilots are superimposed over data taking advantage of the particular spectral characteristics of CB-FMT. Exploiting the sub-channel spectrum, the pilot symbols are poured in those resources unused for data transmission. This spectral shaping of pilots is also exploited at the receiver to carry out channel estimation, by enhancing those channel estimates that exhibit a low data interference contribution. Furthermore, a frequency domain resource mapping strategy for the data and poured pilot symbols is proposed to enable an accurate estimation in strongly frequency-selective channels. The parameters of the proposed scheme are optimized to minimize the channel estimation mean squared error (MSE). Finally, several numerical results illustrate the performance advantages of the proposed technique as compared to other alternatives

    Low-complexity power allocation in pilot-pouring superimposed training over CB-FMT

    Get PDF
    Pilot-pouring superimposed training (PPST) is a novel channel estimation technique specially designed for cyclic block filtered multi-tone (CB-FMT), where the pilot symbols are poured into the subcarriers taking advantage of the power left unused by the data symbols. Hence, since this technique is based on superimposed training (ST) principles, the data rate is not reduced, unlike the pilot symbol assisted modulation (PSAM). Besides, it exploits a weighted average at the receiver side that is capable of minimizing the mean squared error (MSE) of the channel estimation, and then enhancing the performance of the system. However, the existing proposal on PPST is limited to the minimization of the MSE to improve channel estimation for a given power allocation factor, without solving the joint optimization of channel estimation and data detection procedures. With this aim, this work addresses the whole problem to reach the best performance for both tasks, thus taking into account also the power allocation factor in the opt where the pilot symbols are poured into the subcarriers taking advantage of the power left unused by the data symbols. Hence, since this technique is based on superimposed training (ST) principles, the data rate is not reduced, unlike the pilot symbol assisted modulation (PSAM). Besides, it exploits a weighted average at the receiver side that is capable of minimizing the mean squared error (MSE) of the channel estimation, and then enhancing the performance of the system. However, the existing proposal on PPST is limited to the minimization of the MSE to improve channel estimation for a given power allocation factor, without solving the joint optimization of channel estimation and data detection procedures. With this aim, this work addresses the whole problem to reach the best performance for both tasks, thus taking into account also the power allocation factor in the optimization process, where the spectral efficiency must be maximized through the signal-to-interference plus noise ratio (SINR). Two optimization approaches are proposed, where the first one, referred as pilot-pouring optimization (PPO), is focused on performance at the expense of a high complexity, while the second one, denoted as low-complexity PPO (LPPO), is able to trade-off between performance and execution time. Numerical results are provided in order to show the validity of our proposal, where the different optimization problems are compared in terms of SINR and execution time.This work was supported by Spanish National Projects TERESA-ADA (TEC2017-90093-C3-2-R) (MINECO/AEI/FEDER, UE), and IRENE-EARTH (PID2020-115323RB-C33 / AEI / 10.13039/501100011033). The work of A. M. Tonello was supported by the Chair of Excellence Program of the Universidad Carlos III de Madrid

    Optimizing the joint transmit and receive MMSE design using mode selection

    Get PDF
    International audienceTo approach the potential multiple-input multiple-output (MIMO) capacity while optimizing the system bit-error rate (BER) performance, the joint transmit and receive minimum mean squared error (joint Tx/Rx MMSE) design has been proposed. It is the optimal linear scheme for spatial multiplexing MIMO systems, assuming a fixed number of spatial streams p as well as fixed modulation and coding across these spatial streams. However, the number of spatial streams has been arbitrarily chosen and fixed, which may lead to an inefficient power allocation strategy and a poor BER performance. In this paper, we relax the constraint of fixed number of streams p and optimize this value for the current channel realization, under the constraints of fixed average total transmit power P/sub T/ and fixed rate R, what we refer to as mode selection . Based on the observation of the existence of a dominant optimal number of streams value for the considered Rayleigh flat-fading MIMO channel model, we further propose an "average" mode selection that avoids the per-channel adaptation through using the latter dominant value for all channel realizations. Finally, we exhibit the significant BER improvement provided by our mode selection over the conventional joint Tx/Rx MMSE design. Such significant improvement is due to the better exploitation of the MIMO spatial diversity and the more efficient power allocation enabled by our mode selection

    Discrete Wavelet Transforms

    Get PDF
    The discrete wavelet transform (DWT) algorithms have a firm position in processing of signals in several areas of research and industry. As DWT provides both octave-scale frequency and spatial timing of the analyzed signal, it is constantly used to solve and treat more and more advanced problems. The present book: Discrete Wavelet Transforms: Algorithms and Applications reviews the recent progress in discrete wavelet transform algorithms and applications. The book covers a wide range of methods (e.g. lifting, shift invariance, multi-scale analysis) for constructing DWTs. The book chapters are organized into four major parts. Part I describes the progress in hardware implementations of the DWT algorithms. Applications include multitone modulation for ADSL and equalization techniques, a scalable architecture for FPGA-implementation, lifting based algorithm for VLSI implementation, comparison between DWT and FFT based OFDM and modified SPIHT codec. Part II addresses image processing algorithms such as multiresolution approach for edge detection, low bit rate image compression, low complexity implementation of CQF wavelets and compression of multi-component images. Part III focuses watermaking DWT algorithms. Finally, Part IV describes shift invariant DWTs, DC lossless property, DWT based analysis and estimation of colored noise and an application of the wavelet Galerkin method. The chapters of the present book consist of both tutorial and highly advanced material. Therefore, the book is intended to be a reference text for graduate students and researchers to obtain state-of-the-art knowledge on specific applications
    • …
    corecore