206 research outputs found

    Energy-Efficient Resource Allocation in Wireless Networks: An Overview of Game-Theoretic Approaches

    Full text link
    An overview of game-theoretic approaches to energy-efficient resource allocation in wireless networks is presented. Focusing on multiple-access networks, it is demonstrated that game theory can be used as an effective tool to study resource allocation in wireless networks with quality-of-service (QoS) constraints. A family of non-cooperative (distributed) games is presented in which each user seeks to choose a strategy that maximizes its own utility while satisfying its QoS requirements. The utility function considered here measures the number of reliable bits that are transmitted per joule of energy consumed and, hence, is particulary suitable for energy-constrained networks. The actions available to each user in trying to maximize its own utility are at least the choice of the transmit power and, depending on the situation, the user may also be able to choose its transmission rate, modulation, packet size, multiuser receiver, multi-antenna processing algorithm, or carrier allocation strategy. The best-response strategy and Nash equilibrium for each game is presented. Using this game-theoretic framework, the effects of power control, rate control, modulation, temporal and spatial signal processing, carrier allocation strategy and delay QoS constraints on energy efficiency and network capacity are quantified.Comment: To appear in the IEEE Signal Processing Magazine: Special Issue on Resource-Constrained Signal Processing, Communications and Networking, May 200

    Analysis and Modeling of Magnetized Microswimmers: Effects of Geometry and Magnetic Properties

    Get PDF
    In recent years, much effort has been placed on development of microscale devices capable of propulsion in fluidic environments. These devices have numerous possible applications in biomedicine, microfabrication and sensing. One type of these devices that has drawn much attention among researchers is magnetic microswimmers--artificial microrobots that propel in fluid environments by being actuated using rotating external magnetic fields. This dissertation highlights our contribution to this class of microrobots. We address issues regarding fabrication difficulties arising from geometric complexities as well as issues pertaining to the controllability and adaptability of microswimmers.The majority of research in this field focuses on utilization of flexible or achiral geometries as inspired by microbiological organisms such as sperm and bacteria. Here, we set forth the minimum geometric requirements for feasible designs and demonstrate that neither flexibility nor chirality is required, contrary to biomimetic expectations. The physical models proposed in this work are generally applicable to any geometry and are capable of predicting the swimming behavior of artificial microswimmers with permanent dipoles. Through these models, we explain the wobbling phenomena, reported by experimentalists. Our model predicts the existence of multiple stable solutions under certain conditions. This leads to the realization that control strategies can be improved by adjusting the angle between the applied magnetic field and its axis of rotation. Furthermore, we apply our model to helical geometries which encompass the majority of magnetic microswimmers. We demonstrate the criterion for linear velocity-frequency response and minimization of wobbling motion. One approach to improve the adaptability of swimmers to various environments is to use modular units that can dynamically assemble and disassemble on-site. We propose a model to explain the docking process which informs strategies for successful assemblies. Most studies conducted so far are to elucidate permanent magnetic swimmers, but the literature is lacking on analysis of swimmers made of soft ferromagnetic materials. In this work, we develop a model for soft-magnetic microswimmers in the saturation regime in order to predict the swimming characteristics of these types of swimmers and compare to those of hard-magnetic swimmers

    A Non-Cooperative Power Control Game in Delay-Constrained Multiple-Access Networks

    Full text link
    A game-theoretic approach for studying power control in multiple-access networks with transmission delay constraints is proposed. A non-cooperative power control game is considered in which each user seeks to choose a transmit power that maximizes its own utility while satisfying the user's delay requirements. The utility function measures the number of reliable bits transmitted per joule of energy and the user's delay constraint is modeled as an upper bound on the delay outage probability. The Nash equilibrium for the proposed game is derived, and its existence and uniqueness are proved. Using a large-system analysis, explicit expressions for the utilities achieved at equilibrium are obtained for the matched filter, decorrelating and minimum mean square error multiuser detectors. The effects of delay constraints on the users' utilities (in bits/Joule) and network capacity (i.e., the maximum number of users that can be supported) are quantified.Comment: To apprear in the proceedings of the 2005 IEEE International Symposium on Information Theory, Adelaide, Australia, September 4-9, 200

    Energy-Efficient Resource Allocation in Wireless Networks with Quality-of-Service Constraints

    Full text link
    A game-theoretic model is proposed to study the cross-layer problem of joint power and rate control with quality of service (QoS) constraints in multiple-access networks. In the proposed game, each user seeks to choose its transmit power and rate in a distributed manner in order to maximize its own utility while satisfying its QoS requirements. The user's QoS constraints are specified in terms of the average source rate and an upper bound on the average delay where the delay includes both transmission and queuing delays. The utility function considered here measures energy efficiency and is particularly suitable for wireless networks with energy constraints. The Nash equilibrium solution for the proposed non-cooperative game is derived and a closed-form expression for the utility achieved at equilibrium is obtained. It is shown that the QoS requirements of a user translate into a "size" for the user which is an indication of the amount of network resources consumed by the user. Using this competitive multiuser framework, the tradeoffs among throughput, delay, network capacity and energy efficiency are studied. In addition, analytical expressions are given for users' delay profiles and the delay performance of the users at Nash equilibrium is quantified.Comment: Accpeted for publication in the IEEE Transactions on Communication

    A Game-Theoretic Approach to Energy-Efficient Modulation in CDMA Networks with Delay QoS Constraints

    Full text link
    A game-theoretic framework is used to study the effect of constellation size on the energy efficiency of wireless networks for M-QAM modulation. A non-cooperative game is proposed in which each user seeks to choose its transmit power (and possibly transmit symbol rate) as well as the constellation size in order to maximize its own utility while satisfying its delay quality-of-service (QoS) constraint. The utility function used here measures the number of reliable bits transmitted per joule of energy consumed, and is particularly suitable for energy-constrained networks. The best-response strategies and Nash equilibrium solution for the proposed game are derived. It is shown that in order to maximize its utility (in bits per joule), a user must choose the lowest constellation size that can accommodate the user's delay constraint. This strategy is different from one that would maximize spectral efficiency. Using this framework, the tradeoffs among energy efficiency, delay, throughput and constellation size are also studied and quantified. In addition, the effect of trellis-coded modulation on energy efficiency is discussed.Comment: To appear in the IEEE Journal on Selected Areas in Communications (JSAC): Special Issue on Non-Cooperative Behavior in Networking, August 200

    Human Factors in Highway-Rail Crossing Accidents: The Influence of Driver Decision Style

    Get PDF
    This paper explores the hypothesis that driver decision-making style influences highway-rail crossing accidents. To investigate this, we have designed an analysis of variance experiment with three independent variables: “driver decision style,” “driver time pressure” and “intersection complexity.” To simulate the driving conditions, we identified and videotaped a number of dangerous crossings in downtown Los Angeles. The tapes represented different environmental complexities and time pressures a driver experiences while crossing an intersection. The tapes were played back to the subject drivers. The subjects were classified according to their decision styles. Dependent measures were designed based on a driver’s decision to cross the intersection. This paper presents the conceptual approach and the experimental design for this research

    A Game-Theoretic Approach to Energy-Efficient Modulation in CDMA Networks with Delay Constraints

    Full text link
    A game-theoretic framework is used to study the effect of constellation size on the energy efficiency of wireless networks for M-QAM modulation. A non-cooperative game is proposed in which each user seeks to choose its transmit power (and possibly transmit symbol rate) as well as the constellation size in order to maximize its own utility while satisfying its delay quality-of-service (QoS) constraint. The utility function used here measures the number of reliable bits transmitted per joule of energy consumed, and is particularly suitable for energy-constrained networks. The best-response strategies and Nash equilibrium solution for the proposed game are derived. It is shown that in order to maximize its utility (in bits per joule), a user must choose the lowest constellation size that can accommodate the user's delay constraint. Using this framework, the tradeoffs among energy efficiency, delay, throughput and constellation size are also studied and quantified. The effect of trellis-coded modulation on energy efficiency is also discussed.Comment: Appeared in the Proceedings of the 2007 IEEE Radio and Wireless Symposium, Long Beach, CA, January 9-11, 200
    • …
    corecore