2,198 research outputs found

    A space-time neural network

    Get PDF
    Introduced here is a novel technique which adds the dimension of time to the well known back propagation neural network algorithm. Cited here are several reasons why the inclusion of automated spatial and temporal associations are crucial to effective systems modeling. An overview of other works which also model spatiotemporal dynamics is furnished. A detailed description is given of the processes necessary to implement the space-time network algorithm. Several demonstrations that illustrate the capabilities and performance of this new architecture are given

    Incremental construction of LSTM recurrent neural network

    Get PDF
    Long Short--Term Memory (LSTM) is a recurrent neural network that uses structures called memory blocks to allow the net remember significant events distant in the past input sequence in order to solve long time lag tasks, where other RNN approaches fail. Throughout this work we have performed experiments using LSTM networks extended with growing abilities, which we call GLSTM. Four methods of training growing LSTM has been compared. These methods include cascade and fully connected hidden layers as well as two different levels of freezing previous weights in the cascade case. GLSTM has been applied to a forecasting problem in a biomedical domain, where the input/output behavior of five controllers of the Central Nervous System control has to be modelled. We have compared growing LSTM results against other neural networks approaches, and our work applying conventional LSTM to the task at hand.Postprint (published version

    Designs of Digital Filters and Neural Networks using Firefly Algorithm

    Get PDF
    Firefly algorithm is an evolutionary algorithm that can be used to solve complex multi-parameter problems in less time. The algorithm was applied to design digital filters of different orders as well as to determine the parameters of complex neural network designs. Digital filters have several applications in the fields of control systems, aerospace, telecommunication, medical equipment and applications, digital appliances, audio recognition processes etc. An Artificial Neural Network (ANN) is an information processing paradigm that is inspired by the way biological nervous systems, such as the brain, processes information and can be simulated using a computer to perform certain specific tasks like clustering, classification, and pattern recognition etc. The results of the designs using Firefly algorithm was compared to the state of the art algorithms and found that the digital filter designs produce results close to the Parks McClellan method which shows the algorithm’s capability of handling complex problems. Also, for the neural network designs, Firefly algorithm was able to efficiently optimize a number of parameter values. The performance of the algorithm was tested by introducing various input noise levels to the training inputs of the neural network designs and it produced the desired output with negligible error in a time-efficient manner. Overall, Firefly algorithm was found to be competitive in solving the complex design optimization problems like other popular optimization algorithms such as Differential Evolution, Particle Swarm Optimization and Genetic Algorithm. It provides a number of adjustable parameters which can be tuned according to the specified problem so that it can be applied to a number of optimization problems and is capable of producing quality results in a reasonable amount of time

    Algorithm Hardware Codesign for High Performance Neuromorphic Computing

    Get PDF
    Driven by the massive application of Internet of Things (IoT), embedded system and Cyber Physical System (CPS) etc., there is an increasing demand to apply machine intelligence on these power limited scenarios. Though deep learning has achieved impressive performance on various realistic and practical tasks such as anomaly detection, pattern recognition, machine vision etc., the ever-increasing computational complexity and model size of Deep Neural Networks (DNN) make it challenging to deploy them onto aforementioned scenarios where computation, memory and energy resource are all limited. Early studies show that biological systems\u27 energy efficiency can be orders of magnitude higher than that of digital systems. Hence taking inspiration from biological systems, neuromorphic computing and Spiking Neural Network (SNN) have drawn attention as alternative solutions for energy-efficient machine intelligence. Though believed promising, neuromorphic computing are hardly used for real world applications. A major problem is that the performance of SNN is limited compared with DNNs due to the lack of efficient training algorithm. In SNN, neuron\u27s output is spike, which is represented by Dirac Delta function mathematically. Becauase of the non-differentiable nature of spike, gradient descent cannot be directly used to train SNN. Hence algorithm level innovation is desirable. Next, as an emerging computing paradigm, hardware and architecture level innovation is also required to support new algorithms and to explore the potential of neuromorphic computing. In this work, we present a comprehensive algorithm-hardware codesign for neuromorphic computing. On the algorithm side, we address the training difficulty. We first derive a flexible SNN model that retains critical neural dynamics, and then develop algorithm to train SNN to learn temporal patterns. Next, we apply proposed algorithm to multivariate time series classification tasks to demonstrate its advantages. On hardware level, we develop a systematic solution on FPGA that is optimized for proposed SNN model to enable high performance inference. In addition, we also explore emerging devices, a memristor-based neuromorphic design is proposed. We carry out a neuron and synapse circuit which can replicate the important neural dynamics such as filter effect and adaptive threshold

    A survey on tidal analysis and forecasting methods for Tsunami detection

    Get PDF
    Accurate analysis and forecasting of tidal level are very important tasks for human activities in oceanic and coastal areas. They can be crucial in catastrophic situations like occurrences of Tsunamis in order to provide a rapid alerting to the human population involved and to save lives. Conventional tidal forecasting methods are based on harmonic analysis using the least squares method to determine harmonic parameters. However, a large number of parameters and long-term measured data are required for precise tidal level predictions with harmonic analysis. Furthermore, traditional harmonic methods rely on models based on the analysis of astronomical components and they can be inadequate when the contribution of non-astronomical components, such as the weather, is significant. Other alternative approaches have been developed in the literature in order to deal with these situations and provide predictions with the desired accuracy, with respect also to the length of the available tidal record. These methods include standard high or band pass filtering techniques, although the relatively deterministic character and large amplitude of tidal signals make special techniques, like artificial neural networks and wavelets transform analysis methods, more effective. This paper is intended to provide the communities of both researchers and practitioners with a broadly applicable, up to date coverage of tidal analysis and forecasting methodologies that have proven to be successful in a variety of circumstances, and that hold particular promise for success in the future. Classical and novel methods are reviewed in a systematic and consistent way, outlining their main concepts and components, similarities and differences, advantages and disadvantages

    Fundamentals of Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) Network

    Full text link
    Because of their effectiveness in broad practical applications, LSTM networks have received a wealth of coverage in scientific journals, technical blogs, and implementation guides. However, in most articles, the inference formulas for the LSTM network and its parent, RNN, are stated axiomatically, while the training formulas are omitted altogether. In addition, the technique of "unrolling" an RNN is routinely presented without justification throughout the literature. The goal of this paper is to explain the essential RNN and LSTM fundamentals in a single document. Drawing from concepts in signal processing, we formally derive the canonical RNN formulation from differential equations. We then propose and prove a precise statement, which yields the RNN unrolling technique. We also review the difficulties with training the standard RNN and address them by transforming the RNN into the "Vanilla LSTM" network through a series of logical arguments. We provide all equations pertaining to the LSTM system together with detailed descriptions of its constituent entities. Albeit unconventional, our choice of notation and the method for presenting the LSTM system emphasizes ease of understanding. As part of the analysis, we identify new opportunities to enrich the LSTM system and incorporate these extensions into the Vanilla LSTM network, producing the most general LSTM variant to date. The target reader has already been exposed to RNNs and LSTM networks through numerous available resources and is open to an alternative pedagogical approach. A Machine Learning practitioner seeking guidance for implementing our new augmented LSTM model in software for experimentation and research will find the insights and derivations in this tutorial valuable as well.Comment: 43 pages, 10 figures, 78 reference
    • 

    corecore